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Abstract 
 

Natural habitat communities are an important element of any forest ecosystem. Mapping 

and monitoring Laurentian Mixed Forest natural communities using high spatial 

resolution imagery is vital for management and conservation purposes. This study 

developed integrated spatial, spectral and Machine Learning (ML) approaches for 

mapping complex vegetation communities. The study utilized ultra-high and high spatial 

resolution National Agriculture Imagery Program (NAIP) and Unmanned Aerial Vehicle 

(UAV) datasets, and Digital Elevation Model (DEM). Complex natural vegetation 

community habitats in the Laurentian Mixed Forest of the Upper Midwest. A detailed 

workflow is presented to effectively process UAV imageries in a dense forest 

environment where acquisition of ground control points (GCPs) is extremely difficult. 

Statistical feature selection methods such as Joint Mutual Information Maximization 

(JMIM) which is not that widely used in the natural resource field and variable 

importance (varImp) were used to discriminate spectrally similar habitat communities. A 

comprehensive approach to training set delineation was implemented including the use of 

Principal Components Analysis (PCA), Independent Components Analysis (ICA), soils 

data and expert image interpretation. The developed approach resulted in robust training 

sets to delineate and accurately map natural community habitats. Three ML algorithms 

were implemented Random Forest (RF), Support Vector Machine (SVM) and Averaged 

Neural Network (avNNet). RF outperformed SVM and avNNet. Overall RF accuracies 

across three study sites ranged from 79.45-87.74% for NAIP and 87.31-93.74% for the 

UAV datasets. Different ancillary datasets including spectral enhancement and image 



xii 

transformation techniques (PCA and ICA), GLCM-Texture, spectral indices and 

topography features (elevation, slope and aspect) were evaluated using the JMIM and 

varImp feature selection methods, overall accuracy assessment and kappa calculations. 

The robustness of the workflow was evaluated with three study sites which are 

geomorphologically unique and contain different natural habitat communities. This 

integrated approach is recommended for accurate natural habitat community 

classification in ecologically complex landscapes.
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 Introduction 
 

Ecosystems are defined as “a community of organisms and their physical environment 

interacting as an ecological unit” [1]. To protect and manage these communities, it is 

crucial to understand them at multiple scales, from the organism to landscape level. Many 

different factors (vegetation, soils, spatial and temporal scales, landform and bedrock 

geology) are utilized to classify these systems, and numerous ecological classification 

schemes exist in the literature. King [2] discussed ecosystem integrity with respect to 

scale and hierarchical structure. Jensen et al., [3] explained importance of ecological units 

in managing the existing homogenous land conditions which have similarities in 

structure, function, and ecosystem composition. Bailey [4] talked extensively about 

different ecological classification approaches and importance of ecological units. 

According to Bailey [5] these ecological unit maps can be useful for assessment of 

permanent landscape components (i.e., climate, soils, geology, landform) and can 

evaluate existing status of landscape components (i.e., vegetation). Having a hierarchical 

classification scheme allows ecosystems to be presented at different spatial scales [6, 7]. 

Rowe and Barnes [7, 8]  introduced the landscape ecosystem, or geo-ecosystems 

approach which incorporates factors like climate, landforms, soil, water, and biota, and 

provide a holistic ecological framework. Cowardin [9] developed a classification scheme 

for wetlands and deep-water habitats organizing the classes having certain homogeneity 

and uniformity throughout the landscape. 

The market for remotely sensed data has grown exponentially in the past four decades. 

Remote sensing data can be classified in two categories: data collected from passive 
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sensors and data collected from active sensors [10]. Passive sensors are dependent on the 

reflection of natural light (solar energy) from objects or targets [10]. Whereas active 

sensors transmit electromagnetic energy and  measure the returned quantity [10]. There 

are many different types of instruments available to collect the remotely sensed imagery 

like multispectral (Landsat, Sentinel, WorldView, MODIS), hyperspectral, radar and 

LiDAR [10]. These imagery datasets are acquired using satellites, manned aircraft and 

drones. There are wide variety of applications (i.e., natural resources, geology, 

hydrology, urban, renewable energy) where remotely sensed imagery has aided in 

monitoring and mapping [10]. 

Choosing an appropriate classification scheme is important but can be confusing due to 

the complex interactions of the components. To classify any landscape whether on the 

ground or using remotely sensed data it is important to have a classification scheme 

which reduces confusion between various landscape features and makes it relatively easy 

for the user to make distinction [11].  For this study, the hierarchical classification 

framework of Cohen et al. [12] is being utilized. Their publication, “Natural 

Communities of Michigan: Classification and Description”, published by the Michigan 

Natural Features Inventory (MNFI) provides detailed information on dividing Michigan’s 

complex landscape into easily understood and describable components labeled natural 

communities. The foundation of this classification is based on the work completed by 

Kim A. Chapman [13], and first published by Kost et al. [14]. The MNFI natural 

communities scheme is easy to understand and helps describe the complex natural 

landscape across the State of Michigan. It mainly focuses on the diversity of native 

ecosystem types that are unchanged by human activities [12]. For activities such has 
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agriculture, impervious surfaces, and residential development, classes were developed as 

needed for the study. 

For this study widely, available multispectral high-resolution National Agriculture 

Imagery Program (NAIP) imagery was used. NAIP is collected every 2 years across the 

continental United States during the summer months and is often referred to as “leaf-on” 

imagery. NAIP imagery was first collected in 2003 with a 5-year cycle at 2-meter ground 

sampling distance (GSD) [15]. Starting in 2011 NAIP is now collected every other year 

at 0.60-meter GSD [15].Along with NAIP,  multispectral ultra-high spatial resolution 

Unmanned Aerial Vehicle (UAV) imagery was used. Both types were used to map 

natural community habitats. Unmanned Aerial Vehicle (UAV) remotely sensed imagery 

and processing techniques have rapidly grown over the past decade. It offers low-cost, 

affordable data, and has been used by researchers to map coastal wetlands, vegetation and 

individual plant species [16-19]. Both NAIP and UAV imagery have been used by 

various fields like forestry, geology, education, emergency responses, watershed 

planning, transportation, recreation, urban development and land use/cover analysis [15, 

20]. 

Along with the classification scheme it is important to choose an appropriate 

classification method. Commonly used field methods for data collection (e.g. collecting 

location points using Global Positioning System (GPS), vegetation sampling, field 

surveys and map interpretation) in wetlands, particularly forested wetlands, are labor 

intensive, costly, time consuming and confined to small areas due to limited access [21]. 

With technical advances in the fields of remote sensing and geographic information 
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science (GIS), an alternative and/or complimentary approach to traditional field data 

collection techniques is available. Remotely sensed imagery provide a more practical, 

economical approach to monitor and measure various biological and physical factors; 

making it more efficient for large area monitoring [22],  

In order to classify any remotely sensed imagery it is important to use an appropriate 

classifying technique. Parametric and non-parametric classifiers have been used within 

the remote sensing community for years to classify imagery for various applications [23-

25]. Bhatt [17] discussed different classification methods which have been used by the 

remote sensing community. The use of Machine Learning (ML) based classification 

techniques has increased greatly over the last two decades by the remote sensing 

community [26-31]. ML algorithms and techniques use a nonparametric approach to 

model and classify data. Numerous studies have shown ML advantages over traditional 

parametric classification techniques [28, 32-35]. Large-scale landcover mapping 

approaches using decision trees (DTs) were utilized in the classification of the 2001 

National Land Cover Database (NLCD) [36]. Use of publicly available NAIP and 

Landsat imagery to map wetlands in particular, Phragmites spp., with high accuracies 

using ML and support vector machine (SVM) classification techniques has been shown 

by Xie et al. [37]. Kulkarni and Lowe [29] showed the use of non-parametric methods 

such as Random Forest (RF) and SVM for landcover classification using Landsat 

imagery. Their results showed that RF works efficiently with large homogenous datasets 

and was sensitive to outliers compared to other classifiers. 
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Multispectral imagery is often not sufficient to accurately classify target features. The 

addition of ancillary datasets or variables can improve outcomes. Researchers have used 

variables such as spectral indices (i.e., NDVI, WI, SAVI, LAI) [38], topographic data 

(i.e., elevation, slope, aspect) [38, 39], first- and second-order textures (i.e., contrast, 

homogeneity, variance, entropy) [40, 41], soils data, and climate data (i.e., temperature, 

rainfall) [42]. In cases of multiple geomorphological variables, it is crucial to identify  

which variable contributes most to  the classification process and reduces data complexity 

(Hughes phenomenon) [43]. In order to test the importance there are available feature 

selection methods such as Joint Mutual Information Maximisation (JMIM) which can be 

implemented [44, 45] before executing the actual classification. 

Despite the availability of a wide range of data and advanced classification techniques, 

not many researchers have attempted to classify the complex Laurentian Mixed Forest 

(LMF) at an individual community level. Vegetation communities are composed of 

multiple fine scale systems, and these finer scale systems can appear in more than one 

community. By contrast, land use/ land cover classification schemes use a more 

generalized scheme with nonoverlapping classes. 

This research contains three chapters which evaluate the complexity and challenges of 

UAV image preprocessing and classification of densely forested areas, using NAIP 

imagery coupled with geomorphological ancillary datasets to developa robust 

methodology using Machine Learning algorithms (MLAs), comparing NAIP to UAV 

imagery understand the advantages and disadvantages of each for delineating and 

mapping natural habitat communities. 
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Chapter 2 discusses collection of UAV imagery in a dense forested area and 

how to efficiently process it using the best settings in photogrammetry software. 

This published chapter is titled as “Image Processing in Dense Forest Areas 

using Unmanned Aerial System (UAS)” [46]. 

Chapter 3 discusses the workflow, methodology, and classification results 

using NAIP imagery and ancillary data with MLAs. The published manuscript 

goes over the importance of an appropriate classification scheme, the 

effectiveness of the hybrid classification approach using geomorphological 

variables, and comparison of two machine learning algorithms (RF and SVM). 

Title: Fine-Scale Mapping of Natural Ecological Communities Using 

Machine Learning Approaches [38]. 

Chapter 4 presents a comparison between NAIP and UAV imagery classification using 

MLAs. It discusses the advantages and disadvantages between the two types imagery, 

classification of natural community habitats with both types of imagery and accuracy 

results. Title: Comparison of High-Resolution NAIP and Unmanned Aerial Vehicle 

(UAV) Imagery for Natural Vegetation Communities Classification Using Machine 

Learning Approaches. This chapter is currently under review as a research manuscript 

in the GIScience & Remote Sensing journal. 
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Maclean, A. (2022). Image Processing in Dense Forest Areas using Unmanned Aerial System 
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Description 

A detailed workflow using Structure from Motion (SfM) techniques for processing high-

resolution Unmanned Aerial System (UAS) NIR and RGB imagery in a dense forest 

environment where obtaining control points is difficult due to limited access and safety 

issues. 

Abstract 

Imagery collected via Unmanned Aerial System (UAS) platforms has become popular in 

recent years due to improvements in a Digital Single-Lens Reflex (DSLR) camera 

(centimeter and sub-centimeter), lower operation costs as compared to human piloted 

aircraft, and the ability to collect data over areas with limited ground access. Many 

different application (e.g., forestry, agriculture, geology, archaeology) are already using 

and utilizing the advantages of UAS data. Although, there are numerous UAS image 

processing workflows, for each application the approach can be different. In this study, 

we developed a processing workflow of UAS imagery collected in a dense forest (e.g., 

coniferous/deciduous forest and contiguous wetlands) area allowing users to process 

http://doi.org/10.37099/mtu.dc.michigantech-p/16366
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large datasets with acceptable mosaicking and georeferencing errors. Imagery was 

acquired with near-infrared (NIR) and red, green, blue (RGB) cameras with no ground 

control points. Image quality of two different UAS collection platforms were observed. 

Agisoft Metashape, a photogrammetric suite, which uses SfM (Structure from Motion) 

techniques, was used to process the imagery. The results showed that an UAS having a 

consumer grade Global Navigation Satellite System (GNSS) onboard had better image 

alignment than an UAS with lower quality GNSS. 

 Introduction 
 

Unmanned Aircraft Systems (UAS), or Unmanned Aerial Vehicle (UAV), are a rapidly 

emerging image acquisition technology. The US Department of Defense (DoD, 2019) 

and Civil Aviation Authority (CAA, 2015) of the UK adopted the term UAS.  The term 

Remotely Piloted Aerial System (RPAS,) a particular type of UAS, was introduced by the 

International Civil Aviation Authority (ICAO) in ICAO Circular 328 (ICAO, 2011). 

According to a recent market research study (Markets, 2018) the global UAS market was 

$18.14 billion in 2017 and is projected to reach $52.30 billion by 2025. High spatial and 

temporal resolutions are two important characteristics of UAS. Other factors such as low-

cost, smaller components size, longer battery life, improved launching capabilities, and 

ease of transport and operation make this a preferable choice over other remote sensing 

platforms for various applications. 

The Federal Aviation Administration (FAA) categorizes a UAS as weighing under <=23 

kg (55 lbs) as small Unmanned Aircraft Systems (sUAS) (FAA, 2018). Rango et al. [47] 
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states how small (55 lbs or <50 kg) and micro (11 lbs or <5 kg) UAS platforms provide 

many benefits for remote sensing applications over larger sized UASs. UASs were used 

initially for various military purposes from data collection to strategic planning [48]. The 

US National Aeronautics and Space Administration (NASA), under the “Mini-Sniffer” 

program, developed unmanned aircraft for atmospheric sampling during the 1970 - 80 

(NASA, 2017). In the 1990s, NASA’s Environmental Research Aircraft and Sensor 

Technology (ERAST) program highlighted the development and capabilities of UAS for 

various scientific research areas (NASA, 2008). UAS provides multiple civil applications 

including, but not limited to, long-term scientific research, high-spatial resolution aerial 

imagery, agricultural monitoring, pipeline surveillance, border protection, disaster 

management, weather monitoring and airborne communications [49-51]. The United 

States Geological Survey (USGS) has used UAS since 2010 for various research 

applications, ranging from monitoring shoreline erosion and rapid response volcano 

monitoring [47]. Two types of UAS are widely available- fixed-wing and multi-rotor. 

Multi-rotors allow vertical take-off and landing with less open space, are easier to 

maneuverer, and cost less. However, they have smaller areal coverage, shorter flying 

times, and are less durable in high winds [52, 53]. Fixed-wing vehicles, are larger in size 

and more stable, cover larger areas and have a longer battery life. However, they require 

larger take-off and landing areas and are more expensive [52-54]. 

