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Abstract 

 

The ease of processing, recyclability, and ideal cost to weight ratio makes the semi-

crystalline polymers attractive in the aerospace, automotive, and defense industries. Use of 

semicrystalline polymers for engineering design requires a thorough understanding of their 

response to mechanical deformation, rate of loading, temperature, and failure mechanisms.  

However, there lacks a generally agreed upon constitutive model to capture the large 

deformation elastic-viscoplastic response of semicrystalline polymers while incorporating 

the strain-rate dependence and damage behavior.  To address this aspect, the objective of 

this dissertation is to develop an elastic-viscoplastic constitutive model to predict the rate 

dependent, large deformation response of semicrystalline polymers under tension and 

compression.  In addition, a continuum scale damage model coupled with viscoplasticity 

is adopted to incorporate cavitation induced damage growth, coalescence, and fibrillation 

in the material. To validate the proposed model, uniaxial compression and tension 

experiments are conducted on isotactic polypropylene homopolymer within strain rates of 

10-3 s-1 to 10-1 s-1.  The constitutive model is implemented in a finite element program 

ABAQUS/Explicit (ABAQUS 2017) by writing a user material subroutine (VUMAT). 

With the model parameters properly calibrated, the present study shows that the proposed 

constitutive model is able to predict the macroscopic rate dependent load-displacement 

curves, as well as the fracture responses for various standard geometries.  
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1 Introduction 

 

 

1.1 Background and literature review 

 

Semicrystalline polymers are comprised of both amorphous and crystalline regions.  The 

crystalline phases are characterized by three-dimensional regions associated with the 

ordered stacking of adjacent chains into lamellae.  This phase is responsible for the 

polymer’s rigidity, yet it also makes the polymer less ductile.  The amorphous regions are 

made up of randomly coiled and entangled chains and offer the polymer its ductility.  A 

semicrystalline polymer can therefore be viewed as composite of rigid crystallites 

suspended in an amorphous phase [45].  This arrangement offers this two-phase polymer 

the advantage of the strength from the crystalline phase while leveraging the ductility of 

the amorphous counterpart.   

 

1.1.1 Large deformation mechanism 

 

The large deformation mechanism for semicrystalline polymers are well understood [29].  

In general, the process of deformation until failure can be broken into a few phases.  In the 
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first phase, the viscoelastic deformation is considered as caused by the elongation of the 

amorphous tie chains and a reversible swelling of the lamellae [10].  In the second phase 

the polymer begins to yield when an increased load on the molecular chains, primarily in 

the crystalline phase, reaches a required threshold of thermodynamic potential and slippage 

of the chains begins to ensue [17]. Following this stage, the larger crystalline domains 

begin to split, and the entangled, amorphous chains start to release, leading to a significant 

macro level softening for some materials [10].  The final phase is characterized by the re-

alignment of both the amorphous and crystalline regions resulting in continuous entropic 

hardening that leads to fibrillation and molecular chain scission.   

 

1.1.2 Constitutive theories 

 

There are various forms of constitutive theories that have been developed to represent the 

deformation behavior of the semicrystalline polymers.  As reported in [43], two major types 

of constitutive models are outlined as micromechanical models and phenomenological 

models.  Micromechanical models predict material response by simulating interactions on 

the atomic, molecular, or crystalline levels, whereas phenomenological or “macroscopic” 

models rely on observations of representative volumes of material.  A comprehensive 

review of constitutive descriptions of semicrystalline polymers for both micromechanics 

and macroscale modeling has been presented by [27]. 
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At the micro level, the material is typically modeled by considering the two structural 

phases – crystalline and amorphous [45].   It is known that semicrystalline polymers have 

highly anisotropic microstructures [17], yet generally exhibit an isotropic response on the 

macro scale, under ideal molding conditions [27].  Typically, an anisotropic arrangement 

is assumed for the molecular chains and their rearrangement occurs via a thermally 

activated mechanism.  Drozdov and coworkers have done considerable work on the 

micromechanics of both amorphous and semi-crystalline polymers [16, 17, 18, 19, 20], 

particularly on the kinetics of chain rearrangement.  They are able to show good agreement 

between model prediction and experimental observation in the small strain regime [17, 19, 

20,] for two of the commonly used polymers, polyethylene, and polypropylene.  However, 

micro-scale modeling is often accompanied by considerable difficulty to correlate the 

complex microstructure with the constitutive response for semicrystalline polymers. 

 

At the macro level, it is often assumed that the deformation response can be modeled as an 

isotropic phase where the crystalline and amorphous regions are homogenized.  The early 

work of Haward-Thackray, [26] proposed a one-dimensional constitutive theory for glassy 

polymers; incorporating both yielding and strain hardening phenomena.  This approach 

was later followed by many of the three-dimensional models proposed to describe the 

constitutive behavior for glassy polymers [7, 11, 59] and recently for high density 

polyethylene (HDPE) by [8].   Hughes, [28] looked at the mechanical response of ultra-

high molecular weight polyethylene (UHMWPE) using a classical isotropic, rate-

independent plasticity model following a Mises yield criterion. However, this model was 

not able to provide reliable predictions of the non-linear behavior experienced during large 
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deformations.  Early viscoelastic models included the work by Popelar et. al. [44], who 

proposed a phenomenological approach using a nonlinear viscoelastic model for 

semicrystalline polymers based on the original work by Shapery [50].  Later on, his 

research progressed to include viscoplasticity for polyamide 66 [33] and for HDPE [25], 

where an over-stress dependent viscosity parameter and nonlinear equilibrium stress 

evolution were used as state variables to model the viscoplastic behavior. 

 

It is noted that there are few macro scale models available in literature that offer a 

comprehensive three-dimensional characterization that include the polymers’ thermo-

mechanical response, as well as the strain rate and temperature dependent, yielding 

response, and additionally the post-yield softening and hardening behavior [3, 4, 5, 37, 52].  

Although these works focused on the theoretical modeling of amorphous polymers, their 

ability to capture the salient features of the macroscale response which are very similar to 

the response observed in many semicrystalline polymers; widen their domain of 

applications. It is to be noted that specifically the rate and temperature dependent yield 

stress, as well as the post yield softening and hardening behavior are quite similar in the 

amorphous and semicrystalline polymers. 
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1.1.3 Damage process for semicrystalline materials 

 

The fracture of semicrystalline polymers can occur in either a brittle or ductile manner, or 

in various combinations of the two [63]. The primary damage mechanisms are caused by 

cavitation and crazing when the material is subjected to tensile loading.   Cavitation is 

defined as the formation of cavities or voids in the bulk of the solid polymer, occurring 

primarily around the yield-point.  Cavitation or crazing only occurs in the presence of 

hydrostatic stress states induced form tension and cannot occur in either compression or 

shear [42].  Cavities can range in size from a few nanometers to several micrometers.   

Larger cavities will tend to scatter light, which can often be seen on the macroscale as 

whitening of the material and clearly visible during tensile testing [40].  

 

Although there is still debate on where void nucleation occurs, it is generally accepted that 

the voids begin to nucleate in the amorphous phase between two adjacent crystalline 

lamellae in the equatorial region of the spherulite when subjected to hydrostatic stress states 

[36].  Once a cavity begins to nucleate, it will tend to grow and coalesce with neighboring 

voids.   Although cavitation often dominates the damage response, crazes may also 

generate from partial merging of voids where oriented microfibrils bridge the surfaces of 

neighboring voids.  However, in contrast to cracks, crazes can transfer stress due the 

presence of microfibrils.   
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The general process of crazing is well understood for amorphous polymers below the glass 

transition temperature [2].  However, for semicrystalline polymers, crazing and cavitation 

can occur above and below the glass transition temperature [14].  Although there still exists 

much debate surrounding the governing factors that determine whether a semicrystalline 

polymer will craze, cavitate, or both, it is generally accepted that there exists a competition 

process to determine if a void or cavity will nucleate [40].  If the strength of the amorphous 

phase is lower than the stress of initiation of the plastic deformation of the crystals, then 

cavitation occurs, else plastic deformation of the crystals will ensue and cavitation will not 

occur [42].  The damage mechanism for semicrystalline polymers is complex and often 

depends on the crystallinity, crystalline structure, chain orientation, number of tie-chains 

in the inter-lamellar amorphous region, and additionally the testing environment. [36].  A 

cavitation can also turn in to a craze or a craze can turn into a cavitation.  For 

semicrystalline polymers such as polyoxymethylene (POM),  polypropylene (PP), and high 

density polyethylene (HDPE), cavitation is often the dominate damage mechanism, 

whereas, semicrystalline polymers like polyamide-6 (PA6) low density polyethylene 

(LDPE) cavitation may not occur [41].    

 

Once the material nucleates a void in the amorphous region, micro-void coalescence will 

drive void damage growth, ultimately leading to a phase change of the polymorphic 

material from amorphous and crystalline to the aligned state culminating in fibrillation and 

molecular chain scission [40]. 
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1.1.4 Damage modeling for semicrystalline materials 

 

Semicrystalline polymers are inherently prone to damage, and over time, the formation of 

damages such as crazing and cavitation cause a degradation in mechanical properties, 

which eventually result in failure of the material.  The focus of damage mechanics is on 

the evaluation of the damage process, where damage occurs due to irreversible changes in 

the microstructure during deformation (e.g., micro-void nucleation, coalescence, 

fibrillation, and chain scission).  Damage behavior can be included in the constitutive 

equations for the mechanical behavior of thermoplastic polymers and there are several 

approaches found in the literature.   

 

One approach is to introduce the effect of damage through a micromechanical approach 

[23], which was originally developed for porous metallic materials.  The advantage of a 

micromechanics approach is that it provides a connection between the microstructure and 

mechanical behavior of the material, however it requires a thorough understanding of the 

involved degradation mechanisms found at the macromolecular scale [15].  The Gurson–

Tvergaard–Needleman (GTN) model [23] is one of the most widely used models based on 

this theory. The GTN model, which is well known for modeling the ductile damage for 

metallic materials, was also extended to investigate thermoplastic polymers. Some 

examples for amorphous materials are [12, 22, 61, 62].   Laiarinandrasana and colleagues 

[34], developed a micromechanical approach that considered porosity, rate, and 
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temperature dependency for semicrystalline polyvinylidene flouride (PVDF), however this 

work focused exclusively on the development of crazes. 

 

Another approach found in the literature is that of continuum damage mechanics (CDM) 

[35].  In contrast, CDM is based on the thermodynamics of irreversible processes where a 

scalar damage variable D is used to represent the material degradation at the macroscopic 

scale [13].  Balieu et. al. [9] modified this approach and extended it to semicrystalline 

polymers where an elastic-viscoplastic model for 20% glass filled polypropylene was 

developed that considered a pressure dependent yield surface coupled with damage to 

consider both rate and pressure dependency.  Other examples for amorphous polymers 

include [32, 39, 46, 51, 54, 55, 56, 57]. Recently, [38] developed a gradient-damage theory 

for the deformation and failure of amorphous polymers, which depends on the damage 

variable and its gradient.  Additionally, [30] developed a new thermodynamically 

consistent damage model based on the Eindhoven Glassy Polymer (EG) multimode model 

that considers the effect of plastic deformation and hydrostatic stress on damage evolution. 

 

1.2 Research objective 

 

The overall objective of this research is to develop a predictive model framework to capture 

the large deformation and damage response on a continuum level scale for semicrystalline 

polymers.  The first task in this research is to develop continuum level constitutive model 
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that can be used to model the polymers response in tension and compression in the large 

strain regime.  The second task in this research is to develop a continuum level model that 

effectively captures the damage response for various geometries and loading conditions. 

 

1.3 Methodology 

 

The research objectives outlined above are accomplished with the methodologies outlined 

in chapter two of this dissertation.  Chapter 2 is in the form of an article that that has been 

submitted to the journal Mechanics of Materials (MOM) and is currently under review.  

First author Jeff Wiersma has contributed as a whole to writing the manuscript, generating 

all experimental and numerical results, and proposing the theory presented in the 

manuscript.  Dr. Trisha Sain has supervised the entire works, edited the manuscript, and 

the responsible person for any future communication. 

 

1.3.1 Elastic-viscoplastic constitutive model 

 

The initial approach to this research was first to develop a working understanding of the 

micro and macromechanics response for semicrystalline polymers subjected to rate-

dependent large deformation loads during tension and compression.  Rate dependent 
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experiments were conducted for tension and compression for a commercial grade of 

isotactic polypropylene homopolymer.   A comprehensive literature review was conducted 

to assess the current state of research for constitutive theories applied to amorphous and 

semicrystalline polymers for the continuum scale, in the large deformation regime.  This 

effort led to and overall understanding of the current research state with respect to capturing 

the salient features of the macro level, rate dependent large deformation response for 

semicrystalline polymers, specifically isotactic polypropylene homopolymer, as well as the 

current limitations. 

