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Abstract

This dissertation includes three Chapters. A brief description of each chapter is

organized as follows.

In Chapter 1, we proposed a new method, called MF-TOWmuT, for genome-wide

association studies with multiple genetic variants and multiple phenotypes using fam-

ily samples. MF-TOWmuT uses kinship matrix to account for sample relatedness.

It is worth mentioning that in simulations, we considered hidden polygenic effects

and varied the proportion of variance contributed by it to generate phenotypes. Sim-

ulation studies show that MF-TOWmuT can preserve the type I error rates and is

more powerful than several existing methods in different simulation scenarios, MF-

TOWmuT is also quite robust to the proportion of variance explained by invisible

polygenic effects and to the direction of effects of genetic variants.

In Chapter 2, we proposed a fast and efficient low rank penalized regression with

the Elastic Net penalty for the eQTL mapping, called LORSEN. By considering the

Elastic Net penalty instead of the L1 penalty, our method can overcome two crucial

drawbacks of the L1 penalty, and outperforms two commonly used methods for the

eQTL mapping, LORS and FastLORS, in many simulation scenarios in terms of

average Area Under the Curve (AUC).

In Chapter 3, we proposed a bipartite network-based penalized regression model

for the eQTL mapping, called BiNetPeR. This method takes into account the SNP-

gene marginal association evidence to construct the SNP-gene bipartite network, then

uses such a bipartite network to obtain the projected SNP network. Based on the

normalized Laplacian matrix of the projected SNP network, we then formulate the

eQTL mapping into a penalized regression model. Our simulation results show that

our proposed method can maintain the appropriate false positive rate and outperforms

two competing methods for the eQTL mapping, FastLORS and mtLasso2G.

xix





Chapter 1

MF-TOWmuT: Testing An

Optimally Weighted Combination

Of Common and Rare Variants

With Multiple Traits Using Family

Data

Abstract

With rapid advancements of sequencing technologies and accumulations of electronic

health records, a large number of genetic variants and multiple correlated human

complex traits have become available in many genetic association studies. Thus, it

becomes necessary and important to develop new methods that can jointly analyze

the association between multiple genetic variants and multiple traits. Compared with

methods that only use a single marker or trait, the joint analysis of multiple genetic

variants and multiple traits is more powerful since such an analysis can fully incor-

porate the correlation structure of genetic variants and/or traits and their mutual

dependence patterns. However, most of existing methods that simultaneously an-

1



alyze multiple genetic variants and multiple traits are only applicable to unrelated

samples. We develop a new method called MF-TOWmuT to detect association of

multiple phenotypes and multiple genetic variants in a genomic region with family

samples. MF-TOWmuT is based on an optimally weighted combination of variants.

Our method can be applied to both rare and common variants and both qualitative

and quantitative traits. Our simulation results show that (1) the type I error of MF-

TOWmuT is preserved; (2) MF-TOWmuT outperforms two existing methods such

as Multiple Family-based Quasi-Likelihood Score Test (MFQLS) and Multivariate

Family-based Rare Variant Association Test (mFARVAT) in terms of power. We also

illustrate the usefulness of MF-TOWmuT by analyzing genotypic and phenotipic data

from the Genetics of Kidneys in Diabetes (GoKinD) study. R program is available

at https://github.com/gaochengPRC/MF-TOWmuT.

1.1 Introduction

Genome-wide association studies (GWAS) and sequencing based association studies

play an important role in revealing relationships between genetic variants and human

complex traits. An important feature of many such large studies is that they gener-

ally collect a large number of correlated traits and genotypes at millions of genetic

markers for thousands of samples. Therefore, such studies potentially have greater

power to decipher the complicated relationship between genetic variations and hu-

man complex traits. For example, UK Biobank (https://www.ukbiobank.ac.uk)

recruited 500,000 people aged between 40-69 years and collected correlated traits

that are related to cancer, heart diseases, stroke, diabetes, etc. for these 500,000

people. Genome-wide genetic data at 805,426 markers are also available for 488,000

UK Biobank participants. At the same time, there are great challenges to developing

more powerful statistical methods that can fully take advantage of such large scale

studies and more efficiently analyze the huge volume of data generated.

2
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To date, a variety of multi-marker based statistical methods (e.g., the Combined

Multivariate and Collapsing (CMC) method (Li and Leal, 2008), Generalized T 2

(Zhu and Xiong, 2012), SNP-set Sequence Kernel Association Test (SKAT) (Wu

et al., 2011), Sum of Squared Score U Statistic (SSU) (Pan, 2009), etc.) have been

developed for detecting association between multiple genetic variants and a single

trait (dichotomous or continuous). Such multiple markers based tests can combine

information within all genetic variants available in a gene or a genomic region. It has

been demonstrated that such methods are more powerful to detect the association

between genetic variants and human complex traits than the methods based on single

marker (e.g., (Li and Leal, 2008; Wu et al., 2010)). This is partially due to the

fact that human complex traits are generally controlled by multiple genetic variants.

In addition, with the advancements of next sequencing technologies, rare variant

association studies such as Data-Adaptive Sum Test (aSum) (Han and Pan, 2010),

Optimal Unified Test (SKAT-O) (Lee et al., 2012), CMC, Weighted Sum Statistic

(WSS) (Madsen and Browning, 2009), SKAT, etc. (see (Lee et al., 2014) for an

extensive review) have become readily available. Due to the extremely low allele

frequencies of rare variants, single-marker based methods have lower power while

multiple markers based tests are preferred in this situation.

In addition to polygenic effects, pleiotropic effects are important for describing the

relationship between genetic variants and human complex traits. Pleiotropy refers

to when one gene has effects on multiple phenotypes simultaneously. Some methods

(Trait-based Association Test that uses Extended Simes procedure (TATES) (van der

Sluis et al., 2013), MultiPhen that tests the linear combination of phenotypes most

associated with the genotypes at each SNP (O’Reilly et al., 2012), etc.) have been

proposed to detect the association between a single genetic variant and multiple

traits. Such methods are desirable and have more power because many large studies

have collected multiple correlated traits. In addition, human complex diseases are

better characterized by multiple correlated traits. For example, hypertension can

3



be characterized by systolic and diastolic blood pressure (Wang et al., 2005). As

another example, diabetes is closely related with high-density lipoprotein (HDL),

systolic blood pressure (SBP), diastolic blood pressure (DBP), and body mass index

(BMI) (Bays et al., 2007). However, neither methods based on single genetic variant

and multiple traits nor methods based on multiple genetic variants and single trait

can take into account polygenic effects and pleiotropic effects simultaneously, which

can lead to the loss of power. Therefore, it is both essential and beneficial to develop

methods that can test the association between multiple genetic variants and multiple

traits. A number of methods (MFQLS (Won et al., 2015), MF-KM (approach for

multivariate family data using kernel machine regression) (Yan et al., 2015), multi-

trait variant-set association test (MSKAT) (Wu and Pankow, 2016), Gene Association

with Multiple Traits (GAMuT) (Broadaway et al., 2016), etc.) based on multiple

genetic variants and multiple traits have been proposed recently. Additionally, family

samples instead of unrelated samples are often collected. Family samples have greater

power than unrelated samples to detect the association between rare variants and

traits due to the enriched rare variants in family samples. A number of methods have

been developed to detect association between multiple genetic variants and multiple

traits using family as well as unrelated samples (Won et al., 2015; Yan et al., 2015;

Fischer et al., 2018; Jiang and McPeek, 2014; Chen et al., 2013, 2009; Lasky-Su et al.,

2010; Jiang et al., 2014; Schifano et al., 2012; Zhu and Xiong, 2012; Wang et al., 2016;

Feng et al., 2011). These include methods based on linear and generalized linear mixed

models that can incorporate the relatedness of family samples (Wu et al., 2011; Wu

and Pankow, 2016; Lee et al., 2012; Yan et al., 2015; Jiang et al., 2014; Wu et al.,

2010; Schifano et al., 2012; Lee et al., 2017b) and methods based on quasi-likelihood

(Wang et al., 2016; Won et al., 2015).

In all aforementioned methods for detecting association between multiple markers

and multiple traits, there are some constraints or drawbacks which restrict their

applicability to association studies. First, genetic variants can be rare or common or
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a mixture thereof. As of now, a large number of methods have been developed only

for rare variants association studies (Yan et al., 2015; Wu et al., 2011; Broadaway

et al., 2016; Wang et al., 2016; Lee et al., 2012; Jiang and McPeek, 2014; Madsen and

Browning, 2009; Li and Leal, 2008; Wu and Pankow, 2016; Lee et al., 2014). Methods

that can combine common variants and rare variants in association studies have also

been developed (Ionita-Laza et al., 2013; Maity et al., 2012; He et al., 2013; Feng

et al., 2011; Zhu and Xiong, 2012; Lasky-Su et al., 2010; Kim et al., 2016; Fischer

et al., 2018). However, due to the proportion and composition of causal variants,

those methods are not uniformly the most powerful. For example, a burden test

is for rare variants and powerful with a large proportion of causal variants while a

variance-component test is for rare variants and powerful with a small proportion

of causal variants. Second, traits can be binary or continuous or a mixture thereof.

Some methods are applicable when all traits are quantitative (MF-KM, MSKAT,

MONSTER (MinimumP-value Optimized Nuisance parameter Score Test Extended

to Relatives) (Jiang and McPeek, 2014), etc.) or all traits are qualitative (Generalized

Disequilibrium Test (GDT) (Chen et al., 2009), Generalized T 2, etc.) but not a

mixture of them. Third, covariates (e.g., age, gender) can affect traits, so it is essential

to incorporate covariates in the analysis. Some methods such as (Generalized T 2

(Zhu and Xiong, 2012), etc.) cannot consider covariates in the analysis. Fourth, in

the genomic region of interest, risk variants and protective variants usually coexist,

so it is important for a method to be robust to the proportion of risk or protective

variants. Lee et al. (Lee et al., 2017b) discussed approaches (MAAUSS) and found

some methods that work well only for genetic variants with the same direction of

effects (e.g. burden tests) (Lee et al., 2014). Fifth, as we have mentioned, it is

important to handle samples from arbitrary family structure. Although methods

proposed in (Zhu and Xiong, 2012) do not require assumptions on relationships among

individuals and can allow for unknown or partially known pedigree structures, they

are mainly extended for case-control study. That is, they are only applicable to a

5



single qualitative trait. Additionally, as mentioned before, these methods cannot

incorporate covariates in their analysis, which will be undoubtedly less powerful. The

method proposed in (Fischer et al., 2018) is actually a two-step scheme and only

applicable to trios, and their method cannot allow for arbitrary pedigree structures.

