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Abstract 

Methyl-mercury (MeHg) is a potent neurotoxin that threatens the environment and the 

health of humans and wildlife alike. Exposure to the bioaccumulating toxin will become 

more prevalent as the climate continues to warm and alter northern ecosystems. In 

addition to storing a large portion of the planet’s carbon, boreal peatlands also act as 

reservoirs of atmospherically deposited inorganic mercury that can be converted into 

methyl-mercury (MeHg). The mercury-methylating genes responsible for this activity, 

the obligatory gene pair hgcA and hgcB, are currently the only genes recognized as a 

requirement for the process of anoxic mercury methylation. Mercury deposition paired 

with anoxic conditions creates perfect environments for anaerobic prokaryotes to 

methylate mercury. Peatlands are ranked among the leading hotspots for such activity, yet 

little is known about the community composition or functional relationship of mercury-

methylating microbes in response to varying environmental conditions. In the PEATcosm 

experiment, water tables and plant functional groups were manipulated to determine their 

impact on peatland biogeochemistry. Metagenomic data from this project was obtained to 

examine the effects of treatment variables on the abundance and functional composition 

of hgcA-containing organisms and to contextualize these findings within another larger 

dataset. We hypothesized that hgcA occurrence would be in accordance with measured 

methyl-mercury concentrations among treatments, with a predicted higher abundance of 

hgcA genes found in lowered water table and/or sedge treatments as compared to raised 

water table and/or shrub treatments. We found significant effects of water table, plant 

functional group, and depth on hgcA gene abundance, with evidence for increased 

abundance under high water table treatments– especially at the 30 cm depth. 

Methanogens dominated as the most abundant functional assignment for gene hits that 

were recognized, suggesting that methanogens have potential to be leading mercury 

methylators in some systems. 
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1 Introduction 

Peatlands are environments defined by saturated, anoxic conditions that support large 

volumes of stored soil carbon and unique communities of anaerobic microbiota, some of 

which convert inorganic forms of mercury (Hg) into methylated mercury (Podar et al. 

2015; Schaeffer et al. 2020). The potential for mercury methylation is present in a 

diversity of organisms and environments (Podar et al.2015, McDaniel et al. 2020, Villar 

et al. 2020), including peatlands, which are hotspots for methyl-mercury (MeHg) 

production (Haynes et al. 2019, Hu et al. 2020, Schaeffer et al. 2020). Inorganic mercury 

is naturally present in all environments at low concentrations via atmospheric deposition 

(Engle et al. 2010; Schuster et al. 2002) which, when methylated, can be carried to other 

ecosystems via water transport through hydrologically connected systems (Gordon et al. 

2016; Mitchell et al. 2008, Schuster 2011) where it will have the chance to further 

bioaccumulate. As a bio-accumulating potent neurotoxin, MeHg threatens a variety of 

ecosystems that could negatively impact the health of both humans and wildlife 

(Watanabe & Satho 1996; Trasande et al. 2005; Evers 2018). In addition, climate change 

threatens to shift regional precipitation and climate regimes (Loisel et al. 2020) which 

could destabilize northern peatlands. These changes could include altered water table 

height and the indirect shift of plant functional groups. While peatland destabilization 

risks elevated greenhouse gas emissions through carbon degradation, it could also mean a 

further increase in Hg release and methyl-mercury production in peatlands (Haynes et al. 

2017b, 2019).  

Boreal wetlands are widely distributed, storing an estimated 30% of the planet's total 

carbon stores (Gorham 1991; Dixon 1994). Their historic stability and low rates of 

decomposition allow these wetlands to act as storage for atmospheric inputs such as 

carbon and Hg. Over the past several decades, long-range transport of anthropogenic Hg 

in the northern hemisphere has expanded, leading to increased levels of Hg deposition 

and elevated concentrations of Hg in wetlands soils (Fitzgerald et al. 1998; Grigal 2002). 

The paired effects of climactic change and increased Hg deposition in peatlands will 

likely push peatlands, once atmospheric carbon and Hg sinks, to become sources through 
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the activities of peat fire and peat degradation (Turetsky et al. 2006; Haynes 2019). 

Furthermore, climate warming trends show acceleration of inorganic Hg release from 

melting permafrost landscapes (Schuster et al. 2011), increasing the supply of available 

inorganic Hg for conversion to MeHg in downstream environments. For these reasons, 

understanding the identities and functional links of mercury-methylating communities in 

relation to altered environmental conditions is central to understanding methyl-mercury 

production and accumulation in the environment. 

 

All microbes that contain the gene pair hgcAB are currently believed to be capable of 

methylating Hg, as has been shown in culture by Graham et al. 2013. So far, only 

anaerobic microbes have been found to produce MeHg via the gene pair hgcAB (Parks et 

al. 2013; Ma et al. 2019). A very limited number of studies have suggested aerobic Hg-

methylation via alternative pathways (Cao et al. 2021), but these pathways currently lack 

support, with no alternative genetic pathways identified to date.  

 

Since the discovery of the gene pair hgcAB and its necessity for mercury-methylation 

(Parks et al. 2013), numerous studies have examined the diversity, global prevalence, and 

individual abilities of microbes to methylate mercury. Mercury-methylation has been 

found within methanogenic, fermentative, acetogenic, and cellulolytic microbes (Gilmour 

et al. 2013). The biogeochemical setting, redox conditions, and availability of quality 

carbon and nutrients determine the community of microbes that can exist within a local 

environment, while further competition amongst microbes is instigated by environmental 

settings that determine which microbial groups dominate a niche. 

 

It is possible that microbial species methylate Hg at differing rates and produce varying 

concentrations of MeHg compared to one another (Graham et al. 2012; Gilmour et al. 