 

Following this effort, an elastic-viscoplastic constitutive theory was proposed to model the 

rate dependent, large deformation response for semicrystalline polymers under tension and 

compression.  This model is outlined in chapter 2. 

 

1.3.2 Continuum scale damage model 

 

The next step to this research was to develop an understanding of the micro and 

macromechanics damage responses inherent in semicrystalline polymers subjected to rate 

dependent loading.   Experiments were conducted on notched cylindrical tensile bars to 

determine the critical failure strain as a function of triaxiality ratio and strain rate.  

Additionally, various test geometries were tested at to capture their rated dependent 
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damage response.   An extensive literature review was conducted, and a proposed Rice-

Tracey continuum scale model coupled with viscoplasticity is presented in chapter 2. 
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2 A coupled viscoplastic-damage constitutive model 

for semicrystalline polymers 

 

 

2.1 Introduction 

 

Semicrystalline polymers are extensively used in various industries including aerospace, 

automotive, oil and gas platforms, as well as consumer products.  As such, one of the most 

relevant subjects of polymer mechanics is the understanding of the deformation 

mechanisms and fracture responses of semi-crystalline polymers.  Chapter one outlines the 

background and comprehensive literature review, as well as the research objective and 

methodology. 

 

The purpose of this paper is to present an alternative approach (more aligned to describe 

the amorphous polymer) to modeling the rate dependent, large deformation response of 

semicrystalline, thermoplastic polymers.   Instead of considering the individual amorphous 

and crystalline phases separately, a homogeneous large deformation theory within a 

thermodynamically consistent framework is used.  Considering the previous work of [4] as 

a starting point for the thermodynamically consistent constitutive theory, a thermally 

activated flow rule is adopted to model the rate dependent yielding for a class of 

semicrystalline polypropylene.  The polymer’s post yield thermal softening, and hardening 
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phases experienced during large strain environments are additionally modeled with the 

specific choice of evolution equations. In addition, a continuum damage model coupled 

with viscoplastic deformation is proposed to incorporate cavitation induced damage in the 

semicrystalline polymers. It is important to note, that taking a homogenized constitutive 

approach for the two-phase polymer may be limiting in the sense that the evolution of the 

intermolecular resistances in the amorphous and crystalline phases are not considered 

independently.  This may limit the model’s applicability for the strain rate regime where 

micro mechanisms for each individual phases influence the local deformation. However, 

by adopting a homogenized approach, the present model avoids treating the inherently 

complex relationships between the intermolecular resistances and their subsequent 

evolutions in a large deformation setting. This further allows a reduction in model 

parameters, as well as a simplification to the cavitation induced damage model.  

 

The proposed constitutive model is implemented in an FEM software (ABAQUS/Explicit) 

via a user-defined material subroutine (VUMAT) and validated by experiments conducted 

at different loading rates.  Additional simulations are carried out for a thin plate with hole 

under tension, as well as for a notched three-point beam in bending.  When suitably 

implemented and calibrated, the proposed model is able to reasonably well predict the 

macroscopic rate dependent, load-displacement curves for a variety of geometric 

specimens. 

 

This paper is organized as follows.  In section 2.2, experiments are described and analyzed 

for a grade of polypropylene.  In section 2.3, the constitutive model and the damage model 
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is presented.  In section 2.4, a detailed description is provided for the calibration of the 

material parameters for polypropylene using the experimental data.  In section 2.5, the 

predictive capabilities of the constitutive model are verified with various test geometries.  

Finally, section 6 closes with some concluding remarks.  Finally, section 2.6 closes with 

some concluding remarks. 

 

 

2.2 Experimental testing of polypropylene homopolymer 

 

2.2.1 Sample preparation 

 

The isotactic polypropylene homopolymer investigated in this work was provided by Flint 

Hills Resources (P9G1Z-047) in pellet form.  This polypropylene is identified as an 

isotactic homopolymer with a melt flow rate (MFR) of 0.43 g/10 min.  The pellet form was 

then extruded by Mitsubishi Chemical to a plaque size of 1220 mm x 1220 mm x 25.4 mm.  

In order to ensure the most consistent physical properties for both tensile and compressive 

specimens, all samples were machined to specification by CNC fabrication.  Samples are 

fabricated as-machined surfaces, without any additional polishing.  All samples were 

annealed at room temperature for 48 hrs. at 23 deg. C.  All testing was conducted at room 

temperature at 23 deg. C +/- 2 deg. C. 
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2.2.2 Tensile testing 

 

Tensile samples are machined in the longitudinal direction to an ASTM D638-02 Type-1 

specimen with a nominal dimension of 3.1 mm in thickness, 13 mm in width, and 57 mm 

in gauge section length.  Testing is conducted using an MTS system with a 10 kN capacity 

load frame.  Crosshead controlled tests are conducted on all tensile samples and a video 

extensometer system (MTS AVX Advantage Video System) is used to measure strain 

directly for the strain rates of 10-3 s-1, 10-2 s-1, and 10-1 s-1 respectively.  Three specimens 

are tested for each input strain rate and Poisson’s ratio is measured directly with the video 

extensometer system for the strain rate of 10-3 s-1.  The rate dependent stress-strain curves 

obtained from the tests are as shown in Fig. (2.1). 
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Figure 2.1.  True stress versus logarithmic strain in tension for isotactic polypropylene 

homopolymer for three different strain rates. 

 

For the 10-3 s-1 data as shown in Fig. 2.1, it should be noted that the test was stopped at a 

logarithmic strain of 0.93 mm/mm as the sample continued to stretch and did not fracture.  

It should also be noted that, for this extruded melt sample, it is possible to apply a very 

large stretch in excess of 𝜆𝜆 = 8 or even higher.  Above the rate of 10-3 s-1, samples were 

found to fracture in strain ranges of 0.2 to 0.4 mm/mm as shown in Fig. 2.1.  Therefore, in 

tension, a post yield hardening phase is only observed when input strain rates of 10-3 s-1 or 

less are applied and the material shows substantial necking and ductility.  Poisson’s ratio 

was determined experimentally to be 0.36. 
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2.2.3 Simple compression testing 

 

Compression samples are machined to a cylinder size of 9.80 mm in diameter and 9.85 mm 

in height.  These specimens are compressed between polished steel platens lined with 1 

mm thick Teflon sheets to ensure that friction does not affect the homogeneous 

deformations during large strains.  Constant rate compression tests are performed using an 

MTS system for strain rates of 10-3 s-1, 10-2 s-1, and 10-1 s-1 respectively as per ASTM D695-

15 specification.  Testing is conducted using an MTS system with a 10,000 N capacity load 

frame since the servo-hydraulic machine will tend to generate very high applied forces to 

achieve the 10-1 s-1 applied true strain rate. 

 

Figure 2.2.  True stress versus logarithmic strain in compression for isotactic 

polypropylene homopolymer for three different strain rates. 
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All samples are compressed to a logarithmic strain of 1.3 mm/mm.   Three specimens are 

tested for each input strain rate.  The experimental results are reported in Fig. 2.2. 

 

The experimental true stress versus true strain response for all three rates includes yielding 

followed by a softening phase and subsequent strain hardening phase at a strain between 

1.0 and 1.2 mm/mm.  It is worth noting, that many semicrystalline polymers do not exhibit 

a strain softening phase in compression. In an earlier work, [7] measured the internal 

temperature of polypropylene specimens subjected to compression across a wide range of 

strain rates.  It was found that the internal temperature increases during the onset of plastic 

deformation and determined that this increase in temperature is responsible for the macro 

softening response.   

 

2.2.4 Notched cylindrical tensile bar testing 

 

Samples for the notched cylindrical bars are machined in the longitudinal direction with 

dimensions shown below in Fig. 2.3.  Three samples for each notch radius, R, are tested 

for input strain rate values of 10-4 s-1, 10-3 s-1, 10-2 s-1, and 10-1 s-1 respectively.   
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Figure 2.3.  Geometry and dimensions of the notched cylindrical tensile bars. 

 

The maximum triaxiality value 𝜂𝜂  and the critical failure strain cε are calculated as, 

 

𝜂𝜂 =
𝜎𝜎𝑚𝑚
𝜎𝜎𝑒𝑒𝑒𝑒

=
1
3 + 𝑙𝑙𝑙𝑙 �1 +

𝐷𝐷0
4𝑅𝑅� 

𝜀𝜀𝑐𝑐 = 2𝑙𝑙𝑙𝑙 �
𝐷𝐷0
𝐷𝐷𝑐𝑐
� 

(2.1) 

where 𝜎𝜎𝑚𝑚 is the mean stress and 𝜎𝜎𝑒𝑒𝑒𝑒 is defined as the von Mises equivalent stress.  𝐷𝐷0 = 

8.0 mm is the minimum section diameter that remains unchanged for all tensile bars.  𝜀𝜀𝑐𝑐 is 

defined as the critical failure strain, calculated as a function of the experimentally measured 

section diameter at fracture, 𝐷𝐷𝑐𝑐.  The measured failure strain data for the notched 

cylindrical bar testing are shown below in Fig. 2.4. 
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Figure 2.4.  Average fracture strain, ε𝑐𝑐 versus stress triaxiality, 𝜂𝜂 . 

 

In general, the constitutive behavior of semicrystalline polymers are rate and pressure 

sensitive. For isotactic polypropylene (as well as many other semicrystalline polymers), 

cavitation induced damage initiation around the yield-point is driven by the hydrostatic 

tensile stress state.  In Fig. 4, for the notched cylinder, rate dependent tension test data, it 

is observed that higher triaxiality ratios (corresponding to higher hydrostatic stress) result 

in lower fracture strain.  Further at higher strain rates as the material becomes less ductile 

lower fracture strain is measured, and an overall decrease in the sensitivity to the triaxiality 

ratios is noted.  However, for lower strain rates, we see higher fracture strains indicating 

more ductile behavior, and higher sensitivity to triaxiality. 
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2.2.5 Tensile testing of a thin plate with circular hole 

 

Samples for the thin plate with circular hole are machined in the longitudinal direction with 

dimensions shown below in Fig. 2.5.  Nominal dimensions of the specimens are 75 mm x 

40 mm, with a plate thickness of 1.9 mm and a hole diameter of 12 mm.   

 

Figure 2.5.  Plate with a circular hole geometry.   

 

The grip length is set for each sample at 40 mm and screw action grips are used to ensure 

grip sliding does not occur during testing.  All samples were similarly tested with crosshead 

control at the same three respective strain rates (10-3 s-1, 10-2 s-1, and 10-1 s-1).  A video 
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extensometer system (MTS AVX Advantage Video System) is used to capture the force-

displacement response, as well as DIC results for strain values at the notch.   

Fig. 2.6 shows the experimental results for the measured force-displacement curves for 

each respective strain rate.   

 

Figure 2.6.  Experimental force-displacement curves for the thin plate with circular hole. 

 

For the DIC testing, the quality of the imaging is directly related to the quality of the 

speckle pattern applied to the surface.  Given that polypropylene is often a poor paint 

substrate for paint application, it was found that several trial experiments with the speckle 

pattern was required to optimize the results.  For our study, a combination of an adhesion 

promoter plus a black aerosol spray paint worked best.  This required a careful application 
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of paint,  sprayed from a distance of approximately 0.5 meters.  It is noted that is very 

important to make sure excess paint does not accumulate as the DIC software will tend to 

yield a breakup of the strain map, resulting in lower quality gradients.  Fig. 2.7 below shows 

the DIC experimental strain gradient  𝜀𝜀22, for reference strain of 10-1 s-1. 

 

 

Figure 2.7.  DIC for strain (𝜀𝜀22) for the thin plate with circular hole. 

 

 

2.2.6 Three-point bend testing of a notched beam 
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Samples for the three-point bend samples are machined in the longitudinal direction and 

tested at the same three input strain rates.  Fig. 2.8 below, shows the sample geometry and 

nominal dimensions for a nominal beam thickness of 12.5 mm.   

 

 

Figure 2.8.  Notched three-point bend beam geometry. 

 

Crosshead controlled tests are conducted for all test specimens and tested following ASTM 

D5045 as a standard for plane-strain fracture testing.  A sample size of three is used for 

each input strain rate and the video extensometer system (MTS AVX Advantage Video 

System) is used to capture the force-displacement response, as well as DIC results for strain 

values at the notch.   
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Fig. 2.9 shows the experimental results for the measured force-displacement curves for 

each respective strain rate.   

For the DIC testing, the same approach outline in section 2.2.5 was used to apply the 

speckle patter to the samples.  The results for the DIC testing is shown below in Fig. 2.10 

below, 

 

 

Figure 2.9.  Experimental force-displacement curves for the notched beam in three-point 

bending. 
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Figure 2.10.  DIC for strain (𝜀𝜀11) for the notched beam in three-point bending. 

