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Figure 9. NIR (a) and RGB (b) mosaics of the Sturgeon River Delta. 
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Figure 10. NIR (a) and RGB (b) mosaics of Wedens Bay. 
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With Metashape, higher accuracy requirements increased processing times which also 

depended on the complexity of the image texture. Due to the physical size of the raw data 

and the new data created with each processing, a large hard drive (5 to 8 terabytes) and 

adequate RAM were necessary. Thirty-five blocks, each having 800 to 1500 images, 

were processed for the three study sites. Each image was approximately 10 MB, 

consisting of 7,360 rows × 4,912 columns. The process was performed on a computer 

with 3.4 GHz CPU, Intel i5 processor using 64-bit Microsoft Windows 10 operating 

system with 16 GB of RAM (64 GB and GPU enabled PCs recommended for faster and 

larger data process). Increasing the computing capability enables processing the dataset 

for entire area at once, rather than individual blocks. It took 60 to 65 days to process the 

entire dataset. Cloud processing can be another option, but it’s also time consuming and 

expensive. 

 

 Conclusion 
 

The purpose of this applications paper was to discuss UAS image SfM photogrammetric 

workflow when working in a remote, dense forest environment, and acquiring large 

datasets with high spatial resolution image to create orthomosaics. This goal was 

achieved reasonably well. The methods described should help researchers and 

professionals to design and select an appropriate workflow. 

The study demonstrated the flexibility of a UAS platform managed by a single person to 

collect data at different locations and times. Compared to human piloted aircraft 



33 

platforms, UAS allows higher spatial resolution, cloud free data due to low altitude flying 

heights, pilot safety, minimum requirements for takeoff and landing, and cost savings. 

High image overlap (80%) and use of a higher grade GNSS on the UAS (UX5-HP) 

helped achieve good quality orthoimages with NIR data; whereas with the RGB data SfM 

did not achieve the same quality due to lower grade GNSS on the UX5 UAS. A study by 

Dandois et al. [75] showed that using high image overlap (>80%) in forested environment 

help achieve higher point cloud density. Higher flying heights covers more area as it 

provides a wider field of view, and may increase chances of matching identical features 

in homogenous forest and wetland cover imagery. In addition, the dense forest canopy 

negatively impacted image matching. Higher flying heights with increased image overlap 

as high as 90% is recommended. Higher flying heights help limit the amount of 

movement in the trees between image sets as the distance between the trees get smaller. 

Any movement in-between the image-sets adds error in the geometry, thus reducing 

number of tie-points. Increasing the overlap does increase the chance of finding a greater 

number of tie-points but it comes with a trade-off, as it increases the uncertainty in 

vertical measurements affecting the accuracy of the elevation model. 

Flying at higher altitude, with appropriate FAA waivers should improve image alignment 

due to the reduction in oblique viewing angles, and perpendicular flight lines should 

reduce image gaps. Current FAA regulation required the aircraft within the visual line of 

sight and remain below 122 m (400 ft) above ground level (AGL). A recent study done 

by Seifert et al. [76] showed that higher overlap and flying altitudes impacts image 

reconstruction details and accuracy.  All of the individually processed orthoimages were 
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mosaicked into one single seamless mosaic for each study site. There were some 

variation in shadow and sunlight as the images were taken at different times throughout 

the day, from early morning to late afternoon with different camera settings. Therefore, 

certain image enhancement techniques, such as topographic normalization and histogram 

adjustments should be completed by block by block before creating the mosaics. It is also 

recommended that data acquisition take place in the months of July and August as an 

optimal season for mapping forest areas due to longer days and higher amount of 

sunlight. Wind speed variation, increased aircraft rotations (yaw, pitch and roll), and tree 

crowns movement caused blurred images in several blocks, but the 80% overlap used in 

this study help overcome some of the issues during processing. 

