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Abstract

Dinitrogen (N2) fixation and denitrification are two nitrogen (N) cycling processes
that despite differences in environmental requirements and constraints, co-occur in
aquatic ecosystems. The overall goal of this dissertation was to evaluate how spatial
heterogeneity of environmental variables 1) drive hot spots of N> fixation, denitrification
rates and gene abundances in streams, 2) facilitate co-occurrence of these processes
across wetland — stream — lake interfaces, and 3) affect differences in microbial
community composition in streams across U.S. ecoregions. We found hot spots of both
processes within 7 stream reaches in Michigan and Idaho, but rates of N fixation were
not directly related to relative gene abundances of nifH, while denitrification rates were
related to relative gene abundances of nirS. Spatial heterogeneity of organic matter and
dissolved oxygen concentrations were important predictors of rates of both processes. In
a survey across 5 wetland — stream — lake interfaces of Lakes Superior and Huron, we
found that rates of N fixation and denitrification occurred across stream, wetland and
shallow lake habitats and that phosphorus (P) availability was important for predicting
rates of both processes, while N availability was an important predictor of denitrification
and carbon (C) availability was important predictor of N fixation. Finally, in a survey of
microbial assemblages from 30 streams across 13 U.S. ecoregions, we found that
microbial community composition differed across ecoregions in alpha diversity and
relative Class abundances, but little of this variation was explained by environmental
variables. Together, these studies show that N fixation and denitrification co-occurred in
stream and coastal ecosystems and across spatial scales from stream reaches to

ecoregions. However, rates and microbial community composition are not explained fully

xi



by differences in environmental variables on the microhabitat, cross-habitat, or ecoregion
scale. N alone was not always an important predictor of the processes despite N being
thought of as the best indicator of these processes in the past. Overall, these studies
highlight the need to include both N> fixation and denitrification measurements in
biogeochemical studies for a better understanding of the complexity of N cycling in

aquatic ecosystems.

xii



1 Chapter 1: Introduction

Heterogeneity is defined as the variability in a process or pattern over space and time
(Palmer and Poff 1997). Spatial heterogeneity is an influential factor in ecological
systems that can affect the flux of organisms and materials in an environment (Pickett
and Cadenasso 1995). Spatial heterogeneity has been shown to affect the distribution and
diversity of organisms in environmental space such as algae and invertebrates in marine
intertidal habitats and birds in terrestrial ecosystems. (Paine and Levin 1981, Pickett and
Cadenasso 1995). Analyzing the effects of spatial heterogeneity can help explain many
complexities within an ecosystem such as species distribution, nutrient concentrations,
and biogeochemical fluxes (Pickett and Cadenasso 1995, Pringle et al. 1988, Dent and
Grimm 1999).

Aquatic ecosystems exhibit a high degree of spatial complexity that regulates
ecosystem processes. The spatial complexity of lakes, streams, and wetlands within a
drainage network can affect temperature, mixing of water, and nutrient processing within
each system (Jones 2010). Streams are characterized by habitat heterogeneity at multiple,
nested scales (Frissell et al. 1986) that, in turn, influences heterogeneity in streamwater
chemistry, organisms, and ecosystem processes (e.g., Dent and Grimm 1999, McGuire et
al. 2014). The flow of water in streams creates a spiraling transport pattern where
nutrients and organic matter are being primarily transported downstream rather than
stored (Newbold et al. 1983). In wetlands, however, water movement is slower, with
much water located in standing pools. Wetland ecosystems can trap organic matter,
remove excess nutrients from runoff (McCarthy et al. 2007, Uzarski et al. 2009), and

display physical and chemical gradients of plants and nutrients from the edge to the
1



interior (Cooper et al. 2012, Mitsch and Gosselink 2015). In near-shore lake areas,
nutrients can also be stored in sediments despite the vertical and horizontal mixing of
water. Differences in nutrient storage within and nutrient transport across these
ecosystems can promote differences in biogeochemical processes within and across
ecosystems.

Biogeochemical processing of elements like C and N are spatially and temporally
variable within ecosystems, which has consequences for whole-ecosystem fluxes and
budgets (McClain et al. 2003). Net N> flux in aquatic ecosystems is controlled by N»
fixation, denitrification, and anammox (Schlesinger and Bernhardt 2020, Zehr and
Capone 2021). Anammox is an anerobic process where ammonium is oxidized to N»
using nitrite and it may account for ~30-50% of N> production in oceans (Thamdrup and
Dalsgaard 2002). However, in freshwater ecosystems the contribution of anammox to N>
production is largely unknown (Crowe et al. 2017, Schlesinger and Bernhardt 2020), so
studies in freshwater ecosystems have focused on the contributions of N> fixation and
denitrification as the primary controls of N> flux. N> fixation is the microbial conversion
of atmospheric N> gas into an input of biologically available N, while denitrification is
the microbial conversion of nitrate (NO3) into N> gas, removing N from the ecosystem
(Schlesinger and Bernhardt 2020). Denitrifying bacteria are primarily heterotrophic
anaerobes, while N> fixing bacteria are more diverse encompassing heterotrophic
anaerobes in sediments to photosynthetic cyanobacteria (Groffman et al. 2009, Vitousek
et al. 2002). Both processes have different N requirements, which is why they have not
been extensively studied together in freshwater ecosystems. N> fixation tends to be

favored when NO3™ concentrations are low because N> fixation has significant energy
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costs to the organism (Grimm and Petrone 1997, Kunza and Hall 2013), while
denitrification requires higher concentrations of NOs3™ to use as an oxidant (Arango et al.
2007). Despite this difference in N requirements, we have previously found that N»
fixation and denitrification co-occur in streams (Eberhard et al. 2018), similar to what
others have found in coastal areas (Fulweiler and Weiss 2014, Newell et al. 2016). Our
previous results suggest that spatial heterogeneity of controlling factors is an important
mechanism underlying this co-occurrence, but spatially explicit sampling is required to
understand how spatial heterogeneity may facilitate hotspots and whole-ecosystem
contributions of these processes.

Spatial heterogeneity of environmental variables has been shown to affect N cycling
at multiple scales in aquatic ecosystems. In wetlands, the spatial gradient of nutrient
concentrations can create conditions more suitable for different microorganisms to
perform processes that are not all favorable under one type of nutrient limitation (Cooper
et al. 2016). Variation in substrate, light, temperature, and organic matter can also affect
rates of these processes at the reach and sub-reach scale of streams (Holmes et al. 1996,
Marcarelli and Wurtsbaugh 2009, Eberhard et al. 2018). Spatial variation in
environmental conditions can create hot spots for biogeochemical processes’ which may
facilitate coexistence of processes that require very different environmental conditions to
occur (McClain et al. 2003). These hot spots may also be promoted by variation in
microbial community composition that is driven by variation in environmental conditions
within and/or among ecosystems (McClain et al. 2003). Through the use of 16S rRNA
sequencing and qPCR that targets genes associated with enzymes involved in each

process (nitrogenase (nifH) with N» fixation and nitrite reductase (nirS, nirK), nitrate
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reductase (narG), and nitrous oxide reductase (nosZ) with denitrification) studies have
shown that variation in environmental factors can be correlated to changes in the
microbial community and their resulting biogeochemical potential (Zehr and Capone
2021, Wallenstein et al. 2006). This can also be observed across biomes where variability
in microbial assemblages can control biogeochemical processes because organisms that
differ in processing capabilities thrive in environments that differ (Fierer et al. 2012).

The goal of this dissertation was to examine how spatial heterogeneity affects the
biogeochemical processing of N in aquatic freshwater ecosystems. Specifically, I
examined how the variability in environmental conditions and limitation by key nutrients
affect rates of N fixation and denitrification as well as composition of microbial
assemblages at different spatial scales.

In chapter 2, I measured rates of N fixation and denitrification and relative
abundances of genes nifH and nirS in patches of 7 stream reaches across MI and ID. I
hypothesized that spatial variability in environmental variables would facilitate hot spots
of process rates and gene abundances. I found that hot spots of N fixation and
denitrification occurred across all streams at the patch scale and that there was no direct
relationship between N fixation rates and relative abundances of nifH, but there was a
relationship between denitrification rates and relative abundances of nirS. Spatial
heterogeneity of organic matter and dissolved oxygen availability were important to
predicting rates of both N> fixation and denitrification in these streams. These results
suggest that spatial heterogeneity in environmental variables is important to the
occurrence of N fixation and denitrification in streams and the overall N> flux of these

ecosystems.



In chapter 3, I evaluated how spatial variability in nutrient limitation and other
environmental variables facilitate rates of N> fixation and denitrification across 5 wetland
- stream - lake interfaces of Lakes Superior and Huron. I hypothesized that there would
be spatial variability in nutrient limitation across the interfaces and that the spatial
variability of nutrient limitation and other environmental variables would facilitate the
occurrence of N> fixation and denitrification across the interfaces. My results showed
that there was spatial variability in nutrient limitation of attached algae across the
interfaces with no limitation, N limitation and N + P limitation detected, but that was not
directly related to process rates. Rates of both processes were variable among wetland,
stream, nearshore lake, and transition zone habitat types in the interfaces and dissolved P
concentrations were important predictors of both processes, while dissolved N
concentrations were an important to predictor only to denitrification and C (as organic
matter and dissolved organic carbon) was an important predictor to N> fixation rates.
These results suggest that coastal ecosystems should not be thought of us a simple sink of
N, but as more biogeochemically complex because processes both removing and
inputting N are occurring at relatively high rates.

In chapter 4, I evaluated the microbial community composition in 30 streams
across 13 ecoregions using 16S rRNA Illumina sequencing to test if differences in
environmental variables across ecoregions drove differences in microbial assemblages.
Using a distance-based redundancy analysis I found that microbial community
composition was significantly different across ecoregions, but that differences in
environmental variables only explained a small portion of the variance in this relationship

with the two most important axes explaining 4.2% and 2.8% of the variability. The
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program FAPROTAX was used to assess the functional potential of these communities to
perform N> fixation and/or denitrification, which were compared to average stream reach
rates of N fixation and denitrification. The functional potential of these communities was
not directly related to rates of N fixation or denitrification at the stream reach scale.
Variability of environmental characteristics within stream reaches may better explain

differences in microbial community composition.
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2 Chapter 2: Patch dynamics of N2 fixation and
denitrification in streams

2.1 Abstract

Stream ecosystems are characterized by high degrees of spatial heterogeneity that
can result in patches of microhabitats that vary in their composition and support different
groups of organisms. This feature may facilitate the co-occurrence of biogeochemical
processes thought to be incompatible due to contrasting environmental constraints, like
N> fixation and denitrification, through the creation of hot spots. We hypothesized that
hot spots of N fixation and denitrification would occur in streams and that variation in
environmental variables would facilitate the occurrence of both processes. To test this
hypothesis, we measured rates of N> fixation and denitrification along with relative
abundances of the genes nifH and nirS in patches determined by channel geomorphic
units and substrate type in 4 Idaho and 3 Michigan streams. We found that hot spots of N>
fixation and denitrification occurred in all stream reaches, and that rates of N2 fixation
were not correlated to nifH relative abundances, while nirS was positively correlated with
denitrification rates. Predictive modeling showed that organic matter and dissolved
oxygen concentrations predicted rates of N» fixation, denitrification, and nifH relative
abundance. Phosphorus (P) concentrations and the ratio of dissolved inorganic N to total
dissolved P also were important predictors of N> fixation rates and the relative
abundances of nifH and nirsS, while variables related to N alone were important predictors
of relative abundances of nifH and nirS. However, there was generally more variation in

all measured environmental variables among than within streams. These results suggest
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that spatial heterogeneity in environmental variables among streams is important to the

occurrence of N» fixation and denitrification and the overall N> flux of these ecosystems.

2.2 Introduction

Patches, or spatially-related areas that control ecosystem structure and function, are
created by stream heterogeneity (Pringle et al. 1988). The framework of patch dynamics
has inspired the study of hot spots, which are patches that show high reaction rates
relative to the surrounding spatial matrix (McClain et al. 2003). Hot spots can have
disproportionate contributions to ecosystem nutrient fluxes even if the overall, average
conditions do not favor a particular biogeochemical process (McClain et al. 2003,
Groffman et al. 2009, Pinay et al. 2015). Hence, hot spots may facilitate the co-
occurrence of biogeochemical processes assumed to be mutually exclusive, like N>
fixation and denitrification.

N> fixation and denitrification are important N cycle processes that together
control net N> flux in ecosystems (Fulweiler and Heiss 2014). N> fixation is the microbial
conversion of atmospheric N> gas into an input of biologically available N, while
denitrification is the microbial conversion of nitrate into N2 gas, removing nitrogen from
the ecosystem (Schlesinger and Bernhardt 2020). Both processes have differing
environmental constraints. N> fixation is favored when nitrate (NO3") concentrations are
low because N> fixation has significant energy costs to the organism (Grimm and Petrone
1997, Kunza and Hall 2013), while denitrification requires higher concentrations of NO3"
to use as an oxidant (Arango et al. 2007). Small-scale variation in environmental factors

can control or limit rates of N» fixation and denitrification. Denitrification rates vary
12



spatially with organic matter and temperature at the reach and sub-reach scale (Holmes et
al. 1996, Groffman et al. 2005, Eberhard et al. 2018). Both N> fixation and denitrification
rates vary on the microhabitat scale among substrate types, with higher rates of N»
fixation on rocks and higher rates of denitrification on fine benthic organic matter (Kemp
and Dodds 2002, Marcarelli and Wurtsbaugh 2009, Eberhard et al. 2018). These
environmental variables create fine-scale differences in process rates that may also lead
to hot spots of the processes in stream ecosystems, yet these processes are rarely studied
simultaneously due to assumptions that reach-average conditions are most important for
determining process rates (Marcarelli et al. 2008, Eberhard et al. 2018).

Variation in environmental conditions can also lead to spatial variability in
microbial assemblages, including the microbes responsible for N> fixation or
denitrification (McClain et al. 2003). Spatial heterogeneity in dissolved inorganic
nitrogen (DIN) and NO3™ concentrations have been shown to affect the distribution of N>
fixing cyanobacteria in stream reaches (Dent and Grimm 1999, Henry and Fisher 2003).
Through the use of 16S rRNA sequencing and qPCR that targets genes associated with
enzymes involved in each process (nitrogenase (nifH) with N> fixation and nitrite
reductase (nirS, nirK), nitrate reductase (narG), and nitrous oxide reductase (nosZ) with
denitrification) studies have shown that variation in environmental factors can be
correlated to changes in the microbial community and their resulting biogeochemical
potential (Zehr and Capone 2021, Wallenstein et al. 2006). For example, Wakelin et al.
(2008) showed that the spatial proximity of sediment to a point nutrient source from a
wastewater treatment plant affected the abundance of narG in stream sediments. Ambient

nutrient and iron concentrations also can affect the abundance of N»-fixing microbes,
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nifH, and N fixation activity (Santos-Caton 2007, Larson et al. 2018). Gene abundance
of nirK and nirS can be correlated to changes in ash free dry mass content of sediment,
ambient N concentrations, and NO3™ uptake (Knapp et al. 2009, Graham et al. 2010). The
abundance of the gene nosZ can be correlated to changes in organic matter concentrations
and temperature in streams, but not necessarily to denitrification rates (Baxter et al. 2012,
Baxter et al. 2013). The presence of a gene in a microbial community does not
necessarily mean the process the gene is involved in is actually occurring. However,
spatial variability in the presence of these genes could lead to spatial variability in the
potential for biogeochemical processes.

The goal of this study was to evaluate how the spatial heterogeneity of
environmental variables in patches facilitate hot spots of N> fixation, denitrification and
microbial gene abundances in stream ecosystems. First, we evaluated whether hot spots
of N fixation and denitrification were present in study reaches by comparing process
rates measured within patches to reach-average rates. Second, we hypothesized that
patches with more light availability and lower dissolved inorganic nitrogen (DIN)
concentrations would have higher rates of N> fixation and nifH gene abundance, while
patches with more organic matter, lower hyporheic dissolved oxygen concentrations, and
higher DIN concentrations would have higher rates of denitrification and nir$S gene
abundance. Finally, we evaluated how habitat complexity was related to the contributions
of N fixation and denitrification at the whole-reach scale. We hypothesized that reaches
with more patches would have more balanced fluxes of N> at the reach-scale, as they

would facilitate both removal of N> via fixation and creation of N> by denitrification.
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2.3 Methods
2.3.1 Study Area

This study was conducted in 3 streams in Michigan and 4 streams in Idaho that
had a gradient of nitrate (NOs3") concentrations among streams and high variability in
substrate cover within streams (Table 2.1). The 3 Michigan streams (Gratiot, Pilgrim, and
McGunn) are all located on the Keweenaw Peninsula (237 m.a.s.l) of Michigan’s Upper
Peninsula, and are tributaries of Lake Superior or the Keweenaw Waterway. The Pilgrim
River had a mean daily discharge over a 4-year period of 0.91 m?/s (USGS 04043016
Pilgrim River at Paradise Road), the Gratiot River had a mean daily discharge over a 1-
year period of 0.34 m?/s (USGS 04040260 Gratiot River at 5 Mile Point Road), and
McGunn Creek had a spot measurement discharge of 0.21 m3/s on August 16%, 2016
(Table 2.2). This region received ~ 107 cm of rain and ~ 389 cm of snow in 2017 (NOAA
online weather data). Of the 4 Idaho streams, 3 streams (South Fork Mink Creek, Upper
Portneuf, and Gibson Jack) were located in the Portneuf River watershed and 1 stream
(Diggie Creek) was located in the Snake River watershed, both located near Pocatello,
Idaho. The Portneuf River watershed drains a 3,445 km? basin (elevation 1,330 to 2,823
m.a.s.]) and the Snake River watershed drains a 280,000 km? basin (elevation 109 to
2,806 m.a.s.l). Both watersheds are located in a semi-arid region that receives
approximately 30 cm of rainfall annually and the Portneuf River is dependent on the
underlying aquifer and snowmelt runoff from surrounding mountains for water (Minshall
and Andrews 1973). In 2017, the Pocatello area received ~178 cm of total snow
accumulation (NOAA online weather data). The annual mean discharge of the Portneuf

River measured at Pocatello ranged from 3.7 — 9.7 m>/s over the last ten years (USGS
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Water Resources, Station 13075500). South Fork Mink Creek had a spot discharge
measurement of 0.01 m3/s on July 23", 2016, Gibson Jack had a measurement of 0.12
m3/s on July 21%, 2017, and Diggie Creek had a measurement of 0.42 m>/s on August 8",
2016 (Table 2.2). In both regions, discharge is highly variable with spring snowmelt. In
the Portneuf region, except for Diggie Creek where flows are more stable, discharge
begins to rise in late March/early April as temperatures rise and snowmelt occurs in
higher elevations, reaching a peak in late May/early June and declining to baseflow
discharge in late July (Marcarelli et al. 2010). In the Keweenaw, the annual hydrograph
can be highly variable in timing and duration with a general trend of increased and peak
discharge occurring somewhere between late March and early May due to snowmelt and
declining to baseflow by July, with variation in summer and fall associated with storm

events (Meingast et al. 2020).
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2.3.2 Study Design
2.3.2.1 Mapping and Calculating Patch Area

On the first sampling day at each stream, a rough habitat map was made for an
~50-80 m long reach. Reach length differed among sites based on stream width and the
number of pools or riffles it took to reach approximately 20 sampling patches. Grid paper
and measuring tape were used to create the patch-level maps of each stream reach (Fig.