 

 

2.3 Constitutive model for semicrystalline polymer 

 

2.3.1 Kinematics of deformation 

 

In the present work the notation used is based on the standard of continuum mechanics [5].  

Consider a homogeneous body 𝐵𝐵𝑅𝑅 identified with the region of space it occupies in a fixed 

reference configuration, and denote 𝚾𝚾 for an arbitrary material point of 𝐵𝐵𝑅𝑅, then the motion 
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of 𝐵𝐵𝑅𝑅 is a smooth one-to-one mapping of 𝒙𝒙 = 𝝌𝝌(𝚾𝚾, 𝑡𝑡) with the deformation gradient 

defined as, 

 

 𝑭𝑭 = 𝜕𝜕𝝌𝝌
𝜕𝜕𝚾𝚾

  (2.2) 

such that 𝐽𝐽 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝑭𝑭 > 0. 

 

An essential ingredient of elastic-viscoplastic constitutive theories for polymers is the 

multiplicative decomposition of 𝑭𝑭  as, 

 𝑭𝑭 = 𝑭𝑭𝑒𝑒𝑭𝑭𝑝𝑝 (2.3) 

into the elastic component, 𝑭𝑭𝑒𝑒, and the irreversible plastic component, 𝑭𝑭𝑝𝑝 [4], which 

incorporates the permanent viscoplastic deformation that occurs in semicrystalline 

polymers.  This additionally assumes that the Jacobians, 

 𝐽𝐽𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝑭𝑭𝑒𝑒 > 0     and    𝐽𝐽𝑝𝑝 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑭𝑭𝑝𝑝 > 0 (2.4) 

are both greater than zero, so that both 𝑭𝑭𝑒𝑒 and 𝑭𝑭𝑝𝑝 are invertible as shown in Eq. 2.4 above.  

Per the standard, the right and left polar decompositions of 𝑭𝑭𝑒𝑒 and 𝑭𝑭𝑝𝑝 are given by, 
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 𝑭𝑭𝑒𝑒 = 𝑹𝑹𝑒𝑒𝑼𝑼𝑒𝑒 = 𝑽𝑽𝑒𝑒𝑹𝑹𝑒𝑒 and 𝑭𝑭𝑝𝑝 = 𝑹𝑹𝑝𝑝𝑼𝑼𝑝𝑝 = 𝑽𝑽𝑝𝑝𝑹𝑹𝑝𝑝 (2.5) 

where 𝑹𝑹𝑒𝑒 , 𝑹𝑹𝑝𝑝 are the rotations and 𝑼𝑼𝑒𝑒 ,𝑼𝑼𝑝𝑝, 𝑽𝑽𝑒𝑒 ,𝑽𝑽𝑝𝑝  are symmetric, positive-definite tensors 

with, 

 
𝑼𝑼𝑒𝑒 = �𝑭𝑭𝑒𝑒𝑇𝑇𝑭𝑭𝑒𝑒 ,   𝑽𝑽𝑒𝑒 = �𝑭𝑭𝑒𝑒𝑭𝑭𝑒𝑒𝑇𝑇  

𝑼𝑼𝑝𝑝 = �𝑭𝑭𝑝𝑝𝑇𝑇𝑭𝑭𝑝𝑝,   𝑽𝑽𝑝𝑝 = �𝑭𝑭𝑝𝑝𝑭𝑭𝑝𝑝𝑇𝑇 
(2.6) 

 The right and left elastic and plastic Cauchy-Green tensor are likewise given by, 

 
𝑪𝑪𝑒𝑒 = 𝑼𝑼𝑒𝑒2 = 𝑭𝑭𝑒𝑒𝑇𝑇𝑭𝑭𝑒𝑒 ,       𝑩𝑩𝑒𝑒 = 𝑽𝑽𝑒𝑒2 = 𝑭𝑭𝑒𝑒𝑭𝑭𝑒𝑒𝑇𝑇  

𝑪𝑪𝑝𝑝 = 𝑼𝑼𝑝𝑝2 = 𝑭𝑭𝑝𝑝𝑇𝑇𝑭𝑭𝑝𝑝,       𝑩𝑩𝑝𝑝 = 𝑽𝑽𝑝𝑝2 = 𝑭𝑭𝑝𝑝𝑭𝑭𝑝𝑝𝑇𝑇 
(2.7) 

Further, the velocity gradient is introduced as, 

 𝑳𝑳 = 𝑭̇𝑭𝑭𝑭−1 (2.8) 

Substituting Eq. 2.3 into the velocity gradient, Eq. 2.8, we get, 

 𝑳𝑳 = 𝑭̇𝑭𝑭𝑭−1 =  𝑭𝑭𝑒̇𝑒𝑭𝑭𝑒𝑒−1 + 𝑭𝑭𝑒𝑒𝑳𝑳𝑝𝑝𝑭𝑭𝑒𝑒−1 (2.9) 

with,  
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 𝑳𝑳𝒆𝒆 = 𝑭𝑭𝑒̇𝑒𝑭𝑭𝑒𝑒−1 and 𝑳𝑳𝒑𝒑 = 𝑭𝑭𝑝̇𝑝𝑭𝑭𝑝𝑝−1 2.10) 

 

 The elastic and plastic deformation tensor can be further defined from standard continuum 

mechanics as, 

 𝑫𝑫𝑒𝑒 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑳𝑳𝑒𝑒 ,  𝑾𝑾𝑒𝑒 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑳𝑳𝑒𝑒 ,     and  𝑫𝑫𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑳𝑳𝑝𝑝,  𝑾𝑾𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑳𝑳𝑝𝑝 (2.11) 

so that  𝑳𝑳𝑒𝑒 = 𝑫𝑫𝑒𝑒 + 𝑾𝑾𝑒𝑒 and  𝑳𝑳𝑝𝑝 = 𝑫𝑫𝑝𝑝 + 𝑾𝑾𝑝𝑝.  Assuming plastic flow is incompressible and 

irrotational such that, 

 𝐽𝐽𝑝𝑝 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑭𝑭𝑝𝑝 = 1 ,       tr  𝑳𝑳𝑝𝑝 = 0     and      𝑾𝑾𝑝𝑝 = 0 (2.12) 

then the plastic velocity gradient is then defined as  𝑳𝑳𝑝𝑝 ≡ 𝑫𝑫𝑝𝑝.  This follows that the 

evolution law for the plastic part of the deformation gradient can be written as: 

 𝑭𝑭𝑝̇𝑝 =  𝑫𝑫𝑝𝑝 𝑭𝑭𝑝𝑝 (2.13) 
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2.3.2 Free energy 

 

To state the specific form for free energy, it is helpful to first define the effective 

distortional plastic stretch, 𝜆𝜆𝑝𝑝 as, 

 𝜆𝜆𝑝𝑝 =
1
√3

�𝑡𝑡𝑡𝑡(𝑩𝑩𝑝𝑝) (2.14) 

where the plastic component of the left Cauchy-Green tensor, 𝑩𝑩𝑝𝑝, is defined in Eq. (2.7).   

Following which, the non-interactive form of the Helmholtz free energy is defined as, 

 𝜓𝜓 = 𝜓𝜓𝑒𝑒(𝑬𝑬𝑒𝑒) + 𝜓𝜓𝑝𝑝(𝜆𝜆𝑝𝑝) (2.15) 

where  𝜓𝜓𝑒𝑒and 𝜓𝜓𝑝𝑝are the elastic and plastic free energies, respectively.  𝑬𝑬𝑒𝑒 is the elastic 

Green strain tensor, given as,  

 𝑬𝑬𝑒𝑒 =  
1
2

(𝑪𝑪𝑒𝑒 − 𝑰𝑰) (2.16) 

where the elastic right Cauchy-Green tensor, 𝑪𝑪𝑒𝑒 , is also defined in Eq. (2.7).   

 

For the elastic free energy, attention is restricted to the standard form for small elastic 

stretches as, 
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 𝜓𝜓𝑒𝑒(𝑬𝑬𝑒𝑒) = 𝐺𝐺|𝑬𝑬0𝑒𝑒|2 +
1
2𝐾𝐾

|𝑡𝑡𝑡𝑡𝑬𝑬𝑒𝑒|2 (2.17) 

where 𝐺𝐺 and 𝐾𝐾 are the shear and bulk moduli, respectively.  𝑬𝑬0𝑒𝑒 is the deviatoric component 

of the elastic Green strain as, 

 𝑬𝑬0𝑒𝑒 =  𝑬𝑬𝑒𝑒 −
1
3

(𝑡𝑡𝑡𝑡 𝑬𝑬𝑒𝑒)𝑰𝑰 (2.18) 

For the plastic free energy, it is assumed that 𝜓𝜓𝑝𝑝 arises from an entropic contribution of 

the molecular entanglement in the amorphous region [18].  Additionally, the plastic energy 

continues to change during the orientation hardening phase of large deformation where the 

crystalline and amorphous regions untangle and begin to align [31].  Since this is very 

similar to the rubbery network-like response of glassy polymers experienced during plastic 

deformation, the statistical mechanics model from [4] is considered to model the plastic 

energy as, 

 𝜓𝜓𝑝𝑝 = 𝜇𝜇𝑅𝑅𝜆𝜆𝐿𝐿2 ��
𝜆𝜆𝑝𝑝

𝜆𝜆𝐿𝐿
�𝑥𝑥 + 𝑙𝑙𝑙𝑙 �

𝑥𝑥
sinh 𝑥𝑥� − �

1
𝜆𝜆𝐿𝐿
� 𝑦𝑦 − 𝑙𝑙𝑙𝑙 �

𝑦𝑦
sinh 𝑦𝑦�� (2.19) 

 

where the material constants 𝜇𝜇𝑅𝑅  and 𝜆𝜆𝐿𝐿 are the material rubbery modulus and the network 

locking stretch respectively.  𝑥𝑥 and 𝑦𝑦 are defined as 
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 𝑥𝑥 = ℒ−1 �𝜆𝜆
𝑝𝑝

𝜆𝜆𝐿𝐿
�   and    𝑦𝑦 = ℒ−1 � 1

𝜆𝜆𝐿𝐿
� (2.20) 

Note that ℒ−1 is the inverse of the Langevin function. 

 

2.3.3 Equation for stress and back stress 

 

Following the free energy defined in Eq. (2.17), the second Piola-Kirchoff stress is given 

by, 

 𝑺𝑺𝑒𝑒 =
𝜕𝜕𝜓𝜓𝑒𝑒

𝜕𝜕𝑬𝑬𝑒𝑒 = 2𝐺𝐺𝑬𝑬0𝑒𝑒 + 𝐾𝐾(𝑡𝑡𝑡𝑡𝑬𝑬𝑒𝑒)𝑰𝑰 (2.21) 

Pulling forward from the referenced condition, the Cauchy stress is then defined as, 

 𝑻𝑻𝑒𝑒 = 𝐽𝐽𝑭𝑭𝑒𝑒−1𝑺𝑺𝑒𝑒𝑭𝑭𝑒𝑒−𝑇𝑇 (2.22) 

Following the approach of Anand and Gurtin [4], the driving force for plastic flow is further 

defined as, 

 (𝑺𝑺0𝑒𝑒)𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑺𝑺0𝑒𝑒 − 𝑺𝑺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,   with   𝑺𝑺0𝑒𝑒 = 𝑺𝑺𝑒𝑒 − 1
3

(𝑡𝑡𝑡𝑡 𝑺𝑺𝑒𝑒)𝑰𝑰 (2.23) 
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where (𝑺𝑺0𝑒𝑒)𝑒𝑒𝑒𝑒𝑒𝑒  is defined as the “effective” second Piola-Kirchoff deviatoric elastic stress 

that accounts for a difference between the deviatoric stress tensor 𝑺𝑺0𝑒𝑒 , and an evolving back 

stress tensor,  𝑺𝑺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 .  The back stress tensor represents an internal “resistance” experienced 

during the molecular alignment phase.  This assumption is supported physically as it is well 

known that semicrystalline polymers experience the same type of morphology evolution 

as amorphous polymers during the molecular realignment phase.  To ensure a 

thermodynamically consistent theory, the back-stress definition is used following [4] as,  

 𝑺𝑺𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 = 2𝑠𝑠𝑠𝑠𝑠𝑠0 �
𝜕𝜕𝜓𝜓𝑝𝑝

𝜕𝜕𝑩𝑩𝑝𝑝
�𝑩𝑩𝑝𝑝 = 𝜇𝜇𝑩𝑩0

𝑝𝑝,   where   𝑩𝑩0
𝑝𝑝 = − 1

3
(𝑡𝑡𝑡𝑡 𝑩𝑩𝑝𝑝)𝑰𝑰 (2.24) 

where the back-stress modulus, 𝜇𝜇 is defined by 

 𝜇𝜇 =
1

3𝜆𝜆𝑝𝑝
𝜕𝜕𝜓𝜓𝑝𝑝

𝜕𝜕𝜆𝜆𝑝𝑝 = 𝜇𝜇𝑅𝑅
𝜆𝜆𝐿𝐿

3𝜆𝜆𝑝𝑝 ℒ
−1 �

𝜆𝜆𝑝𝑝

𝜆𝜆𝑙𝑙
� (2.25) 

and 𝑩𝑩0
𝑝𝑝 is defined as deviatoric component of the left plastic Cauchy-Green tensor. 

