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Abstract 

The most accurate wave energy converter models for heaving point absorbers include 

nonlinearities, which increase as resonance is achieved to maximize energy capture. The 

efficiency of wave energy converters can be enhanced by employing a control scheme 

that accounts for these nonlinearities. This project proposes a sliding mode control for a 

heaving point absorber that includes the nonlinear effects of the Froude-Krylov forces. 

The sliding mode controller tracks a reference velocity that matches the phase of the 

excitation force to ensure higher energy absorption. This control algorithm is tested in 

regular linear waves and is compared to a complex-conjugate control and a nonlinear 

variation of the complex-conjugate control. The results show that the sliding mode 

control successfully tracks the reference, keeps the device displacement bounded, and 

absorbs more energy than the other control strategies. Furthermore, the controller can 

accommodate disturbances and uncertainties in the dynamic model.
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1 Introduction 

Recently, the generation of electricity from ocean waves has gained special attention. 

Studies of the potential global market for wave power showed that the world's wave 

power resource is estimated to be 2 TW [1]. Additionally, waves have a very high power 

density, requiring smaller devices to capture the energy carried by the incoming waves. 

Wave energy can also improve energy security by complementing the output of other 

renewable energy sources, thus reducing storage needs. However, although phased 

development has helped reduce risks, the wave energy sector is still in its infancy, with 

recent prototype wave energy converters (WECs) having a Levelized Cost of Energy 

(LCoE) in the range of $120-$470/MWh [2]. Hence, technological advances are required 

to reduce the LCoE 50-75% to enable the industry to leap from government-funded 

research to sustainable industrial competition within the energy market. Optimizing the 

control of WECs has been identified as one of the critical areas with the highest potential 

to improve the viability of wave energy [3], as the latest control methods can enhance 

power absorption by up to 20% while reducing structural loads. Most of the work 

presented in this report is published in Reference [4]. 

1.1 Literature Review 

Researchers have used well-established control methods in WECs that include Complex-

Conjugate Control (CCC), Latching, and Model Predictive Control (MPC) [5]. In 

complex-conjugate control, optimal energy absorption is sought by tuning the power 

take-off (PTO) resistance and reactance to cancel the system's inherent hydrodynamic 

resistance and reactance [6]. This control strategy is conceptually simple and presents a 

low computational cost; however, it leads to excessive motions and loads of the WEC. 
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This can be avoided by implementing alternative sub-optimal control schemes that 

include physical constraints on the motions and power of the device. Latching control is 

based on locking the device through dedicated mechanisms during a certain period of 

time of the wave oscillation cycle to achieve resonance of the WEC [7], [8]. Resonance is 

achieved when the system is being excited at its natural frequency. While latching control 

solves the PTO limitation problem of CCC, it is prone to failure of the mechanical 

clamping pieces generating extra costs and reducing its reliability. MPC strategies 

maximize the energy absorbed by applying the optimal control force to achieve resonance 

at each time step over a future time horizon [9]. However, a prediction of the wave 

motion is required, and its complexity of implementation in real-time demands high 

computational requirements. 

Most of these control techniques use the linear model developed by Cummins [10] with 

hydrodynamic parameters obtained from boundary element methods (BEM) due to their 

simplicity and high computational efficiency. Although linear models are effective for 

most ocean engineering applications where the aim is typically to stabilize the structure, 

linear models are inadequate for WEC control, where the primary objective is to amplify 

the device's motions to maximize power absorption [11]. As a result, control strategies 

based on linear models are often suboptimal and lead to higher LCoE.  

Nonlinear models often include the quadratic term of the pressure from the incident flow, 

the integration of the pressure forces over the instantaneous wetted surface of the device 

called Froude-Krylov (FK) forces, and the nonlinear incident flow potential [12]. Each of 

these nonlinearities adds an extra level of complexity and computational load. However, 
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it is understood that nonlinear models are more accurate than linear models, particularly 

for buoy geometries with varying cross-sectional areas. A previous study [13] that 

compared different modeling options showed that the dominant source of nonlinearities is 

likely to be the nonlinear Froude Krylov forces for devices with a varying cross-sectional 

area.  

While in linear modeling, the FK forces are calculated over a constant wetted area of the 

device, in nonlinear models, the pressure is integrated over the instantaneous wetted 

surface area. This is generally done by implementing a very fine mesh or a remeshing 

routine of the surface, which requires more computational effort. As a result, the 

nonlinear model is more accurate but is very computationally expensive. However, in 

[14], a computationally efficient analytical method was developed to compute nonlinear 

dynamic and static Froude-Krylov forces based on the instantaneous wetted surface area 

of the buoy. This analytical method presents only a 2% error compared to the more 

computationally expensive methods. Therefore, in this study, the nonlinear FK forces will 

be incorporated using a variation of the algebraic solution proposed by Giorgi et al. 

1.2 Project Overview 

In this research project, a Sliding Mode Control (SMC) strategy is proposed that 

incorporates the nonlinear Froude-Krylov force reducing the discrepancies between the 

mathematical model and the actual system. In addition, this SMC is designed to track the 

desired reference signals using low computational efforts and rejecting disturbances 

encountered by the WEC or parametric errors presented in the model. The controller will 



4 

be investigated in a simulation environment using a standard spherical WEC and regular 

waves.  

