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Abstract

Pulse loads on power electronic distribution systems are becoming very popular nowa-

days as the components of ships and airplanes are moving to more electric power.

However, the pulse loads have a destabilizing effect on the power distribution system.

Usually, the method used to study the stability of this type of system are small-signal

analyses and are based on a system where the load is modeled as a constant. Since

DC-DC systems with pulsed loads are very nonlinear, a small-signal analysis does not

provide helpful information related to the stability of the system. The work presented

in this thesis focuses on the large-signal stability analysis of the system based on the

average-mode model of dc-dc converters. Where the linear parameters of the system

found using small-signal analysis are used to define a series of cases, equations, and

relationships. This new method will give a more accurate approximation of the stabil-

ity of the full nonlinear systems for a pulse load than small-signal analysis and much

faster than the Hamiltonian Surface Shaping and Power Flow Control (HSSPFC)

method. The objective of this investigation is to get an accurate approximation that

does not require as much computational time.

xv





Chapter 1

Introduction

This research work was developed with the specific objective of decreasing the com-

putational time required to study the stability behavior of electric warships for pulse

power loads since the Hamiltonian Surface Shaping method, which is a large-signal

stability analysis that accurately describes the stability behavior of the system re-

quires a lot of computational time. The electric warship is a new technology that was

developed to support the electrical power demands of advanced weapons and combat

systems of warships with the purpose of reducing fuel consumption and ownership

costs [1]. Designing a power and energy system that meets the dynamic load demand

of the electric warship has been a challenge due to the lack of efficiency of the cur-

rent designing tools available since they consider a constant power demand, and this
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does not accurately describe the ship loads [2]. Dynamic loads such as electromag-

netic guns, electromagnetic launch systems, and free electron lasers usually operate as

pulse loads signals with a power magnitude, duty cycle, and period. The integration

of these loads on the system is challenging [3]. A lot of research has been done on the

effects of constant power loads in DC systems and they all concluded that constant

loads have a destabilizing effect on the system [4][5][6]. Also, it has been proven that

pulse loads cause changes in the voltage of the system and depending on the values

of the magnitude, duty cycle, and period of the pulse can lead to instability [7][8].

A typical approach to study the stability of these systems for a constant power load

is by a small-signal analysis. However, the changes in the pulse power loads are so

drastic that the small-signal analysis is not applicable because it gives inappropriate

and inaccurate results. Since a pulse power load is a time-variant system, a good

approach to study the stability of the system would be a linear time-variant method

such as Floquet theory [9][10]. However, even though Floquet theory describes the

time-variant nature of the power pulse load, this method still fails to capture the

large-signal behavior of the system.

Other research has focused on designing controllers to mitigate the instability effects

of pulse loads on the system. In [11], the energy storage of the electromagnetic

launcher (EML) to feed both the free-electron laser (EFL) and the main power bus of

the system is used, and instability effects of the pulse loads are mitigated. In [2] they

mitigate the instability effects by implementing a simple guidance control scheme to

2



adjust power flows when a pulse load is active. However, these controllers might not

be necessary for certain pulse power loads, for this reason, stability analysis plays

an important role in the design of electric ships. For the reason mentioned above

a new method to analyze pulse power loads on a DC electric distribution system,

such as electric ships, was introduced in [12]. Where they represented the power

system of the ship and pulse power load as a Hamiltonian surface which is a type of

Lyapunov function which is able to capture the large-signal effects and predict the

stability boundaries of the system for a pulse power load. Also, they introduced a new

concept to define a system as metastable, because during the on period of the pulse

power load the bus voltage grows exponentially but the off period of the pulse load

damps the instability and keeps the voltage of the system bounded. They defined

this bounded instability as meta-stable. However, even though this method is very

accurate, it requires a lot of computational time to generate the data that describes the

stability of the system for power loads with different values of power, duty cycle, and

period. Usually, to determine the stability behavior of the system for a pulse power

load with a specific magnitude of power can take around eight hours. Although the

Hamiltonian surface method is able to accurately predict the stability of the system

for pulse power load, this method requires a lot of computational time to generate the

data that describes the stability behavior of the system for power loads with different

values of power, duty cycle, and period. For this reason, an approximation method

based on the linear parameters of the system is used to predict the stability of the
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DC-DC system with a pulse power load. This method predicts the stability of the

system for power loads and requires less computational time than the Hamiltonian

surface method.

4



Chapter 2

System Dynamics and Theory

2.1 Stability

In control system design and study, stability plays an important role, since it deter-

mines the safe operation of a system. The stability of a system is determined by

the ability of the system to maintain or restore its equilibrium whenever the system

experiences an abrupt change caused by internal or external forces. In power systems,

a system is defined as stable when its characteristics are able to maintain the system

in a state of equilibrium under standard operating conditions, and when the system

can reach equilibrium after being exposed to a disturbance [13].
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A basic and typical approach to study the stability is through a small-signal Eigen-

values analysis, and it is only valid for a small region around the operating points

of the system. However, in this work, the system that is being studied has a pulse

power load which makes it a time-variant system and for this reason, the small signal

approach is not accurate.

2.2 Floquet theory

The system under consideration is a periodic time-variant. Floquet theory is one

of the few tools available to test the stability of a time-variant system. Floquet

theory allows to study the stability of a periodic time-varying pulse power load. This

method considers a set of differential equations that are linear, homogeneous, and

time-periodic [14]. In Floquet theory a time-varying linear system represented as

dx

dt
= A(t)x (2.1)

where A(t) is an nxn matrix with minimal period T and x is an n-dimensional vector

and the general solution for (2.1) is

x =
n∑

i=1

cie
µitpi(t) (2.2)
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where ci are constants related to initial conditions, pi(t) are vector-valued functions

with period T, and µi are the Floquet exponents, which are equal to the eigenvalues.

The Floquet multipliers are associated with the Floquet exponents by

ρi = eµiT . (2.3)

The long-term behavior of the system is defined by the Floquet exponents. The

zero equilibrium is stable if all the Floquet exponents have negative real parts, or

equivalently the Floquet multipliers have real parts between -1 and 1. From (2.3) the

Floquet exponents are defined as

µi =
log ρi
T

. (2.4)

To demonstrate Floquet stability, a study is done with an illustrative example where

the system under study is defined by the matrix A(t) as

A(t) =

 −1 sin(t)

cos(t) + 5 −1


where the Floquet multipliers are found using (2.1) as

dx

dt
=

 −1 sin(t)

cos(t) + 5 −1

X

7



where x is an nxn matrix and has initial conditions of the identity matrix (x(0) = I).

The Floquet multipliers (ρi) are the Eigenvalues of x(t) and the solution of x must

be found numerically. To solve the differential equation a MATLAB code was used.

Then, the numeric solution of the system must be evaluated at a time equal to the

period of the periodic signal, in this case, T = 2π. The solution of the system for

t = T is

x(T ) =

0.403743 0.088559

0.314482 0.068989


the eigenvalues of x(T ) (Floquet multipliers) are

ρ(T ) =

 0.472772

7.377 12× 10−6

 .

