
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2021

Major Index over Descent Distributions of Standard Young Major Index over Descent Distributions of Standard Young

Tableaux Tableaux

Emily Anible
Michigan Technological University, eeanible@mtu.edu

Copyright 2021 Emily Anible

Recommended Citation Recommended Citation
Anible, Emily, "Major Index over Descent Distributions of Standard Young Tableaux", Open Access
Master's Thesis, Michigan Technological University, 2021.
https://doi.org/10.37099/mtu.dc.etdr/1339

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Discrete Mathematics and Combinatorics Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1339
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1339&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1339&utm_medium=PDF&utm_campaign=PDFCoverPages

MAJOR INDEX OVER DESCENT DISTRIBUTIONS

OF STANDARD YOUNG TABLEAUX

By

Emily E. Anible

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Mathematical Sciences

MICHIGAN TECHNOLOGICAL UNIVERSITY

2021

© 2021 Emily E. Anible

This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Mathematical Sciences.

Department of Mathematical Sciences

Thesis Advisor: Dr. William J. Keith

Committee Member: Dr. David Hemmer

Committee Member: Dr. Melissa Keranen

Committee Member: Dr. Fabrizio Zanello

Department Chair: Dr. Jiguang Sun

Contents

List of Figures . vii

Acknowledgments . ix

Abstract . xi

1 Introduction . 1

1.1 q-Kostka polynomials and the Kirillov-Reshetikhin Formula 9

1.2 Closed forms and beyond . 13

1.3 Tableau threads . 19

2 Closed formulas and symmetries . 23

2.1 Minimum descents . 23

2.2 Symmetries . 28

2.3 Minimum-plus-one descents . 36

2.3.1 Three rowed tableaux . 36

2.3.2 Rectangular tableaux . 47

3 Computation through the Kirillov-Reshetikhin Formula 55

v

3.1 Admissible sequences . 55

3.2 Closed formulas . 61

4 Relations among fλ,k . 73

References . 79

A SageMath Code . 83

A.1 Major index over descent via SYT(λ, k) 84

A.1.1 Code . 84

A.1.2 Examples . 89

A.2 Major index over descent via Kk
λ,1|λ|

(q) 91

A.2.1 Code . 91

A.3 Admissible sequence contributions in Kk
λ,1|λ|

(q) 97

A.3.1 Code . 98

A.3.2 Examples . 101

A.4 Relationships among fλ,k(q) . 102

A.4.1 Code . 102

A.4.2 Examples . 106

B Mathematica Code . 109

B.1 Major index over descent via SYT(λ, k) 110

B.1.1 Code . 110

B.1.2 Examples . 113

vi

List of Figures

1.1 Partition of shape λ = (5, 4, 2, 1) . 1

1.2 Partition of shape λ = (5, 4, 2, 1) with its hooklengths 2

1.3 (5, 4, 2, 1)\(3, 2, 1) with its hooklengths. 2

1.4 A standard Young tableaux of shape (5, 4, 2, 1). 4

1.5 Complementary partitions in the r × (λ1 + 1) box. 18

2.1 SYT of shape (7, 3, 3, 2) with last thread in columns {1, 2, 3, 6, 7}. . 25

2.2 A tableau whose last thread covers the entire last row. 38

2.3 Rectangular tableau of shape (nr) with r descents whose (I + 1)st

thread partially fills the (I + 1)st row. 52

2.4 Threads of a rectangular tableau of shape (nr) with r descents. . . . 53

vii

Acknowledgments

My sincerest thanks to my thesis advisor, William Keith, without whose guiding hand

throughout my study I would not have succeeded.

Thanks to my committee members: David Hemmer, Melissa Keranen, and Fabrizio

Zanello.

Thank you to my dad, who has been by my side every step of the way.

I would also like to thank the following:

Ann Humes and Teresa Woods, for their constant support and sage advice in

developing my skills as an instructor.

Brooke, Charlie, Corey, Hannah, Joy, Kai, Marshal, Prangya, Ryan, Rob, Tim,

Sasha, Simone, Will, and Yasasya, colleagues and friends whose companionship

throughout this journey has been an incredible boon.

My three brothers Jonathon, Tait, and Wyatt.

ix

Abstract

This thesis concerns the generating functions fλ,k(q) for standard Young tableaux of

shape λ with precisely k descents, aiming to find closed formulas for a general form

given by Kirillov and Reshetikhin in 1988. Throughout, we approach various methods

by which further closed forms could be found.

In Chapter 2 we give closed formulas for tableaux of any shape and minimal number

of descents, which arise as principal specializations of Schur functions. We provide

formulas for tableaux with three parts and one more than minimal number of descents,

and demonstrate that the technique is extendable to any number of parts.

In Chapter 3 we aim to reduce the complexity of Kirillov and Reshetikhin’s formula by

identifying the summands contributing a nonzero amount to the polynomial. While

the resulting formulas are lengthy, they greatly reduce the computation time for

specified partition shapes and numbers of descents.

In Chapter 4 we investigate an apparent relation among fλ,k(q) and fλ,k−1(q) and

discuss how this may lead to a greater insight of the distribution of these statistics.

Included appendices give a library of utilities in SageMath and Mathematica to gen-

erate the polynomials fλ,k and demonstrate Chapter 4’s relationships.

xi

Chapter 1

Introduction

A weakly decreasing sequence λ = (λ1, λ2, . . . , λr) of positive integers whose sum is

n is called a partition of n, denoted λ ` n. For an introduction to partitions and

further definitions, we refer the reader to Andrews’ and Macdonald’s texts ([1] and

[2]). One may describe this partition graphically using its Ferrers’ diagram or Young

diagram, a left-aligned arrangement of boxes in a grid where the number of boxes in

the first row is λ1, the number of boxes in the second is λ2, and so on. We note that

in Russian or French texts, these diagrams may appear inverted. For example, the

partition λ = (5, 4, 2, 1) of 12 may be represented as the following:

.

Figure 1.1: Partition of shape λ = (5, 4, 2, 1)

1

Occasionally we will write λ in frequency notation as λ = ae11 a
e2
2 . . . aekk with ai

strictly decreasing, where ei is the number of parts of size ai in λ. In this example,

λ = 51412111. By mirroring the Young diagram of λ through its diagonal, we obtain

the conjugate partition λ′ = (λ′1, . . . , λ
′
λ1

). To each box in row i and column j of the

Young diagram of a partition λ, we associate a positive integer given by the number

of boxes directly below it and to its right, including itself. We denote this value hi,j,

the hooklength of box (i, j). Filling the Young diagram of λ = (5, 4, 2, 1) above with

the hooklength of each box, we have

8 6 4 3 1
6 4 2 1
3 1
1

.

Figure 1.2: Partition of shape λ = (5, 4, 2, 1) with its hooklengths

We may also skew a partition λ by another, µ, with the restriction that µi ≤ λi for

all i. The skew partition λ \ µ is the set of boxes in the Young diagram of λ but not

in µ. Skewing λ = (5, 4, 2, 1) by µ = (3, 2, 1), we have the following skew diagram,

with hooklengths filled:

3 1
2 1

1
1

.

Figure 1.3: (5, 4, 2, 1)\(3, 2, 1) with its hooklengths.

2

For each partition shape λ, we may choose to fill its Young diagram with integers

1, 2, . . . , n, with the restriction that the numbers must increase across columns and

down rows. The set of all fillings obeying these restrictions is called the set of stan-

dard Young tableaux of shape λ, denoted SYT(λ). If we instead loosen this restric-

tion to allow for weakly increasing integers along the rows of λ, we obtain the set

of semistandard Young tableaux of λ, SSYT(λ). We may fill the Young diagrams as-

sociated to skew partitions in the same way, giving the sets of skew-semistandard

and skew-standard Young tableaux. However, we will mainly concern ourselves with

SYT(λ) in this paper. Originally written by Frame, Robinson, and Thrall [3], the

number of standard Young tableaux of shape λ, |SY T (λ)|, is given by the following:

fλ := |SY T (λ)| = n!∏
h(i,j)∈λ h(i,j)

. (1.1)

Upon the standard Young tableaux of shape λ, we may define a statistic: a function

f : SYT(λ)→ Z which associates each tableau with an integer. We note that though

the statistics we are interested in are integer-valued, but they need not be in general.

One such tableau statistic is the descent number. Within a tableau τ , we call an

occurrence of the integer i + 1 in a row below i a descent. The set of i for which

i + 1 appears in a row lower is denoted by Des(τ), the descent set of τ . The descent

number, then, is given by des(τ) := |Des(τ)|. We note that for all τ ∈ SYT(λ),

we have r − 1 ≤ des(τ) ≤ n − λ1. Another important statistic is the major index

of a tableau, given by maj(τ) :=
∑

i∈Des(τ) i. For example, the following SYT of

3

λ = (5, 4, 2, 1) has descent set {2, 6, 9} and major index 17:

1 2 5 6 12
3 4 9 11
7 8
10 .

Figure 1.4: A standard Young tableaux of shape (5, 4, 2, 1).

For a statistic f(s) on the elements s of a set S, its generating function is
∑

s∈S q
f(s),

with q an indeterminate. A generating function, then, is an element of the polynomial

ring Z[q] if S is finite and f(s) is restricted to nonnegative integer values. One example

is the polynomial fλ :=
∑

τ∈SYT(λ) q
maj(τ), the generating function for the major index

on the set SYT(λ). We will often say this “counts” the number of τ ∈ SYT(λ) with

major index m on the coefficient of qm, since each tableau τ contributes precisely

qmaj(τ) to the polynomial. The polynomial fλ is a quintessential example of a q-analog,

a polynomial in q which, when one lets q → 1, gives some other combinatorially

interesting value. In this case, fλ is a q-analog of fλ. When one has a q-analog, it

is desirable to provide a simple representation for the polynomial, referred to as a

closed form. Richard Stanley gave a closed-form representation for fλ in [3] as

fλ :=
∑

τ∈SYT(λ)

qmaj(τ) =
q
∑
i(i−1)λi [n]q!∏
hi,j∈λ[hi,j]q

, (1.2)

where [n]q := 1 + q+ · · ·+ qn−1 = 1−qn
1−q and [n]q! := [n]q[n−1]1 . . . [1]q are q-analogs of

n and n!. Letting |q| < 1, we can think of these polynomials as existing within Z[[q]],

4

the ring of formal power series in q.

Another important object is the q-binomial coefficient, a q-analog of the binomial

coefficient
(
M+N
N

)
. We write this as

[
M +N

N

]
q

=
[M +N]!q
[M]!q[N]!q

=
(1− qM+1)(1− qM+2) . . . (1− qM+N)

(1− q)(1− q2) . . . (1− qN)
. (1.3)

By convention, if M ≥ 0, then
[
M
0

]
q

= 1 and if M < N , then
[
M
N

]
q

= 0. The q-

binomial coefficient has several useful, though not entirely obvious properties. First,[
M+N
N

]
q

is a polynomial in q with positive integer coefficients which can be seen by

iterating an extension to the Pascal relation for q-binomial coefficients, the q-Pascal

relation
[
M+N
N

]
q

=
[
M+N−1

N

]
q

+ qM
[
M+N−1
N−1

]
q
, to its boundary conditions. An elegant

interpretation, given in [4], describes
[
M+N
N

]
q

in terms of the number of M -dimensional

subspaces of an (M +N)-dimensional vector space over the field of order q (a prime

power). This description is used to interpret the coefficient of qn in the resulting

polynomial as the number of partitions of n into at most M parts with each part of

size at most N (i.e. the partitions of n in the M ×N box). To refer to the coefficient

of qn for a polynomial f(q), we will typically write [qn]f(q).

Definition 1 A polynomial f(q) =
∑M

i=m aiq
i with coefficients ai ∈ R is said to

be symmetric if [qm+i]f(q) = [qM−i]f(q) for all i. Equivalently, f(q) is symmetric

if f(q) = qAf(q−1) for some A. A symmetric polynomial f(q) has central degree

(M + m)/2 and two symmetric polynomials with the same central degree are said to

5

be concentric.

The q-binomial is also a symmetric polynomial. Since [qi]
[
M+N
N

]
q

is equal to the

number of partitions of size i in the M × N box, we may obtain [qMN−i]
[
M+N
N

]
q

by

taking the complement of each given partition of size i in the box, then rotating the

box 180 degrees about its center. The resulting partition shape has size MN − i, and

is in one-to-one correspondence with its complement, so these two sets of partitions

are equinumerous.

Definition 2 A polynomial f(q) =
∑M

i=m aiq
i with coefficients ai ∈ R is said to be

unimodal if the sequence of coefficients (am, am+1, . . . , aM) is unimodal; that is, if

am ≤ am+1 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ aM for some m ≤ j ≤M .

Unlike the symmetricity of q-binomial coefficients, it is rather difficult to combina-

torially show unimodality. The first injective map proving this fact was given by

Kathleen O’Hara in 1990 [5]. O’Hara’s theorem gives a symmetric chain decomposi-

tion of a partially ordered set corresponding to the q-binomial coefficient, separating

elements into co-centered maximal length chains. Doron Zeilberger gave an algebraic

interpretation of her theorem in terms of integer partitions in [6], which we write here

as in [7]:

Theorem 1 (The KOH Theorem) Let λ = (λ1, λ2, . . .) ` N and Yi =
∑i

j=1 λj,

6

with Y0 = 0. Then

[
M +N

N

]
q

=
∑
λ`N

q
∑∞
i=1 λ

2
i−λi

∏
j≥1

[
j(M + 2)− Yj−1 − Yj+1

λj − λj+1

]
q

. (1.4)

To see that (1.4) yields the desired property, we note that the product of two sym-

metric and unimodal polynomials is also a symmetric and unimodal polynomial. Al-

gebraically, one can confirm that each term in the sum over partitions of N has the

same central degree. By iterating the theorem downward to degenerate cases and

instances of
[
A
1

]
q

= 1 + q + q2 + · · · + qA−1 for some integer A, one obtains both

the symmetricity and unimodality of
[
M+N
N

]
q
. We also define the class of symmetric

functions in n variables known as the Schur polynomials. Symmetric functions are

named as such because any permutation of their variables yields the same function

– not necessarily because they are symmetric as in Definition 1. A composition µ

of n is a sequence of positive integers whose sum is n. The content of a tableau

τ ∈ SSYT(λ\ρ) is the composition t = (t1, t2, . . .) of |τ |, where tj gives the number

of times j appears in τ . For future reference, the set of (skew-) semistandard Young

tableaux of shape λ\ρ with content µ is denoted as SSYT(λ\ρ, µ). Let x1, . . . , xn

be variables and denote xτ = xt11 x
t2
2 . . . x

tn
n . The Schur polynomial indexed by λ\ρ is

defined as

sλ\ρ(x1, . . . , xn) =
∑

τ∈SSYT(λ\ρ)

xτ . (1.5)

7

It is a fact that when ρ is the empty partition, the principal specialization of this

Schur polynomial, sλ(1, q, . . . , q
n), is always unimodal [2]. While there are many

proofs for the unimodality of sλ(1, q, . . . , q
n), Goodman, O’Hara, and Stanton ([8])

were able to conclude this fact using the Kirillov-Reshetikhin formula below (1.17).

Schur polynomials have myriad uses in algebraic combinatorics, but we are primarily

concerned with the Jacobi-Trudi identities applied to the principal specialization ([2],

page 41):

Theorem 2 For λ = (λ1, . . . , λr), ρ = (ρ1, . . . , ρr), 0 ≤ ρi ≤ λi,

sλ\ρ(1, q, . . . , q
n) = det

([
n− 1 + λi − ρj − i+ j

n− 1

]
q

)
1≤i,j≤r

(1.6)

= det

(
q(

λ′i−ρ
′
j−i+j
2

)
[

n

λ′i − ρ′j − i+ j

]
q

)
1≤i,j≤λ1

. (1.7)

The main focus of this paper concerns the generating function fλ,k(q) for the major

index over SYT(λ, k), the set of standard Young tableaux of shape λ with exactly k

descents:

fλ,k(q) :=
∑

τ∈SYT(λ)
des(τ)=k

qmaj(τ). (1.8)

The motivation for the study of these polynomials arises from the work of Cheng,

Elizalde, Kasraoui, and Sagan [9] concerning polynomials An,k(q), the major index

8

statistic of certain pattern-avoiding permutations of length n with exactly k descents.

Sagan conjectured that the An,k(q) were unimodal, a fact proven by William Keith in

[10]. The key fact is that the An,k(q) can be written as a sum of concentric polynomials

fλ,k(q) shifted by some amount, reminiscent of the concentric polynomials in (1.4).

However, this requires us to prove that the fλ,k(q) themselves are unimodal.

1.1 q-Kostka polynomials and the Kirillov-

Reshetikhin Formula

The q-Kostka polynomial associated to SSYT(λ, µ) is

Kλ,µ(q) =
∑

τ∈SSYT(λ,µ)

qcharge(τ), (1.9)

where charge(τ) is the charge statistic on semistandard Young tableaux. A full refer-

ence on the charge statistic for semistandard Young Tableaux may be found in [11].

To restrict to standard tableaux, let the content µ = 1|λ|, the all ones composition,

so then

Kλ,1|λ|(q) =
∑

τ∈SYT(λ)

qcharge(τ). (1.10)

9

We will limit our definition of the charge statistic to standard young tableaux. For

τ ∈ SYT(λ), define the standard word or reading word of τ , rw(τ), as a concatenated

list of the entries in the tableau beginning with the last row. For instance, consider

the tableau τ from Figure 1.4:

τ = 1 2 5 6 12
3 4 9 11
7 8
10

.

This tableau has reading word rw(τ) = (10, 7, 8, 3, 4, 9, 11, 1, 2, 5, 6, 12). Let the index

of a letter i in a reading word be the number of times a letter j < i has the letter j+1

to its right. The charge of a reading word is the sum of the indices of all letters in

the word. For instance, the index of 10 is 6, since among the numbers i = 1, 2, . . . , 9,

precisely six of them have i+1 to their right in the word. In this example, the indices

for each letter in rw(τ) are

rw(τ) = (10 7 8 3 4 9 11 1 2 5 6 12)

Indices: 6 4 5 1 2 6 7 0 1 3 4 8 = 47

.