Recently, using UAS imagery for mapping and classifying forest vegetation, wetlands 

delineation and invasive species monitoring has increased. Husson et al. [55] used 

Personal Aerial Mapping System (PAMS) UAS imagery to interpret and delineate 

aquatic vegetation and Phragmites stands. Precision forestry practices have also 
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increased the use of UAS for mapping forest cover types and stand conditions [56, 57]. 

Dunford et al. [58] used UAS image mosaics to characterize Mediterranean riparian 

forest. Dandois and Ellis [59] illustrated the use of a lightweight, hobby grade UAS to 

map and observe 3D canopy phenology in temperate deciduous forest sites and 

incorporated structure from motion (SfM) algorithms in the image processing. Using a 

fixed wing UAS system to acquire high spatial resolution imagery (~7 cm) Getzin et al. 

[60] assessed biodiversity by identifying canopy gaps in deciduous and deciduous-

coniferous mixed forests in Germany; while Koh and Wich [61] utilized lightweight 

fixed-wing drone in conservation efforts to survey and map forests and biodiversity. 

Carbonneau and Dietrich [62] evaluated UAS data and utilized SfM (Structure from 

Motion) techniques for high-quality topography mapping.  

Use of fixed-wing UAS with an on-board survey grade GPS operating in a ground control 

point (GCP) free environment was demonstrated by Chiang et al. [63]. Direct 

georeferencing using the SfM technique has been used successfully to process high 

spatial resolution imagery for agricultural areas requiring high locational accuracy [53, 

64]. Others have shown the use of direct georeferencing without ground control points to 

process UAS imagery with survey grade GPS on-board [65-67]. Samiappan et al. [68] 

mapped invasive Phragmites australis in coastal wetlands adjacent to the Gulf of Mexico 

using an Altavian Nova UAS platform with image spatial resolution as fine as 5 cm. In 

another study by Samiappan et al. [16] in the Gulf of Mexico coastal wetlands, they used 

a hand launched Precision Hawk Lancaster UAS platform to acquire five band 

multispectral imagery with a high spatial resolution (~ 8 cm) to map Phragmites 

(common reed). 
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 Study Area 
 

The Hiawatha National Forest (HNF) is located in the central and eastern parts of 

Michigan’s Upper Peninsula on the north coast of Lake Michigan (Figure 1), and 

manages the largest area of coastal wetlands in the Great Lakes Basin. HNF manages the 

greatest acreage of coastal wetlands in the Great Lakes Basin, encompassing 363,599 ha 

(898,472 ac) and over 161 km (100 miles) of Great Lakes shoreline, with jurisdiction 

along Lakes Michigan, Superior and Huron shorelines [69]. The study sites were selected 

for their diverse land-water vegetation communities including large tracts of forested, 

submergent, emergent, and shrub-scrub wetlands. 

Figure 1. Location of the three UAS study sites in the Hiawatha National Forest 
in the central part of Michigan’s Upper Peninsula along the Lake 
Michigan shoreline. 
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 Objectives 
 

There are few published UAS studies involving such a large 2,315 ha (5720.49 ac) study 

area. Most published studies deal with smaller areas focused on a particular plant species 

or agricultural crop. Dense forest stands, commonly found in the Upper Midwest, have 

limited accessibility due to remoteness and lack of roads/trails which severely curtails 

collecting GCPs.  Hence, the objectives of this feasibility study were: to develop a 

rigorous processing workflow for a large UAS imagery dataset with few or no GCPs; and 

evaluate the capabilities of the fixed-wing UAS platform and data collection components. 

 Materials and Methods 
Two UAS fixed wing platforms were utilized for the study. A Trimble (Trimble Inc., 

Sunnyvale, CA) UX5 and a UX5-HP. Both have an expanded polypropylene (EPP) foam 

fuselage, internal carbon frame, and a pusher propeller driven by an electric motor 

powered by lithium polymer (LiPo) battery. The Trimble UX5 was mounted with a low-

cost mapping grade GNSS receiver located in the electronic control box (eBox), and a 

Sony a5100, 24-megapixel mirrorless camera with fixed 15mm lens capable of a ground 

sample distance (GSD) as fine as 2.0 cm and collected RGB imagery. The Trimble UX5-

HP payload included a consumer grade GNSS receiver with dual frequency, eBox, and a 

Sony A7R, 36-megapixel mirrorless DSLR camera with a fixed 35mm lens and GSD 

capability of 1.0 cm and collected NIR imagery. A comparison of the UASs is compiled 

in Figure 2 (Trimble, 2019b).  
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Three areas (Figures 1 and 3) of coastal wetlands and adjacent interior wetlands were 

flown in August, 2017 with varying flying heights between 75 and 121 m (246-400 ft). 

Approximately 2,315 ha (5,720 ac) of imagery (~40,000 images) were acquired and 

collected over 52 flight blocks (Figure 3).  The overlap and sidelap for all imagery were 

set to 80%. Project locations were on the Lake Michigan coastline, and taking off over 

water was relatively easy. However, both UASs require adequately sized, non-forested, 

dry, open space to land. Because the study sites were predominantly wetlands, lake levels 

high and few roads or trails, landing locations were limited. 

There were two batteries for the UX5 and four batteries for the UX5-HP, that were used 

singly, which is important for quick turn-around times for getting the UAS back in the air 

and collecting images. Manufacturer’s estimated flight time capabilities were 50 and 35 

Figure 2. Comparison of UAS devices used in the study (Trimble, 2019b). 
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minutes for the UX5 and UX5-HP respectively. This fell short when flying in the field, as 

preflight setup consumes ~ 10% of the battery life, and 10-15% battery life is required for 
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safe landing. These reduced flight times necessitated careful consideration in flight 

planning and selecting landing sites.  

a b 

d c 

e f 

Figure 3. Number of blocks flown for collecting NIR and RGB data with Trimble 
UX5 HP and UX5 over the three study sites, Ogontz Bay-NIR (a), RGB 
(b), Sturgeon River Delta-NIR (c), RGB (d) and Wedens Bay-NIR (e), 
RGB (f). (Source: Google Earth, Aerial Imaging, Trimble) 
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A bungee cord catapult launched the aircraft to takeoff speed. Takeoff and landing 

locations were confirmed via the control tablet’s internal GNSS receiver before takeoff. 

Most of the data collection was automated based on the programmed flight plan, which 

was communicated to the aircraft eBox via a FM modem. For flight mission planning and 

flight operations, Trimble’s Aerial Imaging proprietary software designed for the Trimble 

UX5 series, was utilized. The software interfaces with Google Earth to download 

planning imagery for the study sites as shown in Figure 3. 

Four flights per day were planned based on factors such as battery life, data download 

time for each flight, and preliminary office processing. Six was the maximum number of 

flights achieved in a day. Flight block planning size was based on actual battery life 

expectancy, with actual times of 45 minutes for the UX5 and 30 minutes for the UX5-HP. 

In many cases, acquisition of complete blocks was not possible due to strong winds 

coming off of Lake Michigan, which reduced flying times due to increased power and 

battery usage. Use of ground control targets for ground control points (GCPs) locations 

were not used due to inaccessibility caused by dense forest cover and lack of roads and 

trails. 

 Photogrammetric Processing 
Initially, Trimble Business Center (TBC) and Trimble Inpho UASMaster (Trimble, 

2019a) were used to process the data. However, large tracts of the coastal wetlands 

consisted of dense forest cover where accessibility and easily identifiable ground features 

did not exist (Figure 4). This precluded the software’s automatic tie-point (ATP) 

algorithm from finding tie-points on overlapping photos; which in turn prevented or 
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attenuated photo-mosaic creation and posed a serious image mosaicking issue (Hexagon, 

2016). Manual tie-point location, often cited as an alternative approach, was not feasible 

due to the homogeneity of high-density forest cover and the large number of images (700 

to 1,500 images) per block. Oblique views of different sides of the same trees make it 

very difficult and inordinately time consuming to identify the same feature (group of 

pixels). 

  

Figure 4. Snapshot showing high-density forest cover across Sturgeon 
River Delta area. (RGB bands – UAS Imagery). 
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Deep-water areas of Lake Michigan also contributed to the problem, as the water was 

either relatively monochromatic with insufficient differentiation between pixels, or wind-

driven wave action created different spectral reflectance in adjacent imagery for the same 

geographic location. To help troubleshoot alignment issues, the data were sent to Trimble 

Germany GmbH (Branch office Stuttgart; Rotebühlstraße 81; 70178 Stuttgart) and a team 

leader (Inpho Support - Imaging Division) assisted in the tie-point processing. After 

approximately three months of adjusting inputs and using various processing options, 

TBC and UASMaster were unable to adequately process the data, and it was concluded 

the software algorithms were not sufficient to process such highly dense forested areas 

(Figure 4). 

Evaluation of the Agisoft Metashape (previously PhotoScan) Professional Edition 

Version 1.3, 2017 (Agisoft, 2017a) photogrammetry software package was initiated at the 

suggestion of USGS, National UAS Project Office [70]. Agisoft uses SfM algorithms 

(Agisoft, 2017b), and in a forested environment, achieved a higher percentage of success 

in photo alignment, generation of georeferenced point clouds, mesh creation and the 

resulting orthomosaic (Figure 5). SfM solves scene geometry, camera positions and 

internal and external orientation parameters using a bundle adjustment procedure, and 

automatically extracts features (matching points) from overlapping images. 
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Metashape aligns photos 

without the use of GCPs. 

Input parameters used are 

based on software 

recommendations (Agisoft, 

2017b), or if needed, by 

trial and error 

experimentation, to achieve 

acceptable results. The 

amount of processing time 

for each step, shown in 

Figure 6, and the number of 

images processed during 

that time were based on the 

trial and error approach. 

The aircraft trajectory csv 

file, which contained photo 

station GNSS locations and 

image orientation parameters, as well as the imagery were imported imported into the 

software.  Image quality was evaluated and assigned a value with 1 being the best. Values 

Figure 5. SfM workflow to process the UAS imagery. 
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below 0.7 indicated the images had low contrast or vignetting effects and were discarded 

if area coverage was maintained by adjoining photos. 

 

Images were aligned using the photo alignment process, involving tie point detection, 

selecting matching point pairs, and estimating improved camera coordinates. Metashape 

Figure 6. Processing workflow with corresponding parameters in Metashape for 
generating Orthomosaic from UAS imagery. 1Parameters selected based on online 
tutorial; 2Parameters selected using trial and error approach. 
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generates a point cloud as a 3D representation of tie-points. The highest alignment 

accuracy was used in conjuction with the original NIR image spatial resolution and the 

medium setting with the RGB images for tie point pair selection (Agisoft, 2017b). Being 

the first step in the workflow, Alignment setting plays an important role in estimating tie 

point positions, to accurately tie the images together. The key point limit was set to 

60,000 and tie point limit was set to 0 to retain all matched points. A key point is a 

feature point with unique texture or high contrast found on multiple overlapping images. 

Using a higher key point value improves the chances for a successful alignment.  A larger 

key point limit ensures more points are sampled by Metashape, potentially with a higher 

accuracy (Agisoft, 2017b). A tie point is a key point found on two or more images and 

used to optimize model performance. When using a tie point limit of 0, no prefiltering 

occurred, processing times were longer, but image correction was improved. Using the 

highest quality setting requires longer processing times, as it upscales the imagery by 

factor of 4 and helps acquire more accurate camera positions, is recommended for 

research purposes (Agisoft, 2017b). 

The complex canopy structure of dense vegetation along with relief displacement made it 

extremely difficult to identify distinct spatial features between adjacent images and 

affected the geometric alignment between the photos. Medium alignment setting smooths 

the data with a 2x resampling and does not require accurate feature point location 

compared to high alignment, which uses the original spatial resolution of the photos 

(Agisoft, 2017b). Hence it was used to minimize the parallax and differing reflectance 

values to achieve additional calibrated images. 
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Optimization, using the adaptive camera model fit, includes a least squares bundle 

adjustment [71], which estimates the internal and external camera orientation plus 

measurement parameters, estimating focal length (via exif data or user input), if 

unknown, and corrects camera lens distortion. It is important to perform optimization in 

order to reduce the lens distortion effects on the forest structures in the photos (Agisoft, 

2017b). After optimization, the standard error of unit weight (SEUW) value was between 

0.1 and 0.3, below the recommended SEUW tolerance of 1.0. 

A dense point cloud was derived from the images generated from the optimized camera 

parameters. Medium quality and aggressive depth filtering mode [72] were used for both 

the NIR and RGB imagery as reconstruction parameters. Metashape creates depth maps 

for each image. In order to remove the outliers and noise from the aerial imagery depth 

filtering was recommended by Agisoft (2017b) to use. We aligned the images with 

highest settings whereas dense cloud was generated at medium quality which might 

impact the elevation but does not impact the orthophoto as the amount of points 

generated are usually more than sufficient to generate the final orthoimage. Another 

important factor to consider was the computer memory as when we tried generating the 

dense cloud with high settings it ran out of memory and gave an error. To overcome the 

processing error, we applied the medium setting. Processing time for two blocks together 

was 8-10 hours. 

 Mesh Generation 
Polygonal mesh generation created a 3D surface model based on the point cloud (dense 

or sparse). The height field option (which represents planar surfaces) was selected for the 

mesh generation. The height field is a surface type that represents topographic surface 
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models. It requires lower amounts of memory to process large datasets (Agisoft, 2017b). 

The dense cloud was used as the source data in processing though it requires longer 

processing time, it generates high quality result. Medium quality which produces little 

less detailed feature formations but help remove more noise or artifacts (Saczuk, 2018), 

was used for both NIR and RGB data polygon count generation; and, high settings were 

avoided as it can cause model visualization problem due to very high number count. 

Default interpolation setting and all point classes were used. Using interpolation helps the 

software interpolate surface areas around each dense cloud point by creating a circle of 

certain radius around them and fills some hole automatically (Agisoft, 2017b). The 

processing time was around 1-2 hours for two blocks. 

 Color Calibration 
Portions of the RGB imagery exhibited vignetting; thus, color correction was applied to 

before orthomosaic was generated. Vignetting is defined as the reduction in an image’s 

brightness towards the edge when compared with its center [73]. Vignetting arises due to 

the changes in irradiance over the image plane due to sensor geometry [74], and color 

correction balances the brightness variation across the  imagery block (Agisoft, 2017b). 