2.1, also see Appendix 1 Fig. 1A-7A).

Figure 2.1a. Example of habitat maps constructed for South Fork stream reach separated
in three parts. 2.1b. Display of marked microhabitats within a riffle geomorphic unit in
South Fork. From left to right there is a rock, macrophyte and sediment microhabitat.

Visual assessment in each stream reach was used to break down the reach into

pools and riffles first. Then, substrate type within each pool and riffle was used to assign
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patches. Patch area was later calculated by counting each cell of grid paper occupied by a

given patch and then multiplying it by the cell area in m?.

2.3.2.2 Substrate Collection

N: fixation and denitrification rates were measured by acetylene reduction and
acetylene block, respectively, mid-day during peak hours of sunlight. Each stream was
sampled over two days due to the number of patches in each stream. Both process rates
were measured on the same sampling day for each patch. The two sampling days per
stream were typically back to back, but in some cases were not due to inclement weather.
Chambers used for these techniques varied by substrate type. 2-L polycarbonate food
storage containers were used for rock and larger macrophyte substrate (Gettel et al. 2007,
Eberhard et al. 2018). The chamber lids were sealed airtight with a Viton o-ring, and
were fit with a 13x20 mm septa for sample collection. For sediment, wood, and smaller
macrophyte substrate, chambers were made from pint size glass mason jars and lids were
similarly fit with an airtight sampling septa.

Rock substrate was collected in each patch by haphazardly sampling rocks from
the study area and placing them in the polycarbonate chamber until the bottom was
covered. Sediment substrate was collected haphazardly from sediment patches within
each stream using a 7 cm diameter suction corer to collect ~200-400 mL of sediment that
was then placed into the mason jars. Macrophytes were collected using chamber lids to
approximate surface area of macrophyte to sample, then pulling from the root and placing
in chambers. Wood was collected by haphazardly sampling wood from wood patches
until the bottom of a mason jar was mostly covered.
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For each patch there were 1-4 sample chambers and 1-4 blank chambers, with
each sample chamber having a paired blank chamber. The number of sample and blank
chambers depended on the size of a patch in a stream. Some streams had very large
patches of a single substrate type, so we collected replicate samples in these larger
patches. For example, one sediment patch in Diggie Creek was 390 m? that was
represented in the data with 2 replicates, while the largest sediment patch in South Fork
was 59 m? and had 1 replicate (see Appendix 1A, 2A). The blank chambers were set up
to simulate an environment with minimal N> fixation or denitrification to control for
chamber effects. Materials used for the blanks were selected based on their relative
specific heats to mimic the specific heats of incubated substrates to correct for changes in
temperature. Rocks found on the shore near the stream were used for blanks for stream
rocks, and stream water was used as a blank for sediment, wood, and macrophyte

substrates.

2.3.2.3 N> Fixation

N> fixation rates were measured using acetylene reduction (Capone 1993, Dodds
et al. 2017). An acetylene-filled balloon was added to each chamber. Chambers were
filled with stream water and sealed underwater, then balloons were popped with a needle
through the sampling septum to introduce a 20% acetylene headspace. Chambers were
then shaken for approximately 20 seconds to equilibrate the gas dissolved in the water
with that in the headspace. Initial gas samples were collected within 5 minutes of sealing
the chambers. Chambers were placed in the stream for a 2-hour incubation to maintain
ambient stream temperatures. Chambers were shaken again to equilibrate and then final
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samples were collected. All gas samples were placed into evacuated 9-mL serum vials
and kept in the dark until analyzed. Ethylene concentrations were measured using a SRI
8610C gas chromatograph equipped with a Hayesep T column, He carrier gas, and a
flame ionization detector. The column oven was set to 40 °C. To obtain N fixation rates,
ethylene concentrations in the chambers were compared to 100 ppm ethylene standards
(Matheson Tri Gas). N> fixation rates were calculated following Capone (1993) and
Dodds et al. (2017), then converted to pg of N assuming a ratio of 3 mols of ethylene

produced for every 1 mol of N> gas potentially fixed (Capone 1993).

2.3.2.4 Denitrification

Denitrification rates were measured using the acetylene block method (Groffman
et al. 2006). Chloramphenicol was used to suppress additional protein synthesis during
the incubation in all chambers. We measured nutrient-amended, potential rates because
most previous stream studies have used this method and we wanted to be able to compare
estimates to these studies, and because this method is quick and easy to run with a large
number of replicates to estimate rate variability. Moreover, the acetylene block method
also inhibits nitrification, so measuring without amendments of nitrate can underestimate
denitrification rates (Dodds et al. 2017). However, the chambers were not sparged with
nitrogen or helium to create anoxic conditions. Each chamber received 0.62 g L' Glucose
as a C source and 0.62 g L' NaNOs as an N source, plus chloramphenicol (2 g L!). After
the amendment, acetylene was introduced, chambers were incubated, and initial and final
gas samples were collected as described previously for N> fixation. Nitrous oxide (N20O)
concentrations were measured using a SRI 8610C gas chromatograph equipped with a
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Hayesep D column, He carrier gas, and an electron capture detector. The column oven
was set to 40 °C. N2O concentrations in chambers were compared to standard
concentrations of 1000 ppm N>O (Matheson Tri Gas). Denitrification rates were

calculated following Dodds et al. (2017).

2.3.2.5 Microbial sampling and gPCR analysis

Biofilm (from rock substrate) and substrate samples (sediment, wood, or
macrophyte) were taken from each sample chamber in every stream patch and placed in a
sterile 15 mL falcon tube. Rocks were taken out of the chamber and scrubbed, and 12 mL
of scrub water was poured into the falcon tubes to collect biofilm samples. 12-mL
sediment cores were taken from sediment chambers using a 10 mL syringe and placed
into the falcon tubes. Wood chambers were sampled by using a pocketknife to cut off ~ 4
surface shavings from each stick in a chamber and then placed into the falcon tubes with
chamber water. Macrophyte was sampled by tearing off a small part of the macrophyte
and placing it in a falcon tube with the chamber water. All 15 mL falcon tubes were
placed in a mobile -20 °C freezer after collection and in a -10 °C freezer upon return to
the lab for storage. DNA from each sample was extracted using the Power-soil DNA
Isolation Kit (Qiagen). DNA extracts were then diluted 1:10 in preparation for
quantitative polymerase chain (QPCR) analysis to dilute out potential PCR inhibitors and
stored in a -20 °C freezer. The 10-fold dilution of the DNA extracts was derived
empirically by testing that a 1:10 dilution was still detectable compared to a 1:100
dilution. Analyzed samples for the gene nifH came from chambers where rates of N>

fixation were measured and samples for the gene nirS came from chambers where rates
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of denitrification were measured. To quantify the gene of interest for N> fixation, nifH,
the primers PolF (5’-TGC GAY CCS AAR GCB GAC TC-3’) and PolR (5’-ATS GCC
ATC ATY TCR CCG GA-3’) were used (Poly et al. 2001). The primers NirS1F (5’-CTT
AYT GGC CGG CRC ART-3") and NirS3R (5’-GCC GCC GTC RTG VAG GAA-3’)
were used in reactions to quantify the gene of interest for denitrification, nirS (Braker et
al. 1998). For each qPCR reaction a 20 pL mixture was made of 10 pL of PowerTrack
SYBR Green Master Mix, 0.5 pL of the forward primer (20 uM), 0.5 pL of the reverse
primer (20 uM), 3 uL of 1:10 dilution of sample DNA, and 6 uL of PCR grade water.
qPCR was performed on an Applied Biosystems Step ONE plus qPCR machine. The
thermal cycling conditions for the nifH assay were 10 min at 95°C, then 40 cycles of
denaturation at 95°C for 10 s, annealing at 60°C for 30 s, and elongation at 72°C for 30 s
(Fan Lu 2013). For the nirsS assay the thermal cycling conditions began at 95°C for 15
min, then 40 cycles of 94°C for 15 s, 55°C for 30 s, and 72°C for 30 s (Newell et al.
2016). Each assay was performed in a 96-well plate with triplicate samples of a negative
control and triplicate environmental samples. Automatic analysis settings were used to
determine the Cycle threshold values (Ct) of each sample. Ct values that were originally
undetermined were given a Cr value of 40 to indicate in the 40 cycles the concentration
of DNA in the sample did not pass the threshold. Ct values were then averaged for each
patch and relativized to the median value of the respective target gene. The relativized Ct
values were then multiplied by -1 to account for a greater negative difference between the
median Cr value and original Cr values meaning more DNA concentration in the

samples.
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2.3.2.6 Substrate Analysis

To scale process rates by substrate area, all substrate material was collected and
analyzed after incubations. Sediments were analyzed for ash free dry mass (AFDM),
which provides an estimate of the total organic material present in a sample and is
measured as the difference between the mass of the oxidized samples and the initial dry
samples. AFDM samples were dried at 50°C, weighed for dry mass and then oxidized in
a muffle furnace at 550°C, rewetted, and dried before a final weighing. Surface area and
volume of all substrates were also measured to scale process rates for surface area.
Surface area for rocks and wood was determined by weighing tracings of the sampled
rocks. The weights were then compared to a standard curve to calculate area (Bergey and
Getty 2006). Sediment surface area was calculated as the diameter of the corer.
Macrophyte surface area was calculated as the diameter of the chamber lid. Rock volume
was determined using displacement and sediment volume was determined by multiplying

the surface area by average sediment core depth in the jar.

2.3.2.7 Environmental Characteristics

To test the hypothesis that variation in nutrient concentrations within patches
would drive differences in N> fixation and denitrification process rates as well as gene
abundances of nifH and nirS, we collected ~40 mL water samples from each stream
patch. The water was filtered using Millipore 0.45 pm nitrocellulose membrane filters
into 60 mL bottles. Samples were frozen until later laboratory analysis. NH4" was
analyzed using a fluorometric method (Holmes et al. 1999, Taylor et al. 2007) on a

Turner Aquafluor (Turner Designs, Palo Alto California). NO3™samples from 2016 were

25



analyzed via the cadmium reduction method on an auto analyzer by the University of
Michigan Biological Station Analytical Lab and in 2017 were analyzed on a SEAL AQ>
discrete water analyzer using the AQ> method EPA-127-A Rev. 9. DIN concentration
was then calculated by adding concentrations of NH4" and NOs™. Soluble reactive
phosphorus (SRP) and total dissolved phosphorus (TDP) samples were analyzed on a
Thermo Scientific 10s UV-Vis spectrophotometer in 2016 (and 2017 for TDP) using the
ascorbic acid method and molybdenum antimony colorimetric determination methods
(APHA 2005). For TDP samples, an ammonium persulfate digestion was used prior to
this analysis. The 2017 SRP samples were analyzed on a SEAL AQ> discrete water
analyzer using the sed AQ> method EPA-155-A Rev. 0.

To further test the hypothesis regarding environmental variables as predictors of
N> fixation and denitrification rates as well as gene abundances of nifH and nirS, we
measured canopy cover (%) using a spherical densiometer in each patch (Lemmon 1956).
Water velocity (m/s) in each patch was measured using a Marsh McBirney Flo-mate
attached to a wading rod to measure velocity (m/s) at 0.6 x stream depth. Peizometers
were installed used in each patch to measure hyporheic dissolved oxygen concentrations
(DO mg/L). Peizometers were made of 5/8 in chlorinated polyvinyl chloride pipe
(CPVC) with an inner diameter of 7/16 in. Each CPVC peizometer had 30 evenly spaced
holes drilled over the bottom 15 cm and was plugged with a stopper at the bottom. The
installation process for each piezometer followed the protocol described in Baxter et al.
(2003) where a driver mechanism was used to install each piezometer into the streambed.

Hyporheic and surface DO were measured with a YSI ProODO probe in ID and MI.
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2.3.2.8 Data Analysis

To evaluate whether hot spots of each process were present in streams reaches we
examined the patch average process rate to the reach average rate. Individual patch rate
(equation a), average stream reach rate (equation b), and overall contribution for rates and

area (equations c and d) were calculated as:

(a) Chamber rate (ug / m? / h) X Patch area (m?) = Patch Rate (ug / h)

(b) Sum patch rates (ug / h) + Total reach area (m?) = Avg Stream Reach Rate (ug /

m?/ h)

(c¢) Patch rate (ug/ h) = Sum patch rates (ug / h) = Overall Rate Contribution (%)

(d) Patch area (m?) + Total reach area (m?) = Overall Area Contribution (%)

For patches where there was more than one sample chamber used, an average of the
chamber rates from that patch was used in equation (a). Patches with a higher average
patch rate than the overall average stream reach rate for a process were considered hot
spots. Hot spots were then further evaluated on if they had a high percent overall
contribution and low percent total reach area.

To evaluate whether there was a direct relationship between process rates and relative

gene abundances (N> fixation and nifH, denitrification and nirsS), we used Spearman’s
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rank correlation in RStudio (R version 4.1.2), as the data did not follow a normal
distribution.

We used predictive modeling to evaluate the hypothesis that light, DIN, organic
matter, and dissolved oxygen concentration would predict rates of N fixation and
denitrification and abundances of the gene nirS, and the gene nifH. Predictive modeling is
a mathematical process that uses known results to create and validate a model that
generates predictions accurately (Kuhn and Johnson 2013). We chose predictive
modeling because the expected relationships among rates and predictors in this dataset
were potentially nonlinear and data collected within streams were spatially
autocorrelated. Four separate models were generated with N> fixation rates,
denitrification rates, relative nifH abundances, and relative nirS abundances as response
variables. For all models the predictor variables were substrate type, patch area (m?),
canopy cover (%), depth (cm), velocity (m/s), temperature (°C), AFDM (g/m?), NHs"
(ng/L), NO3™ (ng/L), SRP (ng/L), TDP (ng/L), dissolved inorganic nitrogen (DIN, png/L),
DIN:TDP, surface dissolved oxygen (mg/L) and hyporheic dissolved oxygen (mg/L)
concentrations. All predictor variables included in the models were based on a priori
hypotheses and general knowledge of factors that may control these processes in streams.
All data were pre-processed by centering, scaling, removing near-zero variables, and
imputing missing variables using 5-nearest neighbors. Highly correlated variables were
removed at a cutoff value of 85%, which resulted in NO3™ being removed from all models.
Each dataset was split into training and testing sets using stratified random sampling
based on stream name, so that each set would have an even distribution of the streams
sampled. 80% of the data was placed into a training set and 20% of the data was placed
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into a testing set. We used bootstrap resampling methods with 10 resamples for each test
model with replacement due to the small size of each dataset (114 observations, 17
variables). For each dataset we then trained a variety of regression-based models
including: partial least squares, ridge regression, elastic net/lasso, neural networks,
support vector machines, MARS/FDA, K-nearest neighbors, single trees, model
trees/rules, bagged trees, random forest, boosted trees, and cubist (summarized in Kuhn
and Johnson 2013). Using predictive modeling there is a trade-off between accurate
predictability vs. direct interpretation (Kuhn and Johnson 2013), and only the simplest
models may be directly interpretable. For each model, the seed was set to 100 and test set
performance was evaluated. A best fit model was selected for each of the 4 response
variables by finding the model with the lowest root mean square error (RMSE) and a high
R? value. For each best fit model, we looked at the predictor variables of most importance
to evaluate our hypotheses. All modeling was done in RStudio (R version 4.1.2) using the
caret package (Kuhn 2019).

Finally, to evaluate the hypothesis that a stream reach with a greater number of
patches would have a more balanced N> flux at the reach level, we compared the overall
average N flux (calculated as reach average denitrification — N» fixation) in each
individual stream to each stream’s number of patches per total stream reach area with a

Spearman’s rank correlation in RStudio (R version 4.1.2).

2.4 Results

We found patch rates higher than reach average rates for both N fixation and

denitrification within all study streams (Fig. 2.2). Stream reach average rates ranged
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Figure 2.2: Log transformed vertical dot plots of N> fixation and denitrification rates of

Diggie Creek (DC, n = 13),
(M, n=11), Pilgrim River (

Gratiot River (G, n = 15), Gibson Jack (GJ, n = 18), McGunn
P, n =12), South Fork Mink Creek (SF, n = 33), and the

Upper Portneuf River (UP, n = 12). Streams are arranged in order of lowest to highest N
concentrations. Each dot denotes an average of a single microhabitat measurement of a

rate. The red line denotes th

e reach average rate measurement for that stream. Note the

Y-axis for denitrification rates is 100x that of N fixation. Dots at 0.1 pg/m?/h on the log
scale denote average patch rates that were actually 0 pg/m?/h and there can be multiple

0’s for each stream.
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from 226 to 7719 ug m2h'! with a median of 1952 pg m2h! for denitrification and 0.25
to 202 pg m>h! with a median of 2 pg m2h! for N» fixation. Average denitrification
rates were 100x higher than average N, fixation rates at the patch level. We found hot
spots of both processes occurring in all study streams when comparing overall percent
rate contribution, as well as overall percent area contribution for each individual patch in
a stream (Fig. 2.3). For denitrification, Upper Portneuf, McGunn, and Gratiot had 1 patch
that contributed 27—44% of the total denitrification for the stream and made up only 1-4%
of the total reach area. Gibson Jack, Diggie Creek, and the Pilgrim had 2 patches that
contributed 37-55% of the total stream denitrification and made up only 1-15% of the
total stream reach area. South Fork had 1 patch that accounted for 52% of the total stream
denitrification rate and < 11% of the total stream reach area. All patches that exhibited
high contributions to reach-scale denitrification were sediment patches. For N> fixation,
Diggie Creek, South Fork, and the Upper Portneuf had at least 2 patches that made up <
5-25% of the stream reach area and accounted for 25 - 60% of total N> fixation rate for
the stream reach. Moreover, Gratiot, McGunn, and Gibson Jack all had one patch that
comprised < 43% of the total stream area yet accounted for 100% of the overall N>
fixation for the stream. The Pilgrim had one patch that accounted for 85% of the overall
N fixation rate for the stream and an area that comprised < 40% of the total stream area.