Similarly, the method proposed in (Feng et al., 2011) is only applicable to sib-pairs and

cannot be applied to family data with arbitrary pedigree structures. Their method

is developed for case-control study and does not offer a strategy in the presence of

multiple quantitative/qualitative traits. Therefore, it is necessary to develop novel

statistical methods for association studies with multiple genotypes and multiple traits

using family as well as unrelated samples.

In this paper, we develop a new method called MF-TOWmuT to detect association

between multiple genotypes and multiple traits using family as well as unrelated sam-

ples. This method is an extension of a method developed by us, TOWmuT - testing

an optimally weighted combination of common and/or rare variants with multiple

traits. MF-TWOmuT can accommodate covariates and relatedness among family

samples. The method can be applied to multiple rare and common variants and their

mixture and to multiple quantitative and qualitative traits and their mixture. We

conduct extensive simulations to evaluate and compare MF-TOWmuT with several

existing methods including MFQLS and mFARVAT(Burden, SKAT-O) (Wang et al.,

2016). We find that MF-TOWmuT is robust to the proportion of dichotomous or

continuous traits and to the proportion of risk or protective variants and outperforms

MFQLS and mFARVAT in terms of power in different scenarios. We also apply MF-

TOWmuT to genetic data and multiple traits from GoKinD Study (Mueller et al.,

2006; Pezzolesi et al., 2009) and identify a genome-wide significant gene showing

cross-phenotype effects.
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1.2 Materials and Methods

We consider a study consisting of n family and/or unrelated samples. Each sample

has K potentially correlated quantitative or qualitative traits and genotypes at M bi-

allelic marker loci (SNPs). Let x∗
im denote the genotype score of the i-th individual

at the m-th marker, coded in an additive manner. Let y∗ik denote the phenotype

of the i-th individual for the k-th trait. We first centralize x∗
im and y∗ik: xim =

x∗
im − x̄m and yik = y∗ik − ȳk where x̄m = 1

n

∑n

i=1 x
∗
im and ȳk = 1

n

∑n

i=1 y
∗
ik. Let Y =

(yT1 , y
T
2 , ..., y

T
n )

T be an n×K matrix of phenotypes of all n individuals for all traits,

Xi = (xi1, xi2, ..., xiM)T , i = 1, 2, ..., n, X = (XT
1 , X

T
2 , ..., X

T
n )

T be an n×M matrix of

genotypes of all n individuals at all M marker loci. To take into account genotypes

at all M markers, we consider the weighted combination of genotypes as the new

genotype at a ”super marker” for the i-th individual, xi = wTXi, x = (x1, x2, ..., xn)
T ,

in which the optimal weight vector w will be determined later.

1.2.1 Without Covariates

We consider the following linear model without covariates to explore the relationship

between multiple genetic variants and multiple traits:

x = Y β + ǫ, ǫ ∼ N(0, σ2Φ), (1.2.1)

where β = (β1, β2, · · · , βK)
T , ǫ = (ǫ1, ǫ2, · · · , ǫn)T , and Φ is the kinship matrix and

is considered as known. To test the null hypothesis of βi = 0, i = 1, 2, ..., K, the

corresponding score test statistic is:

Tscore =
wTXTΦ−1Y (Y TΦ−1Y )−1Y TΦ−1Xw

σ̂2
, (1.2.2)

The maximum likelihood estimate (MLE) of σ2 is σ̂2 = 1
n
xTΦ−1x = 1

n
wTXTΦ−1Xw.

We use D to represent 1
n
XTΦ−1X in the score test statistic. So, we have

T 0
score =

wTXTΦ−1Y (Y TΦ−1Y )−1Y TΦ−1Xw

wTDw
. (1.2.3)
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The final test statistic is defined as:

TMF−TOWmuT = max
w

T 0
score = λmax((Y

TΦ−1Y )−1Y TΦ−1BΦ−1Y ), B = XD−1XT .

(1.2.4)

For simplicity, we use λmax(A) to denote the largest eigenvalue of the matrix A.

Detailed derivations of the test statistic are shown in the Appendix. Note that for

a given weight vector w, the score test statistic T 0
score is a function of w, X, and

Y . Its power depends on w, X, and Y . However, the score test statistic T 0
score has

an approximate χ2 distribution under the null hypothesis. The null distributions of

the score test statistics are the same for different w. Therefore, we can maximize the

power by maximizing the test statistic T 0
score (or equivalently, minimizing the p-value).

We use permutations to derive p-value of proposed test statistic, TMF−TOWmuT .

Specifically, we permute phenotypes B times, calculate a test statistic T
(b)
MF−TOWmuT

for each permutation, b = 1, 2, ..., B, and then use the formula below to calculate the

corresponding p-value:

P − V alue =
#{b : T (b)

MF−TOWmuT ≥ T
(o)
MF−TOWmuT , b = 1, 2, ..., B}
B

, (1.2.5)

where T
(o)
MF−TOWmuT is calculated based on the original data.

1.2.2 With Covariates

When covariates are present in the model, we regress phenotypes and genotypes on

the covariates, respectively. Then we use corresponding residuals to replace them in

the formulas above. Detailed derivations of test statistic are shown in the Appendix.

1.2.3 Methods Compared

As we have argued in introduction, most methods for family data analysis are not suit-

able for comparison with our proposed method. Our method can be used to conduct

association studies with multiple (rare and/or common) genetic variants and multi-

ple (qualitative and/or quantitative) traits for unrelated as well as family samples
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with arbitrary pedigree structures. MF-KM is computationally intensive and their

software cannot be easily adapted to an arbitrary number of traits, so we excluded

it from our comparison. Fischer et al. (2018) proposed a two-stage method for gene

association with multiple traits from case-parent trios. Specifically, in the first stage,

GAMuT (gene association with multiple traits) is performed for each gene using the

phenotypes and genotypes of the parents. In the second stage, GAMuT is used again

for a subset of top genes selected from the first stage using the robust within-family

information from offspring. Since this method is only applicable to the case-parent

trios design, it is excluded from our comparison in simulation studies. For the purpose

of comparison, we choose MFQLS and mFARVAT as two wrestlers in the context of

common and rare genetic variants, respectively. MFQLS is a quasi-likelihood based

score test and developed specifically for common variants. It can be applied for both

quantitative and dichotomous phenotypes and is robust against population substruc-

tures as long as large-scale genomic data is available. Similarly, mFARVAT is also

a quasi-likelihood based score test, but developed specifically for rare variants with

multiple phenotypes, and tests both homogeneous and heterogeneous effects of each

variant on multiple phenotypes. mFARVAT actually generalizes SKAT, burden, and

SKAT-O tests.

1.3 Simulations

The samples from the parents-offspring trios or a three-generation pedigree (Figure

1.1) are used. Coalescent simulator C (Schaffner et al., 2005) is first used to simulate

20,000 haplotypes over a 250 kb chromosome region mimicking European populations.

C is a software to simulate haplotypes using a coalescent model based on empirical

genetic patterns observed from different populations. For each founder, two hap-

lotypes among 20,000 haplotypes are randomly selected with replacement to form

his/her genotypes. For each nonfounder, one haplotype from his/her father and one
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hapolotype from his/her mother are randomly chosen to pair them together and form

his/her genotypes. For the parents-offspring trios, genotypes for 1,500 samples of 500

trios are generated. For the three-generation pedigree, genotypes of 1,000 samples

from 100 families are generated. To select genetic markers used in simulations, 60

(M = 60) genetic variants are randomly selecetd. Among 60 genetic variants, we

assume nc variants are causal of which np variants are protective, nr(= nc− np) vari-

ants are risk variants. Rare variants are defined as those variants with minor allele

frequency (MAF) in (0.25%, 3%), and common variants defined as those variants

with MAF ≥ 5%. Note that all selected 60 genetic variants have MAF in the range

(0.25%, 99.75%).

In simulations, quantitative traits are generated based on six distinct factor models

(Aschard et al., 2014; Wang et al., 2018b). Qualitative traits are generated by setting

a threshold (e.g. quantiles of trait values) (Won et al., 2015; Fischer et al., 2018)

for quantitative phenotypes. Here, the 75% percentile of quantitative phenotypes is

set as the threshold. In other words, trait values falling below the 75 % percentile

are set to be 0 (unaffected), and 1 (affected) otherwise. Furthermore, we consider

presence or absence of two covariates Z1 and Z2, where Z1 is a continuous covariate

generated from standard normal distribution, and Z2 is a binary covariate generated

from Bernoulli distribution with success probability 0.5.

The similar procedures are used to generate polygenic effects of other genes on

phenotypes. Specifically, (1) Cosi is used to simulate an independent set of haplotypes;

(2) genotypes of samples are generated according to the procedures described above;

(3) a set of genetic variants are randomly selected as causal variants; and (4) the

traits value based on the selected variants are generated and added to traits values

generated from the first set of genetic variants. The effect sizes are determined by

Proportion of Variance explained by invisible Polygenic effects (PVP). Note the

genotypes from this set of genetic variants are not used in MF-TOWmuT to detect

the association between genetic variants and traits. This workflow is illustrated in
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Figure 1.2.

The following factor models (Wang et al., 2018b; van der Sluis et al., 2013; Aschard

et al., 2014) are used to generate K(=10) correlated trait values of an individual based

on his/her genotypes:

y = (0.5Z1 + 0.5Z2)e+ βx+ cγf +
√
1− c2 × ǫ (1.3.6)

In the above fomula, y = (y1, ..., yK)
T are K trait values. x = (x1, ..., xnc)

T are the

genotypes at nc causal markers. β = (βT
1 , β

T
1 , ..., β

T
K)

T is aK×nc matrix of coefficients

of genotypes of causal markers. e = (1, ..., 1)T is a vector of 1. f = (f1, ..., fR)
T

has multivariate normal distribution with mean 0 and covariance matrix Σ, where

Σ = (1− ρ)I + ρA and A is a matrix with elements of 1, I is the identity matrix, and

ρ is the correlation between fi and fj. γ is a K×R matrix, R is the number of factors.

c2 is within-factor correlation where c is a constant. Different ρ, A, γ, R, c can be used

to generate different degrees of relatedness among traits. ǫ = (ǫ1, ǫ2, ..., ǫK)
T : a vector

of random noise, and ǫk
i.i.d∼ N(0, 1), for k = 1, 2, ..., K. We also use xr

i , i = 1, 2, ..., nr

to represent genotype at the i-th risk marker and xp
j , j = 1, 2, ..., np to represent

genotype at the j-th protective marker, respectively. Z1 and Z2 are two covariates as

described above.

In this paper, the following six models are considered.