As the data was acquired at various times of the day, changing illuminance was 

anticipated. If color calibration is not utilized, Metashape only blends images in 

overlapping areas, and does not change the brightness values (digital numbers) of the 

original images. The software’s white balance option was used to correct each band 

independently. White balance adjusted the brightness values so the image looks more 

“natural” by removing color casts. Calibrations times vary based on the number of 

images in a block. 
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 Orthomosaic 
In the final stage of the process, an orthomosaic was generated using the mesh model for 

an elevation reference and blending along the photo’s seamlines. Pixel size was kept to 

default (i.e. image resolution, 1.3 cm for the NIR and 2.0 cm for the RGB).  Hole filling 

option was kept on to remove any salt-and-pepper effects caused in part by shadows and 

to ensure there are no tiny gaps in the imagery. The software corrects image distortion 

followed by a multi-view stereo reconstruction procedure to place each pixel located in 

its correct XYZ position (Agisoft, 2017b). 

The orthomosaic for each block was exported as a TIFF with no compression or tiling 

and reprojected to UTM NAD83 zone 16N (EPSG:26916) projected coordinate system. 

Dense points clouds were exported in ASPRS LAS format. The model was also exported 

as a KMZ file for use in Google Earth. Metadata documentation (PDF) for each block 

included all processing parameter specifications such as processing times for each 

segment, numbers of tie points, and number of dense cloud points, camera calibration 

information including point locations and errors, and orientation. 

 Results and Discussion 
Metashape generated tie-points and orthomosaics with medium sized data gaps for the 

NIR data and large data gaps in the RGB data processing. With the NIR data, gaps 

occurred over water and dense forest areas. However, with RGB data, the low accuracy 

GNSS receiver quality on the UX5 potentially caused the data gaps due to poor quality 

initial estimation parameters. Collected image coordinates and orientation parameters 

were used for initial approximation in the photogrammetric processing. Higher accuracy 
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GNSS enables much higher fidelity in the initial approximations, and the remaining 

image orientation, relative orientation, and block adjustment were calculated using 

photogrammetric aero-triangulation, which occurs in the image alignment and 

optimization steps. For both Ogontz and Wedens Bay (Figure 8 a; Figure 10 a, b), the 

software was able to generate tie-points for coastal areas. Large open areas made it easy 

for Metashape to generate tie-points in Sturgeon River Delta (Figure 9 b) and it was the 

only study site with no gaps in the RGB imagery. 

 

Initially, only one block was processed at a time due to computer memory concerns. 

Later, multiple adjacent blocks were processed simultaneously, and in some cases, this 

increased the number of tie-points. Figure 7 shows the photogrammetric processing of 

three adjacent blocks aligned in Metashape. Figures 8, 9, and 10 show complete 

mosaicked NIR and RGB blocks. The mosaicking was completed using MosaicPro in 

ERDAS IMAGINE software (Hexagon, 2016), and proved efficient in generating 

seamless mosaics. Each flight block had different lighting condition due to varying 

acquisition times during the day. This may impact additional digital image processing 

such as reduction of shadow effects by topographic normalization. This procedure may 

not be completed in a mosaic of all the blocks. Instead, topographic normalization would 

have to be performed in each block prior to creating the full mosaic. It should be noted 

that in many cases, image mosaics were better for classification when flown on days with 

cloud cover, due to fewer shadows, blurriness and glare. 
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All of the processed NIR blocks showed small data gaps, with the lowest number of gaps 

in the Sturgeon Delta and Wedens Bay (Figures 9a and 10a); whereas Ogontz Bay 

(Figure 8a) showed the highest amount of gap in the mosaicked imagery. The gaps 

visible in Wedens Bay NIR imagery were in areas not flown due to lack of a clear line of 

sight of the aircraft. The relief displacement of trees on large scale images, aircraft 

rotations caused by wind, the complex geometry of dense forested areas, and low oblique 

imagery, all contributed created problems for Metashape and other SfM software to find 

matching tie points, which led to huge gaps with the RGB imagery. In future studies we 

may increase the overlap to 90% by flying at higher elevations, if approved by the FAA. 

This would reduce the low oblique look angle and relief displacement. Final 

orthomosaics were generated at ground resolution of approximately 1.3 cm for the NIR 

and 2.0 cm spatial resolution for the RGB data. 

 

It is important to experiment with the settings and options of photogrammetric software 

when processing such large amounts of data. For many of the NIR and RGB blocks, the 

process was run using each available setting, (Low, Lowest, Medium, High, Highest and 

Ultra High) to ascertain which resulted in acceptable imagery quality and minimal data 

gaps in the block mosaics. For several cases, using the high settings for alignment created 

huge image gaps, while the medium settings did not. Performing realignment after the 

initial alignment process was crucial. Many blocks showed improved alignment on 

successive attempts. Metashape did process water areas close to beaches and vegetated 

areas if there were identifiable features in adjacent images such as underwater rocks, sand 

bars and emergent vegetation. It has been observed when working with dense forest areas 
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and acquiring a large digital dataset with lower accuracy GNSS, medium settings may 

work best for the alignment. Running the low setting during alignment might align a 

several more images in the blocks, but should be avoided as images are downscaled by 

factor of 16, leaving out important details (Agisoft, 2017b). Significant downscaling was 

evaluated but never achieved full image alignment. 
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a 

b 

c 

d 

Figure 7. Tie points (a), dense cloud (b), 3D-Mesh 
(c), and orthomosaic (d) image generated 
from Metashape as part of photogrammetric 
workflow. 
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b 

a 

Figure 8. NIR (a) and RGB (b) mosaics of Ogontz Bay. 
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a 

b 

Figure 9. NIR (a) and RGB (b) mosaics of the Sturgeon River Delta. 
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a 

b 

Figure 10. NIR (a) and RGB (b) mosaics of Wedens Bay. 



32 

With Metashape, higher accuracy requirements increased processing times which also 

depended on the complexity of the image texture. Due to the physical size of the raw data 

and the new data created with each processing, a large hard drive (5 to 8 terabytes) and 

adequate RAM were necessary. Thirty-five blocks, each having 800 to 1500 images, 

were processed for the three study sites. Each image was approximately 10 MB, 

consisting of 7,360 rows × 4,912 columns. The process was performed on a computer 

with 3.4 GHz CPU, Intel i5 processor using 64-bit Microsoft Windows 10 operating 

system with 16 GB of RAM (64 GB and GPU enabled PCs recommended for faster and 

larger data process). Increasing the computing capability enables processing the dataset 

for entire area at once, rather than individual blocks. It took 60 to 65 days to process the 

entire dataset. Cloud processing can be another option, but it’s also time consuming and 

expensive. 

 

 Conclusion 
 

The purpose of this applications paper was to discuss UAS image SfM photogrammetric 

workflow when working in a remote, dense forest environment, and acquiring large 

datasets with high spatial resolution image to create orthomosaics. This goal was 

achieved reasonably well. The methods described should help researchers and 

professionals to design and select an appropriate workflow. 

The study demonstrated the flexibility of a UAS platform managed by a single person to 

collect data at different locations and times. Compared to human piloted aircraft 
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platforms, UAS allows higher spatial resolution, cloud free data due to low altitude flying 

heights, pilot safety, minimum requirements for takeoff and landing, and cost savings. 

High image overlap (80%) and use of a higher grade GNSS on the UAS (UX5-HP) 

helped achieve good quality orthoimages with NIR data; whereas with the RGB data SfM 

did not achieve the same quality due to lower grade GNSS on the UX5 UAS. A study by 

Dandois et al. [75] showed that using high image overlap (>80%) in forested environment 

help achieve higher point cloud density. Higher flying heights covers more area as it 

provides a wider field of view, and may increase chances of matching identical features 

in homogenous forest and wetland cover imagery. In addition, the dense forest canopy 

negatively impacted image matching. Higher flying heights with increased image overlap 

as high as 90% is recommended. Higher flying heights help limit the amount of 

movement in the trees between image sets as the distance between the trees get smaller. 

Any movement in-between the image-sets adds error in the geometry, thus reducing 

number of tie-points. Increasing the overlap does increase the chance of finding a greater 

number of tie-points but it comes with a trade-off, as it increases the uncertainty in 

vertical measurements affecting the accuracy of the elevation model. 

Flying at higher altitude, with appropriate FAA waivers should improve image alignment 

due to the reduction in oblique viewing angles, and perpendicular flight lines should 

reduce image gaps. Current FAA regulation required the aircraft within the visual line of 

sight and remain below 122 m (400 ft) above ground level (AGL). A recent study done 

by Seifert et al. [76] showed that higher overlap and flying altitudes impacts image 

reconstruction details and accuracy.  All of the individually processed orthoimages were 
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mosaicked into one single seamless mosaic for each study site. There were some 

variation in shadow and sunlight as the images were taken at different times throughout 

the day, from early morning to late afternoon with different camera settings. Therefore, 

certain image enhancement techniques, such as topographic normalization and histogram 

adjustments should be completed by block by block before creating the mosaics. It is also 

recommended that data acquisition take place in the months of July and August as an 

optimal season for mapping forest areas due to longer days and higher amount of 

sunlight. Wind speed variation, increased aircraft rotations (yaw, pitch and roll), and tree 

crowns movement caused blurred images in several blocks, but the 80% overlap used in 

this study help overcome some of the issues during processing. 

We concluded UAS imagery coupled with the SfM and traditional photogrammetry 

technique offers great potential for future research in vegetation and wetland 

classification, identification and mapping at the species level, to observe shoreline 

changes. It is efficient and affordable providing imagery at reduced cost over manned 

aircraft. UAS systems can also be used with multispectral, hyperspectral, thermal, and 

LiDAR sensors [77]. UAS imageries are an efficient and affordable data at reduced cost 

over manned aircraft systems or high-resolution private satellites. 
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Abstract  

Remote sensing technology has been used widely in mapping forest and wetland 

communities, primarily with moderate spatial resolution imagery and traditional 

classification techniques. The success of these mapping efforts varies widely. The natural 

communities of the Laurentian Mixed Forest are an important component of Upper Great 

Lakes ecosystems. Mapping and monitoring these communities using high spatial 

resolution imagery benefits resource management, conservation and restoration efforts. 

This study developed a robust classification approach to delineate natural habitat 

communities utilizing multispectral high-resolution (60 cm) National Agriculture 

Imagery Program (NAIP) imagery data. For accurate training set delineation, NAIP 

imagery, soils data and spectral enhancement techniques such as principal component 

analysis (PCA) and independent component analysis (ICA) were integrated. The study 

evaluated the importance of biogeophysical parameters such as topography, soil 

characteristics and gray level co-occurrence matrix (GLCM) textures, together with the 

normalized difference vegetation index (NDVI) and NAIP water index (WINAIP) 

spectral indices, using the joint mutual information maximization (JMIM) feature 

https://doi.org/10.3390/rs14030563
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selection method and various machine learning algorithms (MLAs) to accurately map the 

natural habitat communities. Individual habitat community classification user’s 

accuracies (UA) ranged from 60 to 100%. An overall accuracy (OA) of 79.45% (kappa 

coefficient (k): 0.75) with random forest (RF) and an OA of 75.85% (k: 0.70) with 

support vector machine (SVM) were achieved. The analysis showed that the use of the 

biogeophysical ancillary data layers was critical to improve interclass separation and 

classification accuracy. Utilizing widely available free high-resolution NAIP imagery 

coupled with an integrated classification approach using MLAs, fine-scale natural habitat 

communities were successfully delineated in a spatially and spectrally complex 

Laurentian Mixed Forest environment. 

Keywords 

remote sensing; northern mixed temperate forest; natural habitat communities; laurentian 

mixed forest; upper midwest; michigan; image classification; vegetation classification; 

machine learning; feature selection; RF; SVM; NAIP; DEM; GLCM texture; PCA; ICA 

 Introduction 
 

Ecosystems are defined as “a community of organisms and their physical environment 

interacting as an ecological unit” [1]. Land cover grouped into types and systems by 

resource managers led Arthur Tansley [78] to coin the term “ecosystem”. Ecosystems 

with spatially related features are considered higher order, larger scale ecosystems, 

referred to as “macroecosystems” [4]. When ecosystems are viewed as macroscale 

patterns they can be divided into ecoregions [79]. The term “ecoregion” was first 
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proposed by Orie Loucks [80], a Canadian forest researcher. Ecoregions play an 

important role in resource conservation and management by considering the natural 

process and patterns of communities in a particular region which provide ecosystem 

sustainability [81]. Many different factors (vegetation, soils, spatial and temporal scales, 

landform and bedrock geology) are utilized to classify these systems, and numerous 

ecological classification schemes exist. Spatial and temporal dimensions of ecosystem 

integrity can be addressed using scale (level of detail) and a hierarchical structure 

approach [2]. Various geographic ordering schemes were developed by Bailey [4, 81] to 

identify and delineate ecoregion boundaries. Additionally, having a hierarchical 

classification scheme allows ecosystems to be presented at different spatial scales [6, 7]. 

A holistic ecological framework was introduced by Rowe and Barnes [7, 8] using a 

landscape ecosystem, or geo-ecosystems, approach which incorporates factors such as 

climate, landforms, soil characteristics, hydrology and biota. An example of a widely 

used hierarchical classification scheme for wetlands and deep-water habitats for the 

United States was developed by Cowardin [9]. It divides ecological taxa into hierarchal 

systems or subsystems to provide mapping uniformity across the United States. 

Selecting or developing an appropriate ecological classification scheme is critical for the 

classification to be useful to the end user. There are numerous existing classification 

schemes [6, 8, 9, 12] and selection of an inappropriate scheme can limit the end product’s 

accuracy and utility. To classify a landscape, whether in situ or using remotely sensed 

data, it is important to have a classification scheme which reduces or eliminates 

confusion between various landscape features requiring separation [11]. Traditionally 

many resource management agencies (federal, state and private) use field sampled 
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regional vegetation classes focusing on the dominant vegetation species while ignoring 

associated plants, animals and other organisms which are repeatedly found under similar 

environmental conditions [82] and focuses on describing native ecosystem types 

minimally impacted by anthropogenic activities [12]. For this study, the hierarchical 

classification framework of Cohen et al. [12] was utilized. Their publication, “Natural 

Communities of Michigan: Classification and Description”, published by the Michigan 

Natural Features Inventory (MNFI) provides detailed information on separating 

Michigan’s complex landscape into understandable and describable components labeled 

as natural habitat communities. The foundation of this classification is based on the work 

completed by Chapman [13], and first published by Kost et al. [14]. It is important to 

understand the difference between a plant community, such as the ones used in the 

National Land Cover Classification [36], and a natural habitat community [12]. The latter 

differs from other hierarchical classifications schemes in that Cohen et al. [12] regards 

them “as an assemblage of interacting plants, animals, and other organisms that 

repeatedly occurs under similar environmental conditions across the landscape and are 

predominantly structured by natural processes rather than modern anthropogenic 

disturbances”. To date, no study has been performed using a natural habitat community 

level classification scheme. 