All patches that exhibited high contributions to reach-scale N fixation were rock patches.
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Figure 2.3: Plot of % contribution vs. % total reach area of all streams, of A. Gratiot
River (G, n = 15), B. McGunn (M, n = 11), C. Pilgrim River (P, n = 12), D. Diggie Creek
(DC, n=13), E. Gibson Jack (GJ, n = 18), F. South Fork Mink Creek (SF, n =33), and
G. Upper Portneuf River (UP, n = 12). Each shape represents an individual patch from
the stream.
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When comparing all streams, the average relative abundance of nifH was highest
in Diggie Creek (relativized Ct=3.99 or 3.99 cycles greater than the median value).
Differences of 1 CT value represent a 2-fold difference in concentration. Diggie Creek
had a relative abundance of nifH that was ~2% higher concentration than the stream with
the lowest average relative abundance of nifH, which was Gratiot (relativized Ct=-4.95,
Fig. 2.4). For nirS, the highest average relative abundance was in the Pilgrim River
(relativized Ct=2.91) and lowest in South Fork (relativized Ct= -2.94). Relative
abundances for both nirS and nifH tended to be higher on sediment substrate across
streams (Appendix 1 Fig. 8A). When evaluating the relationship between nifH relative
abundances and N> fixation rates, there was no significant correlation using Spearman’s
correlation coefficient (p-value = 0.99, p <0.01). There was a significant relationship
between nirS relative abundances and denitrification rates (p-value = 0.01), with a

Spearman’s correlation coefficient (p) of 0.25 indicating a positive relationship (Fig. 2.5).
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Figure 2.4: Plot of relative abundances (Cr) of nifH and nirS for all streams. Diggie
Creek (DC, n = 13), Gratiot River (G, n = 15), Gibson Jack (GJ, n = 18), McGunn (M, n
= 11), Pilgrim River (P, n = 12), South Fork Mink Creek (SF, n = 33), and the Upper
Portneuf River (UP, n = 12). Streams are arranged in order of lowest to highest N
concentrations. Note that these are relativized values to the median, so negative indicates
less abundance than the median value and positive indicates more.
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We found variation in environmental characteristics within and among streams.

DIN concentrations varied more among streams (standard deviation (s.d.) + 0.312 mg/L)

than within streams (s.d. £ 0.012 — 0.127 mg/L) (Fig. 2.6). For NH4" concentrations, the

variation was largest among streams (s.d. £ 0.006 mg/L), as the s.d. within each stream

was only ~+ 0.001 mg/L (Table 2.1, Fig. 2.6). However, South Fork had a s.d. of + 0.005

mg/L NH4" within stream, which was similar variation to NHs4" concentrations among

streams. TDP concentrations varied more within streams, particularly South Fork where

s.d. was £ 0.065 mg/L compared to a s.d. of = 0.002 — 0.005 within other streams and a

s.d. of +£ 0.061 mg/L among streams. DIN:TDP varied the most among streams (s.d. £

38.5) overall, but Diggie Creek had the highest within-stream s.d. in DIN:TDP at + 67.2.
Canopy cover showed more variability among (s.d. = 35.3 %) than within streams (s.d.

0.7 —25.2 %). In Gratiot, Pilgrim, and South Fork, in-stream canopy cover varied > +
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20%, which is considerable but still less than among stream variation. (Table 2.1, Fig.
2.6). Depth had more variation within Diggie Creek (s.d. £ 22.3 cm) than among streams
(s.d. = 18.1 cm). However, depth in the rest of the streams varied less within (s.d. £ 5.1 —
11.9 cm) than among streams. Surface dissolved oxygen varied more in Upper Portneuf
(s.d. = 2.33 mg/L) than among streams (s.d. = 1.83 mg/L). Hyporheic dissolved oxygen
was more variable within South Fork (s.d. + 3.71 mg/L) than among streams (s.d. + 3.04
mg/L). For AFDM of both N> fixation and denitrification chambers there was more
variation within South Fork (s.d. £ 1280 and = 1738 g/m?, respectively) than among

streams (s.d. = 1113 and + 892, respectively, Table. 2.2, Fig. 2.6).
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Figure 2.6: Vertical dot plots of 9 environmental variables across the 7 streams. Diggie
Creek (DC, n = 13), Gratiot River (G, n = 15), Gibson Jack (GJ, n = 18), McGunn (M, n
= 11), Pilgrim River (P, n = 12), South Fork Mink Creek (SF, n = 33), and the Upper
Portneuf River (UP, n = 12). Streams are arranged in order of lowest to highest N
concentrations. From left to right beginning on the top row the variables are DIN
(dissolved inorganic nitrogen) concentration, NH4" (ammonium) concentration, and TDP
(total dissolved phosphorus concentration. Row 2 is DIN/TDP, canopy cover, and surface
DO (dissolved oxygen). The third row is hyporheic DO, NF AFDM (N fixation
chambers ash free dry mass), and AD AFDM (amended denitrification chambers ash free
dry mass). Note the Y-axis magnitude is different for all environmental variables.

Predictive modeling for N fixation did not support our hypothesis that patches
with more light availability and lower DIN concentrations could predict N> fixation rates.
With N fixation rate as the response variable, the best fit model was a support vector

machine (SVM) with a RMSE of 0.10 and an R? of 63% (Table 2.3). SVMs are highly
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Table 2.3: Predictive modeling results for the response variables N> fixation rates and
denitrification rates. Items in bold represent the model of best fit based on the lowest
RMSE. RMSE = root mean square error.

Response Variable Model Type RMSE R?
N> Fixation Rates Partial Least Squares 0.46 0.27
Ridge Regression 0.61 0.24
Elastic Net/Lasso 0.33 0.57
Neural Networks 0.33 0.38
Support Vector
?\zachines 0.10 0.63
MARS/FDA 0.35 0.71
K-Nearest Neighbor 0.09 0.51
Single Trees 0.32 0.74
Model Trees 0.28 0.81
Bagged Trees 0.46 0.75
Random Forest 0.26 0.82
Boosted Trees 0.21 0.85
Cubist 0.14 0.37
Denitrification Partial Least Squares 0.77 0.48
Rates
Ridge Regression 0.75 0.50
Elastic Net/Lasso 0.81 0.41
Neural Networks 0.78 0.79
Support Vector
Il)\zachines 0.43 0.84
MARS/FDA 0.78 0.44
K-Nearest Neighbor 0.57 0.70
Single Trees 0.72 0.52
Model Trees 0.60 0.71
Bagged Trees 0.70 0.55
Random Forest 0.56 0.73
Boosted Trees 0.49 0.79
Cubist 0.64 0.66

flexible models that minimize the effect of outliers on the regression equations (Kuhn and
Johnson 2013). SVMs use a kernel function to map complicated data patterns in a more

simplistic way (Drake et al. 2006). TDP was the variable of most importance to the SVM
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predicting N fixation rates, followed by AFDM, and then DIN:TDP and surface
dissolved oxygen. For nifH relative abundance, the best fit model was model trees with
an RMSE of 0.74 and an R? of 26% (Table 2.4). Model trees are a type of regression tree
where terminal nodes predict the outcome using a linear model and the model is created
with a split variable that is associated with the largest reduction in error (Kuhn and
Johnson 2013). The tree growing process continues in this way until there are no further
improvements in the error rate or there are not enough samples and then each linear
model undergoes simplification, potentially dropping some of the model terms (Kuhn and
Johnson 2013). Variables of most importance to the model trees were AFDM, followed
by NH4", hyporheic dissolved oxygen, TDP, and then surface dissolved oxygen.
Predictive modeling also provided support for the hypothesis that patches with
more organic matter, lower benthic dissolved oxygen, and higher DIN concentrations
would have higher rates of denitrification and »irS gene abundance. For denitrification
rate, the best fit model was a SVM with a RMSE of 0.43 and a R? of 84% (Table 2.3).
Sediment substrate was the variable of most importance to the SVM model predicting
denitrification rates, followed by surface dissolved oxygen, AFDM, and hyporheic
dissolved oxygen as the variables of secondary importance. For nirS relative abundance,
the best model was random forest with an RSME of 0.90 and an R? of 13% (Table 2.4). A
random forest model combines the output of multiple decision trees made from
resampling and bagging into a single result (Kuhn and Johnson 2013). For the random
forest model the variable of most importance was depth, then DIN:TDP, followed by

patch area, then NHy4", and then TDP.
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Table 2.4: Predictive modeling results for the response variables nifH and nirS. Items in
bold represent the model of best fit based on the lowest RMSE. RMSE = root mean
square error.

Response Variable Model Type RMSE R?
nifH relative abundance  Partial Least Squares 0.80 0.14
Ridge Regression 0.87 0.08
Elastic Net/Lasso 0.84 0.05
Neural Networks 0.95 0.05
Support Vector
Moshines 114 0.00
MARS/FDA 0.84 0.08
K-Nearest Neighbor 0.79 0.15
Single Trees 0.84 0.14
Model Trees 0.74 0.26
Bagged Trees 0.81 0.18
Random Forest 0.83 0.11
Boosted Trees 0.80 0.13
Cubist 1.15 0.09
nirS relative abundance  Partial Least Squares 0.91 0.03
Ridge Regression 0.95 0.00
Elastic Net/Lasso 0.91 0.00
Neural Networks 0.99 0.00
Support Vector
Ili/liachines 0.96 0.02
MARS/FDA 0.88 0.03
K-Nearest Neighbor 0.93 0.00
Single Trees 0.88 0.08
Model Trees 0.93 0.00
Bagged Trees 0.92 0.01
Random Forest 0.86 0.13
Boosted Trees 0.90 0.07
Cubist 0.96 0.00

When evaluating our hypothesis that a stream reach with a greater number of
patches would have a more balanced N flux at the reach level, we found that there was
no correlation (p = 0.59, spearman’s correlation coefficient = -0.25, Fig. 2.7). The stream

with the greatest number of patches / total reach area did have one of the most balanced
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overall average N> flux rates at 385 pg/m*h. However, one of the streams with the lowest
number of patches / total reach area had the lowest average N> flux rate at 226 pg/m?*/h,
when we hypothesized that it should have a higher N flux. The other stream with the
lowest number of patches / total reach area did have the highest average N> flux rate of

7716 pg/m?/h.
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Figure 2.7: Index values for each stream. Each dot is an index value for a stream where x

= the # of patches / total stream reach area and y = stream reach average N flux
(denitrification — N fixation). Each stream is depicted by a different color.

2.5 Discussion

We found hot spots of both N> fixation and denitrification were present in all
study streams, with N fixation hot spots occurring exclusively on rocks and

denitrification hot spots occurring exclusively on sediment, while the highest relative
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gene abundances of nifH and nirS were observed over all streams on sediment substrate.
There was no direct correlation between N> fixation rates and relative nifH abundances,
but there was a positive correlation between denitrification rates and relative nirS
abundances. When evaluating our second hypothesis that environmental factors like light,
DIN, organic matter, and dissolved oxygen concentration would predict rates and gene
abundances, we found that organic matter and dissolved oxygen concentrations predicted
N> fixation rates, denitrification rates, and nifH relative abundance, while sediment
substrate type only predicted denitrification rates. Phosphorus (P) concentrations and the
relation of N to P also were important predictors of N fixation rates and the relative
abundances of nifH and nirsS, while variables related to N alone were only important
predictors of relative abundances of nifH and nirS. All of the best-fit predictive models
were black-box type, non-linear models with low to no model transparency and low
interpretability (Kuhn and Johnson 2013, Visser et al. 2022), so although we can say
which environmental variables are important to a model, we cannot report statistics to
describe their specific interactions. Together, our findings that hot spots of both N>
fixation and denitrification occurring across all study streams and variation in relative
abundances of nifH and nirS can be predicted by models informed by variation in
environmental characteristics suggests that the spatial heterogeneity of streams is
important to the occurrence of both these processes and the overall N> flux of these
systems.

Hotspots of both N> fixation and denitrification were observed in all study
streams. The occurrence of these hot spots were substrate-specific for both processes.

This is not surprising, as its been shown previously that N> fixation rates tend to be
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higher on rock substrate and denitrification rates tend to be higher on sediment (Kemp
and Dodds 2002, Marcarelli and Wurtsbaugh 2009, Eberhard et al. 2018). Moreover, the
variables of importance identified in both the N> fixation rates model and denitrification
rates model are known constraints on rates of these processes. For N fixation, it has been
shown that P concentrations alone and in relation to N (N:P) can be an important limiting
factor to microorganisms performing the process (Elwood et al. 1981, Smith 1983,
Marcarelli and Wurtsbaugh 2007). Also, oxygen concentrations are known to affect N»
fixation rates, as the nitrogenase enzyme which performs the process is sensitive to and
can be inactivated by high levels of oxygen (Gallon 1981). Organic matter availability
could also affect N» fixation rates by increasing the availability of trace metals used in the
nitrogenase enzyme like molybdenum and iron (Howarth et al. 1988). Like the model for
No fixation rates, the model for nifH relative abundances included AFDM, dissolved
oxygen, and TDP as variables of importance to the model, although this model only
explained 26% of the variation in abundances. In oceans, nifH has been shown to vary in
abundance in oxygen minimum zones (Jayakumar et al. 2012) and in coastal areas can
have increased abundance with increases in organic matter concentrations (Li et al.
2021). The importance of organic matter concentrations to nifH relative abundance could
also suggest the potential for heterotrophic N fixation in stream sediments, which is
becoming more widely recognized in ocean and coastal sediments (Bombar et al. 2016,
Li et al. 2021). Additionally, the spatial distribution of pore-water dissolved inorganic P
has been shown to be positively correlated to nifH abundance in shallow coastal
sediments (Andersson et al. 2014). However, the model for nifH relative abundances also

included NH4" as a variable of importance. N> fixation rates have been shown to be
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depressed by NH4", but also to continue at high rates at concentrations of NH4" of ~200
uM (Knapp 2012). This suggests that N is of some importance to N> fixation at the gene
level, but that variation in other environmental variables drives rates of N2 fixation
overall in streams.

For denitrification, there were different environmental variables of importance
between the models for rates and nirS relative abundances, though the nirS model
explained little variation. Organic matter and dissolved oxygen concentrations were
important to the model predicting denitrification rates. Organic matter is important as a
source of carbon (C) as an electron donor in the denitrification process (Knowles 1982,
Holmes et al. 1996), and dissolved oxygen concentrations can be important in regulating
denitrification as it is an anerobic process (Kemp and Dodds 2002). Depth was the most
important predictor in the nirS model, which could be because depth can be related to the
relative amount of dissolved oxygen. Differences in dissolved oxygen concentrations in
micro profiles of lake sediment have been shown to affect the abundance of nirS (Hong et
al. 2019). N and P in the forms of NH4", DIN:TDP, and TDP were also important to the
model predicting the relative abundance of nirS. Previously, the abundance of »irS has
been shown to be significantly correlated with SRP concentrations in prairie streams
(Graham et al. 2010). In coastal wetlands, NH4" concentrations have been shown to affect
the community structure of nirS-encoding denitrifiers (Gao et al. 2016). Interestingly, N
availability as either NH4" or DIN did not come out as an important factor in either of the
models for denitrification or N, fixation rates alone, although NH4" was an important
factor for both nirS and nifH relative abundance models. This further highlights findings
in previous research in streams that suggests that N alone cannot be used to predict the
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occurrence of these processes (Eberhard et al. 2018). Our results demonstrate that
heterogeneity in predominantly organic matter and dissolved oxygen concentrations can
be used to build accurate predictive models for N» fixation and denitrification in streams.
We observed no direct relationship between nifH relative gene abundances and N»
fixation rates, but we did observe a positive correlation of nirS relative gene abundances
and denitrification rates. However, this correlation only had a Spearman’s coefficient
value of 0.22. Sequences for both genes are highly conserved among microorganisms
(Zehr and Capone 2021, Knowles 1982) and just because the genes are present in the
DNA does not mean that they are actively being transcribed. Also, for denitrification,
there are four enzymes involved in the complete denitrification process and nirS only
targets the nitrite reductase or the second step of the process (Knowles 1982). Using a
different gene like nosZ that targets the nitrous oxide reductase or the last step of the
complete denitrification process may give a more accurate representation of the potential
denitrifiers in the samples (Kandeler et al. 2006). Moreover, denitrification is a
facultative process where differences in environmental characteristics, like increases in
the concentration of humic substances, can upregulate the expression of genes related to
the process (Dong et al. 2017), so the relative abundances may not be an exact match for
true denitrification potential. For N> fixation, there are also other genes that are related to
the common Mo-Fe nitrogenase enzyme, which are nifD, nifK, and nifT (Cornejo-Castillo
and Zehr 2021, Delmont et al. 2021), that by not measuring could possibly
underrepresent organisms with the genetic potential for N> fixation. Also, there are other
alternative nitrogenase enzymes, V (encoded by viafHDGK) and Fe (encoded by
anfHDGK), which are often thought as backups when Mo is limiting, but have been
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shown to be maintained in multiple environments and organisms (Bothe et al. 2010,
McRose et al. 2017, Bellenger et al. 2020). Moreover, horizontal gene transfer is known
to have occurred in the evolutionary history of nifH, which complicates its lineage among
microorganisms (Gaby and Buckley 2014). Therefore, for both N fixation and
denitrification, the relative abundances of selective genes cannot represent the full
functional potential of these processes on a microbial level.

While there is evidence that spatial heterogeneity in environmental variables may
affect N> fixation and denitrification process rates as well as relative abundances of nirS
and nifH in streams, we did not specifically address how the spatial structure of these
variables or patches could be affecting these processes and abundances. We observed no
correlation between the relative patchiness (number of patches per total stream reach
area) and the balance of the overall stream N> flux (denitrification — N> fixation rate).
This could be because this test did not address the type or structure of patches, which
could be very important to the overall N> flux. For example, in this study alone hotspots
of both N fixation and denitrification occurred exclusively on different substrate types,
so if the patchiness of that substrate type increased or decreased in a stream that could
have consequences for the overall N> flux. Using simulations, it has been shown that
sediment heterogeneity can influence spatial patterns of denitrification hotspots in
intertidal mixing zones (Heiss et al. 2020). The spatial distribution of anoxic hotspots has
also been shown to affect denitrification rates in terrestrial soils (Schliiter et al. 2019).
Thus, if a stream becomes more homogenous and loses its heterogeneity then that could
affect the occurrence of both N> fixation and denitrification, which would alter the overall

Ny flux of the stream.
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The overall N flux of the stream could also be altered by the temporal variability
in the hotspots of N fixation and denitrification. Although we did not address temporal
variability specifically in this study it is worth mentioning that the discussion around the
occurrence of hotspots is changing. Recently there has been a reframing of examining
hotspots and hot moments as distinct occurrences in biogeochemical cycling. Instead, it
has been proposed that hotspots and should be thought of as “ecosystem control points”
where there is both an inherent spatial and temporal component (Bernhardt et al. 2017).
These ecosystem control points have disproportionate influence on the biogeochemical
cycles of an ecosystem that can be altered by location in the landscape, delivery of
limiting environmental variables, and the timing/duration of the presence of limiting
variables (Bernhardt et al. 2017). Both N> fixation and denitrification have been shown to
vary day-to-day in the Pilgrim River (maximum daily change of 4,390 pug N/m?/hr for
denitrification and 39 pg N/m?/hr for N> fixation), which was one of our study streams
(Nevorski 2021). In contrast, at South Fork we have observed consistently high rates of
both N> fixation on rocks and denitrification in sediment across multiple sampling events
(Eberhard et al. 2018). So, while we did observe hotspots and spatial variation in rates of
N> fixation and denitrification that may be related to the spatial heterogeneity of limiting
environmental variables, we cannot say how this variation may change with time.