Using (2.4) the Floquet exponents are

µ(T ) =

−0.119246
−1.88075


since the real part of the Floquet exponents have negative real parts, the Floquet

stability study concludes that the system is stable.
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2.3 Metastability

In the case of pulse loads on a DC electric power system, such as electric ships, the

concept of stability of the pulse power system is redefined as metastable. This new

terminology to describe the stability of this system was introduced in [12]. The system

might be unstable for a value of power during the ”on” period of the pulse load, and

this will cause the bus voltage to increase exponentially. However, during the ”off”

period of the pulse load the instability is damped and this will keep the bus voltage

bounded. Due to these reasons, the ”on” cycle of bound instability plus the damping

cycle of the off period will define the metastability of a DC electric power distribution

system.

Since power distribution systems are able to work between a range of voltages, when

the system reaches a stable limit cycle for pulse load with a specific period and duty

cycle, the system will be defined as metastable. Once the system reaches a stable

limit cycle the bus voltage will be bounded between certain values of voltage. The

range of bounded voltages used to define when a system is considered metastable will

depend on the constraints established by the designer of the system. For the purpose

of this research, the system is define as metastable when the minimum voltage of the

system was greater than 0.4vco, where vco is the nominal bus operating voltage of the

system, which has a magnitude of 400 V.
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Chapter 3

Small signal analysis and nonlinear

model

3.1 System and load model

For the purpose of this study, an average-mode model of a boost converter was used

to study the stability effect of a pulse load on a DC/DC grid as shown in Figure 3.1.

In this research an average-mode model was considered where λ = 1−D. Where D

represents the duty cycle of the active switch [15]. The pulse load under study has

the waveform shown in Figure 3.2 where P represents the magnitude of the pulse, T

is the period and D is the duty cycle of the pulse power load. The system shown in

11



Figure 3.1: Average-mode model of a boost converter with pulse current
load.

Figure 3.2: Pulse time-dependent power waveform.

Figure 3.1 can be described by the following mathematical equations:

L
diL
dt

= Vs − λvc −RLiL (3.1)

C
dvc
dt

= λiL −
vc
Rc

− ipulse (3.2)

where ipulse represents the pulse power load, Vs is the voltage of the energy storage

system, iL is the current of the inductor, vc is the voltage of the capacitor, λ is the

12



switching frequency of the boost converter and the load model is

ipulse =
P (t)

vc
(3.3)

the effects of power loads on this type of system has been studied by several researchers

and they concluded that these loads have de-stabilizing characteristics and have spent

a lot of time trying to mitigate this effect [16][17][18].

3.2 Small-signal stability analysis

Though this method is not valid for the case that is being studied, it will provide

important parameters such as the natural frequency and period of the system. These

parameters are going to be used to define the equations and conditions of the approx-

imation method developed in this investigation. The eigenvalues stability analysis is

a simple approach to study the stability of a power system for a constant power load.

From the system model (3.1)-(3.2), the linearized model of the system for a constant

power load (P ) is

dx

dt
=

−RL

L
−λ
L

λ
C

1
C

(
P

vco2
− 1

RC

)
x+

 1
L

0

u (3.4)
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where xT =

[
iL vc

]
, u = Vs and vco is the linearized operating point of the system.

From (3.4), the characteristic equation is

s2 +

(
RL

L
+

1

CRc

− P

Cvco2

)
s+

(
RL

CLRc

+
λ2

CL
− PRL

CLvco2

)
= 0 (3.5)

which is stable when

RL

L
+

1

CRC

− P

Cvco2
> 0 (3.6)

RL

CLRC

+
λ2

CL
− PRL

CLvco2
> 0 (3.7)

or

P <
Vco

2

RC

+
RLCvco

2

L
(3.8)

and

P <
Vco

2

RC

+
λ2vco

2

RL

(3.9)

where the maximum value of the power constraint is taken as (3.8) as defined in [12].

From (3.1) and (3.2), the linearized operating point of the inductor’s current iLo and

power source Vso are found solving the following system for a capacitor’s voltage vco

1

L
(Vso − λvco −RLiLo) = 0 (3.10)

1

C

(
λiLo −

P

vco
− vco

RC

)
= 0 (3.11)

14



from (3.10) and (3.11) the equation that defines iLo and Vso are

iLo =
1

λ

(
P

vco
+

vco
RC

)
(3.12)

Vso = λvco +RLiLo. (3.13)

However, the eigenvalues stability analysis is only valid for a time-invariant system

and is only accurate for a small region around the linearized operating point vco. The

characteristic equation of a second-order system has the following form

s2 + 2ζωns+ ωn
2 = 0. (3.14)

From (3.14) the natural frequency of the linearized system can be determined. Com-

paring (3.5) and (3.14) the natural frequency of the system is defined as

ωn =

√
RL

CLRC

+
λ2

CL
− PRL

CLvco2
(3.15)

from (3.15), the fundamental period of the system is calculated as

Tn =
2π

ωn

(3.16)
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and from (3.8) the maximum linear power that the system can support is defined as

PL =
Vco

2

RC

+
RLCVco

2

L
. (3.17)

Using the parameters from Table 3.1 and (3.17), the maximum constant power that

Table 3.1
Example parameters

Parameter Value
RL 0.1 Ω
L 10 mH
C 1 mF
RC 50 Ω
λ 0.5
vco 400 V

the system can support is PL = 4800 W .

3.3 Floquet theory analysis

As discussed in Chapter 2.2, Floquet theory is one of the tools available to study the

stability of time-varying systems. Where the stability of the system is determined by

the Floquet exponents and multipliers. In this research, the Floquet stability of the

system was considered to be stable base on the behavior of the Floquet exponents.

The system is considered stable when the real part of the Floquet exponents are less

16



than or equal to zero.

This approach allows the analysis of the linearized system model of the pulse power

load (3.1) and (3.2) with the load (3.3) where the linearized system is defined as

dx

dt
=

−RL

L
−λ
L

λ
C

1
C

(
P (t)
vco2
− 1

RC

)
x (3.18)

where xT =

[
iL vc

]
and vco is the equilibrium point of the bus voltage. The

stability of this system will be numerically solved with Floquet theory with different

parameters and a periodic PWM pulse load shown in Figure 3.2.

Table 3.2
Example stability results using Floquet theory for a power of 6000 W and

period of T = 0.25 s

Duty cycle Re(Floquet exponents) Floquet stability analysis
0.9 1.9364 Unstable
0.8 0.0654 Unstable
0.6 -3.6456 Stable

The data in the Table 3.2 was generated following the steps described in Chapter 2.2,

using the parameters from Table 3.1, a pulse load with a magnitude of 6000 W, a

constant period of T = 0.25 s and different values of duty cycle of D = [0.9, 0.8, 0.6].