2013); but measurement comparisons can be difficult and lacking precision due to 

differences in growth rates, culture densities, and growth medium chemistries. To make 

predictions on MeHg production and rates, we must first understand what organisms are 

present and participating in peat systems.  Ideally, we would like to understand the 
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community effects of environmental conditions on Hg-methylating microbes in order to 

make informed predictions of MeHg in peatlands. In another study of peatland Hg-

methylators, iron- and sulfate-reducing bacteria (IRB and SRB respectively) were found 

to dominate in younger or richer peatlands, while as peatlands age they transition to host 

higher proportions of syntrophic and methanogenic microbiota (Hu et al. 2020). This 

transition effect on the functional community reflects the influence of longer time-scales 

on peat characteristics, but those age classifications also include the influences of local 

effects such as plant community composition and the soil redox environment. 

 

We would predict that at smaller time-scales, changes in precipitation and subsequent 

changes in water table position would shape the microbial community (Lamit et al. 

accepted). Water table (WT) has shown to be a more powerful predictor of Hg 

concentration than plant functional group, as vertical movement of the WT can aerate and 

expose previously submerged peat to O2 (Haynes et al. 2017a), altering peat soil 

chemistry and microbial activities. The highest concentration of MeHg in the full-

factorial peatland mesocosm experiment PEATcosm was found at the 30-40 cm mark in 

lowered water table treatments and was in-line with the position of the drawn-down water 

table (Haynes et al. 2019). This pool of MeHg could be partially explained by oxidative 

recharge of the local environment and availability of electron acceptors for syntrophic 

organisms (Hu et al. 2020), which allowed the sequential activity of anaerobic microbial 

groups with increasing distance from these more aerated zones (Agethen et al. 2018). 

This pattern of shifting microbial function to a “hotspot” depth below the moving WT 

boundary also aligns to the largest shift in the overall microbial community in response to 

WT alterations (Lamit et al. accepted), showing that these effects on microbe abundance 

are greatest at newly formed aerobic/anaerobic boundaries.  

 

Though not as powerful a predictor as WT, PFG influences still have effects on microbial 

community composition and function, especially when analyzed concurrently with WT 

effects. Additional influences on increased overall microbial activity include responses to 

carbon, oxygen, and nutrient exudates released from sedge roots, which can then have an 
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indirect effect on anaerobic processes. Aerenchymas sedge roots create an environment 

adjacent to the roots that mimic the sharp oxic/anoxic barrier of the WT surface. Lowered 

WT conditions and transport of atmospheric oxygen by sedge aerenchyma allows for 

oxidative “recharge” of electron acceptors, including organic matter (OM). Organic 

matter is a terminal electron acceptor that mediates anaerobic metabolism under a range 

of redox conditions, which includes supporting the respiratory processes for IRB, SRB, 

fermenters, and methanogens (Klupfel 2014). The availability of Hg to microbes appears 

to be dependent on both the existing relationship between Hg(II) and its carbon complex, 

but also the availability of usable carbon substrates required for metabolism (Mazrui et al. 

2016), thus anaerobic mercury-methylating microbes can benefit from the by-products 

produced from other microbes. Decomposition of OM in response to aeration is also 

expected to increase mobility of both C substrates and inorganic Hg from bulk peat to the 

pore water phase (Haynes et al. 2019; Martínez et al. 2007), resulting in more accessible 

and/or more abundant Hg in porewater where microbes would then be exposed to 

elevated Hg and methylate Hg at a higher rate.  

 

We used metagenomics to identify the mercury-methylating gene, hgcA, in peat soils as it 

was related to experimental treatments within PEATcosm (Peatland Climate Change 

Experiment at the Houghton Mesocosm). PEATcosm was a full-factorial peatland 

mesocosm experiment that manipulated aboveground plant community composition and 

water table levels (Potvin et al. 2015). During the course of this experiment, additional 

data were collected that were yet to be analyzed. The available metagenomic data from 

PEATcosm were put into context within a larger global hgcAB-containing community as 

has been defined by previous metagenomic work (McDaniel et al. 2020). In addition to a 

bioinformatics approach, further analysis of these findings combined additional soil and 

porewater Hg concentration data to identify patterns and correlations between 

methylation rates, concentrations, and experimental treatment effects. 
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We tested the following hypotheses: 

H1: We assumed there would be a higher relative abundance of hgcA genes in lowered 

WT and sedge treatments as compared to high WT and ericaceous shrub treatments. 

Within this hypothesis we would also expect high WT and ericaceous treatments to 

possess a lower relative abundance of hgcA genes.  

Justification for H1: Prior data suggested water table and above-ground plant 

communities shaped total mercury (THg) and methyl-mercury concentrations in both peat 

and porewater in this system (Haynes et al. 2019). The findings of Haynes et al. 2019 

found elevated levels of MeHg in the porewater of low water table manipulations of 

PEATcosm, as well as elevated levels of MeHg in the peat fractions of sedge treatment 

manipulations.  

 

H2: We predicted that SRB and IRB would have the highest methylating potential in 

lowered WT and sedge treatments.  

Justification for H2: Methylating potential within the context of this paper is defined as 

the predicted ability of a microbial functional group (e.g., SRB, IRB, methanogens, 

fermenters) to methylate available Hg, as measured by the abundance of hgcA genes in 

the metagenomic data. Within the PEATcosm system, we assumed sedge treatments 

would exhibit characteristics more like a younger peatland (as classified in Hu et al. 

2020) in that they would host a higher proportion of SRB and IRB. This is assumed to be 

due in part through increased decomposition of organic matter due to aeration by lowered 

WT and sedge root aerenchyma, increased availability of electron acceptors, increased C 

sources, and inorganic Hg should then allow for elevated rates of Hg methylation under 

these treatments.  

 

H3: We predict that methanogen-associated hgcA genes will have a larger proportional 

contribution to overall hgcA abundance in high WT treatments and ericaceous treatments 

compared to the other treatments.  
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Justification for H3: W predicted that systems containing ericaceous shrubs would 

behave more like that of peatland classified as older in that it would support higher 

proportion of methanogen-associated Hg-methylators. High water tables and ericaceous 

shrub treatments promote an increasingly anoxic environment that is more supportive of 

anaerobic microbes. Evidence of this pattern for methanogens in PEATcosm is supported 

by the work of Lamit et al. accepted, which found a positive shift by methanogens in high 

water table treatments. 