A sliding mode control strategy for heaving WECs was proposed in [15], where it was 

shown that this control strategy provides a viable solution to increase energy extraction. 

The SMC was designed to track a reference velocity without violating the physical 

constraints of the device. The results showed that the SMC successfully tracked the 

reference signal even when system perturbations were present. However, this work was 

done using a linear approximation of the hydrodynamics of the system.  

1.3 Project Objective 

This project aims to improve the performance of WECs using a nonlinear model that 

incorporates the nonlinear FK force and SMC to drive the system to the desired velocity 

profile while keeping the system very robust against parameter perturbations of the model 

and external disturbances due to different environmental conditions.  

The main contributions of this study consist of:  

1. the derivation of algebraic nonlinear Froude-Krylov forces based on the work of 

Giorgi et al.;  

2. the application of an SMC to the nonlinear WEC model; 

3. the design of a nonlinear variant of complex-conjugate control.     

This report is organized into six sections. First, the following section describes the 

general dynamics of a heaving WEC and the derivation of the nonlinear algebraic Froude 

Krylov forces showing contribution 1. Then, contributions 2 and 3 are in Section 3, 
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where the SMC strategy is designed and compared to a complex-conjugate control and a 

nonlinear variant of complex-conjugate control. In Section 4, the simulation used to 

evaluate closed-loop performance is described. Section 5 shows the results, and Section 6 

provides conclusions and areas for further study. 
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2 Model Description 

Mathematical models for WECs are essential for the design of model-based control. 

These models are typically linear because of their low computational requirements, in 

which they assume small motion. However, there are situations in which the movement is 

not small while still producing power, and the nonlinearities of the device become 

significant.  

The incoming waves are classified as linear and nonlinear depending on the wave 

steepness 𝑆, which is the ratio between the wave height ℎ, and the wavelength 𝜆 [16]. 

Waves are also classified as regular and irregular, where regular waves are characterized 

by a specific amplitude 𝐴, frequency 𝜔0, and wavelength, whereas irregular waves are 

composed of multiple frequency waves. In this report, linear and regular waves are used, 

representing the wave free surface elevation 𝜂(𝑡) as a function of time only: 

𝜂(𝑡) = 𝐴 𝑐𝑜𝑠(𝜔0𝑡) (1) 

A floating single degree of freedom (SDOF) buoy is shown in Figure 1, where the lower 

part of the body is attached to a linear generator for power take-off (PTO), which is fixed 

to the seabed. The PTO subsystem converts the wave energy into electrical energy and 

energizes the system to track the reference profile. The excitation force is shown as 

𝐹𝑒𝑥𝑐(𝑡), the buoy’s displacement from its equilibrium position is 𝑧(𝑡), and the control 

force implemented by the PTO system is 𝐹𝑐(𝑡). 

The general heaving WEC hydrodynamic model used in this project is described as: 
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𝑚𝑧̈(𝑡) = 𝐹𝐹𝐾 + 𝐹𝑑 + 𝐹𝑅  − 𝐹𝑐 (2) 

where, 

𝑚:   Mass of the buoy in the air 

𝐹𝐹𝐾:  Froude-Krylov Force 

𝐹𝑑:   Diffraction Force  

𝐹𝑅:   Radiation Force 

Figure 1. Heaving buoy with PTO fixed to the sea bed [4]. 

2.1 Diffraction Force 

When the approaching wave field encounters the buoy body, the waves deform around 

the corners of the body. This phenomenon is referred to as the diffraction force, which is 

the force that the incoming waves apply on the buoy as it is held fixed in the water [6]. 

On the wave energy field, it is usually represented as the convolution of the product of 

the wave free surface elevation and the diffraction impulse response function (IRF): 

𝐹𝑑 = ∫ 𝐾𝑑𝐼𝑅𝐹
(𝑡 − 𝜏) 𝜂(𝑡) 𝑑𝜏

+∞

−∞

 (3) 

where 𝐾𝑑𝐼𝑅𝐹
 is the diffraction IRF.  
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When the buoy diameter is much smaller than the wavelength, the disturbance field 

generated by the body is small enough to be ignored [17]. Therefore, the diffraction force 

will be included in the equations in this report but not in the simulation. This force could 

also be accounted as a disturbance to the system.  

2.2 Radiation Force 

The radiation force is the force that the body experiences when it oscillates in calm water. 

It is common to divide this force into two parts: the added mass force proportional to the 

body's acceleration and the wave damping force proportional to the body velocity [18]. 

Thus, the radiation force can be represented as: 

𝐹𝑅(𝑡) =  − ∫ 𝐾𝐼𝑅𝐹 (𝑡 − 𝜏) 𝑧̇(𝑡) 𝑑𝜏 − 𝑚𝑎(𝜔∞)𝑧̈(𝑡)
+∞

−∞

 (4) 

where, 

𝐾𝐼𝑅𝐹:     Radiation IRF 

𝑚𝑎(𝜔∞): Added mass 

Evaluating the convolution integral in the radiation force is very expensive to compute at 

every time step of the simulation, and it is not possible on a real-time application. 

However, when the buoy is exposed to only harmonic waves of frequency 𝜔0, the 

convolution in (4) can be represented as: 

𝐹𝑅 = 𝑐(𝜔0)𝑧̇(𝑡) − 𝑚𝑎(𝜔∞)𝑧̈(𝑡) (5) 
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where 𝑐(𝜔0) is the linear damping constant.   