Along with the classification scheme, it is important to choose appropriate field 

collection methods and data sources. Commonly used field methods for data collection 

(e.g. collecting location points via Global Navigation Satellite System (GNSS) and 

vegetation sampling) are labor intensive, costly, and time consuming. Sampling is 

confined to small areas due to limited access and safety concerns [21]. With technical 
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advances in geospatial technology, an alternative and/or complimentary approach to 

traditional field data collection techniques is available. Remotely sensed imagery 

provides a practical, economical approach to monitor and measure biogeophysical 

factors. Hence it is efficient for large area monitoring [22, 83, 84]. Fine scale mapping is 

critical to locate and map endangered habitats particularly with escalating global climate 

change impacts. Hence high spatial resolution imagery, such as the National Agriculture 

Imagery Program (NAIP), is important. The NAIP program is managed by the Aerial 

Photography Field Office (APFO) of the United States Department of Agriculture 

(USDA). It has 8-bit radiometric and 60 cm spatial resolutions, with 4 spectral bands 

(near infrared (NIR), red, green and blue). NAIP data is nominally cloud free and widely 

available at no cost [85]. It has been used for wetland mapping, land cover classification, 

forest cover type mapping, forest health monitoring and other resource management 

projects [86-88]. 

Additionally, selection of the correct classification algorithm is dependent on image 

spatial resolution, chosen classification scheme and landscape complexity. In the last two 

decades the remote sensing community has steadily increased its use of Machine 

Learning (ML) classification techniques [26-31] as the limitations of traditional 

parametric classification techniques, such as maximum likelihood, are realized. Machine 

Learning Algorithms (MLAs) use a nonparametric approach to model and classify data, 

and do not require normally distributed data [89]. Numerous land use/cover classification 

studies have shown the advantages of using MLAs such as Random Forest (RF), and 

Support Vector Machine (SVM) [28, 32-35]. MLAs were utilized in the classification of 
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the 2001 National Land Cover Database (NLCD) [36]. They have also been used with 

NAIP imagery for accurate land cover classification [39, 85]. 

Factors such as training set quality, selection of the optimum number of ancillary 

datasets, and training parameters affects the performance of MLAs [89, 90]. Poor quality 

training data impacts the accuracy of MLAs. Use of image transformations, such as 

Principal Component Analysis (PCA) and Independent Components Analysis (ICA), 

reduces or eliminates redundant spectral information. Ancillary data such as landform, 

soil characteristics, hydrography and expert knowledge of the study area are important to 

create high quality training sets. Use of valid ancillary dataset also plays a crucial role in 

the classification of vegetation communities. It is important to understand which ancillary 

datasets are impacting classification accuracies. Feature selection methods identify the 

best ancillary data before executing MLAs, and reduce the complexity of the method (e.g. 

“Hughes Phenomenon” [43]) and overall computational time [89]. Researchers have 

shown the usefulness of feature selection methods and the use of multiple ancillary data 

to improve land cover classification [39, 85]. Examples include combining high spatial 

resolution data with ancillary layers using ML approaches to improve classification 

results of complex wetland environments [40, 85, 91]. 

The Upper Midwest is part of the Laurentian Mixed Forest and is an extremely complex 

landscape in terms of geomorphology and vegetation due to extensive regional glaciation 

[92, 93]. A Laurentian Mixed Forest province occurs in between the boreal forest and the 

broadleaf deciduous forest transition zones [94]. This has led to unique and complex 

landforms which dictate topography, soil characteristics, hydrography and vegetation 
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communities [92]. Although, there are a number of completed studies using grouped 

species classifications in this region [82, 95-97], to the best of our knowledge, no study 

has been performed using a natural habitat community level classification scheme [12] 

with MLAs. 

Hence, the goal of this study was to develop a robust methodological classification 

approach to identify and accurately classify spectrally similar natural habitat communities 

of the complex Laurentian Mixed Forest region using the MNFI natural habitat 

communities classification scheme [12]. To achieve that, we proposed an integrated 

approach of spectral enhancement techniques coupled with elevation, soils, and field data 

to take accurate training data. Classification accuracies were compared between two 

commonly used MLAs, RF and SVM, using various ancillary data derived from feature 

selection methods along with the high spatial resolution NAIP dataset. 

 Study Area, Data and Methods 
 

 Study Area 
 

The study site (Figure 11), is the Sturgeon River watershed (HU5 Id 20207) 

(45°50'27"N, 86°40'30"W) located in the western half of the Hiawatha National Forest, 

adjacent to the head of Big Bay de Noc. The study area encompasses approximately 

3,151 ha (7,7861 ac) and contains a wide variety of natural habitat communities. 

Dominant vegetation is composed of upland and lowland deciduous, conifer and mixed 

forest types as well as palustrine wetlands [17]. The influence of the Great Lakes and 

various landforms creates distinct climatic zones across the area with summer 
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temperatures ranging from 22°C (71°F) near the Great Lakes shoreline to 27° to 29°C 

(81° to 85°F) warmer inland. Winter temperatures range from an average high of -2°C 

(28°F) and to an average low of -11°C (13°F). Winters are long and snowy, with average 

snowfall around 142 cm (56 inches) along the Lakes Michigan and Huron shorelines, to 

554 cm (218 inches) near Lake Superior. The study area is part of a glacial lake plain and 

is a nearly level lake plain that was covered with water from Glacial Lake Algonquin. 

The soils on the landform are derived from predominantly sandy lacustrine deposits [92, 

98]. Soil drainage classes range from poorly to excessively drained, and soil pH ranges 

from neutral to extremely acidic. The area contains numerous wetlands with a complex 

hydrography. 
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Figure 11. Geographical location of Sturgeon River watershed and the image of 
research area presented by RGB composition using bands 1, 2, and 3 from the 
NAIP imagery. 
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 Imagery 

National Agriculture Imagery Program (NAIP) is flown during the active growing season 

and is also known as “leaf-on” imagery, which is needed for habitat classification. The 

four band (red, green, blue, near- infrared) aerial imagery was acquired at approximately 

16,000 feet above ground level (AGL) with a Leica ADS100 airborne digital sensor 

(Leica Geosystems). The image has a spatial resolution of 60 cm with 8-bit radiometric 

resolution. The spectral range of the 4-bands ranges between 435 and 882 nm (Figure 

12). The data was preprocessed by the contractor to reduce radiometric and geometric 

distortions. NAIP imagery tiles dated 25 July 2018 and 11 August 2018 were downloaded 

from the United States Geological Service (USGS) Earth Explorer 

(https://earthexplorer.usgs.gov/, accessed on: 14 July, 2021). A LiDAR derived 1 m 

Digital Elevation Model (DEM) was obtained from The Natural Resources Conservation 

Service (NRCS). All datasets were registered to the Universal Transverse Mercator 

(UTM), Zone 16 North, North American Datum of 1983 (NAD83). The spatial resolution 

for all the datasets is 60 cm. Where resampling was required, the data was reprojected 

using a two-dimensional affine coordinate transformation with nearest neighbor sampling 

with a fundamental vertical accuracy of ±24.5 cm and meets all FGDC (Federal 

Geographic Data Committee) standards. 

ERDAS IMAGINE® 2020 (https://www.hexagongeospatial.com/products/power-

portfolio/erdas-imagine, accessed on: 14 July, 2021) and ArcPro 2.7 

(https://www.esri.com/en-us/store/arcgis-pro, accessed on: 14 July, 2021) were used for 

image transformation. IMAGINE’s Spatial Model Editor Toolbox was used to generate 

https://earthexplorer.usgs.gov/
https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine
https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine
https://www.esri.com/en-us/store/arcgis-pro
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Normalized Vegetation Index (NDVI) and a Modified Water Index (WINAIP), Gray 

Level Co-occurrence Matrix (GLCM) Textures, Aspect and Slope (%). ArcPro tools were 

used to generate random points (Create Random Points) and to extract multi raster values 

(Extract Multi Values to Points). The “caret” package [45] of the R programming 

language [99] was used for MLA implementation. 

 

 Methods 

 Utility of Image Transformations 

Multiple workflows have been developed by the remote sensing community for 

delineating and mapping vegetation. They are dependent on environmental factors (e.g. 

soil characteristics (drainage, slope, pH), hydrography, landform, climatic conditions) 

[100], as well as data collected in the field, expert image interpretation (manual and 

computer assisted), and an appropriate classification scheme [9, 12, 40, 91, 101-103]. The 

delineation and classification workflow used in this study is presented in Figure 13. Inter-

class spectral variability is important to differentiate natural communities. However, 

locally high variance occurs not only due to changes in vegetation, but also site 

Figure 12. Spectral characteristics of the NAIP Data (Leica Geosystems, 2020). 
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conditions and the high spatial resolution of the imagery [104]. When selecting training 

sets, it is important to understand how these factors influence training set statistics and to 

generate adequate training data to encompass the variation. Having polygon training sets 

with well delineated feature boundaries is critical to generate valid training set point 

matrices for the Machine Learning Algorithms (MLAs) [89].  

To fully utilize spectral reflectance information, and at the same time, reduce redundant 

information between bands, an integrated approach of spectral transformation techniques 

(Principal Components Analysis (PCA) and Independent Components Analysis (ICA) 

were utilized. PCA is a widely employed transformation using a linear transformation 

and generates uncorrelated components [105, 106]. PCA derived components have been 

used to map wetlands vegetation, assess change detection, evaluate vegetation anomalies, 

and geological features [107-111]. PCA uses second-order statistics and assumes the data 

are normally distributed and correlated. PCA has been utilized since the launch of the 

Landsat 2 Multi Spectral Scanner which consisted of 4 bands [112]. ICA considers 

higher-order statistics, and each transformed component is considered non-Gaussian 

[113]. ICA has been shown to identify details in an image even when the feature occupies 

a small area [114]. However, it has not been extensively used in vegetation and land 

use/cover classification [111, 115-117]. Both PCA and ICA were used to draw accurate 

training classes for MLA. The components of the PCA transformation were not used in 

the classification process as components 3 and 4 contained information critical to 

delineating the emergent marsh natural habitat communities. 
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Figure 13. Workflow diagram explaining the methods adapted for vegetation 
classification using spectral enhancement techniques, indices and 
machine learning algorithms. 
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 Vegetation and Moisture Indices 

Spectral Indices have been used extensively to evaluate, monitor and map vegetation both 

qualitatively and quantitatively [118]. Two spectral indices such as Normalized 

Vegetation Index (NDVI) and a Modified Water Index (WINAIP) were derived from the 

NAIP bands. NDVI indicates the biomass abundance and vigor as well as differentiating 

vegetation from non-vegetated areas [119, 120]. NDVI was generated using NAIP bands 

4 (NIR) and 1 (red). WorldView Water Index (WV-WI) was proposed by Wolf [121] and 

uses WorldView satellite band combinations of Coastal Blue (425nm) and the second 

Near Infrared channel (NIR2) (950nm). Previous water indices for satellite imagery were 

based on NDWI [122] which used NIR and Short Wave Infrared (SWIR) channels. Based 

on Wolf’s index a custom water index was developed for this study by replacing the 

Coastal Blue (425nm) band with NAIP Blue (435nm) and NIR2 (950nm) band with 

NAIP NIR (882nm). The modified index is referred to as the WINAIP. 

 Texture 

Plant communities often share similar spectral reflectance characteristics which leads to 

confusion and misclassification. In such scenarios, texture differences may be useful, 

even critical, to correct classification. A grey-level co-occurrence matrix (GLCM) 

originally referred to as a “gray-tone spatial-dependence matrix” by Haralick et al. [123], 

uses second-order metrics to analyze relationships between pairs of pixels and computes 

both angular relationships and directionality to measure the spectral and physical distance 

between two neighboring pixels [124]. GLCM texture analysis has been used in 
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numerous studies to classify various features including urban areas, forests, agriculture 

and wetlands [102, 123-125]. 

The GLCM texture was derived from the NAIP first and second PCA components. These 

components explained 94% (component 1) to 99% (components 1 and 2) of the 

variability in the image. Three different GLCM measures of texture (contrast, entropy, 

and standard deviation) were calculated with PCAs 1 and 2. GLCM was performed in 

ERDAS IMAGINE (Hexagon Geospatial, 2020), with a grayscale level of 32 and 3×3, 

5×5 and 7×7 processing windows. Two different Euclidean geometry XY offsets (2, 2 

and 2, -2) were used. The derived means from the texture measures were used in the 

classification. 

 Topographical Characteristics 

At fine scales, natural habitat communities are controlled by soils, local topography, lake 

effect climate zones and in some instances past disturbances such as fire and wind throw. 

Extensive glaciation in the Upper Midwest has created a wide variety of surficial 

geologic features. These features are made up of interacting landform patterns which 

have been described [98, 126] as combinations of “relief-topography (surface shape) and 

geological parent material.” Rowe [8, 98, 127] stated that “repetitive patterns in 

vegetation can be traced directly to repetitive patterns of topography associated with 

specific types of surficial material of landforms.” Drawing on this body of research, 1-

meter DEM generated from Lidar imagery collected in 2015 helped identify important 

topographic features with high positional accuracy. The DEM was downloaded from the 

National Resource Conservation Service at the recommendation of the US Forest Service. 
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Hillshade (Multi-Directional Oblique Weighted - MDOW), aspect and slope (%) were 

generated from the DEM. Aspect and slope were evaluated as input ancillary data into the 

MLAs and Hillshade aiding in manual training set delineation. 

 Selection of Input Ancillary Data Layers 

When imagery alone can’t adequately classify the data, the incorporation of ancillary data 

is important. Once ancillary data layers are selected, understanding their contribution 

towards classification is important [128] with the goal of optimizing and creating an 

accurate classification. Variable selection has been used in many applications including 

data mining and machine learning, network anomaly detection, natural language 

processing, bioinformatics and image processing [128]. There are many different feature 

selection methods available [129].  

In this study, the Joint Mutual Information Maximization (JMIM) [44], a filter-based 

variable selection method was implemented in R using the “praznik” package [130]. This 

method uses ‘mutual information’ and ‘maximum of the minimum’ criteria to calculate 

the contribution of each input variable. This method evaluates each variable’s 

importance. The JMIM method was performed prior to running the MLA classification. 