The system was defined as stable when the real part of the Floquet exponents is less

or equal to zero.
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Since the purpose of this research was to determine the maximum duty cycle for a

specific value of power and period, a MATLAB code was developed following the

steps described in Chapter 2.2, to test the stability of the system for different values

of power, duty cycle, and period. The code was set up in a way that it will start the

stability study of the system at a value of duty cycle equal to 1 (100% duty cycle) for

a specific value of period and power, and if the stability analysis concludes that the

system is unstable then it will decrease the value of the duty cycle by 0.001. It will

continue testing the stability of the system until it found the maximum duty cycle

for each value of period and power. The stability test is done at a value of time equal

to the period of the pulse load. The code used to generate the Floquet theory data

is shown in Appendix A and the data was gathered using the Michigan Tech HPC

Superior.

3.4 Nonlinear model

The nonlinear model of the system defined by (3.1), (3.2), and (3.3), was simulated

using MATLAB and Simulink [19][20]. In order to get the real data of the system

and to be able to develop the approximation model. Different parameters were used

to gather the data that is going to be compared with the approximation model. The

nonlinear model was defined to be metastable when the minimum voltage of the

system was greater than 0.4vco.
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To gather the data a Simulink model was developed using the equations (3.1), (3.2),

(3.3), and the parameters show in Table 3.1. Then, using MATLAB, a script was

used to call the Simulink file and set the parameter values of the system for each

simulation. The MATLAB code used to gather the data is shown in the Appendix B.

Where the code was set up in a way that it will run thousands of simulations varying

the values of the duty cycle and period of the pulse load of the system. Then from

the data of a specific value of duty cycle and period of time if the output voltage of

the load satisfied the voltage constraint defined above then the system is considered

stable. The simulation time was set to 10 seconds because studying the stability of

the full nonlinear system for just one or three times the pulse load period was not

enough. There were cases where the system became unstable after 4 or 5 seconds.

The objective of this code is to get the maximum value of the duty cycle for each

period of time and for a specific value of power.

Figure 3.3: Simulation output voltage results for a P = 5000 W for demon-
stration of case a) T = 0.16 s, D = 0.85 (unstable), case b) T = 0.2 s,
D = 0.625 (marginally meta-stable) and case c) T = 0.21 s, D = 0.8 (meta-
stable).
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Figure 3.4: Zoomed in area of Figure 3.5 at P = 5000 W for demonstration
of case a) T = 0.16 s, D = 0.85 (unstable), case b) T = 0.2 s, D = 0.625
(marginally meta-stable) and case c) T = 0.21 s, D = 0.8 (meta-stable).

As predicted by Figure 3.4, the boost voltage in Figure 3.3 (a) shows the bus voltage

of the system where the voltage swing magnitude breaks the stability bounds. Figure

3.3 (b) shows the boost voltage limit just at the limit of metastability of the bus

voltage, and Figure 3.3 (c) is a meta-stable operation. The abrupt change in response

in Figure 3.3 caused by a minor change in the pulse load period. By regulating the

period of the pulse, different stability results appear. If this particular example were

a pulse power load weapon on an electric ship, such as a laser or an electromagnetic

gun, then the designer of the electric ship could set the parameters to make sure that

the system operates in a meta-stable condition such as point c) in Figure 3.4 and not

point a).

In Figure 3.5, an example of the nonlinear stability plot of the system for a power of

5000 W is shown. The system is stable for the values of duty cycle which are below

the blue line and unstable if they are above it. This method requires a large amount
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Figure 3.5: Nonlinear stability plot for a power of 5000 W

of computational time to generate the data. As explained above, this method checks

the stability of the system by running thousands of simulations varying the duty cycle

and period of the pulse power load. Since the stability study must be as accurate as

possible, the variation of the duty cycle and period of the pulse power load must be

very small. In this investigation the variation of duty cycle and period was defined

as 0.001. Smaller the variations the larger will be the time required to determine the

stability of the system. The nonlinear data was gathered using the Michigan tech

HPC Superior since the time to generate the stability plot for a constant value of

power could be around 8 hours. The data obtained by this method is used in the

next chapter to generate the equation of the approximation method.
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Chapter 4

Analytic Approximation Method

In this chapter, a new method to study the stability behavior of DC-DC systems with

pulse loads is introduced. To determine whether the system is stable or not, three

conditions were defined. Based on the natural period of the system (Tnl) and the

maximum time (Tmax) that the system can support a constant power load without

violating the minimum voltage constraint. Where the magnitude of the power load is

the power magnitude that we want to determine its stability for a pulse load. These

conditions are: a) Tmax ≥ 1, b) 10TnP > Tmax > 1 and c) Tmax ≤ 10TnP . The stability

of the system is established by the equations defined in each condition.

To define the equations that describe the stability behavior of the system, the plots

generated in Chapter 3.4 for a constant magnitude of power were dived into sections,
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based on the noticeable patterns of the plots. From Figure 3.5, it is observable that

the plot has patterns, the valleys appear in multiples of the natural period (TnP ),

after each valley the duty cycle increases until a value close to the maximum duty

cycle and then the duty cycle decreases gradually.

Figure 4.1: Plot approximation sections.

From Figure 4.1 the nonlinear plot for a constant power can be divided into three

sections: a) In orange a constant line that defines the maximum duty cycle that makes

the system stable, b) In green an equation to define the decreasing behavior of the

duty cycle and c) In red an equation to define the valleys the first group of valleys.

It is noticeable that the number of valleys of the system, which were defined as nmax,

repeat in groups. These groups, were defined as maxrepts and the number of valleys

and how many times they repeat will depend on the conditions shown in Table 4.1.

By shifting the equation of the read line down and to the right, the same equation

predicted the value of the next group of valleys. To determine the coefficient to shift

the equation, a relationship between the natural period and different parameters of
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the system was defined. From the nonlinear data used to define these equations,

a periodic behavior was noticed for values of the valleys. They were presented in

multiples of the natural period of the system TnP .

Where the equation used to determine the valleys is used just to determine the values

of the valleys at multiples of the natural period of the system and this value is going

to be a fixed value on the piece-wise function that defines the approximation. The

final equation that defines the stability approximation of the system is a piece-wise

function based on the intersection of the equation mentioned above.

First, based on the linearized parameters found using the small-signal analysis in

Chapter 3.1, a series of conditions and equations were defined to analyze the metasta-

bility of a power electronic system. This method was defined based on the constraint

that the system is going to be stable when the minimum voltage of the system is

greater than 0.4vco. To implement this method, a series of parameters and equations

must be determined using the equations defined on the small-signal analysis section.

In the system that is being studied the maximum linear power that the system can

support PL was found using a small-signal analysis, this value is not accurate and it

is necessary to determine the real maximum constant power load that the system can

support. This value is defined as the nonlinear power Pnl because it marks the edge

of the stability of the system. To determine Pnl a system simulation was set up in

MATLAB based on (3.1) and (3.2), using a constant power load. A trial-and-error
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method was used to find this value, knowing that this value must be less than PL.

Second, a small simulation was set up based on (3.1) and (3.2) using a constant power

load to determine the maximum time that the system can support a constant power

load (P), and this time was defined as Tmax. Where P was the power that was being

studied to find its stability behavior for a pulse load. In Figure 4.2 the maximum

time that the system can support a constant power of 5000 W is shown, this data was

obtained using the parameters of Table 3.1 and a constant power load. At a time of

0.4079 seconds, the voltage of the system is equal to the lower constrain that defines

when the system is metastable, being the minimum voltage value constraint equal to

160 V. Therefore, the value of Tmax is set as 0.4079 for these set of parameters and

value of power.

