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Abstract 

Carbon nanotube (CNT) speakers operate on heat as compared to conventional 

loudspeakers that operate on vibration. CNT speakers are extremely lightweight, 

stretchable, flexible and have high operating temperatures. Due to these advantages, CNT 

speakers are being considered as a viable replacement option for conventional 

loudspeakers. One such application is the automotive exhaust noise control. The goal of 

this research is to design an enclosed, coaxial CNT speaker and to develop a modeling 

method to model this speaker using COMSOL Multiphysics. 

As part of this research, an enclosed, coaxial CNT speaker was designed and manufactured 

for automotive exhaust noise control. The first prototype was a proof of concept that the 

design is feasible, and the speaker works. Two additional prototypes have been developed 

to improve the manufacturing feasibility and performance.  

The first task undertaken during the modeling method development has been to create 

COMSOL models that simulated the CNT film temperature oscillation and the 

corresponding SPL. The simulation results have been compared with a MATLAB model 

for a planar CNT speaker. In addition, the SPL generated by the coaxial speaker has been 

compared with the simulated SPL generated by the CNT speaker. In addition, the 

performance of the coaxial speaker has been simulated in the presence of flow. Generally, 

good correlation has been observed between the experimental SPL and simulated SPL. The 

models can be improved with future development of improved material properties. 
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1 Introduction 

1.1 Problem Definition 

Sound is a vibration that travels through a transmission medium, such as solid, liquid or 

gas in the form of pressure disturbances. Sound as music, is pleasing to the listener. 

However, sound that is irritating or unwanted is termed as noise. Prolonged exposure to 

noise, even at low volume is harmful to the listener. Also, noise in the vicinity of public 

buildings such as hospitals causes discomfort. So, it is very important to control and/or 

attenuate noise.  

Noise can be generated by a variety of sources. One of the common noise sources is exhaust 

noise. We encounter exhaust noise multiple times during our daily life. One source of 

exhaust noise is automotive exhaust (fig.1(a)). When fuel is combusted in the engine, it 

releases high temperature gases. Pressure pulsations are introduced in the gases due to 

alternate intake and combustion of fuel process in the engine. These gases are released into 

the atmosphere through the tailpipe, known as exhaust gases. The pressure pulsations and 

flow of the exhaust gases generates exhaust noise in automobiles. The exhaust noise sound 

pressure profile depends on parameters such as the engine operating condition, quantity of 

exhaust gases generated, tailpipe design, etc. Comparing with the source-path-receiver 

paradigm, the sources in this case are the engine and the tailpipe which radiates noise, path 

is air-borne through the pipe while the receiver are the people around the automobile as 

well as those driving. Another example of noise in our life is duct noise (fig. 1(b)). Duct 

can be a HVAC outlet in homes, kitchen, and bathroom vents, etc. In case of duct noise, 
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source is the duct outlet which again acts as a radiator of sound, path is air-borne through 

the HVAC pipe, and the receiver are the people in homes and offices. Both these noise 

sources are extremely irritating and harmful as people spend their day in homes, offices 

and travelling. Control and attenuation of exhaust and duct noise is done by applying 

various noise control techniques. 

            

            

            

            

            

Figure 1: Schematic of automotive exhaust noise source(a). It shows the engine and the 

exhaust pipe (tailpipe) that are the two major sources of automotive exhaust noise. 

Schematic of duct noise source present in homes and offices(b). HVAC ducts are the main 

source of duct noise present in homes and offices due to the flow of air.  

Noise control techniques are available to control/attenuate noise present at source, path and 

receiver. However, in the case of automotive exhaust noise and duct noise, there are certain 

limitations as to where noise control techniques can be applied in the source-path-receiver 

paradigm. Automobile engines are designed, manufactured, and fitted based on the type of 

car, its purpose (everyday use, luxury, supercar, etc.). The engine’s location and operating 

conditions are fixed. Also, the engines run very hot and because of their design, it is very 

difficult to apply noise control techniques at the engine. With respect to the end of the 

tailpipe, if the application of any noise control solution obstructs the flow of exhaust gases 

Engine 

Noise Source 

Exhaust 
Pipe HVAC System Duct 

Home/Office 
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into the atmosphere, it creates a backpressure. Backpressure is harmful, especially to the 

engine and its operation. With respect to the second source, i.e., ducts, noise is radiated 

from the outlet and the control of this radiated noise with standard noise control techniques 

has limited potential. The effective use of noise control techniques would be at the travel 

path of the noise. In both cases, noise is carried to the radiating end by pipes and so, it is 

very important to focus on pipe acoustics to understand the behavior of acoustic waves 

inside the pipe. The next sections the current systems in use for control of automotive 

exhaust noise, carbon nanotube (CNT) speakers, modeling methods used to design and 

analyze the control systems and CNT speakers, the motivation behind the research and 

explanation of further chapters.  

1.2 Current Noise Control Solutions 

1.2.1 Passive Systems 

1.2.1.1 Noise Cancellation Mechanisms 

Two mechanisms used to attenuation/cancellation of sound are destructive interference and 

absorption. Expansion and contraction of air results in the generation of sound waves in 

the form of sine waves. These waves contain positive and negative displacements of the 

air particles. When the positive displacement of one wave interacts with the negative 

displacement of the second wave, they are cancelled out by each other. This process is 

known as destructive interference and the result is wave of zero amplitude (figure 2a). One 

important condition of this process is that the waves should be out-of-phase with each 

other, i.e., their phases should differ by 180o.  
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Sound waves moving through a medium contain energy. These waves interact with the 

molecules of any medium they travel through. Attenuation of sound using the absorption 

mechanism makes use of this principle. When sound travels through some dense mediums 

such as glass wool, fibers, foam, etc., the molecules of the medium absorb the energy of 

the sound waves. This energy reduction results in the reduction of the sound pressure level 

(figure 2b). When the energy of the sound is absorbed by the medium, some form of the 

energy is released as heat.  

 

 

 

Figure 2: Schematic of destructive interference principle(a). Interaction of two wave of 

equal amplitude and opposite phase result in a wave of zero amplitude. Schematic of sound 

attenuation using an absorptive material(b). Energy of sound wave is absorbed, resulting 

in reduction of sound pressure level. 

A passive process does not involve the generation of sound for cancelling the target noise. 

Both these mechanisms are effective in attenuation/cancellation of noise and can be passive 

in nature. When noise is reflected onto the original noise, the interaction of the two waves 

results in noise cancellation. This interaction is based on the destructive interference 

principle. Noise attenuation using absorptive material does not involve any sound 

generation by the absorptive material. So, these two mechanisms form the basis of passive 

noise control units used for automotive exhaust noise control. Expansion chamber, 

Absorptive 
Material  Incident 

Wave 
Transmitted 
Wave 

Wave 1 

Wave 2 

Resultant 
Wave 

a b 
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perforated pipes and mufflers are the main passive control units widely used in 

automobiles. 

1.2.1.2 Expansion Chamber 

The effect of changing cross-sectional area and the reflection of sound waves from this 

area was first documented by Miles in 1944[1] by determining the reflection coefficient 

due to the discontinuity. Based on this idea, the simplest device used for passive control of 

noise is an expansion chamber[2]. The design of an expansion chamber consists of sections 

of different cross-sectional area (figure 3). When sound travels through an expansion 

chamber, it encounters this sudden change in cross-sectional area of the pipe. The sound 

waves are reflected from the junction point of this changed area back in the path of the 

incoming wave. The reflected waves are ideally 180o out-of-phase with the incoming sound 

wave and attenuates the target sound. Another advantage of the reflected wave is that less 

sound is transmitted through the expansion chamber on the outlet side. This also reduces 

the sound pressure level coming through the expansion chamber.  
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Figure 3: Expansion chamber block diagram. The incoming sound wave is reflected from 

the section of the chamber that has a change in cross-sectional area back into the chamber.  

As shown in the above figure, L is the length of the expansion chamber, a is the diameter 

of the inlet pipe, b is the diameter of the expansion chamber, pi is the incoming sound wave, 

pr is the reflected sound wave, pt is the transmitted sound wave. Ideally, performance of an 

expansion chamber is identified with a term known as transmission loss. Transmission loss 

in general, describes the reduction in the energy of the sound when it passes through an 

element travelling from a sound source[2]. Transmission loss of an expansion chamber can 

be expressed analytically as[153]: 

                                           𝑇𝑇𝑇𝑇 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 �1 + 1
4

(𝑚𝑚 − 1
𝑚𝑚

)2� 𝑠𝑠𝑠𝑠𝑠𝑠2𝑘𝑘𝑙𝑙𝑐𝑐                                   (1) 

In the above equation, m = Sc/Si, Sc is the cross-sectional area of the central chamber, Si is 

the cross-sectional area of the inlet pipe (when inlet and outlet pipes are same diameter) 

and lc is the length of the expansion central chamber.  

L 

b a pi pr 
pt 

Cross-
sectional area 
change 
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In case of expansion chambers, the source can be considered as the inlet of the expansion 

chamber, the element as the expansion chamber with area change and the outlet will be the 

opposite end of the expansion chamber pipe. The transmission loss of an expansion 

chamber consists of alternate regions of peaks and rapid falls of the sound pressure level 

transmitted through the chamber[3]. The nature of the peaks and falls depends on various 

factors such as length of the chamber, amount of change in the cross-sectional area, length 

of the pipe before and after the expansion chamber[4]. Several studies have been performed 

to characterize the transmission loss of expansion chambers[5-9].  

Expansion chambers are very effective at low frequencies. At high frequencies, their 

attenuation performance drops, particularly when the cross-axis chamber dimension is 

about 82% of the wavelength of the sound[2]. In addition, there is a limitation on the 

maximum transmission loss that the expansion chamber can achieve while maintaining a 

small size of the chamber. Design of the expansion chamber is done to achieve broadband 

attenuation response[2] and the transmission loss characteristics is fixed. So, the unit 

cannot respond well to any changes in the sound field, affecting its performance. To 

overcome these shortcomings, another passive control unit used in tandem with expansion 

chambers, is a perforated pipe. 

1.2.1.3 Perforated Pipes 

Expansion chambers, as mentioned earlier are more effective at low frequencies and their 

performance reduces at high frequencies. To improve the transmission loss at high 

frequencies, perforated pipes are used in tandem with the expansion chambers[10]. The 

simplest form of the perforated pipe and expansion chamber combination is when the 
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perforated pipe extends through the expansion chamber (figure 4). This type of a unit is 

known as a concentric tube resonator (CTR). The transmission loss of a CTR is calculated 

using the following formula[154]: 

                                          𝑇𝑇𝑇𝑇 = 20𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑝𝑝1+𝜌𝜌𝜌𝜌𝑣𝑣1
2𝑝𝑝2

� + 10𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑆𝑆𝑜𝑜
𝑆𝑆𝑖𝑖
�                                    (2) 

In the above equation, 𝜌𝜌𝜌𝜌 is the characteristic impedance of the medium, p1 is the sound 

pressure at the inlet pipe of the CTR, p2 is the sound pressure at the outlet pipe end of the 

CTR, So and Si are the cross-sectional area of the outlet and inlet pipes respectively. 

 

 

 

 

 

Figure 4: Block diagram of perforated pipe and expansion chamber combination. The inlet 

pipe extends through the expansion chamber and has perforations in the section inside the 

expansion chamber. 

As shown in above block diagram, the inlet pipe extends through the length of the 

expansion chamber and comes out of the other side as outlet pipe end. The pipe section 

inside the expansion chamber has perforations along its length for some predetermined 

area. The main effect of having a perforated pipe through the expansion chamber is to split 

Expansion Chamber 

Inlet End Outlet End 

Perforated Pipe 
Resonator 

Resonator 
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the expansion chamber into two parts. Each part acts as a resonator for the sound traveling 

through the inlet[10]. The perforations in the pipe provide a path for the sound to travel 

into the two resonators. The sound in the resonators is then reflected onto the target sound 

traveling through the interior pipe. The interaction between the reflected sound and target 

sound results in attenuation of the target sound and the transmission loss is better at high 

frequencies. Introduction of perforations in pipe of the expansion chamber alters its 

transmission loss characteristics. For a simple expansion chamber without a pipe extending 

through it, the transmission loss is a combination of alternate peaks and valleys[3]. 

However, with the presence of the perforated pipe section, the peaks in the transmission 

loss rise at certain frequencies while the valleys become more pronounced at higher 

frequencies[11], which is desirable. The rise in the peaks, which indicate more transmission 

of sound is not significant compared to the transmission values for a simple expansion 

chamber[3,11].  

The performance of CTRs is highly dependent on the dimensions of the perforate section, 

namely the diameter of the holes (d) and the length of the perforate section (L). Neihguk 

and Prasad performed a study to understand the relation between the perforate dimensions 

and the acoustic performance of CTRs[11]. They performed simulations on the model of 

different CTRs in COMSOL Multiphysics by altering the length and perforate hole 

diameters and validated the simulation results experimentally. The results showed that with 

increasing L/d ratio and increasing porosity of the perforate section, the transmission loss 

increased at high frequencies. Many studies have been performed to characterize the 

acoustic performance of the CTRs, mainly its transmission loss performance[12-17]. 
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Despite the benefit of improved attenuation performance at high frequencies, CTRs face a 

major problem: backpressure. Whenever there is an obstruction or an alternate path to the 

flow of exhaust gases in an automobile, backpressure is generated. This backpressure has 

negative effect on the engine operation. Higher backpressure puts extra load on the engine 

to push the exhaust gases out into the atmosphere through the tailpipe. So, it becomes 

crucial to have little-to-zero backpressure due to the introduction of CTRs in the tailpipe. 

Studies have been conducted to understand the backpressure generated due to different 

CTR designs[14,17,18]. These studies show that even with design changes, backpressure 

is generated with the use of CTRs in automobiles. Another disadvantage of CTRs is the 

limited attenuation performance. The resonator chambers generated are fixed in 

dimensions and so they provide attenuation in only a fixed frequency range. With any 

change in the exhaust sound frequency spectrum, the performance of the CTRs drops 

heavily. So, to make the frequency range of these CTRs more broadband and to reduce the 

generated backpressure, a combination of perforated pipes and resonant chambers are used. 

The multiple chamber arrangement is also combined with absorption material to further 

improve attenuation performance. These two units are collectively known as mufflers or 

passive systems used for automotive exhaust noise attenuation.  

1.2.1.4 Reactive Mufflers 

Reactive mufflers primarily use the destructive interference phenomenon to attenuate the 

exhaust noise in automobiles (figure 5). The reactive muffler consists of multiple chambers 

which act as resonators and expansion chambers. These dimensions of these chambers are 

designed to target noise attenuation in a broad frequency range. The inlet and outlet pipes 
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are generally offset to the longitudinal axis of the dissipative muffler[19]. In addition, the 

inner pipes of the muffler are perforated to allow exhaust noise to enter the chambers 

formed inside the shell of the muffler[19]. Having the above design ensures that the exhaust 

noise is scattered in all possible directions and maximum destructive interference is 

obtained.   

 

 

 

 

Figure 5: Block diagram of reactive muffler(a)[20]. The inlet and the outlet pipes are set at 

offset to the longitudinal axis of the muffler. Chambers are created in the muffler shell with 

baffles and perforated pipes are used to scatter the exhaust noise inside the muffler. 

Reactive mufflers are categorized into two types based on the direction of mean flow of 

the exhaust gases through them: straight-through mufflers and reverse flow mufflers[21]. 

Straight through mufflers have the exhaust gas flow entering from the inlet and exiting 

through the outlet on opposite side of the muffler. Reversed flow mufflers have the inlet 

and outlet pipes on the same side of the muffler[22]. Based on the operational requirements, 

engine type, exhaust gas profile, either type muffler is used.  

The design of a reactive muffler is a precise process as the dimensions set during design 

are fixed and they determine the working frequency as well as the performance of the 
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muffler. Achieving destructive interference in a reactive muffler is essential and so, the 

location of the chambers, its number, the location of the perforate pipes is very important. 

The chambers and perforated pipes scatter the exhaust noise coming from the engine[21]. 

The chambers and the perforated pipes redirect the low frequency waves to interact with 

the target exhaust noise and cancels or attenuates it. So, the primary design parameter is 

the length of the chamber, which includes the main shell as well as the sub-chambers inside 

it. The chamber length is designed based on the wavelength of exhaust noise to be cancelled 

and the varying exhaust gas temperatures[21]. The design of the perforate pipes in the 

mufflers depend on the length (L) to diameter (d) ratio of the perforate section[11]. 

Selecting a proper L/d ratio helps to have a high transmission loss for the frequencies of 

interest as well as broaden the frequency range of operation.  

Parameters considered to determine the muffler effectiveness are: insertion loss, 

transmission loss, size, backpressure and durability[19]. Insertion loss is the reduction in 

the SPL due to the attachment of the muffler in the tailpipe. A rule of thumb used for 

insertion loss is that more the number of area discontinuities, higher is the insertion 

loss[19,30]. The transmission loss of the reactive muffler is an extension of that of a simple 

expansion chamber. Suitable positioning of the interior chambers and the perforated pipes 

increases the transmission loss of the muffler. Size of the muffler is a very crucial 

parameter. There is a limitation of space available in the exhaust system of all automobiles. 

Adding more components such as mufflers requires precise design and positioning of the 

components. Further, larger the muffler, heavier it is, and it requires additional supports to 

hold it in place. These points make it important to have a balance between the muffler size 
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and its attenuation performance[19]. Reactive mufflers generally tend to be large in size 

for cancellation of low frequencies and have weak performance at high frequencies.   

Backpressure is probably the most important parameter to be considered for the 

performance of the muffler. Having a high backpressure is undesirable as it adds extra load 

on the engine, due to creation of static pressure[19]. It is observed that higher the 

attenuation performance of the reactive muffler, higher is the backpressure generated. If 

the exhaust gas is forced to change its flow direction more number of times, more 

backpressure is generated[19]. Several CFD studies have been performed to understand the 

backpressure generated by the reactive muffler and its relation to the muffler design[23-

29]. Reactive mufflers traditionally have high backpressure for the desired high attenuation 

performance.  

To overcome some of above-mentioned disadvantages of the reactive mufflers, a second 

type of muffler is used known as an absorptive muffler. 

1.2.1.5 Absorptive Mufflers   

The second type of muffler is known as an absorptive muffler. This muffler makes use of 

the absorption principle to reduce the energy of the exhaust noise. An absorptive material 

is used, and exhaust noise is passed through it. The molecules of the material absorb the 

sound energy, reducing the SPL. The general design of the absorptive muffler is like a 

reactive muffler. Various chambers are present in the absorptive muffler. The perforated 

pipes in these chambers are enclosed in a larger steel housing[19]. In between the 
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perforated pipe and the housing, absorptive material is placed. The sound through the 

perforations passes through the absorptive material and experiences a reduction in energy. 

 

 

 

 

Figure 6: Block diagram of absorptive muffler(a)[20]. The perforated pipes are covered 

with absorptive material lining to absorb energy from the incoming exhaust noise. The 

absorptive material is sandwiched between the perforated pipe and external housing. 

The major component of an absorptive muffler is the absorptive material used to line the 

walls of the perforated pipe. Several materials are available for use in the absorptive 

muffler. One major requirement of the absorptive material is that it allows sound to pass 

through it while absorbing its energy. This means that the material requires to have some 

degree of acoustic transparency, possibly a very low value. Second requirement of the 

absorptive material is that it does not allow the exhaust gases to flow through it relatively 

easily. Further, as the absorptive material is placed inside the muffler, it absorbs the 

pressure waves while reflecting a very small amount back[33]. Common types of 

absorptive materials used are fibres, glass wool, woven glass fiber, porous absorbing 

materials, porous fibrous materials and advanced metals and ceramics[33-39]. Each of 

Absorptive Material 
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these materials have some advantages for noise attenuation while having disadvantages 

related to their durability and environmental impact.  

Absorptive mufflers perform better at mid to high frequencies[40,41]. One major 

advantage of absorptive mufflers over reactive mufflers in the backpressure generated. In 

absorptive mufflers, the absorptive material provides a straight path for the exhaust gases 

to flow into and out of the muffler. So, there is very little change in the direction of flow 

of the exhaust gases and hence very little backpressure. Number of studies have been 

conducted for determining the backpressure generated in an absorptive muffler[42-47].  

In an exhaust system, a combination type muffler is used for passive noise attenuation. In 

the combination muffler, attenuation is performed using destructive interference and 

absorption. These processes are done in the same muffler. The muffler has chambers that 

act as resonators and some perforated pipes are lined with absorptive materials. The 

advantage of using a combination muffler is improved performance at low, mid and high 

frequencies. This helps to avoid using separate reactive and absorptive mufflers to broaden 

the operational frequency range. Also, using a combination muffler helps to reduce the 

backpressure as the number of direction changes for the exhaust gas flow is reduced. 

1.2.1.6 Need for Alternate Noise Control System 

Passive noise control systems, though simple in installation and operation have some 

disadvantages. For reactive mufflers to be effective, multiple chambers and perforated 

pipes are required. Their presence provides multiple paths to the exhaust gas to change its 

flow direction. This generates large amount of backpressure, affecting the engine 
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performance. Also, the reactive muffler has weak performance at high frequencies. The 

resonant and expansion chamber volumes are frequency dependent. Lower the frequency 

of target sound, larger is the volume required. This makes the reactive muffler bulky and 

heavy.  

Absorptive mufflers have less backpressure compared to a reactive muffler. However, the 

prolonged contact of the absorptive material with the exhaust gas causes accumulation of 

the soot, dust particles, and other particulates on it. Over time, it clogs the pores of the 

absorptive material, blocking the paths through which sound travels through the absorptive 

material. A rule of thumb for efficient absorption of sound by a material requires that the 

thickness of the absorptive material be at least 1/6th of the wavelength of the target 

frequency. For low frequencies, the wavelength of sound is very large. This makes it 

necessary that the thickness of the absorptive material be large. This increases the size of 

the muffler, making it bulky and heavy. 

Another disadvantage of mufflers is that they are inflexible with respect to the operational 

frequency. When mufflers are designed, their dimensions decide the frequency range of 

operation. Any changes in the exhaust noise spectrum, particularly the frequency reduces 

the attenuation performance of the mufflers. With these disadvantages in mind, active noise 

control units are used for exhaust noise cancellation.  
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1.2.2 Active Systems 

1.2.2.1 Noise Control Mechanisms 

The main working principle of active noise cancellation systems is destructive interference. 

As mentioned in the passive systems section, destructive interference occurs when two 

sound waves of equal amplitude, but opposite phase (180o) interact with each other. The 

positive and negative displacements of the waves cancel each other, and the resultant wave 

has zero amplitude. The major difference between the passive and active systems is manner 

in which destructive interference is achieved. Passive systems rely on the reflection of 

sound from the shell of the mufflers back onto the target noise wave. Active systems utilize 

a loudspeaker to generate a sound wave that has equal amplitude, but opposite phase 

compared to the target wave (figure 7). The sound generated by the loudspeaker can be 

pure tones or broadband (white noise) in nature.  
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Figure 7: Schematic of destructive interference used in active control systems. A 

loudspeaker generates sound that has equal amplitude, but opposite phase compared to the 

target noise.  

Two main conditions for destructive interference to happen successfully are: equal 

amplitude and opposite phase. Achieving these two conditions is very important. If the 

amplitude of the wave generated by the loudspeaker does not match that of the target wave, 

the resultant wave might have higher amplitude than intended. In addition, if the generated 

wave is not completely out-of-phase with the target wave, the positive displacement of one 

wave will not align with the negative displacement of the other wave. Addition of two such 

waves will result in some constructive interference, increasing the amplitude of the target 

wave. So, to make sure that the two waves have the same amplitude and opposite phase, a 

control unit is used to provide input to the loudspeaker. The control unit runs on an 

algorithm which are of several different types and are known as active control algorithms. 

Generated Cancelling Wave 
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1.2.2.2 Active Control Systems 

Active control algorithms are divided into two broad types: feedforward algorithms and 

feedback algorithms[48]. Both feedforward and feedback algorithms are closed loop 

systems. 

1.2.2.3 Feedforward Systems 

Feedforward control systems do not generate output until all the necessary computations 

are completed that take into account only the input parameters or the environmental 

factors[49] (figure 8). The control signal generated is based on the evaluation of the state 

of the current system and the inputs considered. The control signal is fixed and cannot be 

altered once it passes the evaluation stage[49]. So, the main property of a feedforward 

control is that the present output of the system has no influence on the future output of the 

system. Due to this property, feedforward systems have fast reaction to any changes in the 

surrounding input parameters and so are used for high speed output systems[50]. 
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Figure 8: Schematic of feedforward control system[51]. The disturbances coming into the 

system are sensed by the feedback control and its output is provided the inputs of the 

system. Output of feedforward control unit is independent of the output of the system. 

Based on this principle of operation, feedforward ANC algorithms are used to control the 

output of the loudspeaker and in turn, cancel automotive exhaust noise (figure 9). In the 

feedforward control system for automotive exhaust, a single reference sensor (e.g. 

microphone), a secondary source (loudspeaker) and a single error sensor (e.g. microphone) 

are used[48]. The output of the reference sensor is used to create the driving signal for the 

secondary source. The error sensor output is used to evaluate the performance of the ANC 

system. This type of arrangement is used for broadband control of exhaust noise[48]. 
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Figure 9: Schematic of broadband feedforward ANC system[48]. The reference sensor 

measures the primary noise and is used an input to the ANC. The error sensor measures 

the output of the system after the application of the signal by the loudspeaker. 

The ANC unit consists of an adaptive filter W(z) which is used to estimate the unknown 

system that is being controlled. This estimate is done using a function known as plant 

function P(z). P(z) which is also known as primary path, consists of the acoustic response 

of the path between the reference mic and error mic. The sound traveling through this path 

is the target sound that must be cancelled. P(z) also keeps track of any changes in the system 

and dynamically adapts to provide the appropriate control signal to the loudspeaker. The 

main function of the adaptive filter W(z) is to the minimize the residual signal e(n). Initially, 

when the primary noise is introduced in the system, the residual signal e(n) is maximum. 

Also, there is no signal generated from the loudspeaker to cancel this noise. The adaptive 

filter adjusts its weights W(z) for every iteration and provides signal to the loudspeaker, 

which is y(n). The value of e(n) is reduced due to the destructive interference between the 

primary noise and the sound generated by the loudspeaker. This process is continued till 

the residual signal e(n) is reduced to a minimum value set in the ANC[48].  
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The most commonly used algorithm in active control of noise is known as Least Mean 

Square (LMS)[48]. The LMS algorithm was first introduced by Widrow and Hoff in 

1959[53]. They showed that LMS algorithm is an adaptive algorithm, and it adjusts its 

output based on the inputs and the error signal of the system. The LMS algorithm adapts 

its output based on the principle of method of steepest descent[54]. The method is simply 

an optimization algorithm that finds the local minimum of a function based on its negative 

gradient[55]. So, the LMS algorithm iterates the weight vector of a Weiner filter in the 

negative direction of the gradient vector till the mean square error is minimized. Multiple 

variants of LMS algorithms such as Filtered-X LMS (FXLMS), Normalized LMS 

(NLMS), variable step size LMS, Recursive LMS (RLS) are used based on the type of 

system, its acoustic response, the speed of computations and stability[56-61]. 

1.2.2.4 Feedback Systems 

A feedback system generates output which is provided to the loudspeaker based on the 

output of the system[49] (figure 10). The output state is identified using an appropriate 

sensor and the signal from the sensor is fed back to the control unit at the beginning of the 

closed loop. The control unit compares this feedback signal value with the desired output 

(already preset) and updates the signal to the loudspeaker so as to maintain or achieve the 

desired system output. So, in a feedback system, the previous output has maximum 

influence on future system outputs. Because of the time taken to relay the output state back 

to the controller, feedback systems are relatively slower compared to feedforward systems.  
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Figure 10: Schematic of feedback control system[51]. The output of the system is fed back 

using sensors to the inputs of the system. Output of feedback control system depends on 

the system output. 

Like feedforward control, a reference sensor, a secondary source, and an error sensor are 

used in feedback control. The major difference is the arrangement of the loudspeaker with 

respect to the error sensor (figure 11). In feedback control system, the loudspeaker is placed 

after the error sensor and generates sound into the pipe/duct. The error sensor output is fed 

back into the control unit and processed by comparing with the desired output. The control 

unit then generates a signal as input to the loudspeaker, which is the secondary signal. 

Feedback control systems can be both adaptive as well as nonadaptive in nature[48].  
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Figure 11: Schematic of feedback ANC system[52]. The error sensor signal is fed back to 

the control unit and the output signal of the control unit depends on the difference between 

the desired output and the error signal.  

Feedback ANC systems also use the LMS algorithm to iterate the Weiner filter based on 

the difference in the values of the desired and achieved system outputs. The LMS algorithm 

uses the method of steepest descent to minimize the mean square error in feedback systems. 

The major difference in the implementation of the feedback algorithm is the noise source. 

In feedback systems, the reference signal y(n) used by the controller is generated using an 

external source such as a loudspeaker[62]. Alternatively, the reference signal to the 

controller can also be generated by the addition of the system output and the error signal. 

In feedback systems, FXLMS algorithm is the most preferred due to its stability and 

adaptability[48]. Several studies have been performed to improve the functionality, speed, 

stability and robustness of the feedback algorithms[62-71].  