Those with higher JMIM values were used as ancillary data inputs. Along with the JMIM 

method, the “varImp” function was used [44] from the “caret” package [45, 131]. It 

evaluates the implemented MLA and identifies the best ancillary data layers for 

improving the classification [129, 131]. The varImp method is implemented after the RF 

classification is performed. The scores produced for each variable helped select different 

variable combinations for the MLAs classifications. 
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Based on Joint Mutual Information Maximization (JMIM) and “varImp” scores the 

following variables were used as inputs in the Machine Learning Algorithms (MLAs):  

• 4 bands of NAIP imagery 

• Elevation from DEM 

• Contrast Texture (C1*7) calculated from PC1 (7×7) moving window, C2*7 

calculated from PC2 (7×7) moving window 

• Normalized Vegetation Index (NDVI), and Modified Water Index (WINAIP) 

derived from NAIP imagery. 

Feature selection methods have been primarily used in geology applications to reduce the 

complexity of the dataset where there are large number of bands (i.e. Hyperspectral data) 

[111]. In this study, both feature selection methods were implemented. However, as this 

is an uncommon approach for natural resource applications [132-134], along with feature 

section methods various combinations of the ancillary data were manually selected and 

evaluated as well. These are listed in the results section. 

 Collection of Training Samples 
 

An adequate number of training samples is crucial to achieve optimum classification 

results. As a ‘rule of thumb’ in ML, the number of training samples should be 10 times 

(preferably 100 times) the total number of variables [89, 135]. How the training samples 

are selected also plays a crucial role and requires expert knowledge of the spectral and 

spatial variation within and between the natural communities [11]. Additionally, the 

choice of classification algorithm, the number of input variables and the spatial extent of 

each natural habitat community influences the number of training samples required. [89, 
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136]. Researchers have noted that large and accurate training datasets are preferable 

regardless of the MLA used [25, 89, 137]. Training samples were generated within 

manually delineated training set polygons (Figure 14) using stratified random sampling in 

ArcMap 10.7.1 with a minimum of 5 m distance between points. Different spectral 

enhancement techniques (PCA, ICA), soils, elevation data, and ground truth were utilized 

to delineate the training polygons. Figure 15 presents the natural communities within the 

study area and the number of training and test points collected for each. The points were 

assigned natural habitat community class names and ids. Using the X and Y locations of 

the training sample points, pixel values for all of the input ancillary data layers were 

extracted for use in the MLAs. 

 

 

Figure 14. Reference natural habitat community training data map showing polygons 
to be used for generating random points. 
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 Utilization of MLAs for Natural Communities Classification 
 

The training samples derived from the input ancillary data layers were used to train both 

Random Forest (RF) and Support Vector Machine (SVM). Parameter optimization, 

validation, and accuracy assessment were performed for both algorithms. “Caret” 

package [45] available in “R” programming language was used to implement the MLAs. 

RF and SVM classifiers are discussed briefly below. 

3.3.7.1 Random Forest 
 

RF is an ensemble classifier method developed by Brieman [138], which uses a set of 

non-parametric, Classification and Regression Tree (CART) rules to make predictions 

[139]. Decision Trees (DT) are generated using the values of a random vector sampled 

independently from the input vector and distributed equally among all the trees in the 

forest [27, 31, 140, 141]. It then uses the majority of votes from the tree’s assemblages 

Figure 15. Vegetation communities, area and the number of randomly generated 
training and testing points for input into the MLAs. 
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and assigns that value to each of the unknown vectors [40, 89]. Random Forest works on 

a ‘bagging’ (or bootstrap aggregating) approach, which generates training datasets by 

randomly drawing replacements of the original training set for each selected 

feature/feature combination [31, 138, 142]. RF uses two thirds of the data to train the 

trees and the remaining one third data to provide an independent estimate of overall 

accuracy (OA) [26, 89]. The classifier is computationally efficient but can be prone to 

overfitting [143, 144]. The forest can grow to a user-defined largest number of trees 

(Ntree) by optimizing the number of RF created trees exhibiting high variance and low 

bias [26, 138]. The mtry parameter controls the number of variables randomly selected at 

each split in the tree building process and has a sensitive influence on RF performance. It 

can be adjusted if needed as part of the tuning process [145, 146]. RF advantages include 

its ability to work with spatially large, complex datasets with correlated variables, rank 

variable importance, and improved classification accuracies [89, 138]. We used the 

default parameters provided with the “rf” method in the caret package and used “center” 

and “scale” to standardize the ancillary data [45, 147]. RF tends to work robust without 

optimization parameters [89]. 

3.3.7.2 Support Vector Machine 
 

SVM is a supervised machine learning algorithm developed by Vapnik [148] based on 

statistical learning theory. The classifier is inherently binary and tries to identify a 

boundary or a hyperplane which separates two classes closest in feature space. The 

hyperplanes associated with the class are parallel to the optimal separating hyperplane 

and the samples located on these hyperplanes are called support vectors [148, 149].  
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However, in the real-world, data distributions are often non-linear, noisy and may not be 

easily separated, which promotes over fitting. Projecting the input data to a higher 

dimension feature space helps overcome this issue, assuming that a linear boundary exists 

in the higher dimensional feature space [89, 150]. If a linear higher dimensional feature 

space doesn’t exist, a kernel function can be used, and for this study a radial basis 

function (RBF) kernel was used [151]. We used the default “svmRadial” method from the 

caret package [45]. SVM contains two important model parameters, “cost” (C) and 

“sigma” (σ). Higher C values can lead to a more complex decision boundary and less 

generalization [89]. Whereas a higher σ affects the overall shape of the separating 

hyperplane and may influence overall accuracy. The “caret” package estimates 

approximate value for the cost and σ parameter directly [45, 147, 152]. RBF parameters 

are determined by a grid search algorithm using m-fold cross-validation (m-FCV) 

approach. The grid search method tests different pairs of parameters, and the one with 

higher cross validation accuracy is selected [153]. Centering and scaling was done to 

standardize the ancillary data [45, 147]. 

Cross-validation procedure prevents overfitting issues with the data [149, 154]. To select 

and evaluate optimum parameters, a 10-fold cross validation was used for both RF and 

SVM. It is the recommended number of folds for comparing machine learning algorithms 

performances [155]. 

 Accuracy Assessment and Classification Differences 
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Thematic accuracy assessment is an important component in evaluating the “correctness” 

of a classification. Products with low accuracy have limited, if no utility to the end-user 

as they are composed of misinformation. Stratified random sampling was selected for the 

accuracy assessment points. This sampling approach insures unbiased sample selection 

and adequate sampling for each habitat since a minimum number of samples is specified 

for each class [156, 157]. Using the methodologies developed by Congalton and Green 

[11] error matrixes, overall accuracies, kappa and Z-scores with a 95% confidence limits 

where calculated. 

Differences in the output classifications occur as the MLA algorithms do not process the 

data the same way. Processing differences do create different end products. Differences 

from the two MLA outputs were assessed in ArcPro 2.7. 

 Classification Post-Processing 
 

Classified data, including the natural habitat community classifications resulting from the 

MLAs manifest a  ‘salt and pepper’ appearance due to the spectral variability 

encountered by the classifier [10, 158]. A single pixel is an arbitrary usually square, 

delineation which may have little or no relation to the actual mapping of a natural habitat 

community [11, 159, 160]. It is common practice to remove noise using a majority filter 

and a specified window size [10] to create homogenous polygons suitable for accuracy 

assessment. To make the natural habitat community classes easily identifiable and 

aesthetically pleasing on the map we applied a 7×7 moving window majority filter. 
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 Results 
 

Natural habitat community classification was evaluated using RF and SVM with various 

input ancillary datasets including NAIP spectral bands, topographical layers, textural 

measures, and spectral indices to classify the natural communities (Figure 19). The 

training and testing datasets were split 75% and 25%. The appropriateness of the input 

datasets was evaluated based on the overall accuracy (OA) and kappa (k) of test samples 

(5,801 pixels). OA indicates the ratio between total number of pixels and total accurately 

classified pixels and the k (kappa) shows measurement of agreement between the 

accurately classified data and the reference data [11]. Along with OA and k, UA and PA 

for each community class was evaluated as well. User’s Accuracy (UA) and Producer’s 

Accuracy (PA) shows accuracy of each community class, as described by Congalton [11], 

UA and PA shows commission and omission errors of individual class respectively. Z-

scores with 95% CI were evaluated as well. Along with that, a difference map was 

generated as well to evaluate the classifier differences. 

 Ancillary Data and Feature Selection Methods 
 

Total of 19 ancillary datasets were evaluated in this study as shown in Figure 17.  

Contrast texture image provided the most detailed information compared to Ent and SD. 

Hence, 2 more images were generated using 3X3 and 5X5 moving windows to evaluate 

impact of window size on the natural habitat community MLA classification. JMIM and 

varImp scores were calculated for all of these input ancillary datasets and shown in 

Figure 17 from higher to lower scores. Classifications using RF and SVM were generated 
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using all possible combinations of the above-mentioned ancillary data layers (Figure 19) 

to verify the robustness of feature selection methods. Ancillary data layers which had 

lower scores in the feature selection method (Figure 17), showed similarly poor 

performance in the MLA classifications (Figure 19 and 20). 

 Classification Results 
 

The classifications for both MLAs can be grouped into 3 broad categories. Those with 

OAs between 50 and 59%, those between 60 and 69%, and those greater than 70%. Those 

with the lowest accuracies used the fewest number of input ancillary data, ranging from 4 

(National Agriculture Imagery Program (NAIP) bands only) to 5 (all NAIP bands and the 

addition of derived ancillary data such as slope, aspect, Normalized Difference 

Vegetation Index (NDVI) and WaterIndex-NAIP (WINAIP). Improved OAs were seen 

with the addition of various combinations of texture. Classifications with the highest 

accuracies included using all of the input ancillary data (Input 3) to those using a 

combination of derived indices and textures. Figure 19 shows the overall accuracy (OA), 

kappa (k) and confidence intervals (CI) for the natural habitat community classifications 

derived from various input variable combinations. RF has OAs and associated k’s 

ranging from 56.02 % (k = 0.46) for Input 1 to 79.96% (k = 0.75) for Input 3. SVM 

values were between an OA of 59.01% (k = 0.49) for Input 1 to 75.85% (k = 0.70) for 

Input 4. Using Cohen’s categorization of kappa value ranges, classifications from Inputs 

2 and 3-4 (Figure 20) have substantial agreement. The remainder have moderate 

agreement. 
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Using the four multispectral (NAIP) bands (Input 1) achieved a low OA (56.02%, k = 

0.46) with RF and with SVM (OA = 59.01%, k = 0.49) (Figure 19). Incorporating the 

DEM with the NAIP bands provided a significant improvement in OA (12 to 17% 

increase) regardless of the MLAs. Using slope and aspect with the NAIP bands did not 

significantly improve the OA. Similarly, vegetation and water indices did not differ 

significantly compared to just using four NAIP bands. When all variables (Figure 19), 

including the four NAIP bands, three topographic layers, ten texture layers and two 

indices were used, the OA improved to almost 80% for RF and 74% for SVM (Figure 

19). Figure 18 shows the graphical representation of OA and k for NAIP bands, all 

ancillary dataset and the final classification approach. Input 4 ancillary data layers were 

used for the final classification (Figure 21 and 22), having 79.45% OA for RF and 

75.85% for SVM. Between Input 3, which used nineteen ancillary data layers and Input 

4, which used only nine ancillary data layers, no significant statistical differences were 

observed (Figure 19 and 20). 

Z-scores with a 95% confidence limit are calculated for all k values and are shown in 

Figure 20. The scores for each classification, regardless of input variable combination, 

show the classification to be meaningful and significantly better than a random 

classification. Pairwise Z-scores are also presented in Figure 20. The scores indicate all 

of the classification results for RF and SVM with the same input variables are not 

statistically different as all have an absolute value < 1.96.   

Figures 21 and 22 present the final classification results from input data 4 (Figure 19) for 

RF and SVM. There are 5 natural habitat community classes (Figures 21 and 22) with 4 
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non-habitat community classes (Open Land, Impervious, Inland Lake, and Open Water) 

which are not considered natural habitats under the current classification scheme, but 

reflect human influences on the landscape, such as agricultural/open land, roads, and 

must be included. Input data 3 has a slightly higher OA, but is not statistically significant 

(Z-score) compared to input data 4 which has fewer variables. Fewer variables shorten 

the computing time, which is an important consideration for classification of large areas. 

However, the kappa and Z-score are only 2 measures of classification quality as they only 

consider the overall classification and not the accuracy of the individual natural habitat 

community classes. 

Figure 25 presents the error matrix for the final RF and SVM natural habitat communities 

classification. User’s (UA) and producer’s accuracies (PA) are also presented. A total of 

5,801 randomly generated ground truth testing points were used for accuracy assessment 

(Figure 25). Each natural habitat community class had at least the minimum number 

points to create a 95% confidence interval, and was based on the percent area each class 

made up of the total area. 

The PA and UA calculations show the accuracies of the natural habitat communities are 

split into 2 groups. Those with accuracies above 85% and those with accuracies between 

60 and 75% (Figure 25). Open Land (OL), Emergent Marsh (EM), Mesic Northern Forest 

(MNF), Inland Lake (IL), Open Water (OW) and Impervious Surface (IS) have PA 

between 84 and 100%. Rich Conifer Swamp (RCS), Poor Conifer Swamp (PCS) and 

Northern Shrub Thicket (NST) have PA between 41 and 81%. These lower PA accuracies 

can be explained by the prevalence of tag elder (Alnus incana), red osier dogwood 
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(Cornus sericea), white pine (Pinus strobus), red maple (Acer rubrum) across all three 

communities [12]. Sphagnum mosses (Sphagnum spp.), bunchberry (Cornus canadensis), 

balsam fir (Abies balsamea), paper birch (Betula papyrifera), black spruce (Picea 

mariana), huckleberry (Gaylussacia baccata), sensitive fern (Onoclea sensibilis) are 

found in both Rich and Poor Conifer Swamp communities [12]. The presence of these 

species in both communities contributes to the lower UA and PA (Figure 25). Also 

contributing to the Northern Shrub Thicket’s lower UA and PA was the misclassification 

between it and Emergent Marsh. This is due to the large areas of spatial intermixing of 

the two communities. Similar observations were made with the classifier difference map 

(Figure 23), where majority of confusion with the SVM classification was observed in 

RCS, PCS, and NST natural habitat communities. Areas in red show where differences in 

the natural habitat communities occur between the MLA. Otherwise the classification 

results were in agreement. 