Using the Padé approximation for the Langevin function, the back stress modulus then 

becomes 

 𝜇𝜇 = 𝜇𝜇𝑅𝑅
𝜆𝜆𝐿𝐿

3𝜆𝜆𝑝𝑝
𝜆𝜆𝑝𝑝

𝜆𝜆𝐿𝐿
⎝

⎛
3 − �𝜆𝜆

𝑝𝑝

𝜆𝜆𝐿𝐿
�
2

1 − �𝜆𝜆
𝑝𝑝

𝜆𝜆𝐿𝐿
�
2

⎠

⎞ (2.26) 
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2.3.4 Flow rule 

 

Several flow rules have been developed over the past 80 years that consider plastic flow in 

a polymer as a thermally activated process [6, 21, 49].  Much of the existing literature 

focuses on flow rules for the amorphous polymers.  Semicrystalline polymers are often 

more complex in their macroscale plastic flow, and additionally more sensitive to the 

processing conditions, making it more difficult to get consistent test results.  In this paper, 

a thermally activated flow rule originally used for amorphous materials [5] is adopted.    

This flow rule offers a rate and temperature-dependent yield strength function that adopts 

an activation energy-based approach for the onset of plastic flow.  Because the amorphous 

and crystalline phases contribute together in the macroscopic deformation, and the onset 

of plastic flow is driven by the movement of the amorphous regions between the lamellae, 

it is reasonable to assume that an activation energy approach might work for a 

semicrystalline material.  From Eq. 2.13 the flow rule is defined as, 

 𝑭𝑭𝑝̇𝑝 =  𝑫𝑫𝑝𝑝 𝑭𝑭𝑝𝑝  where  𝑭𝑭𝑝𝑝(𝑿𝑿, 0) = 1  (2.27) 

Then, following [4], and [2], the inelastic stretch rate is given by a standard Mises-type 

flow rule defined as, 

 𝑫𝑫𝑝𝑝 = 𝛾𝛾𝑝̇𝑝 �
(𝑺𝑺0𝑒𝑒)𝑒𝑒𝑒𝑒𝑒𝑒

2𝜏𝜏̅ � (2.28) 
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where (𝑺𝑺0𝑒𝑒)𝑒𝑒𝑒𝑒𝑒𝑒  is defined in Eq. (2.23) and 𝛾𝛾𝑝̇𝑝 is defined as the equivalent plastic shear-

strain rate.  𝜏𝜏̅ is the equivalent shear stress defined by: 

 𝜏𝜏̅ =
1
√2

�(𝑺𝑺0𝑒𝑒)𝑒𝑒𝑒𝑒𝑒𝑒� (2.29) 

Here, |𝑨𝑨| = √𝑨𝑨 ∶ 𝑨𝑨 denotes the magnitude of a second order tensor 𝑨𝑨. Further, the quantity 

 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 = � √𝑫𝑫𝑝𝑝:𝑫𝑫𝑝𝑝

𝑡𝑡

𝑜𝑜
𝑑𝑑𝑑𝑑 (2.30) 

is defined as the equivalent plastic shear strain rate and is used as a scalar measure to 

quantify the amount of plastic strain accumulated at time 𝑡𝑡.  To leverage the thermally 

activated mechanism following the work of [2],  𝛾𝛾𝑝̇𝑝 is defined as, 

 𝛾𝛾𝑝̇𝑝 = �
0

𝛾𝛾0̇𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑄𝑄

−𝑘𝑘𝐵𝐵𝜗𝜗
� �𝑠𝑠𝑠𝑠𝑠𝑠ℎ � 𝜏𝜏𝑒𝑒𝑉𝑉

2𝑘𝑘𝐵𝐵𝜗𝜗
��

1
𝑚𝑚         if          𝜏𝜏𝑒𝑒 ≤ 0

𝜏𝜏𝑒𝑒 ≥ 0 (2.31) 

where,  

 𝜏𝜏𝑒𝑒 ≝ 𝜏𝜏̅ − �𝑆𝑆1 + 𝛼𝛼𝑝𝑝𝑝̅𝑝�, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ    𝑝̅𝑝 = −
1
3

(𝑡𝑡𝑡𝑡 𝑺𝑺𝑒𝑒)𝑰𝑰 (2.32) 

𝜏𝜏𝑒𝑒 is defined as the net shear stress for thermally activated flow.  𝛼𝛼𝑝𝑝 is a parameter that is 

used to account for the pressure sensitivity of plastic flow [48] and 𝑝̅𝑝 is defined as the mean 

normal pressure.  𝜈𝜈0̇ is defined as the reference shear strain parameter with the units of 𝑠𝑠−1.  
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𝑄𝑄 is defined as the activation energy, 𝑘𝑘𝐵𝐵 is Boltzmann’s constant, 𝑉𝑉 is an activation 

volume, and 𝑚𝑚 is the strain rate sensitivity parameter.  𝑆𝑆1 is the internal plastic variable 

that will be explained later in section 2.3.5.  It should be noted that the flow rule in Eqn. 

23 can exploit temperature dependency of the plastic shear strain rate in terms of the 

parameter 𝜗𝜗. However, the present study is limited only to predict isothermal response for 

semicrystalline polymers at room temperature. 

 

2.3.5 Evolution of the internal plastic variables, 𝑺𝑺𝟏𝟏 and 𝝓𝝓 

 

Two internal variables 𝑆𝑆1 and 𝜙𝜙 are defined to represent aspects of the intermolecular shear 

resistance to plastic flow experienced during the “yield-peak” observed in amorphous and 

semicrystalline materials, where the yield-peak is defined as the peak stress experienced 

after plastic yielding but before a softening ensues.   𝜙𝜙 ≥ 0 is a dimensionless parameter 

that represents the local change in molecular-packing due to deformation-induced 

disordering, whereas 𝑆𝑆1 ≥ 0 represents a transient resistance to plastic flow coupled to the 

disordering of the material.  Following [2], it is assumed that a very small microscale 

dilatation occurs during plastic deformation as the material disorders but still maintains an 

incompressible plastic flow.  This results in an increase of the order parameter 𝜙𝜙 and causes 

a transient change to the flow resistance 𝑆𝑆1 of the material as plastic deformation proceeds.  

Accordingly, the evolution of the resistance 𝑆𝑆1 is coupled to the evolution of the order-

parameter 𝜙𝜙. 
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For the internal plastic variables, the following coupled evolution equations are defined 

according to [2] as, 

 
𝑆𝑆1̇ = ℎ1(𝑆𝑆1∗ − 𝑆𝑆1)𝛾𝛾𝑝̇𝑝,     with the initial value   𝑆𝑆1(𝑿𝑿, 0) = 𝑆𝑆1𝑖𝑖  

𝑆𝑆1∗ = 𝑏𝑏(𝜙𝜙∗ − 𝜙𝜙) 
(2.33) 

and  

 𝜙̇𝜙 = 𝑔𝑔(𝜙𝜙∗ − 𝜙𝜙)𝛾𝛾𝑝̇𝑝,    with the initial value   𝜙𝜙(𝑿𝑿, 0) = 𝜙𝜙𝑖𝑖 (2.34) 

For the flow resistance in Eq. (2.33), the function ℎ1(𝑆𝑆1∗ − 𝑆𝑆1) represents a strain 

hardening/softening function for the resistance 𝑆𝑆1 , where 𝑆𝑆1∗ is defined as a saturation value 

to the flow stress and ℎ1 is a material constant that controls the initial slope of the yield-

peak (as ℎ1 increases, the initial yield slope increases).  Accordingly, the material hardens 

if  𝑆𝑆1 ≤ 𝑆𝑆1∗ and softens if 𝑆𝑆1 ≥ 𝑆𝑆1∗. 

 

For the order parameter defined in Eq. (2.34), the function 𝑔𝑔(𝜙𝜙∗ − 𝜙𝜙) represents a shear 

induced disorder function for the parameter 𝜙𝜙, where 𝜙𝜙∗ is defined as a saturation value of 

the parameter and 𝑔𝑔 is a material constant that controls the width of the yield peak (as 𝑔𝑔 

decreases, the yield-peak width narrows).  Accordingly, the material disorders if  𝜙𝜙 ≤ 𝜙𝜙∗ 

and becomes less disordered if  𝜙𝜙 ≥ 𝜙𝜙∗. 
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𝑆𝑆1∗ represents a coupling function between the flow resistance 𝑆𝑆1 and the order parameter 

𝜙𝜙 that controls the magnitude of the stress overshoot.  Here, 𝑏𝑏 and the saturation limit 𝜙𝜙∗ 

both represent material parameters that control the height of the yield peak (as 𝜙𝜙∗ or 𝑏𝑏 

increases, the yield peak also increases).   

 

Hence, we get a combined list of material parameters for the evolution equations defined 

as {ℎ1,𝑏𝑏,𝜙𝜙∗,𝑔𝑔} that needed to be determined from the experimental data to 

phenomenologically model the yield-strength for both tension and compression.  

 

2.3.6 Damage model for semicrystalline polymers 

 

In order to model the cavitation induced damage in semicrystalline polypropylene during 

rate dependent tensile loading, a damage model originally proposed by [47] is used as a 

starting basis.  The original Rice-Tracey model considered a single void growth under a 

super imposed hydrostatic stress.  The original model was later modified by [57, 58] to 

include the effect of neighboring void growth and coalescence as,  

𝑑𝑑𝑑𝑑
𝑅𝑅 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝛽𝛽)𝑑𝑑𝜀𝜀𝑒𝑒𝑒𝑒

𝑝𝑝  (2.35) 

where R is expressed as the average void radius, 𝛽𝛽 is a constant to reflect the interaction of 

neighboring voids, 𝜂𝜂 = 𝜎𝜎𝑚𝑚
𝜎𝜎𝑒𝑒

 is the stress triaxiality ratio with 𝜎𝜎𝑚𝑚 as the hydrostatic stress 
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and 𝜎𝜎𝑒𝑒 as the von Mises equivalent stress, and 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝  is defined as the equivalent plastic strain.  

Experimental results from [58] showed that the fracture strain of polycarbonate decreased 

with an increase in triaxiality and a critical void growth ratio based on the Rice-Tracey 

model could be used as a stress-state independent micromechanics fracture criterion as, 

�
𝑑𝑑𝑑𝑑
𝑅𝑅 �

𝑐𝑐
= 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝛽𝛽)𝜀𝜀𝑐𝑐

𝑝𝑝 (2.36) 

where 𝜀𝜀𝑐𝑐𝑃𝑃 = 2𝑙𝑙𝑙𝑙 �𝐷𝐷0
𝐷𝐷𝑐𝑐
�  is defined as the critical equivalent plastic strain at fracture, 𝐷𝐷0 is 

the minimum section diameter, and 𝐷𝐷𝑐𝑐 is defined as the critical section dimeter measured 

right after the specimen fractures.  It should be mentioned here that the proposed 

micromechanics parameter from Wang and Kishimoto [58] for ductile damage initiation 

only includes stress states of the notched bar with varied geometry, as shown in Fig. 2.3. 

and does not consider the effect of input strain rate.  By contrast, the present study is aimed 

at formulating a rate-dependent isotropic damage evolution law, coupled with 

viscoplasticity, that uses the same micromechanics parameter for various stress states for 

the constitutive model outlined in sections 2.3.1 to 2.3.5, for polypropylene. 