1.2.2.5 Active Exhaust Noise Control System 

Based on the feedforward and feedback algorithm principles, the active system used for 

control of automotive exhaust noise is designed and operated. All active control systems 
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include a reference sensor, a secondary error sensor and a source to generate the cancelling 

sound (figure 9,11). The reference senor identifies the exhaust noise moving through the 

tailpipe. The error sensor determines the exhaust noise after destructive interference has 

been applied to it, i.e., after it passes the loudspeaker section. The loudspeaker generates 

the cancelling tone which is controlled by the algorithm in use.  

 

 

 

 

Figure 12: Active control system arrangements for automotive exhaust noise control. 

Loudspeakers are generally mounted on a side branch attached to the tailpipe.  

As shown in figure 12, loudspeakers are generally mounted on the end of a straight pipe. 

This straight pipe is then connected to the tailpipe at a particular distance from the inlet. 

This arrangement is different compared to a passive muffler, which is connected in-line 

with the tailpipe. The main reason for this arrangement is the temperature of exhaust gases. 

Combustion of fuel in engines result in generation of exhaust gases along with exhaust 

noise. These exhaust gases travel through the tailpipe and have very high temperatures, 

more than 600oC. Standard loudspeakers have very low operating temperatures compared 

to exhaust gas temperatures. So, any contact with the exhaust gases will damage the 

speakers. The side branch on which the speakers are mounted allows the exhaust gases to 
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sufficiently cool down before they meet the speakers. This ensures that the speakers are 

not damaged, and the active control system works without any disruptions. 

It is not customary to use a single loudspeaker for active cancellation of exhaust noise. 

Multiple configurations of loudspeakers can be arranged around the tailpipe. One popular 

method of the loudspeaker arrangement is to have a concentric array of loudspeakers 

around the tailpipe[73]. The loudspeakers are arranged in between the inner tailpipe and 

an outer casing (figure 13).  

 

 

 

 

 

 

Figure 13: Schematic of concentric ring of loudspeakers around the tailpipe. The 

loudspeakers are encased between the inner tailpipe and outer pipe casing[73].  

The main difference between the concentric arrangement and side branch arrangement is 

the way in which the cancelling noise is generated. In the concentric arrangement, the 

cancelling noise is generated radially inwards into the tailpipe. It is possible to activate the 

radial modes of the tailpipe in this arrangement. When the loudspeaker is connected using 
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a side branch, the plane waves generated are along the length of the pipe, i.e., along the 

longitudinal pipe axis. In this case, the axial modes of the tailpipe can be activated. As seen 

in the pipe acoustics section, proper tuning of the tailpipe dimensions and activating the 

right modes can result in increase in the SPL of the cancelling wave. This is highly 

beneficial as it would reduce the amount of power needed to produce the required SPL for 

effective cancellation of the exhaust noise.  

Li Keqiang et. al. studied the active control system for vehicle exhaust noise, particularly 

for diesel trucks[74]. They studied the performance of the system based on the variable 

time synchronized FXLMS algorithm during the vehicle’s acceleration. The algorithm was 

able to efficiently reduce the exhaust noise and was stable. F Buganza et. al. performed the 

acoustic analysis of the active control system on a HIL test bench[75]. They analyzed the 

system for its weight and volume reduction compared to passive systems, generated 

backpressure and sound profile of exhaust after cancellation. The results showed that the 

active system did not need a dual tailpipe design, had a 33% weight and 54% volume 

reduction and the exhaust sound could be tuned to sound like a sports car exhaust. Several 

studies have been performed in addition to design, characterize and improve the 

performance and stability of active noise control systems[76-91].  

1.2.3 Need for an alternative noise cancellation source 

Active noise control systems offer significant advantages over the passive control systems. 

First, the cancelling noise is generated by a loudspeaker. So, this makes it possible to 

control the frequency range of the cancelling noise being generated. Due to this, the active 

control system is more suited to adapt to changes in the exhaust noise spectrum, both in 
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terms of frequency and SPL. Mufflers require 10L of exhaust volume for every liter of 

engine size as a rule of thumb. This rule makes it necessary to have large mufflers for large 

sized engines, making them heavy, bulky and also affect the space limitations in the 

exhaust system. Active control systems, on the other hand, have no such requirement and 

this makes the active systems less heavy and bulky compared to passive systems. Most 

times, a combination of mufflers is required to attenuate the exhaust noise over a broad 

frequency range. This disadvantage is overcome in an active control system as a single 

system (with one or multiple loudspeakers) can efficiently attenuate the exhaust noise over 

a broad frequency range.  

Despite all these advantages, the use of loudspeakers has its own limitations. The primary 

limitation is the operating temperature of the loudspeaker. Compared to the automotive 

exhaust gas temperatures which are over 600oC, loudspeakers have very low operating 

temperatures. So, inline arrangement of the active control system is not possible. Any 

contact with the high temperature exhaust gases will damage the loudspeaker and make 

active system lose its functionality. So, for this reason, the loudspeakers are mounted on a 

side branch connected to the tailpipe. This arrangement severely affects the space limitation 

of the automotive exhaust tailpipe. In addition, the side branch dimensions (diameter and 

length) have to be designed carefully to make sure that plane waves are generated along 

the side branch and at the point of cancellation. If plane waves are not generated, the 

complexity of the ANC algorithm increases due to generation of cross modes in the 

tailpipe. The side branch also results in increase in the backpressure and exerts extra load 

on the engine.  
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To overcome these shortcomings, an alternative for the loudspeakers is considered in the 

form of carbon nanotube (CNT) loudspeakers.  

1.2.4 Carbon Nanotube (CNT) Speakers 

1.2.4.1 Introduction 

Carbon nanotubes are structures of carbon grown as vertical forests on silicon wafers using 

chemical vapor deposition (CVD). When they are stretched along the length, these forests 

collapse, interlock with each other and then can be drawn as thin, long films. The films are 

extremely lightweight, flexible, and highly stretchable. When the films are stretched across 

two electrodes, they act as thin conductors. This configuration forms a planar CNT speaker. 

The sound generation principle of CNT speakers is known as thermoacoustic effect. 
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Figure 14: CNT forests grown on silicon wafers by CVD (a). Planar (b) and cylindrical (c) 

CNT speakers manufactured by stretching the CNT film across electrodes. 

1.2.4.2 Working Principle  

Thermoacoustic effect is the generation of sound through heat. When electric current is 

passed through a thin conductor, it heats and cools rapidly, i.e., its surface temperature 

oscillates. This rapid temperature oscillation expands and contracts the surrounding air, 

resulting in the generation of pressure waves and in turn sound. Arnold and Crandall 

demonstrated the thermoacoustic effect by passing current through a 700nm thin wire of 

platinum[94]. They showed that the sound pressure output from the wire was dependent on 

the surface temperature oscillation frequency. The temperature of the thin platinum wire 
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oscillated at frequencies below 16Hz, which is below the audible frequency range (20Hz – 

20kHz). 

 

 

 

 

 

Figure 15: Thermoacoustic working principle of CNT Speaker. The surface temperature 

oscillation of the CNT film results in density variations in the surrounding medium, setting 

up pressure waves or sound.  

1.2.4.3 CNT Speaker Research  

The ability of CNTs to generate sound based on the thermoacoustic effect was first 

discovered by Yu et.al. when they passed an alternating current (AC) through CNT 

film[92]. Xiao et.al. first verified the theory put forth by Arnold and Crandall and expanded 

the theory of thermophone to CNT film planar speakers[93,94]. They put forth a general 

equation for the calculation of the sound pressure output from both a thin metal wire and 

CNT thermophones. The formula is mentioned in equation 3. 
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where f is the frequency of sound, Pinput is the electrical input power to the thermophone, r 

is the measurement distance between the thermophone and the microphone, Cs is the heat 

capacity per unit area (HCPUA) of the thermophone material, α, ρ0, T0 are the thermal 

diffusivity, density and temperature of the ambient gas medium, prms is the root-mean-

square sound pressure output from the thermophone, f1 = (α)/(πκ) and f2 = (β0)/(πCs). The 

terms f1 and f2 were added by Xiao et. al. to account for the discrepancy between the 

experimental results and the theory for dependence of prms on f and Cs. The formula 

indicates that the sound pressure output of the CNT speaker is dependent upon the input 

power as compared to a normal voice coil speaker whose output is dependent upon the 

input voltage. 

Majority of the research has been carried out to understand the properties and response of 

planar CNT speakers. Kozlov M et.al. studied the thermoacoustic performance of CNT 

forests and planar thin films[95]. They found that even though both produced audible 

sounds, the thin films generated sound with higher intensity. Further, the CNT speakers 

can be operated using infrared lasers that are modulated. Suzuki K. et al. studied the 

performance of different length speakers made from multi walled CNT webs and normal 

CNT films[96]. Their results showed that speakers made from CNT webs had higher SPLs 

compared to normal thin film CNT speakers. However, there was no difference in the SPLs 

for different speaker lengths in both the cases. Barnard et al. performed non-dimensional 

analysis of Xiao’s equation for speaker output[97]. This analysis helped evaluate the 

equation for different operating conditions which under direct evaluation would have been 

extremely complex. Based on the analysis, for a fixed frequency, the parameters that would 

contribute to increased output SPL from the CNT speaker were determined. The 
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experiment also studied the effect of film stacking on the output SPL of the speaker. Four 

layers of CNT films were stacked, and the SPL was measured as well as analytically 

calculated. The sound from all CNT layers would add up coherently, resulting in a 6dB 

gain per doubling of sources provided the layers are acoustically transparent and 

wavelength is longer that the film thickness. Measured results showed that the assumptions 

made for theoretical calculations were correct. 

Aliev A et.al. tested the planar CNT speaker for underwater applications[98]. CNT 

molecules are nonpolar, have high hydrophobicity and this created a gas cylinders 

surrounding the film. The results showed that the sound pressure generation efficiency 

increased by almost 100 times in the selected frequency range of 10Hz<f<60kHz. Xiao Lin 

et.al. studied the performance of CNT planar speakers in gaseous medium particularly 

argon, air and helium[99]. The results indicated lower heat capacity of the medium, higher 

is the sound pressure level of the speaker. The results agreed with the formula derived by 

Xiao et.al. with respect to the heat capacity and sound pressure level. Aliev et.al. performed 

studies to increase the efficiency of carbon nanotube speakers by encapsulating the open 

speakers in an inert gas environment[100]. At low frequencies, the efficiency of CNT 

speakers is low as efficiency of open area CNT speakers is related to frequency as η α f2. 

The experiment helped to modify the relation between the efficiency and frequency to η α 

1/f2 in the low frequency region. Results showed that the measured sound pressure levels 

for argon filled thermophones were Q times higher than open systems, Q being the resonant 

quality factor of the enclosure plates. The study also found that modulating the input high 

frequency carrier current with a low frequency resonant envelope increased the efficiency 

in the low frequency region. 
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Barnard et.al. presented the design guidance for building large high-quality CNT speaker 

assemblies along with their performance with respect to maximum SPL, power efficiency 

and total harmonic distortion (THD)[101]. Tests were performed on speakers made of 5-

layer MWNT films. Results showed that wrapping the film around the electrodes reduced 

the risk of damage to the CNT films which are very delicate. Even though the THD for the 

assemblies was higher than conventional speakers, there was not much effect on the speech 

intelligibility projected by the device which was the authors’ opinion. Bouman et.al. 

studied the performance of planar CNT speakers for different drive signals in order to 

understand the relation between efficiency and THD[102]. Asgarisabet M. et.al. conducted 

near field acoustic holography (NAH) measurements for planar CNT speakers[103]. NAH 

was used to make measurements at the film surface as physical measurements are not 

possible due to the films being fragile, solid state and have high surface temperature. The 

results showed that the particle velocity at the film surface was nominally zero. The SPL 

measurements showed maximum level at the center of the CNT film and varied up-to 10dB 

over the entire surface. Studies have also been conducted for design, manufacturing and 

applications of CNT sheets, yarns and fibers[104-123]. These studies suggest new methods 

for manufacturing various forms of CNTs, their properties, speaker and actuator 

applications. 

Along with planar speakers, some research has been performed for spherical as well as 

cylindrical CNT speakers. A spherical CNT speaker was design, manufactured and tested 

for a thesis research undertaken by Micaela Thiery at Michigan Technological 

University[124]. A telfon sphere was manufactured and the CNT film was wrapped around 

it with the purpose of creating an omnidirectional source. The results showed that the 
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speaker was omnidirectional at middle frequency bands while for lowest and highest 

audible frequency, it displayed significant directivity. The research also considered a planar 

CNT speaker as a microphone based on the principle of hot-wire anemometry. Results 

indicated that a CNT microphone was feasible over a large frequency range for pure tones. 

Xiao et al. built an exterior cylindrical speaker which was capable of emitting sound in all 

directions[125]. Further experimentation was not done on the speaker to characterize its 

performance. 

Accurate design of mufflers, active control systems and CNT speakers is extremely crucial. 

Mufflers work on interaction between the reflected sound and target exhaust noise for 

cancellation/attenuation. In addition, proper positioning of absorptive material along with 

its dimensions is required for absorption of exhaust noise. In active control systems, the 

positioning of the side branch, its length and the loudspeaker power have to be selected 

based on the exhaust noise profile, its dimensions and desired attenuation. In CNT speaker 

design, the dimensions of the speaker, namely the length of wrap, distance between the 

electrodes and the number of electrodes present determine the resistance, power density 

and SPL of the speaker. For the above-mentioned systems and the CNT speaker, the effort 

needed to do multiple design iterations is reduced by modeling methods. 

1.2.5 Modeling  

1.2.5.1 Introduction 

Design of any new product depends on several parameters such as size, weight, cost and 

its performance. During the design process, several iterations are needed before the perfect 

design can be achieved. For every iteration, it is necessary to evaluate the performance of 



36 

the system. Manufacturing and testing of every single design iteration are time consuming 

and tedious. To avoid this, model of the system design is created in a suitable software. 

Simulation is performed by selecting appropriate technique such as Finite Element Method 

(FEM), Boundary Element Method (BEM), Multiphysics analysis, etc. The simulation 

results help to identify the shortcomings in the system performance and allow easy change 

of system design.  

1.2.5.2 Finite Element Method (FEM) 

Finite element method is a numerical method used to solve mathematical and engineering 

models[126]. FEM solves partial differential equations (PDEs) involved in structural 

analysis, heat transfer, flow, etc. in two- or three-dimensional coordinates. In FEM, the 

large model is divided into small, simple parts known as finite elements. The model is 

discretized with the help of a mesh in space dimensions. The solution to the PDEs is 

obtained on the mesh points which is the numerical domain for the solution. The main 

result of this process is the conversion of the PDEs into a system of algebraic equations. 

The solution to these equations is obtained by approximating the associated error function 

to its minimum value. FEM is very useful for complex geometries such as mufflers and 

can be used for different materials, operational dynamics, etc.[127]. Mufflers, both reactive 

and dissipative, have been simulated using FEM for their structural, acoustic and 

vibrational performance[128-136]. 
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1.2.5.3 Boundary Element Method (BEM) 

Boundary element method (BEM) solves the partial differential equations formulated as 

boundary integral equations[137]. Like the FEM, the model is discretized with the help of 

a mesh in BEM.  

The BEM applies surface elements on the boundary of a three-dimensional model and line 

elements on the boundary of a two-dimensional model[138]. The major difference in the 

mesh of BEM compared to FEM is that the mesh is applied only to the boundaries of the 

model in BEM[139]. BEM results in the numerical solution to the boundary integral 

equations. The solutions obtained though approximate in nature, are the exact solutions to 

the differential equations in the domain under consideration. In addition, BEM exert less 

computational load as compared to FEM as the number of elements in the mesh are less in 

BEM. Mufflers and active systems have been simulated using various BEM[140-149]. 

1.2.5.4 CNT Speaker Modeling 

CNT speakers operate on thermoacoustic principle. So, the operating principle of CNT 

speaker is an interaction of three domains or physics – electrical, thermal, and acoustic. 

Electrical input (AC) is used to generate the surface temperature variation in the CNT film. 

The heat transfer from the CNT film to the surrounding medium generates density 

variations. These density variations propagate as sound. So, to model a CNT speaker, a 

method that incorporates Multiphysics interaction is required. Planar CNT speaker was 

modeled using COMSOL Multiphysics by Mahsa Asgarisabet[150-152]. The model was 

simulated using a combination of three modules – AC/DC module, thermoviscous 

acoustics module and pressure acoustics module. The surface temperature of the CNT film 
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was simulated using the AC/DC module. Joule heating was applied to the CNT film and 

the copper electrodes, and the temperature achieved due to the supplied AC current was 

simulated. The results showed that majority of the high temperature region was in the 

center of the film and the temperature reduced towards the ends of the speaker, i.e., near 

and along the copper electrodes. This is expected as the copper electrodes act as heat sinks. 

Using the obtained surface temperatures and the thermoviscous and pressure acoustic 

modules, the SPL of the planar CNT speaker was simulated for different frequencies. Good 

correlation was achieved between the simulated and experimental SPL of the planar 

speakers. 

1.2.6 Motivation for the Research 

A small coaxial speaker, when mounted on the tailpipe would act as a point source 

compared to low frequency sound due to its long wavelength. Such a speaker would prove 

to be effective in cancelling the exhaust noise. A circular array of loudspeakers can be 

mounted around the tailpipe to replicate the coaxial speaker. But for each speaker, a side 

branch would be needed, and this would also increase the complexity of the control system 

as well as weight added on to the tailpipe. The output of the speakers would also need to 

be correlated to achieve cancellation of the exhaust sound. In addition to this, the speaker 

must be capable of handling high exhaust gas temperatures. CNT speakers work on 

thermoacoustic effect and have high working temperatures. The speakers are extremely 

lightweight and small in size. All these properties led us to consider CNT speaker for this 

application. The coaxial CNT speaker was designed as a possible replacement for the 

loudspeakers used in active noise control, to be used in conjunction with passive mufflers. 
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The main objective of this research is to develop a method to model an enclosed coaxial 

CNT speaker for different platforms and conditions with focus on noise cancellation. 

Modeling is crucial for any new design. With the use of a validated modeling method, 

design iterations can be simulated to understand their performance. This will save a lot of 

time and effort that needs to be put into manufacturing and testing every single design 

iteration. The goal to develop the method to model the enclosed CNT speaker will be 

achieved by modelling the speaker in COMSOL Multiphysics and experimentally 

validating the model for the designed prototypes. In addition to this, the research will aim 

to fill some of the knowledge gaps in CNT speakers. For efficient operation of the CNT 

speakers, the temperature of the surrounding medium must be cooler than the temperature 

reached by the film. It is unsure as to how the CNT speaker (planar or coaxial) will behave 

when operated in a high temperature medium. The effect of continuous heating and cooling 

of CNT film on its durability for prolonged operation is not yet understood. The 

cancellation of exhaust sound assumes that plane waves are generated both by the source 

and the CNT speaker. The generation of cross-modes and the cancellation performance of 

the coaxial CNT speaker must also be considered for noise cancellation application. CNT 

films due to their nano thickness are virtually massless and acoustically transparent. There 

is no established method to model an acoustically transparent CNT film. All these 

shortcomings will be studied in the proposed research with the help of the demonstrator 

unit as well as the second-generation prototype. 
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1.2.7 Explanation of Chapters 

Chapter 2 focuses on the pipe acoustics. The transmission of sound through pipes are 

governed by specific set of equations. The sound also activates modes inside the pipe which 

are important for the SPL generated by the speakers connected to the pipe. The basic 

equations for sound transmission in a pipe are described. The equations are then related to 

one dimensional lumped parameter elements and the equivalent circuit is explained. The 

limitations of this lumped parameter model are described and then FEM and BEM used in 

pipe acoustics are illustrated.  

Chapter 3 describes the design process of the enclosed coaxial CNT speaker. Three 

prototypes were designed and manufactured. The first prototype is developed as a proof of 

concept of the coaxial speaker design. The second and third prototypes are designed with 

focus on reduced parts for manufacturing, small size and ease of assembly. The design 

process in selecting the dimensions of any CNT speaker is described. The ideology behind 

the three coaxial designs, their dimensions and speaker properties (resistance, power 

density, weight, etc.) are also discussed.  

Chapter 4 lays out the methodology of this research. Description is provided for the 

modeling process of the CNT speaker using COMSOL Multiphysics. It lays out the physics 

involved in the setup of the model. The setup of the Finite Element model of the operating 

physics of the CNT speaker is discussed. The axial, cross-sectional and industry standard 

SPL characterization test setup and simulation has been discussed as well. Flow model 

simulation set up and parameters are discussed. Optimization of the enclosed, coaxial CNT 

speaker has been illustrated in this chapter.  
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Chapter 5 presents the results obtained from the experimental tests as well as the results 

from the Multiphysics model simulations. Comparison between the Finite Element mode 

and COMSOL simulation results are presented and discussed. Simulation results from the 

flow, SPL and optimization models are presented in this chapter. 

Chapter 6 discusses the interpretation of the obtained experimental and simulated results. 

Suitable conclusions are drawn and presented. Some thoughts for future design 

modification, simulation model setup as well as experimental tests are mentioned in this 

chapter.  
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2 Pipe Acoustics and Acoustic Modes 

2.1 Introduction 

Sound transmission in pipes that are open or closed at ends result in the formulation of 

standing waves or travelling waves. This behavior of sound in a pipe depends on the 

properties of the sound transmitted through the pipe, pipe length, relation between the pipe 

cross-sectional area and the length of the pipe, presence of perforations and boundary 

conditions at the ends of the pipe[154].  

2.1.1 Cutoff Frequencies and Cross Modes in Pipes 

Plane waves have a distinct property: they propagate only in one direction. The modes 

generated due to plane waves traveling in a pipe generate modes that are simple to visualize 

and evaluate. However, sound transmission in a pipe can happen in more than one 

direction. The modes generated due to such transmission have complex pressure profiles, 

exciting different planes across the cross-section of the pipe.  
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Consider a circular cross-section pipe of radius a and length L (figure 16).  

 

 

 

 

 

Figure 16: A circular cross-section pipe with r as the radius and L the length of the pipe. 

In cylindrical coordinates, the Helmholtz equation (refer appendix A) becomes 

                                                        𝜕𝜕
2𝑝𝑝
𝜕𝜕𝜕𝜕2

+ 1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑟𝑟2

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

+ 𝑘𝑘2𝑝𝑝 = 0                                       (4) 

where r, θ, and z are the cylindrical coordinates of the pipe. Now, the boundary conditions 

at the rigid walls are 

                                                           (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)𝑧𝑧=0 = (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)𝑧𝑧=𝐿𝐿 = (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)𝑟𝑟=𝑎𝑎 = 0                                       (5) 

The solution to the Helmholtz equation in cylindrical coordinates includes the terms in r, 

θ, and z directions. So, the solution to equation XXI is: 

                                                       𝑝𝑝𝑚𝑚𝑚𝑚 =  𝐴𝐴𝑚𝑚𝑚𝑚𝐽𝐽𝑚𝑚(𝑘𝑘𝑚𝑚𝑚𝑚𝑟𝑟) cos𝑚𝑚𝑚𝑚𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝑘𝑘𝑧𝑧𝑧𝑧)                                 (6)                                

                                                               𝑘𝑘𝑧𝑧 = [(𝜔𝜔 𝑐𝑐⁄ )2 − 𝑘𝑘𝑙𝑙𝑙𝑙
2]1 2⁄                                                     (7) 
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In the above equation, Jm is the mth order Bessel function which describes the radial 

variance of pressure, kz is the wavenumber in the z direction, ⍵ is the angular frequency 

and c is the speed of sound. The values of klm are calculated using the boundary condition 

for the rigid wall as, 

                                                                                𝑘𝑘𝑙𝑙𝑙𝑙 = 𝑗𝑗𝑙𝑙𝑙𝑙′/𝑎𝑎                                                           (8) 

where  j’lm are the extrema values of Jm(z). The z direction lines up with the length of the 

cylindrical pipe. Now, equation XXIII provides us with two cases of waves generated in 

the pipe.  

Case 1: ⍵/c > klm                kz is real                 wave is a propagating wave and it travels 

in the +z direction, that is along the length of the pipe. Based on the this property, the cutoff 

frequency of a (l,m) mode generated in the pipe (cross-mode) is determined as: 

                                                                                 𝜔𝜔𝑙𝑙𝑙𝑙 = 𝑐𝑐𝑘𝑘𝑙𝑙𝑙𝑙                                                           (9) 

Up to this value of angular frequency, the value of klm remains real and we get a cross-

mode with a propagating wave. 

Case 2: ⍵/c < klm                kz is imaginary                 wave is evanescent in nature and its 

amplitude decreases with distance in the +z direction.  

As mentioned previously, any wave has two primary components along the wavefront: the 

phase speed and the group speed. These two components are important when identifying 

whether the generated wave is a plane wave mode or a cross-mode wave. The phase speed 

(cp) and group speed (cg) of a mode are defined as, 
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                                               𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑧𝑧 𝑘𝑘⁄ = [1 − �𝜔𝜔𝑙𝑙𝑙𝑙
𝜔𝜔
�
2

]1 2⁄                                            (10) 

                                 𝑐𝑐𝑝𝑝 = 𝜔𝜔 𝑘𝑘𝑧𝑧⁄ = 𝑐𝑐 [1 − �𝜔𝜔𝑙𝑙𝑙𝑙
𝜔𝜔
�
2

]1 2⁄⁄ = 𝑐𝑐/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                     (11)                                          

                                        𝑐𝑐𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐[1 − �𝜔𝜔𝑙𝑙𝑙𝑙
𝜔𝜔
�
2

]1 2⁄                                                  (12) 

The parameter θ is an important property of the wave propagation in the pipe. It defines 

the angle that the wave propagation vector makes with propagation direction, in this case 

the +z direction. For plane waves, the wavefront travels parallel to the propagating 

direction. So, the angle θ is zero and the phase speed is equal to the speed of sound. In 

cross-modes, the waves travel at an angle different than zero and so, the phase and the 

group velocities of such waves are lower than the speed of sound.  

The values of l and m determine the type of mode generated inside the pipe. The simplest 

of all the modes occurs at (0,0) during which a plane wave propagates along the pipe length. 

This mode has a pressure profile that is uniform along the cross-section of the pipe and has 

its phase speed equal to the speed of sound for all angular frequencies greater than zero. 

All other order modes are nonplanar modes, and their profile varies based on the values of 

l and m. Some of the modes formed in a pipe are illustrated in figure 17. 

 

 



46 

 

 

 

 

 

  

 

 

Figure 17: Sound pressure level profile regions for modes in a uniform cross-section 

circular cylindrical pipe. Different profiles are observed depending on the values of l and 

m. 

As seen from the above figure, for the (0,0) mode, the pressure profile of the mode 

generated is uniform across the cross-section of the pipe. The behavior of this mode is 

analogous to the property of a plane wave – constant velocity and phase across the cross-

section. For the other modes shown, the pressure profile varies across the cross-section 

based on the type of mode. More complex the mode profile, difficult it is to cancel it during 

noise control. Automotive exhaust pipes are generally circular in cross-section. So, if any 

of the cross-modes are excited during the transmission of exhaust noise, the complex sound 

field generated will make it difficult to cancel the exhaust noise, either due to passive or 
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active systems. The entire analysis of determining the cutoff frequencies of the cross-

modes and the plane wave frequencies is very important for effective noise cancellation. 

All the analytical equations illustrated till now are adept at characterizing the behavior of 

a pipe transmitting sound, plane wave generation and cross-modes. However, in reality, a 

uniform cross-section pipe is not always used in exhaust applications. These equations 

become far more complex when analyzing such pipes. To make matters simple, 1D lumped 

parameter elements and equivalent acoustical circuits are used to analyze the behavior of 

these pipes. The following section describes these lumped parameter elements and acoustic 

circuits. 

2.1.2 Finite Element Method (FEM) Modeling for Pipe Acoustics 

Finite element method is a modeling method in which a whole continuum is subdivided 

into several subregions and the relevant physical equations are solved over all the 

subregions. The results obtained for each of the subregions are then combined to obtain the 

equivalent behavior of the entire model[156].  

The system of interest that is to be modeled using FEM is first divided into several 

subdomains that are generally called as elements. In these elements, a set of points known 

as nodes are selected. These nodal points are used to define the geometry of the individual 

elements that the model has been divided. This discretization process is then completed by 

defining the properties for each element and the nodes are defined using coordinate 

locations. Once the discretization process is completed, the model is then ready to solve 

the governing equations related to the selected physics, which in this case is acoustic wave 
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equation (equation 14). One main difference between the analytical and FEM solution is 

that in FEM modeling, the governing equations are converted into a finite element form 

and then solved for all the elements and their nodes. The solution results in a finite element 

matrix for every single element, which are then combined to form a single matrix for the 

entire model. This matrix describes the physical behavior of the entire model, thus 

determining the necessary parameters required to define the model’s response.  

There are two types of methods used to convert the governing physics equations into their 

finite element form: variational method and method of weighted residuals. Both the 

methods yield the same final form of the finite element equations, which is an integral 

equation, and they are solved to obtain the unknown parameters at the nodes.  