We concluded UAS imagery coupled with the SfM and traditional photogrammetry 

technique offers great potential for future research in vegetation and wetland 

classification, identification and mapping at the species level, to observe shoreline 

changes. It is efficient and affordable providing imagery at reduced cost over manned 

aircraft. UAS systems can also be used with multispectral, hyperspectral, thermal, and 

LiDAR sensors [77]. UAS imageries are an efficient and affordable data at reduced cost 

over manned aircraft systems or high-resolution private satellites. 
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Abstract  

Remote sensing technology has been used widely in mapping forest and wetland 

communities, primarily with moderate spatial resolution imagery and traditional 

classification techniques. The success of these mapping efforts varies widely. The natural 

communities of the Laurentian Mixed Forest are an important component of Upper Great 

Lakes ecosystems. Mapping and monitoring these communities using high spatial 

resolution imagery benefits resource management, conservation and restoration efforts. 

This study developed a robust classification approach to delineate natural habitat 

communities utilizing multispectral high-resolution (60 cm) National Agriculture 

Imagery Program (NAIP) imagery data. For accurate training set delineation, NAIP 

imagery, soils data and spectral enhancement techniques such as principal component 

analysis (PCA) and independent component analysis (ICA) were integrated. The study 

evaluated the importance of biogeophysical parameters such as topography, soil 

characteristics and gray level co-occurrence matrix (GLCM) textures, together with the 

normalized difference vegetation index (NDVI) and NAIP water index (WINAIP) 

spectral indices, using the joint mutual information maximization (JMIM) feature 

https://doi.org/10.3390/rs14030563
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selection method and various machine learning algorithms (MLAs) to accurately map the 

natural habitat communities. Individual habitat community classification user’s 

accuracies (UA) ranged from 60 to 100%. An overall accuracy (OA) of 79.45% (kappa 

coefficient (k): 0.75) with random forest (RF) and an OA of 75.85% (k: 0.70) with 

support vector machine (SVM) were achieved. The analysis showed that the use of the 

biogeophysical ancillary data layers was critical to improve interclass separation and 

classification accuracy. Utilizing widely available free high-resolution NAIP imagery 

coupled with an integrated classification approach using MLAs, fine-scale natural habitat 

communities were successfully delineated in a spatially and spectrally complex 

Laurentian Mixed Forest environment. 

Keywords 

remote sensing; northern mixed temperate forest; natural habitat communities; laurentian 

mixed forest; upper midwest; michigan; image classification; vegetation classification; 

machine learning; feature selection; RF; SVM; NAIP; DEM; GLCM texture; PCA; ICA 

 Introduction 
 

Ecosystems are defined as “a community of organisms and their physical environment 

interacting as an ecological unit” [1]. Land cover grouped into types and systems by 

resource managers led Arthur Tansley [78] to coin the term “ecosystem”. Ecosystems 

with spatially related features are considered higher order, larger scale ecosystems, 

referred to as “macroecosystems” [4]. When ecosystems are viewed as macroscale 

patterns they can be divided into ecoregions [79]. The term “ecoregion” was first 
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proposed by Orie Loucks [80], a Canadian forest researcher. Ecoregions play an 

important role in resource conservation and management by considering the natural 

process and patterns of communities in a particular region which provide ecosystem 

sustainability [81]. Many different factors (vegetation, soils, spatial and temporal scales, 

landform and bedrock geology) are utilized to classify these systems, and numerous 

ecological classification schemes exist. Spatial and temporal dimensions of ecosystem 

integrity can be addressed using scale (level of detail) and a hierarchical structure 

approach [2]. Various geographic ordering schemes were developed by Bailey [4, 81] to 

identify and delineate ecoregion boundaries. Additionally, having a hierarchical 

classification scheme allows ecosystems to be presented at different spatial scales [6, 7]. 

A holistic ecological framework was introduced by Rowe and Barnes [7, 8] using a 

landscape ecosystem, or geo-ecosystems, approach which incorporates factors such as 

climate, landforms, soil characteristics, hydrology and biota. An example of a widely 

used hierarchical classification scheme for wetlands and deep-water habitats for the 

United States was developed by Cowardin [9]. It divides ecological taxa into hierarchal 

systems or subsystems to provide mapping uniformity across the United States. 