Figure 4.2: Tmax for a power of 5000 W

Based on the value of Tmax, three conditions were defined to approximate the behav-

ior of the nonlinear model. These conditions are shown in Table 4.1 where TnL is the
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natural period of the system for the value of power that is being studied. These condi-

tions are going to define the set of equations that are going to be used to approximate

the stability plot of the system for a specific value of power. Figure 4.3 illustrates

how the conditions of the method developed in this investigation defined in Table 4.1,

will define the circumstances that determine the equations used to approximate the

stability plot of a pulse power load of magnitude (P ).

Table 4.1
Approximation plot conditions

Condition Constrain
1 Tmax ≥ 1
2 10TnP > Tmax > 1
3 Tmax ≤ 10TnP

Figure 4.3: Flowchart of the conditions used to define the stability plot of
the system for a pulse power load of magnitude (P).
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In Figure 4.3, first the maximum time that the system can support the constant

power that is being studied Tmax is calculated, then this value is compared to 1 and if

it is greater or equal than 1 then the first group of equations will define the stability

plot of the system. If Tmax is not greater or equal to 1, then using the parameters

from the small-signal analysis the natural period of the system will be calculated and

multiplied by 10 and this value will be compared with Tmax and if it is greater than

Tmax then a second group of equations will define the stability plot of the system if

not them a third group of equations will define the stability plot of the system.

Depending on the condition, different equations will define the behavior of the stabil-

ity of the system based on the linear parameters from the linearized system. These

equations were found using the MATLAB plot fit tool to determine the equation that

describes best the behavior of the nonlinear plots from Chapter 3.4.

The equations that were more accurate in describing the behavior of the sections used

to define each part of the nonlinear plot, as show in Figure 4.1, were the equation of

a straight line of the form y(x) = mx + b1 and a power equation of the form y(x) =

a1x
b2 + c1. Once the best fits found using the MATLAB plot fit tool were identified

then the relationships that better describe the coefficients of the fit equations were

determined defining relationships between the linear and nonlinear parameters of the

system.
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4.1 Condition 1: Tmax ≥ 1

In this section, the equations that described the behavior of the approximated stability

plot of the first condition defined in Table 4.1 are presented. In this condition, when

the Tmax value for a specific value of power is greater than 1, the equation that defines

the maximum duty cycle, which correspond to the orange line in Figure 4.1, is defined

as

y1(x) =
Pnl

P
(4.1)

where P is the power that is being studied and Pnl is the maximum constant power

load that the system can support. The equation that defines the decreasing part of

the duty cycle, which correspond to the green line in Figure 4.1, is defined as

yy1(x) = a+
(Pnl

P
− a)(x− 1)

a− 1
. (4.2)

where a is

a = 1− TnpPnl

P
(4.3)

The X-intersection point (xI) between y and yy, which correspond to black dot in

Figure 4.1, is used to determine the number of valleys of the approximation plot. The
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equations that define the number of valleys (nmax) are

Tmax1 =
Tmax

Tn

(4.4)

nmax1 =
xI

TnP

− iL0P=Pnl
+

Pnl

ωnP

− xI

ωnPTnP
2 (4.5)

nmax =
2Tmax1

nmax1

+
Pnl

P
(4.6)

where the value of nmax is a integer. These equations were derived by trying different

combinations of the small-signal and nonlinear parameters from Chapter 3.2 and 3.4.

The valleys will repeat nmax − 1 times, and the equations that define their values,

which correspond to the red line in Figure 4.1, are:

If nmax ≤ TnPx, the equation that defines the valleys is

yv1(xv) =
Pnl

P
− TnP

(xv + TnP

8
)
Pnl
P

(4.7)

If nmax < TnPx ≤ 2nmax − 1, the equation that defines the valleys is

yv1(xv) =
Pnl

P
− TnP

2
− TnP

(xv − nmaxTnP

2
)
Pnl
P

(4.8)
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If minmax− li < TnPx ≤ mi+1nmax− li+1, the equation that defines the valleys is

yv1(xv) =
Pnl

P
− TnP

2
− TnP

(xv − nmaxTnP

n
)
Pnl
P

(4.9)

where m ∈ {3, 4, 5, . . . ,mi+1}, l ∈ {3, 6, 10, . . . , (mi−1 + li−1)} and l0 = 3, n

∈ {8/8, 13/8, 19/8, . . . , (ni−1 + mi+2)} and n0 = 1, xv = iTnP and i ∈ Z+. The

final equation that approximates the stability behavior of the system is

ys(x) =



y1(x) if x < xI and x /∈
[
NiTnP − TnP

4
, NiTnP − TnP

4

]
yv1(x) if x < xI and x ∈

[
NiTnP − TnP

4
, NiTnP − TnP

4

]
yy1(xv) if x ≥ xI

(4.10)

where Ni ∈ {1, 2, 3, . . . , N(i+ 1)} and it will increase when xTnP > NiTnP .

4.2 Condition 2: 10Tnl > Tmax > 1

In this section, the equations that described the behavior of the approximated stability

plot of the second condition defined in Table 4.1 are presented. In this condition, when

the Tmax value for a specific value of power is between ten times the natural period of

the system and 1 second, the equation that defines the maximum duty cycle, which
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correspond to the orange line in Figure 4.1, is defined as

y2(x) =
Pnl

P
(4.11)

where P is the power that is being studied and Pnl is the maximum nonlinear power

that the system can support.

The equation that defines the decreasing part of the duty cycle, which correspond to

the green line in Figure 4.1, is defined as

yy2(x) = axb (4.12)

where a and b are

a = Tmax (4.13)

b = −1− TnP (1− Pnl)

P
(4.14)

The X-intersection point (xI) between y and yy, which correspond to black dot in

Figure 4.1, is used to determine the number of valleys of the approximation plot. The

equations that define the number of valleys (nmax) and how many times they repeat

maxrepts are
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If P < PL, the parameters that define the valleys are

Tmax1 =
Tmax

Tn

(4.15)

nmax1 =
xI

TnP

− iL0P=Pnl
+

Pnl

ωnP

− xI

ωnPTnP
2 (4.16)

nmax1 =
2Tmax1

nmax1

(4.17)

maxrepts =
xI

ωnPTnP
2 + 1 (4.18)

If P ≥ PL, the parameters that define the valleys are

Tmax1 =
Tmax

Tn

(4.19)

maxrepts =
xI

ωnPTnP
2 + 1 (4.20)

nmax =
Tmax1

maxrepts

(4.21)

where the values of maxrepts and nmax are round values and determine the number of

times that each set of valleys (nmax) are going to repeat. Each set of valleys will repeat

maxreptsi times and it will have nmaxi
valleys. These equations were derived by trying

different combinations of the small-signal and nonlinear parameters from Chapter 3.2

and 3.4. The equations that define the values of the valleys, which correspond to the

red line in Figure 4.1, are defined as
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If nmax ≤ TnPx, the equation that defines the valleys is

yv2(xv) =
Pnl

P
+ TnP −

TnP

xv
Pnl
P

(4.22)