The variational method is also commonly known as the Rayleigh-Ritz method. This 

method is based on the existence of variational principal equivalent to the governing partial 

differential equations. Some scalar quantities are defined in an integral form. These scalar 

quantities can be total energy, strain energy, etc. The variables that are to be determined 

are approximated using the interpolating function given as, 

                                                                  𝑥𝑥 = ∑𝑏𝑏𝑖𝑖∅𝑖𝑖                                                             (13) 

where x is the unknown variable that will be determined, bi is the unknown interpolation 

parameter at the ith node and ɸi is the shape function defined by the user at the ith node. The 

solution, i.e., the unknown variable is then determined by minimizing the defined scalar 

quantity with respect to the selected interpolation parameters.  
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The method of weighted residuals is also commonly known as the Galerkin method. In this 

method, the governing partial differential equation is expressed as a residual equation using 

an interpolating scheme. This residual equation measures the error introduced due to 

approximation of the unknown variable. The obtained residual is multiplied by the 

weighting function, which in this case is the shape function (ɸ). The integral of this 

weighted residual is then equated to zero and the weighted residuals are minimized to 

obtain the unknown variable. Consider the acoustic wave equation. Expressing this 

equation using an interpolation function results in an approximate form of this equation. 

The interpolation function based on the method of weighted residuals is obtained as, 

                                                                𝜕𝜕
2𝑝𝑝
𝜕𝜕𝑡𝑡2

= ∑𝜕𝜕2𝑏𝑏𝑖𝑖
𝜕𝜕𝑡𝑡2

ɸ𝑖𝑖                                                        (14) 

where b is the interpolation parameter that varies only in time and ɸ is the shape function 

that only varies in space, i.e., in the coordinate system. The residual of the acoustic wave 

equation is then formulated as, 

                                                             𝑅𝑅 = 1
𝑐𝑐2
∑ 𝜕𝜕2𝑏𝑏𝑖𝑖

𝜕𝜕𝑡𝑡2
ɸ𝑖𝑖 − ∇2∑𝑏𝑏𝑖𝑖∅𝑖𝑖                                                   (15) 

where c is the speed of sound and R is the residual of the acoustic wave equation expressed 

in terms of the method of weighted residuals. This equation is then integrated over the 

domain of interest, which in this case is the pipe and equated to zero to obtain the matrix 

form of the acoustic wave equation. The matrix form equation for homogeneous boundary 

conditions can be written as, 

                                                                  [𝑀𝑀]�𝑏̈𝑏� + [𝐾𝐾]{𝑏𝑏} = 0                                                     (16) 
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where M is the mass matrix, K is the stiffness matrix and 𝑏̈𝑏 is the second derivative of the 

interpolation parameter. The mass matrices formed for every element are of the lumped 

form and depend on the type of nodes the element has. For example, the entire domain may 

comprise of elements that have two, three, or four node linear elements. Based on the type 

of nodes the element has, the diagonal of the mass matrix is obtained. In addition, the mass 

matrix is also dependent on the type of element used to discretize the domain. Some 

common types of elements used are triangular, tetrahedral, etc. Each of these element types 

have their own predefined nodes and are selected based on the complexity of the model 

and the required solution accuracy.  

Another important parameter mentioned in both the methods is the shape function (ɸ). It 

can be observed from both the methods that all calculations of the unknown variables are 

performed at the nodes of the elements. However, to obtain the behavior of the complete 

system, it is essential to determine the values of the variables along the region between the 

nodes. The shape function interpolates the value of the variables between the nodes to 

complete the FEM solution. The shape function can be a linear function or a higher order 

function, depending upon the type of system, its governing equations and boundary 

conditions.  

The successful formulation of both the methods mentioned above depend on the boundary 

conditions that are present and their proper representation in the model. Generally, two 

main types of boundary conditions are used in a FEM. The first one is known as the 

Dirichlet boundary condition that have fixed boundary condition values. This boundary 

condition specifies the fixed values that the solution must follow along the boundary of the 
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selected domain. The second boundary condition is known as Cauchy boundary condition 

which is a gradient boundary condition expressed as, 

                                                                     𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎1𝑢𝑢 + 𝑎𝑎2                                                              (17) 

where 𝜕𝜕
𝜕𝜕𝜕𝜕

 is the derivative of the selected variable in the normal direction to the boundary 

and a1 and a2 are constants. The general form of the Cauchy boundary condition for 

acoustic FEM formulations is expressed as, 

                                                                     𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − ⍴𝑜𝑜
𝑍𝑍𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                   (18) 

where Zn is the impedance at the boundary of the selected domain/element. Based on the 

boundary conditions present, the coordinate system used, pipe geometry, the element type 

used to discretize the selected geometry and the method utilized to formulate the FEM 

model, the shape functions and the resulting matrices are formulated and solved to obtain 

the desired variables such as acoustic modal frequencies. FEM thus offers a unique method 

to simplify and solve the partial differential equations involved in the acoustic analysis of 

sound transmission through pipes.  
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3 CNT Speakers 

3.1 Introduction 

Carbon nanotubes (CNT) are grown as vertical nano thickness forests on silicon wafers 

using a process known as chemical vapor deposition (CVD) (figure 18). These forests are 

either single-walled or multi-walled in nature. When these forests are pulled from one end, 

they interlock with each other and get drawn in the form of CNT films. These CNT films 

are the basis of all CNT speakers.  

 

Figure 18: CNT forests grown on silicon wafers. The forests align themselves when pulled 

and generate CNT films used in CNT speakers. 

CNT films are extremely lightweight, flexible, have nano thickness and adhere easily to 

any substrate. These properties are used to design and manufacture CNT speakers. The 

working principle of a CNT speaker is the thermoacoustic effect, which is explained in 

Chapter 1. To summarize the thermoacoustic effect, sound is generated when an alternating 
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current is passed through a thin conductor due to its surface temperature variation. There 

are two key requirements of the conductor that can be used successfully to generate sound 

using thermoacoustic effect. First, the conductor has to be extremely thin. CNT films, due 

to their nano-thickness satisfy this requirement of the thermoacoustic effect. Second, the 

conductor should have the ability to transfer the heat generated due to the application of 

the alternating current extremely quickly. Having a very small heat capacity provides a 

conductor with this ability. CNT films have extremely low heat capacity, compared to other 

metal conductors and thus they satisfy the second requirement. CNT films satisfy both the 

requirements of the conductor required in the thermoacoustic effect and thus they are ideal 

to be used in the generation of thermoacoustic transducers.  

The most basic form of the CNT speaker is known as a planar speaker (figure 19a). In 

planar speakers, the CNT film is stretched across two copper electrodes. These electrodes 

are placed parallel to each other, and the CNT film is stretched across the electrodes. The 

electrodes are housed in an insulating material to prevent shorting the circuit as well as 

provide stability and support to the speaker. Alternating current is then applied to the two 

electrodes. The current thus passes through the two electrodes to the low heat capacity 

CNT film stretched between them. This current causes rapid oscillations in the surface 

temperature of the CNT film proportional to the frequency of the applied current. These 

oscillations thus produce density variations in the surrounding medium and sound is 

generated. The design and construction of planar CNT speakers is extremely simple. In 

addition, the overall weight of the speaker depends on the weight of the electrodes, the 

insulating material and the connectors used to provide the alternating current. CNT films 

are considered massless with respect to the other speaker components.  
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In addition to the planar speakers, it is possible to manufacture several different types of 

CNT speakers that are more complex in nature such as cylindrical, spherical, etc. 

Cylindrical CNT speakers, as the name suggests, have cylindrical geometries (figure 19b). 

In these speakers, electrodes are arranged in a cylindrical configuration. All the electrodes 

used in this speaker are parallel to each other. CNT film is then stretched across the 

electrodes in the form of a continuous wrap. Alternate electrodes are connected to each 

other, and positive and negative leads are drawn from two electrodes. On application of the 

electric current, the entire CNT film wrap undergoes surface temperature oscillation as one 

component and so, the sound field generated is uniform in all directions around the speaker. 

This arrangement can also be equated to individual planar speakers arranged in cylindrical 

configuration. For example, if six electrodes are used in the cylindrical speaker, we can 

have a continuous wrap around the electrodes or three planar speakers with the CNT film 

stretched between every two electrodes. 
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Figure 19: Planar CNT speaker (a). The CNT film is stretched between two parallel 

electrodes supported by an insulating material. Cylindrical CNT speaker (b). The 

electrodes are arranged in cylindrical configuration and the CNT film is wrapped 

continuously around the electrodes.  

For any configuration of CNT speaker, it is very important to consider two parameters 

during its design. The first parameter is resistance, and the second parameter is power 

density. Both these parameters are essential for the safe operation of the CNT speaker as 

well as the safe operation of the other components in the circuit such as amplifiers. The 

next section illustrates the theory behind these parameters and the process to incorporate 

them in the design of the CNT speaker.  

a 
b 
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3.2 Design Parameters for CNT Speaker  

3.2.1 Resistance 

The first parameter to be considered in the design of the CNT speaker is the resistance of 

the speaker. CNT films are essentially extremely thin conductors and like every other 

conductor, they have their own resistance. However, CNT films have a unique property 

with respect to their resistance. Every single film of the CNT film has a resistance of 

750Ω/square (figure 20a). To explain this in simple terms, every square area of the single 

CNT film layer has resistance of 750Ω. This resistance is independent of the area of the 

square. For example, a square of single CNT film with area of 1cm2 will have the same 

resistance as a square of 0.25cm2, that is 750Ω. Based on previous research, it has been 

observed that the CNT speaker generates sound of superior quality when five layers of 

CNT film are used to wrap the speaker as compared to any other layers. Five layered CNT 

film wraps are created by wrapping the CNT film on top of each other five times. This 

process changes the resistance of the five layered CNT film compared to a single CNT film 

layer. Each wrap of the CNT film has a resistance of 750Ω. The five layers are connected 

to each other in parallel which is the equivalent of five 750Ω resistances connected in 

parallel (figure 20b). So, the net resistance of a five-layered CNT film wrap is 150Ω. For 

a five-layer CNT film wrap, every square area of CNT film has a resistance of 150Ω, and 

all the squares are connected in parallel. Due to this, the net resistance of the CNT film is 

the parallel addition of all the resistances.  

For example, if the CNT film is divided into 5 squares, the net resistance of the CNT film 

is 150Ω/5 or 30Ω.  
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Figure 20: Schematic of five layered CNT film (a). The resistance of the square 1 and 2 is 

the same irrespective of the area of the square. The parallel arrangement of every single 

layer in a five-layer CNT film wrap (b). The value of R is the750Ω which is the same for 

all the layers and the net resistance is 150Ω. 

The resistance value mentioned above for a five-layer CNT film and its corresponding 

squares form the baseline used to calculate the net resistance of any type of CNT speaker. 

To calculate the net resistance of the speaker, it is essential to determine the number of 

squares in the CNT film wrap. Any CNT speaker has CNT film stretched between two 

parallel electrodes. To divide the CNT film wrap into squares, the length of the CNT film 

is divided by the spacing between the electrodes (figure 21). Based on the number of 

squares thus obtained, the net resistance of the CNT film or the net resistance of the speaker 

is calculated. However, it is not always possible to obtain a round number of squares for a 

given length of the CNT film. In case where a decimal number of squares are obtained, the 

net resistance is calculated by dividing 150Ω by the obtained number of squares. This does 

introduce an error in the resistance calculation which is small. For a planar speaker, the 

process is relatively straightforward as there is only one CNT film wrap between two 

electrodes. However, for a cylindrical speaker, there are multiple CNT film wraps between 

Square 1 

Square 2 

5 layered CNT Film 

R R R R R 

a b 
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multiple parallel electrodes. In this case, the number of squares of the CNT film in each 

electrode combination is first calculated. All the square area resistances of these 

combinations are connected to each other in parallel. So, the net speaker resistance is the 

parallel addition of these resistances. For example, consider a cylindrical speaker made of 

six electrodes or three electrode combinations. Let the length of the CNT film wrap 

between every two electrodes be 10cm and the electrode spacing be 2cm. So, the number 

of squares in each of the three-electrode combination will be 5 and the total number of 

square resistances in parallel are 15 (5 squares in 3 electrode combination) These 

resistances are then added using parallel electric circuit logic and so the net resistance of 

the CNT speaker would be 150Ω/15 which is equal to 10Ω. The logic mentioned above is 

used to calculate the speaker resistance for any selected configuration. However, care must 

be taken as the resistance are not always connected to each other in parallel. Depending on 

how the electrodes relate to each other and with the external source, it is possible to obtain 

a series connection as well. This is beneficial when there is a requirement for a high 

resistance speaker as parallel addition of resistances reduces the net resistance of the CNT 

speaker.  
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Figure 21: Division of the CNT film wrap into square of 150Ω resistance. The number of 

squares is determined by dividing the length of the CNT film wrap by the electrode spacing. 

From the entire process mentioned above, the number of squares and the net resistance of 

the CNT speaker depends on the length of the electrodes, the electrode spacing and the 

number of electrodes. Longer length of the wrap for the same electrode spacing results in 

a greater number of squares which translates to more resistances in parallel, reducing the 

net speaker resistance (figure 22b). Alternatively, having a larger electrode spacing for the 

same CNT film wrap length results in a smaller number of squares and a higher speaker 

resistance (figure 22a). A similar effect is observed when there are a greater number of 

electrodes in for example a cylindrical speaker. Increased number of electrodes results in 

increased electrode combinations and CNT film squares. This reduces the net speaker 

resistance. In addition, like any other conductor, the resistance of the CNT film reduces 

with increase in the surface temperature. This reduces the net speaker resistance which 

might damage the amplifier to which the speaker is connected. So, it is important to 

properly select the length and the spacing between the electrodes to obtain the desired 

speaker resistance.  

Square 1 Square 2 

Length of CNT film wrap 

Electrode Spacing 
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Figure 22: The change in the resistance of the CNT speaker with increasing distance 

between the electrodes (a). The length of the CNT film wrap is constant. The change in the 

resistance of the CNT speaker with increasing CNT film wrap length (b). The electrode 

spacing is constant.  

The second design parameter is the power density of the CNT speaker and is illustrated in 

the next section. 

3.2.2 Power Density 

CNT speakers generate sound proportional to the applied input power as compared to a 

standard loudspeaker that generates sound proportional to the applied voltage. Based on 

this, the safety rating for a standard loudspeaker is given by the voltage that can be applied 

without burning out the coils. For the CNT speaker, the safety rating is proportional to the 

input power that can be applied per meter squared of its area. This rating is given as the 

power density of the CNT speaker. 

a b 
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When alternating current is applied to the CNT speaker electrodes, it passes from one 

electrode through the CNT film to the second electrode. The input power gets applied 

across the area of the 

CNT film. If this power exceeds the safety value specified by the power density, it results 

in the cascade failure and burning of the CNT film. The value of power density depends 

on the total input power applied to the CNT speaker and the total surface area of the CNT 

film. The formula to calculate the power density of a CNT speaker is given as, 

                                                𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑃𝑃.𝐷𝐷. ) = 𝑃𝑃𝑖𝑖𝑖𝑖
𝑆𝑆

 (𝑘𝑘𝑘𝑘
𝑚𝑚2)                                             (19) 

where Pin is the input electrical power and S is the total surface area of the CNT film. The 

power density for a CNT speaker is expressed in the units of kW/m2. 

For a planar CNT speaker, the total surface area of the CNT film is contained in between 

the two parallel electrodes. This surface area is calculated by multiplying the length of the 

CNT film with the spacing between the electrodes. The maximum input power that will be 

applied to the CNT speaker depends on the application for which the speaker is being 

designed. The ratio between the electrical power and the total surface area of the planar 

speaker CNT film gives the power density for the speaker. For cylindrical speakers, the 

total surface area is the addition of the surface area of the CNT film between all the 

electrode ring combinations. For example, if there are six electrodes in the cylindrical CNT 

speaker, there are three electrode combinations consisting of two electrodes each. The 

surface area of the CNT film in each electrode combination is the product of the length of 



62 

the CNT film wrap and the electrode spacing. The total surface area would then be the 

addition of the three surface areas.  

For a single layer of the CNT film, previous research has shown that the power density for 

safe operation has a value of 50kW/m2. This value for a five-layer CNT film wrap has been 

determined to be 20kW/m2. If the power density at any point during the operation of the 

speaker exceeds this value, there is a power surge through the CNT film, and it results its 

burning along the centerline of the wrap. One important point to the noted is that the above-

mentioned values are observed when the medium surrounding the CNT speaker is air. 

Previous experimentation has showed that when the surrounding medium is an inert gas 

such as argon, xenon, etc., the power density of the CNT speaker increases. This enables 

the operation of the CNT speaker at a higher power compared to its operation when the 

medium is air.  

Power density, like resistance, is affected by the length of the CNT film wrap and the 

electrode spacing. Changing either of these parameters changes the surface area of the CNT 

film and the power density of the CNT speaker. Longer wrap length of the CNT film with 

constant electrode spacing increases the surface area of the CNT film. This increases the 

denominator of the power density formula (for a constant input electrical power), thus 

reducing the power density of the speaker (figure 23a). Alternatively, increasing the 

electrode spacing while keeping the wrap length constant produces similar effect, that is 

reduction in the power density for the fixed selected input power (figure 23b). Increasing 

or decreasing the number of electrodes in a cylindrical CNT speaker does not change the 

net surface area of the CNT film wrap and so, the power density is not affected by the 
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number of electrodes. Based on these results, it is important that a suitable length and 

electrode spacing is selected to obtain the desired value of power density. 

 

 

 

 

 

Figure 23: The change in the power density with increasing length of the CNT film wrap 

(a). The change in the power density with increasing electrode spacing (b). In both the 

cases, the effect is reduction in the power density of the speaker. 

Compared to the resistance where a low resistance presents a problem, having a small value 

of power density is desired. As mentioned previously, in air, the power density has a 

limiting value of 20kW/m2. For the selected input power and the wrap area, if the calculated 

power density value is significantly lower than the limiting value, it provides a great 

protection during the operation of the CNT speaker. For example, consider a planar CNT 

speaker that would be operated with a maximum electrical input power of 1kW and has a 

CNT film surface area of 0.11m2. The power density of such a speaker for the selected 

input power will be 9kW/m2. This value is significantly lower than the limiting value of 

20kW/m2. Having such a low power density allows the flexibility to operate the speaker at 

a much higher input power than that selected during the design process. So, in the above 

a b 
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example, even with an input power of 2kW, the power density of the CNT speaker would 

reach a value of 18kW/m2, still within the limiting value. This helps to protect speaker from 

sudden power surges as well as offers more flexibility for its operation. So, during the 

design process, a factor of safety is always maintained in the calculated value of the power 

density.  

It can be easily seen from the above explanations that the resistance and power density of 

the CNT speaker are dependent on the length of the CNT film wrap and the electrode 

spacing, or the area of the CNT film wrap. However, both the parameters are affected 

equally by the wrap length and the electrode spacing. If the resistance of the CNT speaker 

has to be higher, it is necessary that there are a smaller number of squares in the CNT film 

wrap. This can be achieved by reducing the area of the CNT film wrap which can be 

achieved by reducing the length of the CNT film or the electrode spacing. However, 

reducing the surface area of the CNT film will result in a higher power density value. If 

this value is very close to the limiting power density value, it will offer very little room for 

safe operation of the CNT speaker. So, increasing the value of one design parameter will 

result in the reduction in the value of the other design parameter (figure 24). For safe and 

efficient operation of any CNT speaker, it is extremely important that a suitable CNT film 

wrap length and electrode spacing is used in the design of the speaker to achieve a balance 

between the desired resistance and power density.  
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Figure 24: The change in resistance and power density with change in the CNT film wrap. 

Reducing power density increases the resistance of the CNT speaker. 

The design of any configuration of CNT speaker involves calculating the resistance and 

the power density of the CNT speaker. CNT speakers though are of two main types: open 

speakers and closed speakers. The difference between the speakers and their operation 

principles are illustrated in the following section.  

3.3 Open v/s Closed CNT Speakers 

The main difference between the open and closed CNT speakers is the characteristic of the 

medium present surrounding the speaker. In open speakers, the CNT film is exposed to the 

ambient environment and not enclosed in any volume made by a casing. In closed speakers, 

the CNT film is enclosed in a volume, and it may or may not be exposed to the ambient 

environment (figure 25). 
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Figure 25: Open CNT speaker(a). The CNT film is exposed directly to the ambient 

atmosphere without any outer casing. Closed CNT speaker(b). The CNT film wrapped 

around the electrodes is covered using an outer casing. In this case, the CNT film is in 

constant contact with the medium present in the casing and not with the ambient 

atmosphere.  

The presence of an open or closed medium has effect on the operating characteristics of 

the CNT speaker. In an open CNT speaker, the medium in contact with the CNT film is 

not confined in a fixed volume. So, when the medium next to the CNT film gets heated, it 

is eventually replaced by the cooler medium due to the setting up of convection in the 

medium. This helps to maintain the temperature difference between the CNT film and the 

surrounding medium. In a closed CNT speaker, the medium inside the casing gets heated 

up and the only way for it cool down is by heat transfer between the medium inside the 

casing and the ambient atmosphere through the casing. This causes the temperature of the 

Outer 
Casing 

Electrodes 

a b 
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medium inside the casing to increase continuously, thus reducing the temperature 

difference between the CNT film and the medium surrounding it. This decreasing 

temperature difference is expected to have a negative effect on the SPL generated by the 

closed speaker because the relation between them is proportional. 

Extensive research has been done on open CNT speakers to understand their design and 

characterize their performance. Xiao et. al. first verified the thermophone theory put forth 

by Arnold and Crandall and expanded this theory to open planar CNT speakers[93,94]. 

They formulated an equation to determine the SPL generated by the open planar CNT 

speaker, which is given as, 

                                          𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =  √𝛼𝛼.𝜌𝜌𝑜𝑜
2.√𝜋𝜋.𝑇𝑇𝑜𝑜

. 1
𝑟𝑟

.𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.
�𝑓𝑓
𝑐𝑐𝑠𝑠

.
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                                          (20) 

where f is the frequency of sound, Pinput is the electrical input power to the thermophone, r 

is the measurement distance between the thermophone and the microphone, Cs is the heat 

capacity per unit area (HCPUA) of the thermophone material, α, ρ0, T0 are the thermal 

diffusivity, density and temperature of the ambient gas medium, prms is the root-mean-

square sound pressure output from the thermophone, f1 = (α)/(πκ) and f2 = (β0)/(πCs). 

From the above formula, the SPL generated by the open CNT speaker is inversely 

proportional to the temperature of the ambient medium. Higher the temperature of the 

ambient medium, lower is the SPL generated by the open planar CNT speaker and vice-

versa. Aliev A. et.al., in his study of planar CNT speaker for underwater generation has 

explained the generation of sound in gases with respect to the ideal gas law[98,157]. The 

ideal gas law is defined as, 
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                                                                                  𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛                                                               (21) 

where P, V, n and T are the ambient medium gas pressure, volume, molar mass and 

temperature respectively and R is the ideal gas constant. For an open CNT speaker, the 

continuous increase and decrease of the surface temperature of the CNT film results in 

change in the V, n and R of the gas. The boundary condition that exists at the interface of 

the CNT film and the medium is given as, 

                                                                        𝑑𝑑𝑑𝑑 𝑉𝑉𝑜𝑜 = 𝑑𝑑𝑑𝑑 𝑇𝑇𝑜𝑜|𝑃𝑃⁄⁄                                                          (22) 

where Vo and To are the initial volume and temperature of the medium, dV and dT are the 

change in volume and temperature of the medium respectively[157,93]. This boundary 

condition exists at constant pressure and the sound pressure wavelength (λP) is much larger 

compared to the temperature wavelength (λT). This relation and the boundary condition 

make sense because the ambient medium surrounding the CNT speaker is not enclosed and 

free to change its volume. This change results in the generation of sound waves or sound 

energy that propagates in the opposite direction from the source.  

In a closed CNT speaker, the dependence of SPL generated on the volume of the medium, 

its temperature and casing properties is different than that of an open CNT speaker. Aliev 

A. et.al., in their study has postulated a formula for the SPL generated by a thermoacoustic 

source that is encapsulated using a rigid enclosure as, 

                                                                             𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 = (𝛾𝛾−1)
√2𝜋𝜋𝜋𝜋𝜋𝜋

𝑃𝑃ℎ                                                      (23) 
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where prms is the root-mean-square SPL generated by the speaker, 𝛾𝛾 is the ratio of specific 

heats (Cp/Cv), f is the frequency of the sound to be generated, V is the enclosed volume 

inside the outer casing, Ph is the measure of the input electrical power that is completely 

transferred to the surrounding medium and is expressed as, 

                                                                               𝑃𝑃ℎ = 2𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎                                                             (24) 

where S is the surface area of the CNT film, β is the heat exchange coefficient of the 

thermoacoustic source, and Ta is the temperature of the surrounding medium[157].  

It has been observed that the variation of the SPL generated by the closed CNT speaker is 

less dependent on the gas parameters, except the ratio of specific heats (𝛾𝛾). In addition, the 

volume of the enclosed medium has a significant effect on the generated SPL. It has been 

observed that smaller the volume of the enclosure, higher is the generated SPL. Further, 

based on the ideal gas law (equation 77), when the CNT film is placed in a hermetically 

sealed chamber made of two parallel plates, the medium parameters n, R, and V remain 

constant during operation and this results in pressure generation in the enclosure[98]. The 

boundary condition that exists at the interface of the CNT film and the medium in the 

enclosure is given as, 

                                                                       𝑑𝑑𝑑𝑑 𝑃𝑃𝑜𝑜 = 𝑑𝑑𝑑𝑑 𝑇𝑇𝑜𝑜|𝑉𝑉⁄⁄                                                        (25) 

where, dP is the change in the pressure in the enclosure, Po is the initial pressure in the 

enclosure, dT is the change in the temperature of the enclosure and To is the initial 

temperature of the medium in the enclosure. One important point to remember is that there 

is no change in the volume of the medium inside the enclosure and so, we have dV = 0.  
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One advantage of enclosing the CNT film is the utilization of the resonance property of the 

plates that form the enclosure. The plates used in the enclosure have their own resonance 

which can be activated by the sound generated by the CNT film. Using resonantly rigid 

plates provides magnification of the sound generated by the CNT film that is transmitted 

external of the enclosure. The general formula expressing this amplification is expressed 

as, 

                                                   𝑝𝑝(𝑟𝑟) =  ⍴𝑔𝑔(𝑎𝑎∗𝑏𝑏)
⍴𝑝𝑝2𝜋𝜋ℎ𝑝𝑝

.𝑄𝑄. 1
𝑟𝑟

.𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟                                                  (26)  

where, ⍴p and hp are the density and thickness of the rigid plates respectively, Q is the 

mechanical quality factor at resonance of the plates. The SPL generated by the CNT film 

inside the enclosure is amplified by Q times and so, higher SPL can be achieved with lower 

input electrical power. Another advantage of having an enclosure around the CNT film is 

the flexibility to use different mediums for the speaker operation. It has been proven that 

the use of an inert gas such as argon as a medium for the CNT speaker operation increases 

the operating temperature and power density of the CNT speaker. Also, the enclosure 

provides necessary protection to the CNT film from oxygen in the atmosphere and other 

damaging elements.  

Despite all the advantages mentioned above for having an enclosure around the CNT film, 

there is one probable disadvantage. CNT speakers operate based on the temperature 

difference between the CNT film and the surrounding medium. In the enclosed CNT 

speaker, the temperature of the volume of gas in the casing will increase faster due to 

limited heat dissipation from the chamber interior. This will reduce the temperature 



71 

difference between the CNT film and the medium and it is expected that the SPL generated 

will gradually reduce. Increasing the input power will increase the CNT film temperature 

as well as the temperature of the gas inside the chamber. A point would reach at which any 

increase in the input power will not result in an equivalent increase in the SPL. This is 

known as thermal saturation, and it is possible in a closed CNT speaker. One way to avoid 

this is to use heat sinks or water cooling to increase the heat dissipation from the outer 

casing.  

With all the above information as baseline, three enclosed, coaxial CNT speaker prototypes 

were designed and manufactured. They are discussed in the following sections.  

3.4 Enclosed Coaxial CNT Speaker Design Concept 

As mentioned in chapter 1, active control systems for automotive exhaust noise control 

have the shortcoming of low working temperature of the loudspeakers used in the system. 

Due to this, the loudspeakers must attached at the end of a side branch connected to the 

tailpipe. This helps to separate the loudspeaker from the high temperature exhaust gases in 

the tailpipe. CNT speakers, on the other hand, have a very high operating temperature and 

can withstand the high temperature exhaust gases without doing any damage to the CNT 

speaker. So, the CNT speaker can be connected directly to the tailpipe without the need of 

a side branch.  

With this important property of the CNT speaker as a baseline, an enclosed, coaxial CNT 

speaker was designed. The design idea behind the enclosed, coaxial speaker was modeled 

along the lines of a spool. A simple spool consists of two discs at the ends and a shaft that 
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connects the two discs. On the lines of the spool design, the enclosed, coaxial CNT speaker 

consists of two end discs made of an insulating material(figure 26). Barnard A et.al., in his 

study, demonstrated that the CNT films are acoustically transparent: sound travels through 

the CNT films without any change in amplitude and phase[97]. This property is extremely 

crucial in the design of the enclosed, coaxial CNT speaker. In the previous section, it has 

been shown that the resistance and power density of the CNT speaker depends on the total 

area of the CNT film wrap. More the area of the wrap, lower is the resistance and power 

density. Having a low value of power density is beneficial as it offers more factor of safety 

for the CNT speaker operation. Secondly, the resistance of the CNT speaker should match 

the output impedance of the amplifier that is being used. In addition, having more wrap 

area increases the sound pressure level output of the speaker. The acoustic transparency 

property of the CNT films allows the stacking of the films so that more wrap area is 

achieved while keeping the overall length of the speaker small. With this idea, concentric 

rings of electrodes were housed in the two end plates. The CNT film was wrapped 

continuously around the electrodes in each of the concentric rings. The two end plates are 

placed on a pipe which is slotted in the middle to allow the sound generated by the CNT 

film to travel into the tailpipe. This entire assembly is enclosed in an outer cover making 

the speaker completely enclosed.  
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Figure 26: Schematic of an enclosed, coaxial CNT speaker. The electrodes are arranged in 

concentric rings and alternately connected to positive and negative terminals. The outer 

cover encloses the CNT film.  