 

Hence, considering the rate dependent form of Eq. (2.35), a simple evolution equation for 

the damage variable, 𝑑𝑑 is given as, 

𝑑̇𝑑 = exp(𝛽𝛽𝛽𝛽)𝛾𝛾𝑑𝑑
𝑝̇𝑝    (2.37) 
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where the rate of damage growth is a function of triaxiality 𝜂𝜂, the rate dependent constant 

𝛽𝛽, (to represent the interaction of neighboring voids), and the damaged equivalent shear 

strain rate, 𝛾𝛾𝑑𝑑
𝑝̇𝑝.  The physical motivation for 𝛾𝛾𝑑𝑑

𝑝̇𝑝 is presented as follows:  Once damage 

begins to evolve, the elastic energy starts dropping, causing the stress to drop.  This can 

cause a non-physical situation of pulling back the stress within the yield surface.  To avoid 

this, the plastic strain evolution needs to incorporate a damage counterpart as derived 

below, which eventually makes the damage evolution law also coupled via 𝛾𝛾𝑑𝑑
𝑝𝑝.  Therefore, 

the modified flow rule is considered as, 

𝑫𝑫𝑝𝑝 = 𝛾𝛾𝑑𝑑
𝑝̇𝑝 𝑑𝑑𝑑𝑑
𝑑𝑑𝑺𝑺𝐷𝐷

 (2.38) 

where 𝐹𝐹 represents the yield function and 𝑺𝑺𝐷𝐷  represents the damaged stress as, 

𝑺𝑺𝐷𝐷 = (1− 𝑑𝑑)2 𝑺𝑺 (2.39) 

where (1− 𝑑𝑑)2 is defined as a monotonically decreasing degradation function that 

degrades the elastic energy storage in the material neighborhood.  𝑫𝑫𝑝𝑝 is further defined as, 

𝑫𝑫𝑝𝑝 = 𝛾𝛾𝑝̇𝑝 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑺𝑺
� 𝑑𝑑𝑺𝑺
𝑑𝑑𝑺𝑺𝐷𝐷

 = 𝛾𝛾𝑝̇𝑝 � 1
(1−𝑑𝑑)2

� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑺𝑺

,    as     𝑑𝑑𝑺𝑺
𝑑𝑑𝑺𝑺𝐷𝐷

= 1
(1−𝑑𝑑)2

 (2.40) 

leading to a flow rule affected by the damage growth as, 
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𝑫𝑫𝑝𝑝 =
𝛾𝛾𝑝̇𝑝

(1 − 𝑑𝑑)2 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑺𝑺� (2.41) 

Equivalently, the damaged equivalent plastic shear strain rate is now defined as, 

𝛾𝛾𝑑𝑑
𝑝̇𝑝 =

𝛾𝛾𝑝̇𝑝
(1− 𝑑𝑑)2 (2.42) 

leading to the final coupled damage evolution equation as, 

𝑑̇𝑑 = exp(𝛽𝛽𝛽𝛽)
𝛾𝛾𝑝̇𝑝

(1 − 𝑑𝑑)2 (2.43) 

The elastic energy density for the damaged material is further expressed as, 

𝜓𝜓𝑒𝑒𝐷𝐷(𝑬𝑬𝑒𝑒) = (1 − 𝑑𝑑)2 �𝐺𝐺|𝑬𝑬0𝑒𝑒|2 +
1
2𝐾𝐾

|𝑡𝑡𝑡𝑡𝑬𝑬𝑒𝑒|2� (2.44) 

which then leads to the elastic stress of the damaged material as, 

𝑺𝑺𝑒𝑒𝐷𝐷 = 𝜕𝜕𝜓𝜓𝑒𝑒𝐷𝐷

𝜕𝜕𝑬𝑬𝑒𝑒
= (1 − 𝑑𝑑)2[2𝐺𝐺𝑬𝑬𝑒𝑒 + 𝜆𝜆(𝑡𝑡𝑡𝑡 𝑬𝑬𝑒𝑒)𝐈𝐈]  (2.45) 

Additionally, the damaged net shear stress for thermally activated flow is defined as,   

𝜏𝜏𝑒𝑒𝐷𝐷 ≝ 𝜏𝜏̅ − (1 − 𝑑𝑑)2𝑆𝑆1 − 𝛼𝛼𝑝𝑝𝑝̅𝑝 (2.46) 
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where the degradation function is applied to the flow stress as well.   

 

The damage model can now be summarized as follows - in the first stage, the cavitation 

induced damage initiates and becomes fully developed, which is controlled by a critical 

value of the equivalent plastic strain, 𝜀𝜀𝑖𝑖
𝑝𝑝.  The physical significance of 𝜀𝜀𝑖𝑖

𝑝𝑝 can be explained 

as a certain amount of latent plasticity being required to build up during the onset of the 

plastic yielding controlling the damage initiation.  This value of 𝜀𝜀𝑖𝑖
𝑝𝑝 is determined iteratively 

by trial and error, while comparing the numerical simulations to the experimental force-

displacement curves for tensile test results.  Thus, it is considered that damage evolution 

starts when the equivalent plastic strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 reaches the initiation value 𝜀𝜀𝑖𝑖

𝑝𝑝 for strain rates 

above 10−3 𝑠𝑠−1. 

𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 ≥ 𝜀𝜀𝑖𝑖

𝑝𝑝,      for  𝜀𝜀̇ ≥ 10−3 𝑠𝑠−1 (2.47) 

However, below this rate, the deformation is dominated by a shear yielding mechanism 

with a large amount of stretching and cavitation induced damage is not active. Following 

the initiation, the second stage of damage growth is controlled by the evolution equation 

defined in Eq. (2.43).  Finally, the third stage, driven by fibrillation and molecular chain-

scission until the complete fracture, is considered when the damage parameter, 𝑑𝑑 reaches 

a critical value 𝑑𝑑𝑐𝑐, as, 
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𝑑𝑑 ≤ 𝑑𝑑𝑐𝑐,      for  𝜀𝜀̇ ≥ 10−3 𝑠𝑠−1 (2.48) 

which is also limited by the applied strain rate as given in Eq. (2.48).  The value of 𝑑𝑑𝑐𝑐 is 

similarly estimated by trial and error, while comparing the numerical simulations to the 

experimental results obtained for the tensile bar. 

 

Recognizing that the damage response based on the proposed continuum level model 

would be mesh-dependent in the finite element simulations, a mesh sensitivity study is 

performed to determine the smallest element size.  The information about the mesh density 

required to obtain mesh-objective results corresponding to each simulation domain has 

been presented in section 2.5. 

 

2.4 Estimation of the material parameters for 

polypropylene 

 

In this section, the parameter estimation procedure is discussed for the proposed 

constitutive model.  In summary, the following parameters are determined for both tension 

and compression: 

1. The shear and bulk moduli (𝐺𝐺,𝐾𝐾) in the elastic free energy. 
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2. The parameters (𝜇𝜇𝑅𝑅 ,𝜆𝜆𝐿𝐿 ) in the plastic free energy. 

3. The pressure sensitivity parameter, (𝛼𝛼). 

4. The parameters {𝑄𝑄,𝑉𝑉,𝛾𝛾0̇ ,𝑚𝑚,𝑆𝑆1, ℎ1, 𝑏𝑏,𝑔𝑔1,𝜙𝜙∗} for the flow rule and the evolution 

equations of the internal variables. 

5. The parameters (𝜀𝜀𝑖𝑖
𝑝𝑝, 𝛽𝛽, 𝑑𝑑𝑐𝑐) in the damage model. 

 

It is well known that the elastic parameters of polymers often vary in tension versus 

compression.   The Young’s modulus and Poisson’s ratio, 𝜈𝜈, are determined from the 

testing outlined in section 2.2.  Standard relations for isotropic elasticity are then used to 

determine the shear modulus, 𝐺𝐺, and the bulk modulus, 𝐾𝐾, for tension and compression, as 

given by,   

 𝜈𝜈 = 0.36,    𝐸𝐸𝑇𝑇 = 1230 𝑀𝑀𝑀𝑀𝑀𝑀,    𝐸𝐸𝐶𝐶 = 733 𝑀𝑀𝑀𝑀𝑀𝑀    

 𝐾𝐾𝑇𝑇 = 1464 𝑀𝑀𝑀𝑀𝑀𝑀,    𝐾𝐾𝐶𝐶 = 873 𝑀𝑀𝑀𝑀𝑀𝑀    

From here, the average values of the elastic modulus are computed and used in the 

simulations as,  

 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎 = 361 𝑀𝑀𝑀𝑀𝑀𝑀,    𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 = 1168 𝑀𝑀𝑀𝑀𝑀𝑀 

For the estimation of the pressure sensitivity parameter 𝛼𝛼, an equation developed by [48] 

is used to compute the sensitivity parameter as a function of the materials yield strength in 

tension and compression as, 
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 𝛼𝛼 = 3
𝜎𝜎𝑦𝑦𝐶𝐶 − 𝜎𝜎𝑦𝑦𝑇𝑇

𝜎𝜎𝑦𝑦𝐶𝐶 + 𝜎𝜎𝑦𝑦𝑇𝑇
 (2.49) 

Following which, the pressure sensitivity parameter is then calculated as: 

 𝛼𝛼 = 0.284 

To estimate the parameters required in the flow rule, test data for rate dependent tension 

and compression are used.  Following the approach presented by [2], a one-dimensional 

small strain approximation is considered for the flow rule defined in Eq. (2.31) and (2.32) 

as,   

 
𝜀𝜀̇𝑝𝑝 = �

0

𝜀𝜀0̇𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑄𝑄

−𝑘𝑘𝐵𝐵𝜗𝜗
� �𝑠𝑠𝑠𝑠𝑠𝑠ℎ � 𝜎𝜎𝑒𝑒𝑉𝑉

2𝑘𝑘𝐵𝐵𝜗𝜗
��

1
𝑚𝑚         if          𝜎𝜎𝑒𝑒 ≤ 0

𝜎𝜎𝑒𝑒 ≥ 0 

𝜎𝜎𝑒𝑒 ≝ 𝜎𝜎� − �𝑆𝑆1 + 𝛼𝛼𝑝𝑝𝑝̅𝑝� 

(2.50) 

with 𝜎𝜎𝑒𝑒 now defined as the equivalent tensile stress for thermally activated flow.  The mean 

tensile stress 𝜎𝜎�, and the mean normal pressure 𝑝̅𝑝, are defined as, 

 𝜎𝜎� = |𝜎𝜎 − 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏|    and   𝑝̅𝑝 = − 1
3
𝜎𝜎  (2.51) 

From Eq. (2.50), the pre-hyperbolic constant is set to 
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 𝜀𝜀∗(𝜗𝜗) ≝ 𝜀𝜀0̇ exp �−
𝑄𝑄
𝐾𝐾𝐵𝐵𝜗𝜗

� (2.52) 

 

 

Subsequently Eq(s). 2.50-2.52 are rearranged into the following form, 

 |𝜎𝜎 − 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏| +
1
3𝛼𝛼𝑃𝑃𝜎𝜎 = 𝑆𝑆1 +

2𝐾𝐾𝐵𝐵𝜗𝜗
𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠ℎ−1 ��

𝜀𝜀𝑃̇𝑃

𝜀𝜀∗(𝜗𝜗)̇
�
𝑚𝑚

� (2.53) 

For purpose of obtaining the parameters associated with the yield stress, the contribution 

of the internal variable 𝑆𝑆1 is neglected (which is associated with the transient yield peak), 

as well as the back stress, 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (which is associated with the internal resistance 

experienced during the molecular realignment phase).  |𝜎𝜎| is set to 𝜎𝜎𝑦𝑦 where the plastic 

flow is considered to be fully developed as 𝜀𝜀𝑃̇𝑃 ≈  𝜀𝜀̇.  This results the following approximate 

expression for the yield stress 𝜎𝜎𝑦𝑦 as a function of strain rate 𝜀𝜀̇ as, 

 �1−
𝛼𝛼𝑃𝑃
3 �𝜎𝜎𝑦𝑦 =

2𝐾𝐾𝐵𝐵𝜗𝜗
𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠ℎ−1 ��

𝜀𝜀̇
𝜀𝜀∗(𝜗𝜗)̇

�
𝑚𝑚

� (2.54) 

Using Eq. (2.54), parameters {𝑉𝑉,𝑄𝑄, 𝜀𝜀0̇,𝑚𝑚} are determined experimentally for both tension 

and compression.  
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Figure 2.11.  Tensile yield stress versus input logarithmic strain rate at room temperature      

(296 K) 

 

Figure 2.12.  Compressive yield stress versus input logarithmic strain rate at room temperature 

(296 K). 
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Fig. 2.11 and Fig. 2.12 above show the experimental 𝜎𝜎𝑦𝑦 versus 𝑙𝑙𝑙𝑙𝑙𝑙(𝜀𝜀̇) plot together with 

the fitting of Eq. (2.54) for tension and compression, respectively.  This yields the 

following values for tension as, 

 𝑄𝑄 = 1.05 × 10−19 𝐽𝐽,    𝑉𝑉 = 2.30 × 10−28 𝑚𝑚3, 

  𝜀𝜀0̇ = 𝛾𝛾0̇ = 5.10 × 1016 𝑠𝑠−1,     𝑚𝑚 = .08 

and for compression as, 

𝑄𝑄 = 1.25 × 10−19 𝐽𝐽,    𝑉𝑉 = 2.30 × 10−28 𝑚𝑚3,   

𝜀𝜀0̇ = 𝛾𝛾0̇ = 5.10 × 1016 𝑠𝑠−1,     𝑚𝑚 = .09 

As can be seen, the values for the reference strain rate and the activation volume are 

identical in tension and compression.  