Finally, define the charge of a standard Young tableau τ to be the charge of its

reading word. In our example, charge(τ) = charge(rw(τ)) = 47. We can perform

this computation in a slightly different way. Notice that for i ∈ {1, . . . , |λ| − 1}, i is

a descent in τ if and only if it appears to the right of i + 1 in rw(τ): the entries of

10

τ which contribute to the charge and those which contribute to the major index are

mutually exclusive and partition {1, . . . , |λ| − 1}:

maj(τ) =
∑

i∈Des(τ)

i, (1.11)

charge(τ) =
∑

i∈{1,...,|λ|−1}\Des(τ)

(|λ| − i). (1.12)

Note that for a given tableau τ ∈ SYT(λ), this gives

maj(τ) + charge(τ) =

(
|λ|
2

)
. (1.13)

This allows us write fλ in terms of Kλ,1|λ|(q):

fλ(q−1) = q−(|λ|2)Kλ,1|λ|(q). (1.14)

As an example, consider the two polynomials for λ = (3, 3, 1):

f (3,3,1)(q) = q6 + q7 + 2q8 + 2q9 + 3q10 + 3q11 + 3q12 + 2q13 + 2q14 + q15 + q16

K(3,3,1),17(q) = q5 + q6 + 2q7 + 2q8 + 3q9 + 3q10 + 3q11 + 2q12 + 2q13 + q14 + q15

A key observation is that (1.13) holds at the level of each tableau, so we may refine

this polynomial by various classes of the tableaux. For instance, consider the charge

11

statistic over standard Young tableaux of shape λ with exactly k descents, or

Kk
λ,1|λ|(q) =

∑
τ∈SYT(λ)
des(τ)=k

qcharge(τ). (1.15)

Thus, we may write fλ,k(q) in terms of this new polynomial, as seen in [8]:

fλ,k(q
−1) = q−(|λ|2)Kk

λ,1|λ|(q) (1.16)

Both of these families of q-Kostka polynomials were studied by Kirillov and

Reshetikhin in [12], who gave a formula for both in terms of a summation over admis-

sible sequences of partitions, (α), together with certain statistics on these sequences,

c(α) and P a
i (α):

Kλ,1|λ|(q) =
∑

α=(µ′,α1,α2,...)

qc(α)
∏
a,i

[
P a
i (α) + αai − αai+1

αai − αai+1

]
q

(1.17)

Kk
λ,1|λ|(q) =

∑
α=(µ′,α1,α2,...)

α1
1=k

qc(α)
∏
a,i

[
P a
i (α) + αai − αai+1

αai − αai+1

]
q

. (1.18)

Note that the latter differs from the former in a restriction on the first part of the

second partition in the sequence. The construction of this formula decomposes these

q-Kostka polynomials into symmetric polynomials with the same central degree.

Since each term in the decomposition is nonnegative, this also suffices to show the

unimodality of these polynomials, and thus fλ,k(q) as well. This, along with the

12

relation established in [10], is enough to show the unimodality of Sagan’s An,k(q).

Though K-R provides a general formula for all fλ,k, writing a single formula down

quickly becomes computationally taxing. For fixed λ and k, one must sum over all

admissible sequences of partition, α, which grows rapidly as one increases k and

the number of parts of λ. In Chapter 3, we will discuss an avenue to reducing the

computational load through restricting the admissibility conditions imposed upon

the sequences α. If one were to find closed forms for fλ,k instead, we could altogether

avoid computation. As we will see in the next section, such closed forms typically

have fewer terms than the number of admissible sequences of Kk
λ,1|λ|(q). Further,

these closed forms tend to be combinatorially interesting, allowing for additional

interpretations of the polynomials.

1.2 Closed forms and beyond

In this paper, we aim to find closed forms for the major index distribution over

SYT(λ, k), fλ,k(q), for several families of partition shapes and fixed k. Further, we

explore potential avenues for extending these results to larger families and descent

numbers. Recall Stanley’s refinement of Frame-Robinson-Thrall’s formula for the

13

number of SYT by major index:

∑
τ∈SYT(λ)

qmaj(τ) =
q
∑
i(i−1)λi [n]q!∏
hi,j∈λ[hi,j]q

. (1.19)

As an ultimate goal, finding a unifying closed formula for any λ and k would give

a (closed) refinement of (1.19) by descent number, perhaps with the inclusion of an

additional parameter.

One interesting facet of fλ,k was revealed in Keith’s study of the polynomials in [10],

and is explored further herein. The polynomials for extremal descent numbers yield

principal specializations of Schur polynomials up to multiplication by a power of q.

Keith showed the case for fλ,k for k maximal:

Theorem 3 (Keith [10]) Let λ = (λ1, . . . , λr) ` n, α = a(α) = (λ2, . . . , λr). Then

fλ,n−λ1 = q(
n−λ1+1

2)sα′(1, q, . . . , q
λ1−1). (1.20)

In Chapter 2, we show the complementary statement, fλ,k for k minimal:

Theorem 4 Let λ = (λ1, λ2, . . . , λr). Then

fλ,r−1 = q(
r
2)λr det

([
λi − λr + (r − i)

r − j

]
q

)
1≤i,j≤r

. (1.21)

14

While this alone is fascinating, it is possible that the polynomials for non-extremal

descent numbers can be expressed in terms of linear combinations of certain princi-

pal specializations or their shifts by a power of q. In fact, for two-rowed standard

(and skew-standard) Young tableaux, there is a determinantal form which arises as a

principal specialization of a Schur function:

Theorem 5 (Keith [10]) Let λ = (λ1, λ2) and µ = (µ1) with 0 ≤ µ1 < λ1. Then

fλ\µ,i(q) = qi
2

([
λ1 − µ1

i

]
q

[
λ2
i

]
q

−
[
λ1 + 1

i

]
q

[
λ2 − µ1 − 1

i

]
q

)
(1.22)

= qi
2

s(λ1−i,λ2−i)\µ(1, q, . . . , qi+1). (1.23)

Other work, notably [13] by George Wang, yields a formula fλ,k for partitions of the

form λ = (λ1, λ2, 2
h2−2, 2h1−h2): precisely those with Durfee square of size 2. In this

manuscript, we give a closed formula for fλ,k(q) for standard Young tableau with

three parts and one more than the minimal number of descents:

Theorem 6 Let λ = (n, k, j) ` N . Then we have

fλ,3 = q−1
(
f(n+1,k+1),3 − f(n+1,j),3 + f(k,j),3

)
+ q6j−8f(n−j+2,k−j+2),3

+

j−1∑
i=1

q6i−9
(
f(n−i+3,k−i+3),3 − f(n−i+3,j−i+2),3 + f(k−i+2,j−i+2),3

)
− q3j+2k+1(1 + qn−k+1 + qn−j+2)

(1− qj−1)(1− qk−j+1)(1− qn−k+1)(1− qn−j+2)

(1− q)2(1− q2)(1− q3)
.

15

In terms of principal specializations of Schur functions (using the shorthand sβ =

sβ(1, q, . . . , q4)), we have

fλ,3 = q8(s(n−2,k−2) − s(n−2,j−3) + s(k−3,j−3)) + q6j+1s(n−j−1,k−j−1)

+

j−1∑
i=1

q6i(s(n−i,k−i) − s(n−i,j−i−1) + s(k−i−1,j−i−1))

− q3j+2k+1(1 + qn−k+1 + qn−j+2)
(1− qj−1)(1− qk−j+1)(1− qn−k+1)(1− qn−j+2)

(1− q)2(1− q2)(1− q3)
.

This theorem notably proves conjectures Conjectures 14 and 15 of [10], extending

current work on the subject. Further, the ability for us to write f(n,k,j),3(q) (nearly)

as a q-linear combination of Schur polynomials indicates that future extensions to

larger numbers of descents or parts may take on a similar form.

Finally, several of the formulas we prove and conjecture herein have several regular-

ities. We will see symmetry and equivalence (up to a shift) among these formulas,

typically demonstrated by partition (or tableau) conjugation and complementation

in some region. These are often the most noticeable with rectangular tableaux:

Theorem 7 Let λ = (n, . . . , n) = nr ` nr. Then

fλ,r(q) = q(
r
2)n
([
n+ r

r

]
q

−
[
nr + 1

1

]
q

)
= fλ,r−1(q)

([
n+ r

r

]
q

−
[
nr + 1

1

]
q

)
. (1.24)

We note that 1.24 demonstrates a pleasant result: since fnr,r(q) is unimodal ([10]),

16

the difference of q-binomials
[
n+r
r

]
q
−
[
nr+1
1

]
q

is also unimodal. This is precisely the

trivial case of F. Bergeron’s ad-bc conjecture, which states

Conjecture 1 (Bergeron [14]) Fix any positive integers a, b, c, d such that a is the

smallest and ad = bc. Then the coefficients of the symmetric polynomial

[
b+ c

b

]
q

−
[
a+ d

d

]
q

(1.25)

are nonnegative and unimodal.

Bergeron’s conjecture, along with problems concerning the unimodality of differences

of certain q-binomial coefficients and the strict unimodality of q-binomial coefficients

have seen much interest interest in recent years ([14], [15], [16] [7], [17], [18]). It

would be interesting to determine if closed forms for fnr,k(q) with k > r yield related

non-trivial results in this vein.

Another theorem gives a relation upon tableaux whose partition shapes are comple-

mentary within the r × (λ1 + 1) box:

Theorem 8 Let λ = (λ1, λ2, . . . , λr) and ρ = (λ1 + 1−λr, λ1 + 1−λr−1, . . . , λ1 + 1−

λ2, 1). Then

fλ,r−1 = q(r−1)|λ|−(r2)(λ1+1)fρ,r−1. (1.26)

17

As an example, consider the partition λ = (5, 3, 2) and its complement in the 3 × 6

box, ρ = (4, 3, 1):

λ

ρ
r

λ1 + 1

.

Figure 1.5: Complementary partitions in the r × (λ1 + 1) box.

The distributions fλ,2(q) and fρ,2(q) are given by the following:

fλ,2 = q6det

([
λi + 1− i

3− j

]
q

)
1≤i,j≤3

= q6

∣∣∣∣∣∣∣∣∣∣∣∣

[
5
2

]
q

[
5
1

]
q

[
5
0

]
q[

2
2

]
q

[
2
1

]
q

[
2
0

]
q[

0
2

]
q

[
0
1

]
q

[
0
0

]
q

∣∣∣∣∣∣∣∣∣∣∣∣
= q6

([
5

2

]
q

[
2

1

]
q

−
[
5

1

]
q

)
= q7 + 2q8 + 3q9 + 3q10 + 3q11 + 2q12 + q13

18

fρ,2 = q3det

([
ρi + 2− i

3− j

]
q

)
1≤i,j≤3

= q3

∣∣∣∣∣∣∣∣∣∣∣∣

[
5
2

]
q

[
5
1

]
q

[
5
0

]
q[

3
2

]
q

[
3
1

]
q

[
3
0

]
q[

0
2

]
q

[
0
1

]
q

[
0
0

]
q

∣∣∣∣∣∣∣∣∣∣∣∣
= q3

([
5

2

]
q

[
3

1

]
q

−
[
5

1

]
q

[
3

2

]
q

)
= q5 + 2q6 + 3q7 + 3q8 + 3q9 + 2q10 + q11.

Note that (r − 1)|λ| −
(
r
2

)
(λ1 + 1) = 2(10) − 3(6) = 2, so Theorem 8 holds for this

small example.

These relations arise frequently enough, even experimentally, to raise significant cu-

riosity regarding potential hidden structures among the fλ,k(q). Indeed, Chapter 4

discusses one such possible structure based on polynomial division among families of

tableaux.

1.3 Tableau threads

Throughout the paper, we make frequent use of the reference to consecutive runs of

integers in the filling of a tableau. To this end, we define the threads of a tableau.

Let λ = (λ1, . . . , λr) ` n and τ ∈ SYT(λ, k) for r − 1 ≤ k ≤ n − λ1 have descent

set Des(τ) = {d1, . . . , dk}. Define the ith thread of τ as the sequence of consecutive

positive integers Ti(τ) := (1 +di−1, . . . , di), with d0 = 0 and dk+1 = n. For i > (k+ 1)

19

or i < 1, let Ti(τ) = ∅. As an example, consider the following tableaux τ :

τ = 1 2 5 6 7 101117
3 4 8 9 1516
121314

.

Its descent set is Des(τ) = {2, 7, 11}, and so its threads are T1(τ) = (1, 2), T2(τ) =

(3, . . . , 7), T3(τ) = (8, . . . , 11), and T4(τ) = (12, . . . , 17). As a descent set does not

identify a tableau, neither does the list of threads. Consider

µ = 1 2 4 5 6 7 1011
3 8 9 151617
121314

.

The tableaux τ and µ both have the same shape, descent set, and threads, yet are

not the same tableau. However, if we instead specify which portion of each thread

is in each row, we may fully identify a tableau using its threads. Let Tmi (τ) be the

portion of Ti(τ) in the mth row of τ for 1 ≤ i ≤ k + 1 and 1 ≤ m ≤ r. Then

τ =

(
Tmi (τ)

)
1≤m≤r
1≤i≤k+1

. (1.27)

The example tableau, τ , can be written in this way as

τ =


(1, 2) (5, 6, 7) (10, 11) (17)

∅ (3, 4) (8, 9) (15, 16)

∅ ∅ ∅ (12, 13, 14)

 .

20

This is evidently reversible given a valid doubly-indexed list of threads Tmi , as one

may write the entries τ by reading the entries in the table left-to-right, top-to-bottom.

For specificity, a valid list of threads has the following properties:

1. Each positive integer 1, . . . , n appears exactly once among all threads;

2. Each non-empty entry Tmi is a list of increasing consecutive positive integers;

3. The entries of non-empty Ti are less than those in Tj iff i < j;

4. The entries of non-empty Tmi are less than those in T ni iff m > n.

This list of threads corresponds to a τ ∈ SYT(λ, k) if the total number of entries

across all sequences in row i gives λi for 1 ≤ i ≤ r and the largest positive integer in

column j is the jth descent, dj, for 1 ≤ j ≤ des(τ). Further, define |Ti| (resp. |Tmi |)

as the length of the ith thread (resp. in the mth row) of τ , the total number of boxes

of τ in the ith thread (resp. and in the mth row).

21

Chapter 2

Closed formulas and symmetries

2.1 Minimum descents

In [10], Keith provided a formula for fλ,n−λ1(q), the polynomial for major index over

descent of tableaux of shape λ = (λ1, . . . , λr) with maximum number of descents.

Here, we communicate a similar proof for fλ,r−1(q) and provide a formula regarding

conjugate tableaux.

23

Theorem 4 Let λ = (λ1, λ2, . . . , λr). Then

fλ,r−1 = q(
r
2)λr det

([
λi − λr + (r − i)

r − j

]
q

)
1≤i,j≤r

= q(
r
2)λr det

([
r − 1 + λi − λr − i+ j

r − 1

]
q

)
1≤i,j≤r

= det

([
r

λ′i − i+ j

]
q

q(
λ′i−i+j

2)
)

1≤i,j≤λ1
.

Proof. Suppose r = 1. Then fλ,0 = 1, as there is a single SYT of shape (λ1) with

major index 0. We have

det

([
1

1− i+ j

]
q

q(
1−i+j

2)
)

1≤i,j≤λ1
= 1,

as the matrix has
[
1
1

]
q
q(

1
2) = 1 on the diagonal,

[
1
0

]
q
q(

0
2) = 1 on the subdiagonal, and

zeroes elsewhere.

Suppose now that r > 1, and let λ = (λ1, . . . , λr). Consider the columns of the

partition, labelled {1, 2, . . . , λ1}. Let S be a collection of the columns of a tableau

τ ∈ SYT(λ, r − 1) corresponding to the columns inhabited by Tr(τ), the last thread

of the tableau, excluding the first column. That is, a collection of columns S is valid

if S contains 2, 3, . . . , λr, and if the bottom entry of a column in S is in row i of the

tableau, then all columns to the right whose bottom entries are also in row i are also

in the column. If |Tr(τ)| = 1, then the first box in the last row of τ has the label n

and so S = ∅.

24

Consider now S∪{1}, the collection of columns corresponding to the entire last thread

of τ . The removal of this thread removes the boxes n−|S|, n−|S|+1, . . . , n, eliminates

a single descent from τ , and reduces the major index by n − (|S| + 1). Denote the

resulting partition shape as λ↓(S∪{1}). Performing this removal for all possible final

threads, we have the recurrence

fλ,r−1 = qn−1fλ↓{1},r−2 +
∑

S⊆{2,...,λ1}
S 6=∅

qn−(|S|+1)fλ↓(S∪{1}),r−2

=
∑

S⊆{2,...,λ1}

qn−(|S|+1)fλ↓(S∪{1}),r−2.

Marking S in a dark gray and {1} in a light gray, consider the following filling of

λ = (7, 3, 3, 2), where S = {2, 3, 6, 7}:

1 2 3 7 8 1415
4 5 6
9 1013
1112

.

Figure 2.1: SYT of shape (7, 3, 3, 2) with last thread in columns
{1, 2, 3, 6, 7}.

25

By induction, the claim of the theorem is now

fλ,r−1 = det

([
r

λ′i − i+ j

]
q

q(
λ′i−i+j

2)
)

1≤i,j≤λ1

=
∑

S⊆{2,...,λ1}

qn−(|S|+1) det

([
r − 1

λ′i − χ(i)− i+ j

]
q

q(
λ′i−χ(i)−i+j

2)
)

1≤i,j≤λ1
.

Consider terms in which λ1 6∈ S, and pair with the terms given by S ∪ {λ1}. Denote

δi,λ1 as the Dirac delta, such that δi,λ1 is 1 if i = λ1, 0 otherwise. Then we have

qn−(|S|+1) det

([
r − 1

λ′i − χ(i)− i+ j

]
q

q(
λ′i−χ(i)−i+j

2)
)

1≤i,j≤λ1

+ qn−(|S|+2) det

([
r − 1

λ′i − χ(i)− i+ j − δi,λ1

]
q

q(
λ′i−χ(i)−i+j−δi,λ1)

)
1≤i,j≤λ1

= qn−(|S|+2)

[
q det

([
r − 1

λ′i − χ(i)− i+ j

]
q

q(
λ′i−χ(i)−i+j

2)
)

1≤i,j≤λ1

+ det

([
r − 1

λ′i − χ(i)− i+ j − δi,λ1

]
q

q(
λ′i−χ(i)−i+j−δi,λ1)

)
1≤i,j≤λ1

]
.