The outer cover and acoustic transparency provide another advantage. The sound generated 

by the CNT film is reflected by the inner surface of the outer cover back into the speaker. 

The CNT films allow this reflected sound to travel through them without any change in 

amplitude and phase. The reflected sound and the generated sound add with each other and 

the net sound traveling into the tailpipe is 6dB higher than the generated SPL of the CNT 

speaker. This happens because the reflected and generated sounds add coherently.  

With this basic idea of the enclosed, coaxial CNT speaker, three prototypes were designed 

and manufactured. The following sections describe each of the prototype in detail. 

3.4.1 Prototype 1 

The first prototype had two endplates with electrodes between them. The overall length of 

the speaker was 7.6”. The inner diameter of the end plates was matched to the tailpipe 

dimensions, in this case 2”. The outer diameter of the end plates was 3.76”. The end plates 
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were made of Teflon which acted as an electrical insulator. Copper electrodes of diameter 

1/8” were selected based on the amount of input current to the speaker. The prototype had 

three concentric rings of diameter 2.34”, 2.94” and 3.54” with each ring consisting of 6 

electrodes. The resistance of the speaker was designed to be approximately 1.98Ω with a 

power density of 9.79Kw/m2 for an input of 1kW. The end plates were machined from 

Teflon blocks into circular discs with three concentric rings for the electrodes. In each ring, 

every alternate electrode was positive, and the remaining electrodes were negative (figure 

27). 

 

Figure 27: The fully wrapped first prototype of the enclosed coaxial CNT speaker. Three 

electrode rings were used in this prototype. The electrodes on one side were connected to 

positive terminal (red wires) and the electrodes on the other side were connected to the 

negative terminal (blue wires) of the power supply. 
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Figure 28: 3D assembly drawing of first coaxial CNT speaker prototype. 

  

The speaker was mounted between two brackets and a crank was used to turn the speaker. 

The pawl was used to prevent the speaker from turning in the opposite direction. Prevention 

of backward motion is important as any loss of tension in the CNT film would break the 

film. Despite preventing the backward motion of the speaker, there was some backlash 

which reduced the tension in the wrapped CNT film. It was found that wrapping the film 

manually by rotating the speaker was easier than using the wrapping assembly. Electrodes 

were inserted one ring at a time and CNT was wrapped. An aluminum cover was used to 

protect the CNT from the atmosphere. The inner diameter of the cover was matched to the 

outer diameter of the end plates. 
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There were certain shortcomings in the design of the first prototype. Firstly, Teflon is a 

very smooth material. On insertion of the electrodes in the two end discs, it was found that 

the electrodes had a tendency to rotate in their holes. This rotation was damaging to the 

CNT film wrapped around the electrodes. The rotation of the electrodes resulted in the 

twisting of the wrapped CNT film, destroying it completely. Secondly, the clearance 

between the electrode rings was too small. The design of the speaker made it necessary that 

each electrode ring be inserted after wrapping of the inner electrode ring. Care had to be 

taken that the while inserting the electrodes, there was no contact between the electrode 

and the wrapped CNT film. This process was extremely time consuming. In addition, the 

end pipes did not extend all the way through the speaker. They were just inserted into the 

end discs and so, the speaker did not have the desired stability. All these shortcomings were 

overcome by the design of the second speaker prototype.  

3.4.2 Prototype 2 

The main design requirement of the second prototype was to reduce the overall dimensions 

and weight compared to the first prototype and make the speaker more robust. Hot exhaust 

gases pass through the tailpipe and in turn, through the speaker. It is crucial that the speaker 

is completely sealed and does not allow the exhaust gases to contact the CNT films. In the 

first prototype, there was not sufficient sealing between the cover and end plates. The end 

plates were manufactured to have a sliding fit between the circular electrodes and their 

respective holes. The second prototype had two concentric electrode rings with the 

electrode diameter of 1/8”. Each electrode ring had 6 electrodes. The rings had a diameter 

of 2.52” and 3.07”. To prevent the sliding and rotation of the electrodes, one end of the 
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electrodes was fixed by brazing to a bracket which was attached to the end plate using 

screws. Figure 30 shows the 3D model of the electrodes brazed to the bracket. The other 

end of the electrodes was fixed using circlips and nuts. The length of the CNT wrap was 

4.84” and the outer diameter of the end plates was 3.35”. The resistance of the speaker was 

designed to be approximately 1.8Ω and power density of 8.4Kw/m2 for an input of 500W 

(figure 29).  

 

 

Figure 29: The fully wrapped second prototype of the enclosed coaxial CNT speaker. Two 

electrode rings were used in this prototype. O-ring was used to provide better seal between 

the outer cover and end discs. 
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Figure 30: 3D assembly drawing of second coaxial CNT speaker prototype 

 

Teflon has a heat deflection temperature of 65oC which is very low compared to the exhaust 

gas temperatures. So, to increase the heat bearing capacity of the end plates, PEEK plastic 

was used which has heat deflection temperature of 315oC. To provide a seal in the speaker 

for preventing leakage of exhaust gases, o-ring was used on one end plate which was 

welded to the pipe. CNT film was wrapped manually by rotating the speaker for five layers 

in each ring. When the speaker is mounted on the exhaust, the CNT film must be protected 

from the exhaust gases as a lateral flow over the CNT film would destroy it. The CNT film 

must be separated from the exhaust gases using a film which is acoustically transparent 

and has a very low value of thickness. Kapton film manufactured by DuPont was used 

which had a thickness of 1mil. The film was wrapped on a slotted pipe which extended 
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through the speaker. The Kapton film was wrapped around the slots in the pipe which also 

provided stability and support to the speaker. 

One major shortcoming of this design was the replicability of the CNT film. If the CNT 

film wrapped in the inner electrode ring was damaged, it became necessary to destroy the 

CNT film in the outer ring and then rewrap the entire speaker. This process is too time 

consuming and not cost effective. To overcome this shortcoming, the third enclosed, 

coaxial CNT speaker prototype was designed and manufactured. 

3.4.3 Prototype 3 

The third prototype was made in the form of a modular design. Instead of having a 

continuous wrap of the CNT film, six planar CNT speakers were arranged in a concentric 

configuration around a slotted pipe (figure 31). The six planar speakers were housed in the 

end plates that had slots corresponding to the insulating block that supported the electrodes.  
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Figure 31: Fully wrapped third CNT speaker prototype. The six planar speakers arranged 

in concentric configuration around the slotted pipe allowed flexibility in replacement of 

the CNT film. 

Some of the design parameters of the CNT speaker such as resistance, power density, 

maximum operational power, and number of wraps of the CNT film used were redesigned 

compared to the first two prototypes. One of the main observations from the 

characterization tests of the first two prototypes was the resistance change with input 

power. It was observed that the resistance of the CNT speaker reduced as the input power 

was increased. This is a problem during the operation of the speaker as it may cause the 

amplifier to overload if the resistance of the speaker drops below the impedance limit of 

the amplifier. So, the resistance of the third prototype was kept high (8.64Ω) compared to 

the first two prototypes. Also, the designed power density was below the nominal value of 

20kW/m2, at a value of 9.94kW/m2. The third prototype was designed to operate at a 

Planar Speakers 

Slotted End Plate 
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maximum input power of 1kW. In the earlier versions, the end rings were made of Teflon 

and PEEK materials that are insulators. However, it was found that due to the generation 

of heat inside the outer cover during the speaker operation, the plastics tend to deform. So, 

to avoid this problem, the end rings were made of steel in this prototype. Insulation between 

the end rings and the copper electrodes was achieved by mounting the electrodes in PEEK 

isolators as shown in figure 31. To cover the slots in the pipe that extended through the 

speaker, Kapton film was used and wrapped in tension over the slots.  

 

All the three prototypes had the same baseline idea: enclosed design with coaxial CNT film 

around a slotted pipe. All of them were designed for in-line connection with the tailpipe 

for active noise cancellation. Out of the three prototypes, it was found that the second 

prototype showed the most promise and so, it was selected to be used a baseline to develop 

the modeling method in COMSOL. 
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Figure 32: 3D assembly drawing of third coaxial CNT speaker prototype.  
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4 Methodology 

4.1 Introduction 

The primary focus of this research is to develop a method to model an enclosed, coaxial 

CNT speaker for different applications. In the start of the research, three enclosed, coaxial 

CNT speaker prototypes were designed and manufacture, particularly for automotive 

exhaust noise cancellation applications. Characterization tests were performed on these 

prototypes to understand their SPL performance, electrical resistance, efficiency, and 

manual noise cancellation performance. The design principle and components used in these 

prototypes are described in previous chapter.  

The focus of the next step of this research shifted to modeling the CNT speakers using 

COMSOL Multiphysics. CNT speakers, as illustrated in Chapter 2, operate on the 

thermoacoustic principle. The sound generated by these speakers depends on the 

temperature oscillation of the CNT film due to the application of alternating current to the 

electrodes across which the CNT film is stretched. Based on the temperature achieved by 

the CNT film, the surrounding air experiences density changes and this generates sound. 

So, it is evident that the operation principle of CNT speakers involves Joule heating 

principle, thermoviscous acoustics and pressure acoustics. COMSOL Multiphysics is a tool 

that can model the CNT speaker while incorporating these different physics. COMSOL 

Multiphysics model also provides the capability to simulate the performance of the CNT 

speaker in the presence of flow as well as different ambient temperatures. For CNT 

speakers, optimization is a major factor in the success of the design and project. It is very 
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difficult to manufacture every single design iteration of the CNT speaker and perform 

characteristic testing on it. The COMSOL Multiphysics model provides the ability to 

simulate various design iterations and quantify their performance. Based on the 

optimization module, the best possible design can be selected for manufacturing and 

testing, reducing costs and effort.  

This chapter illustrates the MATLAB model of a planar CNT speaker, particularly the 

setup of the model, boundary conditions used and the CNT film temperature and SPL 

results. A detailed description of the COMSOL Multiphysics model of the planar CNT 

speaker is provided in this chapter. The main goal of this is to compare the MATLAB and 

COMSOL results to demonstrate the understanding of the FEM of the CNT speaker.  

Next, the methodology used to simulate the effect of flow on the SPL performance of the 

coaxial CNT speaker is discussed. It is important to understand the effect of flow on the 

sound field generated inside the coaxial speaker as plane waves are extremely important 

for noise cancellation. In addition, the model to simulate the effect of temperature of the 

medium inside the coaxial speaker is described.  

For the enclosed design, acoustic modes are important as they can contribute positively to 

the SPL generated by the speaker at the modal frequencies. The experimental and 

simulation procedure to determine the acoustic modes are described in this chapter. 
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4.2 COMSOL Multiphysics Model of CNT Speaker 

The COMSOL Multiphysics model is divided into two main parts: the Joule heating model 

that determines the temperature achieved by the CNT film and the Thermoviscous 

Acoustics model that simulates the SPL generated by the CNT speaker based on the 

temperature determined by the Joule heating model. 

4.2.1 Joule Heating Model 

The two physics involved in Joule heating are the electric current and the heat transfer in 

solids. COMSOL Multiphysics model allows the user to set the two physics involved in 

Joule heating to simulate the temperature oscillation of the CNT film.  

The first step in COMSOL is to select the appropriate dimension in which to solve the 

model. Once the appropriate dimension is chosen (3D in this case), joule heating module 

and a time dependent study are selected. This step populates the COMSOL model with the 

necessary physics and then the next step is geometry creation. 

In this step, geometry is created based on the dimensions of the electrodes and the CNT 

film area. This is done using the geometry feature in COMSOL. The geometry can be 

created using work plane to sketch the CNT speaker and then extruding it to the required 

thickness. 

 

 



86 

 

 

 

 

 

 

 

Figure 33: Planar CNT film model in COMSOL Multiphysics. The electrodes are modeled 

as domains and the CNT film is defined as a boundary in the model. 

As shown in the above model, the electrodes are defined as solid domains on either side of 

the CNT film. The CNT film is defined as a boundary that is stretched between the two 

electrodes. In this model, the CNT film is on either side of the electrodes, i.e., the CNT 

speaker has a double-sided film wrap. The domain in between the CNT film is defined as 

air which is present in the physical double-sided planar CNT speaker. One important thing 

to remember when defining the model in COMSOL is that all domains must be solid to get 

the simulation result in that domain. 

The next step is to define the materials used in the speaker. The materials are assigned 

under the Materials tab in the COMSOL model. For the electrodes, the obvious choice of 

the material is copper. COMSOL provides the flexibility to create a new material in which 

Electrodes 

CNT Film 
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one can define the material properties based on the physics that is chosen for that domain. 

In this case, CNT is a new material and so, using the Blank material feature, a new material 

was created. The material properties that are required for the new material depend on the 

physics which is assigned to the domain or boundary to which the new material is assigned. 

For the CNT film material, both the physics – electrical current and heat transfer are 

applied. So, the material properties for the CNT film material focuses on those properties 

that are essential for these two physics. The material properties and their values used in the 

COMSOL simulation are given in table 1. 

Table 1: CNT material properties used in the COMSOL model. The material properties 
include all the important values necessary for the physics that are selected for the 

boundaries. 
Property Variable Value Unit 

Density rho 2430 kg/m3 

Heat Capacity 
at Constant 

Pressure 

Cp 3168 J/(kg*K) 

Thermal 
Conductivity 

k_iso 134.45 W/(m*K) 

Relative 

Permittivity 

epsilon_iso 12 l 

Electrical 

Conductivity 

sigma_iso 108 S/m 
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CNT film has two important properties that play a major role in the surface temperature 

value. These properties are heat transfer due to conduction, convection, and radiation (βo) 

and heat capacity per unit area (cs), that influence the surface temperature of the CNT film. 

In the COMSOL model, variables are created and the above mentioned two properties are 

defined. These variables are assigned to the CNT film boundary defined in the model. So, 

during the simulation, all calculations that are performed use these variables only for the 

CNT film boundary and not the entire geometry.  

Once all the appropriate materials are assigned in the model, the next step is to assign the 

correct physics and the boundary conditions to the model. The first physics in this model 

is the Electric Currents (EC). This physics allows the application of alternating current 

across the two copper electrodes and the CNT film. There are various sub-sections under 

the Electric Currents physics. One of them is the terminal which is the positive connection 

to the model. This is a boundary condition that can be applied to either the entire domain 

or boundary and defines the input value of the alternating current to the model. CNT 

speakers’ operation and their surface temperature depends on the value of the input 

electrical power (I2R). A sinusoidal input is defined in the terminal boundary condition for 

the model. An important point to note here is that the input can be defined in terms of 

voltage, current, or power. The second boundary condition applied is the Ground, which 

can be applied only to a boundary in the model. The Electric Current physics calculates the 

electric field and potential distributions in the model in the selected domain. 

The next step of the model is to define the heat transfer from the CNT film to the ambient 

atmosphere. This is done by setting up the Heat Transfer in Solids (ht) module. The 
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definition of the boundary conditions in this physics is very important as the oscillating 

behavior of the CNT film surface temperature is set under this physics. CNT film acts as a 

thin conductor and when alternating current is passed through the film, the heat flux from 

the film surface is sinusoidal in nature. This was shown by Xiao et.al.[158] in their 

supporting material for their paper. The sinusoidal heat transfer from the CNT film to the 

ambient surrounding medium is given as, 

                    𝑄𝑄𝑄𝑄 =  −𝜅𝜅 ∗ 𝑘𝑘 ∗ 𝑇𝑇𝑓𝑓� ∗ [sin(2𝜔𝜔𝜔𝜔 +  𝜑𝜑) − cos(2𝜔𝜔𝜔𝜔 +  𝜑𝜑)]                                        (27) 

                                                              𝑘𝑘 =  �𝜔𝜔 𝛼𝛼⁄                                                                (28) 

                                    𝑇𝑇𝑓𝑓� =  − 𝐼𝐼2𝑅𝑅
4𝑎𝑎
∗ [ 1

�(𝛽𝛽𝑜𝑜+ 𝜅𝜅𝜅𝜅)2+(𝜔𝜔𝜔𝜔𝑠𝑠+ 𝜅𝜅𝜅𝜅)2
]                                      (29)                                

where Qo is the instantaneous heat from per unit area from the CNT film to the surrounding, 

κ is the thermal conductivity of the ambient gas (W/m*K), 𝑇𝑇𝑓𝑓�  is the amplitude of the 

oscillating temperature of the CNT film (K), ω is the frequency of the electrical signal 

(rad/s), βo is the heat loss from the CNT film due to conduction, convection and radiation 

(W/m2*K), cs is the heat capacity of the CNT film per unit area (J/m2*K), a is the surface 

area of the CNT film wrap (m2), I is the electrical current (A), R is the resistance of the 

CNT speaker (Ω).    

The heat transfer equation must be used a heat flux condition in the model to get the correct 

oscillating surface temperature. This is done by using the heat flux boundary condition 

under the Heat Transfer in Solids (ht) physics. It is important to note that this boundary 

condition is applied to only those geometry boundaries that are defined using CNT film as 
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material. Another important point is the amplitude of the temperature oscillation, 𝑇𝑇𝑓𝑓� . This 

amplitude must be defined as a variable applied over the CNT film boundary as defined in 

the geometry. So, along with the variables βo and cs, this term is calculated and then used 

in the heat flux equation. In addition to the heat flux from the CNT film, the copper 

electrodes also lose heat to the surrounding. So, a separate heat flux boundary condition 

must be applied to the copper electrodes to account for their heat loss. Normal heat transfer 

conditions are assumed from the copper electrodes, and it is not sinusoidal in nature.  

In addition to all these steps, there is one more step that must be completed before the 

model can be run. This step is to define the parameters important for the study. Some of 

these parameters are input electrical frequency (f), sampling frequency (Fs), thermal 

diffusivity of ambient gas (α), thermal conductivity of ambient gas (k), heat capacity of 

ambient gas at constant pressure (cp), and density of ambient gas (ρ). These parameters are 

defined in the model using the Parameters option under Global Definitions. Defining any 

parameter or variable under the Global Definitions applies it to the entire model and not 

just a particular boundary or domain.  

Once all these steps are completed, the model is ready to be meshed and then run. The 

meshing of the model can be done using either tetrahedral or quad elements. It is important 

to make sure that there are enough elements in the model to have a proper resolution of the 

temperature oscillation of the CNT film. The size of the mesh elements can be chosen by 

the software based on the physics that are used in the model or the size can be defined 

manually by the user.  
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Figure 34: The mesh element quality plot based on the skewness of the mesh elements. In 

the legend, a value of 0 is extremely bad mesh element while a value of 1 indicates good 

mesh element. 

Once the meshing is done, the last step is to setup the study to run the model to get the 

necessary results, in this case, the surface temperature of the CNT film. Based on whether 

time dependent or frequency domain study is selected, the necessary evaluation parameter 

(time or frequency) is used as input to complete the study. Once the run has been 

completed, the results are presented under the Results section of the model. The completed 

model builder for the Joule heating model looks like that shown in figure 35. 



92 

 

Figure 35: The fully setup model builder for the Joule heating model of the CNT speaker. 

All the parameters, variables, physics, mesh, and study are completely defined as seen in 

the model builder. 

4.2.2 Thermoacoustics Model 

Once the temperature results are obtained from the Joule heating model, the next step is to 

use the temperature result as an input to the Thermoviscous Acoustics-Pressure Acoustics 

model to simulate the SPL performance of the CNT speaker. An important point to note is 

that both the models – Joule heating and Thermoviscous Acoustics-Pressure Acoustics 

models cannot be used simultaneously. The Joule heating model must be run first and then 
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the Thermoviscous Acoustics-Pressure Acoustics model to get the SPL simulation result 

of the CNT speaker.  

The base geometry used in this model is the same as the one used in Joule heating model. 

So, there are two copper electrodes, and the CNT film is stretched between them and 

defined as boundaries. In addition to this, there are two things included in the model. The 

first one is two thin air domains next to the CNT film boundaries, one on each side for a 

double-sided wrapped CNT speaker. In the operation of thermoviscous acoustics, there is 

a generation of thermal and viscous boundary layers in the thermoviscous domain. These 

layers are generated close to the boundary of the material that operates on the 

thermoviscous acoustic principle, in this case, the CNT film. So, these boundary layers 

must be accounted for in the model when it is simulated for the generation of the sound. 

The thermal and viscous boundary layer thicknesses are calculated as, 

                                                            𝛿𝛿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  � 2𝜇𝜇
𝜔𝜔𝜌𝜌0

                                                                                  (30) 

                                                          𝛿𝛿𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =  �
2𝑘𝑘

𝜔𝜔𝜌𝜌0𝑐𝑐𝑝𝑝
                                                                           (31) 

where δvisc is the viscous boundary layer thickness (m), δtherm is the thermal boundary layer 

thickness (m), μ is the dynamic viscosity of the surrounding medium (Pa-s), ω is the 

angular frequency of the sound (rad/s), ρ0, k and cp are the density, thermal conductivity, 

and specific heat at constant pressure of the surrounding medium. 

From the above equations, the thicknesses of both the boundary layers depends on the 

frequency of the sound. So, for a study with multiple frequencies, these values will change 
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with frequency. In addition, if the surrounding medium changes, it will change these values 

for the same frequencies. When creating the geometry with the air domain (in this case as 

surrounding medium) around the CNT film boundary, care must be taken to make sure that 

this changing thickness is accounted for during simulation. One way to do this is to 

calculate the thicknesses with respect to the frequencies that are going to be simulated and 

then assign the maximum thickness value to the air domain around the CNT film. Another 

way to account for this is to create a parameter under Global Definitions that will calculate 

the thickness of the boundary layer and update the geometry for every single frequency 

value used in the simulation. The second method model will take considerably longer time 

to run but it will be more accurate in its representation of the thermoviscous acoustic 

domain and SPL generated. In the model that is explained in this study, a constant thickness 

of the thermal boundary layer is selected to create the air domain surrounding the CNT 

film boundary.  

Another addition to the geometry in this model is the air domain surrounding the entire 

CNT speaker. The sound generated by the CNT speaker is propagated out into the 

surrounding medium. So, unlike the Joule heating module where the surrounding medium 

was set as air by default, in this model, it is necessary to define the surrounding domain. 

One of the reasons for this is the principle of sound propagation from a source into the 

surrounding. It is known that there are different fields created in the surrounding medium 

when sound is generated by a source. These fields are near field, far field, direct field, and 

reverberation field. The SPL reduces by 6db per doubling of distance in the direct field. In 

the reverberation field, this change is insignificant with respect to distance. In addition to 

the effect of distance on the SPL, the directivity of the speaker is also important and must 
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be modeled in COMSOL. To perform all these tasks, an additional air domain is modeled 

around the CNT speaker. The model with air domain surrounding the CNT film and the 

sphere surrounding the entire CNT speaker is shown in figure 36 and figure 37.  

 

 

 

 

 

 

Figure 36: The CNT speaker geometry with the air domain surrounding the CNT film. This 

air domain is used to define the thermoviscous acoustic physics for SPL generation via 

temperature oscillations. 
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Figure 37: The surrounding medium modeled as a sphere around the CNT speaker. The air 

domain is shown as hollow because it is a cut section of the geometry. It is a solid spherical 

domain. 

In the above figure 37, there is a layer around the sphere labeled as PML. PML means a 

Perfectly Matched Layer, an absorbing type of boundary. During the physical operation of 

the CNT speaker, the surrounding medium is infinite for an open speaker. So, the sound 

waves will travel till their amplitude is reduced to a negligible value. If this were to be 

replicated in simulation, it would make the model and the mesh elements insanely large in 

number and impossible to solve completely. So, to make the model manageable and reduce 

the simulation time, the surrounding air domain is truncated using the PML. PML 

terminates the sound waves at the boundary, providing a reasonable approximation of free 

space and provides a set of boundary conditions. The diameter of the air domain sphere 

and the thickness of the PML is selected based on the distance from the CNT film at which 

the SPL is to be determined.  

Air Domain 

PML 
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Once the geometry is completed along with the surrounding domain, the next step is to 

assign the appropriate materials to the correct domains and boundaries. The CNT material 

is assigned to the interior boundaries shown in figure 36. Copper is assigned to the two 

electrodes and the remaining domains are assigned as air. This completes the material 

assignment to the model. 

The next step is setting up the physics – thermoviscous acoustics, frequency domain (ta) 

and pressure acoustics, frequency domain (acpr) to simulate the SPL generated by the CNT 

speaker. The ta domain is setup in the air domains that are defined next to the CNT film 

boundary. All the thermoviscous acoustics calculations are performed in this selected air 

domain. CNT speakers, as mentioned earlier, generate sound through heat based on the 

temperature oscillation of the CNT film. The temperature oscillation of the CNT film is 

obtained from the previous Joule heating model. This temperature value is used as input to 

the interior temperature variation boundary condition in the ta module. This boundary 

condition is applied only to the CNT film boundaries defined in the model. Now, the 

temperature variation of the CNT film is sinusoidal in nature. It has been observed that the 

average value of the surface temperature oscillation of the CNT film depends on the input 

power value and not the input electrical frequency. Higher the input power, higher is the 

average value of the CNT film surface temperature. So, either the average value or the 

maximum value of the surface temperature of the CNT film is used as input to simulate the 

SPL generation by the CNT speaker. 

 Once the ta physics has been completely defined, the next step is to define the pressure 

acoustics physics in the model. All the remaining domains – copper electrodes, surrounding 
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spherical air and PML are to be included in the pressure acoustics physics. The coupling 

between the ta and acpr domains calculates the SPL generation by the CNT speaker. Care 

must be taken when assigning the domains to this physics that the ta domains are not 

selected. If they are selected, then the model will not run as COMSOL will not be able to 

distinguish between the two physics for same boundaries and domains. The sound wave 

will be propagated from the end of the ta domain into the spherical acpr domain. In addition 

to the SPL generated by CNT speaker, the spherical air and PML domains can be used to 

simulate the far field response of the speaker and its directivity. This can be done using the 

far field calculation option in the pressure acoustics physics. The far field calculation 

radiates the sound in the pressure acoustics domain and determines the directivity of the 

sound from the CNT speaker. 

  

 

 

 

 

 

Figure 38: The setup of the pressure acoustics physics in the COMSOL model. The far-

field calculation can be added and used to calculate the directivity of the CNT speaker. The 

boundaries selected are the end boundaries of the surrounding medium domain. 
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All these steps complete the physics setup of the CNT speaker model. Once this is done, 

the next step is to mesh the model. The steps involved in the meshing of the SPL model 

are like that of the Joule heating model. There are two major differences in the meshing of 

the SPL model compared to that of the Joule heating model. First, the boundary layers must 

be included in the mesh with the help of boundary layers’ mesh. The boundary layer mesh 

incorporates the thermal boundary layers that are created next to the CNT film due to the 

thermoacoustic effect. There are two parts to setup the mesh (figure 39). In the first part, 

the domain in which the boundary layer mesh elements must be created is selected. For 

this model, the air domain defined for the ta physics that is next to the CNT film is selected. 

The next step is to define the boundary layer properties which is done by selecting the CNT 

film boundaries. The boundary layer properties that must be defined are the number of 

boundary layers, and the thickness of the first layer. The thickness of the first layer can be 

estimated from the thermal boundary layer value calculated by the equation 31. The rest of 

the model can be meshed using the tetrahedral or triangular elements. The quality of the 

mesh can be estimated using similar procedure described in the Joule heating model.  
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Figure 39: Boundary layer mesh in the SPL model of the CNT speaker. The boundary 

layer mesh is created in the domain defined by the thermoviscous acoustics physics next 

to the CNT film boundary. 

The last step of the model is to set up the study and then run the model. In the study step, 

the frequency at which the model must be run is defined. The results that are calculated 

after the model has been run are the acoustic pressure, sound pressure level (with respect 

to the reference pressure defined) from the pressure acoustics physics and the acoustic 

pressure, velocity, and temperature from the thermoviscous acoustics physics.  

This modeling procedure described above can be used for any design of the CNT speaker 

with any medium surrounding the CNT speaker. So, the enclosed, coaxial CNT speaker 

was also modeled using this procedure.  

 

 

Boundary 
layer mesh 
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4.3 Finite Element Modeling 

The main objective of this modeling is to understand the process that goes behind the 

COMSOL Multiphysics software, particularly the processes involved in finite element 

analysis of the enclosed, coaxial CNT speaker model. The two parts modeled are: Joule 

Heating and Themoviscous Acoustics. 