If nmax < TnPx ≤ nmaxmaxrepts, the equation that defines the valleys is

yv2(xv) =
Pnl

P
+ (1− n)TnP −

TnP

(xv − nTnP )
Pnl
P

(4.23)

If nmaxi
< TnP ≤ nmaxi

maxreptsi , the equation that defines the valleys is

yv2(xv) =
Pnl

P
+ (1− n)TnP −

TnP

(xv − nTnP )
Pnl
P

(4.24)

Where nmaxi
= nmaxi−1

− 1 and nmax0 = nmax, maxreptsi = maxreptsi − 1 and

maxreptso = maxrepts when xv > nmaxi
maxreptsi , and n ∈ {2, 5/2, 7/2, . . . , (ni+1/2)},

xv = iTnP and i ∈ Z+. The final equation that approximates the stability behavior

of the system is

ys(x) =



y2(x) if x < xI and x /∈
[
NiTnP − TnP

4
, NiTnP − TnP

4

]
yv2(x) if x < xI and x ∈

[
NiTnP − TnP

4
, NiTnP − TnP

4

]
yy2(xv) if x ≥ xI

(4.25)

where Ni ∈ {1, 2, 3, . . . , N(i+ 1)} and it will increase when xTnP > NiTnP .
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4.3 Condition 3: Tmax ≤ 10Tnl

In this section, the equations that described the behavior of the approximated stability

plot of the second condition defined in Table 4.1 are presented. In this condition,

when the Tmax value for a specific value of power is less or equal to ten times the

natural period of the system, the equation that defines the maximum duty cycle,

which correspond to the orange line in Figure 4.1, is defined as

y3(x) =
Pnl

P
(4.26)

where P is the power that is being studied and Pnl is the maximum nonlinear power

that the system can support. The equation that defines the decreasing part of the

duty cycle, which correspond to the green line in Figure 4.1, is defined as

yy3(x) = axb (4.27)

where

If Tmax ≥ 6TnP and pnl

ωn
/∈
[
iLoP=0

iLoP=Pnl

]
and Pnl

ωn
> ωnTnP , the values of a and b

are

a = Tmax −
TnPPnl

P
(4.28)
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b = −1 + TnP (1− Pnl)

P
(4.29)

If Tmax < 6TnP and pnl

ωn
/∈
[
iLoP=0

iLoP=Pnl

]
and Pnl

ωn
> ωnTnP , the values of a and b

are

a = Tmax (4.30)

b = −1 + TnP (1− Pnl)

P
(4.31)

If Tmax < 6TnP and pnl

ωn
∈
[
iLoP=0

iLoP=Pnl

]
and Pnl

ωn
> ωnTnP , the values of a and b

are

a = Tmax −
TnPPnl

P
(4.32)

b = −1− TnP (1− Pnl)

P
(4.33)

If Tmax < 6TnP and pnl

ωn
/∈
[
iLoP=0

iLoP=Pnl

]
and Pnl

ωn
< ωnTnP , the values of a and b

are

If a > 0 and Tmax < 4TnP

a =
Tmax

1− TnP

− TnP (4.34)

b = TnP −
ωnP

ωno

(4.35)

If a ≤ 0 and Tmax < 4TnP

a =
Tmax

1− TnP

(4.36)
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b = TnP −
ωnP

ωno

(4.37)

If a ≤ 0 and Tmax ≥ 4TnP

a = Tmax (4.38)

b = TnP −
ωnP

ωno

(4.39)

The X-intersection point (xI) between y and yy, which correspond to black dot in

Figure 4.1, is used to determine the number of valleys of the approximation plot. The

equations that define the number of valleys (nmax) and how many times they repeat

maxrepts are

If Pnl

ωnl
< ωnlTnP

nmax1 =
xI

TnP

− 1 (4.40)

maxrepts =
xI

ωnPTnP
2 + 1 (4.41)

nmax =
nmax1

maxrepts

(4.42)

in this case, the values of n used in the equation to determine the value of the valleys

are going to start at n = 2.

If Pnl

ωnl
≥ ωnlTnP

Tmax1 =
Tmax

TnP

(4.43)
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maxrepts =
xI

ωnPTnP
2 (4.44)

nmax =
Tmax1

maxrepts

− 2 (4.45)

in this case, the values of n used in the equation to determine the value of the valleys

are going to start at n = 1. Each set of valleys will repeat maxreptsi times and it will

have nmaxi
valleys. These equations were derived by trying different combinations of

the small-signal and nonlinear parameters from Chapter 3.2 and 3.4. The equations

that define the value of the valleys, which correspond to the red line in Figure 4.1,

are

If nmax ≤ TnPx, the equation that defines the valleys is

yv3(xv) =
Pnl

P
+ TnP −

TnP

xv
Pnl
P

(4.46)

If nmax < TnPx ≤ 2nmax − 1, the equation that defines the valleys is

yv3(xv) =
Pnl

P
+ TnP − (3nTnP )−

TnP

xv − nTnP

Pnl
P

(4.47)

If minmax − li < TnPx ≤ mi+1nmax − 1li+1, the equation that defines the valleys is

yv3(xv) =
Pnl

P
+ TnP − (3nTnP )−

TnP

xv − nTnP

Pnl
P

(4.48)

where m ∈ {3, 4, 5, . . . ,mi+1}, l ∈ {3, 6, 10, . . . , (mi−1 + li−1)} and l0 = 3, n =
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ni−1 + 1/2 and n0 = 1 or 2, depending on the conditions defined above, xv = iTnP

and i ∈ Z+. The final equation that approximates the stability behavior of the system

is

ys(x) =



y3(x) if x < xI and x /∈
[
NiTnP − TnP

4
, NiTnP − TnP

4

]
yv3(x) if x < xI and x ∈

[
NiTnP − TnP

4
, NiTnP − TnP

4

]
yy3(xv) if x ≥ xI

(4.49)

where Ni ∈ {1, 2, 3, . . . , Ni+1} and it will increase when xTnP > NiTnP . When the

values of nmax or maxrepts are negatives or equal to zero these mean that there are

no valleys for the particular value of power that is being studied.

To generate the data of the approximation method, a MATLAB code was developed

using the linear parameters of Chapter 3.2 and the conditions and equations described

above. The code used to generate this data is shown in the Appendix C. This data re-

quires less computational time than the nonlinear data from Chapter 3.4 and this was

the objective of this investigation, the results will be discussed in the next Chapter.
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Chapter 5

Comparison Nonlinear, Floquet

theory and Approximation

Methods

In this section, the results of the nonlinear system are compared with the results of

the approximation method defined in this thesis and with the Floquet theory stability

study. To generate the results used in this work multiple simulations were done using

MATLAB, Simulink, and Michigan Tech’s High-Performance Computer (Superior)

due to the extensive time that is required to generate each stability plot for the

nonlinear system and for the Floquet theory method. The parameters in Table 3.1

were the parameters used to generate the nonlinear, Floquet, and approximation data
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used to validate the results of this investigation.