• Model 1: There is only one factor and genotypes impact 6 traits, R = 1 and γ = (1, ..., 1)T .

yk =







0.5Z1 + 0.5Z2 +
∑nr

i=1 β
r
kix

r
i −

∑np

j=1 β
p
kjx

p
j + cf1 +

√
1− c2 × ǫk, 1 ≤ k ≤ 6

0.5Z1 + 0.5Z2 + cf1 +
√
1− c2 × ǫk, k > 6

• Model 2: There are five factors and genotypes impact 6 traits, R = 5 and γ = diag(D1, D2, ..., D5), where

Di =






1, · · · , 1
︸ ︷︷ ︸

K/5







for i = 1, · · · , 5.

yk =







0.5Z1 + 0.5Z2 +
∑nr

i=1 β
r
kix

r
i −

∑np

j=1 β
p
kjx

p
j + cf⌊(k−1)/2⌋+1 +

√
1− c2 × ǫk, 1 ≤ k ≤ 6

0.5Z1 + 0.5Z2 + cf⌊(k−1)/2⌋+1 +
√
1− c2 × ǫk, k > 6
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• Model 3: There are two factors and genotypes impact 6 traits, R = 2 and γ = diag(D1, D2), where Di =





1, · · · , 1
︸ ︷︷ ︸

K/2







for i = 1, · · · , 2.

yk =







0.5Z1 + 0.5Z2 +
∑nr

i=1 β
r
kix

r
i −

∑np

j=1 β
p
kjx

p
j + cf⌊(k−1)/5⌋+1 +

√
1− c2 × ǫk, 1 ≤ k ≤ 6

0.5Z1 + 0.5Z2 + cf⌊(k−1)/5⌋+1 +
√
1− c2 × ǫk, k > 6

• Model 4: There are five factors and genotypes impact one trait, R = 5 and γ = diag(D1, D2, ..., D5), where

Di =






1, · · · , 1
︸ ︷︷ ︸

K/5







for i = 1, · · · , 5.

yk =







0.5Z1 + 0.5Z2 +
∑nr

i=1 β
r
kix

r
i −∑np

j=1 β
p
kjx

p
j + cf⌊(k−1)/2⌋+1 +

√
1− c2 × ǫk, k = 1

0.5Z1 + 0.5Z2 + cf⌊(k−1)/2⌋+1 +
√
1− c2 × ǫk, k > 1

• Model 5: There are two factors and genotypes impact one trait, R = 2 and γ = diag(D1, D2), where

Di =






1, · · · , 1
︸ ︷︷ ︸

K/2







for i = 1, · · · , 2.

yk =







0.5Z1 + 0.5Z2 +
∑nr

i=1 β
r
kix

r
i −

∑np

j=1 β
p
kjx

p
j + cf⌊(k−1)/5⌋+1 +

√
1− c2 × ǫk, k = 1

0.5Z1 + 0.5Z2 + cf⌊(k−1)/5⌋+1 +
√
1− c2 × ǫk, k > 1

• Model 6: There are K factors and genotypes impact 6 traits, R = K, γ = I, and c = 1.

yk =







0.5Z1 + 0.5Z2 +
∑nr

i=1 β
r
kix

r
i −

∑np

j=1 β
p
kjx

p
j + cf1 +

√
1− c2 × ǫk, 1 ≤ k ≤ 6

0.5Z1 + 0.5Z2 + cf1 +
√
1− c2 × ǫk, k > 6

In summary, the following scenarios are considered to evaluate the type I error and

power of MF-TOWmuT and methods compared: (1) six factor models for generating

traits; (2) two family pedigree structures (parents-offspring trio and a three-generation

pedigree); (3) presence or absence of covariates; (4) different proportions of variance

explained by invisible polygenic effects; (5) three types of phenotypes (qualitative

phenotypes, quantitative phenotypes and their mixture).

To evaluate the type I error rate, β, the matrix of coefficients of genotypes of

causal markers is set as 0. To evaluate the power, β is determined by the following

ways. Let hall and hk be the heritability of all causal variants for all K traits and the
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k-th trait, respectively. First, the value of hall is specified. Second, K random num-

bers r1, r2, · · · rK from uniform distribution of (0, 1) are generated and used to define

the heritability of the k-th trait: hk = hall ∗ rk/
∑K

k=1 rk. Third, given hk, nc random

numbers t1, t2, · · · tnc from uniform distribution of (0, 1) are generated and used to

determine the heritability of the m-th variant for the k-th trait: hm
k = hktm/

∑nc

j=1 tj.

Different proportions of protective variants (0%, 20%, 40%, 60%, 80%, 100%), differ-

ent PVPs (0%, 5%, 10%, 15%, 20%, 25%, 30%), and different numbers of quantitative

traits (0, 6, and 10) are considered.

1.4 Results

1.4.1 Type I Error Rate

In our simulation, 1,000 permutations are used to estimate p-values, and 500 repli-

cates are used to estimate type I error rates and corresponding 95% Wald confidence

intervals. If the 95% confidence interval doesn’t contain the significance level, e.g.,

0.01 or 0.05, then the type I error rate is inflated or conservative. Table 1.1 shows

type I error rates in the following scenarios considered: mixture of four qualitative and

six quantitative traits, two covariates, three-generation pedigree, seven distinct PVPs

using Model 2 at significance level 0.01 and 0.05. Figure 1.3 shows corresponding Q-Q

plots for PVP = 0.1 and PVP = 0.25, respectively. Table 1.2 shows type I error rates

at significance level 0.01 and 0.05 with fixed PVP (= 0.5), mixture of four qualitative

and six quantitative traits, two covariates using six models for three-generation case.

Figure 1.3 shows corresponding Q-Q plots for each model. From Table 1.1 and Table

1.2 and Figure 1.3 and 1.4, we can see that: First, our newly developed method, MF-

TOWmuT has the appropriate type I error in all situations. Second, TOWmuT has

inflated type I error rates in most situations, and its type I error rates increase with

the increased proportion of variance explained by invisible polygenic effects. This is

expected since TOWmuT is developed for unrelated samples. Third, the type I error

13



rates from MFQLS are not stable. They are either too conservative in some situa-

tions or inflated in some other situations. Fourth, mFARVAT (Burden, SKAT-O) has

correct type I error rates in the absence of invisible polygenic effects. However, as

the proportion of variance explained by invisible polygenic effects increases, its type

I error rate inflates consistently.

1.4.2 Power

To evaluate the power of MF-TOWmuT and show comparison with MFQLS and

mFARVAT, seven specific scenarios were considered and summarized in Table 1.3.

For notational simplicity, we use PPV to represent Proportion of Protective Variants

in Table 1.3. Notice that all power is evaluated at significance level 0.05.

Figure 1.5 shows the power comparison between MF-TOWmuT and MFQLS for

common variants in the first scenario. We can see that MF-TOWmuT achieves higher

power than MFQLS consistently for six models for distinct proportion of protective

variants.

Figure 1.6 shows the power comparison between MF-TOWmuT and mFARVAT

for rare variants in the second scenario. We can see that MF-TOWmuT achieves

higher power than both mFARVAT-Burden and mFARVAT-SKAT-O for six models

and distinct proportion of protective variants, and mFARVAT-Burden is sensitive to

the proportion of protective variants, especially in models 2, 3 and 6. mFARVAT-

SKAT-O has the comparable power with MF-TOWmuT only in model 2 and 6.

Figure 1.7 shows the power comparison between MF-TOWmuT and MFQLS for

common variants in the third scenario. We can see that MF-TOWmuT achieves

higher power than MFQLS consistently for six models and different PVP.

Figure 1.8 shows the power comparison between MF-TOWmuT and mFARVAT

for rare variants in the fourth scenario. MF-TOWmuT has relatively high power

for six models and distinct proportion of protective variants. mFARVAT-Burden has

the lowest power among these three methods, especially in model 4 and 5 where
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only one phenotype is affected by genetic variants. This indicates that mFARVAT

is not optimal at detecting association between multiple markers and multiple traits

when genetic variants are only associated with a small number of traits. Although

mFARVAT-SKAT-O achieves high power, especially in models 2, 3, and 6, this may

be just due to the fact that mFARVAT-SKAT-O has inflated type I error rates when

PVP is high. Moreover, from models 1, 4, and 5, we can see as PVP increases, power

of mFARVAT-SKAT-O increases consistently.

Figure 1.9 shows the power comparison among MF-TOWmuT, MFQLS and mFAR-

VAT in the last three scenarios. We can see that for a mixture of rare variants and

common variants, both MF-TOWmuT and MFQLS can achieve high power no matter

in trio case or three-generation case, though MFQLS is designed for common variants.

However, mFARVAT has very low power in these three scenarios.

1.5 Application To Real Data

To demonstrate performance of our proposed method, MF-TOWmuT was applied to

genotypic and phenotypic data from Genetics of Kidneys in Diabetes (GoKinD) study

(dbGaP accession numbers phs000018.v2.p1 and phs000088.v1.p1). Quality control

was performed with Plink (Purcell et al., 2007): SNPs with missing rate greater than

10% were removed, then individuals with missing rate greater than 10% were removed.

Hardy-Weinberg equilibrium (HWE) exact test was applied and SNPs with p-value

less than 1 × 10−6 were removed. Missing genotypes were replaced by the average of

genotypes at the marker. Missing phenotypes were imputed with the median value

of that phenotype. After quality control, 1,792 individuals containing 542 trios were

remained in the analysis. A lift over tool from UCSC Genome Browser (https:

//genome.ucsc.edu/) was used to change the coordinates of SNPs from GRCh36 to

GRCh 38, then the main annotation file in GENCODE (Frankish et al., 2019) was

used to locate SNPs and assign a SNP to a gene if that SNP lay within a 1-kb flank
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region of the gene on either side. Only genes with at least 16 SNPs were included

in the final analysis. Specifically, 4,006 genes, 730 rare SNPs (0 < MAF < 0.03)

and 169,567 common SNPs (0.03 ≤ MAF < 1) (a total of 170,297 SNPs) were used.

Therefore, the Bonferroni-corrected genome wide significance level is 0.05/4006 ≈
1.248 × 10−5. It is well known that Bonferroni correction is quite conservative, so we

suggest using 1 × 10−4 as significance level as in (Fischer et al., 2018).

MF-TOWmuT was used to test the association between 4,006 genes and four

correlated phenotypes (SBP, DBP, HDL, BMI). Following (Fischer et al., 2018), 16

covariates (age, gender, renal function status (proteinuric, dialysis, renal transplant,

or other), smoking status, insulin intake (yes or no), antihypertension drug intake

(yes or no), and lipid-lowering medication intake (yes or no)) were included in anal-

ysis, and ten principal components from genotype data were used as covariates to

account for potential population stratification. In order to save computational time,

we took a hierarchical exclusion strategy to derive p-values for significant genes. We

first selected genes that showed evidence of association based on a small number

of permutations (e.g. 5,000), and then used a larger number of permutations (e.g.