Selecting or developing an appropriate ecological classification scheme is critical for the 

classification to be useful to the end user. There are numerous existing classification 

schemes [6, 8, 9, 12] and selection of an inappropriate scheme can limit the end product’s 

accuracy and utility. To classify a landscape, whether in situ or using remotely sensed 

data, it is important to have a classification scheme which reduces or eliminates 

confusion between various landscape features requiring separation [11]. Traditionally 

many resource management agencies (federal, state and private) use field sampled 
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regional vegetation classes focusing on the dominant vegetation species while ignoring 

associated plants, animals and other organisms which are repeatedly found under similar 

environmental conditions [82] and focuses on describing native ecosystem types 

minimally impacted by anthropogenic activities [12]. For this study, the hierarchical 

classification framework of Cohen et al. [12] was utilized. Their publication, “Natural 

Communities of Michigan: Classification and Description”, published by the Michigan 

Natural Features Inventory (MNFI) provides detailed information on separating 

Michigan’s complex landscape into understandable and describable components labeled 

as natural habitat communities. The foundation of this classification is based on the work 

completed by Chapman [13], and first published by Kost et al. [14]. It is important to 

understand the difference between a plant community, such as the ones used in the 

National Land Cover Classification [36], and a natural habitat community [12]. The latter 

differs from other hierarchical classifications schemes in that Cohen et al. [12] regards 

them “as an assemblage of interacting plants, animals, and other organisms that 

repeatedly occurs under similar environmental conditions across the landscape and are 

predominantly structured by natural processes rather than modern anthropogenic 

disturbances”. To date, no study has been performed using a natural habitat community 

level classification scheme. 

Along with the classification scheme, it is important to choose appropriate field 

collection methods and data sources. Commonly used field methods for data collection 

(e.g. collecting location points via Global Navigation Satellite System (GNSS) and 

vegetation sampling) are labor intensive, costly, and time consuming. Sampling is 

confined to small areas due to limited access and safety concerns [21]. With technical 
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advances in geospatial technology, an alternative and/or complimentary approach to 

traditional field data collection techniques is available. Remotely sensed imagery 

provides a practical, economical approach to monitor and measure biogeophysical 

factors. Hence it is efficient for large area monitoring [22, 83, 84]. Fine scale mapping is 

critical to locate and map endangered habitats particularly with escalating global climate 

change impacts. Hence high spatial resolution imagery, such as the National Agriculture 

Imagery Program (NAIP), is important. The NAIP program is managed by the Aerial 

Photography Field Office (APFO) of the United States Department of Agriculture 

(USDA). It has 8-bit radiometric and 60 cm spatial resolutions, with 4 spectral bands 

(near infrared (NIR), red, green and blue). NAIP data is nominally cloud free and widely 

available at no cost [85]. It has been used for wetland mapping, land cover classification, 

forest cover type mapping, forest health monitoring and other resource management 

projects [86-88]. 

Additionally, selection of the correct classification algorithm is dependent on image 

spatial resolution, chosen classification scheme and landscape complexity. In the last two 

decades the remote sensing community has steadily increased its use of Machine 

Learning (ML) classification techniques [26-31] as the limitations of traditional 

parametric classification techniques, such as maximum likelihood, are realized. Machine 

Learning Algorithms (MLAs) use a nonparametric approach to model and classify data, 

and do not require normally distributed data [89]. Numerous land use/cover classification 

studies have shown the advantages of using MLAs such as Random Forest (RF), and 

Support Vector Machine (SVM) [28, 32-35]. MLAs were utilized in the classification of 
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the 2001 National Land Cover Database (NLCD) [36]. They have also been used with 

NAIP imagery for accurate land cover classification [39, 85]. 

Factors such as training set quality, selection of the optimum number of ancillary 

datasets, and training parameters affects the performance of MLAs [89, 90]. Poor quality 

training data impacts the accuracy of MLAs. Use of image transformations, such as 

Principal Component Analysis (PCA) and Independent Components Analysis (ICA), 

reduces or eliminates redundant spectral information. Ancillary data such as landform, 

soil characteristics, hydrography and expert knowledge of the study area are important to 

create high quality training sets. Use of valid ancillary dataset also plays a crucial role in 

the classification of vegetation communities. It is important to understand which ancillary 

datasets are impacting classification accuracies. Feature selection methods identify the 

best ancillary data before executing MLAs, and reduce the complexity of the method (e.g. 

“Hughes Phenomenon” [43]) and overall computational time [89]. Researchers have 

shown the usefulness of feature selection methods and the use of multiple ancillary data 

to improve land cover classification [39, 85]. Examples include combining high spatial 

resolution data with ancillary layers using ML approaches to improve classification 

results of complex wetland environments [40, 85, 91]. 