4.3.1 Joule Heating Model 

There are two physical domains involved in the Joule heating physics: electrostatics and 

heat transfer. The electrostatics physics calculates the electric potential across the CNT 

film due to the applied electric current across the copper electrodes between which the 

CNT film is wrapped. The electric potential generates heat in the CNT film due to its 

resistance to the flow of electric current. This heat generated is then radiated out to the 

ambient medium (air in this case) by conduction, convection, and radiation from the CNT 

film surface. This transfer of heat is modeled using the heat transfer physics. So, the 

coupling between the two physics is one-way: temperature of the CNT film depends on the 

electric potential and not reverse.  

For simplicity, a 2D CNT speaker model was used for this process. The governing 

equations for the electrostatics and heat transfer physics in 2D are given as, 
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where G is the electrical conductivity, V is the electric potential, k is the thermal 

conductivity, T is the temperature of the CNT film, Q is the heat generated due to the 

application of the electric potential and F is the heat flux. In the electrostatics equation, the 

variable to be calculated is the electric potential V and in the heat transfer equation, the 

variable to be calculated is the temperature T. 

To model the Joule heating physics, the standard procedure is followed. First, the above 

equations are converted into their weak forms using the Galerkin method. In this method, 

the residuals of the PDEs (all the terms on the left-hand side with the right side as zero) are 

multiplied by a weight function (wi) and integrated over the area. The integration equations 

are then simplified using integration by parts and an approximate solution is defined for 

the variables V and T. The solutions defined are of the form  

                                                                 𝑉𝑉 =  ∑ 𝑉𝑉𝑖𝑖 ∗ 𝜑𝜑𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                       (34) 

                                                                  𝑇𝑇 =  ∑ 𝑇𝑇𝑖𝑖 ∗ 𝜑𝜑𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                        (35) 

where n is the number of nodes of the mesh elements, φi is the shape function used to 

interpolate the data between the nodes. In the Galerkin method, the shape function and the 

weight function are the same. So, substituting the assumed solutions in the weak form, the 

stiffness, temperature, and source matrices are determined based on the mesh elements. For 
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isotropic material, the value of k in the x and y directions are the same. The final equation 

that is solved for determining the electric potential and temperature is  

                                                               [𝐺𝐺]𝑒𝑒 ∗ {𝑉𝑉𝑖𝑖}𝑒𝑒 = {𝑝𝑝𝑒𝑒}                                                      (36) 

                                                       [𝑘𝑘]𝑒𝑒 ∗ {𝑇𝑇𝑖𝑖}𝑒𝑒 = {𝐹𝐹𝑒𝑒} + {𝑄𝑄𝑒𝑒}                                                  (37) 

The next step is to define the boundary conditions for each physics. For the electrostatics 

physics, sinusoidal voltage is applied at one end boundary while for the heat transfer 

physics, the vertical end boundaries are at ambient temperature and the CNT film 

boundaries have a heat flux defined by equations (38-40). Once the boundary conditions 

are applied, the matrix equations are solved to obtain the electric potential across the CNT 

film and the surface temperature of the CNT film.  

4.3.2 Thermoviscous Acoustics Model 

The modeling of thermoviscous and pressure acoustics involve the generation of acoustic 

wave due to thermal effects, particularly the temperature of the CNT film. The modeling 

process is divided into three parts: thermoviscous acoustics, acoustic-structure interaction, 

pressure acoustics. 

The thermoviscous acoustics results in the generation of the thermoacoustic wave with 

pressure, velocity, and temperature as the main parameters. The thermoviscous acoustics 

physics exists in a very narrow region of the medium surrounding the thermoviscous 

element. In the case of the CNT speaker, the thermoviscous element is the CNT film and 

the thickness of the surrounding medium is proportional to the thermal boundary layer. The 



104 

root mean square value temperature of the CNT film obtained from the Joule heating 

simulation is used as the temperature boundary condition for the thermoviscous acoustic 

physics. There are a couple of assumptions made when sound propagation is considered in 

a thermally conductive fluid: 

1. Linearity and time harmonic wave behavior 

2. Medium is considered uniform and without flow 

3. The medium is considered as ideal fluid and  and it follows the Fourier’s law of 

heat conduction 

Based on these assumptions, the governing equations for the thermoviscous acoustics are 

the time harmonic linearized Navier Stokes equations of mass, energy and momentum 

equations given as, 

                                                              𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜌𝜌0∇. 𝑣𝑣 = 0                                                         (38) 

                                                    𝑖𝑖𝑖𝑖𝜌𝜌0𝐶𝐶𝑝𝑝𝑇𝑇 − 𝜆𝜆Δ𝑇𝑇 − 𝑖𝑖𝑖𝑖𝑖𝑖 = 0                                                       (39) 

                               𝑖𝑖𝑖𝑖𝜌𝜌0𝑣𝑣 = −∇𝑝𝑝 + �𝜇𝜇𝐵𝐵 + 4
3
𝜇𝜇�∇(∇.𝑣𝑣) − 𝜇𝜇∇𝑥𝑥∇𝑥𝑥𝑥𝑥 + 𝑓𝑓                              (40) 

where medium properties are density 𝜌𝜌0, specific heat at constant pressure Cp, thermal 

conductivity λ, shear viscosity μ, and bulk viscosity μB.  

These NS equations are converted into their weak form using the Galerkin method: 

multiplication with a weight function and integrated over the surface. The domain is 

discretized and shape functions for the thermoviscous acoustic variables pressure p, 

velocity v, and temperature T are defined. The shape functions are Lagrangian shape 
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functions. The FE matrix formulation is evaluated and the thermoviscous acoustic pressure, 

velocity and temperature are obtained.  

The second step is the coupling between the thermoviscous acoustic and the pressure 

acoustic domain via the CNT film boundary. This is done using the BEM for acoustic 

structure interaction. The structure boundary must be flexible and thin enough for this 

process to work successfully.  

The pressure acoustic domain is defined extending outward from the structure. Separating 

the thermoviscous and pressure acoustic domains using the structure boundary reduces the 

computation time as well as provides a good approximation of the acoustic wave generated 

by the thermoviscous acoustics physics and the structure, which in this case is the CNT 

film. The governing equations for the pressure acoustics physics are given as, 

                                                          ∇.�− 1
𝜌𝜌𝑐𝑐

(∇𝑝𝑝𝑡𝑡 − 𝑞𝑞𝑑𝑑)� − 𝑘𝑘2𝑒𝑒𝑒𝑒𝑝𝑝𝑡𝑡
𝜌𝜌𝑐𝑐

= 𝑄𝑄                                (41) 

                                                                             𝑘𝑘2𝑒𝑒𝑒𝑒 = �𝜔𝜔
𝑐𝑐
�
2
                                                       (42) 
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4.4 Acoustic Modal Analysis of the Enclosed, Coaxial 

CNT Speaker 

When sound travels through any enclosed structure, there is resonance due to the geometry 

and dimensions of the structure. The same is true when sound is generated inside an 

enclosed geometry. This phenomenon, in acoustic terms is known as acoustic resonance. 

The resonance has a dual effect on the sound generated in the enclosed geometry. If there 

is constructive interference at the acoustic resonant frequency between the sound inside the 

speaker and sound generated due to acoustic resonance, the net result is increase in the 

SPL. If there is destructive interference between the above-mentioned sounds, it will result 

in decrease in the SPL. So, if the acoustic resonant frequencies are properly defined, they 

can be used to increase the SPL of the enclosed acoustic structure.  

The coaxial CNT speaker designed, tested, and simulated is a closed type of CNT speaker. 

From previous research, it has been observed that the SPL of a closed CNT speaker 

decreases with increase in the frequency. However, for the enclosed, coaxial speaker, 

experimental results show that there is increase in SPL at certain frequencies while a 

reduction in SPL at other frequencies. This was observed for a frequency range of 50Hz-

500Hz in 1/3rd octave bands. One of the reasons for this was assumed to be the acoustic 

resonance due to the geometry of the CNT speaker. Also, the coaxial CNT speaker is not 

completely enclosed. The pipe that runs through the speaker has slots that are covered using 

a heat resistant diaphragm. Due to this, the volume between the outer cover and the heat 

resistance diaphragm is changing by a very small amount. So, to understand if the SPL 

behavior of the enclosed, coaxial CNT speaker was influenced by the acoustic resonance, 
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an acoustic modal analysis was performed experimentally and the COMSOL model was 

used to simulate the SPL at the resonant frequencies found in the experiment.  

For the experiment, two condenser microphones were placed at either ends of the coaxial 

CNT speaker. These microphones measured the SPL at the two ends of the CNT speaker. 

To determine the acoustic modes of the enclosed, coaxial speaker, first a broadband signal 

was used as input to the speaker in the frequency range of 20Hz-10kHz. The sound 

generated by the speaker was measured and a FRF was constructed between the SPL and 

the input signal in terms of power. Coherence was calculated between the SPL and the 

input signal, and it was observed that there was very poor coherence across the frequency 

range. So, a sine chirp was used as input to the CNT speaker to determine its acoustic 

modes and frequencies. The frequency range of the sine chirp signal was from 20Hz-

20kHz. Sound pressure level measurements were made for the speaker output. Three power 

levels were used for this experiment. The main goal of testing at three different power 

levels was to ensure that the speaker had good repeatability at different power levels, 

especially in terms of the sound pressure profile and acoustic modal behavior. The 

experimental setup is shown in figure 40. 
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Figure 40: Experimental setup for acoustic modal test. Two microphones are placed at the 

two ends of the speaker. A sine chirp signal was used as input to the CNT speaker. 

Once the FRF was plotted for the experimental test performed, a simulation was performed 

of the coaxial CNT speaker in COMSOL. For one input power value selected from the 

experimental test, SPL generated by the CNT speaker was simulated for several 

frequencies selected from the FRF. A comparison was made between the FRF values and 

the simulated values for the selected frequencies. The main reason to perform this 

comparison was to validate the CNT speaker COMSOL model and to make sure that the 

acoustic modal behavior of the actual CNT speaker was accurately replicated in the 

COMSOL model. One point to note here is that the simulation was performed at individual 

selected frequencies and not using a sine chirp. It is extremely difficult to set up a sine 

chirp signal in COMSOL and so, to save time and reduce complexity, individual 

frequencies were simulated. 

 

Mic 2 
Mic 1 
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4.5 Axial, Cross-sectional and Industry Standard 

Measurement  

The enclosed, coaxial CNT speaker generates sound radially that is then propagated along 

the length of the speaker. This sound is then radiated from the two ends of the speaker out 

into the surroundings. One of the main purposes of the coaxial speaker was to cancel the 

automotive exhaust noise inside the coaxial speaker. So, the axial SPL generated by the 

CNT speaker is very important. Also, the cavity created due to the outer cover adds acoustic 

resonance to the CNT speaker. Along with this, there is a slotted pipe that extends through 

the length of the coaxial speaker. So, it is crucial to consider the frequencies where cross 

modes are generated. Cross modes are difficult to cancel and so, it is important to 

understand the cross-section SPL generated by the coaxial speaker. In the automotive 

industry, sound generation ability of a loudspeaker or the sound through the exhaust 

tailpipe is measured at a specific distance and angle from the radiating surface. This 

distance is 500mm and the angle is 45o. A measurement made at this location is as per the 

automotive industry standard. This measurement is very useful for comparison with a 

loudspeaker that is generating sound at the same input power level. 

For the measurement of the axial, cross-sectional and industry standard SPLs, the enclosed, 

coaxial CNT speaker was placed in the anechoic chamber. For the axial SPL measurement, 

a PCB probe microphone (377B26) was used for the SPL measurement. The probe of the 

microphone was positioned at three locations along the longitudinal axis of the CNT 

speaker. Care was taken to ensure that the probe was not touching the CNT film at any 

location. For the cross-sectional SPL measurement, the face of the end pipe of the speaker 
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was divided into 17 points – 1 point in the center of the end pipe and 8 points in two 

concentric circles (figure 41). The probe microphone was positioned at every single point 

and SPL measurement was made. For the industry standard measurement, a PCB condenser 

microphone was positioned at 45o and 500mm from the face of the end pipe. AC input 

power of 100W was used as input to the CNT speaker. The frequency ranges for the three 

SPL measurements were from 100Hz-500Hz in 1/3rd octave bands. For the cross-sectional 

SPL measurement, two additional frequencies were tested: 4000Hz and 6300Hz. 

 

 

 

 

 

Figure 41: Axial SPL measurement locations (a), industry standard SPL measurement 

locations (b), points used to measure the cross-sectional SPL across the face of the end 

pipe of the CNT speaker (c). 
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4.6 Effect of flow on the acoustic of the coaxial CNT 

speaker 

The main aim of the enclosed, coaxial CNT speaker was to cancel and/or attenuate the 

automotive exhaust noise. The coaxial design allowed the exhaust gases to travel through 

the speaker without any change in the flow direction or obstruction, thus eliminating the 

generation of backpressure. So, in actual operating conditions, there is flow of exhaust 

gases through the coaxial CNT speaker. All simulations and experimental measurements 

were made in the anechoic chamber in the absence of flow. It was observed that a plane 

acoustic wave field was generated inside the speaker along its length in the absence of 

flow. It is expected that when the sound is generated in the presence of flow, there will be 

a change in the plane wave field as well as change in the SPL observed inside the speaker. 

This will affect the sound that is radiated out from the two ends of the coaxial speaker. To 

understand this phenomenon and its effect, COMSOL simulation was performed on the 

coaxial speaker model in the presence of flow. 

The setup of the flow model is significantly different from the Joule heating and 

Thermoviscous Acoustics models. The flow model is split into two parts. The first part 

simulates the flow field inside the speaker along its length. The Turbulent flow physics is 

used to simulate the background flow through the coaxial speaker. The flow simulation is 

performed for varying Mach numbers. The results of this model are the mean flow velocity, 

pressure and turbulent viscosity. Once these variables are obtained, the next step is to setup 

the acoustics model to get the sound pressure level and sound field profile in the presence 

of flow. This is performed using the Linearized Navier-Stokes physics. The result of this 
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simulation can then be used to understand the effect of varying Mach number flows on the 

sound pressure level and acoustic field inside the CNT speaker.  

The variables – mean flow velocity, pressure and turbulent viscosity obtained from the 

turbulent flow model must relate to the Linearized Navier Stokes model. This is done by a 

process called mesh mapping. Mesh mapping is used to map the solution from one physics 

to another physics and is a remeshing analysis technique. Generally, mesh mapping is used 

when the original mesh elements are severely distorted and thus cannot discretize the model 

to the desired degree of accuracy. In the case of the CNT speaker model, mesh mapping 

helps to reduce the overall time required to simulate the combined model as well as 

provides the flexibility to run the two physics individually. This helps to change any 

elements of the model that can show errors as well as help to improve the accuracy of the 

CNT speaker model. In addition, the turbulent flow module requires a finer mesh to 

account for the boundary layers created along the walls of the pipe as well as to accurately 

resolve the flow parameters. For the acoustic simulation, there is no need for an extremely 

fine mesh as compared to the turbulent flow model. So, mesh mapping helps to separate 

out the two meshes required to discretize the model, thus reducing the overall simulation 

time.  

Mesh mapping must be done very carefully as the two physics are not solved on the same 

computational mesh. So, if the variables are not correctly mapped from the CFD mesh to 

the acoustic mesh, it will result in errors due to non-physical noise being introduced in the 

acoustic solution. In COMSOL, to map the solution from the CFD physics to the acoustics 

physics, a separate study known as the mapping study is used. This study makes use of an 
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additional equation that maps and smooths the flow variables. The mapping equations for 

the CFD computed variables are set up using the Weak Form PDE interface found in the 

mathematics branch of the COMSOL software. The mapping equations used for this are, 

                                                                𝑝𝑝0,𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝0 = 𝛿𝛿ℎ2∇�∇𝑝𝑝0,𝑎𝑎𝑎𝑎𝑎𝑎�                                       (43) 

                                                                𝑢𝑢𝑖𝑖,0,𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑢𝑢𝑖𝑖,0 = 𝛿𝛿ℎ2∇�∇𝑢𝑢𝑖𝑖,0,𝑎𝑎𝑎𝑎𝑎𝑎�                                    (44) 

                                                                 𝜇𝜇𝑇𝑇,𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜇𝜇𝑇𝑇 = 𝛿𝛿ℎ2∇�∇𝜇𝜇𝑇𝑇,𝑎𝑎𝑎𝑎𝑎𝑎�                                      (45) 

where p0, u0 and μ0 are the flow pressure, velocity and turbulent viscosity variables, p0,aco, 

u0,aco and μT,aco are the acoustic pressure, velocity and turbulent viscosity variables, δ is a 

control parameter and h2 is the mesh element size squared. The smoothing of the CFD 

variables is achieved by the terms on the right-hand side of the above equations using 

isotropic diffusion. The amount by which the smoothing is achieved is controlled by the 

control parameter δ and the mesh size squared term h2. The control parameter can be tuned 

based on the smoothing required for the CFD physics calculated variables. These three 

equations are implemented in COMSOL using a special operator known as withsol() 

operator. This operator retrieves the values of the CFD variables from the CFD mesh and 

interpolates it correctly to the integration points on the acoustic mesh. This step is very 

important because the number and size of mesh elements are different for the CFD and 

acoustics mesh.  
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There is an easy method to check how good is the mapping of the CFD variables on the 

acoustic mesh. This is done by observing the 1D mapping comparison plot that compares 

the CFD variables and the acoustic mesh variables mapped from them. If both the variables 

follow each other closely in terms of profile and values, then it can be safely inferred that 

the mesh mapping has been successful. This can be observed in the plots shown in figure 

42. 

 

 

 

 

 

Figure 42: Mapping comparison between the flow velocity (a) and dynamic viscosity (b) 

for the CNT speaker flow model. There is good correlation between the variables, both in 

terms of value and profile. 

For the Linearized Navier Stokes physics, the sound that is produced by the CNT speaker 

must be submitted as an input to simulate the flow effect on the sound field thus generated. 

For this, the thermoviscous acoustics simulation results are used. The SPL and the plane 

wave that is obtained from the simulation in the absence of flow is defined as an input in 

the Linearized Navier Stokes physics. This sound profile is applied in the domain in which 

the CNT film is defined as a boundary (figure 43). Defining this sound source will make 

a b 



115 

sure that SPL results obtained in the presence of flow will mirror the expected performance 

of the speaker when it is physically operated in the presence of flow. 

 

 

 

 

 

 

Figure 43: Background acoustic field (blue region) based on the simulation result of the 

Thermoviscous Acoustics model. This field acts as the sound source in the flow model. 
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4.7 Optimization of the CNT speaker model using 

COMSOL 

One of the main goals of a design process is to optimize the design of a product to satisfy 

one or more design requirements. Optimizing a design provides with the best possible 

solution to a design problem, whether be it dimensions, performance, input requirements, 

etc. In addition, it also helps save considerable amount of time required to model and 

simulate every single design iteration of the desired product. 

Control variables are values that can be changed to find an optimal solution to the design 

problem. These variables can be dimensions, input parameters such as power, voltage, 

force, etc. and output parameters such as SPL, efficiency, etc. The solution of the 

optimization problem is the set of values assigned to the control variables. The objective 

function is based on the control variables. When the control variables are changed during 

the optimization process, a single valued solution for the objective function is obtained. 

The optimizer module then works on maximizing or minimizing this value based on the 

end goal of the optimization process. At the desired value of the optimizer function 

(maximum or minimum), the corresponding values of the control variables are the ideal 

values for obtaining the desired performance.  

Now during the optimization process, the control variables have values that are changed. 

However, if there is no restriction to the change in their values, the optimization process 

would continue forever. Also, it might result in values that are not feasible. To prevent this 

and to get feasible values, constraints are set on the control variables. These constraints are 
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generally upper and lower bounding values (ranges) within which the control variables are 

defined. This provides a feasible set of values for the control variables which can then be 

used to optimize the design problem. 

The optimization module in COMSOL is a very useful tool as it can link the simulation 

result to the optimization problem. In this module, any input of the COMSOL model such 

as dimensions, material properties, or material distribution can be assigned as control 

variables. The objective function in the optimization module can be any model output such 

as SPL, current, velocity, etc.  

There are two main types of optimization algorithms available in COMSOL – gradient free 

and gradient based. The primary difference between these algorithms is the way in which 

optimization is performed and the type of problem present for optimization. Gradient based 

algorithms use gradient or slope during every single iteration to determine if that control 

variable value is the best compared to the previous value. If there is a local minima or 

maxima in the function, it will result in a gradient of zero and the algorithm might get 

stuck. In addition, if there is a discontinuity in the objective function, it will result in an 

error in the optimization. In these situations, a gradient free algorithm is the best to obtain 

the optimum design parameters. Another important parameter in the selection of the correct 

optimization algorithm is the presence of a range for the control variable values. Gradient 

based algorithms cannot handle optimization problems that have a defined lower and upped 

bound to the control variable values.  

COMSOL has three gradient based algorithms – SNOPT, MMA and Levenberg-

Marquardt. The three gradient free algorithms are – Nedler-Mead, BOBYQA and 
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COBYLA. Ideally, if your optimization problem is correctly defined, all the algorithms 

should result in solution that is nearly identical. 

For this study, two optimizations were performed. First, a simple expansion chamber was 

optimized to achieve the length and diameter of the central chamber that would result in 

the highest transmission loss. The control variables used were the length and diameter of 

the central chamber. Once the optimized dimensions were obtained, the transmission loss 

was recalculated and compared with the original as well as the optimized result. The main 

purpose of this was to validate the optimization process. Based on this, optimization was 

performed to determine the best possible dimension combination for the coaxial CNT 

speaker.  
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5 Results and Discussion 

5.1 Joule Heating Model 

The main result of the Joule heating model is the surface temperature oscillation of the 

CNT speaker. This temperature oscillation is very important as it is responsible for the 

generation of the sound from the CNT speaker. An enclosed, coaxial CNT speaker with a 

resistance of approximately 3Ω was simulated at an input power of 200W. The surface 

temperature oscillation result for the Joule heating model is shown in figure 44. 

               

 

 

 

 

 

 

Figure 44: CNT film surface temperature from the Joule heating COMSOL model. The 

terminal current is the input alternating current to the CNT speaker. 

It can be clearly seen that the frequency of the temperature oscillation is twice the 

frequency of the input electrical current. This is a point of validation for the model as CNT 

CNT film 
surface 
temperature 
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speakers operate on input power and so, they double the frequency on the output side. In 

addition, it was also observed that the sinusoidal temperature oscillation profile of the CNT 

film surface temperature was replicated successfully using the COMSOL model. Another 

observation with regards to the Joule heating module was the definition of the input 

electrical signal to the model. As mentioned before, there are four ways in which the 

electrical input can be defined: voltage, current, power, and electrical circuit. It was 

observed that all the four input methods generated temperature results that were sinusoidal 

in nature with very little variation in amplitude (<+/-5K). Either of the four methods could 

thus be used as input to the model. However, care must be taken to make sure the amplitude 

used in the input should agree with the basic electrical circuit laws. 

Another important observation with respect to the surface temperature of the CNT film is 

its behavior with respect to frequency. It is observed that for different frequencies, the mean 

value of the surface temperature remains the same. The only change observed is the 

maximum and minimum amplitudes (both same in value) of the sinusoidal surface 

temperature. With change in frequency, this value undergoes change (increases), but the 

average temperature of the sinusoidal excitation remains the same. One reason for can be 

deduced from the temperature equation of the CNT film. The constant term in the equation 

is dependent on the input power, area of the CNT film and the heat capacity per unit area. 

In the situation that the input power remains the same, this value will remain the same. 

This value can be considered as a DC offset added to the sinusoidal surface temperature. 

The second part of the temperature equation involves the sinusoidal component. The 

amplitude of the sinusoidal component depends on the frequency of the electric signal 

applied to the CNT film. Due to this, the amplitude (maximum and minimum) of the CNT 
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film surface temperature changes but not its average value. So, during the thermoviscous 

acoustic simulation of the CNT speaker, one can use the constant average surface 

temperature to simulate the generated SPL. The generated SPL depends on the frequency 

of the applied electrical signal in the case that the applied input power remains the same.  

5.2 Thermoacoustic Model 

The SPL simulated by the thermoviscous acoustic model showed that the SPL was uniform 

along the longitudinal axis of the CNT speaker (figure 45). In other words, the sound field 

generated inside the speaker is planar in nature. This was one of the main aims of the design 

process as having a plane wave generation inside the speaker is crucial for active noise 

cancellation. In addition, the CNT film is wrapped around the copper electrodes in the 

physical prototype. So, the sound generated by the CNT film is radial in nature and 

propagates radially into the speaker. For the model, the CNT film is modeled by wrapping 

it on the inside surface of the outer cover. The simulation result shows that in this 

configuration, the sound pressure level around the circumference of the outer cover is 

uniform, like the actual prototype (figure 46). The sound pressure levels generated by the 

COMSOL model were compared with the experimental measurements. It was observed 

that there was good correlation between the experimental and simulation results (figure 

47). This is also a point for validation of the CNT speaker COMSOL model.  
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Figure 45: SPL inside the coaxial speaker mode obtained by the COMSOL model. The 

SPL level is uniform along the length of the speaker and planar in nature. 

 

 

 

 

Figure 46: SPL generated along the arc of the CNT speaker model in COMSOL. The SPL 

value is uniform along the arc length, indicating that the sound generated along the 

circumference of the speaker is uniform. 
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Figure 47: Comparison of SPL between the experimental results and simulation results. 

The difference between the two SPLs is less than 3dB. 

The models for the Joule Heating and Thermoviscous acoustics are validated using 

experimental results. However, both the models have certain limitations.  

Firstly, the CNT material defined in both the models require material properties based on 

the physics that is being simulated. Even if the accurate material properties such as heat 

capacity per unit area (cs) and heat loss due to conduction, convection, and radiation (βo) 

are defined, they are not used if the physics cannot incorporate it. This is because the 

governing equations used for the physics in COMSOL are predefined with variables. This 

is a limitation in setting up the model as the two properties mentioned above are extremely 

important in the operation of the CNT speaker. A more accurate method of defining these 

material properties and incorporating them in the built-in physics is required. 
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In the Joule Heating model, the definition of the electric current is using the Terminal 

domain condition. This is okay when the electrode used is defined as domain the geometry 

of the CNT speaker in the model. However, when there is a need to define the electrode as 

a boundary or edge, this condition is not correct. In COMSOL, the Terminal condition 

cannot be applied to the boundary. It can be applied only to the domain. There is a work 

around, but it increases the steps in the modeling, and it can produce errors if not set up 

correctly.  

Ideally, for an enclosed, planar CNT speaker, the SPL decreases with increase in frequency. 

The main reason for this decrease is the presence of the frequency term in the denominator 

of the SPL equation for an enclosed CNT speaker (equation 24). From the result shown in 

figure 47, it is seen that the SPL of the enclosed, coaxial CNT speaker consists of peaks 

(increasing SPL) and valleys (decreasing SPL). This behavior is in line with the expectation 

that the acoustic modes of the outer enclosing chamber affect the SPL generated by the 

CNT speaker. Depending on the chamber modes, its dimensions and shape, the SPL profile 

generated by the enclosed, coaxial CNT speaker would vary from ideal. The effect of the 

acoustic modes and their contribution to the SPL profile are illustrated in the next section. 

5.3 Finite Element Model Formulation and Result 

5.3.1 Joule Heating 

5.3.1.1 Electrostatics Physics 
 

The residual form of the PDE for electrostatic physics is given as[167], 
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                                                             − 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐺𝐺𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐺𝐺𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�                                         (46) 

The above equation is then integrated over the area after multiplication with a weight 

function wi. The main purpose of doing this step is to reduce the order of the PDE, in this 

case is from 2nd order to 1st order. The integration expression is simplified using the 

integration by parts rule. The final expression obtained after this step is given as, 

                                                     ∫ �𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕

∗ 𝐺𝐺𝑥𝑥 ∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕

∗ 𝐺𝐺𝑦𝑦 ∗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0𝛺𝛺                    (47) 

Now, an approximate solution for the electric potential V is assumed as, 

                                                                             𝑉𝑉 =  ∑ 𝑉𝑉𝑖𝑖 ∗ 𝜑𝜑𝑖𝑖𝑛𝑛
𝑖𝑖=1                                            (48) 

Calculating the partial derivatives of V with respect to x and y and plugging them in 

equation, we get the final matrix equation as, 

                                                                       [𝐺𝐺𝑒𝑒] ∗ {𝑉𝑉𝑖𝑖𝑒𝑒} = 0                                                  (49) 

where Ge is the element stiffness matrix of electrical conductivity whose values are known, 

Vi
e is the electric potential matrix whose values are to be determined. The Ge matrix is 

expressed as, 

                                               𝐺𝐺𝑖𝑖𝑖𝑖 = ∫ [𝐺𝐺𝑥𝑥
𝜕𝜕𝜑𝜑𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝐺𝐺𝑦𝑦
𝜕𝜕𝜑𝜑𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕

]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛺𝛺                                    (50) 

where φi and φj are the shape function defined to interpolate the date between the nodes of 

the elements.  
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The electrical conductivity and electric potential matrices are defined based on the number 

of elements and the type of elements used in the discretization of the model. For this 

modeling, the CNT film was discretized using four triangular elements as shown in the 

figure below. 

 

 

 

 

 

 

Figure 48: Discretization of the CNT film model to estimate the electric potential and the 

surface temperature due to the applied electric potential. 

In the above figure, the numbers in black denote the element number of the discretized 

model. The numbers in red are global nodes of the elements while the numbers in green 

are the local nodes of the discretized model elements. The local nodes are selected in such 

a way that the element stiffness matrix [Ge] of all the elements will be the same. The 

connection between the local and the global nodes for the four elements are shown in table 

below. 