Expand each determinant as a sum over permutations, and consider σ =

(σ1, . . . , σλ1) ∈ Sλ1 . The terms in the sum that correspond to this permutation

26

are:

qn−(|S|+2)

[
q

λ1∏
i=1

[
r − 1

βi

]
q

q(
βi
2) +

λ1∏
i=1

[
r − 1

βi − δi,λ1

]
q

q(
βi−δi,λ1

2
)
]

= qn−(|S|+2)

[λ1−1∏
i=1

[
r − 1

βi

]
q

q(
βi
2)
][
q

[
r − 1

βλ1

]
q

q(
βλ1
2

) +

[
r − 1

βλ1 − 1

]
q

q(
βλ1−1

2
)
]

= qn−(|S|+2)

[λ1−1∏
i=1

[
r − 1

βi

]
q

q(
βi
2)
][
qβλ1

[
r − 1

βλ1

]
q

+

[
r − 1

βλ1 − 1

]
q

]
q(

βλ1
−1

2
)

= qn−(|S|+2)

[λ1−1∏
i=1

[
r − 1

βi

]
q

q(
βi
2)
][

r

βλ1

]
q

q(
βλ1
−1

2
),

since
[
n
k

]
q

= qk
[
n−1
k

]
q

+
[
n−1
k−1

]
q
. So, we now have the claim

fλ,r−1 =
∑

S⊆{2,...,λ1−1}

qn−(|S|+2) det

([
r − 1 + δi,λ1

λ′i − χ(i)− i+ j

]
q

q(
λ′i−χ(i)−i+j−δi,λ1

2
)
)

1≤i,j≤λ1
.

The sets S now never contain λ1, and the last row of each matrix has r in the

upper index of the q-binomial coefficient. Continue this matching process for indices

λ1 − 1, λ1 − 2, . . . , 2, until finally, first noting that detA = detAT and multiplying

27

row i by qλ
′
i−1 multiplies the determinant by the same factor, we have:

qn−λ1 det

([
λ1

λ′i − i+ j

]
q

q(
λ′i−i+j−1

2)
)

1≤i,j≤λ1

= q
∑λ1
i=1 λ

′
i−1 det

([
λ1

λ′i − i+ j

]
q

q(
λ′i−i+j−1

2)
)

1≤i,j≤λ1

= det

([
λ1

λ′i − i+ j

]
q

q(
λ′i−i+j−1

2)+(λ′i−1)
)

1≤i,j≤λ1

= det

([
λ1

λ′i − i+ j

]
q

q(
λ′i−i+j

2)+i−j
)

1≤i,j≤λ1

= q(
λ1+1

2)−(λ1+1
2) det

([
λ1

λ′i − i+ j

]
q

q(
λ′i−i+j

2)
)

1≤i,j≤λ1

= det

([
λ1

λ′i − i+ j

]
q

q(
λ′i−i+j

2)
)

1≤i,j≤λ1

= fλ,r−1.

�

2.2 Symmetries

It is no coincidence that the proofs for maximum and minimum descents are incredibly

similar. In fact, if we consider the set of tableaux of shape λ with k descents, we

may simply conjugate the Young diagrams to obtain a set of Young tableaux with a

conjugate number of descents. This yields the following relation:

28

Theorem 9 Let λ = (λ1, λ2, . . . , λr) ` n. Let M be the sum of the smallest major

index and largest major index among all SYT(λ, k). Then

fλ,k = q(
n
2)−Mfλ′,n−k−1. (2.1)

Equivalently, letting k = (r − 1) + i:

fλ,(r−1)+i = q(
n
2)−Mfλ′,(n−r)−i. (2.2)

Proof. Let τ ∈ SYT(λ, k) with descent set Des(τ) = {d1, . . . , dk}. Consider the

placement of box di + 1 in the Young diagram of τ for 1 ≤ i ≤ k. Since di is a

descent, di + 1 must appear in a row lower than di, and either in the same column

or one to the left of di. In the conjugate tableau τ ′, the box di + 1 will now be in

the same row or above di, in a column to the right. Hence, di is not a descent in the

conjugate tableau. Similarly, a box which isn’t a descent in τ will become a descent

in τ ′. Further, maj(τ ′) =
(
n
2

)
−maj(τ ′), since Des(τ ′) = {1, 2, . . . , n− 1}\Des(τ). �

While writing downM explicitly can be tedious for most λ and k, the case of minimum

(and maximal) descent fillings of λ and its conjugate is straightforward, allowing us

to conclude the theorem at the start of the chapter without a lengthy proof. To do

so, we rely on the following lemma:

29

Lemma 1 Let λ = (λ1, . . . , λr). Among SYT(λ, r−1), a tableau with maximal major

index τmin is constructed by filling {1, 2, . . . , λ1} across the first row, {λ1 +1, . . . , λ1 +

λ2} across the second row, and so on. Further, maj(τmin) =
∑r

i=1(r − i)λi.

Proof. Let τ ∈ SYT(λ, r − 1) be the described tableau. Each thread Ti(τ) of τ is

contained entirely to row i for 1 ≤ i ≤ r. Suppose a tableau µ of the same shape with

larger major index and the same number of descents exists. Then one thread Ti(µ)

must be longer, in which case Ti(µ) extends to a row above row i. However, since

thread Ti(µ) begins in the first column of row i, this creates a gap, which must be

filled by the next thread, and so on, eventually leaving an unfilled collection of boxes

along the outer edge of the tableau. This may only be filled by a new thread, Tr+1(µ),

but then the tableau would have r descents. Hence, τ is has the maximum major

index among tableau of the same shape and minimal of descents, and has major index

maj(τ) = λ1 + (λ1 + λ2) + (λ1 + λ2 + λ3) + · · ·+ (λ1 + · · ·+ λr−1)

= (r − 1)λ1 + (r − 2)λ2 + · · ·+ λr−1

=
r∑
i=1

(r − i)λi.

�

30

Theorem 10 Let λ = (λ1, λ2, . . . , λr) ` n. Then

fλ,n−λ1 = q(
n+1
2)−nλ1fλ′,λ1−1, (2.3)

fλ,r−1 = qnr−(n+1
2)fλ′,n−r. (2.4)

Proof. We know that fλ,n−λ1 and fλ′,λ1−1 are equivalent up to a shift by a power of

q, so we only need to find the the minimum degree of both polynomials.

Consider the filling τ of λ with minimal descents and minimal major index. The

major index of τ is simply
∑λ1

i=1

(
λ′i
2

)
=
∑r

i=1(i − 1)λi, given by the power of q in

Stanley’s formula for the distribution of major index over SYT(λ). The minimum

major index of a filling τ2 of λ with maximal number of descents can be found by

conjugating τ2: τ
′
2 is a tableau with maximal number of descents and maximal major

index, given by the previous lemma. That is, τ2 has entries {1, 2, . . . , λ′1} down the

first column, {λ′1 + 1, . . . , λ′1 + λ′2} down the second column, and so on. Every entry

counts towards the major index except the last entry in each column, so maj(γ) =(
n+1
2

)
−
∑λ1

i=1

∑i
j=1 λ

′
j. Algebraically, we simplify the shift from fλ,n−λ1 to fλ′,λ1−1 as

((
n+ 1

2

)
−

λ1∑
i=1

i∑
j=1

λ′j

)
−

λ1∑
i=1

(i− 1)λ′i =

(
n+ 1

2

)
−
(λ1∑

i=1

(
i∑

j=1

λ′j) + (i− 1)λ′i

)

=

(
n+ 1

2

)
−

λ1∑
i=1

λ1 · λ′i

=

(
n+ 1

2

)
− nλ1.

31

Similarly, we write the shift from fλ,r−1 to fλ′,n−r as

r∑
i=1

(i− 1)λi −
((

n+ 1

2

)
−

r∑
i=1

i∑
j=1

λj

)
= nr −

(
n+ 1

2

)
.

�

Consider now the partition λ = (λ1, . . . , λr) placed at the top-left corner of the

r × (λ1 + 1) box. The complement of λ in this box forms a second partition, ρ =

(λ1 +1−λr, λ1 +1−λr−1, . . . , λ1 +1−λ2, 1), of size |ρ| = r(λ1 +1)−|λ|. While these

two partition shapes may be wildly different, their generating functions for major

index over minimal descents are related.

Theorem 8 Let λ = (λ1, λ2, . . . , λr) and ρ = (λ1 + 1−λr, λ1 + 1−λr−1, . . . , λ1 + 1−

λ2, 1). Then

fλ,r−1 = q(r−1)|λ|−(r2)(λ1+1)fρ,r−1.

Proof. The conjugate partitions corresponding to λ and ρ are

λ′ = (λ′1, . . . , λ
′
λ1

) and

ρ′ = (ρ′1, . . . , ρ
′
ρ1

) = (r, r − λ′λ1 , r − λ
′
λ1−1, . . . , r − λ

′
λr+1).

32

Applying the determinant forms for each generating function, we have

fλ,r−1 = det

([
r

λ′i − i+ j

]
q

q(
λ′i−i+j

2)
)

1≤i,j≤λ1
,

fρ,r−1 = det

([
r

ρ′i − i+ j

]
q

q(
ρ′i−i+j

2)
)

1≤i,j≤ρ1

= det

([
r

r − λ′λ1−i+2 − i+ j

]
q

q(
r−λ′λ1−i+2−i+j

2
)
)

1≤i,j≤λ1−λr+1

.

For the first generating function, we reverse the order of rows and columns in the

matrix, sending entry (i, j) to position (λ1 − i+ 1, λ1 − j + 1) for 1 ≤ i, j ≤ λ1. Note

that while swapping the position of two rows or two columns of a matrix inverts the

sign of the determinant, performing this for all rows and columns is an even number

of operations. Hence, the sign of the resulting determinant is unchanged and we have

fλ,r−1 = det

([
r

λ′λ1−i+1 + i− j

]
q

q(
λ′λ1−i+1+i−j

2
)
)

1≤i,j≤λ1

The diagonal entry is q(
r
2) when λ′λ1−i+1 = r. This happens for indices λ1 − λr + 1 ≤

i ≤ λ1, i.e. in the rows corresponding to λ′1, λ
′
2, . . . , λ

′
λr

. The entries to left of the

diagonal in these rows, then, is zero. Evaluating the determinant by minors, we have

fλ,r−1 = q(
r
2)λrdet

([
r

λ′λ1−i+1 + i− j

]
q

q(
λ′λ1−i+1+i−j

2
)
)

1≤i,j≤λ1−λr
.

Now, consider the generating function for fρ,r−1. In the first row of the corresponding

matrix, ρ′1 = r, so every entry is 0 except for the one in the first column, which is

33

q(
r
2). Hence, we have

fρ,r−1 = q(
r
2)det

([
r

r − λ′λ1−i+1 − i+ j

]
q

q(
r−λ′λ1−i+1−i+j

2
)
)

1≤i,j≤λ1−λr

= q(
r
2)det

([
r

λ′λ1−i+1 − i+ j

]
q

q(
r−λ′λ1−i+1−i+j

2
)
)

1≤i,j≤λ1−λr
.

To show the two determinants are equivalent up to a shift, we only need to shift each

entry of the matrix corresponding to fρ,r−1 the appropriate amount. Expanding the

power of q in each entry of the matrices, we see that the entries in column i of the

matrix corresponding to ρ need to be multiplied by q
1
2
(r−1)(2(i+λ′λ1−i+1)−r), and those

in row j by q(1−r)j. Multiplying any row or column of a matrix by a scalar multiplies

the determinant by that scalar, so the determinants are equal up to a shift by the

following power of q:

λ1−λr∑
i=1

[1
2

(r − 1)(2(i+ λ′λ1−i+1)− r)− (r − 1)i
]

+

(
r

2

)
(λr − 1)

=
1

2
(r − 1)

λ1−λr∑
i=1

[
2λ′λ1−i+1 − r

]
+

(
r

2

)
(λr − 1)

= (r − 1)
[
λ′λ1 + · · ·+ λ′λr+1

]
− 1

2
r(r − 1)(λ1 − λr) +

(
r

2

)
(λr − 1)

= (r − 1)(|λ| − rλr) +

(
r

2

)
(2λr − λ1 − 1)

= (r − 1)|λ| −
(
r

2

)
(λ1 + 1).

�

34

Note, then, that these two generating functions are equal if and only if |λ| = r(λ1+1)
2

:

if each partition fills exactly one half of the r× (λ1 + 1) box. It would be interesting

to find a combinatorial explanation for this relation. Consider the final thread in

each partition shape. In a tableau of shape λ, this thread is required to traverse the

last row, then may continue on to any of the higher rows. For the ith row, we have a

number of choices: we may skip the row, or continue the thread on that row in any

of λi − λi+1 places. Hence, we have a total of
∑r−1

i=1 λi − λi+1 + 1 = λ1 − λr + r − 1

choices. For a tableau of shape ρ, we similarly have a total of
∑r−1

i=1 ρi − ρi+1 + 1 =∑r−1
i=1 (λr + 1−λr−i+1− (λr + 1−λr−i) + 1) =

∑r−1
i=1 λr−i−λr−i+1 + 1 = λ1−λr + r−1

choices for the last thread. To prove this relation combinatorially, one would need to

show that these choices (for all threads) are equinumerous and that they have the

same distribution with respect to the major index. Now, consider the shift in the

relation. The first term in the exponent of the shift, (r − 1)|λ|, could be considered

as an “impossible” maximal major index, wherein all r − 1 descents in a tableau of

shape λ are in the largest box. The second term,
(
r
2

)
(λ1 + 1), is the major index of

the one tableau that fills the r × (λ1 + 1) box.

35

2.3 Minimum-plus-one descents

2.3.1 Three rowed tableaux

For general three-rowed partitions λ = (λ1, λ2, λ3) ` N , finding a suitable closed

formula for fλ,i for i > 2 can become quite tedious. Here we provide a combinatorial

argument yielding a closed form for i = 3, after proving a lemma used within.

Lemma 2 Let A,B,C ∈ N. Then

A∑
i=0

qB−C+i

[
B + i

C

]
q

=

[
A+B + 1

C + 1

]
q

−
[

B

C + 1

]
q

. (2.5)

Proof. We interpret the summation combinatorially. The left-hand side gives the

partitions in the (B−C+i)×C box with an extra strip of shape 1×(B−C+i) appended

to each. Ranging over i, this indexes the partitions in the (A+B−C)× (C + 1) box

by the size of their first part. The first parts considered are those of lengths B − C

to A + B − C, so we have all partitions in that box except those with first part of

size B − (C + 1) or lesser, which is precisely given by the right-hand side. �

36

Theorem 6 Let λ = (n, k, j) ` N . Then we have

fλ,3 = q−1
(
f(n+1,k+1),3 − f(n+1,j),3 + f(k,j),3

)
+ q6j−8f(n−j+2,k−j+2),3

+

j−1∑
i=1

q6i−9
(
f(n−i+3,k−i+3),3 − f(n−i+3,j−i+2),3 + f(k−i+2,j−i+2),3

)
−
[
j − 1

1

]
q

(n,k)∑
α=(k,j)

q2α1+3α2+1

[
α1 − α2 + 1

1

]
q

.

Proof. Let τ ∈ SYT(λ, 3). We will consider the three distinct configurations of the

last thread, T4(τ). Let f iλ,3 be the major index over descent polynomial for tableaux of

shape λ with 3 descents wherein the last thread has one of three following behaviors:

1. f 1
λ,3: the last thread covers the entire last row;

2. f 2
λ,3: the last thread does not contribute to the last row;

3. f 3
λ,3: the last thread contributes to a portion of the last row.

Note that since the last thread has to exhibit exactly one of these behaviors, we have

fλ,3 = f 1
λ,3 + f 2

λ,3 + f 3
λ,3.

1. |T 3
4 (τ)| = j

If the last thread has length j in the last row, then it covers the row in its

entirety. T4(τ) may also cover up to k − j boxes in the second row and up to

n− k in the first row, as illustrated:

37

β1

β2

T 1
4

T 2
4

T 3
4

.

Figure 2.2: A tableau whose last thread covers the entire last row.

Remove this thread, and write the remaining partition shape after this removal

as β = (β1, β2), so then (k, j) ⊆ β ⊆ (n, k). Removing a thread T4 that yields

the partition shape β removes a single descent at position |β| from the tableau,

so we have the following summation for the tableaux in this case:

f 1
λ,3 =

∑
(k,j)⊆β⊆(n,k)

q|β|fβ,2.

Applying the major index over descent formula for two-rowed tableaux from

[10] and reindexing the sum with α1 = β1 − k and α2 = β2 − j, we have

f 1
λ,3 =

n∑
β1=k

k∑
β2=j

qβ1+β2+4

([
β1
2

]
q

[
β2
2

]
q

−
[
β1 + 1

2

]
q

[
β2 − 1

2

]
q

)

= qk+j+4

n−k∑
α1=0

k−j∑
α2=0

qα1+α2

([
k + α1

2

]
q

[
j + α2

2

]
q

−
[
(k + 1) + α1

2

]
q

[
(j − 1) + α2

2

]
q

)
.

This sum telescopes, eliminating the first term for all but α1 = 0 or α2 = k − j

38

and the second for all but α1 = n− k or α2 = 0. Taking care not to introduce

extra terms, we have

f 1
λ,3 = qk+j+4

([
k

2

]
q

k−j−1∑
i=0

qi
[
j + i

2

]
q

+ qk−j
[
k

2

]
q

n−k∑
i=0

qi
[
k + i

2

]
q

−
[
j − 1

2

]
q

n−k−1∑
i=0

qi
[
k + 1 + i

2

]
q

− qn−k
[
n+ 1

2

]
q

k−j∑
i=0

qi
[
(j − 1) + i

2

]
q

)
.

After an application of the identity
∑A

i=0 q
B−2+i[B+i

2

]
q

=
[
A+B+1

3

]
q
−
[
B
3

]
q

and

simplifying, we have

f 1
λ,3 = qk+6

[
k

2

]
q

([
n+ 1

3

]
q

−
[
j

3

]
q

)
− qj+5

[
j − 1

2

]
q

([
n

3

]
q

−
[
k + 1

3

]
q

)
− qn+7

[
n+ 1

2

]
q

([
k

3

]
q

−
[
j − 1

3

]
q

)
.

39

Applying the q-Pascal identity qm−r
[
m−1
r−1

]
q

=
[
m
r

]
q
−
[
m−1
r

]
q

thrice yields

f 1
λ,3 = q8

([
k + 1

3

]
q

−
[
k

3

]
q

)([
n+ 1

3

]
q

−
[
j

3

]
q

)
− q8

([
j

3

]
q

−
[
j − 1

3

]
q

)([
n+ 1

3

]
q

−
[
k + 1

3

]
q

)
− q8

([
n+ 2

3

]
q

−
[
n+ 1

3

]
q

)([
k

3

]
q

−
[
j − 1

3

]
q

)
= q8

([
n+ 1

3

]
q

[
k + 1

3

]
q

−
[
n+ 2

3

]
q

[
k

3

]
q

−
[
n+ 1

3

]
q

[
j

3

]
q

+

[
n+ 2

3

]
q

[
j − 1

3

]
q

+

[
k

3

]
q

[
j

3

]
q

−
[
k + 1

3

]
q

[
j − 1

3

]
q

)
= q−1

(
f(n+1,k+1),3 − f(n+1,j),3 + f(k,j),3

)
.