100,000) to test the selected genes. We repeated this process with increasing num-

ber of permutations. In the final stage, 1,000,000 permutations were used to derive

p-value of significant genes. MF-TOWmuT is able to identify one novel gene Long In-

tergenic Non-Protein Coding RNA 535(LINC00535, containing 69 common variants,

chr8:93213302 - 93700433) based on suggested significance level, the derived p-value is

2.2×10−5 using MF-TOWmuT. As a comparison, the derived p-value for LINC00535

is 1.02854 × 10−2 using MFQLS. Additionally, we applied MFQLS to discover an-

other novel gene named LINC00393 to be associated with SBP, DBP, HDL and BMI

with p-value 9.25345 × 10−8, however, MF-TOWmuT had higher p-value 0.6098 for

LINC00393, failed to discover it. In (Fischer et al., 2018), their found gene was

VPS41 with p-value less than 5× 10−6, however, neither MF-TOWmuT nor MFQLS

dug out this gene with p-values 0.0404 and 0.136333, respectively. We summarize
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these results in Table 1.4. From Genome Catalog (https://www.ebi.ac.uk/gwas/),

we know that gene LINC00535 has been revealed to be associated with IgG glyco-

sylation (Lauc et al., 2013), temperament (Service et al., 2012), facial morphology

(factor 16) (Lee et al., 2017a), diisocyanate-induced asthma and lack of persever-

ance, but has not been found to be associated with diabetes-related traits. VPS41

(VPS41 subunit of HOPS complex, chr7:38722974 - 38932394), as a member of Vesi-

cle medicated protein sorting family, plays an important role in segregation of intra-

cellular molecules into distinct organelles. Expression studies indicate that VPS41

may be involved in the formation and fusion of transport vesicles from the Golgi

(https://www.ncbi.nlm.nih.gov/gene/27072). LINC00393 (Long Intergenic Non-

protein Coding RNA 393, chr: 13:73413473 - 73661891) has been discovered to be

associated with eczema, respiratory diseases (Kichaev et al., 2019), colorectal can-

cer (Huyghe et al., 2019) and other complex diseases, but has not been found to be

associated with diabetes-related traits.

1.6 Discussion

With advancements in high-throughput sequencing technology and availability of

large scale genetic association studies, genotypes at millions of genetic markers and

a large number of correlated human complex traits for thousands of samples have

been collected. Advanced statistical methods are needed to fully take advantage of

such data to investigate the relationship between genetic variants and human complex

traits. However, most of available methods based on multiple genetic variants and

multiple traits are for unrelated samples. Family samples are routinely collected. It

has been shown that rare variants play an important role in human complex traits.

Family samples can be more powerful for rare variant association studies due to the

enriched rare variants. Therefore, it is necessary to develop such flexible method

called MF-TOWmuT to carry out association studies with multiple genetic variants
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and multiple traits using family as well as unrelated samples.

MF-TOWmuT can be applied to rare and/or common variants association studies

with qualitative and/or quantitative traits. Our simulation studies show that MF-

TOWmuT preserve the desired type I error rates, and achieve higher power than

MFQLS and mFARVAT in different scenarios. MF-TOWmuT provides a novel ap-

proach to genetic analysis of multivariate data for family-based studies. The compu-

tational time for MF-TOWmuT depends on a numer of factors, including the total

number of genes, the number of traits, the sample size, the family pedigree structure,

etc. Since MF-TOWmuT uses permutations to evaluate p-values, it can be quite

computationally intensive. The computational time of MF-TOWmuT with 1,000 per-

mutations on a data set with 1,000 individuals from a three generation pedigree, ten

traits, 60 genetic variants in a genomic region on a laptop with 4 Intel(R) Core(TM)

i7-7500U CPUs @ 2.70GHz and 8 GB RAM is about 3.7 minutes. To carry out

such an analysis at about 25,000 genes from genome-wide association studies, a much

larger number of permutations are needed to achieve the genome wide significance

level. A hierarchical exclusion strategy is taken here as described in last section. We

are pursuing a better strategy to improve computational efficiency in our program.

Further theoretical approximation is desirable to reduce computational burden.

To estimate σ2 in (2), we used D = 1
n
XTΦ−1X instead of the diagonal of D.

When only rare genetic variants are involved, the diagonal of D may be used as an

approximation of D to reduce the computational cost due to the weak correlation

between rare genetic variants. The diagonal of D was used by (Wang et al., 2018b)

and (Pan, 2009). However, when common variants are involved in the analysis, the

correlation among genetic variants may not be simply ignored. We have performed

extensive simulations to evaluate the type I error rate and power using the approx-

imation matrix (the diagonal of D) and the original matrix (D) (data not shown).

Our results show that both methods preserve the type I error rates and have the

similar power in most situations. In a number of simulations, the method using D
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does have the significantly higher power than the method using the diagonal of D.

In this paper, we use the linear sum of centered genotype scores as the response.

The response of the i-th individual,
∑M

m=1 wi(x
∗
im − x̄m), is a complicated mixture of

dependent binomial random variables and approximate normal random variables. It

is difficult to analytically derive the exact distribution and certainly it is not approxi-

mately normally distributed. However, we do not think such violation of normality for

linear regression will drastically affect our method and conclusions. First, although

the normality assumption is required for appropriate statistical inference in linear re-

gression, such assumption plays a less important role. In genetic association studies,

as pointed out by Bůžková (Bůžková, 2013), “We conclude that it is a combination

of heteroscedasticity, minor allele frequency, sample size, and to a much lesser extent

the error distribution, that matter for proper statistical inference”. Second, the use of

binary variable as the response in linear regression has been explored (Hellevik, 2009;

Gomila, 2019). Hellevik found that the use of binary variable as the response in linear

regression was acceptable and resulted in nearly identical significance tests as those

obtained from logistic regression. Gomila demonstrated that linear regression was

better than logistic regression for estimating causal effects of treatments on binary

responses. The linear models with a binary outcome variable, called linear probabil-

ity model (LPM), have also been extensively examined in the paper of Chatla and

Shmueli (Chatla and Shmueli, 2017). Chatla and Shmueli and other researchers have

found that LPM has several attractive advantages over logistic and probit models.

First, LPM has computational advantages, especially with a large number of sam-

ples, because least square estimation is computationally cheaper than the maximum

likelihood method used in logistic or probit models. Second, researchers found that

LPM based coefficient directions, statistical significance, and marginal effects yielded

results similar to logistic and probit models. LPM estimators are consistent with the

true parameters up to a multiplicative scalar. Third, the normal linear models with

genotypes being dependent variable, called reverse regression models, have been used
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in genetic association studies (Mägi et al., 2017; Zhang and Sun, 2018). Fourth, based

on our extensive simulations, our method has the correct type I error rates. For these

reasons, we do not think the normality assumption will drastically affect our method

and conclusions.

In this work, we only consider individual level data from a single study. Developing

a meta-analysis approach is important and necessary on the basis of MF-TOWmuT

with individual level data from multiple studies. Correspondingly, challenges arising

from meta-analysis need to be considered such as how to handle sample overlapping

between studies and account for complex population structures in generalizing MF-

TOWmuT. Additionally, in this work, we use a theoretical kinship coefficient matrix

with known pedigree information. When pedigree structure is unknown, we can

instead use an empirical kinship coefficient matrix which is expected to show similar

results.
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1.7 Tables and Figures

Table 1.1: The estimated type I error rates of MF-TOWmuT with covariates, mix-

ture of four qualitative phenotypes and six quantitative phenotypes using Model 2 in

three-generation case.

Significance

level
Method

PVP

0 0.05 0.10 0.15 0.20 0.25 0.30

0.01

TOWmuT 0.016 0.020 0.066 0.088 0.132 0.188 0.214

MF-TOWmuT 0.008 0.016 0.018 0.002 0.006 0.014 0.010

MFQLS 0.012 0.012 0.004 0.002 0.002 0.004 0.006

mFARVAT-Burden 0.012 0.014 0.018 0.032 0.022 0.040 0.036

mFARVAT-SKAT-O 0.010 0.040 0.062 0.140 0.148 0.174 0.224

0.05

TOWmuT 0.062 0.088 0.180 0.208 0.320 0.352 0.430

MF-TOWmuT 0.048 0.05 0.058 0.040 0.054 0.054 0.054

MFQLS 0.060 0.068 0.018 0.022 0.026 0.016 0.034

mFARVAT-Burden 0.054 0.060 0.084 0.096 0.098 0.112 0.114

mFARVAT-SKAT-O 0.050 0.102 0.174 0.280 0.334 0.368 0.396

Note: The conservative or inflated type I error rates are indicated by bold fonts.

Abbreviation: PVP, Proportion of Variance explained by invisible Polygenic effects.
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Table 1.2: The estimated type I error rates of MF-TOWmuT with covariates, mix-

ture of four qualitative phenotypes and six quantitative phenotypes, and fixed PVP(=

0.5) using six models in three-generation case.

Significance

level
Method

Factor Models Simulating Phenotypes

1 2 3 4 5 6

0.01

TOWmuT 0.311 0.375 0.355 0.379 0.340 0.364

MF-TOWmuT 0.012 0.006 0.002 0.008 0.008 0.012

MFQLS 0.020 0.008 0.006 0.008 0.008 0.004

mFARVAT-Burden 0.052 0.066 0.052 0.056 0.06 0.062

mFARVAT-SKAT-O 0.273 0.317 0.250 0.277 0.292 0.290

0.05

TOWmuT 0.509 0.557 0.561 0.581 0.498 0.582

MF-TOWmuT 0.058 0.062 0.050 0.060 0.042 0.064

MFQLS 0.074 0.020 0.034 0.034 0.028 0.044

mFARVAT-Burden 0.128 0.168 0.158 0.142 0.142 0.168

mFARVAT-SKAT-O 0.457 0.505 0.487 0.483 0.53 0.538

Note: The conservative or inflated type I error rates are indicated by bold fonts.
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Table 1.3: Seven specific scenarios considered in power comparison.

Scenario Phenotypes Pedigree Type Causal SNPs PPV PVP

One ten quantitative trio only common varying zero

Two ten quantitative three-generation only rare varying zero

Three ten qualitative trio only common fixed varying

Four ten qualitative three generation only rare fixed varying

Five ten quantitative three-generation common(20%)+rare(80%) fixed zero

Six ten quantitative three-generation common(80%)+rare(20%) fixed zero

Seven ten quantitative trio common(50%)+rare(50%) fixed zero

Abbreviations: PPV, proportion of protective variants; PVP, proportion of variance

explained by invisible polygenic effects.
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Table 1.4: Real data analysis results.