 

H4: We hypothesized that Hg methylation would be reflected in the metagenomic data 

where highest measured methylation rates should align with higher hgcA gene  

abundance. 
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2 Materials and Methods 

 

2.1 Mesocosm setup and experimental design 

All samples for this research were part of the data collection in support of PEATcosm, a 

multifactorial experiment that examined the effects of plant community composition and 

water table depth on peatland microbial processes, highlighting the potential impacts of 

climate change. The project consisted of 24 mesocosm chambers measuring 1m3 located 

at the Forest Service Northern Research Station Experimental in Houghton, Michigan. 

Intact peat blocks were extracted in 2010 from a Minnesota peatland and allowed to 

stabilize for 1 year before manipulation experiments began in 2011. Experimental 

manipulation treatments consisted of water table (WT) maintained at two heights (low 

and high), and 3 plant functional group (PFG) treatments (unmanipulated, sedge-only, 

and Ericaceae-only). For this research, soil samples were available only for the ericoid- 

and sedge-only treatments. The sedge and ericoid manipulations were obtained by 

actively clipping out sedges or Ericaceae from the target treatments. A full description of 

experimental design and manipulation methods is described in depth in Potvin et al. 

2015. 

2.2 Chemical and physical soil properties 

Methyl-mercury measurements used in this research were taken the summer of 2014, the 

final year of experimental treatment in PEATcosm. Methyl-mercury concentrations were 

measured in both solid phase peat and porewater from the peatland mesocosm bins. For 

the research described in this paper, MeHg data that were sampled most closely in time to 

the date of soil sample collection for metagenomics were utilized. Peat fraction Hg and 

MeHg data was collected in mid-July. Methyl-mercury concentrations that were collected 

at the same depth as those in the soil sample collection were utilized, at the 10-20 cm and 

30-40 cm depths. Entries for the 60-70 cm peat MeHg data were absent and were 

supplemented with data from the 50-60 cm depth for those depths only. Porewater Hg 

and MeHg data were collected at the three specified depths in mid-July of 2014. A more 
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detailed description of data collection can be found in Haynes et al. 2017b and Haynes et 

al. 2019. 

2.3 DNA extraction, sequencing, and data processing 

In late July of 2014, the final full year of experimental treatment, a subset of bins were 

selected that consisted of sedge-only and Ericaceae-only mesocosm bins factorial with 

both WT treatments, with 2 replicates each for a total of 8 bins. Sub-samples of each soil 

were collected at the target depths of 10-20cm, 30-40cm, and 60-70cm (for a total of 24 

metagenomes), hereby referred to as the 10cm, 30cm, and 60cm depth respectively. 

Immediately following extraction, peat cores were flash-frozen in liquid nitrogen and 

stored frozen at -80ᐤC until processing. Sub-samples of soil samples were later thawed 

and processed for genomic analysis. 

Soil samples were homogenized and ground using mortar and pestle followed by further 

pulverization by a clean coffee grinder. DNA was extracted from 0.5 g of ground peat 

from each sample using an RNA PowerSoil Total RNA Isolation Kit with a DNA co-

elution accessory Kit, followed by cleaning with a PowerClean DNA Clean-Up kit 

(MoBio Laboratories; now Qiagen, Germantown, MD, USA). Cleaned DNA was 

quantified with a Qubit Fluorometer (Invitrogen, Life Technologies, Carlsbad, CA, 

USA).  

2.4 Identification of hgcA genes from assembled 
genomic data 

All extracted soil samples were sent to and processed by the Joint Genome Institute 

(JGI). Shotgun metagenomics were performed for all 24 samples. Plate-based DNA 

library preparation for Illumina sequencing was performed on the PerkinElmer Sciclone 

NGS robotic liquid handling system using Kapa Biosystems library preparation kit. 200 

ng of sample DNA was sheared to 300 bp using a Covaris LE220 focused-ultrasonicator. 

The sheared DNA fragments were size selected by double-SPRI and then the selected 

fragments were end-repaired, A-tailed, and ligated with Illumina compatible sequencing 

adaptors from IDT containing a unique molecular index barcode for each sample library. 
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The prepared libraries were quantified using KAPA Biosystem’s next-generation 

sequencing library qPCR kit and run on a Roche LightCycler 480 real-time PCR 

instrument. The quantified libraries were then prepared 7 for sequencing on the Illumina 

HiSeq sequencing platform utilizing a TruSeq paired-end cluster kit, v4. Sequencing of 

the flowcell was performed on the Illumina HiSeq 2500 sequencer using HiSeq TruSeq 

SBS sequencing kits, v4, following a 2x150 indexed run recipe 

Post-processing, resulting read data became accessible through the JGI metagenome 

portal, where the files with the translated gene sequences (.faa files) were individually 

downloaded for each sample. All genomic .faa files were concatenated and converted to 

single-line format. McDaniel et al. 2020 provided an expanded range of globally diverse 

hgcAB gene clusters from available metagenomic data. We therefore utilized this data in 

an approach to identify our sequences against this broad collection of hgcAB sequences. 

The available hidden markov model (HMM) code introduced in McDaniel et al. 2020 

was utilized to conservatively identify and compile hgcA sequences from each of our 

sample .faa files.  

Running the HMM on individual soil samples versus running it on the concatenated list 

of all files yielded a slightly different number of resulting gene hits. To maximize the 

number of total hgcA gene hits, the outputs of the two methods were combined resulting 

in the 181 unique genomic hits. Sequence IDs for the hgcA gene hits were then used to 

search concatenated .faa files to extract a list of corresponding sequences for the gene 

hits. The resulting .faa file contained only the sequences of the hgcA gene hits. The 

resulting output from the HMMs produced tables of sequence IDs matched to hgcA gene 

hits. Gene sequences compiled in McDaniel et al. 2020 were downloaded and renamed 

MCD001 through MCD904. All unique hgcA gene hits from the present study were 

renamed PEAT001 through PEAT181. 

Not all contigs were long enough to contain both the A and the B gene, and only 70 

paired hgcB genes were identified out of the 181 hgcA gene hits. Under the assumption 
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that an A gene would be co-occur with the complementary B gene, just the hgcA gene 

was used for continued analysis, as has been done in other studies with moderate 

reliability (Christensen et al. 2019; Bae et al. 2014). 