In conclusion, we found that hot spots of N> fixation and denitrification occur
across seven streams in the Midwest and Western United States, and that variability in
process rates and relative gene abundances of nirS and nifH could be predicted by
environmental variables on the patch scale. Variation in organic matter and dissolved

oxygen concentrations were the most common variables of importance, being present in
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models of N fixation, denitrification, and nifH relative abundance. N alone was not an
important predictor or rates of either process. This variation of N> fixation and
denitrification rates on the small scale could have an effect on the overall stream reach N>
flux. Previous studies have shown that emergent properties of small-scale heterogeneity
can affect reach-level N uptake (Peipoch et al. 2016). Without consideration of spatial
heterogeneity in streams, the importance of both N fixation and denitrification to overall

stream N dynamics could be misrepresented or misunderstood.
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3 Chapter 3: Heterogeneity in habitat and nutrient
availability facilitate the co-occurrence of N fixation and
denitrification across wetland — stream — lake interfaces of
Lakes Superior and Huron

3.1 Abstract

Great Lakes coastlines are mosaics of wetland, stream and lake habitats,
characterized by a high degree of spatial heterogeneity that may facilitate the co-
occurrence of seemingly incompatible biogeochemical processes. We measured nutrient
limitation and rates of N> fixation and denitrification along transects in 5 wetland-stream-
lake interfaces with different nutrient loading in Lakes Superior and Huron. We found
that N fixation (0 - 1,950 ug/m?*/h) and denitrification (0 - 16,536 ug/m?/h) co-occurred
in 48% of points measured across all 5 transects and across all habitat types.
Denitrification rates were approx.100x higher than N> fixation rates where they co-
occurred. Nz fixation occurred on sediment and macrophyte substrate, while
denitrification occurred mostly in sediment. Nutrient limitation of biofilms determined
using nutrient-diffusing substrates at 31 transect points indicated N limitation at 32%, co-
limitation of N and P at 26%, and no nutrient limitation at 42% of the points. Rates of N2
fixation and denitrification did not differ significantly among points with differing
nutrient limitations (Kruskal-Wallis p-value = 0.07 and 0.36 respectively). Predictive
models for N> fixation and denitrification rates both included P availability as variables
of importance. Denitrification models also included N and light availability, while the
model for N fixation included macrophyte substrate, temperature, and C availability.

Heterogeneity in habitat characteristics and nutrient concentrations facilitate the co-
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occurrence of N> fixation and denitrification across wetland — stream — lake interfaces.
The potential for both processes to co-occur in coastal ecosystems highlights the need to
think of these systems as more biogeochemically complex than as a simple sink of N,

which is a common conceptualization of coastal wetland ecosystems.

3.2 Introduction

Wetland — stream — lake interfaces are critical locations regulating complex
biogeochemical cycling (Hedin 1998, Sierzen et al. 2012, Flint and McDowell 2015).
Wetlands and lakes are known to store nutrients in sediments, and wetlands can decrease
outflowing concentrations of some nutrients through retention, whereas streams mainly
transport material downstream (Knuth and Kelly 2011, Sierzen et al. 2012, Flint and
McDowell 2015). These three aquatic habitats, though diverse, are spatially connected
through cross-interface processes that alter material form and export magnitude (Kling et
al. 2000, Jones 2010, Baker et al. 2016). For example, streams and wetlands are
important sources of nutrients and organic matter to lakes, where they are used to support
primary and secondary production (Biddanda and Cotner 2002, Dila and Biddanda 2015).
Stream inflows to lakes can be hotspots of productivity and biodiversity where large
amounts of organic matter and different invertebrates are delivered (Richardson et al.
2021). Lakes in watersheds have been shown to control the hydrology, temperature, and
flux of nutrients to outflow streams and wetlands, which can affect metabolic processes
within these downstream environments (Goodman et al. 2010, Arp et al. 2012, Epstein et
al. 2013). Upstream wetlands can supply dissolved organic carbon to streams, and the

presence of embedded lakes in these wetland-stream networks can influence the
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hydrological delivery of these nutrients (Lottig et al. 2013). Therefore, differences in
environmental variables created by spatial heterogeneity across the wetland — stream —
lake interface can have consequences for ecosystem functions like biogeochemical
processes within these systems.

One important variable that could facilitate hotspots of biogeochemical processes
across wetland — stream — lake interfaces is nutrient limitation. There is abundant
evidence that primary producers in the water column of the Great Lakes are primarily
limited by phosphorus (P) (Schelske et al. 1987). However, both nitrogen (N) and/or P
may limit primary producers in tributary streams and coastal wetlands of the Great Lakes,
where nutrient diffusing substrate experiments have shown that increased N
concentrations can increase algal standing crops and microbial activity (Allen and
Hershey 1996, Wold and Hershey 1999, Cooper et al. 2016). Moreover, these
experiments have also shown that in wetlands that are degraded by high N inputs,
biofilms can then become P limited (Cooper et al. 2016), which creates conditions more
suitable for different microorganisms to perform processes that were not favorable under
N limitation. Therefore, spatial gradients in nutrient limitation across wetland — stream —
lake interfaces may promote the co-occurrence of different biogeochemical processes —
particularly N> fixation and denitrification, which have long been thought to be mutually
exclusive in freshwater ecosystems. N> fixation is the conversion of N> gas into an input
of biologically available N, while denitrification is the metabolic conversion of nitrate
(NO3") into N2 gas, both of which are microbially-mediated in aquatic ecosystems.
Together these two processes control N> flux, however different environmental factors

favor each process. Traditionally it has been assumed that differences in N concentrations
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was the major factor driving the occurrence of these processes, where N> fixation is
favored when NOs™ concentrations are low because the process has significant energy
costs to the organism, while denitrification requires higher concentrations of NO3™ to use
as an oxidant (Grimm and Petrone 1997, Arango et al. 2007). However, the occurrence of
these processes cannot be predicted by N concentrations alone consistently and are
related to other environmental variables, like P and carbon (C) availability, across
ecosystems (Chapter 2; Eberhard et al. 2018, Marcarelli et al. 2022).

Beyond nutrient limitation, hot spots of N> fixation and denitrification may be
driven spatially by other environment variables across wetland — stream — lake interfaces.
N and C cycling can exhibit spatial patterning with the presence of plants, water depth,
organic matter, total N, and soil moisture in wetland and floodplain ecosystems
(Bellinger et al. 2014, Orr et al. 2014, Wang et al. 2016). In stream ecosystems, a positive
relationship between denitrification rates and organic matter has long been recognized
(Holmes et al. 1996, Groffman et al. 2005, Eberhard et al. 2018), however these types of
relationships have not been widely studied spatially across wetland — stream — lake
interfaces (Larson et al. 2013, 2016). Hydrologic flow paths between these aquatic
ecosystems can also be an important environmental variable facilitating hotspots of
biogeochemical processing (Sierzen et al. 2012). Streamside wetlands and streams can
have hot spots of N inputs from flow paths through terrestrial alder stands (Callahan et al.
2017). Oxbow wetlands can receive stream and storm flow that result in the wetlands
being significant sinks of N (Harrison et al. 2014). Examining the spatial heterogeneity of
these environmental variables across the wetland — stream — lake interface may better

explain biogeochemical process dynamics across these systems.
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The contributions of denitrification and N fixation have been overlooked in the
Great Lakes region, where wetlands are thought of as sponges of N and P via retention
and removal, dissolved N concentrations are high and/or rising in these oligotrophic lake
ecosystems, and P limitation of water column primary producers is common (McDonald
etal. 2010, Small et al. 2014a). Since primary producers in the water column of the Great
Lakes are primarily P-limited, N> fixation may not be expected, whereas denitrification
may occur in lake and stream sediment if there is sufficient NO3™ availability and organic
matter content (Bellinger et al. 2014, Small et al. 2014b). However, some studies in the
Great Lakes have shown that N> fixation is important despite differing levels of N
concentrations and in periods of N limitation in eutrophic waters of Lake Erie, N>
fixation rates can exceed NO3 and NH4" uptake (Salk et al. 2018, Natwora and Sheik
2021). In a stream tributary of Lake Erie, denitrification has been shown to drive N
limitation in downstream wetlands when outflow from the stream to the lake was blocked
by a sand barrier (McCarthy et al. 2007). Outside of the Great Lakes region in
constructed wetlands, the ratio of N:P can decrease downstream as N is permanently
removed through denitrification, creating ideal conditions for N fixing organisms
downstream (Scott et al. 2005, 2008). Since wetlands are shallow, they may have warmer
temperatures than surrounding streams and lakes that could be more conducive to
organisms performing N fixation, as higher temperatures have been shown to stimulate
N> fixation activity (Marcarelli and Wurtsbaugh 2006, Welter et al. 2015). Indeed, N»
fixing cyanobacteria and diatoms were observed in a study of N limitation in Great Lakes
coastal wetlands (Cooper et al. 2016). Lakes and wetlands also have the potential for N>
fixation through attached epiphytes on macrophytes (Finke and Seely 1978, Doyle and

61



Fisher 1994, Scott et al. 2005, Marcarelli and Wurtsbaugh 2009). Quantifying these
processes along the full spatial continuum of the wetland — stream — lake interface could
change our understanding of the importance of these two processes to the overall N cycle
of Great Lakes coastal ecosystems.

The goal of this study was to evaluate how the spatial heterogeneity across a
wetland — stream - lake interface controls the net N> flux in these ecosystems. We first
hypothesized that the spatial heterogeneity of the wetland-stream-lake interface would
lead to spatial variability in nutrient limitation. Secondly, we hypothesized that the spatial
variability in nutrient limitation would facilitate the co-occurrence of N> fixation and
denitrification across wetland-stream-lake interfaces, where sites with N or N+P
limitation would have higher rates of N fixation and sites with P limitation would have
higher rates of denitrification. Finally, we hypothesized that spatial patterns of nutrients,
oxygen, organic matter, and temperature would predict the occurrence of these processes.
Particularly, denitrification rates would be highest where there is high organic matter and
anoxic conditions (e.g., wetland, lake, and stream sediments), while N> fixation would
occur where there are warm temperatures and low nitrate (e.g., stream microhabitats,

shallow water in wetlands, by epiphytes on macrophytes in wetlands and lakes).

3.3 Methods
3.3.1 Study Area

This study was conducted in 5 wetland-stream-lake interfaces in Lakes Superior
and Huron, selected to span a gradient of nutrient loading and human impact conditions

(Fig. 3.1). The Sioux and Mackinac interfaces were selected as sites where we expected

62



low levels of human impact, while Nara was selected as a moderate level, and the

Saganing and Widlfowl were selected as high impact levels. The Nara interface was in

®Timmins
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Figure 3.1: Google Earth map of the states of Mlchldt etland
— stream — lake interfaces sampled in this study marked by a blue pin. The 5 sites were
Sioux, Nara, Mackinac, Saganing, and Wildfowl.

the Nara Nature Area in Houghton, MI that encompasses part of the Pilgrim River, a
tributary to the Keweenaw Waterway, which flows into Lake Superior. Nara is managed
and owned by the city of Houghton, MI. The Sioux interface was along the Sioux River
in Washburn, WI which is a tributary to Lake Superior and managed by WI Department
of Natural Resources. The Mackinac Bay interface was located near the Les Cheneaux
Islands in northern Lake Huron and managed by the Little Traverse Conservancy. Both
the Saganing and Wildfowl Bay interfaces drain into Saginaw Bay of Lake Huron.

Saganing is managed by the Saginaw Bay Land Conservancy and Wildfowl is managed

by the Michigan Department of Natural Resources. All interfaces were categorized as
63



shrub swamp and emergent marsh cover types in the Great Lakes Coastal Wetland
Mapping tool developed by Bourgeau-Chavez et al. (2015). The Wildfowl and Saganing
transects were the only transects noted for the presence of the invasive plant Phragmites

australis at the time of mapping in 2015.
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3.3.2 Study Design
3.3.2.1 Transect Setup

The Nara, Sioux, and Mackinac interfaces were sampled in summers 2018 and
2019, while the Saganing and Wildfowl interfaces were only sampled in summer 2020
(Table 3.3, see also Appendix 2 Fig. 9A-13A). Although we had planned to sample all 5
sites in summer 2020, limitations to field work caused by the COVID-19 pandemic
prevented this. Each interface was sampled across 1-3 sampling days in each year due to
the number of transect points and the duration of incubations. Sampling days in each
interface were typically sequential, but in some cases, there was a day in between
sampling due to inclement weather and in one case there was a 3-day intervening period
between sampling dates (Table 3.3). On the first day at each interface, a transect of 8-15
points was established that encompassed the wetland-stream-lake interface (Table 3.3).
Based on loose classifications of the 83 total transect points among all transects, 37 were
wetland, 18 were transition zones from wetland to stream, 15 were stream, 2 were stream
to lake transition zones and 11 were lake sites (Table 3.3). The number of wetland sites
per transect ranged from 3 -7, the number of stream sites ranged from 0-3, and the
number of lake sites ranged from 0 - 4. Wetland to stream transition zones ranged from 1
- 4 sites per transect and the number or stream to lake transition zones were either 0 or 1
in each transect. In the Saganing and Wildfowl transects there were no sites that could be
strictly classified as stream or lake because the stream bed itself and nearshore lake areas

were too deep to safely deploy chamber incubations given our sampling equipment.
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3.3.2.2 Nutrient Limitation

To test the first hypothesis that the spatial complexity of the wetland-stream-lake
interface would lead to spatial variability of nutrient limitation for primary producers, we
deployed nutrient diffusing substrates (NDS) at each transect point in an interface (Tank
et al. 2017). NDS were constructed using 45 mL plastic containers filled with a 2% (by
weight) agar solution amended with 0.8 M N added as NaNO3 (N treatment), 0.05 M P
added as NaH;POj4 (P treatment), both (N+P treatment), or neither as a control treatment.
A 25 mm porous porcelain disc (Leco Corporation, St. Joseph, MI) was placed on top of
each hardened NDS for algae to grow on. At transect points, a total of 16 NDS were
deployed with 4 control, 4 N, 4 P, and 4 N+P replicates. NDS were deployed at transect
points two weeks prior to the first sampling day at a site. After these two weeks, the discs
were collected, wrapped in aluminum foil and frozen for later analysis of algal standing
crop using chlorophyll-a. Laboratory analysis of chlorophyll-a followed standard method
using a Thermo Scientific 10s UV-Vis spectrophotometer and ethanol extraction (APHA
2005). NDS were only deployed in summers 2019 and 2020. NDS were deployed at all
transect points except those that were too deep, had high wave action, or had no standing

water (Appendix 2 Tables 1A and 2A).

3.3.2.3 N Cycling Rate Measurements

Chamber incubations were used to measure rates of N2 fixation and denitrification
in all transect points. The chambers used during these incubations varied by substrate
type. 2-L polycarbonate food storage containers were used for larger macrophyte

substrate (Gettel et al. 2007, Eberhard et al. 2018). The chamber lids were sealed airtight
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with a Viton o-ring, and were fit with a 13x20 mm septum for sample collection. For
sediment and smaller macrophyte substrate, chambers were made from pint size glass
mason jars and lids were similarly fit with an airtight sampling septum. Sediment
substrate was collected haphazardly from transect points using a 7 cm diameter suction
corer to collect ~200-400 mL of sediment that was then placed into the mason jars.
Macrophytes were collected using chamber lids to approximate surface area of
macrophyte to sample, then pulling from the root and placing in chambers. For each
transect point there were 1-4 sample chambers and 1-4 blank chambers, with each sample
chamber having a paired blank chamber. The blank chambers were set up to simulate an
environment with minimal N fixation or denitrification to control for chamber effects.
Stream water was used as a blank for sediment and macrophyte substrates.

N> fixation rates were measured using acetylene reduction (Capone 1993, Dodds
et al. 2017). An acetylene-filled balloon was added to each chamber. Chambers were
filled with stream water and sealed underwater, then balloons were popped with a needle
through the sampling septum to introduce a 20% acetylene headspace. Chambers were
shaken for approximately 20 seconds to equilibrate the gas dissolved in the water with
that in the headspace, and initial gas samples were collected within 5 minutes of sealing
the chambers. Chambers were placed in the stream for a 2-hour incubation to maintain
ambient stream temperatures, then shaken again to equilibrate and final samples were
collected. All gas samples were placed into evacuated 9-mL serum vials and kept in the
dark until analyzed. Ethylene concentrations were measured using a SRI 8610C gas

chromatograph equipped with a Hayesep T column, He carrier gas, and a flame
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ionization detector. The column oven was set to 40 °C. To obtain N fixation rates,
ethylene concentrations in the chambers were compared to 100 ppm ethylene standards
(Matheson Tri Gas). N> fixation rates were calculated following Capone (1993) and
Dodds et al. (2017), then converted to pg of N assuming a ratio of 3 mols of ethylene
produced for every 1 mol of N2> gas potentially fixed (Capone 1993).

Denitrification rates were measured using the acetylene block method (Groffman
et al. 2006). Chloramphenicol was used to suppress additional protein synthesis during
the incubation in all chambers. We measured nutrient-amended rates because most
previous stream studies have used this method and we wanted to be able to compare
estimates to these studies, and because this method is quick and easy to run with a large
number of replicates to estimate rate variability. Moreover, the acetylene block method
also inhibits nitrification, so measuring without amendments of nitrate can underestimate
denitrification rates (Dodds et al. 2017). However, the chambers were not sparged with
nitrogen or helium to create anoxic conditions. Each chamber received 0.62 g L' Glucose
as a C source and 0.62 g L"! NaNO; as an N source, plus chloramphenicol (2 g L™!). After
the amendment, acetylene was introduced, chambers were incubated, and initial and final
gas samples were collected as described previously for N fixation. Nitrous oxide (N2O)
concentrations were measured using a SRI 8610C gas chromatograph equipped with a
Hayesep D column, He carrier gas, and an electron capture detector. The column oven
was set to 40 °C. N2O concentrations in chambers were compared to standard
concentrations of 1000 ppm N>O (Matheson Tri Gas). Denitrification rates were

calculated following Dodds et al. (2017).
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To scale process rates by substrate area, all substrate material was collected and
analyzed after incubations. Sediment and macrophyte material were analyzed for ash free
dry mass (AFDM), which provides an estimate of the total organic material present in a
sample and is measured as the difference between the mass of the oxidized samples and
the initial dry samples. AFDM samples were dried at 50 °C, weighed for dry mass and
then oxidized in a muffle furnace at 550 °C, rewetted, and dried before a final weighing.
Surface area and volume of all substrates were also measured for use in scaling process
rates for surface area. Sediment surface area was calculated as the diameter of the corer.
Macrophyte surface area was calculated as the diameter of the chamber lid. Sediment
volume was determined by multiplying the surface area by average sediment core depth
in the jar and macrophyte volume was measured using the displacement method in a

graduated cylinder.