2. |T 3
4 (τ)| = 0.

Because there must be a descent from T3(τ) to T4(τ), if the last thread covers

none of the last row it must start in the second row. As T3(τ) must cover the

entire last row of the tableau, we have 1 ≤ |T 2
4 | ≤ k − j. Further, 0 ≤ |T 1

4 | ≤

n− k, since T4 covers the rightmost boxes in row 2. We may remove this entire

strip. Note, however, that the last box of T3 is fixed to be in the rightmost box

of row one after removal of T4, so we may also remove this box. This leaves

tableaux of shape (k − 1, j, j) ⊆ β ⊆ (n − 1, k − 1, j) across all τ , with major

index |β| + 1 less than their respective τ . Hence, the tableaux in this case are

40

given by

f 2
λ,3 =

∑
(k−1,j,j)⊆β⊆(n−1,k−1,j)

q|β|+1fβ,2.

Applying the minimum descent formula for tableaux with three rows, we have

f 2
λ,3 =

∑
β

q|β|+1+3β3det

([
βs − β3 − s+ t+ 2

2

]
q

)
1≤s,t≤3

= q4j+1

n−1∑
β1=k−1

k−1∑
β2=j

qβ1+β2
([
β1 − j + 2

2

]
q

[
β2 − j + 2

2

]
q

−
[
β1 − j + 3

2

]
q

[
β2 − j + 1

2

]
q

)
.

Now, we fix β1 and evaluate each of terms with respect to the β2 sum. For

instance, notice that
∑k−1

β2=j
qβ2−j

[
β2−j+2

3

]
q

indexes the partitions in the 3× (k−

1 − j) box by the size of their first part, yielding
[
k−j+2

3

]
q
. Repeating this for

the other term gives

q5j+1+β1

([
β1 − j + 2

2

]
q

k−1∑
β2=j

qβ2−j
[
β2 − j + 2

2

]
q

− q
[
β1 − j + 3

2

]
q

k−1∑
β2=j

qβ2−j−1
[
β2 − j + 1

2

]
q

)

= q5j+1+β1

([
β1 − j + 2

2

]
q

[
k − j + 2

3

]
q

− q
[
β1 − j + 3

2

]
q

[
k − j + 1

3

]
q

)
.

41

With this, we close the β1 sum by repeating this interpretation then simplifying:

f 2
λ,3 = q6j+1

n−1∑
β1=k−1

(
qβ1−j

[
k − j + 2

3

]
q

[
β1 − j + 2

2

]
q

− qβ1−j+1

[
k − j + 1

3

]
q

[
β1 − j + 3

2

]
q

)
= q6j+1

([
k − j + 2

3

]
q

([
n− j + 2

3

]
q

−
[
k − j + 1

3

]
q

)
−
[
k − j + 1

3

]
q

([
n− j + 3

3

]
q

−
[
k − j + 2

3

]
q

))
= q6j+1

([
n− j + 2

3

]
q

[
k − j + 2

3

]
q

−
[
n− j + 3

3

]
q

[
k − j + 1

3

]
q

)
= qf(n−1,k−1,j,j),3

= q6j−8f(n−j+2,k−j+2),3.

If k = j, then T4 is forced to begin on the third row for the tableau to have three

descents, hence this term would be zero. We note that it’s rather interesting

that the distribution of the major index of all tableaux in this case is equivalent

(up to a shift by a power of q) to the distribution of a single partition shape.

3. 0 < |T 3
4 (τ)| < j:

If the last thread starts in the last row in a column other than the first, it can

have length at most k − j in the second row and at most n − k in the first

row. Removing this thread, the resulting partition shape (for all τ) is among

(k, j, 1) ⊆ β ⊆ (n, k, j − 1). However, the tableaux of this shape will form a

subset of SYT(β, 2): in particular, those whose last thread, T3(τ), has some

42

entries in the first or second row. In other words, we can write these as the

tableaux of shape β except for those whose last thread stays in the third row.

Call this exceptional set of tableaux S∗β. Thus, we have

f 3
λ,3 =

∑
(k,j,1)⊆β⊆(n,k,j−1)

q|β|fβ,2 − q|β|
∑
κ∈S∗β

qmaj(κ).

The major index over descent polynomial in S∗β can be rewritten, however. Since

the third thread in β is confined to the last row, we may remove it, removing

β1 + β2 from the major index. This leaves the two-rowed tableau (β1, β2), with

a single descent and no further restrictions on the placement of either thread.

Hence, we have

f 3
λ,3 =

∑
(k,j,1)⊆β⊆(n,k,j−1)

q|β|fβ,2 − q|β|+β1+β2f(β1,β2),1.

The polynomial f(β1,β2),1 can be constructed as follows, for fixed (k, j) ⊆

(β1, β2) ⊆ (n, k). There is a single descent, so it must occur in the first row.

Hence, the first thread exists only on the first row and the second thread must

span the entirety of the second row. The second thread may fill the remaining

portion of the first row, but starting only from columns β2 + 1 to β1. Hence,

the major index will be entirely determined by the position of the last entry in

the first thread in the first row, between columns β2 and β1. That is,

43

∑
(k,j,1)⊆β⊆(n,k,j−1)

q|β|+β1+β2f(β1,β2),1 =
∑

(k,j,1)⊆β⊆(n,k,j−1)

q|β|+β1+β2(qβ2 + · · ·+ qβ1)

=
∑

(k,j,1)⊆β⊆(n,k,j−1)

q2β1+3β2+β3

[
β1 − β2 + 1

1

]
q

.

Closing the sum over β3 yields

∑
(k,j,1)⊆β⊆(n,k,j−1)

q2β1+3β2+β3

[
β1 − β2 + 1

1

]
q

=

[
j − 1

1

]
q

n∑
β1=k

k∑
β2=j

q2β1+3β2+1

[
β1 − β2 + 1

1

]
q

.

We then apply the q-Pascal identity qA
[
A+B−1
B−1

]
q

=
[
A+B
B

]
q
−
[
A+B−1

B

]
q

and the

summation identity
∑j

R=0 q
iR
[
A−R−1
i−1

]
q

=
[
A
i

]
q
− qi(j+1)

[
A−j−1

i

]
q
, then cancel like

terms to obtain:

[
j − 1

1

]
q

n∑
β1=k

k∑
β2=j

q2β1+3β2+1

[
β1 − β2 + 1

1

]
q

=

[
j − 1

1

]
q

n∑
β1=k

k∑
β2=j

q2β1+3β2+1

([
β1 − β2 + 2

2

]
q

− q2
[
β1 − β2 + 1

2

]
q

)

=

[
j − 1

1

]
q

n∑
β1=k

q2β1+1

(
q3j
[
β1 − j + 3

3

]
q

− q3(k+1)

[
β2 − k + 2

3

]
q

+ q3(k+1)+2

[
β1 − k + 1

3

]
q

− q3j+2

[
β1 − j + 2

3

]
q

)
.

Applying the q-Pascal identity again and closing the sum over β2 for each term

44

using the identity
∑n

β1=k
qβ1−A

[
β1−A+B

B

]
q

=
[
n−β1+B

B

]
q
−
[
k−β1−1+B

B

]
q

yields

n∑
β1=k

k∑
β2=j

q2β1+3β2+1

[
β1 − β2 + 1

1

]
q

= q5j+1

([
n− j + 5

5

]
q

− q
[
n− j + 4

5

]
q

−
[
k − j + 4

5

]
q

+ q

[
k − j + 3

5

]
q

)
− q5j+5

([
n− j + 4

5

]
q

− q
[
n− j + 3

5

]
q

−
[
k − j + 3

5

]
q

+ q

[
k − j + 2

5

]
q

)
− q5k+6

([
n− k + 4

5

]
q

− q
[
n− k + 3

5

]
q

)
+ q5k+10

([
n− k + 3

5

]
q

− q
[
n− k + 2

5

]
q

)
.

Finally, expand every q-binomial as a ratio of polynomials in q and simplify

algebraically to obtain

[
j − 1

1

]
q

n∑
β1=k

k∑
β2=j

q2β1+3β2+1

[
β1 − β2 + 1

1

]
q

= q3j+2k+1(1 + qn−k+1 + qn−j+2)
(1− qj−1)(1− qk−j+1)(1− qn−k+1)(1− qn−j+2)

(1− q)2(1− q2)(1− q3)
.

45

Consider now the first term in the sum. Expanding fβ,2 using the gen-

erating function for tableau with minimum number of descents, we have

∑
β

q|β|fβ,2 =
∑
β

qβ1+β2+4β3 det

([
βs − β3 − s+ t+ 2

2

]
q

)
1≤s,t≤3

=
∑
β

qβ1+β2+4β3

([
β1 − β3 + 2

2

]
q

[
β2 − β3 + 2

2

]
q

−
[
β1 − β3 + 3

2

]
q

[
β2 − β3 + 1

2

]
q

)
.

Fix β1 and β3 and evaluate the sums with respect to β2. Applying the same

combinatorial arguments as before, we have

∑
β

q|β|fβ,2 =
∑
β1,β3

qβ1+5β3

[
β1 − β3 + 2

2

]
q

([
k − β3 + 3

3

]
q

−
[
j − β3 + 2

3

]
q

)

− qβ1+5β3+1

[
β1 − β3 + 3

2

]
q

([
k − β3 + 2

3

]
q

−
[
j − β3 + 2

3

]
q

)
.

Now, fix β3 and range over β1, simplifying again to obtain

∑
β

q|β|fβ,2 =
∑
β3

q6β3
[([

n− β3 + 3

3

]
q

[
k − β3

3

]
q

−
[
n− β3 + 4

3

]
q

[
k − β3 + 2

3

]
q

)

−
([
n− β3 + 3

3

]
q

[
j − β3 + 2

3

]
q

−
[
n− β3 + 4

3

]
q

[
j − β3 + 1

3

]
q

)
+

([
k − β3 + 2

3

]
q

[
j − β3 + 2

3

]
q

−
[
k − β3 + 3

3

]
q

[
j − β3 + 1

3

]
q

)]
.

46

Applying the identity for f(λ1,λ2)\(µ1),i(q) given by Theorem 5 with µ1 = 0 yields

∑
β

q|β|fβ,2 =

j−1∑
β3=1

q6β3−9(f(n−β3+3,k−β3+3),3 − f(n−β3+3,j−β3+2),3

+ f(k−β3+2,j−β3+2),3).

�

At this point, we have a formula for fλ,k for k = 2, 3. To obtain fλ,4, we can extend

the above argument in the same way, writing fλ,4 =
∑4

i=1 f
i
λ,4. The sums will now be

more lengthy, involving different fµ,3 (for some other partition µ). There is nothing

preventing us from doing this, but as the number of descents increases this process

quickly becomes unwieldy. To find a reasonable closed form for general fλ,k, one

would hope that their length doesn’t increase so drastically as k increases.

2.3.2 Rectangular tableaux

Consider the family of standard young tableaux in the shape of a rectangular par-

tition λ = (n, n, . . . , n) = nr ` nr, which we call rectangular tableaux. Rectangular

tableaux appear in combinatorics and representation theory quite often as their rela-

tively simple shape allows for a more obtainable grasp on any underlying structures,

for instance in connection to the cyclic sieving phenomenon ([19], [20]). Here, we

47

provide two different proof methods to obtain a closed formula for f(nr),r(q). The

first constructs a recursive argument on the tableaux in SYT(nr, r) and smaller par-

tition shapes, while the latter combinatorially identifies the tableaux with a family of

partitions.

Theorem 7 Let λ = (n, . . . , n) = nr ` nr. Then

fnr,r = q(
r
2)n
([
n+ r

r

]
q

−
[
nr + 1

1

]
q

)
.

Proof 1. Consider a tableau τ ∈ SYT(λ, r). The last thread in the tableaux, Tr,

either covers the entire last row or it doesn’t. If it does, we may remove this last

thread entirely, shifting the major index of the tableau by (r − 1)n. If not, then the

last thread has length 1 ≤ β1 ≤ n− 1 in the last row. If we remove this thread, then

we obtain a subset of SYT(nr−1(n− β1)1, r − 1): precisely those tableaux whose last

thread continues past the last row. Let β2 be the length of the last thread in this

new tableau in the penultimate row, so then 1 ≤ β2 ≤ β1. Remove this thread as

well, obtaining a tableau in SYT((nr−2, n − β2), r − 2). Summing over all possible

configurations of β1, β2, we have

fnr,r = q(r−1)nf(nr−1),r−1 +
n−1∑
β1=1

qnr−β1
β1∑
β2=1

qn(r−1)−β2f(nr−2,n−β2),r−2.

The same procedure can be performed on all of the rectangular tableau with r − 1

48

rows, r − 2 rows, etc. Iterating on the first term, we obtain

f(nr),r = q(r−1)n+(r−2)n+···+2nf(n,n),2

+
r−3∑
α=0

q
∑α
i=1(r−α)n

n−1∑
β1=1

q(r−α)n−β1
β1∑
β2=1

q(r−α−1)n−β2f(nr−α−2,n−β2),r−α−2

= q(
r
2)n−nf(n,n),2

+
r−3∑
α=0

n−1∑
β1=1

β1∑
β2=1

q(
r
2)n−(r−α2)n+(r−α)n+(r−α−1)n−β1−β2f(nr−α−2,n−β2),r−α−2.

We now aim to simplify fnr−α−2,r−α−2. Let µ = (n, n, . . . , n, n − β2) be a partition

with (r−α−1) parts, and consider τ ∈ SYT(µ, r−α−2). Because τ has the minimal

number of descents, every thread starts in the first column of the tableau. Since these

are the only threads in the tableau, a thread starting in row k may only occur in rows

k or k−1. Write the length of the kth thread in row k beyond the (n−β2)nd column as

ωk. For all k, 0 ≤ ωk ≤ β2 and the ωk must be weakly decreasing, so ω = (ω1, . . . , ωβ2)

forms a partition (perhaps with trailing zeroes) in the (r − α− 1)× β2 box.

The tableau π ∈ SYT(µ, r − α − 2) with minimum major index has first thread of

length n−β2 and other threads of length n, hence maj(π) = (n−β2)+(2n−β2)+· · ·+

((r−α−2)n−β2) =
(
r−α−1

2

)
n− (r−α−2)β2. Note that the corresponding partition

ω for π is the empty partition. For other tableaux τ , the first descent occurs in the

n−β2+ω1 box, the second in the (n−β2+ω1)+(n−β2+ω2+(β2−ω1)) = 2n−β2+ω2

49

box, and so on. Thus, maj(τ) = maj(π) + |ω|, so we have

f(nr−α−2,n−β2),r−α−2 = q(
r−α−1

2)n−(r−α−2)β2
[
(r − α− 2) + β2

β2

]
q

.

Applying this to our current formulation and rearranging, we have

f(nr),r = q(
r
2)n−nf(n,n),2 +

r−3∑
α=0

n−1∑
β1=1

β1∑
β2=1

q(
r
2)n−(r−α2)n+(r−α)n+(r−α−1)n−β1−β2

· q(
r−α−1

2)n−(r−α−2)β2
[
(r − α− 2) + β2

β2

]
q

= q(
r
2)n−nf(n,n),2 +

r−3∑
α=0

q(
r
2)n−(r−α2)n+(r−α−1

2)n

·
n−1∑
β1=1

β1∑
β2=1

q(n−β1)+(r−α−1)(2n−β2)
[
(r − α− 2) + β2

β2

]
q

.

We may close the inner double sum by proving the identity

n−1∑
β1=1

β1∑
β2=1

q−β1−(C−1)β2 = qC(1−n)
[
C + (n− 1)

n− 1

]
q

− q1−n
[
n

1

]
q

.

Consider the C × (n − 1) lattice box and replace q → q−1 in the summation. The

sum fills the first column with a strip of length β1, then fills a rectangle of dimensions

β2×C−1 to its right. The q−1-binomial then “eats away” a partition in the (C−2)×β2

box created by this filling. That is, these are the conjugates of the partitions in the

C × (n − 1) box with at least two parts, i.e. the partitions not in the (n − 1) × 1

50

box, with q → q−1. Replacing q and shifting the q-binomials appropriately yields the

desired identity. Hence, we have

f(nr),r = q(
r
2)n−nf(n,n),2 +

r−3∑
α=0

q(
r
2)n−(r−α2)n+(r−α−1

2)n+n+(r−α−1)2n

·
(
q−(r−α)(n−1)

[
r − α + n− 1

n− 1

]
q

− q1−n
[
n

1

]
q

)
= q(

r
2)n−nf(n,n),2 +

r−3∑
α=0

q(
r
2)n+r−α

[
r − α + n− 1

n− 1

]
q

− q(
r+1
2)n−n+1−αn

[
n

1

]
q

= q(
r
2)n−nf(n,n),2 + q(

r
2)n
([
n+ r

r

]
q

−
[
n+ 2

2

]
q

)
− q(

r+1
2)n−n+1−n(r−3)1− qn(r−2)

1− qn

[
n

1

]
q

= q(
r
2)n
(
q2
[
n

2

]
q

+

[
n+ r

r

]
q

−
[
n+ 2

2

]
q

− q2n+1

[
n(r − 2)

1

]
q

)
= q(

r
2)n
([
n+ r

r

]
q

− q2n+1

[
n(r − 2)

1

]
q

−
[
2n+ 1

1

]
q

)
= q(

r
2)n
([
n+ r

r

]
q

−
[
nr + 1

1

]
q

)
.

�

Proof 2. We begin by identifying partitions which do not correspond to a tableau in

SYT(nr, r).

Let µ = (µ1, . . . , µI , µI+1) = (n, . . . , n, µI+1) for 0 ≤ I ≤ n−1, with 0 ≤ µI+1 ≤ n−1.

Attempt to form a tableau with r descents by letting µi denote the length of the ith

thread, τi, in the ith row. The first I parts of the tableau, then, are filled, leaving

a partially filled (I + 1)st row. The τI+2 thread may not be placed in row (I + 1),

51

else it would be a part of τI+1. Further, it may not be placed at the start of row

(I + 2), since µI+2 = 0. Hence, µ does not correspond to any tableau τ ∈ SYT(nr, r).