Gene
P-Value

MF-TOWmuT MFQLS Fisher’s method

LINC00535 2.20× 10−5 1.03× 10−2 N/A

LINC00393 0.610 9.25× 10−8 N/A

VPS41 0.040 0.136 < 5.0× 10−6

Note: The newly discovered genes associated with SBP, DBP, HDL, and BMI are indi-

cated by bold fonts.
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Figure 1.1: Three-generation family pedigree.
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Figure 1.2: Workflow in simulation of phenotypes.
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Figure 1.3: QQ plots of P-Values corresponding to Table 1 with 95% confidence

band(gray area) based on Model 2. PVP = 0.1 is for left plot, PVP = 0.25 is for

right plot. In these two scenarios, we consider mixture of four qualitative and six

quantitative phenotypes, two covariates, three-generation pedigree.
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Figure 1.4: QQ plots of P-Values corresponding to Table 2 with 95% confidence

band(gray area) for six models. PVP is fixed as 0.5. In these six models, we consider

mixture of four qualitative and six quantitative phenotypes, two covariates, three-

generation pedigree.
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Figure 1.5: Power comparison of MF-TOWmuT and MFQLS for common variants

for six models varying proportion of protective variants.
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Figure 1.6: Power comparison of MF-TOWmuT and mFARVAT(Burden, SKAT-O)

for rare variants for six models varying proportion of protective variants.
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Figure 1.7: Power comparison of MF-TOWmuT and MFQLS for common variants

for six models varying PVP.
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Figure 1.8: Power comparison of MF-TOWmuT and mFARVAT(Burden, SKAT-O)

for rare variants for six models varying PVP.
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Figure 1.9: Power comparison of MF-TOWmuT, MFQLS, and mFARVAT(Burden,

SKAT-O) in three special scenarios: (a) we assumed no invisible polygenic effects and

fixed proportion of protective variants as 0.2 with ten quantitative phenotypes for

three-generation case, common variants occupied one fifth of total genetic variants; (b)

similar to (a) except that rare variants occupied one fifth of total genetic variants; (c)

we assumed no invisible polygenic effects and fixed proportion of protective variants

as 0.2 with ten quantitative phenotypes for trio case, rare variants occupied half of

total genetic variants.
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Chapter 2

LORSEN: Fast and Efficient eQTL

Mapping With Low Rank

Penalized Regression

Abstract

Characterization of genetic variations that are associated with gene expression levels

is essential to understand cellular mechanisms that underline human complex traits.

Expression quantitative trait loci (eQTL) mapping attempts to identify genetic vari-

ants, such as single nucleotide polymorphisms (SNPs), that affect the expression of

one or more genes. With the availability of a large volume of large scale gene ex-

pression data, it is necessary and important to develop fast and efficient statistical

and computational methods to perform eQTL mapping for such large scale data. In

this paper, we propose a new method, the low rank penalized regression method, for

eQTL mapping (LORSEN). We evaluate and compare the performance of LORSEN

with two existing methods for eQTL mapping using extensive simulations as well

as real data from the HapMap3 project. Simulation studies show that our method

outperforms two commonly used methods for eQTL mapping, LORS and FastLORS,

in many scenarios in terms of average Area Under the Curve (AUC). We illustrate
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our method by applying it to SNP variants data and gene expression levels on four

chromosomes in the HapMap3 Project.

2.1 Introduction

With rapid advancements in sequencing technologies and high-throughput technolo-

gies, a large number of single nucleotide polymorphism (SNP) data and gene ex-

pression data have become available. This allows us to investigate the associations

between SNP genotypes and gene expression levels. Expression quantitative trait loci

(eQTLs) are those genetic variants that can explain variation in gene expression levels

and can help to elucidate the underlying genetic mechanisms of human complex traits

(Albert and Kruglyak, 2015). eQTL mapping aims to identify eQTLs associated with

genes of interest (Hu et al., 2015; Banerjee et al., 2020). In general, eQTLs are classi-

fied into two types: cis-eQTLs (or local eQTLs) and trans-eQTLs (or distant eQTLs)

(Cookson et al., 2009). cis-eQTLs refer to the genetic variants that functionally act

on local genes and are physically located near the target genes. trans-eQTLs are

those genetic variants that functionally act on distant genes residing on the same

chromosome or genes residing on different chromosome and are physically located far

from the target genes. It is worth mentioning that trans-eQTLs account for a large

proportion of heritability of gene expression levels, though trans effects are usually

weaker than cis effects in humans (Cookson et al., 2009).

In fact, gene expression levels are not only regulated by genetic variants but also

influenced by non-genetic factors which are known or hidden, for example, batch

effects. Therefore, in eQTL mapping, how to account for confounding factors is an

important issue and can influence the detection power of eQTLs. Up to now, a

number of methods have been proposed to account for confounding factors in eQTL

mapping, for example, PANAMA (Fusi et al., 2012), PEER (Stegle et al., 2010),

LORS (Yang et al., 2013), HEFT (Gao et al., 2014), LMM-EH-PS (Listgarten et al.,
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2010) and ECCO (Yue et al., 2020). Another challenge in eQTL mapping is that the

number of SNPs involved is usually very large (Yang et al., 2013). This will result in

heavy computational burden for estimating model parameters but also will generally

result in reduced detection power if all SNPs are included in eQTL mapping. This is

because the signal-to-noise ratio (SNR) is very low, meaning only a very small portion

of SNPs that are actually associated with gene expression levels. To overcome this

problem, a number of SNP screening procedures (Yang et al., 2013; Jeng et al., 2020;

Wang et al., 2011) and variable selection techniques (Fan and Lv, 2008) that aim

to reduce the number of SNPs and only keep informative SNPs in eQTL mapping

have been developed. More importantly, a number of methods based on the penalized

regression have been developed to model such sparsity of eQTLs (Yang et al., 2013;

Jeng et al., 2020; Cheng et al., 2014; Lee and Xing, 2012).

LORS, a method based on the low rank sparse regression, was proposed for eQTL

mapping in (Yang et al., 2013). LORS is based on a linear model with gene expression

levels as response variables and SNP genotypes as predictors. To model the sparsity

of regression coefficients, LORS poses the L1 penalty on the regression coefficient ma-

trix. In addition, LORS includes one unknown matrix with the nuclear norm penalty

to account for variations caused by non-genetic factors. Yang et al. (2013) applied

the coordinate descent algorithm to optimize the objective function and estimate the

model parameters. A SNP screening method, called LORS-Screening, was also devel-

oped to reduce the number of SNPs involved in the subsequent joint modeling, thus

reduce the computational burden. Similar to LORS, FastLORS (Jeng et al., 2020)

employs the same low rank sparse regression model that is used in LORS. Different

from LORS, FastLORS uses generic proximal gradient algorithm to optimize the ob-

jective function and estimate the model parameters. Moreover, Jeng et al. (2020)

proposed a SNP screening method based on the Higher Criticism (HC) statistic, called

HC-Screening.

To improve the detection power of eQTL mapping, a number of methods have
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been proposed to incorporate the structure information from SNP variants data and

gene expression levels, for example, clustering based on gene expression levels (Chun

and Keles, 2009; Kendziorski et al., 2006) and gene regulatory networks (Rakitsch

and Stegle, 2016), into eQTL mapping. A number of studies have shown that such

use of structure information from SNP variants data and gene expression levels can be

effectively used in penalized regression to boost the detection power of eQTL mapping

(Chen et al., 2012; Kim and Xing, 2012, 2009). For example, the graph-regularized

dual lasso (GDL) proposed by (Cheng et al., 2014) can simultaneously integrate the

correlation structures among SNPs and gene expression levels. Through extensive

experimental evaluations, Cheng et al. (2014) showed that GDL significantly outper-

formed the existing method for eQTL mapping. Similar to GDL, the graph-guided

fused lasso (GFlasso) proposed by (Lee and Xing, 2012) can also consider the struc-

ture of the genetic variants and the structure of the gene expression levels. As a

penalized regression method, GFlasso also inherits the benefits from the group lasso.

Lee and Xing (2012) showed that GFlasso was able to detect weak association signals

between the genetic variants and the gene expression levels.

However, there are some drawbacks for most of the aforementioned methods.

First, if two SNPs are highly correlated with each other, and one SNP is associated

with some genes, but the other SNP is not associated with them, we should not expect

that these two SNPs have similar coefficients for those genes. Similarly, if some SNPs

are classified into one group, we should not expect that the SNPs within the same

group have similar coefficients for common genes. Second, the group structures of

SNP data and gene expression data are usually identified by performing clustering

on the data, however, clustering is an unsupervised leaning approach, the number of

clusters is usually artificially determined. When we use the resulting clusters of SNPs

and gene expressions to design the penalty term, it may lead to loss of detection

power and even spurious associations. Third, complicated design of penalty term

in penalized regression modeling can result in untractable computational bottleneck,
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especially when dealing with large volumn of data.

To overcome some limitations of existing methods for eQTL mapping, we pro-

pose a novel method for eQTL mapping, LOw Rank Sparse regression with Elastic

Net penalty, abbreviated as LORSEN. Different from LORS (Yang et al., 2013) and

FastLORS (Jeng et al., 2020), we apply the Elastic Net penalty to the association

coefficients instead of the L1 penalty in LORSEN. In addition, we use the low rank

approximation to account for non-genetic factors in LORSEN (Yang et al., 2013).

There are several advantages to use the Elastic Net penalty instead of the L1 penalty

(Tibshirani, 1996). First, when the number of SNPs p is much larger than the sample

size n, theoretically, the methods based on the L1 penalty can only yield at most n

non-zero coefficients. This can lead to the substantial loss of detection power in eQTL

mapping since the number of samples is generally much smaller than the number of

eQTLs in gene expression studies. Second, when several eQTLs are in linkage dise-

quilibrium (LD), the methods based on the L1 penalty can only select one of them. In

theory, the Elastic Net penalty can overcome these two drawbacks. For the estimation

of the model parameters in LORSEN, we develop an efficient optimization algorithm

based on the proximal gradient method (Parikh and Boyd, 2014). Our algorithm

allows us to perform the eQTL mapping for a large number of SNPs and genes. We

evaluate and compare the performance of LORSEN with LORS and FastLORS using

extensive simulation studies as well as the HapMap3 data.

2.2 Material and Methods

2.2.1 Model

We assume that the collected data are the genotypes for p SNPs and the gene ex-

pression levels for q genes over n samples. Let X denote the n × p matrix of SNP

genotypes coded in an additive manner, and Y denote the n × q matrix of gene ex-

pression levels. To model the association between SNPs and gene expressions, we can
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use the linear model as proposed in (Yang et al., 2013):

Y = XB + L+ 1µT + e, (2.2.1)

where B is a p× q matrix for the regression coefficients, 1 is a n-dimensional all-ones

vector, µ is a q-dimensional vector for the intercepts in the regression model, e is a

n × q matrix for the error terms and each element in e has a normal distribution

with zero mean and variance σ2, all eij are independent, L is n × q matrix which is

introduced to account for variations caused by non-genetic factors.