The Upper Midwest is part of the Laurentian Mixed Forest and is an extremely complex 

landscape in terms of geomorphology and vegetation due to extensive regional glaciation 

[92, 93]. A Laurentian Mixed Forest province occurs in between the boreal forest and the 

broadleaf deciduous forest transition zones [94]. This has led to unique and complex 

landforms which dictate topography, soil characteristics, hydrography and vegetation 
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 Imagery 

National Agriculture Imagery Program (NAIP) is flown during the active growing season 

and is also known as “leaf-on” imagery, which is needed for habitat classification. The 

four band (red, green, blue, near- infrared) aerial imagery was acquired at approximately 

16,000 feet above ground level (AGL) with a Leica ADS100 airborne digital sensor 

(Leica Geosystems). The image has a spatial resolution of 60 cm with 8-bit radiometric 

resolution. The spectral range of the 4-bands ranges between 435 and 882 nm (Figure 

12). The data was preprocessed by the contractor to reduce radiometric and geometric 

distortions. NAIP imagery tiles dated 25 July 2018 and 11 August 2018 were downloaded 

from the United States Geological Service (USGS) Earth Explorer 

(https://earthexplorer.usgs.gov/, accessed on: 14 July, 2021). A LiDAR derived 1 m 

Digital Elevation Model (DEM) was obtained from The Natural Resources Conservation 

Service (NRCS). All datasets were registered to the Universal Transverse Mercator 

(UTM), Zone 16 North, North American Datum of 1983 (NAD83). The spatial resolution 

for all the datasets is 60 cm. Where resampling was required, the data was reprojected 

using a two-dimensional affine coordinate transformation with nearest neighbor sampling 

with a fundamental vertical accuracy of ±24.5 cm and meets all FGDC (Federal 

Geographic Data Committee) standards. 

ERDAS IMAGINE® 2020 (https://www.hexagongeospatial.com/products/power-

portfolio/erdas-imagine, accessed on: 14 July, 2021) and ArcPro 2.7 

(https://www.esri.com/en-us/store/arcgis-pro, accessed on: 14 July, 2021) were used for 

image transformation. IMAGINE’s Spatial Model Editor Toolbox was used to generate 
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conditions and the high spatial resolution of the imagery [104]. When selecting training 

sets, it is important to understand how these factors influence training set statistics and to 

generate adequate training data to encompass the variation. Having polygon training sets 

with well delineated feature boundaries is critical to generate valid training set point 

matrices for the Machine Learning Algorithms (MLAs) [89].  

To fully utilize spectral reflectance information, and at the same time, reduce redundant 

information between bands, an integrated approach of spectral transformation techniques 

(Principal Components Analysis (PCA) and Independent Components Analysis (ICA) 

were utilized. PCA is a widely employed transformation using a linear transformation 

and generates uncorrelated components [105, 106]. PCA derived components have been 

used to map wetlands vegetation, assess change detection, evaluate vegetation anomalies, 

and geological features [107-111]. PCA uses second-order statistics and assumes the data 

are normally distributed and correlated. PCA has been utilized since the launch of the 

Landsat 2 Multi Spectral Scanner which consisted of 4 bands [112]. ICA considers 

higher-order statistics, and each transformed component is considered non-Gaussian 

[113]. ICA has been shown to identify details in an image even when the feature occupies 

a small area [114]. However, it has not been extensively used in vegetation and land 

use/cover classification [111, 115-117]. Both PCA and ICA were used to draw accurate 

training classes for MLA. The components of the PCA transformation were not used in 

the classification process as components 3 and 4 contained information critical to 

delineating the emergent marsh natural habitat communities. 
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Figure 13. Workflow diagram explaining the methods adapted for vegetation 
classification using spectral enhancement techniques, indices and 
machine learning algorithms. 
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 Vegetation and Moisture Indices 

Spectral Indices have been used extensively to evaluate, monitor and map vegetation both 

qualitatively and quantitatively [118]. Two spectral indices such as Normalized 

Vegetation Index (NDVI) and a Modified Water Index (WINAIP) were derived from the 