There is one partition µ for all sizes 0 ≤ i ≤ nr, so their generating function is
[
nr+q
1

]
q
.

I

n

r

Figure 2.3: Rectangular tableau of shape (nr) with r descents whose (I +
1)st thread partially fills the (I + 1)st row.

Now, consider the partitions µ = (µ1, . . . , µI , µI+1, . . . , µI+R) =

(n, . . . , n, µI+1, . . . , µI+R) with 0 ≤ I ≤ r−2 and 2 ≤ R ≤ r−I, s.t. 1 ≤ µI+m ≤ n−1

for 1 ≤ m ≤ R, precisely the partitions in the n × r box except for the previous

set. For one such µ, form the first I threads, τ1, . . . , τI , across the first I rows.

The thread τI+1 finishes in column µI+1, as it cannot proceed to a row above. The

thread τI+2, then, must fill out µI+2, then proceed to the column above. If not, then

there would be a gap which could not be filled by subsequent threads, similar to

the previous case. This process continues until we reach τI+R, which finishes in row

(I + R − 1). Thus, τI+R+1 is forced to cover the rest of row (I + R). Subsequent

52

threads τI+R+2, . . . , τr span the entire row they occupy.

...
...

...
...

...
...

I

R

n

r

Figure 2.4: Threads of a rectangular tableau of shape (nr) with r descents.

This identifies a tableau which has exactly r descents. The major index of this tableau

is (n+ 2n+ · · ·+ In) + [(In+µI+1) + ((I+ 1)n+µI+2) + · · ·+ (I+R−1)n+µI+R)] +

[(I + R)n + · · · + (r − 1)n] =
(
r
2

)
n + |µ|. This process can be reversed by writing

µ = (µ1, . . . , µr) s.t. µi is the length of τi in row i, disregarding any trailing zeroes.

Hence, we can write fnr,r(q) as

fnr,r(q) =
∑
µ

q(
r
2)n+|µ| = q(

r
2)n
([
n+ r

r

]
q

−
[
nr + 1

1

]
q

)
.

�

53

Chapter 3

Computation through the

Kirillov-Reshetikhin Formula

3.1 Admissible sequences

As discussed previously, the Kirillov-Reshetikhin formula Kk
λ,1|λ|

(q) gives a way to

compute fλ,k by using the charge statistic. Let λ be a partition and let µ = 1|λ| be the

partition of size |λ| comprised of all ones. Let α = (µ′, α1, α2, . . .) = ((|λ|), α1, α2, . . .)

be a sequence of partitions such that for i ≥ 1, |αi| =
∑∞

j=i+1 λj. We will write the

55

partitions as αi = (αi1, α
i
2, . . .) for i ≥ 1. For any such sequence α, define

c(α) :=
∑
a,i

1

2
(αa−1i − αai)(αa−1i − αai − 1).

For a given sequence α and any a, i ≥ 1, define

P a
i (α) :=

i∑
s=1

(αa−1s − 2αas + αa+1
s).

Using the above definitions, Kirillov and Reshetikhin give the following formula in

[12]:

Kk
λ,1|λ|(q) =

∑
α=(µ′,α1,α2,...)

α1
1=k

qc(α)
∏
a,i

[
P a
i (α) + αai − αai+1

αai − αai+1

]
q

.

As discussed in the first chapter, Kλ,1|λ| is useful for our purposes because it generates

a polynomial with the same distribution as the major index for tableaux in SYT(λ, k).

That is,

fλ,k(q
−1) = q−(|λ|2)Kk

λ,1|λ|(q).

With this formula in hand and enough computational resources, one may gener-

ate formulae for any fλ,k. However, as the number of parts (or the number of de-

scents) increases, the number of potential sequences α increases exponentially faster.

56

Our aim in this chapter is to reduce the computational complexity for three-rowed

tableaux with at most three descents, demonstrating that the current written formula

for Kk
λ,1|λ|

(q) has potential to be simplified in the future for larger partition shapes

and descent numbers. This may be done by reducing the number of sequences the

formula’s summation ranges over, considering only those which have nonzero contri-

bution to the total sum. That is, we desire to find the admissible sequences α for

given λ and k. Call this set Aλk .

Let λ = (λ1, λ2, . . . , λr). The set of admissible sequences Aλk for k < (r − 1) or

k > |λ| − λ1 is clearly empty, as there are no standard Young tableaux of shape λ

with that many descents. For r = 3 and k = 2, we have the following:

Theorem 11 Let λ = (n, k, j) and k = 2. Then

A
(n,k,j)
2 = {((N), (2j+m, 1k−j−2m), (1j)) : 0 ≤ m ≤ k − j

2
}.

Proof. We first show that all admissible sequences α have α2 = (1j).

By definition, α1 = (2, . . .) ` (k+ j) and α2 ` j. Suppose that α2 has more than one

part, and fix i such that α2
i is the last such part. For each sequence α, its contribution

to the charge polynomial K2
λ,1|λ|

(q) is zero if the product given by that sequence is

57

zero. Consider the terms in the product:

[
P 2
i (α) + α2

i − α2
i+1

α2
i − α2

i+1

]
q

=

[
P 2
i (α) + α2

i − 1

α2
i − 1

]
q

.

Now, compute the maximum value of P 2
i (α). Note that up to index i, the maximum

value of all α1
m is 2, the minimum value of all α2

m is α2
i , and α3

m is zero as α3 ` 0. So,

P 2
i (α) =

i∑
m=1

(α1
m − 2α2

m + α3
m)

=
i∑

m=1

(α1
m − 2α2

m)

≤
i∑

m=1

(2− 2α2
i)

= 2i(1− α2
i) < 0.

Hence, any sequence α with α2 6= (1j) contributes nothing to K2
λ,1|λ|

(q). Suppose

now that α2 = (1j), but α1 contains j − y parts of size 2 for y ≥ 1. By definition,

α2 = (2, . . .) ` (k + j), so there are no larger parts. Fix i = j − y + 1 and consider

P 2
j−y+1(α):

P 2
j−y+1(α) =

j−y+1∑
m=1

(α1
m − 2α2

m + α3
m)

= (j − y)2 + 1− (j − y + 1)2 = −1.

58

Thus, the q-binomial in which P 2
j−y+1 appears is zero, so the contribution from such a

sequence is zero, and so a sequence α only contributes to K2
λ,1|λ|

(q) if α1 = (2j, . . .) `

(k + j) and α2 = (1j). � Now, let k = 3.

Theorem 12 Let λ = (n, k, j) and k = 3. Then

A
(n,k,j)
3 ⊆ {((N), (3, α1

2, . . . , α
1
r), (1

j))

: α1 ` (k + j),min (j, r) ≥ (k + j − n), α1
1 + α1

2 + · · ·+ α1
j ≥ 2j}.

That is, a sequence α may only contribute to K3
(n,k,j),1n+k+j

(q) if α2 = (1j), min (j, r) ≥

(k + j − n), and the first j parts of α1 sum to at least 2j.

Proof. Similar to the proof for 2 descents, all admissible sequences α here must have

α2 = (1j). Suppose α2 6= (1j), and fix i to be the index of the last part in α2 larger

than one. The only difference here is that in P 2
i (α), the maximum value of α1

m is now

3 instead of 2, which still yields a negative sum and thus contributes nothing to the

final polynomial.

Now, suppose that α2 = (1j) and α1 = (3, α1
2, . . . , α

1
r). Then

59

P 1
r (α) =

r∑
m=1

(α0
m − 2α1

m + α2
m)

= (n+ k + j)− 2(k + j) + min (j, r)

= min (j, r)− (k + j − n),

which is less than zero if min (j, r) < (k + j − n). Further,

P 2
j (α) =

j∑
m=1

(α1
m − 2α2

m)

=

j∑
m=1

(α1
m)− 2j

= (α1
2 + · · ·+ α1

j)− (2j − 3).

Since α1
1 = 3, this imposes the desired restriction on the first j parts of α1. �

When we extend to k > 3 descents, the identification of admissible sequences increases

in complexity. Not only may the last partition in a sequence take on several forms,

but this choice of partition distorts the available options for the previous partition in

the sequence. However, this refinement for small k allows us to throw away the vast

majority of sequences α considered in the original theorem as the size of j increases.

60

For example, in a small case like λ = (9, 4, 4) and k = 3, we are left with a total of

3 admissible sequences out of the 25 available. For λ = (10, 10, 10), we instead keep

only five out of 1386 sequences.

3.2 Closed formulas

While reducing the number of sequences considered by the summation in Kk
λ,1|λ|

(q)

is beneficial for computation, this also allows us to construct closed (albeit quite ver-

bose) formulas. We will demonstrate the process for 2 and 3 descents, noting that

there is nothing but an investment of time preventing one from writing down a closed

formula for higher descents. However, we will see that these formulae are lengthy and

it may not be a worthwhile investment to approach simplification from this angle.

We begin with tableaux of shape λ = (n, k, j) ` N with 2 descents. The ad-

missible sequences α considered by the Kirillov-Reshetikhin formula are α(m) =

61

((N), (2j+m, 1k−j−2m), (1j)). Then we have

c(α(m)) =
∑
a,i≥1

1

2
(αa−1i − αai)(αa−1i − αai − 1)

=
∑
i≥1

1

2
(α0

i − α1
i)(α

0
i − α1

i − 1) +
1

2
(α1

i − α2
i)(α

1
i − α2

i − 1)

=

(
1

2
(N − 2)(N − 3) + (j +m− 1) · 1

2
(−2)(−3) + (k − j − 2m) · 1

2
(2)

)
+

(
j · 1

2
(1)(0) +m · 1

2
(2)(1) + (k − j − 2m)

1

2
(1)(0)

)
=

1

2
(N − 2)(N − 3) + 3(j +m− 1) + (k − j − 2m) +m

=
1

2
N(N − 5) + k + 2j + 2m

and

P a
i (α(m)) =

i∑
s=1

(αa−1s − 2αas + αa+1
s) =

i∑
s=1

ψma (s),

62

where for m < bk−j
2
c we define

ψm1 (s) :=



N − 3 , s = 1

−3 , s = 2 to j

−4 , s = j + 1 to j +m

−2 , s = j +m+ 1 to k −m

,

ψm2 (s) :=



0 , s = 1 to j

2 , s = j + 1 to j +m

1 , s = j +m+ 1 to k −m

and for m = k−j
2

we similarly define

ψ
k−j
2

1 (s) :=



N − 3 , s = 1

−3 , s = 2 to j

−4 , s = j + 1 to j +m

,

ψ
k−j
2

2 (s) :=


0 , s = 1 to j

2 , s = j + 1 to j +m

.

Now, evaluate K2
λ,1N (q) using the admissible sequences and algebraically simplify.

Letting δ = k − j − 1 (mod 2) and A = 1
2
N(N − 5) + k + 2j, we have

63

K2
λ,1N (q) = qA

k−j
2∑

m=0
α=α(m)

q2m
∏
i≥1

[
P 1
i (α) + (α1

i − α1
i+1)

(α1
i − α1

i+1)

]
q

[
P 2
i (α) + (α2

i − α2
i+1)

(α2
i − α2

i+1)

]
q

= qA
[(k−j−1

2∑
m=0

q2m
[
N − 3j − 4m+ 1

1

]
q

[
N − 2k − j + 1

1

]
q

)

+ δqk−j
[
N − 2k − j + 2

2

]
q

]

= qA
[[
N − 2k − j + 1

1

]
q

(k−j−1
2∑

m=0

q2m
[
N − 3j − 4m+ 1

1

]
q

)

+ δqk−j
[
N − 2k − j + 2

2

]
q

]
.

The remaining inner sum can be simplified as follows:

b k−j−1
2
c∑

m=0

q2m
[
N − 3j − 4m+ 1

1

]
q

=

b k−j−1
2
c∑

m=0

q2m
[
n+ k − 2j − 4m+ 1

1

]
q

=

[
n− j + δ + 2

1

]
q

(1 + q2 + · · ·+ qk−j−δ−1).

To see this, the left-hand side is comprised of concentric strands of polynomials q2m(1+

q+· · ·+qn+k−2j−4m) for 0 ≤ m ≤ k−j−1−δ
2

. The right-hand side is comprised of strands

of polynomials 1 + q+ · · ·+ qn−j+1+δ shifted by 2m for 0 ≤ m ≤ k−j−1−δ
2

, resulting in

a polynomial which increases every other degree for each m before stabilizing, up to

the central degree. Note also that the first strand comprising this polynomial doesn’t

end until after the last one begins, since n− j+ 1 + δ ≥ k− j+ 1 + δ > k− j− 1− δ.

64

Hence, we have

K2
λ,1N (q) = qA

([
N − 2k − j + 1

1

]
q

[
N − k − 2j + δ + 2

1

]
q

1− qk−j−δ+1

1− q2

+ δqk−j
[
N − 2k − j + 2

2

]
q

)
.

Thus, we have the following result:

f(n,k,j),2 = qk+2j

([
N − 2k − j + 1

1

]
q

[
N − k − 2j + δ + 2

1

]
q

1− qk−j+1−δ

1− q2

+ δqk−j
[
N − 2k − j + 2

2

]
q

)
.

Let us now consider the tableaux of the same shape with 3 descents. The admissible

sequences here are α(m3,m2,m1) = ((N), (3m3+1, 2m2 , 1m1), (1j)), with the restriction

that
∑j

i=1 α
1
i ≥ 2j and min (j, r) ≥ N − 2n. Note that 0 ≤ m3 ≤ bk+j−33

c, 0 ≤ m2 ≤

bk+j−3−3m3

3
c, and m1 = k+j−2m2−3m3−3. Also, note that r = m1+m2+m3+1. We

will ignore the argument of α(m3,m2,m1) going forward for brevity. The contribution

of a sequence α can be placed into one of 16 different cases. We will say that an

admissible sequence α is of type (A,B), where

65

A =



1 if r ≤ j

2 if m2 +m3 + 1 ≤ j ≤ r

3 if m3 + 1 ≤ j ≤ m2 +m3

4 if 1 ≤ j ≤ m3

, B =



1 if m1,m2 > 0

2 if m2 > 0, m1 = 0

3 if m1 > 0, m2 = 0

4 if m1,m2 = 0

.

The A-type of a given admissible sequene α is dependent on the relationship between

the length of α1 and j, whereas the B-type is dependent on the content of sequence

α1. To be safe, if there are any sequences marked as admissible that contribute zero,

mark their type as (0,0) and discard them from all subsequent computations.

First, we compute c(α) for each sequence type. This yields

c(α) = ((N − 3)(N − 4) + 2k + 2j − 6) + 2Cα,

where

Cα =



α ∈ (1, B): 3m3 −m1 + j

α ∈ (2, B): 4m3 +m2 + 1

α ∈ (3, B): 5m3 + 2m2 − 2j + 3

α ∈ (4, B): 6m3 + 2m2 − 2j + 6

.

66

For each sequence α, its product in the Kirillov-Reshetikhin formula will range over

all a, i ≥ 1. For an admissible sequence α, almost all terms will go to one, dependent

entirely on the B-type of α. The only ones that don’t are given as the contributions

in Mα, where

Mα =



α ∈ (A, 1) :
[P 1

m3+1(α)+1

1

]
q

[P 1
m3+m2+1(α)+1

1

]
q

[P 1
m3+m2+m1+1(α)+1

1

]
q

[P 2
j (α)+1

1

]
q

α ∈ (A, 2) :
[P 1

m3+1(α)+1

1

]
q

[P 1
m3+m2+1(α)+2

2

]
q

[P 2
j (α)+1

1

]
q

α ∈ (A, 3) :
[P 1

m3+1(α)+1

1

]
q

[P 1
m3+m1+1(α)+2

2

]
q

[P 2
j (α)+1

1

]
q

α ∈ (A, 4) :
[P 1

m3+1(α)+3

3

]
q

[P 2
j (α)+1

1

]
q

.

Now, we must determine the effect that the A-type of an admissible sequence will

have on its contribution. Define Ψα
a,A(s) as the sth term of P a

i (α) when α is of type

(A,B). Then we have the following:

ψα1,1(s) =



N − 5 , s = 1

−5 , s = 2 to m3 + 1

−3 , s = m3 + 2 to m2 +m3 + 1

−1 , s = m2 +m3 + 2 to r

1 , s = r + 1 to j

,

67

ψα2,1(s) =



1 , s = 1 to m3 + 1

0 , s = m3 + 2 to m2 +m3 + 1

−1 , s = m2 +m3 + 2 to r

−2 , s = r + 1 to j

,

ψα1,2(s) =



N − 5 , s = 1

−5 , s = 2 to m3 + 1

−3 , s = m3 + 2 to m2 +m3 + 1

−1 , s = m2 +m3 + 2 to j

−2 , s = j + 1 to r

,

ψα2,2(s) =



1 , s = 1 to m3 + 1

0 , s = m3 + 2 to m2 +m3 + 1

−1 , s = m2 +m3 + 2 to j

1 , s = j + 1 to r

,

68

ψα1,3(s) =



, N − 5 , s = 1

−5 , s = 2 to m3 + 1

−3 , s = m3 + 2 to j

−4 , s = j + 1 to m2 +m3 + 1

−2 , s = m2 +m3 + 2 to r

,

ψα2,3(s) =



1 , s = 1 to m3 + 1

0 , s = m3 + 2 to j

2 , s = j + 1 to m2 +m3 + 1

1 , s = m2 +m3 + 2 to r

,

ψα1,4(s) =



N − 5 , s = 1

−5 , s = 2 to j

−6 , s = j + 1 to m3 + 1

−4 , s = m3 + 2 to m2 +m3 + 1

−2 , s = m2 +m3 + 2 to r

,

69

ψα2,4(s) =



1 , s = 1 to j

3 , s = j + 1 to m3 + 1

2 , s = m3 + 2 to m2 +m3 + 1

1 , s = m2 +m3 + 2 to r

.