Table 2: Connection of Local and Global nodes for the discretized elements 
Element 1 (Local Node) 2 (Local Node) 3 (Local Node) 

1 1 2 4 

1 
2 

3 
4 

1 2 

3 4 

5 6 

3 

1 2 

1 2 

3 

1 2 

1 2 

3 

3 
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2 4 3 1 

3 3 4 6 

4 6 5 3 

 

From the above table, for element 1, the 1st local node represents the 1st global node, 2nd 

local node represents the 2nd global node, and the 3rd local node represents the 4th global 

node. Similar connections are made between the local and global nodes for the remaining 

elements.  

The next step is to calculate the element stiffness matrix of the individual elements. 

Consider that the coordinate system has its origin at the 1st global node for element 1 as 

shown in the figure below. 

 

 

 

 

 

Figure 49: Element 1 with local nodes defined according to the coordinate system at local 

node 1.  
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The element represents a right-angled triangle, and its area must be determined. So, for the 

right-angled triangle, the area is ½ * length * height. For the element 1 and all other 

elements, the area of the element is ½. 

The next step is to generate the shape function for the triangular elements. For triangular 

elements, the shape function is defined as,  

                                                         𝜑𝜑𝑖𝑖 = (𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 ∗ 𝑥𝑥 + 𝛾𝛾𝑖𝑖 ∗ 𝑦𝑦) ∗ 1
2𝐴𝐴

                                     (51) 

where αi, βi and γi are the constants defined using the x and y coordinates of the nodes of 

the element for which the shape function is being determined and A is the area of the 

element. The general formulation of these constants is given as, 

                                                             𝛼𝛼1 = 𝑥𝑥2 ∗ 𝑦𝑦3 − 𝑥𝑥3 ∗ 𝑦𝑦2                                                      (52) 

                                                             𝛼𝛼2 = 𝑥𝑥3 ∗ 𝑦𝑦1 − 𝑥𝑥1 ∗ 𝑦𝑦2                                                    (53) 

                                                             𝛼𝛼3 = 𝑥𝑥1 ∗ 𝑦𝑦2 − 𝑥𝑥2 ∗ 𝑦𝑦1                                                (54) 

                                                                     𝛽𝛽1 = 𝑦𝑦2 − 𝑦𝑦3                                                        (55) 

                                                                     𝛽𝛽2 = 𝑦𝑦3 − 𝑦𝑦1                                                           (56) 

                                                                     𝛽𝛽3 = 𝑦𝑦1 − 𝑦𝑦2                                                              (57) 

                                                                     𝛾𝛾1 = 𝑥𝑥3 − 𝑥𝑥2                                                            (58) 

                                                                     𝛾𝛾2 = 𝑥𝑥1 − 𝑥𝑥3                                                           (59) 
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                                                                     𝛾𝛾3 = 𝑥𝑥2 − 𝑥𝑥1                                                                (60) 

Based on the x and y coordinates of the local nodes for each element, using the above 

equations, the values for αi, βi and γi can be calculated. For the triangular element 

represented in figure, the values of αi, βi and γi are as follows: 

Table 3: Values of shape function constants for the selected triangular element 
α1 1 

α2 0 

α3 0 

β1 -1 

β2 1 

β3 0 

γ1 0 

γ2 -1 

γ3 1 

 

Using the above calculated values, the partial derivate of the shape function are calculated 

with respect to x and y. These derivates are then plugged back into the integral equation of 

the element stiffness matrix for electrical conductivity and on simplification, the matrix 
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form of the element stiffness matrix is obtained. So, for element 1, the elemental stiffness 

matrix can be expressed as, 

                                                           [𝐺𝐺]1 = 𝐺𝐺
2
∗ �

1 −1 0
−1 2 −1
0 −1 1

�                                               (61) 

In the matrix for element 1, row 1 represents the global node 1, row 2 represents the global 

node 2 and row 3 represents the global node 4. As the local nodes for all the elements are 

selected in such a way that the stiffness matrix is the same, the values of [G]2, [G]3, [G]4, 

[G]5 and [G]6 are the same as [G]1. The rows for each of the element stiffness matrix will 

represent the global node for that element. 

So, for element 1, the final matrix equation will be of the form  

                                                       𝐺𝐺
2
∗ �

1 −1 0
−1 2 −1
0 −1 1

� ∗ �
𝑉𝑉1
𝑉𝑉2
𝑉𝑉4
� = �

𝑝𝑝11

𝑝𝑝21

𝑝𝑝31
�                                    (62) 

where V1, V2 and V4 are the scalar electric potentials at global nodes 1, 2 and 4 and p1, p2 

and p3 are the charge densities for the nodes 1, 2, and 3. On calculating the element stiffness 

matrix for all the remaining elements and assembling them, the global stiffness matrix is 

expressed as 

                               𝐺𝐺
2
∗

⎣
⎢
⎢
⎢
⎢
⎡

2 −1 −1 0 0 0
−1 2 0 −1 0 0
−1 0 4 −2 −1 0
0 −1 −2 4 0 −1
0 0 −1 0 2 −1
0 0 0 −1 −1 2 ⎦

⎥
⎥
⎥
⎥
⎤

∗

⎩
⎪
⎨

⎪
⎧
𝑉𝑉1
𝑉𝑉2
𝑉𝑉3
𝑉𝑉4
𝑉𝑉5
𝑉𝑉6⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3
𝑃𝑃4
𝑃𝑃5
𝑃𝑃6⎭
⎪
⎬

⎪
⎫

                          (63) 
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where P1, P2, P3, P4, P5, and P6 are the charge densities (source term) and expressed as, 

                                                                   𝑃𝑃1 = 𝑝𝑝11 + 𝑝𝑝32                                                                 (64) 

                                                                         𝑃𝑃2 = 𝑝𝑝21                       (65) 

                                                               𝑃𝑃3 = 𝑝𝑝22 + 𝑝𝑝13 + 𝑝𝑝34                                                  (66) 

                                                              𝑃𝑃4 = 𝑝𝑝31 + 𝑝𝑝12 + 𝑝𝑝23                                                       (67) 

                                                                           𝑃𝑃5 = 𝑝𝑝24                                                               (68) 

                                                                   𝑃𝑃6 = 𝑝𝑝33 + 𝑝𝑝14                                                          (69) 

The above-mentioned equations are obtained from the matrix equation formulation for all 

the elements. The charge density values for the individual global nodes are added from all 

the elements and the resultant charge density vector is obtained.  

The next step is to apply the boundary conditions to define the model. In the case of CNT 

speakers, an alternating current is applied across the electrodes. So, for the model defined 

in this section, the boundary condition at nodes 1, 3, and 5 is sinusoidal and is given as  

                                                             𝜎𝜎 ∗ sin (2 ∗ 𝑝𝑝𝑝𝑝 ∗ 𝑓𝑓 ∗ 𝑡𝑡)                                               (70) 

where σ is the amplitude of the charge applied, f is the frequency of the input signal and t 

is the time. For the nodes on the opposite side, i.e., 2,4, and 6, the initial charge is zero and 

that is used as the second boundary condition. After substituting the boundary conditions 
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and solving the global element stiffness matrix, the result is the stationary electric potential 

across the CNT film. 

For this model, the amplitude of the sinusoidal signal was 10V. The modeling result 

compared with COMSOL result is shown in figure 50. 

 

Figure 50: Comparison between the MATLAB model and COMSOL model electric 

potential for the CNT speaker.  

The COMSOL model yields a smoother curve as compared to the MALTAB model. The 

primary reason for this is the selection of the number of elements and the type of element 

(rectangular instead of triangular) to discretize the domain that is modeled. Higher number 

of elements provide more nodal points at which the data is calculated. So, the unknown 

variable that is calculated is defined more uniformly over the domain, yielding better 

resolution of the results. However, the comparison between the two simulation results 

shows that even though there is difference in the profile, the maximum and minimum 
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values of the electric potential are very close to each other, validating the model. One point 

to remember is that increasing the number of elements increases the computation time for 

the model. In this model, for a 6-element discretization, the global element stiffness matrix 

is of the order 6x6. So, for n elements, the global stiffness matrix will be of the order nxn. 

Higher the number of elements, larger will be the matrix and more time will be required 

for the simulation to complete. However, higher number of elements does not always mean 

better results compared to lower number of elements. It depends on the model dimensions, 

type of physics involved and the convergence of the solution to the expected value that 

decides how many number of elements are sufficient to achieve good resolution of the 

unknown variable. 

Another point of improvement is the use of the shape function. The shape function used in 

this model is linear triangular as triangular elements are used to discretize the model. Use 

of higher order (quadratic, etc.) shape functions will provide a better interpolation of the 

data between the node points. It will make the model results align more closely with the 

COSMOL simulation result.  

5.3.1.2 Heat Transfer Physics 

The second physics that determines the surface temperature of the CNT film is the heat 

transfer. This physics takes the heat generated by the electric potential as the input source 

and determines the surface temperature based on the heat loss from the domain, in this case 

CNT film. The temperature of the domain depends on the electric potential and not vice-

versa, making it one way coupling. 
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When heat transfer mechanism involves convection along with conduction, modification 

is required for the heat transfer equation. The general equation for heat transfer in the 

presence of conduction and convection is given as[167], 

                                                𝑘𝑘𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑛𝑛𝑥𝑥 + 𝑘𝑘𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑛𝑛𝑦𝑦 + 𝛽𝛽(𝑇𝑇 − 𝑇𝑇∞) =  𝑞𝑞𝑛𝑛� + 𝑓𝑓                           (71) 

where β is the convective conductance, T∞ is the ambient temperature of the medium and 

𝑞𝑞𝑛𝑛� is the specified heat flow. The heat transfer by conduction is calculated by the first two 

terms, the heat transfer by convection is calculated by the third term and the heat flux from 

the CNT film is accounted by the term on the right. 

Using the process described in the Joule heating section to formulate the weak form of the 

PDE using Galerkin method, we get the following equation 

0 = ∫ �𝑘𝑘𝑥𝑥
𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘𝑦𝑦
𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑤𝑤𝑖𝑖𝑓𝑓� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − ∮ 𝑤𝑤𝑖𝑖 ∗ [𝑞𝑞𝑛𝑛 − 𝛽𝛽(𝑇𝑇 − 𝑇𝑇∞)]𝑑𝑑𝑑𝑑Γ𝛺𝛺                 (72) 

Defining the shape function as φi and the temperature solution approximation as 

                                                                    𝑇𝑇 =  ∑ 𝑇𝑇𝑖𝑖𝜑𝜑𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                      (73) 

and substituting them in the above equation, we get the final matrix formulation of the 

heat transfer PDE as 
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                                                    ∑ �𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒 + 𝐻𝐻𝑖𝑖𝑖𝑖𝑒𝑒�𝑇𝑇𝑗𝑗𝑒𝑒 = 𝐹𝐹𝑖𝑖𝑒𝑒 + 𝑃𝑃𝑖𝑖𝑒𝑒𝑛𝑛
𝑗𝑗=1                                     (74) 

where  

                                              𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒 = ∫ �𝑘𝑘𝑥𝑥
𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝑘𝑘𝑦𝑦
𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛺𝛺                                  (75) 

                                         𝐹𝐹𝑖𝑖𝑒𝑒 = ∫ 𝑓𝑓𝜑𝜑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + ∮ 𝑞𝑞𝑛𝑛𝑒𝑒𝜑𝜑𝑖𝑖𝑑𝑑𝑑𝑑 ≡ 𝑓𝑓𝑖𝑖
𝑒𝑒 + 𝑄𝑄𝑖𝑖𝑒𝑒Γ𝛺𝛺                             (76) 

                                                                𝐻𝐻𝑖𝑖𝑖𝑖𝑒𝑒 = 𝛽𝛽𝑒𝑒 ∮ 𝜑𝜑𝑖𝑖𝜑𝜑𝑗𝑗𝑑𝑑𝑑𝑑Γ                                                   (77) 

                                                                 𝑃𝑃𝑖𝑖𝑒𝑒 = 𝛽𝛽𝑒𝑒 ∮ 𝜑𝜑𝑖𝑖𝑇𝑇∞𝑑𝑑𝑑𝑑Γ                                                     (78) 

In the above equation, β is the heat transfer coefficient for convection. The coefficients Hij
e 

and Pi
e are the terms due to the convective boundary conditions evaluated using boundary 

integrals. Depending on the mesh element chosen (triangular or rectangular), these 

coefficients are defined. For this simulation, there is heat loss due to conduction and 

convection from the CNT film and the copper electrodes. So, to model the heat loss more 

accurately, rectangular elements are used to discretize the model. For a linear rectangular 

element, the coefficients Hij
e and Pi

e are defined as, 
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𝐻𝐻𝑖𝑖𝑖𝑖𝑒𝑒 = 𝛽𝛽𝑒𝑒12 ∫ 𝜑𝜑𝑖𝑖𝑒𝑒𝜑𝜑𝑗𝑗𝑒𝑒𝑑𝑑𝑑𝑑
ℎ𝑒𝑒12
0 + 𝛽𝛽𝑒𝑒23 ∫ 𝜑𝜑𝑖𝑖𝑒𝑒𝜑𝜑𝑗𝑗𝑒𝑒𝑑𝑑𝑑𝑑

ℎ𝑒𝑒23
0 + 𝛽𝛽𝑒𝑒34 ∫ 𝜑𝜑𝑖𝑖𝑒𝑒𝜑𝜑𝑗𝑗𝑒𝑒𝑑𝑑𝑑𝑑

ℎ𝑒𝑒34
0 +

𝛽𝛽𝑒𝑒41 ∫ 𝜑𝜑𝑖𝑖𝑒𝑒𝜑𝜑𝑗𝑗𝑒𝑒𝑑𝑑𝑑𝑑
ℎ𝑒𝑒41
0                                                                                                          (79) 

𝑃𝑃𝑖𝑖𝑒𝑒 = 𝛽𝛽𝑒𝑒12𝑇𝑇∞ ∫ 𝜑𝜑𝑒𝑒
𝑖𝑖𝑑𝑑𝑑𝑑

ℎ𝑒𝑒12
0 + 𝛽𝛽𝑒𝑒23𝑇𝑇∞ ∫ 𝜑𝜑𝑒𝑒

𝑖𝑖𝑑𝑑𝑑𝑑
ℎ𝑒𝑒23
0 + 𝛽𝛽𝑒𝑒34𝑇𝑇∞ ∫ 𝜑𝜑𝑒𝑒
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ℎ𝑒𝑒41
0                                                                                                             (80) 

where βe
ij is the heat transfer coefficient by convection, he

ij is the length of the side and Tij
∞ 

is the ambient temperature. The above-mentioned coefficients are essentially line integrals 

and are evaluated using interpolation functions. The local coordinate is along the side 

where these coefficients are evaluated with the origin at the first node of the element. So, 

using 1D interpolation function for each side of the element, the coefficients for linear 

rectangular element in matrix for are  
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The discretized model consisting of rectangular elements is as shown in the figure below. 

 

 

 

 

Figure 51: Discretized model of the CNT speaker consisting of rectangular elements. 

Twelve elements are used to discretize the CNT film domain. 

From the above figure, elements 5 and 8 lie completely in the CNT film domain. For all 

other elements, there is a combination of the CNT film domain and the copper electrode 

domain (left side of elements 1, 4, 7, 10 and right side of elements 3, 6, 9, 12). So, when 

determining the coefficients Hij
e and Pi

e, the value of β will be for CNT film and the copper 

electrodes based on the side of the element. For the copper electrodes, the heat transfer 

coefficient is a single value. For the CNT film, the heat transfer coefficient value is defined 

as βo and is a combination of the heat transfer coefficient due to conduction, convection, 

and radiation.  

The boundary conditions are applied at the local nodes of the elements 1,4,7,10,36,9, and 

12. These boundaries are the assigned copper material, and they are at ambient temperature 

T∞. The heat flux (qn) from the CNT film is defined using equations 82, 83 and 84 (page 

92). This considers the sinusoidal behavior of the CNT film surface temperature and the 

impact of the electric current applied to the CNT film through the copper electrodes. It is 
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important to make sure that this heat flux is applied only to the nodes that are in the CNT 

film domain and not the copper electrode boundary. The internal heat generation is defined 

from the electric potential calculated using the electrostatics physics. This is applied over 

the entire domain for all the elements in the CNT film. The equation for the internal heat 

generation is given as, 

                                                                           𝑓𝑓𝑒𝑒𝑖𝑖 = 𝐺𝐺 ∗ ∇𝑉𝑉                                                        (83) 

where G is the electrical conductivity of the CNT film and V is the electric potential. The 

CNT film heats up and cools down much faster than the copper electrodes and so for this 

reason, the internal heat generation in the CNT film is more prominent than that in the 

copper electrodes. So, using this relation, the source matrix consisting of the internal heat 

generation and heat flux matrices are formulated. The final step is then to solve the net 

matrix equation to calculate the temperature at the nodes of the CNT film domain elements 

using equation. The comparison between the modeled surface temperature and the 

COMSOL model simulated temperature is shown in figure below. 
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Figure 52: CNT film surface temperature comparison between the COMSOL and 

MATLAB model. The doubling effect of the CNT film is evident in both the results. 

From the above figure, the doubling effect of the CNT film is modeled in both the 

COMSOL as well as the MATLAB model. There is some difference in the amplitude as 

well as phase of between the two models. One reason for this difference is the number of 

elements used for discretizing the model. Increasing the number of elements provides a 

better approximation of the surface temperature of the CNT film. Also, the heat transfer 

coefficient for the CNT film is a combination of the heat loss due to conduction, 

convection, and radiation. The MATLAB model requires separate values for these heat 

transfer modes. But the same value is used in the MATLAB model for all three heat transfer 

modes. This could be a reason for the difference in the amplitude of the surface temperature 

oscillation. In addition, there is a phase difference between the two temperature results. 

0 0.002 0.004 0.006 0.008 0.01

Time (s)

360

380

400

420

440

460

480

500

Te
m

pe
ra

tu
re

 (K
)

COMSOL Model

FE Model



140 

The MATLAB model does not consider the phase term in the heat flux from the CNT film. 

Identifying a method to include this phase term provide a better correlation between the 

two results with respect to the phase.  

Based on the electrostatics and heat transfer results, it can be concluded that the FE 

equation formulations and the discretization is good on comparison with the COMSOL 

model results.  

5.3.2 Thermoviscous Acoustics[168] 

For simplicity, a 2D axisymmetric model of the enclosed, coaxial CNT speaker is 

considered. The net area of the revolved CNT film is the same as the area of the CNT film 

used for the Joule heating model. This ensures that the surface temperature oscillation 

obtained from the Joule heating model can be used as input for the thermoviscous acoustics 

model. 

The thermoviscous acoustics governing equations (33-35) can be combined so that 

acoustical a, thermal h, and velocity v components are defined for the total domain where 

the simulation is performed. These components can be expressed as, 

                                                                           𝑝𝑝 = 𝑝𝑝𝑎𝑎 + 𝑝𝑝ℎ                                                    (84) 

                                                                           𝑇𝑇 =  𝑇𝑇𝑎𝑎 + 𝑇𝑇ℎ                                                        (85) 

                                                                   𝑣𝑣 =  𝑣𝑣𝑎𝑎 + 𝑣𝑣𝑛𝑛                                                                 (86) 
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These variables each satisfy one of the three LNS equations (33-35) and the thermal terms 

are generally restricted to the thermal boundary layer that forms near the rigid walls of the 

CNT speaker. These solutions can be used for a single equation that has higher order and 

is in its strong form. However, when it is converted to its weak form for discretization, it 

requires boundary conditions for the derivatives present in the surface integral. This is 

problematic as the conditions at the boundary for the acoustic and thermal component may 

be unknown for the whole domain. Even in the situation where the net pressure and 

temperature variables are considered, the boundary conditions may be defined for a perfect 

fluid, but they might be inconsistent for a thermoviscous fluid that is the consideration here.  

It has been observed that for the thermoviscous acoustic model, the pressure variation can 

be expressed in terms of the other two variables – v and T. When the thermal and viscous 

boundary layers are accurately modeled, the particle velocity (v) and temperature (T) are 

considered as the basic variables for the formulation of the finite element matrices. This 

process considerably simplifies the matrix formulation, helps define the boundary 

conditions more easily, and avoids lengthy computation times. Another variable in the LNS 

equations is the density of the thermoviscous fluid, ρ. As the acoustic wave is generated 

due to the temperature variation along the thermoviscous and pressure acoustic boundary, 

the heat generated is transmitted to the surrounding medium. This heat causes temperature 

change in the medium, thus changing its density. So, both the density and the acoustic 

pressure can be expressed in terms of v and T as, 

                                                                              𝜌𝜌 = −𝜌𝜌0
𝑖𝑖𝑖𝑖
∇. 𝑣𝑣                                                        (87) 
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                                                                          𝑝𝑝 =  𝛽̂𝛽𝑇𝑇 −
𝜌𝜌0𝑐𝑐2

𝑖𝑖𝑖𝑖𝑖𝑖
∇.𝑣𝑣                                                    (88) 

where ∇. is the divergence of the total velocity, and βT is the isothermal compressibility of 

the surrounding medium. Substituting the values of density and acoustic pressure in the 

momentum and energy conservation equation yields the particle velocity and temperature 

variation formulation for the thermoviscous acoustics physics. The equations thus obtained 

are as follows, 

                                          𝜔𝜔2𝑣𝑣 + 𝐵𝐵(∇(∇.𝑣𝑣) + 𝐶𝐶(∇𝑥𝑥∇𝑥𝑥𝑥𝑥) − 𝐷𝐷(∇𝑇𝑇) = 0                                 (89) 

                                                   𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑄𝑄(∇. (∇𝑇𝑇) − 𝑅𝑅(∇.𝑣𝑣) = 0                                                 (90) 

where 

                                                                          𝐵𝐵 =  𝑐𝑐2 𝛾𝛾 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑣𝑣⁄                                          (91) 

                                                                                𝐶𝐶 = −𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙′𝑣𝑣                                             (92) 

                                                                            𝐷𝐷 =  𝑖𝑖𝑖𝑖𝛽̂𝛽 𝜌𝜌0⁄                                                 (93) 

                                                                              𝑄𝑄 =  −𝛾𝛾𝑙𝑙ℎ𝑐𝑐                                                 (94) 

                                                               R = −(γ − 1)/(γ𝛽̂𝛽)𝑝𝑝0𝑐𝑐2                                      (95) 

In the equations (91-95), the length terms are the characteristic lengths for the shear 

viscosity (l’v), bulk viscosity (lv) and thermal diffusion (lh). These lengths are expressed as, 

                                                                             𝑙𝑙′𝑣𝑣 = 𝜇𝜇 𝜌𝜌0𝑐𝑐⁄                                                         (96) 
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                                                                            𝑙𝑙𝑣𝑣 = (𝜂𝜂 + 4𝜇𝜇
3

)                                                        (97) 

                                                                                 𝑙𝑙ℎ = 𝜉𝜉
𝑐𝑐
                                                                 (98) 

Defining the variables velocity and temperature are crucial not only to simplify the model 

but also for the application of the boundary conditions on the thermoviscous and pressure 

acoustic common boundary, CNT film in this case. The boundary conditions applied are 

the Dirichlet and Neumann boundary conditions for temperature variation and particle 

velocity variables.  

For the CNT film, the temperature variation Dirichlet condition can be applied in two ways. 

First, the sinusoidal variation can be considered as the temperature variation and applied 

to CNT film boundary. The other condition is a constant temperature whose value is the 

average temperature of the oscillating surface temperature of the CNT film. Both 

conditions yield good results, but the use of the average temperature value remains the 

same irrespective of the simulation frequency. The mechanical Dirichlet condition pertains 

to the particle velocity. CNT films do not vibrate to generate the sound wave. They use the 

thermal perturbation to cause density variations in the surrounding medium to generate the 

acoustic wave. So, for the purpose of this model, the mechanical Dirichlet condition is the 

particle velocity with a value of zero, making the CNT film behave as a rigid wall.  

For the axisymmetric model considered in this modeling process, the Neumann condition 

and the Dirichlet conditions are combined for the temperature variation and the particle 

velocity. For the CNT film, the temperature variation Neumann condition is ∂T/∂r = 0 and 

the particle velocity Neumann condition is vr = 0 and ∂vz/∂z = 0. The derivative of the 



144 

temperature variation with respect to r is zero as stationary temperature is assumed for the 

CNT film surface for this model. For the particle velocity, it is assumed that the acoustic 

particle velocity along the CNT film is zero (rigid) and the particle velocity in the 

propagation direction (z) is linear in nature.  

Equations 88 and 89 can then be discretized and expressed in the finite element matrix 

form as  

                                          �𝜔𝜔
2[𝑀𝑀𝑣𝑣] + [𝐾𝐾𝑣𝑣] −𝐷𝐷[𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺]
−𝑅𝑅[𝐷𝐷𝐷𝐷𝐷𝐷] 𝑖𝑖𝑖𝑖[𝑀𝑀𝑀𝑀] + 𝑄𝑄[𝐾𝐾𝑠𝑠]�

�𝑣𝑣𝑇𝑇� = �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇0 �                        (99) 

This Finite Element formulation mentioned above is obtained using the Galerkin finite 

element for axisymmetric models. For axisymmetric models, the mesh used is planar in the 

one half of the fluid domain, where one element is the representation of the volume 

obtained after revolving the surface around the symmetry axis. In cylindrical coordinates, 

the gradient and divergent operators are expressed as, 

                                             𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑣𝑣) =  

⎣
⎢
⎢
⎢
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𝜕𝜕𝑣𝑣𝑟𝑟
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⎥
⎤
                                 (100) 

                                                    𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇) =  �
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�                                         (101) 
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The shape function used for interpolation of the finite elements is a function of the 

parameters ξ and η. There are n nodes for the elements in the mesh and each node is 

resolved in the normal fashion of the FEM.  

On solving the equation 99, the acoustic pressure in the surrounding medium can be back 

calculated using the relation between the acoustic pressure and the particle velocity and the 

temperature variation set in the medium. For this model, the temperature value (Tvar) on 

the CNT film surface was assigned a value of 420K. The model was solved for frequency 

range of 50Hz – 250Hz in 1/3rd octave band. The comparison between the COMSOL and 

FE model result is shown in the figure below. 

 

Figure 53: Comparison between COMSOL model and the FE model SPL generated by the 

CNT speaker. 

50 100 150 200

Frequency (Hz)

70

75

80

85

90

95

100

105

Ac
ou

st
ic

 S
PL

 (K
)

COMSOL Model

FE Model



146 

It is seen from the above comparison that the FE model follows the profile of the COMSOL 

model simulated SPL. There is a difference in the amplitude between the two results. The 

main reason for this difference is the FE model assumes uniform shape function for all the 

variables – v and T. This causes the matrix formulation to become unstable sometimes 

during the solving of the FE matrix equation. Also, using the same shape function for all 

the variables has a lower degree of convergence as compared to using different order shape 

functions for individual variable. In addition, the simplification of the LNS equations in 

this model was done for ease of understanding the process behind the thermoviscous 

acoustics. A more robust weak formulation of the LNS equations can be derived using the 

Newton Fourier ideal gas model for the air medium used in this model. The FE matrix 

equation obtained from this weak formulation provides a more detailed relation between 

the dependent and control variables and the source terms. Overall, this model helped to 

understand the finite element process involved in the Thermoviscous acoustic physics.  

5.4 Acoustic Modal Analysis of Coaxial CNT Speaker 

5.4.1 Modes of Propagation in the Pipe through the CNT speaker 

The pipe that runs through the coaxial CNT speaker is cylindrical in nature. So, when the 

exhaust noise travels through this pipe, there is chance that along with longitudinal modes, 

transverse modes are excited. Longitudinal modes have wave motion along the principal 

axis and in planes orthogonal to the principal axis of the pipe. The transverse modes, or 

cross-modes have pressure profile that is not uniform across the cross-section of the pipe 

(figure 24). Based on the type of transverse mode activated, the pressure profile across the 
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cross-section of the pipe will vary and it is difficult to cancel the sound with transverse 

modal behavior. 

The main application of the coaxial CNT speaker was active cancellation of the automotive 

exhaust noise. It is very important that the sound pressure profile be uniform along the 

length of the speaker as well as across the cross-section of the pipe. For this reason, during 

the design of the coaxial speaker, the diameter of the pipe must be chosen in such a way 

that the cutoff frequencies of the higher order modes (modes other than (0,0)) are large in 

value. For the coaxial speaker, the pipe that extends through the speaker has a diameter of 

2”. Assuming the speed of sound in air traveling through the pipe is 343m/s, the cutoff 

frequencies of the modes of propagation in the pipe are given in table 4 calculated from 

equations 8 and 9. 
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Table 4: Cutoff frequencies of the modes of propagation in the pipe of the coaxial CNT 
speaker 

Mode Number Cutoff Frequency (kHz) 

ω00 0 

ω10 24.84 

ω20 41.18 

ω01 51.72 

ω11 71.97 

ω21 90.61 

  

The cutoff frequency is the minimum value above which the mode exists and can propagate 

along the pipe. Below the cutoff frequency, the mode is evanescent and decays 

exponentially with distance. From the values in the above table, it is evident that all the 

higher modes (other than mode (0,0)) have a frequency that is higher than the exhaust 

sound frequencies. So, these modes, if generated, will be evanescent in nature and will not 

have a major effect on the sound transmission through the exhaust tailpipe as well as the 

coaxial CNT speaker. The mode (0,0) is the one-dimensional plane wave that propagates 

through the pipe. Its cutoff frequency is 0Hz and in this mode, there is no transverse wave 

motion. It is this mode that is the most desired for active noise cancellation.  
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One important point to note here is the effect of the presence of the diaphragm on the slots 

in the coaxial CNT speaker pipe. Now, the diaphragm is fixed as rigidly as possible over 

the slots. The diaphragm material was chosen such that it has minimum insertion and 

transmission loss to allow maximum sound generated by the CNT film into the pipe for 

noise cancellation. The equations used to determine the cutoff frequencies in table 4 are 

for a cylindrical pipe that has rigid boundaries along the length of the pipe and do not 

transmit sound through them. So, for the slotted pipe with the diaphragm, the cutoff 

frequencies will most likely be different from those mentioned in table 4 but high enough 

to not affect the exhaust noise cancellation by the coaxial CNT speaker.  