From Figure 5.1 and Figure 5.2, it is noticeable that the approximated map and the

nonlinear map have similar behaviors. Both have valleys and the number of valleys

decreases when the power increases. Also, in both the nonlinear model and the

approximation model when the power increases the maximum duty cycle for higher

periods of time decreases.

Figure 5.1: Nonlinear stability surface.

Figure 5.2: Approximated stability surface.
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From Figure 5.3, the stability behavior of the system for a constant period. Where it is

noticeable that Floquet theory and the approximation method have similar behavior

for specific values of power. However, both cases are overestimating the stability of

the system even though there are cases where the approximation method gives less

overestimated results and vice versa.

Figure 5.3: Stability behavior of the system for a constant period of time
equal to 0.1 sec.

Figure 5.4: Stability behavior of the system for a constant period of time
equal to 0.4 sec.

From Figure 5.4, it is observable that when the period increases the Floquet method
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is not accurate anymore. However, the approximation method proposed in this in-

vestigation is able to describe the stability behavior of the system. Though there are

cases where the approximation method overestimates the stability of the system, this

case gives more accurate results than the Floquet method.

Table 5.1
Approximation plot conditions

Method Power (W) Duty cycle Period (sec) case
Nonlinear 5500 0.425 0.4 a
Floquet 5500 0.831 0.4 a

Approximation 5500 0.440 0.4 a
Nonlinear 5700 0.413 0.4 b
Floquet 5700 0.802 0.4 b

Approximation 5700 0.344 0.4 b

The values of cases a and b from Figure 5.4 were used to validate how accurate

Floquet and the approximation method are. The values shown in Table 5.1 were

used to generate the results of Figure 5.5 and Figure 5.6. From these figures it is

noticeable that the Floquet method only yields overestimating stability behaviors of

the system while the approximation method is able to give a better prediction of the

stability of the system in certain cases. In Figure 5.6 the duty cycle obtain from the

approximation method was more accurate than the value obtained using Floquet.

Figure 5.5 and Figure 5.6 validated that the approximation method gives better sta-

bility predictions than the Floquet theory. Though the Floquet method is a method
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Figure 5.5: Stability behavior of the system for a power of 5500 W, a
period of 0.4 sec, and the different values of duty cycle (case a).

Figure 5.6: Stability behavior of the system for a power of 5700 W, a
period of 0.4 sec, and the different values of duty cycle (case b.)

used to determine the stability of time-varying systems, it is not able to give an

accurate approximation for the stability of the system for pulse loads.

Table 5.2
Error and simulation time for a power of 4600 W

Method RMSE Simulation time (sec)
Nonlinear 0 4.7959× 104

Approximation 0.1415 44.1218
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Figure 5.7: Stability behavior of the system for a power of 4600 W.

Figure 5.8: Stability behavior of the system for a power of 4800 W.

Table 5.3
Error and simulation time for a power of 4800 W

Method RMSE Simulation time (sec)
Nonlinear 0 1.4134× 105

Approximation 0.1187 43.0165

Table 5.4
Error and simulation time for a power of 6000 W

Method RMSE Simulation time (sec)
Nonlinear 0 3.3749× 105

Approximation 0.0967 48.1451
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Figure 5.9: Stability behavior of the system for a power of 6000 W.

From Figures 5.1 and 5.2 by observing the behavior of the system for pulses power load

with constant power magnitude as observe in Figures 5.7, 5.8, and 5.9 the comparison

between the nonlinear and the approximation method is shown. In Tables 5.2,5.3 and

5.4, the values of the root mean square error (RMSE) is shown, this value represents

the error between the nonlinear data and approximation data.

This error method measures the accuracy of each method, the smaller the value of the

RMSE the better the approximation method is. The approximation method described

in this investigation was able to track in some way the behavior of the nonlinear data.

Also, the value of the RMSE error for the approximation method decreases when the

value of the power increases. The time required to generate the stability behavior of

the system (simulation time) is indicated in Tables 5.2,5.3 and 5.4. It is noticeable

that the nonlinear method required a lot of time, at least several hours to generate the

data for the stability plot for just one value of power, which means that to generate

a stability map a lot of time will be required. However, the approximation method
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is able to generate the stability data accurately and in less than a minute. This will

allow the stability study of the DC-DC systems with pulse loads much faster than

the Hamiltonian Surface Shaping Method described in [12] and more accurately than

a small signal analysis.
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Chapter 6

Conclusion and Future Work

This investigation has presented a new approach to study the stability of DC-DC sys-

tem with a pulse power load, which had the goal to decrease the time that would take

to generate the data needed for the stability analysis. This new method has proven

to be much faster than the Hamiltonian shaping method and more accurate than the

Floquet theory stability analysis. The results show that the method presented in this

work was able to generate an accurate approximation of the full nonlinear method

in a small time. Which is convenient at the moment of designing a DC-DC system.

By using this method, the designer will be able to have an accurate idea about the

stability behavior of the system in just a few seconds and by doing this the controller

of the system does not need to be over-dimensioned, or maybe there is no need of a

controller because the system could be stable for the particular values of pulse load
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under study.

The future scope of this work is vast. This method could be implemented as a starting

point for the designing process of a DC-DC system with pulse loads such as electric

ships. Also, a machine learning algorithm can be developed using as a starting point

the relationships defined in this work and this could increase the accuracy of the

stability analysis.
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Appendix A

Floquet data code

clearvars

% Paremters

RL = 0.1;

L = 10*10^ -3;

c = 1*10^ -3;

Rc = 50;

lambda =0.5;

l=lambda;

u =200;

syms x1o x2o P
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equ =[(u-RL*x1o -l*x2o)/L== 0,(l*x1o -x2o/Rc-P/x2o)/c== ←↩

0];

[x1o ,x2o]=solve(equ ,[x1o ,x2o])

x20 = x2o(2,1);

syms x1 x2 P

f1 = (u - RL*x1 - lambda*x2)/L;

f2 = (lambda*x1 - x2/Rc - P/x2)/c;

a = [diff(f1,x1) diff(f1 ,x2); diff(f2,x1) diff(f2,x2)];

a = subs(a,x2,x20)

% Simualtion Code

conds = [1 0 0 1];

k = 1;

dc = 0 : 0.001 : 1;

T = 0.001 : 0.001 : 1;

POWER = p;

%{

for jj = 1 : (length(T))

floquet_data(jj ,:) = [0 0 0];
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end