This, combined with the previous observations, allow us to determine the contribution

of a sequence α based solely off of its type (A,B):

70

Mα =



α ∈ (1, 1):
[
N−5(m3+1)+1

1

]
q

[
N−5(m3+1)−3m2+1

1

]
q

[
N−5(m3+1)−3m2−m1+1

1

]
q

·
[
3(m3+1)+2m2+m1−2j+1

1

]
q

α ∈ (1, 2):
[
N−5(m3+1)+1

1

]
q

[
N−5(m3+1)−3m2+2

2

]
q

[
3(m3+1)+2m2+m1−2j+1

1

]
q

α ∈ (1, 3):
[
N−5(m3+1)+1

1

]
q

[
N−5(m3+1)−3m2−m1+2

2

]
q

[
3(m3+1)+2m2+m2−2j+1

1

]
q

α ∈ (1, 4):
[
N−5(m3+1)+3

3

]
q

[
3(m3+1)+2m2+m1−2j+1

1

]
q

α ∈ (2, 1):
[
N−5(m3+1)+1

1

]
q

[
N−5(m3+1)−3m2+1

1

]
q

[
N−6(m3+1)−4m2−2m1+j+1

1

]
q

·
[
2(m3+1)+m2−j+1

1

]
q

α ∈ (2, 2):
[
N−5(m3+1)+1

1

]
q

[
N−5(m3+1)−3m2+2

2

]
q

[
2(m3+1)+m2−j+1

1

]
q

α ∈ (2, 3):
[
N−5(m3+1)+1

1

]
q

[
N−6(m3+1)−4m2−2m1+j+2

2

]
q

[
2(m3+1)+m2−j+1

1

]
q

α ∈ (2, 4):
[
N−5(m3+1)+3

3

]
q

[
2(m3+1)+m2−j+1

1

]
q

α ∈ (3, 1):
[
N−5(m3+1)+1

1

]
q

[
N−6(m3+1)−4m2+j+1

1

]
q

[
N−6(m3+1)−4m2−2m1+j+1

1

]
q

·
[
m3+2

1

]
q

α ∈ (3, 2):
[
N−5(m3+1)+1

1

]
q

[
N−6(m3+1)−4m2+j+2

2

]
q

[
m3+2

1

]
q

α ∈ (3, 3):
[
N−5(m3+1)+1

1

]
q

[
N−6(m3+1)−4m2−2m1+j+2

2

]
q

[
m3+2

1

]
q

α ∈ (3, 4):
[
N−5(m3+1)+3

3

]
q

[
m3+2

1

]
q

α ∈ (4, 1):
[
N−6(m3+1)+j+1

1

]
q

[
N−6(m3+1)−4m2+j+1

1

]
q

[
N−6(m3+1)−4m2−2m1+j+1

1

]
q

·
[
j+1
1

]
q

α ∈ (4, 2):
[
N−6(m3+1)+j+1

1

]
q

[
N−6(m3+1)−4m2+j+1

2

]
q

[
j+1
1

]
q

α ∈ (4, 3):
[
N−6(m3+1)+j+1

1

]
q

[
N−6(m3+1)−4m2−2m1+j+2

2

]
q

[
j+1
1

]
q

α ∈ (4, 4):
[
N−6(m3+1)+j+3

3

]
q

[
j+1
1

]
q

.

Finally, we have

K3
λ,1N (q) = q(N−3)(N−4)+2k+2j−6

∑
α

q2CαMα.

Performing the required substitution q → q−1 and shifting appropriately yields the

final closed form for f(n,k,j),3 from this process.

71

Chapter 4

Relations among fλ,k

As we’ve seen throughout this manuscript, many of the major index over descent

polynomials for a given partition shape λ arise as polynomial multiples of fµ,k for a

combinatorially related partition shape µ, often giving new representations for fλ,k

not apparent from more general formulae.

To this end, it may be advantageous to build fλ,k from smaller tableau shapes or from

tableaux with fewer descents to find further relations among these polynomials. That

is, take fµ,k−i for some µ ⊆ λ and i ≥ 0, and construct fλ,k by performing a number

of combinatorial operations on the tableaux in SYT(µ, k − i) which shift the major

index by a specified amount. Algebraically, we write this as fλ,k(q) = g(q) · fµ,k−i(q),

where g(q) is a nonnegative polynomial in q. Unfortunately, we do not seem to always

73

be able to do this. However, if we set µ = λ and k − i = k − 1, a curious pattern

arises:

Conjecture 2 Let λ = (n, k, j). Then fλ,3 = g(q)fλ,2 if and only if (n+3)(k+2)(j+

1) ≡ 0 (mod 6).

Further, let λ = (λ1, . . . , λr). Then fλ,r = g(q)fλ,r−1 if and only if
∏

i(λi+r−i+1) ≡

0 (mod r!).

To explore this relation, we define a slightly modified polynomial long division by the

following algorithm. Let fa(q) and fb(q) be symmetric, nonnegative polynomials in

q. We ’divide’ fb by fa as follows:

1. Let rb(q) = fb(q) and gb(q) = 0. Define mindeg(f(q)) as the minimum degree

of a polynomial f(q).

2. While rb(q)− qmindeg(rb(q))−mindeg(fa(q))fa has nonnegative coefficients, do the fol-

lowing:

(a) subtract qmindeg(rb(q))−mindeg(fa(q))fq from rb(q);

(b) add qmindeg(rb(q))−mindeg(fa(q)) to gb(q).

3. The result is fb(q) = gb(q) · fa(q) + rb(q).

Because fa and fb are symmetric, this algorithm is the same as Euclidean division

74

with the caveat that we halt the process once qArb(q) no longer dominates fa(q) for

any A ∈ Z, that is once [qn]qArb(q) < [qn]fa(q) for some integer n and any integer A.

Equivalently, we halt the standard division algorithm immediately before the quotient

or remainder obtains a negative coefficient. While this implies that deg(rb(q)) is not

necessarily strictly less than deg(fa(q)), the algorithm does guarantee that both gb(q)

and rb(q) have nonnegative coefficients. Experimental data suggests the following

properties of gb(q) and rb(q), the ’quotient’ and ’remainder’ polynomials from this

process:

Conjecture 3 Let λ = (n, k, j). Applying the modified division algorithm to fλ,3(q)

and fλ,2 yields

fλ,3(q) = gλ(q) · fλ,2(q) + rλ(q), (4.1)

where rλ(q) is always an Euler product (or zero) and gλ(q) can be constructed from

the ’quotient’ polynomials gµ(q) for some partition µ dominated by λ.

Consider λ = (3n + a, 3n + a, 2). While we have a closed formula for fλ,3(q) in

this case through Theorem 6 of our manuscript and Theorem 5 in [10], additional

interpretations may prove useful. When j = 2, we have the following forms for fλ,3,

split into three cases based on the congruence class of 3n+ a (mod 3):

75

Conjecture 4 The following relations hold:

f(3n,3n,2),3 =

[
g(3n,3n,1) + q2

1− q6n

1− q6
+

n∑
i=1

[q3i+11− q3i

1− q
]

]
f(3n,3n,2),2,

f(3n+1,3n+1,2),3 =

[
g(3n+1,3n+1,1) + q2 + q4

1− q6n

1− q6
+

n∑
i=1

[q3i+21− q3i+1

1− q
]

]
f(3n+1,3n+1,2),2,

f(3n+2,3n+2,2),3 =

[
g(3n+2,3n+2,1) + q2 + (q3 + q5)

1− q6n

1− q3

− q31− q6n

1− q6
+

n∑
i=0

[q3i+31− q3i+2

1− q
]

]
f(3n+2,3n+2,2),2,

where

g(3n+a,3n+a,1) = q3
(1− q3n+a)(1− q3n+a−1)

(1− q)(1− q3)
.

We refrain from closing the first sum to display the similarity among these conjectured,

but note that
∑n

i=1 q
3i+1 1−q3i

1−q = q4 (1−q
3n)(1−q3n+3)

(1−q)(1−q6) and so the formula for f(3n,3n,2),3

given is correct by applying Theorem 3 and 5 in [10]. The corresponding summations

in the other two formulas, however, do not yield a single Euler product, nor a uni-

modal or symmetric polynomial. Since (3n + 3)(3n + 2)(3) ≡ (3n + 4)(3n + 3)(3) ≡

(3n + 5)(3n + 4)(3) ≡ 0 (mod 6), we expect the remainder polynomial to be zero in

each case. Further, if we increase the size of the last part of λ, it appears to have

a predictable effect on the resulting quotient polynomial associated with the new

partition shape.

76

Conjecture 5

f(3n,3n,j),3 =

[
g(3n,3n,1) +

1− qj−1

1− q

(n∑
i=1

[q3i+11− q3i

1− q
+ q6i−4]

)]
fλ,2,

f(3n+1,3n+1,j),3 =

[
g(3n+1,3n+1,1) +

1− qj−1

1− q

(
q6n−2

1− q6n

1− q6
+

n∑
i=0

q3i+21− q3i+1

1− q

)]
fλ,2,

f(3n+2,3n+2,j),3 =

[
g(3n+2,3n+2,1) +

1− qj−1

1− q

(
q2 + q5

1− q6n

1− q3
− q31− q6n

1− q6

+
n∑
i=0

[q3i+31− q3i+2

1− q
]

)
− q6n+3

(
1− qj−1

1− q
− 1− q1−q3b

j+1
3 c

1− q3

)]
fλ,2 + rλ.

While we expect the first two to have zero remainder, the last may not since (3n +

5)(3n+ 4)(j+ 1) ≡ 0, 2, 4 (mod 6), dependent on the value of j. If we instead choose

to increase the size of the first part or, if the first is larger than the second, the size

of the second part instead, similar patterns seem to arise.

One potential approach to a proof of these conjectures and similar results is a com-

binatorial mapping φ : SYT(λ, 2) → SYT(λ, 3) wherein one considers each tableaux

in SYT(λ, 2) and tracks how a descent may be added and the major index of the

resulting tableaux. If the modified division algorithm above produces a remainder,

we hope that this corresponds to some number of tableaux in SYT(λ, 3) that cannot

be constructed from those with two descents.

Preliminary computation suggests that similar patterns arise when considering

tableaux with more descents or of partitions into more parts, giving hope that there

77

is an underlying structure to this modified division. A method that allows us to

procedurally construct the major index over descent polynomials for larger standard

Young tableaux would allow us to negate the intense computational complexity that

comes with the larger size, a great boon when studying distributions on these objects.

Contained within Appendix A is SageMath ([21]) code written to demonstrate this

relationship for tableaux of any size.

78

References

[1] G. E. Andrews, The Theory of Partitions. Encyclopedia of Mathematics and its

Applications, Cambridge University Press, 1984.

[2] I. Macdonald, Symmetric functions and Hall polynomials. Oxford University

Press, 1979.

[3] R. P. Stanley and S. Fomin, Enumerative Combinatorics, vol. 2 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, 1999.

[4] R. P. Stanley, Enumerative Combinatorics: Volume 1. USA: Cambridge Univer-

sity Press, 2nd ed., 2011.

[5] K. M. O’Hara, “Unimodality of Gaussian coefficients: A constructive proof,”

Journal of Combinatorial Theory, Series A, vol. 53, no. 1, pp. 29–52, 1990.

[6] D. Zeilberger, “Kathy O’Hara’s constructive proof of the unimodality of the

Gaussian polynomials,” Am. Math. Monthly, vol. 96, p. 590–602, Aug. 1989.

79

[7] F. Zanello, “On Bergeron’s positivity problem for q -binomial coefficients,” The

Electronic Journal of Combinatorics, vol. 25, 2018. P2.17.

[8] D. S. Frederick M Goodman, Kathleen M O’Hara, “A unimodality identity for

a Schur function,” Journal of Combinatorial Theory, Series A, vol. 60, no. 1,

pp. 143–146, 1992.

[9] S.-E. Cheng, S. Elizalde, A. Kasraoui, and B. E. Sagan, “Inversion polynomials

for 321-avoiding permutations,” Discrete Mathematics, vol. 313, no. 22, pp. 2552–

2565, 2013.

[10] W. J. Keith, “Families of major index distributions: Closed forms and unimodal-

ity,” The Electronic Journal of Combinatorics, vol. 26, 2019. P3.58.

[11] L. Butler and A. M. Society, Subgroup Lattices and Symmetric Functions. Amer-

ican Mathematical Society: Memoirs of the American Mathematical Society,

American Mathematical Society, 1994.

[12] A. Kirillov and N. Reshetikhin, “The Bethe Ansatz and the combinatorics of

Young tableaux,” J Math Sci, vol. 40, pp. 925–955, 1988.

[13] G. Wang, “Enumerating quasi-Yamanouchi tableaux of Durfee size two,” 2018.

[14] F. Bergeron, “The q-Foulkes conjecture.” Talk delivered at Bowdoin College,

ME, 2016.

80

[15] I. Pak and G. Panova, “Strict unimodality of q-binomial coefficients,” Comptes

Rendus Mathematique, vol. 351, pp. 415–418, 2013.

[16] R. Stanley and F. Zanello, “A generalization of a 1998 unimodality conjecture

of Reiner and Stanton,” arXiv: Combinatorics, 2017.

[17] T. Wagner, “Integer partitions under certain finiteness conditions,” Open Access

Dissertation, 2021.

[18] V. Dhand, “A combinatorial proof of strict unimodality for q-binomial coeffi-

cients,” Discret. Math., vol. 335, pp. 20–24, 2014.

[19] B. Rhoades, “Cyclic sieving, promotion, and representation theory,” Journal of

Combinatorial Theory, Series A, vol. 117, no. 1, pp. 38–76, 2010.

[20] Rhee, Donguk, “Cyclic sieving phenomenon of promotion on rectangular

tableaux,” Master’s thesis, 2012.

[21] The Sage Developers, SageMath, the Sage Mathematics Software System (Ver-

sion 9.0), 2021. https://www.sagemath.org.

[22] M. Fulmek, “Viewing determinants as nonintersecting lattice paths yields clas-

sical determinantal identities bijectively,” The Electronic Journal of Combina-

torics, vol. 19, 2012. P21.

[23] W. R. Inc., “Mathematica, Version 12.3.1.” Champaign, IL, 2021.

81

Appendix A

SageMath Code

This appendix gives SageMath ([21]) code to write fλ,k(q) using Kk
λ,1|λ|

(q) in varying

ways. For example, we may generate all nonzero fλ,k(q) for partitions λ dominated

by another partition, say Λ. We may also write the admissible sequences α that arise

in computation of Kk
λ,1|λ|

(q) and write explicitly their contribution to fλ,k(q). The

intention is for this code to be used in a notebook environment, e.g. Jupyter, though

it can be minimally modified to run elsewhere. We note that the space and time

complexity of all subsequent functions can likely be improved significantly by a more

proficient programmer.

83

A.1 Major index over descent via SYT(λ, k)

A.1.1 Code

import sys

from sage.all import *

import argparse

from datetime import datetime

import time

import numpy

R, q = objgen(QQ['q'])
q = gen(QQ['q'])

Generate all partitions whose Young diagrams fit inside of ←↩
the given partition 's.

def gen_partitions_inside(shape =[]):

ptn = Partition(shape)

r = len(shape)

n = ptn.size()

print("Calculating partitions within {}, a partition of ←↩
{}, with {} rows".format(shape ,n,r))

new = deepcopy(shape)

insideList =[ptn]

for i in range(0,n):

lenIn = len(insideList)

for j in range(0,lenIn):

lil = insideList[j]

if (lil.size() == n-i):

insideList.extend(lil.down_list ())

insideList = sorted(list(dict.fromkeys(←↩
insideList)))

insideList = sorted(list(dict.fromkeys(insideList)))

print("Partitions inside {}: {}".format(ptn ,insideList))

return insideList

84

Generate all partitions whose Young diagram fit inside of ←↩
the given partition 's,

with the condition that the partitions also have the same ←↩
number of parts.

def gen_partitions_inside_same_len(shape =[]):

ptn = Partition(shape)

r = len(shape)

n = ptn.size()

print("Calculating partitions with {} rows within {}, a ←↩
partition of {}, with {} rows".format(r,shape ,n,r))

new = deepcopy(shape)

insideList =[ptn]

out = []

for i in range(0,n):

lenIn = len(insideList)

for j in range(0,lenIn):

lil = insideList[j]

if (lil.size() == n-i):

print(" working on lil: {}". format(lil))

insideList.extend(lil.down_list ())

insideList = sorted(list(dict.fromkeys(←↩
insideList)))

for ptn in insideList:

if len(ptn) == r:

out.append(ptn)

out = sorted(list(dict.fromkeys(out)))

print("Partitions inside {} with length {}: {}".format(←↩
ptn ,r,out))

return out

Given a partition shape , generate all associated nonzero f_←↩
{lambda , k}(q).