Based on the above results, checking for modal propagation frequencies is an important 

step in the design of the enclosed, coaxial CNT speaker. As mentioned previously, higher 

order modes have non-uniform patterns of acoustic wave transmission. Based on the 

intended application of the CNT speaker, generation of higher order modes can be 

problematic. The calculation of the acoustic modal frequencies is related to dimensions of 

the CNT speaker. Performing this calculation is like an optimization process for selecting 

the dimensions of the speaker, within the required limits. Once the appropriate dimension 

range is determined based on the acoustic mode calculation, COMSOL model of those 

speaker designs can be simulated, and optimization can be performed to further tune the 

speaker performance. This will save a lot of effort in case the speaker does not produce the 

desired acoustic profile for the selected dimension due to higher order mode generation.  
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5.4.2 Acoustic Modes of the Enclosed, Coaxial CNT Speaker 

To determine the acoustic modal response of the enclosed, coaxial CNT speaker, the 

speaker was operated using sine chirp signal at three power levels: 14W, 50W and 100W. 

The FRF of the three power levels is shown in figure 54.  

 

Figure 54: FRF of SPL and input power for the sine chirp input to the enclosed coaxial 

CNT speaker (a). All the three FRFs line up with each other, indicating the repeatability of 

the experiment. FRF and coherence of 100W sine chirp input to the coaxial speaker (b). 

From the above graphs, it is clear that the FRF of the enclosed, coaxial CNT speaker 

remains the same irrespective of the input electrical power. This provides a validation that 

the acosutic modes of the CNT speaker remain the same and are independent of the input 

signal. Also, for the sine chirp input, the coherence obtained is high (>0.95) for the majority 

of the frequency range. So, the acoustic repsonse of the CNT speaker is entirely due to the 

input electrical signal and the acoustic modes of the speaker.  

Using the COMSOL model for the enclosed, coaxial CNT speaker, the SPL at the peaks 

and valleys found in the FRF of the sine chirp test was determined. The input power used 

a b 
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to simulate the model was selected to be 100W. Because the three FRFs line up with each 

other, it did not matter which input power was selected. The SPL that was obtained from 

simulation were normalized using the input power used in the simulation, that is 100W. By 

doing this, the units on the final value of the simulated SPL obtained were Pa/W. A 

comparison was made between the two results (figure 55). 

 

Figure 55: Comparison between the experimental and simulated FRFs and measured SPL 

for the coaxial CNT speaker. Not all points from the experimental FRF are simulated. Only 

the prominent peaks and valleys are included. 

The first observation from figure 55 is that the simulation results align at all the selected 

points of the experimental results in the FRF. In the FRF, there is a prominent peak at 

approximately 250Hz, indicating the presence of an acoustic mode. It is believed that this 

mode would have a major contribution in the SPL generated by the coaxial CNT speaker. 
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To verify this, the SPL measurements made inside the coaxial speaker have also been 

plotted in the graph. From the SPL results, the maximum value of SPL generated by the 

coaxial speaker is observed at 250Hz. It is evident from this comparison that the acoustic 

mode present at 250Hz does assist the SPL generated by the coaxial CNT speaker. From 

previous research studies, it has been found that for an enclosed CNT speaker, the SPL is 

linear and decreases with increase in frequency. However, this behavior was not observed 

for this coaxial speaker design. The presence of an outer cover and the presence of acoustic 

modes of this arrangement are the main contributors to the observed SPL profile of the 

enclosed, coaxial CNT speaker.  

The main advantage of performing acoustic modal analysis is to fine tune the design of the 

CNT speaker to make sure that the acoustic modes contribute constructively to the SPL 

generated by the speaker. This will help to achieve higher SPLs at target frequencies 

without having a high input power. CNT speakers, compared to standard loudspeaker, 

require higher input power to generate equivalent SPL. So, having the assistance of 

acoustic modes will help the reduce the input power and bring the CNT speakers closer to 

the conventional loudspeakers in performance and input requirements.  
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5.5 Axial, Cross-sectional and Industry Standard 

Measurement  

5.5.1 Axial SPL Results 

The axial SPL comparison between the measured and simulated values show a good 

correlation with the difference between the values less than 3dB (figure 56). This indicates 

that the COMSOL model can predict the SPL generated inside the coaxial speaker at a 

close approximation to the physical performance. One of the reasons for the difference in 

the values is the geometry of the slotted pipe and the presence of the diaphragm over the 

slots. The impedance of the slots used in the model approximates the actual slotted pipe 

region. Also, the impedance is used as a boundary condition and the slots are not actually 

modeled in COMSOL. So, some of the effects of the slots on the acoustic profile have not 

been accurately reproduced in the model. Another reason for the difference in the value is 

that a single CNT film wrap is used in the COMSOL model. In the actual prototype, there 

are two concentric rings of CNT film. The COMSOL model has one CNT film ring 

attached to the inner surface of the outer cover. To account for the reflections from the 

outer cover, double input power is used in the simulation. This change in the CNT film is 

expected to have some effect on the axial SPL observed in simulation.  
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Figure 56: Comparison between measured and simulated axial SPL for the coaxial CNT 

speaker. 

Axial SPL is important if the application of the CNT speaker involves the use of the sound 

generated inside the speaker, also called as in-pipe SPL. The generated sound propagates 

along the speaker and is then radiated out from the speaker ends. Depending on the 

geometry and dimensions of the speaker ends, they can be either good or bad radiators of 

acoustic energy. In the application where the radiated sound is of primary importance, it is 

always beneficial to have the in-pipe SPL several dB higher than the target SPL value. Due 

to this, even if there are losses present during the sound radiation form the speaker ends, 

the resultant radiated SPL will be close to the target SPL value. Simulating the axial SPL 

will help tune the design as well as select appropriate CNT film wrap area to increase the 

in-pipe SPL for conditions where there is no flow in the medium as well as flow present in 

the medium. 
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5.5.2 Cross Sectional SPL Results 

The cross-sectional SPL is important in understanding the modes generated in the speaker 

as well as the plane wave cutoff frequency. Comparison between the experimental and 

simulated results showed that they were in good correlation with the each other (figure 57, 

58). The sound pressure level was higher at the center of the end pipes. For low frequencies, 

the SPL variation across the face of the end pipe was around 8dB while for higher 

frequencies, the SPL variation was around 25dB. The reason for this is that as the frequency 

of sound increases beyond the cutoff frequency, the acoustic field becomes less planar and 

cross-modes are observed in the pipe. 

 

 

 

 

 

Figure 57: Cross-sectional SPL across the face of the end pipe. For a frequency of 6300Hz, 

there is a 25dB difference in the SPL. 
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Figure 58: Cross-sectional SPL across the face of the end pipe. For a frequency of 160Hz, 

there is an 8dB difference in the SPL. 

Ideally, if the CNT film was mounted at one end of the coaxial speaker, it would behave 

as a piston vibrating back and forth. However, in this case, the CNT film is wrapped along 

the circumference of the center pipe and the sound field generated is radial. In addition, the 

pipe walls are not completely solid due to the presence of slots to allow sound to travel into 

the pipe. These factors affect the sound pressure profile across the cross-section of the CNT 

speaker center pipe. It is important to quantify and characterize this profile for all the 

frequencies of interest. This will help to improve the understanding of the radiation of the 

sound from the ends of the coaxial CNT speaker and provide a baseline to improve the 

radiation characteristic of the speaker.  
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5.5.3 Industry Standard SPL Results 

A comparison was made between the SPL measured in-pipe at the center of the coaxial 

speaker and the industry standard measured SPL (figure 59). The difference between the 

two SPLs was found to be more than 30dB, the industry standard SPL being lower. One of 

the reasons for this relates to the radiation impedance of the pipe end face of the coaxial 

speaker. The coaxial CNT speaker generates sound that in radial in nature due to the 

circular arrangement of the CNT film. This sound propagates along the length of the 

speaker and is radiated out by the end face of the coaxial speaker pipe. This radiation 

mechanism can be equated to a circular piston that is radiating sound through motion. In 

this case, the circular piston can be considered as the air that is present as ambient 

surrounding and inside the CNT speaker.  

Radiation impedance provides the phase relation between the surface pressure and object 

velocity[167]. At low frequencies, as considered in the case of the coaxial CNT speaker, 

the phase difference between the two quantities is 90o i.e., the velocity lags the pressure by 

90o. In this situation, there is non-efficient transfer of energy from the vibrating air column 

to the surrounding medium, resulting in low sound radiation from the coaxial CNT speaker. 

So, to increase the sound radiation, it is necessary to increase the in-pipe sound pressure 

level generated by the coaxial CNT speaker.  
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Figure 59: Comparison between the in-pipe SPL and SPL measured at 500mm and 45o 

from the pipe end face of the coaxial CNT speaker. The radiated SPL is lower by more 

than 30dB compared to the in-pipe SPL. 

As mentioned in Chapter 4, industry standard SPL is measured at 500mm and 45o from the 

vibrating face of a conventional loudspeaker. In the case of the coaxial CNT speaker, this 

measurement is made from the cross-sectional face of the end of the slotted pipe that runs 

through the speaker. So, to obtain the SPL radiating out from the CNT speaker, an air 

domain must be modeled around the CNT speaker. The radiation of sound from the CNT 

speaker pipe is spherical in nature. So, the air domain is modeled as a sphere surrounding 

the coaxial CNT speaker like that described in the planar CNT speaker model.  

A validation was performed for the air domain modeled around the CNT speaker. A single 

piston oscillating in air was used for this validation. The directivity of a vibrating piston 

can be easily determined using the analytical formulae. In COMSOL, the piston was 
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modeled as a line that was vibrating the Y direction. The air domain surrounding the piston 

was modeled in COMSOL in the shape of a quarter of a circle (figure 60). The properties 

of the air domain were set based on the temperature. The piston was given a velocity at 

which it underwent oscillations. To determine the directivity, far-field condition was used 

at the boundary of the air domain. This condition calculates the directivity based on the 

Rayleigh distance and the sound that is propagating into the air domain from the source. 

 

 

 

 

 

 

 

Figure 60: Vibrating piston model in COMSOL with the air domain surrounding the piston. 

The blue line represents the piston with its length equal to the radius of the circular piston.  

On comparison between the experimental and simulation result, it was found that the 

directivity of the vibrating piston aligned perfectly for both low as well as high frequencies 

(figure 61). This demonstrated that the method and the properties used to define the air 

U0 
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domain are correct and so, the industry standard SPL was determined by simulation and 

compared with experimental results.  

 

 

 

 

 

Figure 61: Directivity comparison between the COMSOL simulation result and the 

analytical solution for a single vibrating piston. The directivities aligned perfectly 

providing validation for the air domain model.  

The comparison between the simulated and experimental industry standard results of the 

SPL of the coaxial CNT speaker is shown in figure 62. The difference between the two 

results in around 4dB with a maximum value of 6dB. The simulated in-pipe SPL of the 

coaxial CNT speaker is around 2dB. So, it is expected that the simulated industry standard 

results will be less than the experimental results. Another reason for the difference in the 

values is the modeling of the end face of the coaxial speaker pipe as a radiator. The 

radiation from the pipe, as mentioned earlier is like a vibrating circular piston. The air 

domain around the CNT speaker is modeled using standard material properties and 

radiation conditions. However, based on the actual medium properties and the pipe end 

face geometry and pipe material properties, the radiation from the end face might not 
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always be perfectly spherical. So, this will cause a difference between the experimental 

and simulated SPL results. The main advantage of this model is the ability to predict the 

expected approximate SPL from the CNT speaker in the presence of any medium other 

than air, such as inert gases.  

 

Figure 62: Comparison between the experimental and simulated industry standard SPL 

results of the coaxial CNT speaker. Both the results show similar profiles with a difference 

of approximately 4dB between the values. 

The industry standard measurement result shown in figure 59 reiterates the point mentioned 

in the previous two sections. For any two SPLs, a difference of 30dB is significantly huge. 

For example, if the desired radiated SPL is 110dB, then the in-pipe SPL must be atleast 

140dB to achieve that target. Such a high SPL, even in-pipe could be difficult to obtain 

while keeping the input power small, say for example 100W. This would make the coaxial 

CNT speaker high power consuming when compared to conventional loudspeakers. So, the 

simulations performed to estimate the axial, cross-sectional and industry standard SPLs 
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will help to tune the design of the coaxial CNT speaker to improve its SPL generation 

withing the specified input power and dimension requirements.  

5.6 Effect of flow on the acoustic field generated by the 

coaxial CNT speaker 

5.6.1 COMSOL Flow Model Validation 

Before setting up the flow model for the coaxial CNT speaker, it was important to validate 

the procedure used in setting up the model. The effect of turbulent flow on the acoustic 

wave travelling through the pipe is analyzed by observing the attenuation of the SPL. So, 

analytical equations to determine the attenuation of sound by the turbulent flow was used 

and compared with the attenuation obtained from the COMSOL flow model.  

Howe et.al. studied the damping of the sound in a pipe with turbulent flow. Four 

mechanisms contribute to the attenuation of sound transmitting through a pipe with fully 

developed turbulent flow. These mechanisms are: 

1. Viscous (shear) effects in bulk fluids 

2. Thermal conduction in bulk fluids 

3. Molecular absorption in bulk fluids  

4. Thermoviscous boundary layer losses 

The model described by Howe et.al. considers the effect of eddy viscosity-controlled 

momentum and thermal wall boundary layers that are generated when acoustic wave 

interacts with a low Mach number turbulent boundary layer. The equation derived by Howe 
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is effective only when the turbulent boundary layer thickness is much smaller than the 

wavelength of sound travelling through the pipe. The main objective behind the coaxial 

CNT speaker design was to cancel low frequency sounds and their harmonics (mainly in 

the range of 50Hz-500Hz). So, the sound that was to be generated by the coaxial CNT 

speaker had large wavelengths compared to the turbulent boundary layer thickness. This 

makes the use of this model appropriate to validate the COMSOL flow model.  

In the analytical model, the pipe through which sound is propagating is smooth pipe with 

a uniform cross-section A and perimeter l. The turbulent flow is fully developed, with a 

low Mach number and high Reynolds number. The acoustic frequency is small enough 

with a wavelength much larger than the diameter of the pipe, resulting in a one-dimensional 

propagation of the acoustic wave, in other words, a plane wave. The limiting condition for 

the frequency of sound in a pipe of radius R is  

                                                                 𝜔𝜔 < 1.84 ∗ 𝑐𝑐𝑜𝑜/𝑅𝑅                                                          (80) 

where, ω is the angular frequency (rad/s), co is the speed of sound in the medium (m/s) and 

R is the radius of the pipe(m)[165,166]. With high Reynolds number flows, the mean 

velocity variation is slow along the cross-section of the pipe except near the walls of the 

pipe. In such a case, the mean flow velocity U is constant in the center of the pipe. In 

addition, all dissipative mechanisms are neglected compared to the damping caused by the 

acoustic-turbulence interactions at the pipe wall[164].  
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With these assumptions, the attenuation of sound both upstream and downstream of the 

pipe is determined as 

    𝛼𝛼+ =  √2𝜔𝜔
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where, α+ is the attenuation downstream (dB), ω is the angular frequency of sound (rad/s), 

c0 is the speed of sound in the medium, Dp is the hydraulic diameter of the pipe (4*A/L), 

M is the mach number, υ is the kinematic viscosity of the medium, 𝜅𝜅 is the Von Karmann 

constant, v* is the friction velocity, δv is the frequency dependent length, β is the inverse of 

the absolute temperature in K, χ is the thermometric conductivity of the fluid, cp is the 

specific heat of the medium at constant pressure. 

In the above equation, Fa is defined as 

                                                  𝐹𝐹𝐴𝐴(𝑎𝑎, 𝑏𝑏) =  𝑖𝑖(𝐻𝐻1
(1)(𝑎𝑎) cos(𝑏𝑏)−𝐻𝐻0

(1)(𝑎𝑎) sin(𝑏𝑏))

(𝐻𝐻0
(1)(𝑎𝑎)cos(𝑏𝑏)+𝐻𝐻1

(1)(𝑎𝑎) sin(𝑏𝑏))
                              (82) 

where, 𝐻𝐻1
(1) and 𝐻𝐻0

(1) are the Hankel functions of the first and zeroth order respectively. 

The friction velocity is determined from the Mach number (M), the mean flow velocity (U) 

and speed of sound in the medium (c0) as, 

                                                         𝑈𝑈
𝑣𝑣∗

= 2.44 ln �𝑣𝑣∗𝑅𝑅
υ
� + 0.2                                         (83) 
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Solving for the above equation gives the attenuation of the sound pressure level of the 

acoustic wave in the pipe in dB. Whenever this attenuation is represented, it is normalized 

by the attenuation in the absence of flow. The attenuation in the absence of flow is 

determined by 

                                                                   𝛼𝛼0 = √2𝜔𝜔
𝑐𝑐0𝐷𝐷𝑝𝑝

(√υ + 𝛽𝛽𝑐𝑐02

𝑐𝑐𝑝𝑝
√𝜒𝜒)                                      (84) 

One reason for doing this to make sure that the attenuation in presence of flow formulation 

from equation 81 is correct. This can be done by making sure that for M=0, the attenuation 

values from equation 81 and 84 are equal.  
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The parameters used for solving equations 82, 83 and 84 are given in table 5. 

Table 5: Parameter values used to determine the attenuation of sound in pipe with 
turbulent flow and in the absence of flow. 

Parameter Value Value 

ω 88Hz 

M 0:0.01:0.12 

c0 343m/s 

R 1.5cm 

l 0.1524m 

υ 0.15cm/s 

χ 0.2cm/s 

Pt 0.7 

κ 0.41 

T 293.15K 

cp 29130J/(kg*K) 

δv (6.5* υ)/ v * 
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On observing the attenuation result from equation 91, it is observed that the attenuation 

increases with increase in the flow Mach number. Using the parameters of the pipe 

dimensions, Mach number, mean flow velocity, medium properties, the COMSOL flow 

model was built and simulated. The attenuation was determined by calculating the 

difference between the SPL observed in the pipe and the SPL of the source generating the 

acoustic wave in the pipe. Comparison between the simulated and analytical result shows 

good correlation. There is some difference in the two values mainly because of the 

difference between the friction velocity and boundary layer values generated in the 

COMSOL model and those calculated by the analytical equations. With this comparison, 

the COMSOL flow model of the coaxial CNT speaker was developed and simulated.  

 

Figure 63: Comparison between the normalized attenuation by the analytical equation and 

the COMSOL flow model. The difference in the values is due to difference in the boundary 

layer parameters between the COMSOL model and analytical equation calculations.  
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5.6.2  COMSOL Coaxial CNT Speaker Flow Model Results 

The CFD module computed the flow velocity and dynamic viscosity for flow through the 

coaxial CNT speaker (figure 64). It can be seen from the results that the flow velocity along 

the boundary of the slotted pipe is higher than the velocity inside the outer cover chamber. 

One reason for this is that slots have a large area and so, the flow moves through the slots, 

there is reduction in the flow velocity. This effect is like the nozzle principle, where speed 

decreases when cross-sectional area increases. For the dynamic viscosity result, it can be 

observed that the viscosity change is more prominent closer to the inlet, and it gradually 

stabilizes towards the outlet. Also, the change in the value is more prominent in the outer 

cover chamber than in the slotted pipe. The reason for this is that dynamic viscosity is 

expressed in terms of Pa*s. So, in the presence of higher pressure in the outer cover 

chamber, the dynamic viscosity also experiences a higher change as compared to slotted 

pipe where the pressure change is not significantly high.  
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Figure 64: The flow velocity as simulated by the COMSOL model (a). It can be observed 

that we have reduced flow velocity in the outer chamber. The dynamic viscosity as 

simulated by the COMSOL model (b). Higher change in the dynamic viscosity is observed 

in the outer chamber. 

The acoustic simulation results were obtained after mesh mapping the CFD computed 

parameters – flow velocity and dynamic viscosity (figure 64). The simulation was 

performed for a Mach number of 0.05 for a frequency of 300Hz. It can be observed from 

the result that sound field and the SPL value observed inside the speaker is significantly 

different from the condition when no flow is present through the coaxial speaker. One of 

the reasons for this is the effect of flow on the acoustic particle velocity and 

correspondingly the SPL. The attenuation of the SPL in the CNT speaker is mainly due to 

the generation of the thermal, viscous and thermoviscous boundary layers in the presence 

of fully developed turbulent flow. The sound field which was planar for no flow is changed 

to a more distorted field. It will be very difficult to cancel noise in the presence of a non-

planar field. One of the ways in which the sound field can be made to remain as planar as 

a b 
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possible is to modify the slotted pipe geometry and area so that the flow velocity does not 

undergo a high level of change in its value. This will make sure that flow pressure and 

velocity inside the speaker will not have a large effect on the acoustic field. 

 

 

 

 

 

 

Figure 65: The acoustic field and the SPL generated inside the coaxial speaker in the 

presence of flow (a). The acoustic field and the SPL generated inside coaxial speaker in 

the absence of flow (b). Flow has a significant effect on the acoustic field. 

From the results seen above, it is evident that the sound field generated in the absence of 

flow is different from that generated in the presence of flow. For applications where 

medium flow is present (example: automotive exhaust noise cancellation, HVAC noise 

cancellation, etc.), it becomes important to characterize the effect of flow on the enclosed, 

coaxial CNT speaker sound field. Understanding the flow profile of the medium, mainly 

its Mach number and either laminar or turbulent helps to determine the operating conditions 

of the CNT speaker. In addition, flow analysis can be linked to the axial, cross-sectional 

and radiated SPL of the coaxial CNT speaker. The results presented in section 5.4 are for 

no medium flow and planar sound field in the pipe conditions. As the sound field becomes 

a b 
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distorted, the SPL along the longitudinal axis is no longer uniform. This could result in 

significant changes in the sound radiated from the ends of the coaxial speaker. One effect 

might be further reduction in the radiated SPL compared to in-pipe SPL. Simulating the 

sound generation in different flow conditions will help to tune the speaker to achieve 

maximum performance and increase SPL. In addition, the flow simulations would help to 

estimate the coaxial speaker performance in situations where physical testing of all design 

iterations and all flow conditions is difficult or not possible.  

5.7 Optimization of the CNT speaker model using 

COMSOL  

5.7.1 Expansion Chamber Optimization 

The transmission loss profile of a simple expansion chamber is well known. So, it was easy 

to verify the validity of the optimization process as well the optimized model. The 

transmission loss profile of a simple expansion chamber with equal area inlet and outlet 

tubes depends on the area of the central chamber, area of the side tube and the frequency 

of the sound passing through the chamber. So, for this optimization, the control variables 

chosen were the length and the diameter of the central chamber. These control variables 

were bound using a lower and upper limit to reduce the time required for computation and 

keep the control variable values within the reasonable range. The figure below shows the 

expansion chamber model in COMSOL. The initial values of the expansion chamber 

dimensions are listed in table. 
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Figure 66: Expansion chamber model in COMSOL used for optimization. The model has 

the same dimension inlet and outlet pipe. 

Table 6: Original dimensions of the expansion chamber model 
Expansion Chamber 

Component 

Length (m) Diameter (m) 

Central Chamber 0.2032 0.15328 

Inlet Pipe 0.1048 0.0349 

Outlet Pipe  0.1048 0.0349 

 

The most important part of any optimization problem is the definition of the optimization 

variable. The goal of this optimization is to increase the transmission loss of the expansion 

chamber. With the original dimensions, the highest transmission loss value was 8dB. The 

target transmission loss was set at 20dB. The optimization function was defined as the 
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difference between the simulated transmission loss and the target value of 20dB. This 

difference was then minimized to get the dimensions that would give the transmission loss 

closest to the target value. The optimization algorithm used for this was the BOBYQA 

algorithm. The frequency range of optimization was from 10Hz to 1500Hz. 

The result of the optimization and the corresponding transmission loss is shown in figure 

below. 

 

Figure 67: Transmission loss comparison between the original and optimized expansion 

chamber design. The target transmission loss of 20dB was met with this optimization. 

From the above figure, it is evident that the transmission loss of the optimized design is 

higher than the original design expansion chamber and is close to 20dB in value. The 

optimized length and diameter of the central chamber are 0.5m and 0.34m respectively. 

These values are in the specified range of length (0.1m and 0.7m) and diameter (0.14m and 

0.6m). Thus, the goal of the optimization has been met.  
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There is one important point to remember during multiple frequency optimization. The 

optimizer does not use the objective value at all frequencies during optimization. During 

the first sweep, the optimizer determines the frequency at which the objective function is 

closest to the specified objective. The remaining iterations are then performed at that 

frequency to satisfy the objective function requirement. The objective for this type of 

optimization is called as a min-max objective. Due to this, it is possible that we might not 

have the highest objective value at all frequencies used in the simulation. This is evident 

from the optimization result for the expansion chamber. For frequencies above 1200Hz, 

the transmission loss is lower than the original chamber transmission loss. It can be inferred 

from this that optimization has a tradeoff focusing on the most important frequencies. So, 

care must be taken to pinpoint the frequencies that are of most interest and then perform 

the optimization targeted at those frequencies.  

The optimization of the transmission loss of the expansion chamber provided a validation 

of the optimization method – definition of objective function, selection of control variables 

and the optimization algorithm. Based on this, optimization was performed on the coaxial 

CNT speaker.  

5.7.2 Coaxial CNT Speaker Optimization 

The main goal of optimization of the coaxial CNT speaker is to achieve the desired SPL 

while keeping the dimensions of the speaker, particularly the length and diameter of the 

coaxial speaker within the required dimension limits. There are two main reasons for 

choosing these as the control variables. First, the SPL generated by an enclosed CNT 

speaker is dependent on its volume. So, changing the length and the diameter of the coaxial 
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speaker would have effect on the SPL of the speaker. Second, CNT speakers are known 

for being able to be designed smaller than conventional speaker systems. Optimizing the 

dimensions of the CNT speaker will help to select the best possible dimension within the 

desired range while maximizing the SPL from the speaker. 

The optimization model setup of the coaxial CNT speaker is complicated compared to the 

expansion chamber. The basic goal of the optimization is the same – increase the SPL while 

maintaining the desired dimensions. The setup of the objective function is different 

compared to the expansion chamber. The coaxial CNT speaker should generate plane 

waves in the desired frequencies of interest for effective noise cancellation. During 

optimization, it is necessary to make sure that the final dimensions generate a plane wave 

along the CNT speaker. For this purpose, probes are defined along the longitudinal axis of 

the CNT speaker (figure 68). These probes measure the SPL generated inside the speaker 

during the simulation. Having multiple probes ensures that the SPL is uniform along the 

CNT speaker and thus a plane wave is generated for all the optimization steps. For each of 

the probe, the measured quantity is the SPL generated. When compared to reality, these 

probes can be assumed as microphones that measure the axial SPL of the CNT speaker. 
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Figure 68: Probe location in the coaxial CNT speaker optimization model. The red dots are 

the locations of the probes used to define the objective function. 

As mentioned previously, maximizing the SPL is the target of the optimization. So, the 

objective of the optimization is like the expansion chamber optimization. The difference 

the SPLs measured by the probes and the target SPL is to be minimized to achieve 

optimized dimensions. The differences between all the probes and the target SPL are added 

and defined as the optimization objective. The objective is then minimized to determine 

the minimum difference between the mic SPLs and the target SPL. The addition of the 

difference in SPL is interpreted by the optimizer as the requirement for a flat response from 

the CNT speaker along its axis. Another advantage of defining the objective function in 

this fashion is that the optimizer will try to flat out the SPL response of the CNT speaker. 

Choosing a high target SPL will make sure that the SPL at multiple frequencies will be 

closer to that value and increase the overall SPL response of the speaker. The optimizer 

identifies the frequency at which the objective function is the closest to the objective and 

then performs the remaining iterations at that frequency. So, it is expected that the SPL at 
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all frequencies might not be uniformly close to the target SPL due to optimizer behavior 

and the acoustic modes of the coaxial speaker.  

The setup of the physics involved in the coaxial CNT speaker optimization involves 

thermoviscous acoustics and pressure acoustics. These two physics will simulate the model 

to determine the SPL generated by the speaker. For every single optimization iteration, the 

SPL is simulated using these physics and the objective value is compared with the previous 

value to determine the minimum objective value. The BOBQYA solver is used as it is a 

gradient free solver.  