2.5 Clustering gene hit sequences into OTUs and 
normalizing gene count abundance 

The combined list of 181 PEAT and 904 MCD hgcA sequences were clustered at 80% 

identity similarity (Liu, Yu, & He 2018), which allowed for integration of the McDaniel 

and PEAT sequences and assisted in identification of the PEAT sequences. Clustering of 

all PEAT and MCD sequences resulted in 591 clusters. Of the 591 clusters resulting from 

the combined MCD and PEAT hgcA sequences, 58 of them contained at least one PEAT 

genomic hgcA sequence. The 58 clusters containing all 181 unique genomic PEAT 

sequences were utilized for further analysis.   

 

To determine the abundance of the hgcA genes in the metagenomic datasets, coverage 

files for all PEAT hgcA scaffolds were downloaded via JGI. Using the DESeq2 package 

in R (Love et al. 2014), all 181 hgcA gene coverage values were normalized using the 

median of ratios method per individual sample using the coverage data. Scaffolds were 

matched to normalized count data manually using the contig portion of the hgcA gene hit 

ID as a reference to locate the correct scaffolds. 

2.6 Taxonomic identification of hgcA-containing 
sequences 

To determine the most conservative taxonomic assignments for the PEAT hgcA 

sequences, a set of rules were followed to select representative taxonomy for each cluster 

and PEAT sequence. Hierarchical rules for selection of representative taxonomy for each 

cluster were as follows: A cluster that contained a sequence derived from McDaniel et al. 

2020 was assigned the taxonomy given to the McDaniel-assigned sequence with the 

longest length and highest taxonomic resolution; Clusters that contained only PEAT 

sequences were assigned to the JGI-assigned taxonomy of the longest hgcA sequence 

and/or the sequence with the most genes on the original contig (these were typically the 



11 

same sequence). Taxonomic assignment of hgcA-containing PEAT scaffolds were 

determined according to the JGI methods for taxonomic assignment of metagenomic 

scaffolds. In brief, scaffolds were assigned to a taxonomy if more than 50% of the genes 

on the scaffold were assigned to the same taxon. 

2.7 Functional assignment and analysis of hgcA gene 
hits 

The functional assignment program FAPROTAX (Louca et al. 2016) was used to 

understand and group the identified hgcA gene clusters in our dataset into functional 

categories. Following taxonomic identification of the gene hits, an OTU table was 

prepared as input for FAPROTAX (Louca et al. 2016) using the taxonomies of assigned 

gene hits/clusters and the normalized hgcA gene counts. Zero values were supplemented 

in samples where there were no gene hits identified. Genes with taxonomic names that 

were recognized in the FAPROTAX database were assigned to a functional classification. 

For the purposes of this research, only functional assignments listed under potential 

methanogens, SRB, IRB, or fermenters were utilized for analytical purposes. These 

functional groups were selected as they pertained to our original hypotheses and because 

these groups have been listed as having members that contain the hgcA gene and are 

therefore potential methylators. Roughly a third (37.7%) of all gene counts were assigned 

to as least one functional group, with only around 3 of those gene counts accounting for a 

functional assignment outside of the four listed previously. Functional assignments for 

the OTU clusters were matched back to their original samples and in accordance with 

corresponding gene abundances. 

2.8 Constructing the hgcA phylogenetic tree 

All 181 PEAT and 904 MCD hgcA sequences were used as input for the sequence 

alignment program MUSCLE (Edgar 2004). Model tests were performed using 

ModelTest-NG Darriba et al. 2020) to select the best model for tree building. The 

program FastTree (Price et al. 2009) was used to create the phylogenetic tree using the 

model LG (Le & Gascuel 2008) with the CAT approximation for evolution rate followed 
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by optimization of branch length rescaling. Resulting alignment files were used to 

construct phylogenetic trees for hgcA in iTOL (Letunic&Bork, 2021). 

2.9 Statistical Analysis 

An overall analysis of total abundance data by depth and treatments was performed with 

a mixed model ANOVA in JMP (JMP®  Pro 15.2.0). Parameters for this analysis were 

set for repeated effects covariance with the data structure defined by a transformation of 

log10(n+1). The parameters for the ANOVA contained the class variables of bin, depth, 

water table (WT), and plant functional group (PFG), with WT and PFG nested within the 

random effect of bin. Post hoc analysis using Tukey’s test analyzed data for contrasts 

between depth and treatment combinations. 

Analyses for treatment effects on functional assignment and taxonomy derived from the 

hgcA gene reads were performed using Primer v.6 (Clarke&Gorley, 2006) 

PERMANOVA+  (Anderson, Clarke, &Gorely 2008) for permutational multivariate 

analysis of variance and visualized using non-metric multidimensional scaling (NMDS). 

PERMANOVA utilized normalized hgcA gene count data, WT, PFG, depth, and all 

interactions. Bin was set as a random effect nested within WT and PFG. A NMDS 

analysis using the best 2-D configuration (stress= 0.06) was created to visualize both 

functional and taxonomic distribution of hgcA read hits, with parameters for 

standardization of samples by total, a square root transformation of normalized hgcA 

gene count data, and resemblance using Bray Curtis similarity.  

Analysis of the relationships between measured concentrations of total mercury (THg), 

methyl-mercury (MeHg), percent methyl mercury (%MeHg) and hgcA gene count were 

performed using the least square method. 

2.10 Data availability 

JGI accession numbers, data, and working code is available at https://osf.io/pfesn/ 

https://osf.io/pfesn/
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3 Results 

We found that depth of sample in addition to the experimental treatments adjusting water 

table (WT) and plant functional group (PFG) had significant effects on hgcA gene 

abundance in peat soil. Multiple permutations of PERMANOVA and ANOVA analyses 

agreed, showing the singular effects of depth, WT, PFG and the combined effects of 

depth*WT and the three-way interaction of depth*WT*PFG to be significant in 

explaining experimental and depth effect differences on hgcA gene abundance. 