%}

tic

for ii = 1 : length (T)

tspan = [0 T(ii)];

for i = 1 : length(dc)

f= (2*pi)/T(ii);

dc1 =100 -100*dc(i);

dc2 = dc1 /100;

conds = [1 0 0 1];

solu = ode15s(@(t,z) odefcn(t,z,a,f,dc1 ,POWER),←↩

tspan ,conds);

y = deval(solu ,T(ii));

zz = [y(1,1) y(2,1); y(3,1) y(4,1)];

f_multipliers = eig(zz);

f_exponents = log(f_multipliers)/T;

f_max_exponent = max(real(f_exponents));

if f_max_exponent > 0

else

floquet_data_p(k,:) = [POWER dc2 T(ii)]

k = k + 1;
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break

end

end

end

time_p = toc;

save(" floq_data_p.mat");

exit

function dzdt = odefcn(t,z,a,f,dc1 ,POWER)

P = 0.5*( POWER+POWER*square(f*t,dc1));

a = subs(a,P);

dzdt = zeros (4,1);

dzdt (1) = a(1,1)*z(1) + a(1,2)*z(3);

dzdt (2) = a(1,1)*z(2) + a(1,2)*z(4);

dzdt (3) = a(2,1)*z(1) + a(2,2)*z(3);

dzdt (4) = a(2,1)*z(2) + a(2,2)*z(4);

end
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Appendix B

Nonlinear data code

clearvars

%close('all ')

RL=0.1;

L=10*10^ -3;

c=1*10^ -3;

Rc=50;

lambda =0.5;

l=lambda;

ST=1E-5;

% Initial conditions
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Stime = 10;

P=0;

syms x1o u0

x20 =400;

equ =[(u0-RL*x1o -l*x20)/L== 0,(l*x1o -x20/Rc-P/x20)/c== ←↩

0];

[x10 ,u0]=solve(equ ,[x1o ,u0]);

x10=double(x10);

u0=double(u0);

minV = x20 - x20 *0.6;

% Period and Dc variable for a constat Power

Power = 4600;

name = sprintf('NL_%d.mat ',Power);

T = 0.001 : 0.001 : 1;

dc = 0 : 0.001 : 1;

for ll = 1 : length(Power)*length(T)

data(ll ,:) = [0 0 0];

end

% New code
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tic

k = 1;

for j = 1 : length(T)

for i = 1 : length(dc)

Simulink.sdi.clear;

iii = 1 + length(dc) - i;

test = sim('constantPower.slx ');

vData = (test.logsout.getElement('Vc ').Values.←↩

Data);

vmax = max(vData);

vmin = min(vData);

if (vmin >=minV)

data(k,:) = [Power dc(iii) T(j)];

[Power dc(iii) T(j)]

k = k + 1;

break

end

end

end

timeNL = toc;

save(name)

61



exit
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Appendix C

Approximation data code

% System Parameters

clearvars

RL = 0.1;

L = 10*10^ -3;

c = 1*10^ -3;

Rc = 50

lambda =0.5

l=lambda

63



ST=1E-5

x20 =400 % Voltage of the load

POWER = 5000

% Linearization of the system

syms x1 x2 u P s

f1 = (u - RL*x1 - lambda*x2)/L;

f2 = (lambda*x1 - x2/Rc - P/x2)/c;

a = [diff(f1,x1) diff(f1 ,x2); diff(f2,x1) diff(f2,x2)];

a = subs(a,x2,x20);

b = [ diff(f1 ,u);diff(f2 ,u)];

c1 = [0 1];

d = 0;

sys= c1*inv(s*eye(2)-a)*b+d;

polos = real(poles(sys));

value = polos (1,1) ==0;

PL = double(round(solve(value ,P))) % Maximun linearized ←↩

Power that the system can support
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% Voltage limiits to define the stability

maxV = x20 + x20 *0.6;

minV = x20 - x20 *0.6;

%{

% Nonlienar Power value

T=1;

dc=1;

j = 0 : 1 : 10000;

P = 4800;

for j =1 : P

P = Plinear - j

Simulink.sdi.clear;

test = sim(" new_parameters.slx");

vData = (test.logsout.getElement('Vc ').Values.Data);

vmax = max(vData);

vmin = min(vData);

if(vmax <=maxV && vmin >minV)

Pnl = P

break

65



end

end

%}

% Initial conditions and linearized system values for ←↩

Pnl

Pnl = 4565

P = Pnl;

syms x1o u0

equ =[(u0-RL*x1o -l*x20)/L== 0,(l*x1o -x20/Rc-P/x20)/c== ←↩

0];

[x10 ,u0]=solve(equ ,[x1o ,u0]);

x10=double(x10);

u0=double(u0);

ilPnl = x10;

VsP = u0;

Vco = x20;

wn = sqrt(RL/(c*L*Rc) - (P*RL)/(c*L*Vco^2) + lambda ^2/(c←↩

*L)); % Linearized Natural Frequency (rad/sec)

zeta = (RL/L + 1/(c*Rc) - P/(c*Vco^2))/(2*wn); ←↩

% Linearized Damping Ratio
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Q = 1/(2* zeta); ←↩

% ←↩

Linearized Quality Factor of the System

fn = wn/(2*pi); ←↩

% ←↩

Linearized Frequncy of the System (Hz)

tn = 1/fn; % Linearized Fundamental Period (sec)

Relation = wn*tn;

% Initial conditions and linearized values for a Power ←↩

of P=0

P=0;

syms x1o u0

equ =[(u0-RL*x1o -l*x20)/L== 0,(l*x1o -x20/Rc-P/x20)/c== ←↩

0];

[x10 ,u0]=solve(equ ,[x1o ,u0]);

x10=double(x10);

u0=double(u0);

il0 = x10

Vs0 = u0;
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Vco = x20;

wn0 = sqrt(RL/(c*L*Rc) - (P*RL)/(c*L*Vco ^2) + lambda ^2/(←↩

c*L));

zeta0 = (RL/L + 1/(c*Rc) - P/(c*Vco ^2))/(2* wn0);

Q0 = 1/(2* zeta0);

fn0 = wn0 /(2*pi);

tn0 = 1/fn0;

Relation0 = wn0*tn0;

% Simulation to determine Tmax

Simulink.sdi.clear;

Stime =10;

Power for Approx Plot

zz =1;

tic

k = 1;

xd = 0.001 : 0.001 : 1;

N = 1;

P=6000; % Value of POWER

syms x1p up
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equ =[(up-RL*x1p -l*x20)/L== 0,(l*x1p -x20/Rc-P/x20)/c== ←↩

0];

[x1P ,uP]=solve(equ ,[x1p ,up]);

ilP=double(x1P)

VsP=double(uP);

Vco = x20;

wnP = sqrt(RL/(c*L*Rc) - (P*RL)/(c*L*Vco ^2) + lambda ^2/(←↩

c*L))

zetaP = (RL/L + 1/(c*Rc) - P/(c*Vco ^2))/(2* wnP);

QP = 1/(2* zetaP);

fnP = wnP /(2*pi);

tnP = 1/fnP

RelationP = wnP*tnP;

T=1;

dc=1;

test1 = sim(" Test_for_Tmax1.slx");

Tmax = max(test1.tout)

Approx code

syms y x y1

% condition 1
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if Tmax >= 1

a = 1 - (tnP*Pnl)/P

yy = ((Pnl/P - a)/(a - 1)).*(x - 1) + a

y1 = Pnl/P;

xI = double(solve(yy==y1));

yI = double (((Pnl/P - a)/(a - 1)).*(xI - 1) + a);