For the convenience of description, we first introduce the following notations used

in this paper. For a n-dimensional vector v with the elements vi(i = 1, · · · , n): the L1

norm of v is defined as ‖v‖1 = Σn
i=1|vi|; the L2 norm of v is defined as ‖v‖2 =

√
Σn

i=1v
2
i ,

respectively. For am×nmatrixM with the elementsMij(i = 1, · · · ,m; j = 1, · · · , n),
the Frobenius norm of M is defined as ‖M‖F =

√
Σm

i=1Σ
n
j=1M

2
ij; the nuclear norm

‖M‖∗ = Σr
i=1σi, where σ1, · · · , σr are the singular values of M and r is the rank of

M ; and the L1 norm of M is defined as ‖M‖1 = Σm
i=1Σ

n
j=1|Mij|.

In this paper, we follow the same sparsity assumptions used in (Yang et al., 2013).

First, there are only a few non-genetic factors that influence the gene expression levels

globally, not locally. Second, there are only a small fraction of SNPs that influence the

gene expression levels, which implies that the regression coefficient matrix B should

be sparse. Yang et al. (2013) proposed the following LORS procedure to estimate B,

L, µ by solving the optimization problem

min
B,L,µ

1

2
‖Y −XB − L− 1µT‖2F + ρ‖L‖∗ + λ‖B‖1, (2.2.2)

where ρ and λ are regularization (tuning) parameters that control the rank of L and

the sparsity of B, respectively. When L and µ are fixed, the optimization problem

becomes a least absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996)

problem with respect to B. As pointed out in (Zou and Hastie, 2005), the Lasso has

some limitations that affect its usefulness. First, when n < p (the number of samples

is less than the number of SNPs), the Lasso selects at most n SNPs. In the context of
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eQTL mapping, there are usually a small number of samples available. Even though

the proportion of SNPs that are associated with the gene expression levels is small,

it is highly likely that the number of SNPs associated with the gene expressions can

still be larger than the number of samples. In this case, the L1 penalty on B will

fail to identify some SNPs that are associated with the gene expressions. Second, the

Lasso tends to select only one variable among a group of highly correlated variables.

This can be problematic in eQTL mapping. For example, if two SNPs are in high

linkage disequilibrium and both of them are associated with gene expressions, only

one SNP will be selected by the Lasso. Furthermore, if two SNPs are in high linkage

disequilibrium and only one of them is associated with gene expressions, the selected

SNP by the Lasso may not even be associated with gene expressions.

The use of the Elastic Net penalty (Zou and Hastie, 2005) instead of the L1 penalty

on B can overcome the limitations of the Lasso. Therefore, we propose the following

optimization problem to estimate B, L, µ:

min
B,L,µ

1

2
‖Y −XB − L− 1µT‖2F + ρ‖L‖∗ + λ1‖B‖1 +

λ2

2
‖B‖2F , (2.2.3)

where ρ, λ1 and λ2 are non-negative tuning parameters. For real data sets, it is

quite possible that some entries in Y are unobserved (missing). In such scenarios, the

missing data will not be used in (2.2.3). As done in (Yang et al., 2013), we use Ω to

index the observed entries in Y . Specifically, Ω is a n× q matrix with the entry

Ωij =





0, Yij missing

1, otherwise.

(2.2.4)

Then we define the projection of a matrix A onto Ω as Ã = PΩ(A) = Ω ⊙ A, where

A has the same dimension as Ω and ⊙ represents Hadamard product, that is, Ãij =

Aij × Ωij. Based on the observed data, the optimization problem becomes

min
B,L,µ

1

2
‖PΩ(Y −XB − L− 1µT )‖2F + ρ‖L‖∗ + λ1‖B‖1 +

λ2

2
‖B‖2F . (2.2.5)
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2.2.2 Theory & Algorithm

To solve the optimization problem in (2.2.5) efficiently, we develop a fast and effective

algorithm based on proximal gradient method (Parikh and Boyd, 2014).

We first describe the proximal gradient method for a general optimization problem

min
x

f(x) = g(x) + h(x), (2.2.6)

where g(x) is a convex and differentiable function, h(x) is a closed proper convex which

means h(x) is a convex function, the epigraph of h(x) is closed and h(x) < +∞ for

at least one x and h(x) > −∞ for every x. Furthermore, we assume that ∇g(x),
the gradient of g(x), is Lipschitz continuous with constant ℓ, which implies that

∇2g(x) � ℓI. Two symmetric matrices of the same dimensions A and B has the

relationship A � B, if B − A is positive semidefinite. Then we have

f(x) = g(x)+h(x) 6 g(x0)+〈∇g(x0), x−x0〉+
1

2t
‖x−x0‖2+h(x), t ∈ (0,

1

ℓ
], (2.2.7)

where x0 is an arbitrary point in the domain of f(x) and 〈·, ·〉 represents the inner

product of two vectors. Instead using the optimization problem (2.2.6), we focus on

minimizing an upper bound of the objective function, that is,

min
x

g(x0) + 〈∇g(x0), x− x0〉+
1

2t
‖x− x0‖2 + h(x), t ∈ (0,

1

ℓ
], (2.2.8)

which can be interpreted as an application of majorization-minimization algorithm

(Parikh and Boyd, 2014). The optimization problem in (2.2.8) is equivalent to the

following optimization problem:

min
x

1

2t
‖x− (x0 − t∇g(x0))‖2 + h(x). (2.2.9)

Problem (2.2.9) can be solved with an iterative procedure: given the value of x at the

k-th iteration, i.e., xk, the value of x at the k + 1-th iteration, xk+1 can be updated

by the following formula

xk+1 = argmin
x

1

2t
‖x− (xk − t∇g(xk))‖2 + h(x) = Proxt,h(xk − t∇g(xk)),
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where Prox(·) is called proximal operator. The iterative process is repeated until the

stopping criterion is satisfied or the maximum number of iterations is reached.

To solve the optimization problem (2.2.5), we adopt an alternating optimization

approach that is similar to the method in (Yang et al., 2013). Note that in the

following part, tL, tB, and tµ are like t used in problem (2.2.9) and correspond to the

variables L, B, and µ, respectively.

First, for fixed B and µ, (2.2.5) becomes

min
L

1

2
‖Y −XB − 1µT − L‖2F + ρ‖L‖∗. (2.2.10)

In the setting of optimization problem (2.2.10), 1
2
‖Y −XB−1µT −L‖2F plays the role

of g(x) and ρ‖L‖∗ plays the role of h(x) in (2.2.6). By Lemma A.2.1, at the k + 1-th

iteration, we have

Lk+1 = ProxtL,ρ‖·‖∗(Lk − tL(XBk + 1µT
k + Lk − Y ))

= StLρ(Lk − tL(XBk + 1µT
k + Lk − Y )),

where StLρ(·) is the singular value shrinkage operator (Appendix), tL is the step size

which can be constant or be determined by backtracking line search.

Second, for fixed L and µ, then (2.2.5) becomes

min
B

1

2
‖Y −XB − L− 1µT‖2F + λ1‖B‖1 +

λ2

2
‖B‖2F , (2.2.11)

where tB is the step size which can be constant or be determined by backtracking

line search. By Lemmas A.2.2 and A.2.3 and Theorem A.2.5, we can update Bk+1

accordingly:

Ba
k+1 = Bk − tBX

T (XBk + 1µT
k + Lk+1 − Y )

Bb
k+1 = ProxtB ,λ1‖·‖1(B

a
k+1)

= sign(Ba
k+1)⊙ (|Ba

k+1| − λ1J)+

Bk+1[, j] = ProxtB ,λ2‖·‖2(B
b
k+1[, j])
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= {1− λ2

max{‖Bb
k+1[, j]‖2, λ2}

}Bb
k+1[, j], j = 1, 2, · · · , q,

where J is a all-ones p × q matrix, B[, j] is the j-th column of matrix B and is a

p-dimensional vector, γ+ = max{γ, 0}, the maximum of γ and 0, |Ba
k+1|, sign(Ba

k+1),

and (|Ba
k+1| − λ1J)+ are all elementwise operations.

Third, for fixed L and B, the proximal gradient method reduces to the gradient

descent method with respect to µ because there is no penalty on µ. At the k + 1-th

iteration, we have

µk+1 = µk − tµ(XBk+1 + 1µT
k + Lk+1 − Y )T1.

To accelerate the computational speed, we will use the accelerated proximal gra-

dient method. Specifically, we apply the fast iterative shrinkage-thresholding algo-

rithm (FISTA) (Beck and Teboulle, 2009) which keeps the simplicity of the iterative

shrinkage-thresholding algorithms (ISTA) but has an improved rate O(1/k2), where

k indexes the iteration. In FISTA, the step size can be constant or be determined by

backtracking line search. We describe the algorithm to solve LORSEN with FISTA

(see Appendix). For simplicity, here, we only describe the detailed algorithm with the

constant step size, but provide the algorithms using either the constant step size de-

termined by the backtracking in our R program https://github.com/gaochengPRC/

LORSEN.

2.2.3 Parameter Tuning

For parameter tuning, we mainly follow the idea described in (Yang et al., 2013).

Specifically, we divide the entries of Ω into training entries and testing entries such

that training entries and testing entries include roughly the same number of 1’s. We

define two matrices Ω1 and Ω2 such that they have the same dimensions as Ω, Ω1

contains all training entries and Ω2 contains all testing entries. Furthermore, we have

Ω = Ω1 + Ω2 and Ω1 ⊙ Ω2 = 0. For the consistency, we re-parameterize λ1 and λ2 as
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λ · α and λ · (1− α), respectively. So the optimization problem (2.2.5) becomes

min
B,L,µ

1

2
‖Y −XB − L− 1µT‖2F + ρ‖L‖∗ + λ(α‖B‖1 +

1− α

2
‖B‖2F ). (2.2.12)

This form is the same as that in glmnet (Friedman et al., 2010).

Given the values of parameters (ρ, α, λ), we solve the following optimization prob-

lem

min
B,L,µ

1

2
‖PΩ1(Y −XB − L− 1µT )‖2F + ρ‖L‖∗ + λ(α‖B‖1 +

1− α

2
‖B‖2F ). (2.2.13)

The solutions are B(ρ, α, λ), L(ρ, α, λ) and µ(ρ, α, λ), then we evaluate the parameters

by calculating the prediction error

Err(ρ, α, λ) =
1

2
‖PΩ2(Y −XB(ρ, α, λ)− L(ρ, α, λ)− 1µ(ρ, α, λ)T )‖2F . (2.2.14)

The grid search over three parameters may be too computationally intensive.