Construction of the phylogenetic tree showed closely grouped branches of PEAT hgcA 

sequences clustered with MCD sequences, most clearly along branches classified as  

Firmicutes, Geobacteraceae, Methanoregula, and Syntrophobacteraceae. We also found 

weak relationships between select-measured methyl-mercury concentrations and hgcA 

gene abundance, especially at the 30 cm depth, showcasing the variability of the 

environment at this level when environmental conditions are changed. 

3.1 Output of the HMM for identification of hgcA genes 

The total number of metagenomic hgcA gene hits identified by the HMM on individual 

sample .faa files produced 174 genomic gene hit results, while running the HMM on the 

concatenated metagenomic .faa file produced 177 metagenomic hits. Comparison of the 

metagenomic outputs revealed both output lists shared the 170 genomic gene hits with 

the additional 7 gene hits being unique to the concatenated output and 4 being unique to 

the combined HMM runs done on individual metagenomic .faa samples, for a total of 181 

unique metagenomic gene sequences and 1737 total hgcA gene counts when normalized 

for each sample. Clustering of all 181 unique genomic PEAT hgcA hits resulted in 58 

unique OTUs. 

3.2 Treatment effects shape hgcA gene abundance 

We hypothesized (H1) a higher relative abundance of hgcA gene hits from lowered WT 

and sedge treatments compared to high water table and ericaceous treatments, which was 

not supported. Depth, WT, and depth*WT were the most significant predictors of hgcA 

gene count, followed by significant PFG effects and a three-way interaction effect of 
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depth*WT*PFG (Table 1). The strong depth effects were dependent on the PFG and WT 

treatments (Fig. 1). Specifically, at the 30 cm depth we saw the highest hgcA gene 

abundance, but only in the high WT treatments. 

Table 1. Full-factorial ANOVA for treatment effects on hgcA gene count. 

Source DFNum DFDen F Ratio Prob > F 

Depth 2 8 55.79476 <.0001 

WT 1 4 152.6986 0.0002 

Depth*WT 2 8 21.34051 0.0006 

PFG 1 4 15.49459 0.017 

Depth*PFG 2 8 2.167935 0.1769 

WT*PFG 1 4 2.310449 0.2031 

Depth*WT*PFG 2 8 5.336516 0.0337 

Figure 1. Normalized (untransformed) hgcA read counts sorted by treatment. LS means 

from ANOVA analysis. Each error bar is constructed using 1 standard error from the 

mean Bars with the same lettering are not statistically different. 
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3.3 Methanogens as potentially important Hg 
methylators 

Of the 58 genomic PEAT clusters, 34 received a higher resolution assignment below the 

taxonomic level of order after sequence clustering described in section 2.8. The resulting 

output from FAPROTAX identified functional assignments for 44 out of the total 181 

unique genomic hgcA hits. Of the 58 genomic clusters, 20 received at least one functional 

assignment via FAPROTAX, which is equivalent to 44 of the total 181 unique genomic 

hgcA hits, or 37.7% of the normalized gene counts. The remaining 137 unique hits, 

representing 62.3% of normalized sequence reads, were left unassigned (supplemental 

Fig. S1). No hgcA genes were identified for two low WT sedge 10 cm depth samples. 

Both treatments (WT and PFG), depth, and the interactive effects of WT and PFG with 

depth were significant in shaping the functional communities of potential methylators 

(Table 2). 

 

Methanogens were the most abundant functionally-assigned group, especially at the 30 

cm depth under Ericaceae treatment, but only under high WT conditions (Fig. 2). Other 

functional group assignments, IRB, SRB, and fermenters, did not contain enough data to 

show distribution patterns influenced by treatments/depth, and were dwarfed in 

comparison to methanogen assignments and the unassigned.  
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Figure 2. Normalized gene count by functional assignments as they relate to the treatment 

combinations. 

Contrary to our prediction (H2) that there would be a greater number of gene counts of 

SRB and IRB in lowered water table and sedge treatments as compared to other 

functional assignments, we found little supporting data that these groups contribute much 

to hgcA gene abundance. However, in support of H3, the relative number of assignments 

suggest that methanogens are a large part of the functional community (33.65% of 

normalized gene hits) in these high WT peatland systems (Fig. 2, Fig. 3) compared to 

SRB and IRB (1.4%–2.1% and >1.14% respectively). The first axis of the functional 

NMDS (Fig. 3) is driven more strongly by WT and depth, as shown by the left and right 

separation of WT treatments, gradient of 10 cm depth on the left to 60 cm on the right. 

Our results here must be considered provisional, given the proportion of unassigned 

functional taxa, as can be seen as a clustering of overlapping and uninformative data 

points shown to the right in Fig. 3. 
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Table 2. PERMANOVA results of treatment effects on read counts for functional groups. 

Source df SS MS Pseudo-F P(perm) Unique perms 

WT 1 2460.5 2460.5 21.096 0.0191 1229 

PFG 1 1393.7 1393.7 11.95 0.018 1227 

Depth 2 4296.9 2148.4 14.813 0.0004 9951 

WTxPFG 1 504.7 504.7 4.3272 0.0614 1228 

WTxDepth 2 2129.8 1064.9 7.3425 0.0016 9958 

PFGxDepth 2 867.49 433.74 2.9906 0.0361 9962 

Bin(WTxPFG) 4 423.93 105.98 0.73075 0.6985 9945 

WTxPFGxDepth 1 419.86 419.86 2.8949 0.0743 9969 

Res 7 1015.2 145.03 

Total 21 11393 

Figure 3. NMDS of functional assignments given to microbes containing hgcA gene hits. 