2.3 Froude-Krylov Force 

The Froude-Krylov force 𝐹𝐹𝐾 is the addition of the hydrostatic force 𝐹𝐹𝐾𝑠𝑡
with the 

hydrodynamic force 𝐹𝐹𝐾𝑑𝑦
. The hydrostatic force is the difference between the gravity 

force 𝐹𝑔 and the force caused by the hydrostatic pressure over the wetted surface of the 

buoy and, the hydrodynamic force is the integral of the unsteady pressure field over the 

wetted surface of the floating buoy caused by the incident waves. 

𝐹𝐹𝐾 = 𝐹𝑔 − ∬ 𝑃(𝑡) 𝐧𝑑𝑆 (6) 

In linear models, the integration is done over the constant mean wetted surface, while in 

the nonlinear approach, the instantaneous wetted surface of the body is considered. This 

approach typically requires significant computational effort. However, Giorgi et al. 

proposed an algebraic solution that significantly reduces the computational effort for 

heaving axisymmetric geometries. The algebraic solution is found by defining the 

pressure 𝑃(𝑡), the infinitesimal element of the surface 𝐧 𝑑𝑆, and the limits of integration. 

The total pressure for deep water waves can be found using Airy's wave theory. 

𝑃(𝑡) =  𝜌𝑔𝑒𝜒𝑧𝐴𝑐𝑜𝑠(𝜔𝑡) −  𝜌𝑔𝑧(𝑡) (7) 

where, 

𝜌: Density of water 

𝑔: Gravity acceleration constant 
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𝜒: Wavenumber 

In Giorgi et al. work, the surface of the geometry of the buoy is defined in parametric 

cylindrical coordinates as: 

{

𝑥(𝜎, 𝜃) = 𝑓(𝜎) cos (𝜃)

𝑦(𝜎, 𝜃) = 𝑓(𝜎) sin(𝜃) ,

𝑧(𝜎, 𝜃) = 𝜎                     

              𝜃 ∈ [0,2𝜋) ∧ 𝜎 ∈ [𝜎1, 𝜎2] (8) 

where 𝑓(𝜎) is the profile of revolution of the point absorber. Using the radial 𝑒𝜎 and 

tangent 𝑒𝜃 vectors canonical basis, and only the vertical component for heave motion 

restriction, the infinitesimal surface element, and the pressure becomes:  

𝑒𝜎 × 𝑒𝜃 𝑑𝑆 = 𝐧‖𝑒𝜎 × 𝑒𝜃‖ 𝑑𝜎𝑑𝜃 = 𝐧 𝑓(𝜎)√𝑓′(𝜎)2 + 1 𝑑𝜎𝑑𝜃  

𝑃𝑧(𝑡) = 𝑃(𝑡) ∙ 〈𝐧, 𝐤〉 = 𝑃(𝑡) ∙
𝑓′(𝜎)

√𝑓′(𝜎)2 + 1
 (9) 

Combining these equations, the Froude-Krylov forces are: 

𝐹𝐹𝐾 = 𝐹𝑔 − ∬ 𝑃(𝑡)𝑓′(𝜎)𝑓(𝜎)𝑑𝜎𝑑𝜃 (10) 

The paper continues defining the limits of integration based on the free surface elevation 

and the draft of the buoy ℎ0 at equilibrium as: 

{
𝜎1 = 𝑧𝑑(𝑡) − ℎ0

𝜎2 = 𝜂(𝑡)           
 (11) 
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For a spherical point absorber, the profile of revolution derived in Giorgi et al. paper is: 

𝑓(𝜎) = √𝑅2 − (𝜎 − 𝑧𝑑)2 where 𝑅 is the radius of the buoy, and 𝑧𝑑(𝑡) is the vertical 

displacement of the buoy from equilibrium. 

In this project, the limits of integration and the profile of revolution have been redefined 

using calculus to derive the instantaneous wetted surface area of the sphere. Considering 

the bottom of the sphere as the lower limit of integration, the profile of revolution of the 

sphere at still water level shown in Figure 2 is: 𝑓(𝜎) =  √𝑅2 − (−𝑅 + ℎ0 + 𝜎)2 where 

the SWL was used as a reference. In this case, the lower limit of integration is −ℎ0 and 

the upper limit is 0. When the buoy is displaced by 𝑧𝑑(𝑡), and the free surface elevation 

𝜂(𝑡) is not zero as shown in Figure 2. b the profile of revolution of the sphere becomes: 

𝑓(𝜎) =  √𝑅2 − (−𝑅 + ℎ0 − 𝑧𝑑(𝑡) + 𝜂(𝑡) + 𝜎)2 (12) 

The limits of integration are: 0 for the upper limit, and 𝑙𝑏 = −ℎ0 + 𝑧𝑑(𝑡) − 𝜂(𝑡) for the 

lower limit. Combining equations (8)-(12), the integral of the Froude-Krylov force of a 

heaving spherical buoy can be expressed as: 

𝐹𝐹𝐾𝑧
= 𝐹𝑔 − 2𝜋𝜌𝑔 ∫(𝑒𝜒𝑧𝐴𝑐𝑜𝑠(𝜔𝑡) −  𝜎)