Therefore, we first find an optimal value for ρ, ρ̂, which minimizes the prediction

error as shown in (Yang et al., 2013) by means of Lemmas A.2.1 and A.2.4. Please

refer to (Yang et al., 2013) to find the details about how to find the optimal value

of ρ, ρ̂. Once the optimal value of ρ, ρ̂ is obtained, we pick up a value of α from

a sequence sequentially, thereafter, we perform one-dimensional grid search for λ for

each α. Specifically, we generate a sequence of λ values with length nλ decreasing

from λmax(ρ̂, α) to ǫλmax(ρ̂, α) on the log scale with equal space, where λmax(ρ̂, α)

is defined as the smallest λ such that B(ρ̂, α, λ(ρ̂, α)) is a zero matrix. λmax(ρ̂, α) is

derived as 1
α

max
i=1,2,··· ,p

max
j=1,2,··· ,q

|〈Xi, Yj〉| from coordinate-descent algorithm (Friedman

et al., 2007), where Xi is the i-th column of X, and Yj the j-th column of Y . In our

R program, we set ǫ = 0.02, nλ = 50 and Sα := (0.2, 0.4, 0.6, 0.8, 0.9). The optimal

parameters are (ρ̂, α, λ̂(ρ̂, α)) that minimize the prediction error. The optimal feasible

solutions of B,L, and µ are obtained based on the set of optimal tuning parameters.
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2.2.4 SNP Ranking & Joint Modeling

The procedure to select the set of optimal tuning parameters is computationally

intensive. Therefore, as it is discussed in (Yang et al., 2013), it may not be compu-

tationally tractable to apply such method to the large-scale data sets that contain a

large number of gene expressions and SNPs. A commonly used strategy to reduce such

computational burden is to choose a subset of SNPs and then only use them in the

subsequent eQTL analysis. In this paper, we will use and evaluate two existing meth-

ods for pre-selection of informative SNPs: LORS-Screening (Yang et al., 2013) and

Higher Criticism Screening (HC-Screening) (Jeng et al., 2020). For LORS-Screening,

we first obtain the initial estimate of βi’s by solving

min
βi,L,µ

1

2
‖Y −Xiβ

T
i − L− 1µT‖2F + ρ‖L‖∗, (2.2.15)

where Xi is the i-th column of X, βi is a q-dimensional vector for the coefficient of

the i-th SNP on q genes, i = 1, 2, · · · , p. For each gene, we select the top n SNPs in

terms of the absolute values of association coefficients, then we take union of selected

SNPs for each gene as the final set of SNPs to be involved in the joint modeling.

For HC-Screening, we first obtain association coefficients as above, then calculate

the standardized estimates of coefficients. For each SNP, the Higher Criticism (HC)

statistic (Donoho and Jin, 2004) is calculated based on the standardized estimates of

coefficients. Then we select the top n SNPs in terms of the p-values of HC statistics.

2.2.5 Simulation Design

Our simulation is similar to that described in (Jeng et al., 2020). We first down-

load the genotype data of Chromosome 1 and Chromosome 21 for CEU samples

from HapMap3, the third phase of the International HapMap Project (https://

www.genome.gov/10001688/international-hapmap-project). CEU samples refer

to Utah residents with Northern and Western European ancestry from the CEPH

collection. After the quality-control (please refer to Real Data Analysis section), the
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genotype data of 13,815 SNPs of Chromosome 1 and 2,607 SNPs of Chromosome 21

for n = 165 samples are retained in analysis. To simulate gene expression levels for

q = 200 genes on n = 165 samples, we first simulate non-genetic effects of k = 15 hid-

den factors. We randomly generate nk random numbers from N(0, 1) to form a n×k

matrix H, then let Σ = HHT . Uj’s are simulated from N(0, 0.1 ∗ Σ), j = 1, 2, · · · , q
and stacked by column to form a n× q matrix U . ej’s are simulated from N(0, I) as

random noise for j-th gene expression and combined by column to form a n× q ran-

dom noise matrix e. Then the expression data of q genes on n samples are simulated

by Y = XB + U + e, where X is the n × p genotype data matrix. We set the total

number of SNPs p = 2000, the number of causal SNPs as 60, 200, or 400. Each causal

SNP randomly influences m = 10 (or 50) genes. We simulate nonzero genetic effects

from a uniform distribution. For the “weak-dense” scenario, each causal SNP affects

m = 50 randomly selected genes and the corresponding values in B are simulated

from a uniform distribution between 0.25 and 0.75. For the “strong-sparse” scenario,

each causal SNP affects m = 10 randomly selected genes and the corresponding val-

ues in B are simulated from a uniform distribution between 1.5 and 2. The different

simulation scenarios are summarized in Table 2.1.

2.3 Results

2.3.1 Simulation Results

The number of selected SNPs and the number of selected causal SNPs from two

screening methods under different simulation scenarios are summarized in Table 2.2.

Several conclusions emerge from Table 2.2. First, when the number of samples is

much less than the number of SNPs and the number of causal SNPs is larger than the

number of samples, HC-Screening is seemingly not an appropriate screening tool. This

is because the number of causal SNPs retained after the HC-Screening is much smaller

than the actual number of causal SNPs, resulting in possible power loss in subsequent
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analysis. Second, even when the number of causal SNPs is smaller than the number of

samples (n), from Table 2.2, we still observe that the LORS-Screening retains more

causal SNPs than the HC-Screening. Of course, the HC-Screening reduces much

computational burden especially when the number of samples is much less than the

number of SNPs.

The area under the curve (AUC) is used to compare the performance between

LORSEN and two existing methods, LORS (Yang et al., 2013) and FastLORS (Jeng

et al., 2020). For each scenario, we replicate the simulation ten times. We consider

joint modeling of multiple SNPs and multiple gene expression levels with the SNP

screening and without the SNP screening. The results without the SNP screening

before the eQTL mapping under different simulation scenarios are presented in Ta-

bles 2.3 and 2.4. From Tables 2.3 and 2.4, we can see that the average AUC of

LORSEN is uniformly larger than those of LORS and FastLORS in the weak-dense

scenarios across different number of causal SNPs no matter the SNPs are from single

chromosome (Chr 1) or two chromosomes (Chr 1 + Chr 21). For the strong-sparse

scenarios, FastLORS achieves the relatively larger AUC than LORS and LORSEN.

For a fixed number of causal SNPs, each method achieves the larger AUC value in

the stong-sparse scenario than in the weak-dense scenario. For each method under

each simulation scenario, the AUCs in Tables 2.3 and 2.4 are similar, implying that

each of three methods has the similar power to detect cis-eQTLs and trans-eQTLs.

The results with the SNP screening before eQTL mapping under different sim-

ulation scenarios are presented in Tables 2.5 and 2.6. As we have mentioned, the

LORS-Screening keeps more SNPs in the analysis, thus retains more causal SNPs

than the HC-Screening does. Each method with the LORS-Screening has the larger

AUC values than it with the HC-Screening. From Tables 2.5 and 2.6, we can see

that the AUC values of methods with the HC-Screening are quite close to 0.5, which

indicates that the HC-Screening can essentially lead to the loss of power of methods.

With the LORS-Screening, similar to the non-screening cases, LORSEN has better
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performance than LORS and FastLORS in the weak-dense scenarios and LORSEN

and FastLORS perform similarly and slightly better than LORS in the strong-sparse

scenarios. Finally, we find that for the weak-dense scenarios, each method without

the SNP screening before joint modeling achieves the larger AUC values than it with

the SNP screening. However, for the strong-sparse scenarios, each method with the

LORS-Screening before joint modeling achieves the larger AUC values than it without

the SNP screening. This may be due to that there are a large number of SNP-gene

pairs with the weak association effects in the weak-dense scenarios and many causal

SNPs may not be selected by the pre-screening methods. So, in the weak-dense

scenarios with the use of pre-screening methods, the computational cost and the de-

tection power can be reduced at the same time. In the strong-sparse scenarios, there

are a smaller number of SNP-gene pairs with the stronger association effects than in

the weak-dense scenarios, and it is expected that most of the causal SNPs will be

selected by the pre-screening methods. Therefore, for the strong-sparse scenarios, the

use of pre-screening methods reduce the computational cost while still retain the high

detection power.

2.3.2 Real Data Analysis Results

To illustrate our method in real data analysis, we apply LORS-LORSEN (LORSEN

with the LORS-Screening), LORS-LORS (LORS with the LORS-Screening) and HC-

FastLORS (FastLORS with the HC-Screening) to the HapMap3 data. Specifically,

we focus on Asian samples (CHB and JPT) in the HapMap3 data, and we se-

lect four chromosomes for the analysis. SNP genotype data and gene expression

data are publicly available, and can be downloaded from ftp://ftp.ncbi.nlm.nih.

gov/hapmap/genotypes/hapmap3_r3/plink_format/ and http://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-264/, respectively. Because the set of samples

with the SNP genotype data and the set of samples with the gene expression data are

slightly different, we only keep the samples that have both the SNP genotype data
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and the gene expression data in the analysis. We remove SNPs with missing values,

and perform the LD pruning using Plink with its default parameters (window size:

50; moving window increment: five SNPs; cutoff value of R2: 0.5). After the data

pre-processing, a total of 160 samples (CHB: 79; JPT: 81) are included in analysis.

The number of SNPs and the number of genes with the expression used in the anal-

ysis are summarized as the following: Chromosome 3: 4,086 SNPs and 1,075 genes

with the expression; Chromosome 15: 2,235 SNPs and 612 genes with the expression;

Chromosome 17: 2,226 SNPs and 1,098 genes with the expression; Chromosome 20:

1,863 SNPs and 606 genes with the expression. Since the significance tests gener-

ally cannot be performed for the penalization based regression models, we focus on

the top 100 detected SNP-gene pairs with the largest absolute regression coefficients.