Functional assignments (black dot symbols) correspond to vector direction and 

magnitude of functional assignments. I= iron-reducing; F= fermenters; M= methanogens; 

S= sulfur-reducing; O= other; NA= no functional assignment provided. Stress value is 

equal to .06. 
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3.4 Phylogeny of hgcA gene hits 

The construction of the hgcA phylogenetic tree shows clear branch integration of our 

PEAT sequences within the larger MCD sequence library (Fig. 4). Some of the largest 

clades were integrated within the branch belonging to the order Syntrophobacterales. A 

large branch section dominated by the family Methanoregulaceae had many branches 

containing PEAT sequences. Another dominant set of branches hosted a tight clustering 

of PEAT sequences under the order Geobacterales. Some of the more unresolved gene 

hits are more scattered throughout the tree, with some nested within branches classified at 

the order Thermodesulfovibrionales and more unresolved branches located amongst 

sequences classified under the phylum Spirochaetota and Firmicutes.  

Within the tree, there was one clade that contained two OTUs but nearly half of all the 

PEAT gene counts. These two OTUs were functionally assigned as methanogens, making 

up a majority (84.6%) of all functionally assigned gene counts and roughly half (46.9%) 

of all gene counts. Other PEAT sequences classified as Archaea but not functionally 

resolved were placed on the tree much further from the larger Methanomicrobiales clade, 

and contained less than 2% of all gene counts. The largest unresolved and functionally 

unassigned OTU was cluster 213 which contained 13.7% of all gene counts and was 

present in the upper 10 and 30 cm of the high WT treatments. Including OTU 213, 38 

more of the OTUs do not have enough taxonomic resolution for functional assignments, 

which left 62% of our gene counts unidentified.  
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Figure 4. Phylogenetic tree of hgcA sequences, both PEAT and MCD. Branch length is 

ignored. PEAT sequences are highlighted in red. 

Water table, depth, and the WT*depth interaction were significant predictors of OTU 

community composition in the peat, while PFG effects were not significant (Table 3). 

Visualization of community similarity of the taxonomically defined OTUs showed the 

first axis of the NMDS was strongly driven by depth, especially separating the samples at 

60 cm from the upper two (10 cm and 30 cm) depths (Fig. 5). A weaker, more diffused 

grouping separated the gene hits at the 10 and 30 cm depths.  
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Table 3. PERMANOVA of treatment effects on read counts for OTUs. 

Source df SS MS Psuedo-F P(perm) Unique Perms 

PFG 1 2584.8 2584.8 1.4598 0.2082 1229 

WT 1 7013.4 7013.4 3.9609 0.0149 1229 

Depth 2 27742 13871 7.659 0.0001 9923 

PFGxWT 1 1615.2 1615.2 0.9122 0.5532 1229 

PFGxDepth 2 3609.2 1804.6 0.99641 0.481 9929 

WTxDepth 2 12744 6371.8 3.5182 0.0007 9932 

Bin(WTxPFG) 4 7021.9 1755.5 0.9693 0.5511 9866 

Res 8 14489 1811.1 

Total 21 80017 

Figure 5. NMDS of taxonomic assignments given to microbes containing the hgcA gene 

hits. Stress value is equal to .06. 
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3.5 Depth effects shape weak relationships between 
hgcA gene count and MeHg and THg 

In contrast to our prediction (H4) that there would be a positive relationship between 

measured methyl-mercury concentrations (in both peat and porewater) and the abundance 

of the mercury-methylating gene hgcA, we found minimal to no evidence of such a 

relationship. Analysis for overall trends when including all gene count data showed no 

significant relationships between hgcA gene count and any of  the pore water nor peat 

fraction measurements (Table S1), including pore water total mercury (THg), porewater 

methyl-mercury (MeHg), or pore water percent methyl-mercury (%MeHg).  

Additionally, there were no significant relationships between pore water fraction THg, 

MeHg, %MeHg and gene counts when separated by depth (Table S2) or either treatment 

(PFG, Table S3; WT, Table S4). However, there were a few significant relationships 

found within the peat fraction when broken down further. When separated by depth, there 

were significant negative relationships at the 30 cm depth between gene count and 

measured peat THg and MeHg, as well as a negative relationship between gene count and 

THg at the 60 cm depth (Table S1). Data transformation (log10(n+1)) did not influence 

statistical significant or goodness of fit of all data except for peat %MeHg when 

separated into the 30 cm depth, where log transformation found a significant negative 

relationship (Prob >F = 0.03) between peat %MeHg and log10 transformed gene count at 

30 cm. 

The severity of low WT treatments resulted in an unavailability of pore water data at the 

10 cm depth. Limited data at this depth prevented full analysis of pore water relationships 

to Hg and MeHg measurements and hgcA gene counts. 
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4 Discussion 

We used metagenomic analysis on soil core samples to identify the mercury-methylating 

gene hgcA from the novel peatland mesocosm experiment, PEATcosm, where we 

identified significant patterns and predictors of gene abundance in peat soil. The 

significant three-way interactive effects of depth, water table, and plant functional group 

on hgcA gene abundance would indicate a complex relationship that shapes the soil 

microbial community and the potential of that system to methylate mercury. 

Methanogens were the dominant functionally-assigned group recognized overall as well 

as within the treatments that were most hgcA-abundant. The phylogenetic analysis 

showed a distribution of gene hits nested throughout diverse lineages. When taken 

together, this research provides evidence to indicate the real effects of our treatments on 

the abundance of the mercury-methylating gene hgcA. 

4.1 Treatment and depth effects on gene abundance 

The significant interactive effects of our treatments were most pronounced at the 30 cm 

depth, and especially under ericaceous, high WT treatments– this suggests that the 

distance to the surface of the WT is more influential on the methylating community than 

any other factor, but were modified by PFG. Depth effects on the complete microbial 

community in this system have previously been analyzed, finding significant effects of 

PFG and WT experimental treatments on community composition and abundance (Lamit 

et al. 2021). Targeted metagenomics revealed distinct vertical stratification of microbial 

communities controlled by water table, plant functional group and depth, where low WT 

treatments favored aerobic bacteria while more anoxic conditions under high WT and 

ericoid treatments supported increased anaerobic populations. Mercury-methylation via 

hgcAB is only known to occur under anoxic conditions (Ma et al. 2019), which could 

explain some of the disparity in gene abundance between the high and low WT 

treatments as there is a greater oxic zone within the low WT peat. At the 30 cm sampling 

depth, the water table was measured at 23 to 30 cm above the soil sample location in high 

WT treatments while in low WT treatments the soil sample location varied between 

around 5 cm above or below the WT boundary. This distinction could aid in explaining 
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the discrepancies between high and low WT treatments at the intermediate depth, as 

communities measured at the 10-20 cm depth under high WT, are more similar to low 

WT at 30-40 cm when it comes to total gene abundance (Fig. 1). The increase of gene 

abundance under the Ericaceae treatments, but only under high water table at 30 cm, 

suggests that the root systems of Ericaceae and sedges had significant impacts on 

microbial composition at that depth, but those effects depended strongly on the water 

table height. The significant influence of PFG treatments at the 30 cm depth could be 

explained by addressing the contrasting rooting strategies between shallow-rooting 

mycorrhizal ericoid shrubs and deeper-rooting non-mycorrhizal aerenchymous sedges. 