 Figures and Schemes 
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Figure 16. Enhanced natural habitat communities shown using PCA and ICA 
component combinations (R:3, G:2, B:1) compared to the original NAIP 
spectral band combinations. 
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Figure 17. Ancillary data importance scores using (a) JMIM and (b) RF based 
varImp calculations. R — Red, G — Green, B — Blue, NIR — Near-
Infrared, DEM — Digital Elevation Model, Slope, Aspect, C1 — Contrast 
Texture (PC1, 7×7 moving window), C2 — Contrast Texture (PC2, 7×7 
moving window), Ent1*7 — Entropy Texture (PC1, 7×7 moving window), 
Ent2*7 — Entropy Texture (PC2, 7×7 moving window), SD1*7 — Standard 
Deviation Texture (PC1, 7×7 moving window), SD2*7 — Standard 
Deviation Texture (PC2, 7×7 moving window), NDVI — Normalized 
Difference Vegetation Index, WINAIP — Modified Water Index-NAIP, 
C1*3 — Contrast Texture (PC1, 3×3 moving window), C2*3 — Contrast 
Texture (PC2, 3×3 moving window), C1*5 — Contrast Texture (PC1, 5×5 
moving window), C2*5 — Contrast Texture (PC2, 5×5 moving window). 
Note: varImp score for Ent 2 = 0 (no bar). 
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a 

b 

Figure 18. Accuracy Statistics (a) overall accuracy and (b) kappa coefficient of 
MLAs of different variable combinations (Table 3 - NAIP Bands - Input 1, 
All Ancillary Data - Input 13, Final Classification Approach - Input 14) 
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Figure 19. Overall accuracy (OA) and kappa coefficient (k) for the input variable 
combinations. Input 4 (bolded) has the highest OA and k and was used for the 
final natural communities classification. Abbreviations: Asp — Aspect, Slp 
— Slope, Tex — GLCM Texture (Contrast, Entropy, Standard Deviation 
7×7), Tex1 — Contrast (7×7) Tex2 — Contrast (3×3), Tex3 — Contrast 
(5×5). 
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Figure 20. Kappa, associated Z-scores and 95% confidence intervals for the input 
variable combinations. The pairwise Z-Score indi-cates if the 
classifications from RF and SVM with the same input variables are 
statistically different. Abbreviations: Asp — Aspect, Slp — Slope, Tex — 
GLCM Texture (Contrast, Entropy, Standard Deviation 7×7), Tex1 — 
Contrast (7×7), Tex2 — Contrast (3×3), Tex3 — Contrast (5×5). 
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Figure 22. RF classified study area based on the MNFI classification system. 

Figure 21. SVM classified study area map based on the MNFI classification 
system. 
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Figure 23. Map showing natural habitat community classification differences 
between Random Forest and Support Vector Ma-chine. Differences are 
shown in red whereas no differences are in no color. 
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a 

b 

Figure 24. User’s and Producer’s Accuracy obtained through (a) RF and (b) SVM 
using final classification approach, NAIP bands, DEM, Texture (Contrast — 
PC1, PC2) and spectral indices (NDVI, WINAIP). 



72 

  

Figure 25. Error matrixes and accuracy statistics derived from the final (Input 4) 
Random Forest and Support Machine vector classifications. RF — Random 
Forest, SVM — Support Vector Machine; OL — Open Land, EM — 
Emergent Marsh, RCS — Rich Conifer Swamp, PCS — Poor Conifer 
Swamp, NST — Northern Shrub Thicket, MNF — Mesic Northern Forest, IL 
— Inland Lake, OW — Open Water, IS — Impervious Surface; UA — User’s 
Accuracy, PA — Producer’s Accuracy, OA — Overall Accuracy, k — Kappa. 
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 Discussion 
 

 Feature Selection and Importance of Ancillary Datasets 
 

Ancillary datasets such as NAIP (National Agriculture Imagery Program) multispectral 

bands, DEM, aspect, slope, spectral indices, PC1 and PC2 based texture layer were used 

and selected by implementing feature selection method. The utility of these input datasets 

was determined and compared for the automated MLAs. The selection of ancillary data 

was done not only based on the variable importance but on OA and k values as well. Both 

of the feature selection methods (i.e. JMIM, varImp) proved to be important for seeing 

differences in ancillary data contribution towards MLAs accuracies (Figure 17 a, b). 

 

The JMIM (Figure 17a) scores are independent of the classification algorithm and are 

generated prior to running the MLAs. The ranking serves as a guide to the potential 

contribution of the variables and assists in initial variable selection. This is importance 

when there are numerous inputs to choose from. By contrast, the varImp (Figure 17b) 

ranks the importance of input variables for only Random Forest and is generated after the 

classification is performed. This ranking allows confirmation of input variable 

importance and validates the original selection of the input variables. The order of 

variable listing is not expected to be the same given where each is calculated in the 

workflow. However, the first nine listed variables are closely similar for both feature 

selection approaches. The approach also confirms the lower contribution of useful 

information of certain variables such as slope and aspect. 
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With spectral indices, both NDVI and WINAIP were helpful in improving the accuracies. 

NDVI was critical for calculating green biomass present in the area and assisted in 

discriminating Mesic Northern Forest from Northern Shrub Thicket. With WINAIP, even 

though the NAIP bandwidths are not similar match as the WV-WI bandwidths, initial 

results showed the modified index contributed to differentiating standing water bodies, 

emergent marsh, and shadows efficiently. Of the three calculated GLCM texture 

measures, contrast provided the most useful information for classification. Emergent 

Marsh, Northern Shrub Thicket and Water had smooth textures hence low mean contrast 

values; whereas Mesic Northern Forest, Rich and Poor Conifer Swamps had high mean 

contrast values due to a rough texture. Average mean contrast values in the study area 

ranged from 0 to 285. To determine the best texture window size and evaluate finer scale 

changes in texture, 3 different moving window sizes were evaluated (3×3, 5×5 and 7×7) 

using Contrast. The largest window size (7×7) performed well for entropy and standard 

deviation (Figure 17 a, b) providing unique information. However, contrast texture 

outperformed both entropy and standard deviation in differentiating natural habitat 

communities. Only the first two PCA components were used to generate GLCM-Texture. 

PCs 1 and 2 explained 96.74% of the variability in the original NAIP data. Feature 

selection methods (JMIM and varImp) may not necessarily improve accuracy, but they 

helped reduce the model complexity by allowing selection of variables which contributed 

the greatest amount of information to the classification. 

 MLAs Classifier Performance 
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Overall, Random Forest (RF) outperformed Support Vector Machine (SVM), including 

the classification with the highest Overall Accuracy (OA) and Kappa (k). In comparison 

to SVM model, RF model was more robust at handling a higher number of ancillary data 

(Figure 19). Our observation showed that DEM can be considered as important ancillary 

data in classifying and increasing the model accuracy of the community types. Smallest 

changes in elevation reflects variation in soil types and drainage patterns which can 

influence the natural habitat community of the area [40]. The model which was used for 

the final classification (Input 4), showed a 6.36% increase in OA for RF and 4.64% in 

SVM, compared to Input 2 where we only used 2 ancillary data layers. Therefore, users 

who wish to increase the model OA in a similar environmental condition should consider 

using elevation as ancillary data along with texture and spectral indices. Evaluating the 

three GLCM textures, contrast proved to be the most useful followed by entropy and 

standard deviation (Figure 17). 

Both RF and SVM showed major confusion between RCS, PCS, and NST classes. RCS 

and PCS have variety of tree species of similar type which can cause confusion in the 

classification. NST is another community class which shares similar vegetation types as 

RCS and PCS, and showed lower UA and PA as well (Figure 24 a, b). Due to the close 

spectral similarities between these classes, they have a lower UA and PA overall 

compared to other classes (Figure 24 a, b). Classes with higher spectral dissimilarity 

showed maximum accuracy (i.e. OL, EM, MNF, IL) and vise-versa. When we look at the 

overall UA and PA for the community classes, in general RF (Figure 24 a) performed 

better over SVM (Figure 24b). For example, all five natural habitat community classes 
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(EM, RCS, PCS, NST, MNF) showed better or close UA and PA as compared to SVM 

(Figure 24 a, b). 

The final classified maps from RF (Figure 21) and SVM (Figure 22) algorithms shows 

that RF delineated the natural community boundaries better over SVM. Figure 23 shows 

the classification difference map between RF and SVM. Areas of disagreement are 

shown in red. Most of the confusion occurs between rich conifer swamp, poor conifer 

swamp and northern shrub thicket and are responsible for errors of commission and 

omission in the accuracy assessment matrix (Figure 25). These areas occur along the 

glacial lake shoreline (west side of study area), in the riparian area of the Sturgeon River 

(center of study area), on moraines (southeast corner of study area). Areas such as open 

land, open water, impervious surface and marsh shows agreement across the landscape 

for both MLAs. Higher confusion was observed in the SVM accuracy assessment matrix 

resulting in lower PA and UA when compared to RF. It is important to also visually 

assess the final classifications, not just matrices, to fully understand the MLA 

performance.  

  Overall Performance of MLAs with Natural Habitat 
Communities Classification 

 

The classification results are similar to outcomes of previous studies where RF 

outperformed SVM model. SVM model tends to work better with smaller number of 

classes whereas RF can work with larger number of classes [89]. In the past, Rodriguz-

Galiano et al. [28, 161] successfully used RF to map and classify 14 classes using 

Landsat TM and ancillary datasets with high OA. Berhane et al. [40] discriminated 22 
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wetland classes and achieved the highest OA with using RF with WorldView-2 

multispectral data along with various ancillary data. Higher accuracies with RF 

classifications compared to SVM classifications were also observed by Adam et al. [162] 

for land-use/cover classification. Hayes et al. [39] used RF classifier to successfully 

classify 9 landcover classes using NAIP bands and additional ancillary data like spectral 

indices, elevation data, texture etc. Land cover classification is common in remote 

sensing community, but this is the first time natural communities of Michigan 

classification system [12] has been used to classify a complex Laurentian Mixed Forest 

system at the natural habitat community level. 

 Importance of Reference Vegetation Map 
 

The color infrared (CIR) combination (R: 4, G: 3, B: 2) of high-resolution multispectral 

data, and high spectral contrast from the feature extraction techniques (PCA, ICA), 

helped differentiate natural habitat community types. Ancillary data such as the soils map 

(soil moisture, pH, drainage as well as prior fieldwork and knowledge of the study site 

contributed important information. Figure 14 shows the reference natural habitat 

community map, where nine different classes were delineated, including five community 

types (Figure 15). The component combination (R:4, G:3, B:2) from PCA and ICA 

(Figure 16) transformation showed outline boundaries between forest, marsh, swamps, 

thickets, open land and water groups. Figure 16 shows how the differences in texture 

from the five natural habitat communities were enhanced and visualized using the PCA 

and ICA components compared to the original NAIP imagery. This distinction between 

different natural habitat communities permits more accurate boundary delineation for 
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better training data as compared with present traditional maps, which are drawn at larger 

scale having lower spatial resolution (i.e. NWI, NLCD maps). Both RF and SVM models 

require good training data in order to perform well [89]. 

 Impact of Number of Training Samples and Quality of 
Sample Data on MLAs 

 

The reference vegetation map was used to generate random training points for the 9 

classes within delineated polygons. Data from field validation, expert knowledge and 

limited very-high spatial resolution UAS dataset [17] for the area provides a reliable and 

accurate reference map. The total number of training points (i.e. 23,214) were divided 

into 75% and 25% respectively for the training and testing purpose (Figure 15). 

Potentially, an increase in the number of training and testing points could achieve higher 

classification accuracies. For example, this study used a minimum distance of 5 m 

between the randomly generated points for each community class. If the distance 

decreased to 3 m, it would allow a greater number of points for training and testing. 

Researchers have shown in the past that training sample size can play a crucial role in the 

classification accuracies for supervised machine learning algorithms [89, 136]. Required 

number of training data also depends on the classification algorithm, number of ancillary 

data and size and complexity of the study area [136]. 

 Validation of Classified Community Vegetation Map Using 
Field Data and Expert’s Observation 
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The study area is in a rural remote location where land use and cover changes are 

minimal. Parts of the study area are protected from exploitation and development. There 

is limited access which constrains field verification due to lack of roads, a complex 

network of land ownership, where most private lands cannot be traversed, and many of 

the natural communities also prohibit ground truthing for safety reasons. Where possible, 

ground surveys were conducted during the summers of 2018, 2019 and 2020. However, 

field work in 2020 and 2021 was severely curtailed due to the COVID-19 pandemic. 

Additional reference data was collected by observations made by an expert interpreter 

from the NAIP imagery outside of the reference area polygons as well as using United 

States Forest Service (USFS) stand compartment maps [52]. This was the first time the 

Laurentian Mixed Forest of the Hiawatha National Forest (HNF) was classified using the 

natural communities classification system [12], as a result it was not possible to directly 

compare it to any previously available maps. 

 Future Works 
 

Future research will involve assessing the robustness of this classification approach to 

other study sites with different natural communities, varying landforms and soil 

conditions. Consideration will be given to mapping spatially larger areas, such as an 

entire watershed, as well as looking at smaller areas with limited natural communities 

such as fens. In Michigan, there are 5 different fen communities [12], and they can exist 

adjacent to each other. Being able to accurately map natural communities at different 

scales is important to understand, describe, document and restore natural habitat 

community diversity. 
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Consideration must also be given to what classes should be incorporated into the 

classification for areas influenced by modern anthropogenic distributions such as 

agriculture, mining and development. Non-natural habitat community classes were added 

as needed in this study. This is not a robust approach. These classes need to be well 

defined, mutually exclusive and hierarchical in structure. 

 Conclusions 
 

Community classification for Laurentian Mixed Forest is challenging due to the 

complexity of the landscape. In this paper, for the first time, a natural habitat community 

level classification using an integrated approach of spectral transformation and 

enhancement techniques, field data, ancillary datasets and MLAs was implemented. Use 

of feature selection methods such as JMIM and varImp evaluated the utility of a wide 

variety of ancillary data including elevation, various measures of texture, and vegetation 

and soil moisture indices and guided the selection of best performing ancillary data. 

High-spatial resolution data and machine learning algorithms contributed to a successful 

and accurate classification.  

Five complex natural habitat communities and 4 non-natural habitat communities were 

successfully classified. Due to the spectral limitation of the four NAIP bands, the 

classification showed confusion between similar natural habitat communities (e.g. Rich 

Conifer Swamp vs Poor Conifer Swamp vs Northern Shrub Thicket) with accuracies 

ranging from 72.55% down to 64.70% (Figure 25). Discrimination between Mesic 
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Northern Forest, Emergent Marsh, Impervious, Open Land, and Water (Open Water and 

Inland Lake) have higher accuracies (100% to 89.36%) (Figure 25).  