 

The parameters associated with the evolution equations for the plastic variables also need 

to be calibrated via an empirical fit between the one dimensional model prediction and the 

uniaxial tension and compression test data obtained in section 2.2.2 and 2.2.3, respectively.  

For this purpose, the proposed constitutive model outlined in section 2.3 was implemented 

in ABAQUS/Explicit (ABAQUS 2017) by writing a user subroutine (VUMAT) with an 

eight-noded brick element (C3D8R).  Multiple single element simulations were run to 

estimate the parameters that provide the best fit between the model and test data.  The 

parameters obtained from this calibration procedure for tension are:   

𝑆𝑆1 = 0 𝑀𝑀𝑀𝑀𝑀𝑀,    ℎ1 = 23,    𝑏𝑏 = 5400 𝑀𝑀𝑀𝑀𝑀𝑀,     𝑔𝑔1 = 0.01 

𝜙𝜙∗ = 0.0023,    𝜇𝜇𝑅𝑅 = 3.0 𝑀𝑀𝑀𝑀𝑀𝑀,    𝜆𝜆𝐿𝐿 = 15     
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and for compression as, 

𝑆𝑆1 = 0,    ℎ1 = 25,    𝑏𝑏 = 1450 𝑀𝑀𝑀𝑀𝑀𝑀,     𝑔𝑔1 = 0.6 

𝜙𝜙∗ = 0.0063,     𝜇𝜇𝑅𝑅 = 2.5 𝑀𝑀𝑀𝑀𝑀𝑀,    𝜆𝜆𝐿𝐿 = 15     

This initial flow resistance 𝑆𝑆1 , and the network locking stretch 𝜆𝜆𝐿𝐿, are estimated as 

identical values for compression and tension.  The model predictions as obtained using 

these calibrated parameters are compared with experimental data as shown below in Fig. 

2.13 for tension and in Fig. 2.14 for compression, respectively.  It is important to note that 

one set of parameters has been identified to predict the response at three different strain 

rates. 

 

Figure 2.13.  Comparison between the calibrated constitutive model and the experimental 

stress-strain response of the polypropylene in tension. 
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Figure 2.14.  Comparison between the calibrated constitutive model and the experimental 

stress-strain response of the polypropylene in compression. 

 

Table 2.1 below provides a complete summary of the material parameters for the 

constitutive model. 
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Table 2-1.  Material parameters for polypropylene homopolymer. 

Parameter Description Tension Compression 

𝝆𝝆 (tonne/mm3) Density 9.0× 10−10  

𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 (MPa) Average Young’s modulus 982 

𝝂𝝂 Poisson’s ratio 0.36 

𝑮𝑮𝒂𝒂𝒂𝒂𝒂𝒂 (𝑴𝑴𝑴𝑴𝑴𝑴) Average shear modulus 361 

𝑲𝑲𝒂𝒂𝒂𝒂𝒂𝒂 (𝑴𝑴𝑴𝑴𝑴𝑴) Average bulk modulus 1168 

𝝁𝝁𝑹𝑹 (MPa) Rubbery modulus 2.5 3 

𝝀𝝀𝑳𝑳 Network locking stretch 15 

𝜶𝜶𝑷𝑷 Pressure sensitivity parameter .284 

𝝑𝝑 (𝑲𝑲) Room Temperature 296 

Q (J) Activation energy 1.05× 10−19 1.25× 10−19 

𝑽𝑽(𝒎𝒎𝟑𝟑) Activation volume 2.3 × 10−28 

𝜸𝜸𝟎̇𝟎(𝒔𝒔−𝟏𝟏) Reference plastic shear-strain rate 5.1 × 1016 

𝒎𝒎 Strain rate sensitivity parameter 0.08 0.09 

𝑺𝑺𝟏𝟏(𝑴𝑴𝑴𝑴𝑴𝑴) IPV:  Initial flow resistance 0 

𝒉𝒉𝟏𝟏 IPV:  Flow resistance constant 1 23 25 
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𝒃𝒃 IPV:  Flow resistance constant 2 5400 1450 

𝒈𝒈𝟏𝟏 IPV:  𝜓𝜓 Flow disorder constant 0.01 0.6 

𝝓𝝓∗ IPV:  𝜓𝜓 Saturation limit 0.0023 0.0063 

 

For the parameters needed in the damage model such as, cavitation induced damage 

initiation, progressive damage growth, and fibrillation breakdown, the following three-step 

process is implemented: 

 

Step 1. The cavitation induced damage initiation parameter, 𝜀𝜀𝑖𝑖
𝑝𝑝, is estimated by repeating 

the numerical simulations for the tensile bar, considering the plastic parameters listed in 

Table 2.1 and adjusting the value of 𝜀𝜀𝑖𝑖
𝑝𝑝 to match the yield-point of the experimental load-

displacement curve for different strain rates.  Correspondingly, values for 𝜀𝜀𝑖𝑖
𝑝𝑝 are estimated 

as, 

𝜀𝜀𝑖𝑖
𝑝𝑝 = 0.35  for  𝜀𝜀̇ =  10−2 𝑠𝑠−1,     and    𝜀𝜀𝑖𝑖

𝑝𝑝 = 0.45  for  𝜀𝜀̇ =  10−1 𝑠𝑠−1  

where 𝜀𝜀̇ is defined as the input strain rate.   Note that the values for 𝜀𝜀𝑖𝑖
𝑝𝑝 are not calculated 

for rates of  10−3 𝑠𝑠−1 or less as the damage model is not active during low strain rates, 

instead the shear-yield mechanism dominates accompanied by large stretches. 
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Step 2. For the micromechanics fracture criterion expressed in Eq. (2.36), the results from 

the notched cylindrical bar testing in section 2.2.4 are used to determine the rate dependent, 

stress state independent parameters (𝑑𝑑𝑑𝑑/𝑅𝑅)𝑐𝑐 and 𝛽𝛽. Given the experimental values of the 

average fracture strain, 𝜀𝜀𝑐𝑐 versus triaxiality, 𝜂𝜂 as shown in Fig. (2.4), the critical equivalent 

plastic strain, 𝜀𝜀𝑐𝑐𝑃𝑃 = 2𝑙𝑙𝑙𝑙(𝐷𝐷0/𝐷𝐷𝑐𝑐) is calculated. Next, an assumption is made to enforce a 

linear fit of average values (𝑑𝑑𝑑𝑑/𝑅𝑅)𝑐𝑐  versus 𝜂𝜂 conditioned to a zero slope (i.e. stress-state 

independence) for each strain rate.  Based on this constraint, there exists a unique 𝛽𝛽 for 

each strain rate.  Fig. 2.15 shows the results and variation of the stress-state independent 

micromechanics fracture criterion, (𝑑𝑑𝑑𝑑/𝑅𝑅)𝑐𝑐 vs. triaxiality, 𝜂𝜂. 

 

Similar to the results of [57] for polycarbonate, the experiments for this work show that 

(𝑑𝑑𝑑𝑑/𝑅𝑅)𝑐𝑐 for polypropylene also exhibits a stress-triaxiality independence but decreases 

with increasing strain rate for the notched bars as shown in Fig. 2.16.  Hence, the 

approximate function for input strain rate versus 𝛽𝛽 to calibrate the corresponding (𝑑𝑑𝑑𝑑/𝑅𝑅)𝑐𝑐 

is obtained as, 

 𝛽𝛽 = −0.184𝑙𝑙𝑙𝑙(𝜀𝜀̇)− 0.305,   for   𝜀𝜀̇ > 10−3 𝑠𝑠−1 (2.55) 

where 𝜀𝜀̇ is defined as the input strain rate.  This yields the following values for 𝛽𝛽 for the 

two strain rates as, 

𝛽𝛽 = 0.54  for  𝜀𝜀̇ =  10−2 𝑠𝑠−1, and 𝛽𝛽 = 0.12  for  𝜀𝜀̇ =  10−1 𝑠𝑠−1, respectively. 
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Step 3. The critical damage parameter 𝑑𝑑𝑐𝑐 is estimated by repeating the similar numerical 

trial-error procedure to match the final failure point of the experimental data for the tensile 

bar.  Following which, the 𝑑𝑑𝑐𝑐 values obtained for the two strain rates are as,  

𝑑𝑑𝑐𝑐 = 0.85  for  𝜀𝜀̇ =  10−2 𝑠𝑠−1, and 𝑑𝑑𝑐𝑐 = 0.61  for  𝜀𝜀̇ =  10−1 𝑠𝑠−1, respectively 

 

 

Figure 2.15.  Stress independent constant (𝑑𝑑𝑑𝑑/𝑅𝑅)𝑐𝑐 as a function of stress triaxiality, 𝜂𝜂 for 

different strain rates. 
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Figure 2.16.  𝛽𝛽 as a function of input strain rate, 𝜀𝜀̇. 

                                       

2.5 Numerical simulations and comparison with 

experiments 

 

The proposed constitutive theory is implemented as a user material (VUMAT) subroutine 

in the finite element program ABAQUS/Explicit (ABAQUS 2017).  To validate the 

predictive capabilities of the theory and its numerical implementation, several simulations 

are carried out on different specimen geometries for the isotactic polypropylene defined in 

section 2.  The response is studied for four separate cases: 

(i) A uniaxial tension simulation for a 3D dog-bone geometry (ASTM D638).   
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(ii) A uniaxial compression simulation of a 3D cylinder.   

(iii) Tensile simulation of a thin plate with a circular hole at the center.   

(iv) Three-point bending simulation of a notched beam.   

 

For load cases (i) through (iv), the results of the numerical simulations for the macroscopic 

load-displacement curves are compared against the experimental results for three input 

strain rates of 10−3 𝑠𝑠−1, 10−2 𝑠𝑠−1, and 10−1 𝑠𝑠−1 respectively.   

 

2.5.1 Uniaxial tension simulation for a 3D dog-bone geometry 

 

For the specimen geometry, a standard tensile dog-bone specimen is used as defined in 

ASTM D638.  For the finite element approach, a 1/8 model as shown in Fig. 2.17(a) is 

used.  Symmetry conditions are used along the symmetry planes as shown and a time 

dependent displacement of 20 mm is applied to the top surface of the sample.  The domain 

is discretized as shown in Fig. 2.17(b) using 8-noded hexahedron elements (C3D8R) with 

reduced integration.  To regularize the mesh density for the damage simulation, the 

minimum element size is set to be as 0.36 mm. 
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Figure 2.17.  (a) Specimen geometry and boundary conditions. (b)  8-noded hexahedron mesh 

using C3D8R elements. 

Fig. 2.18 shows the results from the simulation.  It is seen that the model is able to predict 

the load-deformation response captured through the yield point and ultimate failure point.  

For the low strain rate of 10−3 𝑠𝑠−1 in Fig. 2.18(a), the simulation model captures the yield 

point reasonably well but begins to deviate from the test response when the material starts 

to draw as shown in Fig. 2.18(a) at load-point (3), due to collapsing of the elements in the 

FE mesh.  For the two higher strain rates of 10−2 𝑠𝑠−1, and 10−1 𝑠𝑠−1 respectively, the 

response is captured well and there is a good agreement with the post yield response until 

failure.  Contour plots of the maximum principal stress 𝜎𝜎1, and the equivalent plastic shear 

strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 , corresponding to point (1) in the load-displacement plot, are shown in Fig. 

2.18(b) and (c), respectively just prior to critical fracture for the strain rate of 10−1 𝑠𝑠−1.  
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Both contours indicate that cavitation induced damage initiates in the gage section and 

continues to evolve along the cross section until the state of complete fracture.   

 

Fig. 2.18(d) shows the resulting damage variable, 𝑑𝑑 at full fracture where the elements 

are removed for 𝑑𝑑 ≈ 𝑑𝑑𝑐𝑐 to show the damage propagation.  For the low strain rate of 

10−3 𝑠𝑠−1, the maximum principal strain contour plot is shown in Fig. 2.18(e) as the sample 

exhibits plasticity, necking, and a significant drawing at location (3) beyond which the 

finite elements begin to collapse due to excessive deformation. As can be seen from Fig. 