Removal of sedges effectively eliminated the transport of both oxygen and root exudates 

to deeper areas in the soil, creating a more anoxic environment and shifting carbon use 

pathways, which had a positive effect on hgcA gene abundance in Ericaceae treatments. 

Variability between treatments did not occur at the deeper depth at 60 cm, as deeper soil 

zones maintain more consistent conditions that are less dependent on WT fluctuation and 

surface communities, at least within the time scale of this experiment. 

4.2 Functional and taxonomic OTUs 

Of the genes assigned to a functional group, methanogens were most dominant when 

compared to other functionally assigned groups, especially at the 30 cm depth. We found 

supporting evidence (H3) that methanogens had the largest proportional contribution to 

hgcA abundance in high WT and Ericaceae treatments (as compared to other treatments). 

Here, methanogen assignments outnumbered the unassigned genes (Fig. S1), and may be 

a dominant mercury methylator in these systems. The dominance of methanogens at the 

30 cm depth for the high WT Ericaceae treatment was also reflected within community 

16S analysis of overall composition which showed a relatively large positive shift of 

methanogens relative to other treatments (Lamit et al accepted). Our finding is similar to 

another study that used PCR primers that identified more sequences that clustered with 

methanogens than other groups, such as SRB, in a temperate swamp in Sweden (Schaefer 

et al. 2014). Similarly, these findings of methanogen functional dominance agree with 

patterns found by Hu et al. 2020, in which “older” peatlands, described as more nutrient 

poor and containing less sedge, were dominated by mercury-methylating methanogens 
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and syntrophy-driven methanogens. The case for syntrophy-driven Hg-methylation 

would be supported by the dominance of methanogens in this system and notable lack of 

hgcA-containing SRB or other groups. 

We also identified potential methylators that were most closely clustered to families with 

known Hg methylators such as the families Syntrophaceae, Syntrophobacteraceae, 

Geobacteraceae, and Ruminococcaceae. One clade within the tree contains a rich OTU 

containing many PEAT sequences all classified under the Order Sytrophobacterales, 

whose function could not be assigned. Two OTUs that contained many of the 

methanogen-assigned PEAT hgcA sequences were intermixed with one another and 

showed diverse branching within the clade. The phylogenetic tree also places currently 

taxonomically and functionally unclassified hgcaA genes within branches that contained 

known Hg methylators of higher resolution. Taken together, these results could be an 

artifact of differing lengths of the PEAT sequences but could also indicate undiscovered 

diversity of Hg-methylating microbes. 

4.3 Relationships between hgcA and Hg species and 
pools 

Contrary to our hypotheses (H4), there was not support for any positive relationships of 

all data between gene abundance and either peat or pore water THg, MeHg, or %MeHg. 

Additionally, in contrast to our hypothesis (H1), we did not find the highest gene 

abundance under the predicted low WT sedge treatments where methyl-mercury pools 

were highest, instead we saw the highest abundance of hgcA genes under high WT 

ericoid treatments. The availability of inorganic Hg is reflected in the concentration of 

THg within the pore water portion, with THg within the solid phase peat acting more as a 

Hg reservoir (Haynes et al. 2017; Skyllberg et al. 2003). The largest pools of pore water 

THg and MeHg within this system were located at the 30-40 cm zone under low WT 

conditions (Haynes et al. 2019), which implicates additional factors as driving soil 

organisms to methylate mercury that is not based singularly on available Hg or hgcA gene 

abundance. The lack of an overall relationship between gene abundance and measured 

mercury concentrations may be due to inherent issues using mercury cycling genes as a 
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proxy for methyl-mercury concentrations, as data from other systems besides peatlands 

have shown (Christensen et al. 2019). At this time, it is unknown what controls Hg 

uptake in these organisms, but it is suspected that biogeochemical factors such as carbon 

quality or the availability of sulfates (Mitchell et al. 2008 AG) could fuel syntrophic SRB 

that likely support mercury-methylation in methanogens (Hu et al. 2020). This theory 

agrees with findings that show boreal fen wetlands of intermediate nutrient status to 

support the highest levels of MeHg production (Tjerngren et al. 2012). 

Since MeHg concentration is a net result from the combined processes of methylation 

and demethylation, both are considered when attempting to explain patterns. The 

mismatch between treatments that were measured with elevated MeHg in the pore water 

at (low WT sedge) and the treatments with the highest gene abundance (high WT 

Ericaceae) could also be explained through the activity of demethylating microbial 

processes which are also performed by methanogens, SRB, IRB (Du et al. 2019) and 

methanotrophs (Lu et al. 2017), as well as abiotic processes (Sellers et al. 1996; Hu et al. 

2020). Demethylation has been reported as elevated in older peatlands (Hu et al. 2020), 

which were classified as having increased levels of stored THg and decreased levels of 

available or incoming nutrients– similar to our system. Methanotrophs were top 

indicators of the upper 10-20 cm depths in high WT treatments (Lamit et al. accepted), 

and perhaps limited net MeHg production through demethylation activity, whose 

environmental controls are also not yet fully understood. However, this explanation does 

not fully agree with Haynes et al. 2019, which found little support of a de-methylation 

relationship to MeHg concentration, and instead offered the suggestion that Hg and 

MeHg mobility and re-adsorption may redistribute this compound throughout the vertical 

peat profile. The proposed vertical movement of Hg species through the peat profile may 

also help explain our finding that there was a significant negative relationship between 

gene abundance and both THg and MeHg at the 30 cm depth, as well as a significant 

negative relationship between gene abundance and THg at 60 cm. 