3.3.2.4 Environmental Characteristics

To test the third hypothesis that variation in nutrient concentrations would predict
the occurrence of N> fixation and denitrification process rates, we collected ~40 mL
water samples from each transect point. The water was filtered using Millipore 0.45 pum
nitrocellulose membrane filters into 60 mL bottles. Samples were frozen until later
laboratory analysis for NOs", ammonium (NH4"), soluble reactive phosphorus (SRP),
total dissolved phosphorus (TDP), dissolved organic carbon (DOC), and total dissolved
nitrogen (TDN). NH4" was analyzed using a fluorometric method (Holmes et al. 1999,
Taylor et al. 2007) on a Turner Aquafluor (Turner Designs, Palo Alto California). NO3™ +

NO> samples were analyzed on a SEAL AQ> discrete water analyzer using the AQ>
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method EPA-127-A Rev. 9. DIN concentration was then calculated by adding
concentrations of NH4" and NOs™+ NO,. SRP samples were analyzed on a SEAL AQ:
discrete water analyzer using the AQ> method EPA-155-A Rev. 0. TDP samples were
analyzed on a Thermo Scientific 10s UV-Vis spectrophotometer using the ascorbic acid
method and molybdenum antimony colorimetric determination methods (APHA 2005).
For TDP samples, an ammonium persulfate digestion was used prior to this analysis.
DOC and TDN samples were run on a Shimadzu TOC-Lcpy analyzer with TNM-L
module in the AQUA lab at Michigan Tech.

To further test our hypothesis regarding environmental variables as drivers of
process rates we measured depth at each transect point. Canopy cover (%) was also

measured at each transect point using a spherical densiometer (Lemmon 1956).

3.3.2.5 Statistical Analysis

To evaluate our first hypothesis that spatial heterogeneity of the wetland-stream-
lake interface would lead to spatial variability in nutrient limitation, we used a two-way
analysis of variance (ANOVA) with N and P as factors to test whether chlorophyll a
concentrations were significantly different (p-value < 0.05) among NDS treatments at
each transect point (Tank and Dodds 2003, Tank et al. 2017). Single nutrient limitation
was indicated if just one of the individual treatments (N or P) indicated a positive
response, but the interaction term of the ANOVA was not significant. Co-limitation by N
and P was determined when either both individual treatments indicated a positive
response, the interaction term of the ANOVA was significant, or if both the interaction

term of the ANOVA was significant and one of the individual treatments indicated a
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positive response. No significant terms (p-value < 0.05) indicated no nutrient limitation.
The ANOV As were performed in RStudio (R version 4.1.2).

To evaluate the second hypothesis that spatial variability in nutrient limitation
would facilitate the co-occurrence of N> fixation and denitrification across wetland-
stream-lake interfaces we performed Kruskal-Wallis tests in RStudio (R version 4.1.2), as
the data did not follow a normal distribution. We ran two separate tests with N fixation
or denitrification rates as the response variable and nutrient limitation status as the
predictor variable. To evaluate if rates of N> fixation and denitrification varied
significantly among the different habitat types of the interfaces (wetland, wetland to
stream transition zone, stream, stream to lake transition zone, and lake) we also
performed Kruskal-Wallis tests.

To evaluate the third hypothesis that spatial patterns of nutrients, light
availability, and organic matter would predict the occurrence of these processes we used
predictive modeling. Since the dataset for this study was nonlinear and spatially
autocorrelated, we chose to use predictive modeling to assess our data. Predictive
modeling is a mathematical process that uses known results to create and validate a
model that generates predictions accurately (Kuhn and Johnson 2013). Two separate
models were generated with N> fixation rates and denitrification rates as response
variables. For all models, the predictor variables were substrate type, canopy cover (%),
depth (cm), temperature (°C), AFDM (g/m?), NH4" (mg/L), NOs™ + NO> (mg/L), SRP
(mg/L), TDP (mg/L), dissolved inorganic nitrogen (DIN, mg/L), DIN:TDP, DOC (mg/L),

and TDN (mg/L) concentrations. All predictor variables included in the models were
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based on a priori hypotheses and general knowledge of biogeochemistry. Nutrient
limitation was not used as a predictor variable because this data was only collected in
2019 and 2020 and the models used process rates from 2018, 2019, and 2020 as response
variables. 9 total transect points were removed from the data matrix because they were
categorized as terrestrial or with no standing water, so they did not have the full suite of
predictors collected at those sites. All data were pre-processed by centering, scaling,
removing near-zero variables, and imputing missing variables using 5-nearest neighbors.
Highly correlated variables were removed at a cutoff value of 85%, which resulted in
DIN being removed from all models. The variables NO3+ NO, and macrophyte substrate
also were indicated as variables with > 85% correlation, but ultimately were kept in the
models as N concentrations and substrate type are important variables to N cycling
processes. Each dataset was split into training and testing sets using stratified random
sampling based on stream name, so that each set would have an even distribution of the
streams sampled. 80% of the data was placed into a training set and 20% of the data was
placed into a testing set. Replacement was used due to the small size of each dataset (105
observations, 11 variables) and we used bootstrap resampling methods with 10 resamples
for each test model. For each dataset we then trained a variety of regression-based models
including: partial least squares, ridge regression, elastic net/lasso, neural networks,
support vector machines, MARS/FDA, K-nearest neighbors, single trees, model
trees/rules, bagged trees, random forest, boosted trees, and cubist (summarized in Kuhn
and Johnson 2013). For each model the seed was set to 100 and test set performance was

evaluated. A best fit model was selected for each of the 2 response variables by finding
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the model with the lowest root mean square error (RMSE) and a high R? value. For each
best fit model, we then looked at the predictor variables of most importance to that model
to evaluate our hypotheses. Using predictive modeling there is a trade-off of accurate
predictability and direct interpretation (Kuhn and Johnson 2013). All data analysis for the

models was done in RStudio (R version 4.1.2) using the caret package (Kuhn 2019).
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3.4 Results

3.4.1 Environmental Characteristics
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Figure 3.2: Vertical dot plots of 9 environmental variables across for each transect and
study year. Nara 2018 (N, n=11), Sioux 2018 (Si., n =9), Mackinac 2018 (M, n=9),
Nara 2019 (N, n = 11), Sioux 2019 (Si., n = 9), Mackinac 2019 (M, n = 7), Saganing
2020 (Sa., n =9) and Wildfowl 2020 (W, n = 9). From left to right beginning on the top
row the variables are NHs" (ammonium) concentration, NOj3 (nitrate) concentration, and
TDP (total dissolved phosphorus concentration. Row 2 is DIN/TDP, DOC (dissolved
organic carbon) concentration, and TDN (total dissolved nitrogen) concentration. The
third row is canopy cover, NF AFDM (N fixation chambers ash free dry mass), and AD
AFDM (amended denitrification chambers ash free dry mass). Note the Y-axis magnitude
is different for all environmental variables.

We observed variation in environmental characteristics across all the transects. Of

the 114 chamber measurements across all transects, 82 were on sediment substrate and 32
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were on macrophyte substrate. Mackinac 2018 and Saganing had the highest number of
overall macrophyte samples (n =7, n = 8, respectively), while all other transects had 2 —
4 macrophyte samples. NH4" concentrations were more variable among transects with a
s.d. of £ 0.017 mg/L than within the transects (s.d. £ 0.003 — 0.010), except for Wildfowl
which had a s.d. of + 0.034 mg/L (Table 3.1, Fig. 3.2). NO3™ + NO» concentrations were
also more variable among transects (s.d. = 0.143 mg/L) than within transects (s.d. £ 0.008
—0.096), except for Wildfowl which had a s.d. of + 0.223 mg/L. SRP concentrations
tended to be more variable among transects (s.d. £ 0.006 mg/L) than within transects (s.d
+ 0.000 — 0.007). TDP concentrations also tended to be more variable among transects
(s.d. £ 0.007 mg/L) than within transects (s.d. = 0.001 — 0.012, Fig. 3.2). DIN
concentrations were the most variable in Wildfowl with a s.d. of + 0.376 mg/L, but for
the rest of the transects the variation within (s.d. £ 0.009 — 0.095 mg/L) was less than the
variation among them (s.d. £ 0.157 mg/L). DIN:TDP varied among streams with a s.d of
+ 11.9, DOC concentrations varied among streams with a s.d of £ 2.36 mg/L, and TDN
concentrations varied among streams with a s.d of + 0.21 mg/L, but a few transects had
higher variability of DIN:TDP, TDN, and DOC within (Table 3.1, Fig. 3.2). Canopy
cover was generally more variable among transects than within (s.d. £ 13.6 %), except
for Nara 2018 (s.d. £ 19.3 %) and Mackinac 2018 (s.d. £ 23.5 %, Table 3.2, Fig. 3.2).
Temperature was more variable among transects with a s.d. of £ 4.7 °C than within
transects (s.d. £ 1.0 — 4.1 °C), except for Nara 2019 (Table 3.2, Figure 3.2) AFDM for N»

fixation and denitrification chambers were more variable among transects (s.d. = 1640

78



g/m? and £ 1332 g/m?, respectively) but the transects of Nara and Sioux had more

variation in AFDM within (Table 3.2, Fig. 3.2).

3.4.2 Nutrient Limitation

We observed spatial variability in nutrient limitation of biofilms across 4 of the 5
interfaces determined using NDS (Fig. 3.3). Of all 31 transect points measured, N
limitation was indicated at 32%, co-limitation of N and P was indicated at 26%, and no
nutrient limitation at was indicated at 42% of the points. At the Nara, Wildfowl, and
Saganing transects, we observed a range of nutrient limitation responses, with N
limitation, P limitation and co-limitation of N and P at different points along the
transects. In the Nara transect, 2 sites indicated significant N limitation and 4 indicated
significant co-limitation of N and P. In the Wildfowl transect 4 sites were significantly N
limited and one was significantly co-limited by N and P. In the Saganing transect 2 sites
were significantly co-limited by N and P. In contrast to these 3 interfaces, at the Sioux
transect, only N limitation was observed at 4 sites, while 4 sites showed no nutrient
limitation. No nutrient limitation data were available from the Mackinac transect because

most NDS were lost due to high-water levels and storms.
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Figure 3.3: Nutrient limitation data collected from nutrient diffusing substrates (NDS)
for 4 of the 5 transects. Type is the classification of each transect point as either wetland,
wetland to stream transition zone, stream, stream to lake transition zone, or lake. Transect
points with N effect are colored blue, P effect yellow, and N:P effect green. No nutrient
limitation is colored gray. N = nitrogen and P = phosphorus. P-values are denoted where
significant (p-value < 0.05).

80



3.4.3 Process Co-Occurrence and Nutrient Limitation

N fixation and denitrification co-occurred across all wetland-stream-lake
interfaces. Rates of N fixation ranged from 0 to 1950 pg/m?*/h with a median of 5.49
ng/m?/h, while denitrification rates ranged from 0 to 16,536 pg/m?/h with a median of
914 pg/m?/h. There were no significant differences in rates of N fixation or
denitrification across habitat types of the interfaces (y~ =2.57, df = 4, p-value = 0.63 and

v> =4.74, df = 4, p-value = 0.31 respectively, Fig. 3.4). The highest rates of N fixation
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Figure 3.4: Rates of N fixation and denitrification among all transects compared to
transect point classification. The classifications were wetland (W, chamber n = 46),
wetland to stream transition (WS, n = 27), stream (S, n = 22), stream to lake transition
(SL, n=3), and lake (L, n = 16). Note the Y-axis for denitrification is 6x that of N>
fixation. Different sites are denoted by different colors.

occurred in wetlands and wetland to stream transition zones, while the highest
denitrification rate occurred in a stream site, but high rates of denitrification were
observed across all habitat types except the stream to lake transition zones (Fig. 3.4).

Across habitat types, N> fixation occurred on both sediment and
81



macrophytes (Fig. 3.5). For N» fixation, of the 27 transect points with rates higher than
the 75" percentile of all N, fixation rates (> 45.1 pg/m>/h), 14 of those rates occurred on
sediment substrate and 13 occurred on macrophyte substrate (Fig. 3.5). Denitrification
occurred mostly in sediments, but occasionally macrophytes. For denitrification, of the 29
transect points with rates higher than the 75" percentile (> 3129 pg/m?/h), 26 of those

rates occurred on sediment substrate and 3 occurred on macrophyte substrate (Fig. 3.5).
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Figure 3.5: A heatmap of N fixation (NF) and denitrification (AD) rates across all 5
transects broken down by year, transect number, and substrate type (M = macrophyte or S
= sediment). For transect number t indicates a terrestrial site and a indicates aquatic. If no
t or a is present, then a site is just an aquatic site. As transect numbers increase the
transect moves from wetland to stream to lake. Rates of both processes are color coded
based on quartiles. Blue indicates a rate that is < the 25" percentile (Q1), green indicates
a rate that is between the 25" and 50" (Q2) quartile, yellow indicates a rate is between
the 50™ and 75" (Q3) quartile, and red indicates a rate is above the 75™ quartile. Grey
indicates no rate was measured for the transect point and substrate combination. For N»
fixation Q1= 0.02, Q2 = 5.49, and Q3 = 45.1 pg/m*h and for denitrification Q1 = 0, Q2
=913.8, and Q3 = 3129.1 pg/m?h.

83



To test our second hypothesis that spatial variability in nutrient limitation would
facilitate co-occurrence of N> fixation and denitrification, we found no significant
relationship between either N> fixation or denitrification rates and nutrient limitation
status (y° = 5.45, df = 2, p-value = 0.07 and y~ = 2.04, df = 2, p-value = 0.36 respectively,
Fig. 3.6). Observationally, the highest rates of N fixation were in sites with no nutrient
limitation followed by N limitation, whereas for denitrification the highest rate was in an

N limitation site, followed by high rates in no limitation sites (Fig. 3.6).
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Figure 3.6: Rates of N> fixation and denitrification in comparison to nutrient limitation
status. Note the Y-axis for denitrification is 20x that of N fixation. N = nitrogen, P =
phosphorus, and N+P = co-limitation of nitrogen and phosphorus. Different sites are
denoted by different colors.
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3.4.4 Environmental Factors as Predictors of Process Rates

Predictive modeling for denitrification did not support our hypothesis that higher
organic matter concentrations would facilitate higher rates of denitrification. When
testing predictive models with denitrification rates as the response variable, the best fit
model was a model tree using bootstrap resampling with a RMSE of 1.45 and a R? of
20% (Table 3.4). Model trees are a type of regression tree where terminal nodes predict

Table 3.4: Predictive modeling results for the response variables N> fixation rates and

denitrification rates. Items in bold represent the model of best fit based on the lowest
RMSE. RMSE = root mean square error.

Response Variable Model Type RMSE R?
N> Fixation Rates Partial Least Squares 0.74 0.01
Ridge Regression 0.77 0.03
Elastic Net/Lasso 0.71 0.08
Neural Networks 0.72 0.01
Support Vector Machines 0.77 0.01
MARS/FDA 0.69 0.08
K-Nearest Neighbor 0.71 0.05
Single Trees 0.89 0.04
Model Trees 0.62 0.52
Bagged Trees 0.76 <0.01
Random Forest 0.72 0.04
Boosted Trees 0.71 0.01
Cubist 0.60 0.33
Denitrification Rates Partial Least Squares 1.55 0.05
Ridge Regression 1.62 <0.01
Elastic Net/Lasso 1.56 0.20
Neural Networks 1.55 0.06
Support Vector Machines 1.53 0.08
MARS/FDA 1.61 <0.01
K-Nearest Neighbor 1.57 0.01
Single Trees 1.66 <0.01
Model Trees 1.45 0.20
Bagged Trees 1.56 0.06
Random Forest 1.54 0.06
Boosted Trees 1.56 0.05
Cubist 1.51 0.06
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the outcome using a linear model and the model is created with a split variable that is
associated with the largest reduction in error (Kuhn and Johnson 2013). The tree growing
process continues in this way until there are no further improvements in the error rate or
there are not enough samples and then each linear model undergoes simplification,
potentially dropping some of the model terms (Kuhn and Johnson 2013). Smoothing is
also used in model trees to decrease the potential for overfitting (Kuhn and Johnson
2013). The variables of importance to the model tree predicting denitrification rates were
NH4", TDN, SRP, canopy cover, and DIN:TDP. NH4" was the variable of most
importance, followed by TDN, then SRP, and then canopy cover and DIN:TDP as
variables of second, third, and fourth importance.

Predictive modeling for N> fixation did support our hypothesis that temperature
would be important to predicting N fixation rates, but did not support that NO3
concentrations would be important as well. When testing predictive models with N>
fixation as the response variable, the best fit model was a cubist model using bootstrap
resampling, with a RMSE of 0.60 and an R? of 33% (Table 3.4). Cubist models are also
rule-based, but they are a mixture of several methodologies (Kuhn and Johnson 2013).
Cubist models use linear predictions at each node and those are all collected into a single
linear model that is smoothed that represents each individual model. Macrophyte
substrate was the variable of most importance to the model predicting N> fixation rates,

followed by temperature, AFDM, and then DOC, and then SRP.
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3.5 Discussion

Our results demonstrate that N» fixation and denitrification do co-occur across
habitats in wetland — stream — lake interfaces and that the occurrence of these processes
cannot simply be explained by differences in nutrient limitation or concentrations across
the interfaces. When evaluating our first hypothesis that nutrient limitation would vary
spatially across the interfaces, we found there was N, N+P, and/or no nutrient limitation
at transect points across interfaces. When evaluating our second hypothesis that spatial
variation in nutrient limitation would facilitate the co-occurrence of N> fixation and
denitrification across the interfaces, there was no significant relationship between nutrient
limitation and rates of either N> fixation or denitrification. N> fixation and denitrification
did co-occur across the 5 wetland — stream — lake interfaces of Lakes Superior and Huron
encompassing a range of N and P concentrations (DIN = 0.026 to 0.260 mg/L, TDP =
0.003 to 0.017 mg/L among sites). Rates of both processes varied spatially within the
transects among the different habitat types, but the variation of rates among habitat types
was not significant. Predictive models did not support our hypothesis that high rates of
denitrification would be related to high organic matter concentrations or that high rates of
N fixation would be related to NO3™ concentrations. Predictive models did indicate that
SRP was a variable of importance to both N> fixation and denitrification rates. Sources of
N were important to denitrification rates and sources of C were important to N fixation
rates. Also, macrophyte substrate and temperature were the variables of most importance
to the N> fixation model. Yet it should be noted that both process models only explained
20-33% of the variation, so although these environmental conditions may be of some

importance to process rates across coastal wetland ecosystems, they do not fully predict
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the variation we observed. Thus, spatial heterogeneity is important to the occurrence of
both of these processes in coastal wetland ecosystems and these ecosystems cannot
simply be thought of as nutrient sinks that remove N, which is how wetlands are
commonly conceptualized.