NAIP bands. NDVI indicates the biomass abundance and vigor as well as differentiating 

vegetation from non-vegetated areas [119, 120]. NDVI was generated using NAIP bands 

4 (NIR) and 1 (red). WorldView Water Index (WV-WI) was proposed by Wolf [121] and 

uses WorldView satellite band combinations of Coastal Blue (425nm) and the second 

Near Infrared channel (NIR2) (950nm). Previous water indices for satellite imagery were 

based on NDWI [122] which used NIR and Short Wave Infrared (SWIR) channels. Based 

on Wolf’s index a custom water index was developed for this study by replacing the 

Coastal Blue (425nm) band with NAIP Blue (435nm) and NIR2 (950nm) band with 

NAIP NIR (882nm). The modified index is referred to as the WINAIP. 

 Texture 

Plant communities often share similar spectral reflectance characteristics which leads to 

confusion and misclassification. In such scenarios, texture differences may be useful, 

even critical, to correct classification. A grey-level co-occurrence matrix (GLCM) 

originally referred to as a “gray-tone spatial-dependence matrix” by Haralick et al. [123], 

uses second-order metrics to analyze relationships between pairs of pixels and computes 

both angular relationships and directionality to measure the spectral and physical distance 

between two neighboring pixels [124]. GLCM texture analysis has been used in 
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numerous studies to classify various features including urban areas, forests, agriculture 

and wetlands [102, 123-125]. 

The GLCM texture was derived from the NAIP first and second PCA components. These 

components explained 94% (component 1) to 99% (components 1 and 2) of the 

variability in the image. Three different GLCM measures of texture (contrast, entropy, 

and standard deviation) were calculated with PCAs 1 and 2. GLCM was performed in 

ERDAS IMAGINE (Hexagon Geospatial, 2020), with a grayscale level of 32 and 3×3, 

5×5 and 7×7 processing windows. Two different Euclidean geometry XY offsets (2, 2 

and 2, -2) were used. The derived means from the texture measures were used in the 

classification. 

 Topographical Characteristics 

At fine scales, natural habitat communities are controlled by soils, local topography, lake 

effect climate zones and in some instances past disturbances such as fire and wind throw. 

Extensive glaciation in the Upper Midwest has created a wide variety of surficial 

geologic features. These features are made up of interacting landform patterns which 

have been described [98, 126] as combinations of “relief-topography (surface shape) and 

geological parent material.” Rowe [8, 98, 127] stated that “repetitive patterns in 

vegetation can be traced directly to repetitive patterns of topography associated with 

specific types of surficial material of landforms.” Drawing on this body of research, 1-

meter DEM generated from Lidar imagery collected in 2015 helped identify important 

topographic features with high positional accuracy. The DEM was downloaded from the 

National Resource Conservation Service at the recommendation of the US Forest Service. 
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Hillshade (Multi-Directional Oblique Weighted - MDOW), aspect and slope (%) were 

generated from the DEM. Aspect and slope were evaluated as input ancillary data into the 

MLAs and Hillshade aiding in manual training set delineation. 

 Selection of Input Ancillary Data Layers 

When imagery alone can’t adequately classify the data, the incorporation of ancillary data 

is important. Once ancillary data layers are selected, understanding their contribution 

towards classification is important [128] with the goal of optimizing and creating an 

accurate classification. Variable selection has been used in many applications including 

data mining and machine learning, network anomaly detection, natural language 

processing, bioinformatics and image processing [128]. There are many different feature 

selection methods available [129].  

In this study, the Joint Mutual Information Maximization (JMIM) [44], a filter-based 

variable selection method was implemented in R using the “praznik” package [130]. This 

method uses ‘mutual information’ and ‘maximum of the minimum’ criteria to calculate 

the contribution of each input variable. This method evaluates each variable’s 

importance. The JMIM method was performed prior to running the MLA classification. 

Those with higher JMIM values were used as ancillary data inputs. Along with the JMIM 

method, the “varImp” function was used [44] from the “caret” package [45, 131]. It 

evaluates the implemented MLA and identifies the best ancillary data layers for 

improving the classification [129, 131]. The varImp method is implemented after the RF 

classification is performed. The scores produced for each variable helped select different 

variable combinations for the MLAs classifications. 