0

𝑙𝑏

(−𝑅 + ℎ0 − 𝑧𝑑(𝑡)  + 𝜂(𝑡) + 𝜎) 𝑑𝜎 (13) 

Solving the integral and separating the Froude-Krylov force, the resulting nonlinear 

hydrostatic and hydrodynamic forces of the system are: 
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𝐹𝐹𝐾𝑠𝑡
= 𝐹𝑔 +

𝜋𝜌𝑔

3
(𝜂(𝑡) + ℎ0 − 𝑧𝑑(𝑡))

2
(3𝑅 − 𝜂(𝑡) −  ℎ0 + 𝑧𝑑(𝑡)) (14) 

𝐹𝐹𝐾𝑑𝑦
=

2𝜋𝜌𝑔𝜂(𝑡)

𝜒2
(𝑒−𝜒(𝜂(𝑡)+ ℎ0−𝑧𝑑(𝑡))

+ 𝜒(−𝑅 + 𝜂(𝑡) + ℎ0 − 𝑧𝑑(𝑡) + 𝑅𝑒−𝜒(𝜂(𝑡)+ ℎ0−𝑧𝑑(𝑡))) − 1) 

(15) 

The complete nonlinear model of a single degree of freedom WEC in heave mode can 

then be described as: 

𝑀𝑧̈(𝑡) = 𝐹𝑑 + 𝐹𝐹𝐾𝑠𝑡
+ 𝐹𝐹𝐾𝑑𝑦

− 𝑐(𝜔0)𝑧̇(t) − 𝐹𝑐 (16) 

where 𝑀 = (𝑚 + 𝑚𝑎(𝜔∞)) 

For the subsequent control design, it will be convenient to write (16) as: 

𝑧̈(𝑡) = 𝑓𝑡(𝑧(𝑡), 𝑧̇(𝑡), 𝜂(𝑡)) − 𝐹̅𝑐 (17) 

where 𝑓𝑡 is the true model of the system and 𝐹̅𝑐 = 𝐹𝑐𝑀𝑡
−1 where 𝑀𝑡 is the true mass. In 

contrast, the model used for control design is approximated as:  

𝑧̈(𝑡) = 𝑓(𝑧(𝑡), 𝑧̇(𝑡), 𝜂(𝑡)) − 𝐹̂𝑐 (18) 

𝑓(𝑧(𝑡), 𝑧̇(𝑡), 𝜂(𝑡)) = [𝐹𝑑 + 𝐹𝐹𝐾𝑠𝑡
+ 𝐹𝐹𝐾𝑑𝑦

− 𝑐(𝜔0)𝑧̇(𝑡)] 𝑀−1 

𝐹̂𝑐 = 𝐹𝑐𝑀−1 

The calculation of the absorbed energy is [19]: 

𝑊 = ∫ 𝐹𝑐  𝑧̇(𝑡) 𝑑𝑡
𝑡

𝑜

 (19) 
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                      (a)                                                         (b) 

Figure 2. Heaving spherical point absorber at the still water level (SWL) on the left (𝑎); 

to the right (𝑏) is shown the displacement from resting position 𝑧𝑑(𝑡) and the wave 

elevation 𝜂(𝑡) [4].  
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3 Control Design 

This section presents a sliding mode control (SMC) design, illustrated in Figure 3, for a 

heaving WEC based on the nonlinear differential equation model of Equation (16). 

Motivated by linear, complex conjugate control, the SMC reference trajectory is selected 

to match the frequency and phase of the excitation force. Since the WEC model is not 

linear, as assumed by complex conjugate control, it is recognized that this reference 

trajectory will not be optimal. Creating a real-time, energy extraction optimal reference 

trajectory is an open topic and well-suited for MPC applications. The reference velocity is 

then integrated to produce the reference displacement profile 𝑧𝑟(𝑡).  

 

Figure 3. Configuration of proposed control schemes [4]. 

The sliding mode control is derived by first defining the sliding surface as: 

𝑠(𝒛; 𝑡) =  𝑒̇(𝑡) + 𝑤 𝑒(𝑡) (20) 

where 𝒛 is the state vector 𝒛 = [𝑧; 𝑧̇]. The problem of tracking a given profile now becomes 

equivalent to maintaining the stationarity condition:  

𝑠̇(𝑡) =  𝑒̈(𝑡) + 𝑤 𝑒̇(𝑡) = 𝑧̈𝑟(𝑡) − 𝑧̈(𝑡) + 𝑤 𝑒̇(𝑡) = 0 (21) 
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Substituting (18) into (21), and solving for 𝐹̂𝑐 gives the control law: 

𝐹̂𝑐 = 𝑓(𝑧(𝑡), 𝑧̇(𝑡), 𝜂(𝑡)) − (𝑧̈𝑟(𝑡) + 𝑤𝑒̇(𝑡)) (22) 

This control law will only work if the assumed form of the model is perfect and there are 

no disturbances. To account for these inevitable situations, Lyapunov's Direct method is 

used to augment the control law of (22) to ensure stability. 