The spatial variability of habitat is important to the co-occurrence of N fixation
and denitrification in coastal wetland ecosystems. Our results show that N fixation and
denitrification do occur across all habitat types within the wetland — stream — lake
interface, so any alteration of these habitats could alter N cycling within the interface.
Variability of substrate type within the wetland-stream-lake interface helped facilitate this
co-occurrence of N fixation and denitrification. This was particularly the case for N»
fixation, where high rates of the process were observed evenly among sediment and
macrophyte substrate, and macrophyte substrate was the variable of most importance to
the model predicting N> fixation rates. Macrophytes could be important hosts to bound
epiphytes that have the potential to fix N (Scott et al. 2005), while sediment could be an
important habitat for heterotrophic N> fixers or cyanobacteria in sediment-bound
microphytobenthos (Scott et al. 2008, Newell et al. 2016). Both of these substrate types
across the interfaces facilitated N> fixation and without both we would see a great
reduction in the total amount of N> fixation. Temperature was also important to the model
predicting N fixation rates. Temperature has been shown to be a limiting factor of N»
fixation rates, with increasing temperatures leading to an increase in rates (Marcarelli and
Waurtsbaugh 2006, Scott and Marcarelli 2012). In these coastal wetland ecosystems,
increased temperature could be linked to the shallower depths of the wetlands where

more N fixation activity could possibly occur, though we also observed high rates of N»
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fixation in deeper nearshore areas. N> fixation rates have been shown to differ amongst
depths in the Great Lakes, which could be due to light availability (Natwora and Sheik
2021). Light availability was also a variable of importance to the model for denitrification
rates. Light can affect the amount of oxygen present in a system, which could constrain
denitrification rates as it is an anerobic process. High concentrations of oxygen have been
shown to negatively impact denitrification rates in sediment of the Great Lakes and
across inland marshes of the Great Lakes region (Small et al. 2016, Dybiec et al. 2021).

The spatial variability of primary producer nutrient limitation in these interfaces
also highlights the importance of habitat complexity for nutrient dynamics. Overall, we
observed a majority of no nutrient limitation across transect points. However, like other
studies of nutrient limitation of primary producers in wetlands (Cooper et al. 2016), we
did find more N limitation followed by co-limitation of N and P at sites classified as
wetland. Previous studies in streams of Lake Superior have shown a predominant co-
limitation of N and P (Wold and Hershey 1999), but we observed sites with no limitation,
N limitation, and co-limitation of N and P in our study streams. Due to sample recovery
we only had nutrient limitation data for one lake site and it was N and P co-limited.
Primary producers in the water column of the Great Lakes are primarily limited by
phosphorus (P) (Schelske et al. 1987), but studies in other lakes have shown that nutrient
limitation can differ between species (Fairchild et al. 1985) and between benthic and
planktonic organisms of lakes (Bonilla et al. 2005, Steinman et al. 2016). In a eutrophic
lake, benthic algae were found to be co-limited by N and P, while phytoplankton were P-
limited (Steinman et al. 2016), which indicates that nutrient limitation of primary

producers within lakes is complex. The spatial variation in nutrient limitation of primary
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producers measured by NDS had no significant relationship to rates of N fixation or
denitrification in our study. This could be because nutrient limitation alone is not the best
predictor of process rates.

Although nutrient limitation was not a predictor of N> fixation and denitrification
rates, the availability of N and/or P were variables of importance included in the
predictive models for rates of N» fixation and denitrification across the coastal wetland
interfaces. Our results suggest N in the forms of NH4" and TDN are important to
predicting denitrification rates. NHs" may be of importance to denitrification because
when reduced through the process of nitrification NH4" can be a source of NOs™, which is
used as an oxidant in the denitrification process. Previous studies in Great Lakes
sediment have shown that denitrification may be fueled by nitrification, while others have
shown that nitrification and denitrification are uncoupled in Lake Superior estuary
sediments (Small et al. 2014b, Bellinger et al. 2014). TDN encompasses all the dissolved
forms of nitrogen which would include NH4" and NOs™, which individually are known
constraining variables of denitrification rates. Interestingly, N concentrations were not
important to the model for N, fixation rates, which is similar to other studies suggesting
the relationship between N> fixation rates and N concentrations are not always direct
(Knapp et al. 2016, Eberhard et al. 2018, Tang et al. 2020). The availability of P in the
forms of SRP and/or DIN:TDP were also important to predicting rates of denitrification
and N fixation. We found this previously in streams with TDP and DIN:TDP being both
important positive predictors to denitrification rates (Eberhard et al. 2018) and suggested
that the mechanism could be similar to that proposed in lakes where increased P

stimulates algal production and N uptake and when algae die they end up in sediments,
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delivering N and organic matter, which increase denitrification rates (Finlay et al. 2013).
P availability has been shown to limit N> fixation rates in aquatic ecosystems (Elwood et
al. 1981, Howarth et al. 1988, Marcarelli and Wurtsbaugh 2007). C availability was also
an important predictor to N> fixation rates as DOC and AFDM. AFDM is a measure of
organic matter, which has been shown to affect N» fixation rates by increasing the
availability of trace metals used in the nitrogenase enzyme like molybdenum and iron
(Howarth et al. 1988). Variability in nutrient concentrations across wetland-stream-lake
interfaces may also play a role in facilitating the co-occurrence of N fixation and
denitrification in these ecosystems.

Our study did not assess how temporal variability may play a factor in the spatial
variability of environmental characteristics and rates of N> fixation and denitrification
across coastal wetland ecosystems. Recent literature has noted that a fundamental trait of
spatial areas of high rates of a biogeochemical process, or hot spots, is that they are
temporally dynamic and that these areas should be thought of more of as “control points”
that can be turned on or off depending on the timing and magnitude of delivery of
limiting factors (Bernhardt et al. 2017). There is evidence of temporal dynamics in our
data where in 2018 and 2019 we sampled the same transects. When looking at Table 4,
there are different patterns of the process rates of N fixation and denitrification in the
same transect points in different years. Moreover, due to rising water levels in the Great
Lakes in summer 2019 we were not able to access all the same transect points in Nara or
Mackinac as in 2018 and in some cases substrate that was prevalent at a transect point in
one year was absent in the other. Rising water levels could affect temperature and light

availability, which were important predictors of N fixation and denitrification in these
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ecosystems. Water level fluctuations have been shown to have the potential to alter
sediment and water nutrient exchange in Great Lakes coastal wetlands in previous studies
(Steinman et al. 2012, 2014). Changing substrate presence would also alter the potential
for denitrification and particularly N fixation to occur where we saw high rates on both
sediment and macrophyte substrate. Previously, rates of both processes have been found
to vary day-to-day (maximum daily change of 4,390 pug N/m?/hr for denitrification and 39
ug N/m?/hr for N fixation) across seasons in the Pilgrim River, which was part of the
Nara transect (Nevorski 2021).

Spatial heterogeneity of environmental variables and habitat in coastal wetland
ecosystems facilitate the co-occurrence of N> fixation and denitrification in these
ecosystems. This means that losses via denitrification must be considered relative to
inputs from N> fixation to accurately understand the role that wetlands play in nutrient
uptake and load mitigation because not as much N will be removed as we may think
looking at denitrification rates alone. Plus, the occurrence of both of these processes
across coastal wetland ecosystems could affect N dynamics of the larger Great Lakes. For
example, recent studies have shown that Lake Superior may be seeded with
cyanobacteria through fluvial inputs (Reinl et al. 2020). Therefore, alterations to the
stream and/or wetland N dynamics could have an effect on what is being transported to
the larger bodies and their biogeochemical cycles. The spatial heterogeneity within
coastal wetland ecosystems is key to maintaining this diversity in nutrient cycling.
Anything that may reduce physical habitat or biodiversity complexity, such as the
invasive wetland plant Phragmites australis, will alter the way that wetlands cycle, store,
and transport nutrients (Duke et al. 2015, Judd and Francoeur 2019). Therefore, from a
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restoration and conservation perspective, it is important to maintain and restore spatial
heterogeneity in these ecosystems to preserve their function in complex biogeochemical

cycling.
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4 Chapter 4: Diversity of microbial assemblages in streams
across ecoregions of the U.S. in relation to N fixation and
denitrification

4.1 Abstract

Microbial assemblages can differ across environmental gradients that define
ecoregions, which can lead to differences in the potential for biogeochemical processing.
We hypothesized that microbial community composition would differ amongst streams
located in different ecoregions with more extreme differences in environmental variables
such as temperature, canopy cover, depth, and nutrient concentrations. To evaluate this
hypothesis, we collected environmental samples of dominant substrate types from 30
streams across 13 ecoregions in the U.S.A. for 16S rRNA Illumina gene sequencing.
Alphaproteobacteria, Gammaproteobacteria, and Cyanobacteria were the Classes of
microbes with the highest relative abundance observed across all ecoregions. Observed
and Shannon alpha diversity were significantly different among the ecoregions (Kruskal-
Wallis p-value = 0.01 and 0.02, respectively). A distance-based redundancy analysis
showed that environmental variables did not explain much of the variance in microbial
communities among ecoregions (axis 1 = 4.6%, axis 2 = 2.8%), but the difference in
microbial communities among ecoregions was significant (PERMANOVA p-value <
0.01, R2 = 17.6%). When comparing the predicted functional potential of the microbial
community composition determined using FAPROTAX vs. stream reach average rates of
N> fixation and denitrification, we found no significant relationship between process rates
and functional potential (Spearman’s correlation p-value = 0.77, p = -0.09 and p-value =
0.23, p = -0.36, respectively). Our results demonstrate that there are significant
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differences in microbial community composition among streams across ecoregions, but

these differences cannot fully be explained by environmental variables at this scale.

4.2 Introduction

Biogeography is the study of spatial patterns in biodiversity in relation to
evolutionary events over space and time. The biogeography of large organisms such as
plants and animals has been investigated since the 18" century and more recently, the
biogeography of microorganisms has been a focus of increasing study (Martiny et al.
2006). Microorganisms are crucial to ecosystem processes because they decompose
organic matter, serve as a food resource, and transform nutrients from one form to
another. Microorganisms exhibit more phenotypic and genotypic diversity within their
group than among all other organisms (Findlay 2010), so evaluating the biodiversity of
microorganisms is key to understanding variation in ecosystem processes across space.

Ecoregions are characterized by groups of organisms that share similar
characteristics based on the environments where they exist. Within each ecoregion
environmental characteristics differ and thus constraints under which organisms can
operate differ, which has driven the evolution of organisms to thrive within specific
ecoregions and effected species richness (Hawkins et al. 2003, Kreft and Jetz 2007,
Mittelbach and McGill 2019). Variables such as pH, temperature, ion concentration, and
organic matter concentration can alter the taxonomy of microbial assemblages within
ecoregions (Pagaling et al. 2009, Findlay 2010, Bru et al. 2011, Fierer et al. 2012).

Larger-scale factors like latitudinal and elevation gradients, climate, lithology, and
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historical contexts can also shape the microbial assemblages within and among
ecoregions (LaRouche et al. 2012, Hendershot et al 2017). Variability in microbial
assemblages across ecoregions can control biogeochemical processes because organisms
that differ in processing capabilities thrive in environments that differ (Fierer et al. 2012).

Biogeochemical cycles such as the N cycle include multiple steps that are
accomplished by a variety of microorganisms. For example, N> fixing and denitrifying
bacteria differ in constraints that affect their establishment within a microbial
assemblage. Enzymes in the denitrification pathway are highly conserved in many
distantly related species of bacteria (Wellington et al. 2003, Schimel and Gulledge 1998).
Furthermore, dominant genera that have genes encoding a pathway for processes like
denitrification and nitrification can be highly similar across habitat types, suggesting N
functional groups may be less specialized than thought for certain soil characteristics
across landscapes (Nelson et al. 2016). However, differences in variables that control
enzymes in the denitrification process could produce different levels of activity across
ecosystems (Ferguson 1994). The N> fixation activity of microbes can be constrained by
multiple variables like temperature, light, dissolved N, dissolved iron, and phosphate
concentrations (Monteiro et al. 2011). N> fixing microbes like photosynthetic
cyanobacteria increase in abundance with low N and high P and iron supply in stream
microcosms (Larson et al. 2018). Analyzing how the assemblages of microorganisms
differ based on environmental constraints will further understanding of the occurrence of
N> fixation and denitrification in streams across ecoregions.

The goal of this study was to evaluate the taxonomy of microbial communities in

streams across ecoregions of the U.S in relation to N> fixation and denitrification. We
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evaluated taxonomy through 16S rRNA Illumina gene sequencing of microorganisms
found on stream substrates. We first hypothesized that microbial assemblages would have
different taxonomic compositions in streams from biomes that have extreme differences
in environmental variables like temperature, canopy cover, depth, and nutrient
concentrations, due to the different conditions for the microorganisms performing these
processes. Our second hypothesis was that those streams with higher reach average rates
of N fixation or denitrification would have a higher % composition of microorganisms

functionally capable of each process respectively.

4.3 Methods
4.3.1 Study Area

Samples were collected for 16S rRNA sequencing in 30 streams across 13
ecoregions during summer between 2017 and 2019 (Fig. 4.1). Most of the streams and
rivers were selected from sites that are part of the National Ecological Observatory
Network (NEON, Keller et al. 2008, Utz et al. 2013, and Goodman et al. 2015) or the
StreamPULSE project (Bernhardt et al. 2018), as these sites are continuously monitored
for discharge, temperature, and dissolved O». All streams were sampled once, except for
New Hope Creek, Arikaree River, Kings Creek, and Pilgrim River, which were sampled
multiple times across the study years (Table 4.1a-d). Stream size ranged in average width
from 1 to 75 m and average depth from 0.06 to 1.08 m. There was a variety of benthic
substrate across all streams, but the most common types across all streams were rock,

sediment, and wood (Table 4.2a-b).
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Figure 4.1: Map of the continental U.S. broken down by ecoregion. Each ecoregion is
labeled and represented by a different color. Sampling sites are denoted by a black star.
This map was created in ArcGIS using the domain layer created by the National
Ecological Observatory Network (NEON).

4.3.2 Sampling Design

On a given sampling day, stream reaches were first mapped for habitat
characteristics and relative substrate abundance present in the streambed. Samples of
each representative substrate in the streambed were then collected and placed into
chambers. Chambers then underwent acetylene reduction or acetylene block assays
during 2 hour in-stream incubations to measure rates of N> fixation and denitrification,
respectively. After the incubations, samples of substrate were taken from each chamber

and placed in 15 mL falcon tubes to be frozen for 16S rRNA Illumina sequencing.
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4.3.2.1 Chamber Setup

Chambers used for the acetylene reduction and acetylene block assays varied by
substrate type. 2-L polycarbonate food storage containers were used for rock and larger
macrophyte substrate (Gettel et al. 2007, Eberhard et al. 2018). The chamber lids were
sealed airtight with a Viton o-ring, and were fit with a 13x20 mm septa for sample
collection. For sediment, wood, and smaller macrophyte substrate, chambers were made
from pint size glass mason jars and lids were similarly fit with an airtight sampling septa.

Rock substrate was collected by haphazardly sampling rocks from the study area
and placing them in the polycarbonate chamber until its bottom was covered. Sediment
substrate was collected haphazardly within each stream using a 7 cm diameter suction
corer to collect ~200-400 mL of sediment that was then placed into the mason jars.
Macrophytes were collected using chamber lids to approximate surface area of
macrophyte to sample, then pulling from the root and placing in chambers. Wood was
collected by haphazardly sampling wood until the bottom of a mason jar was mostly

covered.

4.3.2.2 Environmental Characteristics

To test the hypothesis that variation in environmental characteristics in each
biome would drive differences in microbial community composition, we collected 7 ~40
mL water samples from each stream. The water was filtered using Millipore 0.45 pum
nitrocellulose membrane filters into 60 mL bottles. Samples were frozen until later
laboratory analysis. TDN and DOC samples were acidified to a pH <2 and sent to

Michigan Tech’s Laboratory for Environmental Analysis of Forests (LEAF) core facility
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which used a Shimadzu 210 TOC-VCSN with a total N module TNM-1 (Shimadzu
Scientific Instruments, Columbia, Maryland). NH4" was analyzed using a fluorometric
method (Holmes et al. 1999, Taylor et al. 2007) on a Turner Aquafluor (Turner Designs,
Palo Alto California). NO3 samples were analyzed on a SEAL AQ:> discrete water
analyzer using the AQ> method EPA-127-A Rev. 9. DIN concentration was then
calculated by adding concentrations of NHs" and NOs™. SRP samples were analyzed on a
SEAL AQ: discrete water analyzer using the sed AQ> method EPA-155-A Rev. 0. TDP
samples were analyzed on a Thermo Scientific 10s UV-Vis spectrophotometer in using
the ascorbic acid method and molybdenum antimony colorimetric determination methods
(APHA 2005). For TDP samples, an ammonium persulfate digestion was used prior to
this analysis. TP samples used the same method as TDP, but with unfiltered samples.

To further test our hypothesis regarding environmental variables as drivers of
differences in microbial community structure we measured depth at 10 points across
transects located every 10 m along the sampling reach in every stream and the width of
each transect was measured as well. Canopy cover (%) was measured in the middle of

each transect using a spherical densiometer (Lemmon 1956).

4.3.2.3 Measurement of N transformation rates

N> fixation rates were measured using acetylene reduction (Capone 1993, Dodds
et al. 2017). An acetylene-filled balloon was added to each chamber. Chambers were
filled with stream water and sealed underwater, then balloons were popped with a needle
through the sampling septum to introduce a 20% acetylene headspace. Chambers were
then shaken for approximately 20 seconds to equilibrate the gas dissolved in the water
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with that in the headspace. Initial gas samples were collected within 5 minutes of sealing
the chambers. Chambers were placed in the stream for a 2-hour incubation to maintain
ambient stream temperatures. Chambers were shaken again to equilibrate and then final
samples were collected. All gas samples were placed into evacuated 9-mL serum vials
and kept in the dark until analyzed. Ethylene concentrations were measured using a SRI
8610C gas chromatograph equipped with a Hayesep T column, He carrier gas, and a
flame ionization detector. The column oven was set to 40 °C. To obtain N> fixation rates,
ethylene concentrations in the chambers were compared to 100 ppm ethylene standards
(Matheson Tri Gas). N> fixation rates were calculated following Capone (1993) and
Dodds et al. (2017), then converted to pg of N assuming a ratio of 3 mols of ethylene
produced for every 1 mol of N2> gas potentially fixed (Capone 1993).