If extraInfo is true , the returned list will contain the ←↩
name of the polynomial (f_{lambda , k}) for each.

def gen_all_flambda(shape , extraInfo):

min = len(shape)-1 #minimum number ←↩
of descents

max = sum(shape)-shape [0] #maximum number ←↩
of descents

85

polylist = [0 for n in range(min ,max+1)] #polynomial ←↩
list ... we'll store our flambda in here.

s = StandardTableaux(shape)

print("---Generating Major Index over Descent polynomials←↩
for ", shape ,"---")

for tbx in s:

i = tbx.standard_number_of_descents ()

polylist[i-min] += q**(tbx.standard_major_index ())

outlist = []

for i in range(0,len(polylist)):

f = "f_{{{} ,{}}}".format(shape , i+min)

if extraInfo:

outlist.append ([f, polylist[i]])

else:

outlist.append ([polylist[i]])

print("{}= {}".format(f,polylist[i]))

print("\n")

return outlist

Given a partition shape "shape", generate the nonzero f_{←↩
lambda , k}(q) polynomials for all SYT of shape

lambda inside "shape ".

def gen_all_flambda_inside(shape , extraInfo):

insideList = gen_partitions_inside(shape)

outList = []

for i in range(0,len(insideList)):

ptn = insideList[i]

if len(ptn) >0:

out = gen_all_flambda(ptn , extraInfo)

outList.append(out)

return outList

Given a partition shape "shape", generate the nonzero f_{←↩
lambda , k}(q) polynomials for all SYT of shape

lambda inside "shape" with the same number of parts.

def gen_all_flambda_inside_same_len(shape , extraInfo):

insideList = gen_partitions_inside_same_len(shape)

outList = []

86

for ptn in insideList:

if len(ptn) >0:

out = gen_all_flambda(ptn , extraInfo)

outList.append(out)

return outList

Helper function to handle extraInfo.

def librarize(inList):

out = []

for i in inList:

for j in i:

out.append(j[-1])

return out

Given a partition shape "shape" and number of descents "←↩
number_of_descents", return

SYT(shape , number_of_descents) and print f_{shape , ←↩
number_of_descents }.

def flambdai_tbx(shape , number_of_descents):

print("--Generating tableaux of shape {} with {} descents←↩
. Please hold...--".format(shape ,number_of_descents))

s = StandardTableaux(shape).list()

out = []

for tbx in s:

if tbx.standard_number_of_descents () == ←↩
number_of_descents:

out.append(tbx)

out = sorted(out , key=lambda x: x.standard_major_index ())

for tbx in out:

tbx.pp()

print("")

return out

Given a partition shape "shape", number of descents "←↩
number_of_descents", and major index "major_index", return

subset of SYT(shape , number_of_descents) with specified ←↩
major index and print out the tableaux.

def flambdai_tbx_fixed_maj(shape , number_of_descents , ←↩
major_index):

print("--Generating tableaux of shape {} with {} descents←↩
and major index {}. Please hold , ...--".format(shape ,←↩
number_of_descents , major_index))

87

s = StandardTableaux(shape).list()

out = []

for tbx in s:

if tbx.standard_number_of_descents () == ←↩
number_of_descents and tbx.standard_major_index () ←↩
== major_index:

out.append(tbx)

out = sorted(out , key=lambda x: x.standard_major_index ())

for tbx in out:

tbx.pp()

print("")

return out

Given a tableau "tableau", write out the threads of tableau←↩
.

def tableau_strands(tableau):

mark = []

tbx = StandardTableau(tableau)

des = tbx.standard_descents ()

out = []

strand = []

for i in range(1,tbx.size()+1):

if i in des:

strand.append(i)

out.append(strand)

strand = []

continue

if i == tbx.size():

strand.append(i)

out.append(strand)

strand =[]

continue

else:

strand.append(i)

continue

return out

88

A.1.2 Examples

flambdai_tbx([3,2,1], 3)

--Generating tableaux of shape [3, 2, 1] with 3 descents. Please hold...--

1 4 6

2 5

3

1 3 6

2 4

5

1 4 5

2 6

3

1 3 5

2 6

4

1 3 5

2 4

6

1 2 5

3 6

4

1 3 4

2 5

6

1 2 4

3 5

6

gen_all_flambda([4,2,2], True)

89

---Generating Major Index over Descent polynomials for [4, 2, 2] ---

f_{[4, 2, 2],2}= q^10 + q^9 + 2*q^8 + q^7 + q^6

f_{[4, 2, 2],3}= q^16 + 2*q^15 + 4*q^14 + 5*q^13 + 6*q^12 + 5*q^11 + 4*q^10

+ 2*q^9 + q^8

f_{[4, 2, 2],4}= q^20 + q^19 + 3*q^18 + 3*q^17 + 4*q^16 + 3*q^15 + 3*q^14

+ q^13 + q^12

gen_all_flambda_inside([3,2,1], False)

Calculating partitions within [3, 2, 1], a partition of 6, with 3 rows

Partitions inside [3, 2, 1]: [[], [1], [1, 1], [1, 1, 1], [2], [2, 1],

[2, 1, 1], [2, 2], [2, 2, 1], [3], [3, 1], [3, 1, 1], [3, 2], [3, 2, 1]]

---Generating Major Index over Descent polynomials for [1] ---

f_{[1],0}= 1

---Generating Major Index over Descent polynomials for [1, 1] ---

f_{[1, 1],1}= q

---Generating Major Index over Descent polynomials for [1, 1, 1] ---

f_{[1, 1, 1],2}= q^3

---Generating Major Index over Descent polynomials for [2] ---

f_{[2],0}= 1

---Generating Major Index over Descent polynomials for [2, 1] ---

f_{[2, 1],1}= q^2 + q

---Generating Major Index over Descent polynomials for [2, 1, 1] ---

f_{[2, 1, 1],2}= q^5 + q^4 + q^3

---Generating Major Index over Descent polynomials for [2, 2] ---

f_{[2, 2],1}= q^2

f_{[2, 2],2}= q^4

---Generating Major Index over Descent polynomials for [2, 2, 1] ---

f_{[2, 2, 1],2}= q^6 + q^5 + q^4

90

f_{[2, 2, 1],3}= q^8 + q^7

---Generating Major Index over Descent polynomials for [3] ---

f_{[3],0}= 1

---Generating Major Index over Descent polynomials for [3, 1] ---

f_{[3, 1],1}= q^3 + q^2 + q

---Generating Major Index over Descent polynomials for [3, 1, 1] ---

f_{[3, 1, 1],2}= q^7 + q^6 + 2*q^5 + q^4 + q^3

---Generating Major Index over Descent polynomials for [3, 2] ---

f_{[3, 2],1}= q^3 + q^2

f_{[3, 2],2}= q^6 + q^5 + q^4

---Generating Major Index over Descent polynomials for [3, 2, 1] ---

f_{[3, 2, 1],2}= q^8 + 2*q^7 + 2*q^6 + 2*q^5 + q^4

f_{[3, 2, 1],3}= q^11 + 2*q^10 + 2*q^9 + 2*q^8 + q^7

A.2 Major index over descent via Kk
λ,1|λ|

(q)

A.2.1 Code

from sage.all import *

from sage.combinat.q_analogues import q_binomial

import sys

import argparse

from datetime import datetime

import time

import numpy

from sage.rings.polynomial.polydict import PolyDict

import gc

91

R, q = QQ['q']. objgen ()
q = QQ['q'].gen()
R, q = objgen(QQ['q'])
q = gen(QQ['q'])

Binomial(n,k) defined as

binomial(n,k) if integers n,k>=0

binomial(n,k) for all non -integers

0 if one of integers n,k<0

def Binomial(n, k):

if n in ZZ and k in ZZ:

if n >= 0 and k >= 0:

return binomial(n, k)

return 0

return binomial(n, k)

q-Analog of Binomial(n,k).

def QBinomial(n, k):

if n in ZZ and k in ZZ:

if n >= 0 and k >= 0:

return q_binomial(n, k)

return 0

return q_binomial(n, k)

Generates valid sequences used to generate the Kostka ←↩
polynomial representing the distribution of the charge ←↩
statistic

across all SYT of shape lambda with exactly k descents.

#

Let lambda = (\lambda_1 , ..., \lambda_r) be a ←↩
partition of n.

Let mu = (1,1,...,1) be a partition of n, so then←↩
mu' = (n).

#

A valid sequence of partitions is alpha = (alpha←↩
^0, alpha^1, alpha^2, ..., alpha^r)

subject to the following constraints:

alpha^0 = mu' = (n)

For i=1, the first part of alpha^1, is always←↩
k.

For i>=1, alpha^i is a partition of sum_{j>= ←↩
i+1} lambda_j.

Note that this means alpha^r is the empty←↩
partition.

This is to prevent indexing issues.

92

def gen_alpha_seqs_new(shape , k):

ptn = Partition(shape)

mu = Partition ([1]* ptn.size())

muConj = list(mu.conjugate ())

r = len(ptn)

bigg = []

for i in range(0,r):

bigg.append ([]) ## seq0 , seq1 , ... seqr

bigg [0]. append ([muConj]) ## In seq0 , create an initial ←↩
sequence alpha = (mu ')

Build everything else.

for i in range(1,r):

Generate all of the partitions of size sum_{j>=i+1}←↩
\lambda_j.

In sage , that 's sum_{j>=i \lambda_j }.

ptnsize = sum(ptn[j] for j in range(i,r))

ptns = Partitions(ptnsize)

For every sequence alpha , the first part of alpha_1←↩
in alpha is k.

if i==1:

valid = []

for par in ptns:

p = list(par)

if p[0]==k:

valid.append(p)

for par in valid:

p = list(par)

for alpha in bigg[i-1]: # For every ←↩
sequence of partitions alpha in Seq(i-1)

current = copy(alpha)

current.append(p)

bigg[i]. append(current)

if i>1:

for par in ptns:

p = list(par)

for alpha in bigg[i-1]: # For every ←↩
sequence of partitions alpha in Seq(i-1)

current = copy(alpha)

current.append(p)

93

bigg[i]. append(current)

gc.collect ()

res = []

[res.append(x) for x in bigg[len(bigg) -1] if x not in res←↩
]

return res

Given a valid sequence alpha for the fixed descent charge ←↩
statistic Kostka polynomial ,

computes P^{a}_i(alpha), with sequence index 'a' and part ←↩
index 'i', where

P^{a}_i(alpha) = sum_{j=1}^i (alpha ^{a-1}_j - 2*←↩
alpha^{a}_j + alpha ^{a+1}_j)

#

def p_alpha(alpha , a, i):

total = 0

for j in range(0,i+1):

total += alpha_part(alpha ,a-1,j) - 2* alpha_part(alpha←↩
,a,j) + alpha_part(alpha ,a+1,j)

return total

Given a valid sequence alpha for the fixed descent charge ←↩
statistic Kostka polynomial ,

computes c(alpha), a charge -like weighting for the ←↩
sequence , where

c(alpha) = sum_{a=1}^{r} sum_{i=1}^{ length(alpha←↩
^{a})} binomial(alpha^{a-1}_i - \alpha^{a}_i , 2)

#

def c_weight_alpha(alpha):

weight = 0

for a in range(1,len(alpha)+1):

alphaA = alpha[a] if a<len(alpha) else [0]

alphaAMinus = alpha[a-1]

imax = max(len(alphaA), len(alphaAMinus))

for i in range(0,imax +1):

currentpart = alphaA[i] if i<len(alphaA) else 0

prevpart = alphaAMinus[i] if i<len(alphaAMinus←↩
) else 0

bino = binomial(prevpart - currentpart , 2)

weight += bino

return weight

94

Given a sequence alpha of partition , returns the part alpha←↩
^a_i if possible.

If impossible , returns 0.

#

def alpha_part(alpha , a, i):

return alpha[a][i] if a<len(alpha) and i<len(alpha[a]) ←↩
else 0

Given a partition lambda and integer value k, generates ←↩
the Kostka polynomial representing

the distribution of the charge statistic across all SYT of←↩
shape lambda with exactly k descents.

def charge_poly_fixed_desc(ptn , k):

if len(ptn) == 1:

return 0*q

shape = []

for part in ptn:

shape.append(part)

sequences = gen_alpha_seqs_new(shape , k)

poly = 0

for alpha in sequences:

poly += q**(c_weight_alpha(alpha)) * prodterm(alpha)

return poly

Given a sequence alpha , generate the terms in the product ←↩
of KR formula.

def prodterm(alpha):

prodterm = 1

for a in range(1,len(alpha)):

for i in range(0,max(len(alpha[a-1]),len(alpha[a]))):

qupper = p_alpha(alpha ,a,i) + alpha_part(alpha ,a,←↩
i) - alpha_part(alpha ,a,i+1)

qlower = alpha_part(alpha ,a,i) - alpha_part(alpha←↩
,a,i+1)

prodterm = prodterm * QBinomial(qupper ,qlower)

return prodterm

Given a sequence alpha , generate the terms in the product ←↩
of KR formula , with information

about the q-binomials used.

def prodterm_info(alpha):

prodterm = 1

fancy = []

95

for a in range(1,len(alpha)):

fancy.append(" (a={})".format(a))

for i in range(0,max(len(alpha[a-1]),len(alpha[a]))←↩
):

for i in range(0, max(len(alpha [1]),len(alpha [2]))):

qupper = p_alpha(alpha ,a,i) + alpha_part(alpha ,a,←↩
i) - alpha_part(alpha ,a,i+1)

qlower = alpha_part(alpha ,a,i) - alpha_part(alpha←↩
,a,i+1)

term = QBinomial(qupper , qlower)

fancyterm = [qupper , qlower]

fancy.append(fancyterm)

prodterm = prodterm * term

return [prodterm , fancy]

Given a partition shape "shape", generate the nonzero f_{←↩
lambda , k}(q) polynomials for all SYT of shape

lambda inside "shape ".

def gen_partitions_inside(shape =[]):

ptn = Partition(shape)

r = len(shape)

n = ptn.size()

print("Calculating partitions within {}, a partition of ←↩
{}, with {} rows".format(shape ,n,r))

new = deepcopy(shape)

insideList =[ptn]

for i in range(0,n):

lenIn = len(insideList)

for j in range(0,lenIn):

lil = insideList[j]

if (lil.size() == n-i):

insideList.extend(lil.down_list ())

insideList = sorted(list(dict.fromkeys(←↩
insideList)))

insideList = sorted(list(dict.fromkeys(insideList)))

print("Partitions inside {}: {}".format(ptn ,insideList))

return insideList

Use KR formla to generate all nonzero f_{ptn , k}

def gen_all_flambda_by_kostka(ptn):

minn = len(ptn)-1

maxx = sum(ptn)-ptn [0]

polylist = [0 for n in range(minn ,maxx +1)]

96

outlist = []

for des in range(minn ,maxx +1):

polylist[des -minn] = q** Binomial(sum(ptn) ,2)*←↩
charge_poly_fixed_desc(ptn , des)(q**(-1))

for i in range(0,len(polylist)):

f = "f_{{{} ,{}}}".format(ptn , i+minn)

outlist.append ([f, polylist[i]])

print("{}= {}".format(f,polylist[i]))

print("\n")

return outlist

Use KR formla to generate all nonzero f_{lambda , k} for all←↩
partitions lambda inside 'shape '.

def gen_all_flambda_inside_by_kostka(shape):

ptns = gen_partitions_inside(shape)

outlist = []

for ptn in ptns:

if len(ptn) >=1:

out = gen_all_flambda_by_kostka(ptn)

outlist.append(out)

return outlist

Libary helper function (removes extraneous info when trying←↩
to write list of all polynomials)

def librarize(inList):

out = []

for i in inList:

for j in i:

out.append(j[-1])

return out

A.3 Admissible sequence contributions in Kk
λ,1|λ|

(q)

To run the code in this section, we need to utilize the code from the previous section. It
has been omitted here to save space.

97

A.3.1 Code

Return minimal charge + associated sequence(s) for a

given partition shape and number of descents

def minimal_charge(shape , desc):

sequences = gen_alpha_seqs_new(shape , desc)

minCharge = float('inf')
minAlpha = []

for alpha in sequences:

charge = c_weight_alpha(alpha)

prod = prodterm(alpha)

if prod == 0:

continue

minCharge = min(charge , minCharge)

if (charge == minCharge):

newMinAlpha = [alpha]

for beta in minAlpha:

if (c_weight_alpha(beta) == charge):

newMinAlpha.append(beta)

minAlpha = newMinAlpha

return [minCharge , minAlpha]

Return maximal charge + associated sequence(s) for a given ←↩
partition shape

and number of descents

def maximal_charge(shape , desc):

sequences = gen_alpha_seqs_new(shape , desc)

maxCharge = float('-inf')
maxAlpha = []

for alpha in sequences:

charge = c_weight_alpha(alpha)

prod = prodterm(alpha)

if prod == 0:

continue

maxCharge = max(charge , maxCharge)

98

if (charge == maxCharge):

newMaxAlpha = [alpha]

for beta in maxAlpha:

if (c_weight_alpha(beta) == charge):

newMaxAlpha.append(beta)

maxAlpha = newMaxAlpha

return [maxCharge , maxAlpha]

Breaks down construction of f_{shape , desc} by writing ←↩
contribution of each term in KR

def flambda_dissect_by_charge(shape , desc):

sequences = gen_alpha_seqs_new(shape , desc)

fullgf = []

majorbydescpoly = 0

print("=========== Charge(Alpha) Weight Breakdown for {} ←↩
with {} descents ===========\n "

.format(shape ,desc))

for alpha in sequences:

charge = c_weight_alpha(alpha)

fancyprod = prodterm_info(alpha)

product = fancyprod [0]*(q**0)

maj = q**((binomial(sum(shape) ,2)) - charge)

majpoly = maj * product(q**(-1))

ff = R(majpoly)

if majpoly == 0:

continue

else:

print("Charge poly: {}".format(product * q**←↩
charge))

shift = ff.exponents ()[0] if ff != 0 else 0

print("Sequence: {}".format(alpha))

print("CWeight: {}".format(charge))

print("Contr. Product: {} *{}".format(shift , ←↩
fancyprod [1]))

print("Contr. Poly: {}".format(majpoly))

majorbydescpoly += majpoly

fullgf.append ([shift , fancyprod [1]])

print(" ---------------------------\n ")

99

print("Generating Function f_({} ,{}): ".format(shape , ←↩
desc))

print("{}*{} ".format(q** fullgf [0][0] , fullgf [0][1]))

for i in range(1,len(fullgf)):

print("+ {}*{}".format(q** fullgf[i][0], fullgf[i][1])←↩
)

print("=\n {}".format(majorbydescpoly))

print("\n←↩
===\←↩
n ")

return [fullgf , majorbydescpoly]

Applies flambda_dissect_by_charge to partitions whose ←↩
Ferrer 's diagram fits inside of shape 's,

for all valid numbers of descents.

def dissect_flambda_inside_by_charge(shape):

ptns = gen_partitions_inside(shape)

outlist = []

for ptn in ptns:

if len(ptn) >=1:

for des in range(len(ptn)-1, ptn.size()-ptn←↩
[0]+1):

out = flambda_dissect_by_charge(ptn , des)

outlist.append(out)

return outlist

Writes admissible sequences in KR construction of f_{shape ,←↩
desc}.

def admissible_sequences(shape , desc):

sequences = gen_alpha_seqs_new(shape , desc)

zero =[]

print("=========== Admissible Sequences for {} with {} ←↩
descents ===========\n "

.format(shape ,desc))

for alpha in sequences:

charge = c_weight_alpha(alpha)

fancyprod = prodterm_info(alpha)

product = fancyprod [0]*(q**0)

maj = q**((binomial(sum(shape) ,2)) - charge)

majpoly = maj * product(q**(-1))

ff = R(majpoly)

if majpoly == 0:

zero.append ([alpha ,fancyprod [1]])

continue

else:

100

print("Sequence: {}".format(alpha))

print("")

print("---------Product: {}".format(prodterm_info←↩
(alpha)[1]))

print("\n")

print("\n")

return

A.3.2 Examples

flambda_dissect_by_charge([4,2,2],4)

========== Charge(Alpha) Weight Breakdown for [4, 2, 2] with 4 descents ==

Charge poly: q^16 + q^15 + 2*q^14 + 2*q^13 + 3*q^12 + 2*q^11 + 2*q^10 + q^9

+ q^8

Sequence: [[8], [4], [2]]

CWeight: 8

Contr. Product: 12 *[' (a=1)', [6, 4], ' (a=2)', [2, 2]]

Contr. Poly: q^20 + q^19 + 2*q^18 + 2*q^17 + 3*q^16 + 2*q^15 + 2*q^14

+ q^13 + q^12

Charge poly: q^14 + q^13 + q^12 + q^11 + q^10

Sequence: [[8], [4], [1, 1]]

CWeight: 10

Contr. Product: 14 *[' (a=1)', [5, 4], [2, 0], ' (a=2)', [2, 0], [1, 1]]

Contr. Poly: q^18 + q^17 + q^16 + q^15 + q^14

Generating Function f_([4, 2, 2],4):

q^12*[' (a=1)', [6, 4], ' (a=2)', [2, 2]]

+ q^14*[' (a=1)', [5, 4], [2, 0], ' (a=2)', [2, 0], [1, 1]]

=

q^20 + q^19 + 3*q^18 + 3*q^17 + 4*q^16 + 3*q^15 + 3*q^14 + q^13 + q^12

==

admissible_sequences([5,3,2],4)

101

================ Admissible Sequences for [5, 3, 2] with 4 descents ==========

Sequence: [[10], [4, 1], [2]]

---------Product: [' (a=1)', [7, 3], [3, 1], ' (a=2)', [2, 2], [1, 0]]

Sequence: [[10], [4, 1], [1, 1]]

---------Product: [' (a=1)', [6, 3], [3, 1], ' (a=2)', [2, 0], [2, 1]]

A.4 Relationships among fλ,k(q)

The following code performs the division algorithm discussed in Chapter 4 for fλ,3(q)
and fλ,2(q). We note that outside of implementation, there is nothing preventing one
from slightly modifying the code to accommodate relations among different numbers of
descents or even among different partition shapes. Each major function here has a
mathematicaOutput toggle, which will form lists compliant with Mathematica’s syntax
([23]) for those who prefer processing polynomials in the Wolfram language. As with the
previous section, we use many of the same underlying functions given in Appendix A.2.