The Lyapunov candidate function is selected as: 

𝑉(𝑡) =
1

2
𝑠2(𝑡) (23) 

For stability, 

𝑉̇ = 𝑠(𝑡)𝑠̇(𝑡) = 𝑠(𝑡)(𝑧̈𝑟(𝑡) − 𝑧̈(𝑡) + 𝑤𝑒̇(𝑡)) < 0     (24) 

Substituting the true model, (17), into (24) gives: 

𝑉̇ = 𝑠(𝑡)(𝑧̈𝑟(𝑡) − 𝑓𝑡(𝑧(𝑡), 𝑧̇(𝑡), 𝜂(𝑡)) + 𝐹̅𝑐 + 𝑤𝑒̇(𝑡)) < 0     (25) 

Next, substitute a modified version of the control law of (22) where we have added a new 

term, 𝐴𝑐𝑠𝑔𝑛(𝑠(𝑡)), that does not affect the stationary condition imposed earlier:  

𝐹̂𝑐 = −𝑧̈𝑟(𝑡) + 𝑓(𝑧(𝑡), 𝑧̇(𝑡), 𝜂(𝑡)) − 𝑤𝑒̇(𝑡) − 𝐴𝑐𝑠𝑔𝑛(𝑠(𝑡))     (26) 

Furthermore, note that 𝐹̂𝑐 ≠ 𝐹̅𝑐 are related by 𝐹̅𝑐 =
𝑀

𝑀𝑡
𝐹̂𝑐. The time-dependency notation 

will be omitted for the following equations for brevity. We now have the stability 

condition:  
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𝑉̇ = 𝑠 (𝑧̈𝑟 − 𝑓𝑡(𝑧, 𝑧̇, 𝜂) +
𝑀

𝑀𝑡
(−𝑧̈𝑟 + 𝑓(𝑧, 𝑧̇, 𝜂) − 𝑤𝑒̇ − 𝐴𝑐𝑠𝑔𝑛(𝑠)) + 𝑤𝑒̇) < 0 (27) 

or 

𝐴𝑐|𝑠| > 𝑧̈𝑟 − 𝑓(𝑧, 𝑧̇, 𝜂) − 𝑤𝑒̇ +
𝑀𝑡

𝑀
(−𝑧̈𝑟 + 𝑓𝑡(𝑧, 𝑧̇, 𝜂) − 𝑤𝑒̇) (28) 

As long as 𝐴𝑐 is sufficiently large to dominate the uncertainties on the right side of (28), 

the system will be stable.  

The discontinuous terms in the control of (26) 𝐴𝑐  𝑠𝑔𝑛(𝑠(𝑡)) can cause chattering. This is 

eliminated by replacing the signum function with a hyperbolic tangent [20]. Then, the 

control law is interpolated by replacing 𝑡𝑎𝑛ℎ(𝑠(𝑡)) function by 𝑠(𝑡)/𝛷 as: 

𝐹𝑐 = 𝐹𝑑 + 𝐹𝐹𝐾 − 𝑐(𝜔0)𝑧̇(t) − (𝑧̈𝑟(𝑡) + 𝑤𝑒̇(𝑡))𝑀 + 𝐴𝑐  𝑡𝑎𝑛ℎ(𝑠(𝑡)/Φ) (29) 

where Φ is the boundary layer thickness.  

The reference signal generator outputs the desired velocity profile of the WEC plant that is 

then integrated to obtain the desired displacement profile 𝑧𝑟. The control law takes as inputs 

the formed error signals, the desired acceleration profile 𝑧̈𝑟 , the FK forces and the actual 

buoy displacement as in (29). The control parameters 𝐴𝑐 and Φ were chosen during the 

simulation process. As aforementioned, the reference velocity profile is designed to match 

the frequency and phase of the excitation force. As described in [6], the optimum velocity 

condition requires: 
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𝑧̇𝑟(𝑡) =
𝐹𝑒𝑥𝑐(𝜔0)

2 𝑐(𝜔0)
 (30) 

To achieve this condition, phase control is needed so that the oscillation velocity 𝑧̇(t) is in 

phase with the excitation force and amplitude control to get a velocity amplitude of 

|𝑧̇𝑟(𝑡)| = |𝐹𝑒𝑥𝑐|/2𝑐(𝜔0). However, this optimal condition leads to excessive motions of 

the device that would be infeasible in real-world applications. Therefore, the reference 

velocity profile is defined to be in phase with the excitation force with a suboptimal 

amplitude that varies for each sea state condition. Even though the WEC plant is nonlinear, 

in this study, the calculation of the reference velocity profile is based on the linear 

excitation force obtained from WAMIT [21]. 

To compare the results of the SMC, an approximate CCC [22] is used. Referring to the 

impedance matching principle [23], the optimal control force may be written as: 

                           𝐹𝐶
𝑜𝑝𝑡(𝜔) = −𝑍𝑐

𝑜𝑝𝑡(𝜔)𝑧̇(𝜔) = −𝑍𝑖
∗(𝜔)𝑧̇(𝜔) (31) 

where the optimal control impedance 𝑍𝑐
𝑜𝑝𝑡(𝜔) must equal the complex-conjugate of the 

intrinsic impedance 𝑍𝑖 = 𝑅𝑖(𝜔) + 𝑖𝑋(𝜔) composed by the intrinsic resistance 𝑅𝑖(𝜔) and 

the intrinsic reactance 𝑋𝑖(𝜔). For monochromatic incident waves, this optimal force may 

be written in the time-domain as: 