Dentitrification rates were measured using the acetylene block method (Groffman
et al. 2006). Chloramphenicol was used to suppress additional protein synthesis during
the incubation in all chambers. We measured nutrient-amended, potential rates because
most previous stream studies have used this method and we wanted to be able to compare
estimates to these studies, and because this method is quick and easy to run with a large
number of replicates to estimate rate variability. Moreover, the acetylene block method
also inhibits nitrification, so measuring without amendments of nitrate can underestimate
denitrification rates (Dodds et al. 2017). However, the chambers were not sparged with
nitrogen or helium to create anoxic conditions in these denitrification rates
measurements. Each chamber received 0.62 g L' Glucose as a C source and 0.62 g L™!
NaNOs as an N source, plus chloramphenicol (2 g L™). After the amendment, acetylene

was introduced, chambers were incubated, and initial and final gas samples were
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collected as described previously for N> fixation. Nitrous oxide (N2O) concentrations
were measured using a SRI 8610C gas chromatograph equipped with a Hayesep D
column, He carrier gas, and an electron capture detector. The column oven was set to 40
°C. N20 concentrations in chambers were compared to standard concentrations of 1000
ppm N2O (Matheson Tri Gas). Denitrification rates were calculated following Dodds et
al. (2017).

In most cases, in each stream there were 2-4 sample chambers and 2-3 blank
chambers per assay and substrate type. The number of sample and blank chambers
depended on what substrate type was dominant in the stream study reach. More dominant
substrates had more chamber replicates per assay. The blank chambers were set up to
simulate an environment with minimal N> fixation or denitrification to control for
chamber effects. Materials used for the blanks were selected based on their relative
specific heats to mimic the specific heats of incubated substrates to correct for changes in
temperature. Rocks found on the shore near the stream were used for blanks for stream
rocks, and stream water was used as a blank for sediment, wood, algae, and macrophyte
substrates. The sample chambers had stream rock, sediment, wood, or macrophyte placed
in them as described above.

Surface area and volume of all substrates were measured to scale process rates for
surface area. Surface area for rocks and wood was determined by weighing tracings of
the sampled rocks. The weights were then compared to a standard curve to calculate area
(Bergey and Getty 2006). Sediment surface area was calculated as the diameter of the

corer. Macrophyte and algae surface area was calculated as the diameter of the chamber
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lid. Rock volume was determined using displacement and sediment volume was
determined by multiplying the surface area by average sediment core depth in the jar.

To evaluate how the composition of potential N>-fixing and denitrifying
microorganisms in each stream differed in comparison to overall rates of N> fixation and
denitrification in streams, the reach average rates for each stream were calculated. Stream
reach average rates were only calculated for NEON streams (n = 12 of the 30 total)
because only these streams had percent cover of each substrate type on the streambed
available as part of their dataset for each year. Percent cover for each substrate type was

calculated in each stream using the equation:

N,
percentCover; = Fl x 100
t

Where N;j is the number of observed points in a transect that match class type “i” and N¢
is the total number of points observed in the transect. This calculation can generate
percent cover values >100% if there is vertical stacking of plants

(https://data.neonscience.org/data-products/DP1.20072.001). For this analysis, algae and

macrophyte were lumped as one substrate in order to match the substrate categories to
NEON categories for percent cover.

The percent cover was then used to scale average chamber measurements of each
process to whole reach rates by multiplying average chamber rates by the average percent
cover of the substrate in the stream, respectively for each substrate present. All of the
scaled substrate rates were then added together to get whole stream reach-scaled rates for

each stream.
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4.3.2.4 Microbial Sampling and Illumina Sequencing

At the end of each sampling day, substrate samples (biofilm, sediment, wood,
algae, or macrophyte) were removed from each sample chamber and placed in sterile 15
mL falcon tubes. Rocks were removed from the chambers and scrubbed, and 12 mL of
scrub water was poured into the falcon tubes to collect biofilm samples. 8-mL sediment
cores were taken from sediment chambers using a 10 mL syringe and placed into the
falcon tubes. Wood substrates were sampled by using a pocketknife to cut off ~ 4 surface
shavings from each stick in a chamber and placing those into falcon tubes with chamber
water. Macrophyte and algae were sampled by tearing off a small part of the macrophyte
or algae mat and placing it in a falcon tube with chamber water. All 15 mL falcon tubes
were placed in a mobile -20°C freezer after collection and moved to a -10° C freezer
upon return to the lab. DNA from each sample was extracted using the Power-soil DNA
Isolation Kit (MO Bio) and stored in a -20°C freezer until analysis.

Samples that were selected for use in the 16S rRNA sequencing analysis came
from sample chambers that underwent acetylene reduction assays because they had no
additions of C, N, or chloramphenicol that may have altered the microbial community.
However, samples from these chambers were exposed to acetylene, which has been
shown to alter microbial community structure after 7-hour incubations (Fulweiler et al.
2015). The overall samples for 16S rRNA sequencing analysis had 1-4 samples per

substrate depending on the dominant substrate of each stream (Table 4.2a-b).
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In total, 272 DNA samples were prepped for submission to the Michigan State
University Genomics Core for 16S-V4 amplicon Illumina sequencing. Samples were first
quantified using Qubit dsSDNA HS assay kit (Invitrogen) and normalized to
approximately the same concentration of 1-10 ng/uL. A test PCR amplification was
performed using a mixture of 1 pLL DNA, 6.5 pL of 0.5 uM primer mix of the 515t/926r
primer pair for the 16S V4-V5 region, and 7.5 pL of 2X Phusion Flash High-Fidelity
PCR Master Mix. The PCR cycling conditions were 95° C for 3 minutes, then 30 cycles
of denaturation at 95° C for 45 s, annealing at 50° C for 60 s, and elongation at 72° C for
90 s, followed by 72° C for 10 minutes. PCR products were run on a 2% agarose gel to
confirm amplification and size. Samples that did not amplify were not sent out for
analysis (n = 62). Overall, 206 confirmed DNA samples were sent to the Michigan State
University Genomics Core where samples underwent library preparation for 16S-V4
amplicon using the primer pair 515f/806r (Kozich et al. 2013) and then Illumina
sequencing using MiSeq v2 Standard 500 cycle (2x250bp paired end). Sequence data
were demultiplexed and converted to FastQQ format. The sequence data was imported into
RStudio (R version 3.6.0) with a sum of 9,746,880 reads and a mean of 47,315 reads. An
amplicon sequence variant (ASV) table and taxa table were made using the dada?
version 1.14.1 package and SILVA version 138 to assign taxonomy (Quast et al. 2012,
Yilmaz et al. 2014, Callahan et al. 2016). These tables were combined into one single
object using the phyloseq package (McMurdie and Holmes 2013). The data was
normalized and rarified at 1000 reads with a seed of 81 and a sample size of 2202. After

being rarified there were 47,159 taxa and 205 samples in total.
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4.3.2.5 Statistical Analysis

To assess our first hypothesis that microbial community taxonomy would differ in
biomes that have extreme differences in environmental variables we examined the
observed (richness) and Shannon alpha diversity of ASVs in each ecoregion. A Kruskal-
Wallis test was performed to assess if there was a difference in the observed alpha
diversity among ecoregions and also if there was a difference in the Shannon alpha
diversity among ecoregions. A post-hoc Dunn test was performed with Bonferroni
correction to assess differences in alpha diversity between pairs of ecoregions. To further
assess the composition of the microbial communities across ecoregions, we compared
relative abundances at the Class level for each ecoregion.

We performed a distance-based redundancy analysis (db-RDA) or a constrained
analysis of principle coordinates to evaluate if environmental variables across each
ecoregion could explain the variability in ASVs. The method of db-RDA tries to detect
linear relationships on dissimilarities using non-Euclidean distance. The db-RDA takes a
dissimilarity matrix and creates a principal coordinates analysis (PCoA) on the matrix.
The eigenvalues generated in the PCoA are then put into an RDA that is constrained by a
matrix of explanatory variables (Legendre and Anderson 1999). The matrix of
explanatory variables for this analysis included the variables watershed area (km?),
average stream reach width (m), average transect depth (cm), average canopy cover (%),
DOC (mg/L), TDN (mg/L), NHs" (ug/L), NOs™ (ug/L), SRP (ug/L), TDP (ug/L), TP
(ng/L), DIN (ng/L) and DIN:TDP. Prior to analysis, all samples with NA values for any
of the explanatory variables were removed from the matrix because this test does not

handle missing data. This resulted in the removal of 23 of the 205 samples, which were
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from the 2018 sampling of New Hope Creek and the Pilgrim River and the 2019
sampling of Rio Prieta and Poker Creek (Table 1). The ordination used the Bray-Curtis
distance method. A permutational analysis of variance (ANOVA) was then used on the
constrained axes of the ordination to evaluate if the db-RDA was significant. To test if
the groupings in the ordination were significantly different by ecoregion (beta diversity),
a permutational multivariate analysis of variance (PERMANOVA) was performed with
Bray-Curtis distance. All analyses were performed using the phyloseq and vegan
(Oksanen et al. 2020) packages in RStudio (R version 4.1.2)

To evaluate if streams with higher reach average rates of N> fixation or
denitrification would have a higher % composition of microorganisms functionally
capable of each process, we used FAPROTAX to map our taxa to metabolic or
ecologically relevant functions based on a review of the literature of cultured species.
FAPROTAX uses Python script to convert taxa tables to functional tables (Louca et al.
2016). This program is non-exhaustive and is not specific to aquatic habitats. Taxon can
be listed as multiple functions if they are known for multiple types of metabolisms and
functions can be nested, meaning that if an organism is known to carry out one part of a
process like the 4-step process of denitrification then it will also be listed as capable of
performing the whole denitrification process. The functional table produced from
FAPROTAX was then used to assess the average % of N> fixation and denitrification
functional groups detected in each stream. Only data for the 12 NEON streams (Arikaree
River, Pringle Creek, McDiffet Creek, Kings Creek, Hop Brook, Rio Guillarte, Rio
Cupeyes, Sycamore Creek, Caribou Creek, Blacktail Deer Creek, McRae Creek, and
Martha Creek) were used because they were the only streams where stream reach average
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rates of N fixation and denitrification were able to be calculated. A Spearman’s rank
correlation was then used in RStudio (R version 4.1.2) to evaluate the differences
between average % of N> fixation and denitrification functional groups to stream reach

average rates of both processes.

4.4 Results

4.4.1 Taxonomic Composition and Diversity

When evaluating our first hypothesis that microbial communities would have
different taxonomical compositions in biomes with extreme differences in environmental
variables we observed differences in the relative abundances at the Class level of the

microbial assemblages across the ecoregions (Fig. 4.2).

o8 Class

2%

Acidimicrobiia

Acidobactenae

0.75

Actinobacteria
Alphaproteobacteria
Anazerolineae

Bacilli

050 Bacteroidia
Clostridia
Cyanobacteriia

Desulfuromonadia

Proportion of Community

Gammaprotechacteria

Planctomycetes

<
o
G

Polyangia
Spirachaetia
Thermoleophilia
Vermucomicrobiae

Vicinamioacteria

0.00

pical

[}
=)
©

flad

Northeast

Great_Lakes
Southeast

Great_Basin
Central_Plains

Desert_Southwest
Southern_Plains

Pacific_Northwest
Northem_Rockies
Prairie_Peninsula

Atlantic_Neotro

Figure 4.2: Relative abundances of microbial Classes by ecoregion. All Classes that
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to East.
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The three most prominent Classes present in all ecoregions were
Alphaproteobacteria, Cyanobacteria, and Gammaproteobacteria. Alphaproteobacteria
made up 15 - 36% of community compositions and Gammaproteobacteria made up 11-
22% of the community compositions. Cyanobacteria made up 4.4 — 33.6% of total
community compositions with the lowest percentage in the Northeast and the highest in
the Southeast. Bacteroidia were also present in abundance in all ecoregions and made up
5 — 16% of community compositions. Actinobacteria was observed in abundance in all
ecoregions except the Central Plains, Desert Southwest, and Southeast. When
Actinobacteria were present in an ecoregion they made up 2.1 to 5.9% of the total
microbial community composition. Anaerolineae were present in abundance in the
Central Plains (4.1%), Mid Atlantic (3.3%), Northeast (2.7%), Prairie Peninsula (2.5%),
Southeast (3.1%), and Southern Plains (2.7%). Planctomycetes was present in the
Atlantic Neotropical (2.7%), Great Lakes Basin (2.1%), Northern Rockies (2.8%), Pacific
Northwest (4.1%), and Southern Plains (3.6%) ecoregions. Polyangia was present in
abundance in the Atlantic Neotropical (2.7%), Mid Atlantic (3.2%), and Pacific
Northwest (4.0%). Verrucomicrobiae were present in abundance (3.1-7.6%) in all
ecoregions, but the Atlantic Neotropical, Desert Southwest, and Southeast.
Acidomicrobiia were observed in abundance only in the Pacific Northwest, making up
3.3% of the overall microbial community. Thermoleophilla was of abundance in the
Pacific Northwest (2.6%) and Taiga (2.5%) ecoregions. Clostridia were only present in
abundance in the Pacific Northwest and Southeast at 2.5% and 2.6% respectively. The
Desert Southwest was the only ecoregion with Bacilli in abundance at 2.8%.

Desulfuromonadia were only present in abundance in the Great Lakes and Taiga
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ecoregions at 2%. Spirochaetia was only of abundance in the Mid Atlantic at 2.5% of the
community composition. Acidobacteriae was observed in abundance only in the Mid
Atlantic (2.9%) and Northeast (4.2%). Vicinamibacteria were only present in abundance
in the Mid Atlantic (3.2%), Northeast (2.2%), Pacific Northwest (2.0%), and Prairie
Peninsula (2.1%). Across all ecoregions, Classes that were <2% of the total community
relative abundances made up 12.5 to 25.6% of each ecoregions’ total microbial
community composition; these Classes are not discussed in detail here.

When examining differences in the microbial community composition of the
ASVs among the 13 ecoregions, we found observed alpha diversity or richness of
taxonomy ranged from 54 to 970 (standard deviation (s.d.) =+ 199) and Shannon alpha
diversity ranged from 0.95 to 6.58 (s.d. £ 1.07, Fig. 4.3). The ecoregion with the highest
average observed alpha diversity was the Great Lakes (636) and the lowest was the
Desert Southwest (636). For Shannon alpha diversity, the ecoregion with the highest
average diversity was the Pacific Northwest (5.86) and the lowest was in the Northern
Rockies (4.75). There were significant differences among the observed alpha diversity for
each ecoregion (= 27.4, df = 13, p-value = 0.01), as well as among the Shannon alpha
diversity for each ecoregion (y~ = 24.9, df = 13, p-value = 0.02) using Kruskal-Wallis
tests. However, when assessing post-hoc differences between ecoregions, there were no
significant differences (p-values > 0.05) for both the observed richness and Shannon

alpha diversity.
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Figure 4.3: Boxplot of the observed richness and Shannon alpha diversity for each
ecoregion. The x-axis is arranged in direction of ecoregion location from west to east.
The boxplots represent median values with upper and lower hinges corresponding to the
25" and 75™ percentiles. The whiskers extend + 1.5 * interquartile range and all points
beyond that are considered outliers.

4.4.2 Environmental Characteristics Across Ecoregions

Across the 12 ecoregions and 30 study streams there was variability in the
environmental characteristics (Table 4.1a-d). The watershed area ranged from 0.4 to 2890
km?. The lowest canopy cover was 0% in Creston Creek in the Northern Rockies and the
highest was 95% in Dowst Cast Forest Stream in the Northeast. The lowest DOC
concentration of 1.0 mg/L was observed in McRae Creek in the Pacific Northwest, while
the highest concentration of 16.9 mg/L was observed in McDiffett Creek in the Prairie
Peninsula. NH4" concentrations ranged from 1.1 to 84.8 pg/L, with the 4 highest
concentrations occurring in the Central Plains or Prairie Peninsula ecoregions. NO3"

concentrations ranged from 5.7 to 3667 pg/L, with a median of 98.2 ug/L and the highest
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concentrations occurred in streams of the Great Basin, Northern Rockies, and Prairie
Peninsula. TDP concentrations ranged from 1.2 to 64.0 pg/L with a median of 13.1 pg/L
and the 2 highest concentrations occurred in streams in the Desert Southwest and
Northern Rockies. TP concentrations ranged from 2.7 to 132.9 pg/L with a median of
19.1 pg/L and all concentrations > 100 pg/L occurred in the Prairie Peninsula and Central
Plains. When looking at the relation of N to P, DIN:TDP ranged from 0.5 to 801.2 ug/L,
with a median of 8.6 pug/L. Streams with DIN:TDP > 100 occurred in the Prairie

Peninsula and Northern Rockies.

4.4.3 Environmental Characteristics as Drivers of Community
Composition

In contrast to the first hypothesis that ecoregions with more extreme
environmental characteristics would show the most differences in taxonomy, we found
that differences in environmental variables across ecoregions did not explain much of the
variability in microbial community structure (Fig. 4.4). The db-RDA was statistically
significant (p-value < 0.01) and had 22 constrained axes that explained 27% of the total
variation. The two most important axes of the db-RDA explained 4.2% and 2.8% of the
overall variability in microbial community structure (Eigenvalues = 3.47 and 2.35). From
the db-RDA, the environmental vectors that had the most impact (largest vector
magnitude) on the structure of the microbial communities were substrate type (rock,
sediment, wood, or macrophyte), NH4", TP, watershed area, and average canopy cover.
PERMANOVA analysis showed there were significant groupings of the ASVs by
ecoregions (p-value < 0.01), but that these groupings only explained 17.6% of the

variance in the data. The Northeast tended to group together in the direction of the
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vectors for wood substrate and average canopy cover. The Desert Southwest and Atlantic
Neotropical were grouped in the direction of the vectors for macrophyte and rock
substrate. The Central Plains and Prairie Peninsula tended to group in the directions of

the vectors for NH4 ", TP, watershed area, and sediment substrate.
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Figure 4.4: Ordination of the principal coordinates analysis and distance based
redundancy analysis of the taxa for each ecoregion. Color coding of each dot is based on
the ecoregion from which that sample came from. Environmental vectors shown are those
had the longest arrows. NH4 is ammonium, TP is total phosphorus, and Avg CC is
average canopy over.