The original dimensions of the coaxial speaker model are listed in the table below: 

CNT Speaker 

Component 

Original Dimension 

Value (m) 

Optimization Range (m) 

Length of Outer Cover 0.16256 0.1524 – 0.2032 

Diameter of Outer 

Cover 

0.0889 0.0762 – 0.127 

 

Two separate studies were setup – first study computes the SPL generated at the original 

dimensions and the second computed the optimized dimensions. The optimization was 

performed at three frequencies: 100Hz, 125Hz, and 160Hz. Only three frequencies were 

chosen because the complexity of the model and the time required for the simulation. The 

target SPL chosen was 2dB above the highest original SPL of the coaxial CNT speaker 
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which was 115.3dB. The small difference chosen between the original and target SPL was 

to reduce the range of the control variables. If the optimized dimensions SPL meet the 2dB 

increase requirement, it demonstrates the performance of the optimized model.  

The comparison between the original SPL, optimized dimension SPL is shown in the figure 

below. 

 

Figure 69: SPL comparison between the original dimension and optimized dimension 

coaxial CNT speaker. The optimization was performed at 125Hz frequency as the 

difference between the probe and target SPL was the minimum.  

The optimized length and diameter of the outer cover of the coaxial CNT speaker is 

0.2032m and 0.0762m respectively. The optimized values are within the specified control 

variable range and reasonable from manufacturing point of view. As regards to the SPL, 

optimized SPL is closer to the target SPL of 117dB. From the above graph, the optimized 
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SPL profile is following the original SPL profile, maintaining the reasoning that the 

acoustic modes of the coaxial speaker affect the SPL generated. In an ideal optimization, 

the SPL at all the frequencies would be close to the target SPL, thus generating a flat 

sensitivity of the CNT speaker.  

The above-described procedure optimizing the CNT speaker should work for both open 

and enclosed CNT speakers. The main difference between the two models would be 

location of the probes, the value measured by the probes and control variables. For 

example, in the optimization model of an open CNT speaker, the probes would be in the 

near field and then the far-field values would be extrapolated using the measured SPL and 

the relation between distance and SPL. The control variables would still be length and the 

width of the CNT film but in this case, it is the area of the film that would be important. 

Optimization is extremely beneficial in any design process, particularly in the case of CNT 

speakers. As mentioned in the previous sections, it is difficult, time consuming and 

expensive to manufacture and wrap every single design iteration of the CNT speaker. In 

addition, there can be several combinations of the speaker dimensions that could be 

possible when designing the CNT speaker. Identifying the perfect dimensions that would 

give the best performance in different operating conditions and applications is difficult 

without optimization. Optimizing the dimensions to achieve the desired performance 

(example: maximum SPL, minimum input power, small size, etc.) saves valuable time, 

money, and effort. It also provides a good approximation of the performance to expect from 

the CNT speaker. Comparison between the optimized speaker simulations and actual 

measurements can further help in fine tuning the CNT speaker and get the best possible 
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result for its performance and size. Optimization can also combine the flow, SPL and any 

other physics involved in the simulation of the CNT speaker to provide a complete analysis 

of the speaker performance in the desired operating conditions. The optimization procedure 

discussed in this research is the first step in perfecting a process to better analyze and design 

CNT speaker, both open as well as closed.  
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6 Conclusion 

6.1 Contribution and Summary 

The enclosed, coaxial CNT speaker developed for the automotive noise cancellation 

application is the first such design of its type for CNT speakers. It is a novel design for any 

speaker that allows the medium to flow through it without damaging the speaker. In 

addition, the speaker design is unique as it allows for in-line connection with the 

automotive tailpipe, like a muffler. Due to no obstruction to the exhaust gas flow, it 

generates little-to-no backpressure in the vehicle. This is an improvement not only on the 

current active control systems but also on mufflers as they generate backpressure. For the 

first time, a noise control element for automotive noise control was proposed, designed, 

and validated in lab that was small and whose size did not depend on the frequency of the 

sound that is being controlled or generated.  

COMSOL Multiphysics is a powerful tool to model the behavior of the CNT speaker. In 

this research, the first 3D simulation model of an enclosed, coaxial CNT speaker is 

developed using COMSOL Multiphysics. This model is a powerful tool to simulate the 

SPL performance of the speaker. The surface temperature of the CNT film and the SPL 

generated were obtained using COMSOL model and validated by the experimental and 

analytical results. The model is the first 3D model to be applied for the enclosed CNT 

speaker to approximate its performance and the first to incorporate flow modeling in the 

acoustics of the CNT speakers and can be expanded to any enclosed design of the CNT 

speaker.  
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With respect to the SPL performance of the coaxial speaker, it was observed that there were 

peaks and valleys in the SPL with respect to frequency. The presence of acoustic modes of 

the speaker chamber is the reason behind this. On the determination of the acoustic modes 

both experimentally and by simulation, it was observed that the acoustic modes had 

constructive as well as destructive interference effect on the SPL generated by the CNT 

speaker. Performing acoustic modal analysis will aid in the design of the enclosed CNT 

speaker to improve performance at target frequencies for the selected design of the CNT 

speaker.  

Three types of SPL characterization of an enclosed, coaxial CNT speaker were performed: 

axial, cross-sectional and industry standard. The axial SPL measurement is important to 

ensure that the SPL is uniform along the speaker axis, validating the generation of plane 

waves from the coaxial speaker. The enclosed, coaxial CNT speaker discussed in this 

research demonstrated plane wave generation from both experimental and simulation 

results. Secondly, when sound is transmitted along a pipe, the SPL profile at different 

frequencies across the pipe cross-section depends on the acoustic pipe modes. It is 

important to analyze these profiles if the sound radiated from the speaker emits into the 

ambient environment is of primary concern. Simulation and experimental results, in good 

agreement with each other showed that at high frequencies, the sound profile tends to be 

less uniform when compared to low frequencies. In the automotive industry, SPL from 

active control system speaker is measured at 500mm and 45o from the outlet of the tailpipe. 

The SPL radiated from the enclosed, coaxial CNT speaker was measured at the above-

mentioned distance and angle. On comparing the SPL at the center of the speaker with the 

radiated SPL, similar sound profile was observed with a reduction of 30dB in SPL. The 
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main recommendation is to use in-pipe SPL as a standard measurement method as opposed 

to the industry standard method (500mm and 45o from the speaker outlet). This is because 

the coaxial CNT speaker inputs plane wave directly into the tailpipe which is important for 

good active cancellation.  

In the real world, particularly for noise control application, there is almost always flow 

present in the medium in which the enclosed, coaxial CNT speaker will be operated. For 

example, in the automotive exhaust, there is flow of exhaust gases at high speeds. The 

effect of flow on the SPL generated by the CNT speaker was determined with the help of 

flow model in COMSOL. The flow model developed was the first model to simulate the 

effect of flow on the coaxial CNT speaker operation. It was observed that turbulent flow 

has a significant effect on the acoustic field generated inside the coaxial speaker, primarily 

in making it non-planar. In addition, the SPL was also reduced compared to the absence of 

flow in the medium. This model gave an idea of how the presence of flow affected the SPL 

and the acoustic field inside the coaxial speaker. The results were important from a noise 

cancellation point of view as it is very difficult to cancel non-planar sound. All said, this 

analysis provides a new aspect of CNT speaker design to improve its performance by 

iterating the speaker design for different mediums and flow parameters that was not done 

previously.  

Optimization is a useful tool in any design process as it reduces the effort required to 

manufacture and test every single design iteration to assess system performance. CNT 

speakers are difficult to wrap manually making it a tiring and painstaking process to wrap 

and build every single design of the speaker. The optimization model developed in this 
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research is the first 3D model of the enclosed, coaxial CNT speaker that helps to 

approximate the best speaker dimension combination within the required dimensions limit. 

The COMSOL model described in this research has the objective of SPL maximization 

while setting limits on the control variables of length and diameter of the outer chamber. 

One important point to remember is to make sure the optimized dimensions of the speaker 

yield uniform SPL along the longitudinal speaker axis. This was achieved by using probes 

along the speaker axis and maximizing the sum of the SPLs at all the probes. In addition, 

the optimization model developed can be extrapolated to any CNT speaker design – open 

or closed to increase the speaker performance, especially the generated SPL.  

In addition, during the research, literary contributions have been made in the form of two 

peer reviewed journal publications and five conference papers. The Acoustical Society of 

America presentations were abstract and presentation only, whereas the INTER-NOISE 

and NOISE-CON proceedings included an archival paper. The journal publications are: 

1. Prabhu, S. M., & Barnard, A. (2020). Design and characterization of an enclosed 
coaxial carbon nanotube speaker. The Journal of the Acoustical Society of America, 
147, EL333-EL338. http://doi.org/10.1121/10.0001029 
 

2. Prabhu, S., Barnard, A., and Senczyszyn, S., "Multi-Physics and CFD Analysis of 
an Enclosed Coaxial Carbon Nanotube Speaker for Automotive Exhaust Noise 
Cancellation," SAE Int. J. Adv. & Curr. Prac. in Mobility 1(4):1808-1816, 
2019, https://doi.org/10.4271/2019-01-1569. 

The conference papers are: 

1. Prabhu, S. M., & Barnard, A. Performance Analysis of an Enclosed, Coaxial 
Carbon Nanotube (CNT) Speaker in the presence of flow using COMSOL 
Multiphysics. The Journal of the Acoustical Society of America 148, 179th Virtual 
Meeting of the Acoustical Society of America. https://doi.org/10.1121/1.5147464. 
 

http://doi.org/10.1121/10.0001029
https://doi.org/10.4271/2019-01-1569
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2. Prabhu, S. M., & Barnard, A. COMSOL Model of an Enclosed Coaxial Carbon 
Nanotube (CNT) Speaker with Perforate Analysis. Inter-Noise and Noise-Con 
Proceedings, NoiseCon 19, San Diego, CA, pp. 218-226. 
 
 

3. Prabhu, S. M., & Barnard, A. COMSOL Model for an Enclosed Coaxial Carbon 
Nanotube Speaker. Inter-Noise and Noise-Con Proceedings, InterNoise 18, 
Chicago, IL, pp. 1057-1065. 
 

4. Prabhu, S. M., & Barnard, A. Active Control of Automotive Exhaust Noise using 
Carbon Nanotube Speakers. Inter-Noise and Noise-Con Proceedings, NoiseCon 
17, Grand Rapids, MI, pp. 505-511. 
 
 

5. Prabhu, S. M., & Barnard, A. Carbon Nanotube Coaxial Thermophone for 
Automotive Exhaust Noise Cancellation. The Journal of the Acoustical Society of 
America 142, 174th Meeting of the Acoustical Society of America, New Orleans, 
LA. https://doi.org/10.1121/1.5014277. 

 

6.2 Simulation Model Setup Recommendations  

A certain procedure must be followed to setup the four models developed in this research. 

The procedure relates to the definition of the CNT film material properties, domain 

definitions, number of mesh elements used, mesh element size, etc. The following sections 

identify the key recommendations based on this research.  

 

https://doi.org/10.1121/1.5014277
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6.2.1 Joule Heating and Thermoviscous Acoustics Model Setup  

 

Figure 70: Flow chart for Joule Heating and Thermoviscous Acoustics model setup 

[1] Joule Heating Model Recommendations 

• The electrical conductivity of a metal can undergo change with increase in its 

temperature due to internal heat generation. This must be used in the material 

property using the appropriate equation that defines the relation between 
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conductivity and temperature change for that material. For copper electrodes, this 

value change is small as it acts as a heat sink.  

• Electric current follows a path defined by the conducting and non-conducting 

boundaries. The definition of the non-conducting boundaries must be done by 

defining the potential (V) along them as zero, 𝑉𝑉 = 0. 

•  Input electrical signal must be correctly defined to ensure proper replication of the 

actual operating signal. For example, the time used to define the AC input must be 

the same as the time specified for the simulation. 

• In heat transfer physics, the heat flux of the boundaries defines the heat transfer, 

and its form is dependent on the material and the heat transfer mechanism. The 

correct heat transfer mechanism (conduction, convection, or radiation) must be 

selected, and the corresponding heat transfer coefficient of the material must be 

defined to get accurate results. 

• The medium in which the model is simulated can experience a change in its 

material, electrical and thermal properties due to heat transfer from the model 

boundary. It is important to incorporate this, and it can be done by defining the 

properties using equations that relate the property and the variable affecting its 

change. For example, the density of the air medium can be related to temperature 

change using the ideal gas law equation, 𝑝𝑝𝑝𝑝 = 𝑛𝑛𝑛𝑛𝑛𝑛. 

[2] Thermoviscous Acoustics 

• The thermal expansion coefficient and isothermal compressibility coefficient of the 

medium are important variables in thermoviscous acoustics. They are dependent on 
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the temperature and the pressure developed in the medium. The model must account 

for changes in these variables by using the appropriate equations defining their 

dependence on temperature and pressure for the selected medium material. One 

form of equation is 𝜌𝜌 = 𝜌𝜌0(𝛽𝛽𝑇𝑇𝑝𝑝 − 𝛼𝛼0𝑇𝑇) 

• The thermal and viscous boundary layer thickness are frequency dependent and 

decrease exponentially with respect to the frequency. In multi frequency 

simulation, the maximum and minimum mesh element size must be the thickest and 

thinnest value of the boundary layers. 

• The thermoviscous acoustic domain thickness must account for the thermal and 

viscous boundary layer thicknesses for the frequency range being simulated. So, 

the domain thickness should be the thickest value of the boundary layers that are 

generated. For smaller boundary layer thicknesses, it can result in error in the 

acoustic sound wave generation amplitude, but this error is small compared to the 

error generated when the domain thickness is smaller than the thermal and viscous 

boundary layer thicknesses.  

• The boundary layer mesh is important to model the thermal and viscous boundary 

layers in the thermoviscous acoustics simulation. Mapped mesh elements are used 

to the boundary layer mesh. Boundary layer profile is parallel to the surface next to 

which it is developed, and mapped mesh elements make sure the mesh element 

sides next to the boundary follow the profile of the boundary. 

• Higher order shape functions must be used when meshing the thermoviscous 

boundary. This results in a more accurate evaluation of the boundary behavior as 
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the distribution of the thermoviscous variables over the boundary is not liner. 

Generally, a fourth order shape function works best for these boundaries. 

6.2.2 Flow and Optimization Model Setup 

 

Figure 71: Flow chart for Flow and Optimization model setup 

[3] Flow Model Recommendations 

• The geometry profile is important for flow model accuracy. The geometry must be 

checked for missing faces, overlapping faces, gaps, free edges, and sharp angles. 

Before meshing the geometry, it must be checked for these points, and they must 
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be fixed. This can be done by modifying the geometry to fill gaps, add missing 

faces, removing the free edges by connecting or deleting the free edge.  

• Large area changes result in more drastic medium flow variable changes. To model 

the flow variables accurately, finer mesh must be used at these parts in the model. 

The size of the mesh element must be smaller than the dimension of the boundaries 

at which there is large area change to get good resolution at those locations. 

• The proper definition of the physical, thermal, and fluid properties of the medium 

can change during the simulation. For example, the automotive exhaust gases can 

undergo a change in their composition and properties based on the operating 

condition of the engine. So, identifying the change in the properties and modifying 

the material properties accordingly in important for accurate simulation. 

• Boundary layer mesh is important in flow model. Based on the boundaries present 

in the geometry where boundary layers are generated, the boundary layer mesh 

made of mapped mesh elements must be used to accurately resolve the boundary 

layers for fully developed flows. 

• Flow in a system can be laminar, turbulent or a combination of both. Each flow 

type has its own governing equations, model operating and boundary conditions. It 

is important to identify the correct flow type and then use the correct governing 

equations and boundary conditions to set up the flow model. For example, for a 

pipe, based on the diameter of the pipe, the Reynolds number (Re) is less than 2100 

for fully developed laminar flow, greater than 4100 for fully developed turbulent 

flow. The medium material properties and Re number used must match the flow 

type being simulated. 



191 

• All boundary conditions must be defined for the geometry of the flow model. For 

example, the pipe walls are either no-slip, adiabatic or both relative to the flow 

medium. So, the correct boundary conditions must be used to simulate their 

behavior in the simulation model. This can be done by using the defining equation 

with respect to the variable (e.g.: adiabatic – Q = 0, no slip = Vnormal = 0 and Vtangential 

= Vwall) and assigning it to the boundary. 

[4] Optimization Model Recommendations 

• The objective function selected must be based on the variable that has to be 

improved. For example, CNT speakers are evaluated by their generated SPL. 

The objective function should be defined as a value that is calculated by the 

model for every iteration or an equation whose solution is evaluated by the 

model for the iterations it performs. The definition of the PDE objective must 

include variables that are iterated by the optimizer. For example, if the 

temperature of a surface with heat flux is being optimized, the PDE for heat 

transfer can be optimized and the control variables will be the coefficient of 

heat transfer and surrounding medium temperature (equation 33). 

• Control variables are the key to an optimization process. These variables are 

iterated, and the optimized results are obtained. The selection and definition of 

the control variables is important, and they must be related to the optimization 

objective. For example, the SPL generated in an enclosed CNT speaker depends 

on its volume (equation 23). The control variables in this case, must be the 

dimensions of the enclosure so that during the optimization process, every 
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iteration will result in change in the volume of the enclosure and the objective 

function value will change accordingly. 

• Constraints to the control variables are important based on the optimization 

being performed. If they are not defined when required, it will result in free 

optimization that can continue for a very long time and provide results that are 

not feasible. For example, if the dimension control variables of the CNT speaker 

enclosure are not constrained, it might result in a shape that is not feasible in 

the real world.  

• Depending on the type of optimization being performed, the correct optimizer 

must be selected. For a design optimization that changes the shape of the 

geometry in every iteration, derivative free solver must be used. This optimizer 

handles the geometry and corresponding finite element mesh change efficiently, 

without taking a long time to optimize the model. 

The above-mentioned recommendations are important to successfully setup the CNT 

speaker models and can be used as a general recommendation when the models are used 

for other applications. These recommendations must be followed to make sure that the 

material properties, boundary conditions and meshing is done correctly to maintain the 

accuracy and repeatability of the models.  

6.3 Model Limitations 

The governing equations for the physics that are used to develop the modeling method for 

CNT speakers have limitations with respect to the operating conditions.  
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For effective resolution with frequency, it is a general rule of thumb that the minimum 

element size must be equal to at least 6 elements per wavelength for meshing the model. 

For low frequencies, it is a very small number, and it increases the number of elements 

required as well as reduces the size of the elements for proper frequency resolution. In 

region with extremely small thickness, sharp changing areas, boundaries with small 

dimensions, it becomes very difficult to maintain the size of the elements small to satisfy 

the frequency resolution condition as well as keep the element size smaller than the 

boundary dimensions. In addition, for multi frequency simulation, using an uniform mesh 

developed at one frequency will not provide a good resolution at other frequencies in the 

simulation. The models developed for the CNT speaker used uniform mesh size based on 

a single frequency. The frequency chosen for this was 250 Hz and required mesh elements 

within the range of 100000 to 300000 elements. This allowed the boundary layer mesh and 

the thermoviscous acoustic mesh to remain small with respect to the CNT film boundary. 

However, it affected the frequency resolution at lower frequencies, and it is possible that, 

this is one of the reasons why there is amplitude difference between the simulated and 

experimental SPL results. An adaptive mesh can be used but it takes significantly longer 

to simulate the model when multiple physics are involved, irrespective of the type of 

computer used for simulation.  

The SPL model uses standard pressure acoustics equations that include the wave and 

Helmholtz equations to solve for the specified boundary conditions. Non-linear acoustics 

at high SPL requires full set of fluid dynamics and elasticity governing equations that are 

used to determine the sound wave behavior in liquids and gases. The model used to 

simulate the SPL of the CNT speaker cannot handle non-linear acoustics because the 
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physics does not incorporate the required governing equation. In addition, the system is 

highly non-linear, and the corresponding sound wave is distorted. The meshing process 

required for non-linear acoustics simulation is more complex and additional variables are 

required to define the element size. This is not defined in the developed model. 

The Thermoviscous acoustics model uses Full Linearized Navier Stokes (FLNS) equations 

to solve the model. The FLNS equations are widely applicable but computationally costly 

and inefficient. For the 3D model of the enclosed, coaxial CNT speaker, it took the MTU 

supercomputer, Superior, almost 5 hours to run the model with 12 cores and the model had 

more than 5,000,000 elements. This simulation was done to estimate the time required to 

run the model with the finest mesh quality relative to the simulating conditions. One of the 

reasons for requiring a large number of mesh elements is that the mesh size must be 

extremely fine near the thermoviscous boundary to accurately resolve the viscous and 

thermal boundary layers. Second, the FLNS equations contain five coupled fields (velocity, 

temperature, and pressure) out of which four are quadratic in nature and the pressure field 

is linear. This makes it necessary to define appropriate order shape functions for the 

respective fields and this results in increased computation cost. Generating a very fine mesh 

becomes difficult when the thermoviscous domain is extremely thin and the geometry is 

complex, with sharp changes in profile. This is the case with carbon nanotube films, 

because their thickness is many orders of magnitude smaller than their other dimensions. 

The flow model for turbulent flow can replicate the flow profile with only a high degree of 

approximation. This is because it is very difficult to accurately reproduce the fully 

developed turbulent flow using the governing equations. This limits the model response in 
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predicting the flow field and the corresponding effect on the sound field generated in the 

presence of turbulent flow. So, the model has limited capability and accuracy in 

determining the SPL and sound field generated. More developed the turbulent flow, more 

is the error in the calculation of the flow variables, and more is the error in the prediction 

of the sound field. The flow model as described in this research cannot simulate situations 

where the fluid is not always present in the domain or if the fluid is changing. In addition, 

the Navier Stokes equations require higher numerical approach to be solved efficiently. 

This is mainly due to the presence of a convective term that is highly non-linear. So, using 

the FEM as used in this model is not an efficient method. Instead, the FVM is more suitable 

to get a more accurate development of the turbulent flow. 

6.4 MATLAB Model Limitations 

The main goal of the MATLAB model was to understand the formulation of the Finite 

Element matrix equation and to verify the COMSOL model results by comparing them 

with the self-developed FE model results. For these reasons, the FE model developed was 

not a high-fidelity model. So, the modeling procedure and the FE model has many 

limitations. 

First, four triangular elements were used to the discretize the model in Joule Heating and 

twelve rectangular elements were used to discretize the model in Heat Transfer physics. 

The number of elements used to discretize the domain are small for the described simplified 

CNT speaker model. This will result in what is known as discretization error. Discretization 

error occurs when transforming the physical continuous domain into a finite element 

discrete domain. The nodes of the elements discretize the domain and the unknown 
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variables are calculated primarily at the nodal points. The four elements selected can result 

in spatial aliasing of the solution over the target boundary. The value of the variables 

calculated over the desired domain can be different from the actual distribution due to 

absence of a well-defined mesh grid. This can result in an incorrect distribution of the 

selected variable over the domain. The generated error can propagate when the calculated 

variable is used as input in the further FE models.  

Second, the shape function used to interpolate the data between the nodal points is linear 

for the FE models. However, this can create error in the resolution of the variable over the 

domain. Higher order shape functions like quadratic or cubic provide a higher resolution 

interpolation of the variable over the specified domain. In the FE model developed in this 

research, the linear shape function will result in error because the temperature, electric 

potential and thermoacoustic variables vary in a complex fashion over the CNT film 

surface. This limits the model’s ability to accurately predict the variation of these variables. 

Third, the mesh convergence was not checked for the FE models. Mesh convergence is a 

very important step that determines the number of elements required to correctly discretize 

and resolve the variable variation over the domain. It also serves as a check that the solution 

of the FE model is remains the same even after changing the size of the mesh. Performing 

mesh convergence makes the model more robust when simulation is performed at multiple 

frequencies. If this FE model is to be used in the future, the mesh convergence must be 

verified. The FE model was solved for two frequencies: 100Hz and 160Hz. Even though 

the results at those frequencies were in correlation with the COMSOL model results, it 
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cannot be said with certainty that the model would give comparable results at other 

frequencies.  

6.5 COMSOL Limitations 

The COMSOL models for simulating the SPL, flow and optimization have been validated 

using experimental and analytical results. However, all the models have certain limitations. 

They must be identified and kept in mind when attempting to simulate the performance of 

the CNT speaker. The limitations of the models are as follows: 

1. In the Joule Heating model, the Terminal boundary condition is available only for 

the domain and not for the boundary. This limits the model when the electrodes 

need to be modeled as a boundary and not domain. 

2. There is no way to define the resistance of the CNT film in the Joule Heating model. 

The resistance is calculated based on the electrical material properties defined for 

the CNT film. This limits the model as the CNT film resistance is dependent on the 

area of the film. 

3. In the Thermoviscous Acoustics model, mesh element size required for the 

simulating the thermal and viscous boundary layers are dependent on their 

thickness. An adaptive mesh is required for this purpose. Adaptive mesh is 

effective, but it increases the simulation time significantly compared to standard 

mesh. The adaptive mesh algorithm used in COMSOL is not computationally 

efficient.  
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4. The Joule Heating and Thermoviscous Acoustics models cannot be coupled 

together, and two separate models are required. Using two models is fine but it 

really limits the modeling process as the two models cannot be run simultaneously.  

5. In the Thermoviscous Acoustics model, the procedure to model the CNT film as an 

acoustically transparent material is not known. This a big limitation as the model is 

no longer the same as the actual prototype. Even after providing double input 

power, there is some error as the actual CNT film area is not exactly replicated in 

the model.  

6. In the flow model, the SPL generated by the CNT film, which is radial in nature 

must be modeled from the Thermoviscous Acoustic model result. There is no way 

to couple the Thermoviscous Acoustic and flow models and this a major limitation. 

The conversion of the sound field generated by the CNT speaker as an acoustic 

source in the flow model introduces some error in the amplitude and phase.  

7. In the optimization model, the solver checks the estimated error with the relative 

tolerance, or the number of iterations specified. When either condition is satisfied, 

the solver stops and gives the last iteration as the desired solution. This is a 

limitation because more combinations of the control variables might be possible 

that give a better performance of the CNT speaker. 

6.6 Future Work Recommendations 

The COMSOL model for simulating the SPL of the CNT speaker is a preliminary baseline 

model. It will help to improve the performance of the CNT speaker without having to 
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manufacture and test every single design iteration. More work can be done to improve the 

COMSOL model.  

There is scope for making this model more accurate in terms of the CNT film 

representation. CNT films are acoustically transparent, and this property needs to be 

modeled in COMSOL. This will make sure that the total CNT film area used in the actual 

prototype is the same in the COMSOL model.  

Another point of improvement is the definition of material properties of the CNT film – 

heat loss due to conduction, convection and radiation and the heat capacity per unit area. 

These properties are defined as variables in the model, and they can be defined more 

suitably as material properties in the model. Finding a way to link these material properties 

to the physics in COMSOL will make sure their effect is accurately replicated as proved in 

analytical solutions. 

The heat transfer mechanism of the CNT speakers is extremely important and must be set 

up accurately in COMSOL. The models developed in this research use the built-in physics 

to model this process. However, the accuracy, and reliability of these models can be 

improved by developing a method to model the heat transfer mechanism in a more defined 

way compared to the actual physical mechanism.  

The models developed in this research are not limited to CNT speakers. CNT films are not 

the only materials that generate sound using the thermoacoustic effect. Graphene, a two-

dimensional material is also capable of generating sound using the thermoacoustic effect. 

The Thermoviscous Acoustic model can be expanded to simulate the performance of a 
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speaker made using Graphene. It can be used to predict the performance of the Graphene 

based transducers using the coupling between the Thermoviscous and Pressure Acoustics.  

The flow model can be used in different applications that involve medium flow. The CFD 

part of the model is focused on determination of the flow variables and can be applied to 

any system with flow, irrespective of the medium. Some examples are HVAC systems, 

flow-induced noise for pumps, high pressure release valves. The CFD modeling procedure 

developed in this research can be extrapolated with modifications to the geometry, 

boundary conditions, mesh elements and shape functions to simulate the flow variables in 

the above-mentioned systems. The flow variables can be mapped on the acoustic mesh and 

the acoustic performance of the noise control system can be simulated using the modeling 

procedure used for the CNT speaker.  

The optimization model is not limited to the CNT speaker. It can be used for almost any 

type of transducer, irrespective of the sound generation principle. The only thing that would 

probably remain the same is the definition of the objective function. In the model developed 

in this research, the optimization objective is defined using the SPL values measured by 

probes placed at the desired location in the target domain. The same principle can be used 

irrespective of the transducer. The main point to remember is location at which the SPL is 

important and place the probes at those locations. For example, the tailpipe outlet 

dimensions of the automotive exhaust can be optimized to reduce the radiated SPL in the 

ambient environment. In this optimization model, the possible control variables would be 

diameter of the tailpipe outlet and the probes would be placed in air domain that is modeled 
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surrounding the tailpipe outlet. Another application of the optimization method would be 

the optimization of the tweeter waveguide to get a flat SPL response of the tweeter.  

Finally, the coaxial design developed for the automotive exhaust noise cancellation is not 

fixed for usage with CNT film. This design can be used with other transducers such as 

piezo-electric in a similar way. A comparison can be made between the coaxial CNT 

speaker and other coaxial speakers to understand the performance difference, advantages, 

and shortcomings of those speakers. In addition to piezo-electric transducers, conventional 

loudspeakers (particularly micro drivers) can be used in the coaxial design for noise 

cancellation and sound generation.  
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