 



26 

4.4 Conclusions, limitations, and outlooks 

Projections of regional temperature and precipitation shifts are predicted to influence 

water table heights and plant community compositions. In this novel finding, both plant 

functional group and water table treatments had significant effects on hgcA gene 

abundance. The setup of this experiment differs from the other publications in that 

PEATcosm was an experiment that controlled for environmental variables and measured 

the response of the microbes to these alterations over time. To our knowledge this is the 

first work to report on the effects of such treatments on mercury-methylating gene 

abundance in peatlands.  

 

High water table treatments resulted in the most elevated hgcA gene abundance, 

especially at the 30 cm depth and under Ericaceae plant functional group treatments. 

These results contrasted with our initial hypotheses that gene abundance would be highest 

within treatments that had the highest reported MeHg concentrations. We instead found 

no correlation between total gene abundance and both THg and MeHg. 

 

Methanogens stood out as the dominant functional group within the treatment 

combination that reported the highest overall gene abundance (high WT ericoid). To our 

knowledge, this is the first report of this pattern in peatlands, highlighting the potential 

for methanogens to be a dominant mercury methylator in these systems. The output of a 

shotgun metagenomics approach for identifying hgcAB has been found to be comparable 

to PCR-based methods, as were the qualitative outputs of both methodologies 

(Christensen et al. 2019), providing support for our findings using these methods. In the 

future, the addition of targeted transcript sequencing combined with metagenomic 

analysis would add to the Hg cycling story by differentiating gene presence with 

measurable activity.   

 

Concerns about climate change are directly linked to peatland health; alterations to these 

peatland ecosystems alter decomposition rates and processes and thus their emitted 

products, like the neruotoxin MeHg. There are still many questions and black boxes 
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within this research area. Which microbes are participating in Hg methylation in response 

to the WT and PFG treatments? Which pathways/cycles are important to Hg-methylation 

and which are connected or run parallel with Hg-methylation in response to the 

treatments?  

Finally, the data collected here represent single time points in a very dynamic system. It 

is possible that discrepancies in timing (days to a couple weeks) between the collection of 

different data sets could have missed some of the subtleties of rapid responses of 

microbial communities to sudden short-term environmental alterations. To fully 

understand these systems in detail, timeline measurements and samples of the mercury-

methylating communities should be taken simultaneously to better document microbial 

responses to both short- and long-term variation in environmental factors. Future work 

that further examines peatland mercury cycling and the response of microbes to 

experimental manipulations like this one will aid in elucidating microbial identities and 

the connections between MeHg and Hg concentration, hgcA presence, and hgcA activity.  
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6 Supplemental Materials 

Figure S1. Normalized (un-transformed) hgcA gene counts for the different functional 

groups by treatment combination. Stacked colored bars represent conservative functional 

assignments.  

Table S1. Results from one-way ANOVA of all normalized and log transformed 

(log10(n+1)) gene count data versus measured Hg concentrations (Haynes et al. 2019). P-

values are for analysis of variance. RSquare value corresponds to line of fit value for data 

distribution. 

Normalized Gene Count Log transformed Gene Count 

Prob > F Rsquare Prob > F Rsquare 

Peat THg 0.65 0.009 0.31 0.047 

Porewater THg 0.81 0.004 0.89 0.001 

Peat MeHg 0.48 0.023 0.54 0.018 

Porewater MeHg 0.8 0.004 0.95 <0.001 

Peat %MeHg 0.68 0.008 0.4 0.032 

Porewater %MeHg 0.39 0.053 0.79 0.005 



34 

Table S2. Results of one-way ANOVA of normalized hgcA gene counts versus measured 

Hg concentrations by depth (Haynes et al. 2019). P-values are for analysis of variance. 

RSquare value corresponds to line of fit value for data distribution. 

10 cm 30 cm 60 cm 

Prob > F Rsquare Prob > F Rsquare Prob > F Rsquare 

Peat THg 0.61 0.047 0.006 0.74 0.005 0.752 

Porewater THg 0.99 <0.001 0.69 0.061 0.42 0.134 

Peat MeHg 0.86 0.006 0.04 0.527 0.052 0.493 

Porewater MeHg 0.62 0.146 0.8 0.017 0.47 0.091 

Peat %MeHg 0.75 0.017 0.08 0.431 0.17 0.288 

Porewater %MeHg 0.75 0.062 0.36 0.279 0.7 0.033 

Table S3. Results of one-way ANOVA of normalized hgcA gene counts versus measured 

Hg concentrations by PFG treatment (Haynes et al. 2019). P-values are for analysis of 

variance. RSquare value corresponds to line of fit value for data distribution. 

Ericoid   Sedge 

Prob > F Rsquare Prob > F Rsquare 

Peat THg 0.53 0.041 0.61 0.027 

Porewater THg 0.74 0.095 0.62 0.052 

Peat MeHg 0.49 0.049 0.96 <0.001 

Porewater MeHg 0.15 0.242 >0.99 <0.001 

Peat %MeHg 0.68 0.017 0.95 <0.001 

Porewater %MeHg 0.25 0.187 0.6 0.058 

Table S4. Results of one-way ANOVA of normalized hgcA gene counts versus measured 

Hg concentrations by WT treatment (Haynes et al. 2019). P-values are for analysis of 

variance. RSquare value corresponds to line of fit value for data distribution. 

High WT Low WT 

Prob > F Rsquare Prob > F Rsquare 

Peat THg 0.67 0.002 0.73 0.012 

Porewater THg 0.56 0.035 0.82 0.031 

Peat MeHg 0.49 0.05 0.92 0.001 

Porewater MeHg 0.74 0.012 0.24 0.326 

Peat %MeHg 0.64 0.022 0.85 0.004 

Porewater %MeHg 0.57 0.033 0.38 0.381 
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