𝐹𝐶
𝑜𝑝𝑡(𝑡) = −𝑀𝑐𝑧̈(𝑡) + 𝑐𝑐(𝜔0) 𝑧̇(𝑡) − 𝑘𝑐 𝑧(𝑡)  

For optimal control, the controller values must equal the intrinsic values 𝑀𝑐 =

𝑀, 𝑐𝑐(𝜔0) = 𝑐(𝜔0), 𝑘𝑐 = 𝑘 where 𝑘 is the linear approximation of the static Froude-
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Krylov force. By cancellation, this control force gives the optimal response velocity shown 

in (30) when the WEC model is assumed to be linear, and 𝑘 is used instead of the nonlinear 

hydrostatic FK force. Since in this paper the WEC model is nonlinear, the optimal control 

force using CCC was modified to obtain a perfect cancellation of the 𝐹𝐹𝐾𝑠𝑡
 as: 

                            𝐹𝐶
𝑜𝑝𝑡(𝑡) = −𝑀𝑧̈(𝑡) + 𝑐(𝜔0)𝑧̇(𝑡) + 𝐹𝐹𝐾𝑠𝑡

    (32) 

This control strategy used for comparison will be referred to as nonlinear complex-

conjugate control (𝑁𝐿 − 𝐶𝐶𝐶) from this point on. The configuration of this control scheme 

is similar to that of the SMC shown in Figure 3. However, this control law only takes as 

inputs 𝑧(𝑡), 𝑧̇(𝑡), 𝑧̈(𝑡) and, 𝜂(𝑡).   
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4 Simulation 

As shown in previous studies [12], the significance of the Froude-Krylov nonlinear force 

for a spherical body is great due to its varying cross-sectional area. The buoy parameters 

used in this simulation are listed in Table 1 and were chosen to resemble the parameters 

of a real device such as the WAVESTAR [24] device. The density of the body was 

chosen to be 500 kg/m3 to make the draft of the buoy ℎ0 coincident with the center of 

gravity of the sphere. The remaining hydrodynamic parameters were found by solving the 

radiation problem in WAMIT.  

The results shown in the following section correspond to the wave period of 𝑇 = 6s and 

𝜔0 = 1.05rad/s. Therefore, the frequency-dependent parameters shown in Table 1 are 

based on this wave frequency. 

The simulation was run for different monochromatic wave periods ranging from 3 to 9 

seconds. Under the deepwater assumption, the wavelength 𝜆 is related to the wave period 

𝑇 as:  

𝜆 =
𝑔

2𝜋
𝑇2 

In addition, the steepness of the wave 𝑺 was kept constant at 0.018, which is the highest 

wave steepness under the linear waves assumption [16]. To maintain the wave steepness 

constant, the amplitude of the wave is related to the wavelength as follows: 

𝑆 =
2𝑎

𝜆
= 0.018 
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Therefore, the wavelength and wave amplitude are determined by the choice of wave 

period. Table 2 shows the range of wave periods and their corresponding wavelength and 

wave amplitude. 

Table 1. Simulation Parameters 

Parameter Values 

Buoy radius 𝑅 2.5 m 

Buoy mass 𝑚 32725 kg 

Buoy draft ℎ𝑑 2.5 m 

Added mass 𝑚𝑎(𝜔∞) 14019 kg 

Radiation damping 𝑐(𝜔0) 11208 N (m s⁄ )⁄  

Water density 𝜌 1000 kg/m3 

Gravity constant 𝑔 9.81 m/s2 

Wave amplitude 𝐴(𝜔0) 0.5 m 

Wave frequency 𝜔0 1.05 rad/s 

Wave number 𝜒(𝜔0) 0.112 

SMC convergence rate 𝑤 8 

SMC coefficient 𝜙 1000 

SMC coefficient 𝐴𝑐 104 N 

 

The reference velocity profile in (30) has been proven to be the optimum velocity [6] 

when using a linear approximation of the WEC, enabling maximum energy absorption 

for a given buoy shape. However, this is not the case for this nonlinear WEC model 

where the 𝐹𝐹𝐾𝑑𝑦
 is dependent on the incident wave elevation and the buoy displacement. 

Additionally, it is well known that CCC magnifies the buoy's motion, driving the device 

to be either fully submerged or completely out of the water for certain wave periods. This 

undesirable behavior can be eliminated with the SMC by keeping the amplitude of the 

desired displacement bounded:  

ℎ0 + 𝑆𝑓𝑅 − 2𝑅 >  𝑧𝑟  > ℎ0 − 𝑆𝑓𝑅  (23) 
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where 𝑆𝑓 is a safety factor used to determine the maximum and minimum buoy height 

covered by water, as shown in Figure 4. Therefore, the amplitude of the desired 

displacement of the device was chosen to be a value within those limits. The SMC 

reference amplitude for each wave period is listed in Table 2. 

Figure 4. Spherical buoy limits of displacement [4]. 

Table 2. Wave Characteristics and Control Parameters. 