RF and SVM both showed promising performance for classifying a complex Laurentian 

Mixed Forest community. RF outperformed SVM in the final classification results, SVM 

performed well when the number of ancillary datasets were less. The choice of MLAs 

may vary for the users depending on the site, type of communities being mapped, number 

of ancillary datasets and quality of the training data. In R parameter optimization is 

allowed and can help provide better performance, use of optimization parameters may 

increase the processing times of the classifiers. In this study we used the default 

parameters of the classifiers as they were accurate enough and achieved the desired 

results. We also think using more spectral bands might improve the classification and can 

help overcome the complexity of the vegetation classes. 
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Abstract 

To map and manage forest vegetation including wetland communities, remote 

sensing technology has been shown to be a valid and widely employed technology. 

In this paper, two ecologically different study areas were evaluated using free and 

widely available high-resolution multispectral (NAIP) and ultra-high-resolution 

multispectral unmanned aerial vehicle (UAV) imagery located in the Upper Great 

Lakes Laurentian Mixed Forest. Three different machine learning algorithms, 

random forest (RF), support vector machine (SVM) and averaged neural network 

(avNNet), were evaluated to classify complex natural habitat communities as defined 

by the Michigan Natural Features Inventory. Accurate training sets were developed 

using both spectral enhancement and transformation techniques, field collected data, 

soils data, texture, spectral indices and expert knowledge. The utility of the various 

ancillary datasets improved classification results significantly. Using the RF 

classifier, overall accuracies (OA) between 83.8 and 87.7% with kappa (k) values 

between 0.79 to 0.85 for the NAIP imagery and between 87.3 and 93.7% OA with k 
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values between 0.83 to 0.92 for the UAV dataset were achieved. Based on the 

results, we concluded RF to be a robust choice for classifying complex forest 

vegetation including surrounding wetland communities. The study provides an 

approach to working with two different imagery datasets using machine learning 

algorithms to classify spatially and spectrally complex natural community habitats. A 

discussion of advantages and disadvantages of each dataset is presented. 

Keywords 

natural community habitats, NAIP, UAV, drone imagery, image classification, land 

cover classification, machine learning, feature selection, random forest, support 

vector machine, neural networks, GLCM Texture, PCA, ICA, NDVI, water index 

 Introduction 
 

A key goal of forest management is to maintain and preserve the forest’s natural 

biodiversity and protect the pristine landscape [163] by using efficient, affordable science 

based practices. In order to maintain a balance between biological diversity and societal 

needs, it is important to have a management plan which can achieve these goals [164]. 

Within the natural resource community there are many widely available mapping and 

monitoring techniques used for management, monitoring and conservation planning. 

Field surveys and aerial photography are traditional techniques for obtaining information 

about forest conditions, and identifying tree species or habitats, but are expensive, time-

consuming and have limitations [165]. Aerial photography and satellite imagery 
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interpretations provide areal coverage, but are constrained by temporal, spectral and 

spatial resolutions. Free or low-cost multispectral imagery commonly have spatial 

resolutions between 10 and 30 m. This information is employed for vegetation 

monitoring, predicting species abundance in association with environmental changes, and 

mapping habitats for species distribution modeling [166-169].  

Within the remote sensing community, research on forest land use/cover classification 

using various satellite imagery datasets, piloted aircraft, as well as unmanned aerial 

vehicle (UAV) data is well documented [36, 39, 85, 170, 171]. Land use/cover 

classifications have used well defined, non-overlapping categories [4, 79, 172, 173] to 

classify forests, wetlands, grasslands etc. Natural community habitats have a more 

broader definition based not only on the canopy, but understory vegetation, soil 

attributes, and landform [12, 169]. Natural habitats often have the same plant species in 

more than one community [12], and this increases classification complexity and 

challenges due to the spectral similarities between them [10, 158]. Overcoming this 

complexity requires high spatial resolution imagery to provide more detail for improved 

feature delineation via the use of spectral transformations such as texture.  

Along with the high spatial resolution imagery, the accuracy of the classification depends 

on the classification algorithm and ancillary datasets. Use of Machine Learning (ML) 

classification approaches has exponentially increased in the last decade [174] and has 

been used in a variety of environmental and natural resource applications [27, 28, 30, 39, 

89, 170]. Ancillary datasets play an equally important role. In the past, researchers have 

used various environmental and geomorphological variables to improve classification 
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results [39, 40, 91, 111, 172, 175]. These datasets help overcome the imagery’s spectral 

resolution limitations. It is important to understand the contribution each ancillary dataset 

provides to improving the classification. Widely available feature selection methods help 

evaluate the importance of the ancillary datasets [129] as they reduce data complexity 

[43] and improve computational times [89]. The robustness of the approach used in this 

study was compared with a previous study done by the authors [38]. 

The key focus of this research is to explore the usefulness of ultra-high spatial resolution 

UAV imagery for classifying complex natural community habitats and compare the 

results to classifications derived from high spatial resolution National Agricultural 

Imagery Program (NAIP) imagery. Researchers have used NAIP and UAV datasets for 

delineating and mapping land cover, identifying tree species, delineating wetlands, 

habitat mapping, and invasive species mapping, [17, 38, 46, 104, 176-178]. However, a 

direct comparison between the two datasets for natural habitat community classification 

has not been completed. 

 Materials 
 

 Study Areas 
 

Upper Midwest forests are classified as Laurentian Mixed Forest (LMF) which is made 

up of complex geomorphology and vegetation due to the extensive glaciation which 

occurred over thousands of years. The area is dominated by sandstone and limestone 

bedrock [17, 92]. The forest falls under IUCN category IV and contains diverse upland 
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and lowland ecosystems, including extensive pristine coastal forests and wetlands. The 

area has number of natural community habitats which are rare and vulnerable [12]. Two 

study sites, Point aux Chenes (PAC) Bay (Figure 26) (HUC12-040301120108) and Carp 

River Mouth (CRM) (Figure 27) (HUC12-40700020307) [179] were selected because of 

the combination of rare and vulnerable natural community habitats within relatively small 

geographic areas. Several of the communities (Interdunal Wetlands, Open Dunes and 

Wooded Dune and Swale Complex) are considered imperiled within Michigan due to 

rarity and/or vulnerability due to restricted ranges [12]. The PAC site encompass 420 ha 

(1,038 ac) and 790 ha (1,952 ac) for CRM. The study areas are located within glacial lake 

and outwash plain landforms respectively [92]. Current threats to these areas include 

unauthorized off-road vehicle use, poorly designed or degraded road and stream crossing 

structures which create physical barriers to hydrologic function, roads that parallel 

coastlines with inadequate drainage structures, and the presence and/or expansion of non-

native invasive species. 
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Figure 26. Pointe aux Chenes Bay study area. The shoreline is adjacent to Lake 
Michigan. 
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Figure 27. Mouth of the Carp River study area. The shoreline is adjacent to Lake 
Huron. 
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 Datasets and Software 
 

High-resolution multispectral NAIP and ultra-high-resolution UAV imagery were used 

for the study. NAIP imagery has four bands (Blue (420 - 492 nm), Green (533 - 587 nm), 

Red (604 - 664 nm) and Near-Infrared (683 - 920 nm)) [180] and was acquired 4,877 m 

(16,000 feet) above ground level (AGL) with a Leica ADS100 airborne digital sensor. 

The imagery has 8-bit radiometric resolution with 0.6 m spatial resolution. Imagery tiles 

dated 11 August 2018 and 6 September 2018 were downloaded from USGS Earth 

Explorer for Point aux Chenes Bay (PAC) and Carp River Mouth (CRM) respectively. 

UAV data were collected in August 2019 using a fixed-wing Trimble UX5-AG aircraft. 

The UX5-AG has a 1 m wingspan with 2.5 kg weight and is capable of flying up to 45 

minutes with a cruise speed of 80 km/h. Imagery with 80% overlap was acquired using a 

five-band (Blue (475 ± 20 nm), Green (560 ± 20nm), Red (668 ± 20 nm), Red Edge (717 

± 20 nm), and Near-Infrared (840 ± 20 nm)) Micasense camera mounted onboard. Flying 

height was between 104 and 134 m (341 ft - 440 ft) with a 7 cm spatial resolution for the 

PAC and 9 cm for the CRM. The spatial resolution varied due to the flying height and 

differences in terrain geometry. Using the onboard high-accuracy GNSS positioning data, 

the UAV images were processed and mosaicked with Agisoft Metashape 1.5.3 software 

using the standard workflow procedure provided by the USFS UAV office [70]. 

ERDAS IMAGINE (Hexagon Geospatial, 2021) was used to generate Principal 

Component Analysis (PCA), spectral indices, and Gray- Level Co-Occurrence (GLCM) 

texture layers for both sets of imagery. Random training points were generated using 
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ArcPro software. Machine learning algorithms were implemented using the “caret” [45] 

package within R [99] programming language. 

 Methods 
 

Spectral variability and similarity within and between the vegetative components of the 

natural community habitats created classification challenges and was documented by 

Bhatt et al. [38].  However, the high spatial resolution NAIP and UAV imagery combined 

with ML permitted utilization of the variability [104]. All NAIP and UAV spectral bands 

were utilized for training set generation. An integrated classification approach 

incorporating ancillary data (image transformation and enhancement techniques), field 

data, and expert knowledge was developed [11, 12, 40, 91, 101, 102, 181]. Accurately 

delineated training area polygons were critical for optimal performance of Machine 

Learning Algorithms (MLAs) [89]. 

 Image Transformation Techniques 
 

Principal Component Analysis (PCA) is commonly used for various classification 

applications, and is one of the most widely used transformation techniques and generates 

uncorrelated components [10, 105]. It has been used by natural resource managers to map 

vegetation, evaluate change detection, and observe vegetation distribution [107-110]. By 

contrast, ICA uses higher-order statistics and considers each component to be non-

Gaussian [113]. The transformation highlights minute details in the imagery even when 

the feature occupies a small area [114]. However, it has been used minimally to map 

vegetation communities and for land use/cover classification [115-117]. Components 
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from both transformations were visually assessed for edge detection within and between 

the natural habitat communities to generate valid training sets. 

 Texture 
 

Similar spectral signatures occur between the natural habitat communities and increase 

the difficulty of accurate separation during training set development and classification. 

However, the communities do display various types of texture traditionally used in 

manual interpretation. Different texture statistics can detect unique information and 

spatial patterns for features which are hard to separate using only spectral information 

[102, 123-125]. In the past, texture-based variables have been incorporated by researchers 

into species detection, for fine-scale wetlands classification, and in land use land cover 

classification [19, 40, 161, 182, 183]. GLCM texture measures were calculated from the 

first and second PCA components and created two uncorrelated texture datasets. For both 

the NAIP and the UAV imagery, first (55.38 to 67.72%) and second (27.02 to 38.32%) 

principal components contributed the highest to explaining the data variability [105].   

Four GLCM texture measures (contrast, entropy, standard deviation, dissimilarity) were 

calculated. Contrast measures the local variations present in the image, entropy measures 

the randomness within the data, standard deviation looks at its frequency of occurrence 

with reference and neighboring pixel values, and dissimilarity measures the differences in 

elements of the GLCM from each other [123, 124]. Data were generated with a 32-bit 

grayscale level and two Euclidean geometry offsets (2, 2 and 2, -2). Window sizes of 

3×3, 5×5, 7×7 and 9×9 were evaluated. 
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 Spectral Indices 
 

Spectral indices have been used extensively to map and monitor vegetation [38, 40, 118]. 

The normalized vegetation index (NDVI) [119] was employed. While two modified 

water indices based on the WorldView water index (WV-WI) proposed by Wolf [121] 

were developed. The water index for the NAIP imagery (WINAIP) using its blue and 

near-IR bands, and a water index for the UAV imagery (WIUAV) using its blue and near-

IR bands of the Micasense camera created customized indices. 

 Evaluation of Ancillary Datasets 
 

When classifying natural community habitats, inputting multispectral imagery alone was 

not adequate to accurately classify the data. With manual interpretations ancillary data 

such as soils maps are traditionally used for improved boundary delineation and 

vegetation classification. It made sense to provide the ML classifiers with this type of 

information as well. DEMs, Grey Level Co-Occurrence Matrix (GLCM) textures 

(contrast, entropy, standard deviation, dissimilarity) and spectral indices (NDVI, 

WINAIP, WIUAV) were calculated. The next step was to understand each ancillary 

dataset’s contribution to classification improvement as using all of them does not 

guarantee the best result. Ancillary input dataset selection approaches have been used in 

many remote sensing applications (i.e., data mining, natural language processing, 

bioinformatics, image processing, and mineral mapping) [111, 128, 129], but have not 

been extensively used in natural resource classification [38]. Input data selection (also 

known as variable or feature selection) approaches are fast, cost-effective, and provide 
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insight into the contribution of each ancillary dataset [129]. For this study, joint mutual 

information maximization (JMIM) [44], a filter-based method, was used. 

 Training Set Development 
 

Training polygons, from which the ML training points are selected, were manually drawn 

with careful consideration given to vegetation community species, soil drainage classes 

and pH, elevation and landform, information highlighted in the PCA and ICA 

components, ground truth data, and expert knowledge of the areas. Eight natural 

community habitat classes and three non-community habitat classes were identified 

(Figure 28).  

Multiple training sets created with randomly selected training points were developed 

across the study sites to capture spectral and spatial variability. More training polygons 

(812 for UAV vs 136 for NAIP) were needed to classify the UAV imagery because the 

higher spatial resolution provided greater detail. Manual delineation of training polygons 

for the NAIP and UAV imagery was selected based on its successful use in previous 

research [38]. 

 Image Classification 
 

In a recent study completed by Bhatt et al. [38] with NAIP imagery, RF was shown to be 

a better classifier for natural community habitats compared to SVM. Along with RF and 

SVM, another ML algorithm, averaged neural network (avNNet) from the caret [45] 

package was tested. These classifiers have been extensively used for land-use/land-cover 
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classifications [39, 40, 136, 169, 184-187]. Within the training polygons 75% of the 

randomly selected training points were used to develop the training sets. The remaining 

25% were reserved for accuracy assessment and a 10-fold cross validation to avoid 

overfitting issues [155]. Default training parameters were accepted for each classifier, 

and “center” and “scale” were implemented to standardize the ancillary datasets [45, 

147]. Classifications were executed using the “caret” package [45] in the “R” 

programming language [99]. Results for the three classifiers were compared using 

Overall Accuracy (OA) and kappa coefficient (k) [11]. Individual communities were 

evaluated employing User’s Accuracy (UA) and Producer’s Accuracy (PA) [11]. 