A.4.1 Code

#

poly: a polynomial in q

returns string of polynomial with "nice" ordering of ←↩
terms.

#

def poly_proper(poly):

poly = (poly*q**0).subs(q=z)

102

return " + ".join(map(str ,sorted ([f for f in poly.←↩
operands ()],key=lambda exp:exp.degree(z)))).replace("z←↩
","q")

Relationship test for min vs. min+1 descents.

f3 - f_{lambda , 3}

f2 - f_{lambda , 2}

#

printType - Printing Style Toggles

full - Print f3 = q f2 + r

quotient - Print quotient g

remainder - Print remainder r

#

useIndicator

enable to display a black square for non -multiples , ←↩
white square for multiples.

def relationship_test(f3 , f2 , printType , useIndicator):

poly = R(f3)

g = 0

while ((poly.coefficients () != []) and (min(poly.←↩
coefficients ()) > 0)):

term = q**(min(poly.exponents ()) - min(f2.exponents ()←↩
))

test = poly - term*f2

if((test.coefficients () ==[]) or (min(test.←↩
coefficients ()) > 0)):

poly = test

g+= term

else:

break

r = f3 -g*f2

propR = poly_proper(r)

propG = poly_proper(g)

indicator = ' ' if ((r)!=0 and useIndicator) else ' '←↩
if (r== 0 and useIndicator) else ' '

if(printType == 'full '):
print("{}f_3 = ({}) f_2 +({})".format(indicator , str(←↩

propG).replace('*',''), str(propR).replace('*','')←↩
))

if(printType == 'quotient '):

103

print("{}({}) ,".format(indicator , str(propG).replace←↩
('*','')))

if(printType == 'remainder '):
print("{}({}) ,".format(indicator , str(propR.replace(←↩

'*',''))))

return [R(g),R(r)]

Example Remainder Search for min vs. min+1 descents.

Fix j, range over k.

For each k, give remainders when n is in congruence ←↩
classes mod (modulus)

continue to n=modulus*nprime+modulus where nprime=capN

mathematicaOutput formats things nicely to copy -paste ←↩
into Mathematica.

def hunt_remainder(j, modulus , capK , capN , mathematicaOutput)←↩
:

print("--j={}".format(j))

for k in range(j,capK):

print("---Letting: k={}".format(k))

for ncong in range(0,modulus):

print("----Class: n={} (mod {})".format(ncong , ←↩
modulus), end='')

first = True

for nprime in range((k/modulus).floor(),capN):

n = modulus*nprime+ncong

if (n >= k and k>= j):

flambda = gen_all_flambda_by_kostka ([n,k,←↩
j])

else:

continue

if (len(flambda) < 2):

continue

if(first):

print(", so n= {}, {}, {}, {}, ...".←↩
format(n, n+modulus , n+2* modulus , n+3*←↩
modulus))

if(mathematicaOutput):

print("list$J {}K{}N{}mod {}=".format(j←↩
,k,ncong ,modulus),end='{\n')

first = False

f2 = R(flambda [0][1])

f3 = R(flambda [1][1])

104

if(not mathematicaOutput):

print("[{} ,{} ,{}]:".format(n,k,j),end='')
p = relationship_test(f3, f2, 'remainder ', ←↩

False)

if(mathematicaOutput):

print("}")

else:

print("")

print("")

Example Quotient Search for min vs. min+1 descents.

(modulus*n+congclass ,modulus*n+congclass ,j) Quotient Search

Fix n,k, range over j.

For each j, give quotients and generate list of ←↩
differences between successive j.

Do so for n=k=modulus*nprime+congclass up to nprime=←↩
nprimeCap

mathematicaOutput formats things nicely to copy -paste ←↩
into Mathematica.

def hunt_quotient_nnj(modulus , congclass , nprimeCap , jCap , ←↩
mathematicaOutput):

for nprime in range(0, nprimeCap +1):

n = modulus*nprime + congclass

k = n

quotients =[]

print("Letting n,k={}*{}+{}={}".format(modulus ,nprime←↩
,congclass ,n))

first = True

for j in range(1,min(n+1,jCap +1)):

if (n<k or k<j):

continue

flambda = gen_all_flambda_by_kostka ([n,k,j])

if (len(flambda) < 2):

continue

if(first):

if(mathematicaOutput):

print("list$NK {}$=".format(n),end='{\n')
first = False

f2 = R(flambda [0][1])

f3 = R(flambda [1][1])

105

if(not mathematicaOutput):

print("[{} ,{} ,{}]:".format(n,k,j),end='')
p = relationship_test(f3, f2, 'quotient ', True)

quotients.append(p[0])

if(mathematicaOutput):

print("}")

diff = [poly_proper(t - s) for s, t in zip(quotients ,←↩
quotients [1:])]

print("\nSubsequent Differences:")

if(mathematicaOutput):

print("diff$NK {}=".format(n),end='{\n')
print(',\n'.join(map(str , diff)),end=('\n}\n\n----' ←↩

if mathematicaOutput else '\n\n----'))
print("")

A.4.2 Examples

flist = gen_all_flambda_by_kostka([5,5,3])

fmin = R(flist[0][1])

fminplusone = R(flist[1][1])

relationship_test(fminplusone, fmin, 'full', True)

�f_3 = (q^2 + 2q^3 + 2q^4 + 3q^5 + 4q^6 + 3q^7 + 3q^8 + 3q^9 + q^10

+ q^11)f_2+(q^23 + q^25)

[q^11 + q^10 + 3*q^9 + 3*q^8 + 3*q^7 + 4*q^6 + 3*q^5 + 2*q^4 + 2*q^3 + q^2,

q^25 + q^23]

hunt_quotient_nnj(3, 2, 2, 4, False)

Letting n,k=3*0+2=2

[2,2,1]:�(),
[2,2,2]:�(q^2 + q^3 + q^4),

Subsequent Differences:

q^2 + q^3 + q^4

----Letting n,k=3*1+2=5

[5,5,1]:�(q^3 + q^4 + q^5 + 2q^6 + q^7),

[5,5,2]:�(q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + 2q^7 + 2q^8 + q^9 + q^10),

106

[5,5,3]:�(q^2 + 2q^3 + 2q^4 + 3q^5 + 4q^6 + 3q^7 + 3q^8 + 3q^9 + q^10

+ q^11),

[5,5,4]:�(q^2 + 2q^3 + 3q^4 + 3q^5 + 5q^6 + 4q^7 + 4q^8 + 4q^9 + 3q^10

+ q^11 + q^12),

Subsequent Differences:

q^2 + q^4 + q^5 + q^6 + q^7 + 2*q^8 + q^9 + q^10,

q^3 + q^5 + q^6 + q^7 + q^8 + 2*q^9 + q^11,

q^4 + q^6 + q^7 + q^8 + q^9 + 2*q^10 + q^12

----Letting n,k=3*2+2=8

[8,8,1]:�(q^3 + q^4 + q^5 + 2q^6 + 2q^7 + 2q^8 + 3q^9 + 2q^10 + q^11

+ 2q^12 + q^13),

[8,8,2]:�(q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + 3q^7 + 4q^8 + 4q^9 + 4q^10

+ 3q^11

+ 3q^12 + 2q^13 + 2q^14 + q^15 + q^16),

[8,8,3]:�(q^2 + 2q^3 + 2q^4 + 3q^5 + 4q^6 + 4q^7 + 5q^8 + 6q^9 + 5q^10

+ 5q^11

+ 5q^12 + 3q^13 + 3q^14 + 3q^15 + q^16 + q^17),

[8,8,4]:�(q^2 + 2q^3 + 3q^4 + 3q^5 + 5q^6 + 5q^7 + 6q^8 + 7q^9 + 7q^10

+ 6q^11

+ 7q^12 + 5q^13 + 4q^14 + 4q^15 + 3q^16 + q^17 + q^18),

Subsequent Differences:

q^2 + q^4 + q^5 + q^6 + q^7 + 2*q^8 + q^9 + 2*q^10 + 2*q^11 + q^12 + q^13

+ 2*q^14 + q^15 + q^16,

q^3 + q^5 + q^6 + q^7 + q^8 + 2*q^9 + q^10 + 2*q^11 + 2*q^12 + q^13 + q^14

+ 2*q^15 + q^17,

q^4 + q^6 + q^7 + q^8 + q^9 + 2*q^10 + q^11 + 2*q^12 + 2*q^13 + q^14 + q^15

+ 2*q^16 + q^18

hunt_remainder(3, 4, 4, 4, False)

--j=3

---Letting: k=3

----Class: n=0 (mod 4), so n= 4, 8, 12, 16, ...

[4,3,3]: (18 + q),

[8,3,3]: (q^21 + q^22 + q^23 + 2q^24 + 2q^25 + 2q^26 + 2q^27 + q^28 + q^29

+ q^30),

[12,3,3]: ().

----Class: n=1 (mod 4), so n= 5, 9, 13, 17, ...

107

[5,3,3]: (q^18 + q^19 + q^20 + q^21),

[9,3,3]: (),

[13,3,3]: (q^27 + q^29 + q^30 + q^31 + q^32 + 2q^33 + q^34 + 2q^35 + 2q^36

+ 2q^37 + q^38 + 2q^39 + q^40 + q^41 + q^42 + q^43 + q^45).

----Class: n=2 (mod 4), so n= 6, 10, 14, 18, ...

[6,3,3]: (),

[10,3,3]: (q^24 + q^26 + q^27 + q^28 + q^29 + 2q^30 + q^31 + q^32 + q^33

+ q^34 + q^36),

[14,3,3]: (q^27 + q^28 + q^29 + 2q^30 + 2q^31 + 2q^32 + 3q^33 + 3q^34 + 3q^35

+ 4q^36 + 4q^37 + 4q^38 + 4q^39 + 3q^40 + 3q^41 + 3q^42 + 2q^43 + 2q^44

+ 2q^45 + q^46 + q^47 + q^48).

----Class: n=3 (mod 4), so n= 3, 7, 11, 15, ...

[3,3,3]: (),

[7,3,3]: (q^21 + q^23 + q^24 + q^25 + q^27),

[11,3,3]: (q^24 + q^25 + q^26 + 2q^27 + 2q^28 + 2q^29 + 3q^30 + 3q^31 + 3q^32

+ 3q^33 + 2q^34 + 2q^35 + 2q^36 + q^37 + q^38 + q^39),

[15,3,3]: ().

108

Appendix B

Mathematica Code

This appendix gives Mathematica (Wolfram language [23]) code to write fλ,k(q) by gen-
erating the set SYT(λ, k) and printing it out either as a list of diagrammatic tableaux by
major index or as the polynomial fλ,k(q). We note that the tools in Appendix A could be
written in the Wolfram language instead, though Mathematica does not include many of
the typical statistics on tableaux by default.

109

B.1 Major index over descent via SYT(λ, k)

B.1.1 Code

Needs["Combinatorica`"]

(*

Handle combinatorial issues with 00.

*)

Unprotect[Power];

Power[0 0., 0 0.] = 1;

Protect[Power];

(*

Fixes combinatorial issues with Mathematica's QBinomial,

returns zero if we have negative index.

*)

GenQBinomial[a_, b_, c_] := If[(a < b) || (a < 0), 0, QBinomial[a, b, c]]

(*

Given a tableau Tbx, return the number of descents of Tbx

*)

TabDes[Tbx_] := Sum[

Which[Position[Tbx, i]〚1〛〚1〛 < Position[Tbx, i + 1]〚1〛〚1〛, 1,

Position[Tbx, i]〚1〛〚1〛 ≥ Position[Tbx, i + 1]〚1〛〚1〛, 0],

{i, 1, Max[Tbx] - 1}]

(*

Given a tableau Tbx, return the major index of Tbx

*)

TabMaj[Tbx_] := Sum[Which[Position[Tbx, i]〚1〛〚1〛 < Position[Tbx, i + 1]〚1〛〚1〛, i,

Position[Tbx, i]〚1〛〚1〛 ≥ Position[Tbx, i + 1]〚1〛〚1〛, 0],

{i, 1, Max[Tbx] - 1}]

110

(*

Given a partition part and integer des, return f_{part,des}, the major index statistic

over all SYT of shape part with exactly des descents.

*)

FLambdaI[part_, des_] := Sum[Which[TabDes[Jay] ≠ des, 0, TabDes[Jay]  des,

q^TabMaj[Jay]], {Jay, Tableaux[part]}];

(*

Diagramatically write out all SYT of shape part with given number of descents.

*)

InfoFLambdaI[part_, des_] := SortBy[DeleteCases[Table[

Which[TabDes[Jay] ≠ des, 0, TabDes[Jay]  des, {Jay, q^TabMaj[Jay]}],

{Jay, Tableaux[part]}], 0], Last] // Transpose // TableForm;
(*

Given a polynomial poly and a desired maximum power PowersBound, returns EulerProduct

that matches up to bound.

Sequence {a_i}, 1\leq i\leq bound, with

a_i = j if 1(1-q^i)j appears and a_i =-j if (1-q^i)j appears.

Gives shift q^k if first nonzero term has degree k.

*)

QProdMake[Poly_, PowersBound_] := Module[{i, n},

LocalF = Poly;

FirstTerm = Poly /. q  0;

FirstDegree = 0;

While[FirstTerm  0, LocalF = Simplify[LocalF / q];

FirstTerm = LocalF /. q  0; FirstDegree = FirstDegree + 1];

LFCoeffList = PadRight[CoefficientList[Series[LocalF / FirstTerm,

{q, 0, PowersBound}], q], PowersBound];

For[n = 1, n < PowersBound + 1 - FirstDegree, n++, If[! IntegerQ[LFCoeffList〚n〛],

Print["Non-integer coefficients after division by leading coefficient"];

Return[Null]]];

EtaPowers = Table[0, {n, 1, PowersBound - FirstDegree}];

For[n = 1, n < PowersBound + 1 - FirstDegree, n++,

EtaPowers〚n〛 = Coefficient[

Series[LocalF / FirstTerm - Product[(1 - q^k)^(-EtaPowers〚k〛), {k, 1, n - 1}],

{q, 0, PowersBound}], q^n]

];

Print["First term ", FirstTerm * q^FirstDegree, " ; Qn powers ", EtaPowers];

Return[Null]

]

111

(*

Computer-readable form of QProdMake. Spits out list of powers (used in QProdMake).

Drops the shift term.

*)

PowerList[Poly_, PowersBound_] := Module[{i, n},

LocalF = Poly;

FirstTerm = Poly /. q  0;

FirstDegree = 0;

While[FirstTerm  0, LocalF = Simplify[LocalF / q]; FirstTerm = LocalF /. q  0;

FirstDegree = FirstDegree + 1];

LFCoeffList = PadRight[CoefficientList[

Series[LocalF / FirstTerm, {q, 0, PowersBound}], q], PowersBound];

For[n = 1, n < PowersBound + 1 - FirstDegree, n++,

If[! IntegerQ[LFCoeffList〚n〛], Return[Null]]];

EtaPowers = Table[0, {n, 1, PowersBound - FirstDegree}];

For[n = 1, n < PowersBound + 1 - FirstDegree, n++,

EtaPowers〚n〛 =

Coefficient[Series[LocalF / FirstTerm - Product[(1 - q^k)^(-EtaPowers〚k〛),

{k, 1, n - 1}], {q, 0, PowersBound}], q^n]

];

Return[EtaPowers]

]

112

B.1.2 Examples

TabMaj[{{1, 4, 6}, {2, 5}, {3}}]

7

TabDes[{{1, 4, 6}, {2, 5}, {3}}]

3

FLambdaI[{3, 2, 1}, 3]

q7 + 2 q8 + 2 q9 + 2 q10 + q11

InfoFLambdaI[{3, 2, 1}, 3]

1 4 6
2 5
3

1 3 6
2 4
5

1 4 5
2 6
3

1 3 5
2 4
6

1 3 5
2 6
4

1 2 5
3 6
4

1 3 4
2 5
6

1 2 4
3 5
6

q7 q8 q8 q9 q9 q10 q10 q11

QProdMake[FLambdaI[{3, 2, 1}, 2], 20]

First term q4 ; Qn powers {2, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Note that f(3,2,1),2(q) = q4 1-q2×1-q4

(1-q)2
.

113

	Major Index over Descent Distributions of Standard Young Tableaux
	Recommended Citation

	List of Figures
	Acknowledgments
	Abstract
	Introduction
	q-Kostka polynomials and the Kirillov-Reshetikhin Formula
	Closed forms and beyond
	Tableau threads

	Closed formulas and symmetries
	Minimum descents
	Symmetries
	Minimum-plus-one descents
	Three rowed tableaux
	Rectangular tableaux

	Computation through the Kirillov-Reshetikhin Formula
	Admissible sequences
	Closed formulas

	Relations among f,k
	References
	SageMath Code
	Major index over descent via SYT(, k)
	Code
	Examples

	Major index over descent via K, 1||k(q)
	Code

	Admissible sequence contributions in K, 1||k(q)
	Code
	Examples

	Relationships among f, k(q)
	Code
	Examples

	Mathematica Code
	Major index over descent via SYT(, k)
	Code
	Examples