%nmax = round(ilPnl -Pnl/wnP) %borrar

tmax1 = Tmax/tn

nmax1 = round ((xI/tnP) - (ilPnl -Pnl/wnP) - (xI/(←↩

wnP*tnP^2)))

nmax = round (2* tmax1/nmax1 + Pnl/P)

y1 = Pnl/P;

% The valleys repets nmax - 1

n = 1;

nn = 3;

nnn = 3;

nmin = 2*nmax -1;

70



n1 = (nn+2) /8;

for z = 1 : round (1/tnP)

if z <= nmax

xv(z) = tnP*z;

yv(z) = -tnP .*(xv(z) + tnP /8).^(-Pnl/P)+←↩

Pnl/P;

end

if (z > nmax) && (z <= 2*nmax -1)

xv(z) = tnP*z;

yv(z) = -tnP .*(xv(z)-tnP*nmax /2).^(-Pnl/P←↩

)+Pnl/P-tnP /2;

end

if (z > nmin) && (z <=nn*nmax -nnn)

xv(z) = tnP*z;

yv(z) = -tnP .*(xv(z)-tnP*nmax*n).^(-Pnl/P←↩

)+Pnl/P-tnP*n;

end

if z == (nn*nmax -nnn)

nmin = nn*nmax -nnn;

nnn = nnn + nn;
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nn = nn + 1;

n = n + n1;

n1 = (nn+2) /8;

end

end

for xi = 1 : length(xd)

if xd(xi) > N*tnP + tnP/4

N = N + 1;

end

y(xi) = pie(xd(xi),tnP ,N,yv ,y1,xI,Pnl ,P,a);

data(k,:) = double ([P y(xi) xd(xi)]);

k = k + 1;

end

end

% Condition 2

if (Tmax > 10*tn) && (Tmax < 1)

a = Tmax

b = -1 - (tnP*(1-Pnl/P))

y = a*x.^b;
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y1 = Pnl/P;

xI = double(solve(y==y1));

if P < PL

tmax1 = Tmax/tn

nmax1 = round ((xI/tnP) - (ilPnl -Pnl/wnP) - (←↩

xI/(wnP*tnP ^2)))

nmax = round (2* tmax1/nmax1)

maxrepts = round(xI/(wnP*tnP^2)) + 1

else

tmax1 = Tmax/tn

maxrepts = round(xI/(wnP*tnP^2)) + 1

nmax = round(tmax1/maxrepts)

end

n = 2;

nn = 1;

m = nmax;

nmax1 = nmax;

nmax2 = nmax + m;

% valleys code

for z = 1 : round (1/tnP*Pnl/P)
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if z <= nmax

xv(z) = tnP*z;

yv(z) = -tnP*(xv(z).^(-Pnl/P))+(Pnl/P+←↩

tnP);

end

if (z > nmax1) && (z <= nmax2)

xv(z) = tnP*z;

yv(z) = -tnP *((xv(z)-n*tnP).^(-Pnl/P))+(←↩

Pnl/P+tnP -n*tnP);

if z == nmax2

n = n + 1;

nn = nn + 1;

if nn == maxrepts

m = m - 1;

if m == 0

m = 1;

end

nn = 0;

maxrepts = maxrepts - 1;

end
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nmax1 = nmax2;

nmax2 = nmax2 + m;

end

end

end

for xi = 1 : length(xd)

if xd(xi) > N*tnP + tnP/4

N = N + 1;

end

y(xi) = pie1(xd(xi),tnP ,N,yv ,y1,xI,a,b);

data(k,:) = double ([P y(xi) xd(xi)]);

k = k + 1;

end

end

% Condition 3

if (Tmax <= 10*tn)

if Tmax >= 10*tnP *0.6

a = Tmax - (tnP*Pnl/P)

else

a = Tmax

end
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b = -1 + tnP*Pnl/P

if (il0 <= Pnl/wn) && (Pnl/wn < ilP)

a = Tmax - (tnP*Pnl/P)

b = -1 - (tnP*(1-Pnl/P))

end

if (Pnl/wn < wn*tn)

a = Tmax/(1-tnP) - tnP

if a <=0

a = Tmax/(1-tnP)

end

if Tmax >= 10*tn*0.4

a = Tmax;

end

b = -(wnP/wn0 - tnP)

end

y = a*x.^b

y1 = Pnl/P;

xI = double(solve(y==y1));

tmax1 = Tmax/tn

if (Pnl/wn < wn*tn)

nmax = round(xI/tnP) - 1
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maxrepts = round(xI/(wnP*tnP^2)) + 1

nmax = nmax/maxrepts

n = 2;

else

maxrepts = round(xI/(wnP*tnP^2))

nmax = round(tmax1/maxrepts) - 2

n = 1;

end

nn = 1;

m = nmax;

nmax1 = nmax;

nmax2 = nmax + m;

% valleys code

for z = 1 : round(xI/tnP) + 1

if z <= nmax

xv(z) = tnP*z;

yv(z) = -tnP*(xv(z).^(-Pnl/P))+(Pnl/P+←↩

tnP);

end
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if (z > nmax1) && (z <= nmax2)

xv(z) = tnP*z;

yv(z) = -tnP *((xv(z)-n*tnP).^(-Pnl/P))+(←↩

Pnl/P+tnP -3*n*tnP);

if z == nmax2

if nn == maxrepts

m = m - 1;

if m == 0

m = 1;

end

nn = 0;

maxrepts = maxrepts - 1;

if maxrepts == 0

maxrepts = 1;

end

end

n = n + 1/2;

nn = nn + 1;

nmax1 = nmax2;

nmax2 = nmax2 + m;

end

78



end

end

for xi = 1 : length(xd)

if xd(xi) > N*tnP + tnP/4

N = N + 1;

end

if nmax > 0

y(xi) = pie1(xd(xi),tnP ,N,yv ,y1,xI,a,b)←↩

;

data(k,:) = double ([P y(xi) xd(xi)]);

k = k + 1;

else

y(xi) = pie2(xd(xi),y1,xI ,a,b);

data(k,:) = double ([P y(xi) xd(xi)]);

k = k + 1;

end

end

end

time = toc;

name = sprintf('Aprox_casetest_%d.mat ',POWER);

save(name)
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function y = pie(xd,tnP ,N,yv,y1 ,xI ,Pnl ,P,a)

if (xd > xI)

y = ((Pnl/P - a)/(a - 1)).*(xd - 1) + a;

elseif (xd > tnP*N - tnP /4) && (xd < N*tnP + tnP/4)

y = yv(N);

else

y = y1;

end

end

function y = pie1(x,tnP ,N,yv,y1 ,xI ,a,b)

if (x > xI)

y = a*x.^b;

elseif (x > tnP*N - tnP /4) && (x < N*tnP + tnP/4)

y = yv(N);

else

y = y1;

end

end

function y = pie2(x,y1 ,xI,a,b)

if (x > xI)
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y = a*x.^b;

else

y = y1;

end
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