4.4.4 % N Fixers and Denitrifiers in Comparison to Average Stream
Reach Rates

When evaluating our second hypothesis that streams with higher reach average

rates of N> fixation and denitrification would also have higher average % composition of
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taxa functionally capable of carrying out these processes, we found that the average % of
potential N fixers and denitrifiers were less than 10% of the total community functional
potential across all ecoregions. For N fixation, the highest average % of potential N
fixers was 10.0 % in McRae Creek, while the lowest was 0.03 % in Rio Cupeyes. Stream
reach average N, fixation rates ranged from 1.93 x 10> mg N/m%/h to 0.35 mg N/m*h
with a median of 6.7 x 10 mg N/m?/h (Fig. 4.5). For Denitrification, the highest average
% of denitrifiers was 0.08 % in McRae Creek and the lowest was 0 % detected in both
Rio Guillarte and Rio Cupeyes. Stream reach average rates of denitrification ranged from
0 mg N/m?/h to 8.75 mg N/m?/h with a median of 0.45 mg N/m?%h (Fig. 4.6). There were
no significant relationships between the average % of taxa functionally capable of
carrying out N> fixation or denitrification and rates of these processes (Spearman’s

correlation p-value = 0.77, p = -0.09 and p-value = 0.23, p = -0.36, respectively).
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4.5 Discussion

Our results showed that there was diversity in the microbial community
composition across the 13 ecoregions. The Classes Alphaproteobacteria (15-36%),
Cyanobacteria (4.4-33.6%), and Gammaproteobacteria (11-22%) were the most abundant
across all ecoregions. We found that ASVs grouped significantly by ecoregions, and that
these groupings were mainly related to substrate type, watershed area, canopy cover,
NH4", and TP concentrations. However, the ecoregions grouping explained < 20 % of the
variation in the ASVs and the axes constrained by environmental variables explained <10
% of the variation. We also found no relationship between % of N> fixing and
denitrifying bacteria in comparison to stream reach average rates of N> fixation and
denitrification. These findings highlight that although there is diversity at the ecoregion
scale in microbial community structure in streams, much of this diversity cannot be
explained by commonly measured stream environmental variables.

When assessing our hypothesis that differences in microbial community
composition would be the most apparent across ecoregions with extreme differences in
environmental variables, we did find some variability explained by ecoregions grouping.
In other large-scale studies of microbial community composition, streambed bacterial
community structure has been shown to be more variable across biomes than within using
NMDS (Findlay et al. 2008). This has also been observed in other studies where stream
pH, quality of fine benthic organic matter, and concentrations of dissolved organic carbon
and nitrogen were correlated with relative distance between communities in streams of
the Hubbard Brook watershed (Fierer et al. 2007). Bacterial community composition in

arctic streams has been shown to be correlated to nutrients, base cations, dissolved
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organic carbon, and landscape-scale lithology (Larouche et al. 2012). However, our
results indicated that differences in environmental factors at the ecoregion scale did not
help explain much of the variability in microbial community structure across ecoregions,
which could be because factors at the local scale may be more important environmental
drivers of stream microbial communities (Heino et al. 2014). In a floodplain river
system, it has been proposed that environmental spatiotemporal heterogeneity determines
ecological processes that shape bacterial metacommunities (Huber et al. 2020). Though
there are differences in microbial community composition across ecoregions, the
differences may be better explained by within stream variation of environmental
variables.

Across the 13 ecoregions, both observed richness and Shannon alpha diversity
were significantly different. Alpha diversity is a common first step in analysis of
microbial communities across environments, but can be biased due to sampling design
and the nature of environmental microbial samples. For example, if one environment has
more microbial reads than another, then it is more likely to observe a greater number of
different taxa in those samples, which can put greater emphasis on the library sizes over
the biology (Willis 2019). Measures of diversity can also be inflated by organisms
present in a sample that are inactive or dormant and primer bias in the sequencing of
amplicons can underrepresent some microbial lineages (Shade 2017). Under-sampling
communities is also possible and can skew samples where there are few highly uneven,
rich communities (Adams et al. 2013). This has led to the idea that the true diversity of
microbial communities is inestimable, but it is still possible to compare relative diversity
measures (Hughes et al. 2001). It should be noted that in our study the total number of
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samples across ecoregions was not similar, so the relative abundances of each ecoregion
are based off of different number of total samples which can introduce error in
undercounting members present in each stream’s microbial community.

In addition to diversity measures, relative abundances of Classes of microbes can
provide further insight into the microbial community composition across ecoregions. The
Classes that were most abundant (Alphaproteobacteria, Cyanobacteria,
Gammaproteobacteria) were similar across all ecoregions despite these ecosystems
having different defining characteristics. Yet, the actual species composition within these
classes and their functional abilities could be different across ecoregions, which could
have consequences for N cycling across ecoregions. For example, members of the
Classes Alphproteobacteria and Gammaprotetobacteria are known to be heterotrophic N»-
fixers in marine sediments (Hamersley et al. 2011, Gier et al. 2016). Even recently,
Alphproteobacteria have been found to have the potential to be heterotrophic N»-fixers in
the oxygen minimum zones of oceans (Martinez-Perez et al. 2017). Cyanobacteria are
commonly known N»-fixers in aquatic environments (Scott and Marcarelli 2012).
Members of Gammaproteobacteria have been shown to have the potential for nitrification
and denitrification in oil sands lakes (Padilla et al. 2017). The potential for denitrification
by members of Alphaproteobacteria has also been shown in oxic and suboxic waters
(Wyman et al. 2013). Since these three Classes had relatively similar abundance across
all sites, the potential for N, fixation and denitrification activity is possible across all
sites. Yet, just because a species of a certain class has the potential to perform a process
like N> fixation or denitrification it does not mean that the process is actively being

carried out. This can be seen with the analysis of functional groups of our DNA
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sequences based off of FAPROTAX in comparison to stream reach rates. The average %
of taxa capable of N> fixation and denitrification did not correlate with stream reach
average rates of each process. For denitrification, some streams had 0 taxa identified as
possible denitrifies, but we measured rates of denitrification occurring there. Assessing
the composition of microbial communities through DNA sequencing while helpful in
determining who is there, cannot be directly related to what is actually occurring in an
ecosystem.

In this study, we used 16S rRNA sequencing for all analysis and were able to
investigate differences in microbial community structure. However, by sequencing DNA
we have just hit on what taxa are present in each stream and ecoregion and not their
actual functional capabilities, which would be better evaluated through RNA and
transcriptome analysis that can more accurately assess what genes are being expressed.
Without knowing what genes are expressed we cannot say for sure that an organism is
performing a metabolic process, which is similar to what we found in Chapter 1 where
relative gene abundance could not be directly linked to process occurrence. Our results
showed that the dominant Classes of microorganisms are similar across ecoregions
despite differences in environmental characteristics, although there were differences
detected across the streams in overall assemblage composition. Overall, differences in
environmental variables among ecoregions did not explain much of the variability in
microbial community composition in streams across ecoregions. This could be because
microbial communities are not that different at the class level among streams across

ecoregions.
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5 Conclusion

Throughout this dissertation I found that N> fixation and denitrification co-occur in
freshwater ecosystems at multiple spatial scales including at the patch scale within stream
reaches (Chapter 2), cross-ecosystem scale at wetland-stream-lake interfaces (Chapter 3),
and in streams across ecoregions of the U.S. (Chapter 4, Fig. 5.1). This finding further
supports the findings of my previous research, where I found that N fixation and
denitrification co-occurred in stream reaches across a gradient of N concentrations
(Eberhard et al. 2018). These findings also support studies in coastal marine and ocean
environments, where N fixation and denitrification have been found to co-occur within

sediments and the water column (Fulweiler and Heiss 2014, Deutsch et al. 2007).

Spatial Scale

Temporal Scale of Change

Figure 5.1. Graphic depiction of heterogeneity of aquatic ecosystems across spatial and
temporal scales. We specifically looked at the substrate scale (Chapter 2), cross-
ecosystem scale (Chapter 3), and across ecoregions (Chapter 4).
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The co-existence of N fixation and denitrification at multiple spatial scales was
facilitated through variability in substrate. In Chapter 2, at the patch scale within stream
reaches we observed high rates of N fixation occurring exclusively on rock substrate and
high rates of denitrification occurring exclusively on sediment substrate. Thus, the
presence of both substrates facilitated the co-occurrence of both processes in streams. In
Chapter 3, high rates of N> fixation occurred on both macrophyte and sediment substrate,
while high rates of denitrification occurred primarily on sediment substrate. Within
multiple transect points, high rates of N> fixation and denitrification simultaneously
occurred within sediment cores collected inches from one another. This is similar to what
others have found, with N> fixation and denitrification co-occurring within centimeters of
each other in sediment cores from coastal sediments (Newell et al. 2016). While we were
able to capture some of this small-scale variability in process rates, these findings from
our own study and others suggest that the microorganisms mediating these processes
experience variability in environment on a finer scale that we are not able to capture
through our commonly used benthic sampling techniques.

Although N> fixation and denitrification cooccurs, the magnitude of rates differed
and were not always comparable. Within stream reaches (Chapter 2), denitrification rates
tended to be 100x higher than N fixation rates, which was also observed at some wetland
transect points (Chapter 3). However, at other wetland transect points the magnitude of
N> fixation and denitrification rates were equal. This could have consequences for
understand the N balance in wetland — stream - lake interfaces in the Great Lakes region,
where N fixation rates have previously been thought of as negligible. If we base our

understanding of N balance off of select point measurements of process rates within these
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complex ecosystems then we could miss out on important areas where the two rates are
contributing equally to the overall N balance.

Another important finding across all of the research I conducted is that as spatial
scale increased, less of the variation in rates of N2 fixation and denitrification and
microbial community composition could be explained by environmental characteristics.
At the patch scale, 63% of the variation in N fixation rates and 84% of the variation in
denitrification rates were explained by environmental variables, while only 13-26% of
variability in microbial gene abundances were explained by environmental variables
(Chapter 2). This could be because at the patch scale we were measuring at the scale the
organisms performing these processes would be affected on, which would alter process
rates. Relative gene abundances may not be fully explained by variance in environmental
variables even at this scale because if a gene is present does not mean it is actively being
expressed. At the cross-ecosystem scale only 20-33% of the variation in process rates was
explained by environmental variables (Chapter 3). At the ecoregion scale only 27% of the
variability in microbial community composition could be explained by differences in
environmental variables, while 17% of the variation in community composition could be
explained by ecoregion (Chapter 4). This decline in explanatory power as spatial scale
increased could be because cross-ecosystem and across ecoregions variation in
environmental characteristics can only apply a certain amount of selective pressure on
which biogeochemical process could occur and which microorganisms are present.
Within a system, micro-scale variation in environmental variables could be what is
providing the primary control on process rates and microbial assemblages. Temporal

variability could account for some of the variance in process rates not explained by
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spatial variability, as our measurements are just a snapshot of time. There could be times

when conditions are right for a process to occur, or where shifts in microbial community

structure occur that could allow for moments in time of high process rates (McClain et al.
2003, Matulich et al. 2015, Bernhardt et al. 2017, Gautam et al. 2021).

Across our studies, N alone was rarely an important predictor for rates of N fixation
and denitrification. This is in contradiction with what has been regularly assumed in the
past, which is that N concentrations are the best indicator of the occurrence of these
processes (Marcarelli et al. 2008, Marcarelli et al. 2022). Instead, environmental variables
like P, dissolved oxygen, and organic matter concentrations were frequently identified as
important predictors of the occurrence of these processes. Therefore, we cannot continue
to make assumptions about the occurrence of these process in aquatic ecosystems based
off N concentrations alone. By using N concentrations as the main indicator of process
occurrence we could be biasing our understanding and study of both of these processes,
and missing much of the spatial variability in rates of N fixation and denitrification
within and across aquatic ecosystems. This would severely affect our understanding of
overall N dynamics in these ecosystems and underestimate the complexity of N cycling.

Overall, N> fixation and denitrification must be studied together to better
understand the complexity of N cycling in aquatic ecosystems. Both of these processes
are occurring at multiple spatial scales, and in some instances N> fixation is occurring at
relatively high, ecological significant rates in close proximity to, simultaneously with N
removal via denitrification. To better understand the occurrence of these processes we
need to better address how heterogeneity, both spatial and temporal, affect process rates

of N fixation and denitrification.
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Figure 1A (part 1 of 3): Rough habitat map for a reach of Diggie Creek in Idaho. Each
square has 1 x 1 m dimensions. Maps begin upstream to downstream.
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Figure 1A (part 2 of 3): Rough habitat map for a reach of Diggie Creek in Idaho. Each
square has 1 x 1 m dimensions. Maps begin upstream to downstream.
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Figure 1A (part 3 of 3): Rough habitat map for a reach of Diggie Creek in Idaho. Each
square has 1 x 1 m dimensions. Maps begin upstream to downstream.

151



B‘E’C\Ué’l DQM
¢|- P Y [ L= e
2l PN '
o5 I 4| ¢
o & g P
5 g~
g o
PA x
o -
d Lo
T ,
i WY |
o ~
NN <
e WY gl ©
~
;_ | <
S NN &
o (AT
oL y [
Z
+
AT
P
- _h - ./’
R Lol IV (‘Q
&) ﬁ
o )
1
/ g -
& P ol s
7 : P‘b E
= A
o |3 -
7 £ - .
ol = g
L} -':-' ;‘A 3:'
o < 5
' VT, 4]
2

Figure 2A (part 1 of 3): Rough habitat map for a reach of South Fork in Idaho. Each
square has dimensions of 1 m horizontal x 0.5 m vertical. Maps begin upstream to
downstream.
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Figure 2A (part 2 of 3): Rough habitat map for a reach of South Fork in Idaho. Each
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Figure 3A (part 2 of 2): Rough habitat map for a reach of the Pilgrim in Michigan. Each
square has dimensions of 1 m horizontal x 1 m vertical. Maps begin upstream to
downstream.
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Figure 4A (part 2 of 2): Rough habitat map for a reach of McGunn in Michigan. Each
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Figure 6A (part 1 of 2): Rough habitat map for a reach of Gibson Jack in Idaho. Each
square has dimensions of 0.25 m horizontal x 1 m vertical. Maps begin upstream to
downstream.
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Figure 6A (part 2 of 2): Rough habitat map for a reach of Gibson Jack in Idaho. Each
square has dimensions of 0.25 m horizontal x 1 m vertical. Maps begin upstream to
downstream.
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Figure 7A (part 1 of 2): Rough habitat map for a reach of Upper Portneuf in Idaho. Each
square has dimensions of 0.5 m horizontal x 0.5 m vertical. Maps begin upstream to
downstream.
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Figure 7A (part 2 of 2): Rough habitat map for a reach of Upper Portneuf in Idaho. Each
square has dimensions of 0.5 m horizontal x 0.5 m vertical. Maps begin upstream to
downstream.
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Figure 8A. Plot of relative abundances (Crt) of nifH and nirS across the 7 study streams
for the 4 substrate types ordered top to bottom: wood, macrophyte, sediment, and rock.
Streams are arranged from left to right in increasing dissolved inorganic nitrogen
concentrations. Diggie Creek (DC), Gratiot River (G), Gibson Jack (GJ), McGunn (M),
Pilgrim River (P), South Fork Mink Creek (SF), and the Upper Portneuf River (UP). Note
that these are relativized values to the median, so negative indicates less abundance than
the median value and positive indicates more. All Y-axes are the same except for nirS on
rock substrate.
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A.2 Chapter 3

Table 1A. The breakdown of deployment of nutrient diffusing substrate (NDS) in all
transects sampled in 2019. Transect points are broken down by habitat type. Y= yes and
N =no. The recovered NDS are broken down into the number of replicates of each
treatment that were recovered (N, P, N+P, and control), with the highest number of
possible replicates being 4. If NDS was deployed at a site but not recovered or not
deployed at all, then a “-* is used in the number of replicates.

. Transect NDS NDS N P N+P Control
Site 2 Type Deployed  Recovered  Replicates  Replicates  Replicates  Replicates
(Y/N) (Y/N) Recovered  Reovered  Recovered  Recovered
Nara 1 Wetland Y Y 4 4 4 4
2 Wetland Y Y 4 4 4 4
3 Wetland-Stream Y Y 4 4 4 4
4 Wetland-Stream Y Y 4 4 4 4
5 Wetland-Stream Y N 0 0 0 0
6 Wetland-Stream Y Y 4 4 4 4
7 Stream Y Y 4 3 4 4
8 Stream N N - - - -
9 Stream N N -
10 Lake N N - - - -
11 Lake Y Y 3 4 3 3
Sioux 1 Wetland Y Y 4 4 4 4
2 Wetland Y Y 4 4 4 4
3 Wetland Y Y 4 4 4 4
4 Wetland Y Y 4 4 4 4
5 Wetland-Stream Y Y 4 4 4 4
6 Stream Y Y 4 4 4 4
7 Stream Y Y 4 4 3 3
8 Stream Y Y 4 4 4 4
mouth Lake N N - - - -
Mackinac 1 Wetland Y Y 4 1 3 2
2 Wetland Y Y 2 1 0 0
3 Wetland Y N 0 0 0 0
4 Wetland Y Y 1 1 3 2
5 Wetland Y Y 3 4 1 3
6 Stream Y Y 2 1 2 2
7 Wetland-Stream N N - - -
202 Stream-Lake Y Y 3 0 1 0
9 Lake N N - - - -
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Table 2A. The breakdown of deployment of nutrient diffusing substrate (NDS) in all
transects sampled in 2020. Transect points are broken down by habitat type. Y= yes and
N =no. The recovered NDS are broken down into the number of replicates of each
treatment that were recovered (N, P, N+P, and control), with the highest number of
possible replicates being 4. If NDS was deployed at a site but not recovered or not

deployed at all, then a “-* is used in the number of replicates.
NDS NDS N P N+P Control
Site Transect # Type Deployed Recovered Replicates Replicates  Replicates  Replicates
(Y/N) (Y/N) Recovered Reovered Recovered Recovered
Saganing 1 Wetland Y Y 4 4 4 3
2 Wetland-Stream Y Y 4 4 3 2
3 Wetland Y N 0 0 0 0
4 Wetland Y Y 4 4 4 3
5 Wetland Y Y 3 4 4 4
6 Wetland Y Y 4 4 4 3
7 Wetland Y Y 3 4 3 2
8 Wetland Y Y 4 4 2 4
9 Wetland-Stream Y Y 4 4 4 4
10 Wetland-Stream Y Y 4 4 4 4
Wildfowl 1 Wetland Y Y 4 4 3 3
2 Wetland-Stream Y N 0 0 0 0
3 Wetland Y Y 4 4 4 4
4 Wetland Y Y 3 4 4 4
5 Wetland Y Y 4 4 4 4
6 Wetland Y Y 4 4 4 4
7 Wetland-Stream Y Y 4 3 4 4
8 Wetland-Stream Y N 0 0 0 0
9 Wetland-Stream Y N 0 0 0 0
10 Wetland-Stream Y Y 4 4 4 4
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gure 9A. ArcGIS image of the Nara trsec. Th pink dots denote transect points.
From left to right the transect points start at 1 and end at 11.
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Figur 10A. ArcGIS image of the Sioux transect. The pink dots denote transect points.
From top to bottom the transect points start at 1 go to 8. The mouth transect point is in the
nearshore lake area.
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Figure 11A. ArcGIS image of the Mackinac transect. The white dots denote transect
points. From top to bottom the transect points start at 1 go to 12.
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Figure 12A. Google earth image of the Saganing transect. The green push pins denote
transect points. From top to bottom the transect points start at 1 go to 10.
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Google Earth

Figure 13A. Google earth image of the Wildfowl transect. The green push pins denote
transect points. From right to left the transect points start at 1 go to 10.
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