2.18(e), the post-yield softening response is under predicted by the model for 10−3 𝑠𝑠−1 as 

the specimen begins to neck. This might be due to the model’s inability to capture the micro 

mechanisms involved during the chain realignment phase in the post-yielding regime 

causing significant necking. 
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Figure 2.18.  (a) Comparison between the model prediction and experimental load-displacement 

curve. (b)  Maximum principal stress contour corresponding to load point (1).  (c)  Equivalent 

plastic shear strain contour corresponding to load point (1).  (d) Damage variable, d, corresponding 

to point (2) right after complete fracture.  (e) Principal logarithmic strain at point (3) as the neck 

propagates for the 10−3 𝑠𝑠−1 strain rate along the gauge section.   
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2.5.2 Uniaxial compression simulation of a 3D cylinder 

 

The specimen geometry used for this study is shown in Fig. 2.19(a).  The three-dimensional 

geometry is modeled considering 1/4 symmetry, using ABAQUS 8-noded hexahedron 

(C3D8R) elements with reduced integration as shown in Fig. 19(b).  Two rigid platens are 

used to compress the 1/4 cylinder and a frictional constant of 0.05 is defined between the 

sample and the platens to avoid slippage at the grip.  A time dependent displacement of 5 

mm is applied to the top platen and the model prediction from the simulation is plotted in 

Fig. 2.20.   

 

Figure 2.19.  (a) Experimental specimen geometry.  (b)  1/4 model finite element mesh 

discretization using ABAQUS-C3D8R elements. 
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Fig. 2.20(a) shows the rate dependent load-displacement response in comparison to the 

experimental results for three different strain rates.  As shown, the model is able to predict 

the rate dependent, large deformation response reasonably well.  Contour plots of the 

maximum principal stress 𝜎𝜎1, and the equivalent plastic shear strain rate 𝛾𝛾𝑝𝑝, corresponding 

to point (1) in the load-deformation curve are shown in Fig. 2.20(b) and (c), respectively 

just prior to element collapse for the strain rate of 10−1 𝑠𝑠−1.  Similar to the experimental 

results, the simulations show the barreling effect and the corresponding tensile stress field 

created due to the transverse shear in Fig. 2.20(b).  Fig. 2.20(d) shows the contour plot of 

the maximum principal strain just prior to the element collapse at an engineering strain of 

0.5 mm/mm corresponding to location (1). 
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Figure 2.20.  (a) Comparison between the experiments and numerically predicted load-

displacement curve. (b) Maximum principal stress plot corresponding to load point (1). (c)  

Equivalent plastic shear strain corresponding to load point (1). (d) Maximum principal logarithmic 

strain corresponding to load point (1). 
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2.5.3 Tensile simulation of a thin plate with circular hole at the 

center 

 

The specimen geometry used for this simulation is shown in Fig. 2.21(a).  The three-

dimensional geometry is modeled considering 1/4 symmetry, with the help of 8-noded 

hexahedron elements (C3D8R) in ABAQUS with reduced integration as shown in Fig. 

2.21(b).  The top surface is displaced 10 mm in the vertical direction.  To regularize the 

mesh density, the minimum element size is considered as 0.23 mm in the localized plastic 

strain region. 

 

 

Figure 2.21.  (a) Specimen geometry for the plate with a hole simulation.  (b)  Finite element 

mesh discretization using ABAQUS-C3D8R elements.   
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Fig. 2.22(a) shows the corresponding model predicted force-displacement curves as 

compared with the experimental results. For the low strain rate, the sample behaves similar 

as the tensile bar and continues to draw to a large stretch ratio.  The simulation results 

capture the yield point well for the 10−3 𝑠𝑠−1 and the 10−1 𝑠𝑠−1 strain rates, respectively.  

The model prediction corresponding to the input strain rate of 10−2 𝑠𝑠−1 matches the 

stiffness well, yet the damage response is relatively softer compared to the experimental 

result.  Contour plots of the maximum principal stress 𝜎𝜎1, and the equivalent plastic shear 

strain corresponding to point (1) in the load-displacement curve are shown in Fig. 2.22(b) 

and (c), respectively just prior to the complete failure for the strain rate of 10−1 𝑠𝑠−1.  Both 

contours indicate that cavitation induced damage initiates in the gage section and evolves 

along the cross section until complete fracture has occurred.  Fig. 2.22(d) shows the contour 

of the resulting damage variable, 𝑑𝑑 with the elements being removed for 𝑑𝑑 ≈ 𝑑𝑑𝑐𝑐 to show 

complete fracture.  An image of the cracked sample is also provided to compare with the 

experimental crack path as shown in Fig. 2.22(e). Further, in Fig. 2.22(f) and (g) a good 

agreement has been observed between the model predicted maximum principal strain, 𝜀𝜀1 

and the experimental Digital Image Correlation result for the strain contour 𝜀𝜀22.  

 Similar to the dogbone specimen, the post-yield softening response is under predicted for 

10−3 𝑠𝑠−1, as the sample begins to neck and the molecular chains arrange themselves into 

the aligned state.  Likewise, the discrepancy between the experiment and model prediction 

in this lower strain rate regime is arising due to the model’s inability to capture the micro 

mechanism involved in the chain realignment phase.  
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Figure 2.22.  (a) Comparison between the experiments and model predicted load-displacement 

curves at different strain rates. (b) Maximum principal stress plot corresponding to load point (1). 

(c)  Equivalent plastic shear strain corresponding to load point (1).  (d) Damage variable, d, 

corresponding to point (2) right after complete fracture (model prediction).  (e)  Cracked specimen, 

showing the physical crack path in the experiment. (f) Maximum principal strain 𝜀𝜀1 corresponding 

to point (1).  (g)  Experimental DIC strain contour for (𝜀𝜀22). 
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2.5.4 Three-point bending of a notched beam 

The geometry and the boundary conditions for the three-point bending beam 

simulation are shown in Fig. 2.23(a).   

Figure 2.23.  (a) Simulation specimen for the three-point bend geometry.  (b)  Finite element 

mesh discretization using ABAQUS-C3D8R elements.   

The beam has a notch of 1.5mm in length and 1.2mm tip diameter at the mid-span.   The 

three-dimensional geometry is modeled considering 1/2 symmetry, using 8-noded 

hexahedron (C3D8R) ABAQUS elements with reduced integration.  Fig. 2.23(b) shows 
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the representative mesh discretization.  The model is displaced for 15 mm in the vertical 

direction and a friction coefficient of 0.1 is used to resist the slippage between the 25.4 mm 

diameter rollers and the beam.  The rollers are modeled as rigid elements.  To regularize 

the mesh density in the plastic zone, the minimum element size is chosen as 0.22 mm for 

this simulation. 

Fig. 2.24(a) shows the experimental and model predicted load-displacement curves for the 

notched beam.  The yield point of the load-displacement curve and damage response is 

captured reasonably well by the model for the higher strain rates of 10−2 𝑠𝑠−1 and 10−1 𝑠𝑠−1.  

For the low strain rate of 10−3 𝑠𝑠−1 the experimental result shows a damage response, which 

is not captured by the simulation as the damage model is considered to be inactive in the 

lower strain rate regime.  It is to note that the experimental notched beam samples were 

designed to have thickness such that a plane strain situation prevails promoting fracture; 

whereas based on the transition strain rate of 10−3 𝑠𝑠−1 in the modeling only shear yielding 

mechanism is considered. Hence, the simulation does not show any damage response. The 

transition rate of 10−3 𝑠𝑠−1 , below which the damage model is considered inactive has been 

chosen based on the tensile stress-strain data and may not be accurate for multiaxial stress-

state in plane strain dominated geometries. Hence, further exploration is required in future 

study. 
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Figure 2.24.  Comparison between the experiments and numerically predicted load-displacement 

curve. (b) Maximum principal stress plot corresponding to load point (1). (c)  Equivalent plastic 

shear strain corresponding to load point (1).  (d) Damage variable, d, corresponding to point (2) 

right after complete fracture (simulation).  (e)  Cracked specimen, showing the physical crack path 

in the experiment. (f) Maximum principal strain 𝜀𝜀1 corresponding to point (1).  (g)  Experimental 

DIC strain contour for (𝜀𝜀22). 

 

In addition to the load-deformation plot, the contour plots of the maximum principal stress 

𝜎𝜎1, and the equivalent plastic shear strain 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 , corresponding to point (1) in the load-

displacement curve are shown in Fig. 2.24(b) and 2.24(c), respectively just prior to final 

fracture for the strain rate of 10−1 𝑠𝑠−1.  Both contours show the evolution of the plastic 
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strain field and cavitation induced damage initiation around the notch tip and its 

propagation until complete fracture has happened.  Fig. 2.24(d) shows the resulting damage 

variable, 𝑑𝑑 just prior to complete fracture. Further, Fig. 2.24(f) and (g) show a good 

correlation between the model predicted maximum principal strain, 𝜀𝜀1 and the 

experimentally obtained Digital Image Correlation result for 𝜀𝜀11 . 

 . 

 

2.6 Concluding remarks 

 

In this work, a large deformation elastic-viscoplastic constitutive model coupled with a 

continuum damage mechanics approach is presented for predicting rate-dependent failure 

response of the semicrystalline polymers.  The constitutive theory is based on a rate-

dependent viscoplastic flow rule to characterize the yield dominated response in 

semicrystalline polymers. The occurrence of cavitation growth, coalescence, and 

fibrillation is modeled with a continuum scale damage evolution, where the strain rate 

dependence and the stress triaxiality are considered as influencing parameters. Further, a 

cut-off strain rate of 10-3 s-1 is considered below which the damage model is not active in 

favor of a shear yielding mechanism.  Hence the proposed unified framework, can predict 

both the shear yielding and cavitation induced damage phenomena in the materials based 

on the input strain rate.  The proposed model is implemented into a commercial finite-

element program and various simulations are conducted. It is seen that, with the material 
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parameters properly calibrated, the model is able to reasonably-well predict the 

macroscopic load-displacement curves, local aspects of plasticity, and damage growth until 

final fracture.  
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3 Future recommendations 

 

The following items are recommended as future tasks: 

 

 A limitation of the present model shows that the existing shear-yield model 

underpredicts the stiffness response during the drawing phase of the material. 

Future exploration of the micromechanics parameters should be explored as they 

develop. 

 

 For the plane-strain beam in three-point bending, fracture is not predicted as the 

model is not active below the threshold strain rate.  Future work should include a 

deeper understanding of the micromechanics parameters involved with respect to 

the precise threshold strain between shear-yield damage and cavitation damage.  

Additionally, the present study considered uniaxial test data only to calibrate the 

damage model whereas future models should consider multiaxial stress states 

 

 

 A limitation of the proposed methodology is that many semicrystalline polymers 

have degradation mechanisms that involve crazing, cavitation, combinations of 
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the two, or neither of the two at all.  Although the constitutive model may 

certainly still have very good correlation with the macromolecular response for 

non-cavitating semicrystalline polymers, the primary drawback of the presented 

damage model is the focus on only cavitation growth and coalescence.  Future 

work could couple the existing constitutive equations with known damage 

response for the semicrystalline polymer of interest.   

 

 In the present study, the flow rule is limited to isothermal processes only.  This 

work only considers the rate dependent, large strain constitutive response for 

isotactic polypropylene homopolymer at room temperature.  This work does not 

consider the direct thermal heating due to molecular friction during rate 

dependent loads, however this proposed methodology can be extended further to 

included other applied isothermal temperatures above the glass transition 

temperature. 

 

 

 

 The coupled viscoplastic-damage model could also be extended to model other 

semicrystalline polymers that are know to exhibit similar marco level responses 



73 

with cavitation damage mechanisms, such as polyoxymethylene (POM) and high 

density polyethylene (HDPE). 
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Appendix   

 

 

A.1 Numerical implementation of the explicit stress update 

 

In this section, the numerical implementation of the constitutive theory outlined in 

chapter 2 is presented as a simple forward-Euler algorithm and shown below.  This is 

used along with the well-known central difference method [64]. 