Wave Period (s) 3 4 5 6 7 8 9 

Wavelength (m) 15 25 39 56 77 100 127 

Wave Amplitude (m) 0.13 0.22 0.35 0.50 0.69 0.90 1.14 

SMC Reference 

Amplitude (m) 
0.6 1.1 1.8 2.19 2.14 2.05 1.9 
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5 Results 

As aforementioned in Section 3, this report compares the performance of the SMC 

against a complex-conjugate control (CCC) and a complex-conjugate control that 

includes the nonlinear static FK force in the control law (NL-CCC). The reference 

velocity used for the SMC is a cosine wave of the same frequency and phase as the linear 

hydrodynamic Froude-Krylov force obtained from WAMIT. To reduce the risk of driving 

the buoy completely out of the water or completely submerged into the water, a safety 

factor of 𝑆𝑓 = 10% was used in the simulation, leaving 25cm of clearance at the top and 

bottom of the spherical body.  

The case shown in the results corresponds to a case where the CCC leads to a stable 

steady-state solution within the physical limits of the buoy. For higher wave periods, the 

solution with CCC would not reach steady-state. The maximum wave period at which the 

WEC controlled with the complex-conjugate control reached a steady-state solution 

within the physical limits of the buoy was at 𝑇 = 6𝑠. Therefore, that is the case that is 

shown in this report. Figure 5 shows the relative displacement 𝑧𝑑(𝑡) −  𝜂(𝑡) of the 

system using the different control strategies and the displacement limits to keep the buoy 

safe.  

The relative displacement is kept within limits for the three control strategies used. The 

relative displacement when SMC is implemented is very well-behaved, and it takes 

advantage of the full range of motion available for the WEC. When CCC is implemented, 

there is a transient part for the first 15 seconds due to a 20 seconds ramp used to attenuate 

the overshoot caused by the control force. The relative displacement then reaches steady 
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state within the allowable range of motion. Note that the relative displacement with CCC 

is not in phase with the SMC. If the WEC plant were linear, the CCC and SMC would be 

in phase. However, since the plant is nonlinear and the controller is a linear 

approximation, there is no perfect cancellation of the static FK force leading to a 

mismatch in relative displacements. Once the nonlinear static FK force is added to the 

CCC to form the NL-CCC, the relative displacement is in phase with the SMC. However, 

the amplitude of the relative displacement does not cover the full range of motion 

available since the minimum point at steady-state is already very close to the lower limit. 

Figure 5. Relative displacement 𝑧𝑑(𝑡) −  𝜂(𝑡) of the WEC when implementing SMC, 

CCC, and NL-CCC at 𝑇 = 6s [4]. 

The energy absorbed by the system when using the three control strategies and the 

control force used is shown in Figure 6. From this figure, it can be observed that the CCC 

performance is very poor compared to the SMC and the NL-CCC performance. This low 

energy absorption is caused by the very limited control force needed to maintain the 

WECs motion bounded. On the contrary, the energy absorbed when using SMC and NL-
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CCC are similar, with the SMC being slightly higher. However, the NL-CCC required a 

higher magnitude control force than the SMC to achieve slightly less energy absorption. 

  

(a) (b) 

Figure 6. Absorbed energy (a) and control force (b) when implementing SMC, NL-CCC 

and CCC at T=6 s [4]. 

Additionally, the SMC control force is a continuous function that does not need to be 

clipped in order to keep the WEC safe. On the other hand, the control force of CCC and 

NL-CCC are both saturated, causing discontinuities in the force. Furthermore, in order to 

maintain the WEC bounded in the safe range of motion, the control force of CCC and 

NL-CCC has to be limited at a different value for each sea state. While for the SMC, this 

is not necessary since the motion of the WEC is determined by the reference signals. 

Although, in this case, the difference between the energy absorbed by the SMC and NL-

CCC is very close, that is not the case for higher wave periods. As the wave period 

increases, because the wave steepness is kept constant, the wave height increases. With 

increasing wave amplitudes, the WECs displacement is significantly different from the 

wave elevation. Therefore, the mean wetted surface is significantly different than the 

instantaneous wetted surface used in this nonlinear approach, making the nonlinear 
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Froude-Krylov forces very significant. Hence, when using a linear control strategy such 

as the CCC for higher wave periods, the control force must be highly limited in order to 

keep the WEC safe, reducing the power absorption significantly. Similarly, when using 

the NL-CCC, even though the nonlinear static FK force is incorporated in the controller, 

the nonlinear dynamic FK becomes very relevant; therefore, the control force must be 

limited to keep the WEC bounded. The power absorbed by the WEC when using the 

three control strategies is shown in Figure 6.  

 

Figure 7. Absorbed Power for the three different control strategies with varying wave 

periods [4]. 

 The exact model assumes 100% certainty of the three parameters mentioned 

above, and the perturbed model assumes 50% uncertainty of the three parameters 

simultaneously. In Figure 8 is shown a line with slope −𝑤 in blue, and the sliding surface 

𝑠(𝑡) in red for the perturbed model. In Figure 8.a the SMC coefficient 𝐴𝑐 of the term 

𝐴𝑐tanh (𝑠/𝜙) in (29) was kept the same as the value used in the exact model 104 N. 