Between 10 and 15 ground truth observations were made for each natural habitat 

community class during field visits to each study site. 
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 Accuracy Assessment and Post-classification Refinement 
 

Accuracy assessment was completed using the reserved test points plus independently 

collected field points. These are referred to as validation points. Evaluations were 

completed by comparing classification values against the validation points [11]. Using 

the resulting accuracy assessment matrices, UA and PA values were calculated for each 

habitat class.  

Figure 28. Natural community habitats and associated vegetation components. 
Communities 9-11 were developed for land uses not natural community 
habitats. 
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 “Salt and pepper” effects [158]  were smoothed to create a more easily interpreted final 

classification map. A majority filter using a 7×7 moving window was run based in 

previous research [107]. 

 

 Results and Discussion 
 

Pixel based image classifications were run using RF, SVM, and avNNet with RF 

producing the best classifications for all combinations of imagery and ancillary data 

inputs. Figures 3 and 4 show the classification results for both types of imagery at each 

study site. The figures show zoomed-in snippets highlighting various mapped details. 

Visual assessment of the classifications showed the UAV classifications delineated finer 

detailed boundaries for each community. This is due in part to the finer spatial resolution 

when compared to the boundaries derived from the NAIP imagery. The NAIP imagery 

also presented a more generalized natural community habitat map with less “salt-and-

pepper” artifacts [158] from the per pixel classification. 

However, other factors besides spatial resolution contributed to boundary detail and 

location including radiometric and geometric preprocessing. The UAV imagery was 

preprocessed and mosaicked using Metashape. The resulting mosaic has areas of uneven 

lighting and specular reflectance, blurriness, and shadowing due to UAV pitch, roll and 

yaw caused by varying wind direction and speed as well as flying height variability. The 

NAIP imagery was preprocessed by the contractor and was acquired by a heavier aircraft, 

hence a more stable platform with a consistent flying height. Figures 5 and 6 highlight 
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some of the image variability of the UAV imagery caused by the UAV platform and 

environment factors, noted above, when compared to the NAIP imagery.  

Texture was also a contributing factor to the detailed boundary variation. The natural 

habitat communities at both study sites exhibited significant amounts of local variation 

[123].The finer spatial resolution of the UAV imagery emphasizes the high degree of 

texture created within and between the natural communities. Each community exhibits 

distinctive patterns and shapes such as the well-defined ridge and valley complex 

associated with the Wooded Dune and Swale Complex. Contrast, using a 7×7 window 

size, was the most informative texture component when evaluated against entropy, 

standard deviation and dissimilarity using JMIM feature selection (Figure 7). Low 

contrast values were observed with smooth texture classes such as Open Water, Open 

Land and Impervious Surface. Highly textured community classes (i.e., Wooded Dune 

and Swale Complex, Rich Conifer Swamp, Northern Shrub Thicket) have a rougher 

texture represented by higher contrast values as illustrated in Figure 5. The red arrow 

points to a gray textured area in the UAV imagery which is Princess Pine 

(Dendrolycopodium obscurum) an endangered club moss and indicates a very small, but 

important, area of Wooded Dune Swale Complex. It is not visible on the NAIP imagery; 

rather the entire area is classified as Interdunal Wetland and does not provide the detail 

required to manage and protect this at-risk species. 

Along with texture, other ancillary data sets were evaluated using JMIM feature 

selection. These included DEMs, NDVIs, and a modified water indexes specific to the 

NAIP and UAV imagery. The water index for each set of imagery differed due to the 
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NAIP having 4 spectral bands (B, G, R, near-IR) while the UAV has 5 bands (B, G, R, 

red edge and near-IR). JMIM scores were calculated for all of the spectral bands as well 

(Figure 7). At both study sites, the most important input features with the NAIP imagery 

were all of the NAIP spectral bands, NDVI, WINAIP, DEM and contrast textures (Figure 

7). For the UAV data, the five Micasense spectral bands, followed by NDVI, WIUAV, 

DEM, and contrast textures (Figure 7) showed high importance.  

Both NDVI and WINAIP, two of the highest JMIM scores, helped accurately delineate 

the community habitat classes. Classes such as WDSC, RCS, and NST showed higher 

values with NDVI compared to the rest of the habitat community classes. Incorporation 

of the DEM, NDVI, WINAIP, Contrast 1 and 2 increased the OA of the natural 

community classifications an average of 13.59% for NAIP and 18.22% for the UAV, 

when compared to only using the four spectral bands of NAIP and the five spectral bands 

of UAV (Figures 35 and 36). Overall, the UAV based classification outperformed the 

NAIP classification, due to the high-spatial resolution of the UAV, greater texture, and 

the additional red-edge band. It is important to remember JMIM based selection values 

do not guarantee more accurate classification, but the numbers provide quantitative 

guidance to input variable selection.   

As noted, the PAC NAIP classification (Figure 3) was more generalized and contributed 

to Wooded Dune & Swale Complex and Emergent Marsh overprediction when compared 

to field observations. The UAV classification delineated the natural communities well 

except for Emergent Marsh, Interdunal Wetlands and Great Lakes Marsh. This confusion 

is due to the same vegetation components and water being found in all of them (Table 1); 
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hence spectral similarities between them. These communities are smaller in size and 

intermixed with more commonly occurring, larger area, communities and therefore have 

fewer validation points. Fewer points mean misclassifications have a greater impact on 

UA and PA and were lower compared to the other classes (natural communities) 

(Appendix A).  

The PAC NAIP based classification achieved OAs between 86.28% and 88.33% using all 

input variables with RF. When the highest contributing variables based on the JMIM 

scores were used, the OAs ranged between 85.28% and 87.74%. Reducing the input 

variables from 15 to 9 did not significantly affect the OAs and kappa (k) (Table 2). 

However, using only the 4 NAIP bands accuracies decreased significantly and ranged 

from 72.49% to 77.15% (Table 2). This illustrates the important contribution made by the 

ancillary data (variables). The final classification had an OA of 87.74% and a k of 0.85. 

Similar results occurred with the PAC UAV imagery. Using all 16 available inputs with 

the UAV imagery, the OA was slightly lower (Table 3) compared to inputting the 10 

JMIM selected inputs. Once again, using just the five UAV reflectance bands decreased 

OA between 5 and 8% with all three classifiers (Table 3). The final UAV imagery 

classification using RF achieved an OA of 93.74% and 0.92 k. Overall, the UAV 

classifications provided better end products than the NAIP classifications by a 6% 

increase in OA (0.7 k) using RF (Table 3). 
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Figure 29. Selected areas of the PAC classification delineated by the RF classifier. 
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Figure 30. Selected areas of the CRM study site delineated by the RF classifier. 
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Figure 31. Spectral reflectance differences between UAV and NAIP imagery for 
PAC for the blue, green and red bands. 
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Figure 32. Spectral reflectance differences between UAV and NAIP imagery for 
CRM for the blue, green and red bands. 
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Figure 33. Landforms influence on vegetation for the PAC and CRM study sites 
draped over a Multi-Directional Oblique Weighted (MDOW) hillshade. 
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 Figure 34. Ancillary dataset (variable) importance scores using JMIM feature 
selection method. R-red, G-green, B-blue, NIR-near-infrared, RE-red edge, 
DEM-digital elevation model, C1-contrast texture (PC1, 7×7 moving 
window), C2-contrast texture (PC2, 7×7), Ent1- entropy texture (PC1, 7×7), 
Ent2-entropy texture (PC2, 7×7), SD1-standard deviation texture (PC1, 7×7), 
SD2-standard deviation texture (PC2, 7×7), Dissim1-Dissimilarity texture 
(PC1, 7×7), Dissim2-Dissimilarity texture (PC2, 7×7), NDVI-normalized 
difference vegetation index, WINAIP- NAIP modified water index, WIUAV-
UAV modified water index. 
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Figure 35. Accuracy assessments for the NAIP classifications at PAC and CRM. 
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Figure 36. Accuracy assessments for the UAV classifications at PAC and CRM. 
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The NAIP and UAV classifications for the CRM study site achieved higher accuracies 

with RF compared to SVM and avNNet. Final NAIP classification OA was 83.85% with 

0.79 k (Figure 35). The UAV OA and k were 87.31% and 0.83 respectively (Table 3). 

Both classifications performed best using JMIM scores to select input variables compared 

to using all available data (Figures 35 and 36). Using only the NAIP spectral bands 

decreased the OA by 16% (Figure 35), and with the UAV the accuracy decreased 11.8% 

(Figure 36). These results are similar to those seen with the PAC study site and the work 

completed by Bhatt et al. [38]. They indicate the robustness of the classification approach 

across different landforms. Considering landform, the CRM is more complex compared 

to PAC (Figure 8). CRM is an eroded Dune and Swale complex, while the PAC is made 

up of narrowly separated dunes and swales [179]. 

The confusion matrix for NAIP CRM classification (Appendix A) shows both lower UAs 

and PAs for EM, NST and RCS. The matrix shows confusion for EM and NST occurring 

across all habitats, which is an indication that improved training sets with less variability 

(smaller standard deviations) are needed. The misclassification of the RCS is primarily 

with Wooded Dune & Swale Complex. This confusion is the result of a high percentage 

of same species in both natural communities including northern white cedar, tamarack, 

white pine and tag alder (Table 1). Landform is also a strong indicator for Wooded Dune 

& Swale Complex (Figure 8). However, if the swales are widely spaced between the 

dunes, the texture changes and contributes to the error particularly with the coarser NAIP 

spatial resolution (Figure 8). The UAV classification shows lower UAs and PAs for Great 

Lakes Marsh, Northern Shrub Thicket and Rich Conifer Swamp. Again, the poor 

classification of Great Lakes Marsh and Northern Shrub Thicket are due to high 
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variability in the training sets. The same error seen in NAIP classification between RCS 

and Wooded Dune & Swale Complex continues here.  

JMIM scores range between 0 and 2 regardless of the measurement units of the input 

variables. This allows direct comparison between the variables in ascertaining the unique 

contribution each input makes to the classification. Plots of the JMIM scores (Figure 7) 

show the input variables (ancillary data) maintain the same pattern of importance for the 

two sets of imagery across both study sites. The same results were seen with work 

completed by Bhatt et al. [38]. The spectral bands and the NDVI, which is derived from 

the spectral bands, have the highest scores; followed by texture, water index and the 

DEM. 

 Conclusions 
 

Based on the results from this study and from Bhatt et al. [38], RF is recommended as a 

classifier of choice when working with ecologically complex natural community habitats. 

SVM and avNNet always produced classifications with lower accuracies. It can be 

argued that tuning the RF parameters could improve the classifications. However, 

parameter tuning is time consuming and not cost effective given the acceptable 

accuracies for natural community habitat delineation and identification. Categorizing the 

k values into 3 groups, good (k < 0.80) [188, 189], strong (k 0.80 - 0.90) and almost 

perfect (k > 0.90) [190] for the classifications shows strong to almost perfect 

relationships between “truth” and the classifications (Figures 35 and 36). This further 

supports the use of RF. This pixel-based machine learning classification approach 
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coupled with high and ultra-high spatial resolution imagery, spectral transformation and 

enhancement techniques, field data, soils data, and various ancillary datasets proved to be 

efficient and robust for classifying complex vegetation and wetland communities in a 

Laurentian Mixed Forest (LMF) in the Upper Midwest. 

Most studies classifying land use/cover are for specific resource management purposes 

and categorize the imagery into narrowly defined, non-overlapping classes. However, 

classifying imagery into well defined, robust natural community habitats provides a 

holistic approach to resource management and is more representative of the variability of 

actual field conditions. Until recently there were no natural community habitat 

classification studies of the complex Laurentian Mixed Forest in the Upper Great Lakes. 

Inventorying, monitoring and preserving these pristine habitats, particularly along 

coastlines is increasingly important given the impacts of climate change. Field-based 

monitoring alone is not able to complete these tasks in a timely, cost-effective manner.  

Which imagery is best for natural community habitat classification is unclear. For areal 

coverage, NAIP is more comprehensive as it is acquired by aircraft flying at a constant 

speed and altitude. It undergoes rigorous radiometric and geometric corrections, and 

mosaics are easy to create. Plus, the data is free. However, the temporal resolution is not 

ideal, especially for catastrophic events such as fires and flooding as well as phenological 

timed events. UAV imagery offers advantages for these types of studies as the platform 

can be airborne in a short time frame and is ideal for data collection over small 

geographic areas which are accessible [46].  However, accessibility becomes a problem 

due to Federal Aviation Administration (FAA) regulations requiring the drone be keep in 
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line of sight at all times and in locating take-off and landing sites, especially for fixed 

wing UAVs. Though this limitation can potentially be overcome by using a rotary-wing 

UAV instead of a fixed wing [49]. 

Performing radiometric and geometric corrections on the UAV imagery was time 

consuming. Current processing software has its limitations both in photogrammetric 

robustness and ease of use. The physical size of the UAV imagery is also an important 

consideration, and adequate computing resources and storage space are prerequisites. 

Processing times also need to considered. It took 88 hours to preprocess the imagery and 

generate the final orthomosaics for the study areas. 

In the future studies, it is recommended to test the efficacy of the red edge band and 

derived indices, and compare them to traditional indices like NDVI. Red edge indices 

have been used in the past with Sentinel-2A, Rapid-Eye, WorldView-2, and UAV 

imagery to observe vegetation phenology, spatial variability of crop growth, leaf area 

index, and burn severity assessments [191-195]. It was beyond the scope of this study to 

complete that. If future technology permits UAV data to be collected in the mid-IR, its 

utility should also be investigated. 
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A Appendix A 
 

 

Figure 37. NAIP and UAV classification accuracy assessment matrices for PAC. 
EM - Emergent Marsh, SM - Submergent Marsh, GLM - Great Lakes 
Marsh, IW - Interdunal Wetlands, WDSC - Wooded Dune & Swale 
Complex, SGB - Sand & Gravel Beach, OW - Open Water, IS - 
Impervious Surface. 
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Figure 38. NAIP and UAV classification accuracy assessment matrices for the 
CRM. EM - Emergent Marsh, GLM - Great Lakes Marsh, NST – Northern 
Shrub Thicket, RCS – Rich Conifer Swamp, WDSC - Wooded Dune & 
Swale Complex, OW - Open Water, OL Open Land, IS - Impervious 
Surface. 
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