 

• Known at time 𝑡𝑡𝑛𝑛:  𝑭𝑭𝑛𝑛, 𝑭𝑭𝑛𝑛
𝑝𝑝 , 𝛾𝛾𝑝̇𝑝𝑛𝑛, 𝑺𝑺𝑛𝑛𝑒𝑒 , 𝑺𝑺0𝑒𝑒𝑛𝑛, 𝑆𝑆1𝑛𝑛, 𝜙𝜙𝑛𝑛 

• Given at time 𝑡𝑡𝑛𝑛+1:  𝑭𝑭𝑛𝑛+1 

 

Step 1:  Back-stress, 𝑺𝑺𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 at time = 𝑡𝑡𝑛𝑛 

 

Using the explicit forward Euler approach, the pressure and mean normal stress at time, 

𝑡𝑡𝑛𝑛 is calculated as, 

  𝑝̅𝑝𝑛𝑛 = −1
3

(𝑡𝑡𝑡𝑡 𝑺𝑺𝑒𝑒𝑛𝑛)𝑰𝑰  and   𝜎𝜎𝑚𝑚𝑛𝑛 = − 𝑝̅𝑝𝑛𝑛     (A1) 

Following which, the plastic component of the left Cauchy-Green tensor is defined as, 
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 𝑩𝑩𝑝𝑝
𝑛𝑛 = 𝑭𝑭𝑝𝑝𝑛𝑛𝑭𝑭𝑝𝑝

𝑇𝑇
𝑛𝑛 (A2) 

where the deviatoric component of the left Cauchy-Green tensor is then determined as, 

 𝑩𝑩0
𝑝𝑝
𝑛𝑛 = −

1
3

(𝑡𝑡𝑡𝑡 𝑩𝑩𝑝𝑝
𝑛𝑛)𝑰𝑰 (A3) 

The effective distortional plastic stress is defined as, 

 𝜆𝜆𝑝𝑝𝑛𝑛 =
1
√3

�𝑡𝑡𝑡𝑡(𝑩𝑩𝑝𝑝
𝑛𝑛) (A4) 

and back stress modulus 𝜇𝜇 at time 𝑡𝑡𝑛𝑛 is then calculated as, 

 𝜇𝜇𝑛𝑛 = 𝜇𝜇𝑅𝑅
𝜆𝜆𝐿𝐿

3𝜆𝜆𝑝𝑝𝑛𝑛
𝜆𝜆𝑝𝑝𝑛𝑛
𝜆𝜆𝐿𝐿

⎝

⎛
3 − �𝜆𝜆

𝑝𝑝
𝑛𝑛

𝜆𝜆𝐿𝐿
�
2

1 − �𝜆𝜆
𝑝𝑝
𝑛𝑛

𝜆𝜆𝐿𝐿
�
2

⎠

⎞ (A5) 

In cases where the mean normal stress is positive (tension), then 𝜇𝜇𝑛𝑛 will be stored as a 

tensile value (as 𝜆𝜆𝐿𝐿 is a tensile material parameter).  Likewise, when the value of the 

mean normal stress is negative (compression), then 𝜇𝜇𝑛𝑛 will be stored as a compressive 

value (as 𝜆𝜆𝐿𝐿 is a compressive material parameter).   
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Finally, the back stress equation (Eq. 2.16) taken at time = 𝑡𝑡𝑛𝑛, for either tension or 

compression at the material point is calculated as, 

 𝑺𝑺𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑛𝑛 = 𝜇𝜇𝑛𝑛𝑩𝑩0
𝑝𝑝
𝑛𝑛 (A6) 

 

 

Step 2:  Direction of plastic flow, 𝑵𝑵𝑝𝑝 at time = 𝑡𝑡𝑛𝑛 

 

New notation is introduced here to capture the direction of plastic flow, defined in Eq. 

2.20 as for either tension or compression as, 

 𝑵𝑵𝑝𝑝 =  
(𝑺𝑺0𝑒𝑒)𝑒𝑒𝑒𝑒𝑒𝑒

2𝜏𝜏̅ =  
𝑺𝑺0𝑒𝑒 − 𝑺𝑺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2𝜏𝜏̅  (A7) 

Where the deviatoric component of the second Piola-Kirchoff elastic stress is defined at 

time = 𝑡𝑡𝑛𝑛 as, 

 𝑺𝑺0𝑒𝑒𝑛𝑛 = −
1
3

(𝑡𝑡𝑡𝑡 𝑺𝑺𝑒𝑒𝑛𝑛)𝑰𝑰 (A8) 

and the equivalent shear stress (Eq. 2.22) is defined as, 
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 𝜏𝜏̅𝑛𝑛 =
1
√2

�𝑺𝑺0𝑒𝑒𝑛𝑛 − 𝑺𝑺𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑛𝑛� (A9) 

and the direction of plastic flow, 𝑵𝑵𝑝𝑝𝑛𝑛
 for either tension or compression at the material 

point is then calculated as, 

 𝑵𝑵𝑝𝑝𝑛𝑛
=
𝑺𝑺0𝑒𝑒𝑛𝑛 − 𝑺𝑺𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑛𝑛

2𝜏𝜏̅𝑛𝑛
 (A10) 

 

 

Step 3:  Stress triaxiality ratio, 𝜂𝜂 at time = 𝑡𝑡𝑛𝑛 

 

The mean normal stress is defined in Eq. A1.  The von Mises equivalent stress is defined 

as, 

 𝜎𝜎𝑒𝑒𝑒𝑒𝑛𝑛= �3
2
𝑺𝑺0𝑒𝑒𝑛𝑛:𝑺𝑺0𝑒𝑒𝑛𝑛          (A12) 

leading to the definition of triaxiality at time = 𝑡𝑡𝑛𝑛 as, 

 𝜂𝜂𝑛𝑛= 𝜎𝜎𝑚𝑚𝑛𝑛
𝜎𝜎𝑒𝑒𝑒𝑒𝑛𝑛

          (A13) 
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Step 4:  Plastic flow rule, 𝑭𝑭𝑃𝑃𝑛𝑛 at time = 𝑡𝑡𝑛𝑛+1 

 

 Using the forward Euler approach at time = 𝑡𝑡𝑛𝑛+1, the flow rule is now able to be 

calculated from our first step at time = 𝑡𝑡𝑛𝑛.  The net shear stress for thermally activated 

flow as shown in Eq. 2.24 is now calculated as, 

 𝜏𝜏𝑒𝑒𝑛𝑛 ≝ 𝜏𝜏𝑛̅𝑛 − �𝑆𝑆1𝑛𝑛 + 𝛼𝛼𝑝𝑝𝑝̅𝑝𝑛𝑛� (A14) 

This now leads to the first forward time step for the calculation of the equivalent plastic 

shear strain rate taken from Eq. 2.23 as: 

 𝛾𝛾𝑝̇𝑝𝑛𝑛+1 = 𝛾𝛾0̇𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑄𝑄

−𝑘𝑘𝐵𝐵𝜗𝜗
� �𝑠𝑠𝑠𝑠𝑠𝑠ℎ �

𝜏𝜏𝑒𝑒𝑛𝑛𝑉𝑉
2𝑘𝑘𝐵𝐵𝜗𝜗

��

1
𝑚𝑚

 (A15) 

where 𝛾𝛾𝑝̇𝑝𝑛𝑛+1 can again take on a tensile or compressive value at the material point 

depending on the sign of the mean normal stress.  The plastic flow rule is taken from Eq. 

2.19 and then integrated to give the plastic deformation gradient for tension or 

compression as, 
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 𝑭𝑭𝑛𝑛+1
𝑝𝑝 =  𝑭𝑭𝑛𝑛

𝑝𝑝 + 𝛾𝛾𝑝̇𝑝𝑛𝑛+1𝑭𝑭𝑛𝑛
𝑝𝑝  (A16) 

 

 

Step 5:  Cauchy stress, 𝑻𝑻𝑒𝑒  at time = 𝑡𝑡𝑛𝑛+1 

 

Following the logic of the numerical implementation, all calculations below will have 

either a tensile or compressive value at the material point depending on the sign of the 

mean normal stress.  Now that 𝑭𝑭𝑛𝑛+1
𝑝𝑝  is determined from the last step, 𝑭𝑭𝑛𝑛+1𝑒𝑒  is now 

calculated as, 

 𝑭𝑭𝑛𝑛+1𝑒𝑒 =  𝑭𝑭𝑛𝑛+1𝑭𝑭𝑛𝑛𝑝𝑝
−1 (A17) 

Using 𝑭𝑭𝑛𝑛+1𝑒𝑒 , one can obtain the elastic right Cauchy-Green tensor as, 

 𝑪𝑪𝑛𝑛+1𝑒𝑒 =  𝑭𝑭𝑛𝑛+1𝑒𝑒 𝑇𝑇𝑭𝑭𝑛𝑛+1𝑒𝑒  (A18) 

Further, the elastic Green strain is then calculated as, 

 𝑬𝑬𝑛𝑛+1𝑒𝑒 =  
1
2

(𝑪𝑪𝑛𝑛+1𝑒𝑒 − 𝐼𝐼) (A19) 
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with the deviatoric portion of the Greens strain defined as, 

 𝑬𝑬0𝑒𝑒𝑛𝑛+1 =  𝑬𝑬𝑒𝑒𝑛𝑛+1 −
1
3

(𝑡𝑡𝑡𝑡 𝑬𝑬𝑒𝑒𝑛𝑛+1)𝑰𝑰 (A20) 

The second Piola-Kirchoff stress is then updated as, 

 𝑺𝑺𝑒𝑒𝑛𝑛+1 = 2𝐺𝐺𝑬𝑬0𝑒𝑒𝑛𝑛+1 + 𝐾𝐾(𝑡𝑡𝑡𝑡𝑬𝑬𝑛𝑛+1𝑒𝑒 )𝑰𝑰 (A21) 

Finally, leading to the definition of the damaged Cauchy stress as, 

 𝑻𝑻𝑒𝑒𝑛𝑛+1 = 𝐽𝐽𝑭𝑭𝑛𝑛+1𝑒𝑒 −1𝑺𝑺𝑒𝑒𝑛𝑛+1𝑭𝑭𝑛𝑛+1𝑒𝑒 −𝑇𝑇 (A22) 

 

 

Step 6:  Update of the internal plastic variables 𝑆𝑆1 and 𝜙𝜙 at time = 𝑡𝑡𝑛𝑛+1 

 

Similarly, the internal plastic variables below with either be tensile or compressive at the 

material point.  The rate form of the order parameter 𝜙𝜙, is calculated as, 

 𝜙̇𝜙𝑛𝑛+1 = 𝑔𝑔(𝜙𝜙∗ − 𝜙𝜙)𝛾𝛾𝑝̇𝑝𝑛𝑛+1 (A23) 
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which is then integrated to determine the scalar value of the order parameter 𝜙𝜙 , at time = 

𝑡𝑡𝑛𝑛+1, as: 

 𝜙𝜙𝑛𝑛+1 = 𝜙𝜙𝑛𝑛 + 𝜙̇𝜙𝑛𝑛+1Δ𝑡𝑡 (A24) 

For the coupled equation between 𝑆𝑆1 and 𝜙𝜙, the coupled parameter 𝑆𝑆1∗ at time = 𝑡𝑡𝑛𝑛+1 is 

updated as, 

 𝑆𝑆1∗𝑛𝑛+1 = 𝑏𝑏(𝜙𝜙∗ − 𝜙𝜙𝑛𝑛+1) (A25) 

Similarly, the rate form of the second internal plastic variables, 𝑆𝑆1 is calculated as, 

 𝑆𝑆1̇𝑛𝑛+1 = ℎ1�𝑆𝑆1∗𝑛𝑛+1 − 𝑆𝑆1�𝛾𝛾𝑝̇𝑝𝑛𝑛+1 (A26) 

and is then integrated to give, 

 𝑆𝑆1𝑛𝑛+1 = 𝑆𝑆1𝑛𝑛 + 𝑆𝑆1̇𝑛𝑛+1Δ𝑡𝑡 (A27) 
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Step 7:  Update of the damage variable 𝑑𝑑, at time = 𝑡𝑡𝑛𝑛+1 

 

To incorporate the proposed damage model, the update algorithm is modified as shown 

below.   The algorithm outlined above from step 1 to step 6 remains unchanged except 

for the following computations: 

 

• If the damage criteria for initiation is met (ie. 𝜀𝜀𝑒𝑒𝑒𝑒
𝑝𝑝 ≥ 𝜀𝜀𝑖𝑖

𝑝𝑝,      for  𝜀𝜀̇ ≥ 10−3 𝑠𝑠−1) as 

defined in Eq. 2.39, then the damaged net shear stress for thermally activated flow 

is determined by, 

 𝜏𝜏𝑒𝑒𝑛𝑛
𝐷𝐷 ≝ 𝜏𝜏̅𝑛𝑛 − �(1− 𝑑𝑑)2𝑆𝑆1𝑛𝑛 + 𝛼𝛼𝑝𝑝𝑝̅𝑝𝑛𝑛� (A28) 

• Likewise, the damaged second Piola-Kirchoff stress is then updated as, 

 𝑺𝑺𝑒𝑒𝐷𝐷𝑛𝑛+1 = (1 − 𝑑𝑑)2�2𝐺𝐺𝑬𝑬0𝑒𝑒𝑛𝑛+1 + 𝐾𝐾(𝑡𝑡𝑡𝑡𝑬𝑬𝑛𝑛+1𝑒𝑒 )𝑰𝑰� (A29) 

• Finally, the rate dependent damage variable 𝑑̇𝑑𝑛𝑛+1, is updated as, 

 𝑑̇𝑑𝑛𝑛+1 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝜂𝜂𝑛𝑛+1)
𝛾𝛾𝑝̇𝑝𝑛𝑛+1

(1− 𝑑𝑑)2 
(A30) 

• following which the rate dependent damage variable is then integrated as, 
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 𝑑𝑑𝑛𝑛+1 = 𝑑𝑑𝑛𝑛 + 𝑑̇𝑑𝑛𝑛+1Δ𝑡𝑡 (A31) 
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