However, as seen from the figure, the initial loop starts at (0;0) due to matching initial 
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conditions between the system states and the reference states, then the sliding surface 

keeps looping around the blue line, increasing in magnitude. This indicates that the error 

is not bounded, and therefore, the system could go unstable. Therefore, 𝐴𝑐 was increased 

to 108 N to handle the uncertainty errors. The sliding surface shown in red in Figure 8.b 

forms a closed contour and loops around it, meaning that the error is controlled and will 

not go unbounded. Hence, when the model is not exact, the 𝐴𝑐 needs to be increased. For 

different wave periods, and depending on the modeling error or disturbances, the SMC 

coefficient 𝐴𝑐 might have to be adjusted to ensure the WEC is tracking the reference 

signals without much deviation. 

Figure 8. Phase plane plot of sliding surface 𝑠(𝑡) with SMC coefficient of 𝐴𝑐 = 104 𝑁 

on the left (a), and 𝐴𝑐 = 108 𝑁 on the right (b) [4]. 

Figure 9.a shows the error between the reference displacement and the WEC's 

displacement for the exact and perturbed model with 𝐴𝑐 = 108 𝑁. The error for the exact 

model is close to 0, while for the perturbed model, it oscillates between ±7.7610−2 𝑚 

which is approximately a 3.5% error. To keep this error between a 5% error margin, the 

  

(a) (b) 
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SMC coefficient 𝐴𝑐 had to be increased. As mentioned in section 3, the higher the 

magnitude of this coefficient, the more robust the SMC is. However, as seen from the 

control force in Figure 9.b, the increase in its magnitude barely affected the control force. 

This behavior is because the term 𝐴𝑐  𝑡𝑎𝑛ℎ (𝑠(𝑡)) of the control law offsets the difference 

in the terms with uncertainties between the exact and perturbed model. 

The energy absorption shown in Figure 9.c does not seem to be influenced by the slight 

error in the WEC's displacement and the control force. Both the exact and perturbed models 

needed almost the same control force to deliver equivalent energy absorption. Therefore, 

the SMC has proved to work very well in systems prone to modeling errors and 

environmental disturbances such as wave energy converters.   
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Figure 9. (a) Displacement error between thr reference and WEC displacement, (b) 

Control Force, and (c) Energy Absorption of the Exact Model and the Perturbed Model 

[4]. 
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6 Conclusion 

Three different control strategies have been presented and applied to a spherical heaving 

point absorber wave energy converter. These control strategies have shown promising 

results when used in linear models of WECs. However, it has been shown that linear 

model approximations lead to inaccurate models when there is a significant difference 

between WEC displacement and wave elevation. Therefore, this research project 

presented a sliding mode controller applied to a nonlinear WEC model. This plant 

incorporates an algebraic nonlinear static and dynamic Froude-Krylov force.  

The SMC was compared to a complex-conjugate control, and a variation of this complex-

conjugate control with a nonlinear static FK force term. The controllers aimed to obtain 

the higher power possible of all control strategies tested while maintaining the WEC 

within a safe range of motion. The simulation was done using linear and regular waves at 

a constant wave steepness of 0.018.  

It was found that the proposed SMC successfully tracked the reference signals given at all 

of the wave periods tested. This was achieved by a continuous control force without 

constraints in magnitude, which would reduce the chance of failure in real-world 

applications by making the device more reliable. Furthermore, it was shown that the 

control force does not need to be limited at different values for each sea-state in order to 

keep the WEC in the safe range of motion, as long as the reference signals fall within 

those safe bounds.  



30 

The sliding mode controller allowed the maximum energy absorption between the control 

strategies tested at all of the wave periods. At lower wave periods, this was done by 

requiring less control force than the NL-CCC, and at higher wave periods, where the 

nonlinearities become very significant, the energy absorbed when using SMC proved to 

be substantially greater than when using CCC and NL-CCC. In addition, the sliding mode 

controller allows for the use of any desired reference signal, meaning that if there already 

exists a path that would deliver the optimal absorbed energy, it could just be used as a 

reference in the SMC and achieve optimal performance. 

Furthermore, the SMC was simulated with modeling errors of 50% in the radiation force, 

and 50% error in the wavenumber used to calculate the nonlinear dynamic FK force. 

Despite these uncertainties, the SMC kept the wave energy converter in the tracking 

reference while using a continuous control force and delivering the same energy absorbed 

as the exact system. This robustness characteristic of sliding mode controllers is ideal for 

marine devices where the system parameters may vary over time due to aging, 

biofouling, corrosion, etc.  

This paper used purely heaving point absorbers due to the computationally efficient 

algebraic nonlinear Froude-Krylov forces derived from Giorgi et al.'s work. However, 

this could be extended to more degrees of freedom in the future, where numerical 

approaches need to be used to solve the Froude-Krylov integrals, as explained in [14]. 
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6.1 Future Work 

In the future, more research needs to be done in order to extend the proposed sliding 

mode controller to work in irregular waves to test the controller in several different wave 

frequencies and amplitudes, and therefore, obtain a closer simulation to real-world 

scenarios. This work has the potential to turn into a second publication in controls of 

wave energy converters.  Furthermore, the tracking signals used in the sliding mode 

controller can be optimized using different optimization solvers and obtain the reference 

signals that would absorb the maximum energy.  

Additionally, the nonlinear effects of the Froude-Krylov forces developed in this report 

and the algebraic solution presented by Giorgi. et. al. can be experimentally validated in 

the wave tank at Michigan Tech by using a scaled-down prototype of a point absorber 

WEC.  
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