From the Venn diagrams (Figures 2.1 - 2.4), we notice that there is a big overlap

between the eQTLs identified by LORS-LORS and LORS-LORSEN. However, there

is little overlap between the eQTLs identified by HC-FastLORS and LORS-LORS

(or LORS-LORSEN). For example, among the top 100 SNP-gene pairs identified on

Chromosome 3 (Figure 2.1), LORS-LORS and LORS-LORSEN share 77 SNP-gene

pairs in common, while LORS-LORSEN and HC-FastLORS share four SNP-gene

pairs in common and LORS-LORS and HC-FastLORS share three SNP-gene pairs in

common. This observation is consistent with the observation from (Jeng et al., 2020)

who also noticed that there is little overlap between the SNP-gene pairs identified by

LORS-LORS and HC-FastLORS. Additionally, as adopted in (Jeng et al., 2020), we

classified the detected eQTL as local if the distance between the base pair position

of the SNP and the probe midpoint is less than 250kb or as distant if the distance

is greater than 5mb using the method in (Westra et al., 2013). For each chromo-

some, we report our findings on the top ten identified SNP-gene pairs in Tables 2.7

- 2.10. The results of top ten SNP-gene pairs identified on Chromosome 3 are sum-

marized in Table 2.7. We can see that in the top ten SNP-gene pairs identified by

HC-FastLORS, the SNPs are all trans-eQTLs. As a comparison, in the top ten SNP-
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gene pairs identified by LORS-LORSEN, seven SNPs are cis-eQTLs and two SNPs

are trans-eQTLs; in the top ten SNP-gene pairs identified by LORS-LORS, five SNPs

are cis-eQTLs and four SNPs are trans-eQTLs. LORS-LORSEN and LORS-LORS

share seven SNP-gene pairs while LORS-LORSEN and LORS-LORS do not share

any SNP-gene pair with HC-FastLORS. In addition, the coefficients obtained from

HC-FastLORS are ten-fold smaller than those obtained from LORS-LORSEN and

LORS-LORS.

2.4 Disussion

As more human gene expression data become available, fast and efficient statistical

and computational methods are needed to fully take advantage of such data to inves-

tigate the relationship between genetic variants and gene expression levels to further

reveal the genetic mechanisms that underlie human complex diseases. However, most

existing methods are built on small-scale samples and are not applicable to human-

size datasets. In this paper, we propose a new low rank penalized regression method

(LORSEN) to detect eQTLs. We develop a fast and efficient algorithm to solve op-

timization problems arising from our methods based on proximal gradient methods.

Comprehensive simulation studies show that LORSEN outperforms two commonly

used methods, LORS and FastLORS, under some simulation scenarios.

Since there are a large number of SNPs and genes to be included in the eQTL

mapping and it is expected that only a small portion of SNPs will affect the gene

expression levels, a number of pre-screening methods have been developed. In this

paper, we used the LORS-Screening (Yang et al., 2013) and the HC-Screening (Jeng

et al., 2020). We find that the HC-Screening retains much smaller number of SNPs

than the LORS-Screening. Both the LORS-Screening and the HC-Screening can

reduce the computational cost, but they may reduce the detection power in the eQTL

mapping, depending on the association patterns between SNPs and gene expression
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levels. Since we do not know such association patterns in real studies, we should be

cautious to apply such pre-screening methods.

There are several limitations for LORSEN. First, as a method based on the penal-

ized regression model, we can rank the SNP-gene pairs according to the coefficients

obtained from LORSEN but cannot perform the significance test. Second, we com-

pare the performance of LORSEN with the pre-screening methods and without such

methods. The use of the pre-screening methods can reduce the number of SNPs used

in the analysis, thus can greatly reduce the computational cost. Third, the grid search

is used to find the optimal set of tuning parameters. The grid search is easy to be

implemented but is computationally intensive. It may not be feasible for large scale

data. A more efficient strategy is desirable.

It has shown that the incorporation of the SNP correlation and the gene interaction

network can potentially increase the power of detecting eQTLs (Kim and Xing, 2012;

Cheng et al., 2014; Kim and Xing, 2009; Chen et al., 2012). We expect that our

method can be improved if we use the prior knowledge of correlation structures of

SNPs and genes to refine the penalty terms in optimization problems.
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2.5 Tables and Figures

Figure 2.1: The number of SNP-gene pairs identified by FastLORS, LORSEN, and

LORS on Chromosome 3.
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Figure 2.2: The number of SNP-gene pairs identified by FastLORS, LORSEN, and

LORS on Chromosome 15.
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Figure 2.3: The number of SNP-gene pairs identified by FastLORS, LORSEN, and

LORS on Chromosome 17.

55



Figure 2.4: The number of SNP-gene pairs identified by FastLORS, LORSEN, and

LORS on Chromosome 20.
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Table 2.1: Simulation scenarios.

Chromosome #Causal SNPs Scenario Method Screening

Chr 1

60

200

400

weak-dense

strong-sparse

FastLORS

LORSEN

LORS

LORS

HC

Chr 1 + Chr 21

45 + 15

150 + 50

300 + 100

weak-dense

strong-sparse

FastLORS

LORSEN

LORS

LORS

HC
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Table 2.2: Results of HC-Screening and LORS-Screening with ten replicates for each

simulation scenario.

Chromosome
#Causal

SNPs
Scenario Screening

Average

#Selected

SNPs

Average

#Selected

Causal SNPs

Chr 1

60

weak-dense
LORS 1017 43

HC 165 7

strong-sparse
LORS 1023 60

HC 165 9

200

weak-dense
LORS 1036 130

HC 165 20

strong-sparse
LORS 1095 199

HC 165 28

400

weak-dense
LORS 1045 237

HC 165 39

strong-sparse
LORS 1142 346

HC 165 44

Chr 1 + Chr 21

45 + 15

weak-dense
LORS 1044 46

HC 165 7

strong-sparse
LORS 1065 60

HC 165 10

150 + 50

weak-dense
LORS 1064 136

HC 165 20

strong-sparse
LORS 1123 199

HC 165 28

300 + 100

weak-dense
LORS 1064 244

HC 165 37

strong-sparse
LORS 1188 361

HC 165 44
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Table 2.3: The average AUC without the SNP screening with ten replicates for each

simulation scenario. SNPs are only from chromosome 1.

Scenario Method
#Causal SNPs

60 200 400

weak-dense

FastLORS 0.514 0.582 0.581

LORSEN 0.651 0.649 0.630

LORS 0.502 0.514 0.515

strong-sparse

FastLORS 0.762 0.840 0.810

LORSEN 0.823 0.834 0.774

LORS 0.824 0.819 0.754
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Table 2.4: The average AUC without the SNP screening with ten replicates for each

simulation scenario. SNPs are from chromosome 1 and chromosome 21.

Screening Method
#Causal SNPs

60 200 400

weak-dense

FastLORS 0.530 0.567 0.575

LORSEN 0.658 0.679 0.625

LORS 0.503 0.510 0.514

strong-sparse

FastLORS 0.774 0.826 0.813

LORSEN 0.814 0.810 0.788

LORS 0.813 0.801 0.756
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Table 2.5: The average AUC with the SNP screening with ten replicates for each

simulation scenario. SNPs are only from chromosome 1.

Scenario
#Causal

SNPs
Method

Screening

HC LORS

weak-dense

60

FastLORS 0.514 0.596

LORSEN 0.515 0.618

LORS 0.503 0.541

200

FastLORS 0.512 0.583

LORSEN 0.511 0.592

LORS 0.502 0.519

400

FastLORS 0.510 0.557

LORSEN 0.509 0.547

LORS 0.502 0.511

strong-sparse

60

FastLORS 0.565 0.900

LORSEN 0.558 0.903

LORS 0.560 0.897

200

FastLORS 0.552 0.894

LORSEN 0.544 0.894

LORS 0.543 0.874

400

FastLORS 0.536 0.797

LORSEN 0.523 0.782

LORS 0.528 0.738
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Table 2.6: The average AUC with the SNP screening with ten replicates for each

simulation scenario. SNPs are from chromosome 1 and chromosome 21.

Scenario
#Causal

SNPs
Method

Screening

HC LORS

weak-dense

60

FastLORS 0.518 0.606

LORSEN 0.518 0.629

LORS 0.505 0.544

200

FastLORS 0.512 0.591

LORSEN 0.512 0.615

LORS 0.503 0.524

400

FastLORS 0.510 0.563

LORSEN 0.507 0.556

LORS 0.501 0.511

strong-sparse

60

FastLORS 0.570 0.891

LORSEN 0.563 0.906

LORS 0.564 0.891

200

FastLORS 0.553 0.904

LORSEN 0.547 0.904

LORS 0.544 0.883

400

FastLORS 0.534 0.821

LORSEN 0.524 0.813

LORS 0.525 0.765
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Table 2.7: Top ten detected SNP-gene pairs for chromosome 3.

Method SNP Probe (Gene) Association Coefficient Distance Class

HC-FastLORS

rs13084976 ILMN 1657373(LEPREL1) 0.0430 188.72mb distant

rs17029694 ILMN 1657373 (LEPREL1) 0.0424 188.49mb distant

rs12494696 ILMN 1812093 (UTS2D) 0.0322 189.72mb distant

rs2322212 ILMN 1756501 (ST6GAL1) 0.0310 184.74mb distant

rs17029694 ILMN 1708743 (NT5DC2) 0.0303 49.86mb distant

rs2322212 ILMN 1686920 (CCDC58) 0.0300 120.03mb distant

rs7647780 ILMN 1762084 (DNASE1L3) 0.0292 57.51mb distant

rs1516347 ILMN 1726020 (LOC652670) 0.0278 75.49mb distant

rs13061928 ILMN 1692261 (EPHB1) 0.0273 133.55mb distant

rs1377213 ILMN 1698934 (CMTM7) 0.0270 26.76mb distant

LORS-LORSEN

rs1505587 ILMN 1657373 (LEPREL1) 0.3336 127.69mb distant

rs6807033 ILMN 1787750 (CD200) 0.2796 4.163kb local

rs11914577 ILMN 1700967 (C3orf59) 0.2245 113.51kb local

rs1403719 ILMN 1771599 (PLOD2) 0.1963 25.06mb distant

rs628267 ILMN 1760509 (EOMES) 0.1941 302.30kb

rs4016435 ILMN 1757350 (CTNNB1) 0.1908 27.772kb local

rs16839507 ILMN 1761058 (ACAD11) 0.1856 117.942kb local

rs693430 ILMN 1657708 (MGLL) 0.1796 86.074kb local

rs693430 ILMN 1707310 (MGLL) 0.1710 47.617kb local

rs1498090 ILMN 1793724 (C3orf31) 0.1662 58.605kb local

LORS-LORS

rs1505587 ILMN 1657373 (LEPREL1) 1.2549 127.69mb distant

rs6807033 ILMN 1787750 (CD200) 0.5621 4.163kb local

rs4857653 ILMN 1700967 (C3orf59) 0.3640 16.16mb distant

rs11914577 ILMN 1700967 (C3orf59) 0.2984 113.514kb local

rs1403719 ILMN 1771599 (PLOD2) 0.2824 25.06mb distant

rs628267 ILMN 1760509 (EOMES) 0.2439 302.302kb

rs4016435 ILMN 1757350 (CTNNB1) 0.2404 27.772kb local

rs16839507 ILMN 1761058 (ACAD11) 0.2338 117.942kb local

rs3773014 ILMN 1762084 (DNASE1L3) 0.2268 29.187kb local

rs1799977 ILMN 1688392 (ZBED2) 0.2234 75.77mb distant
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Table 2.8: Top ten detected SNP-gene pairs for chromosome 15.

Method SNP Probe (Gene) Class

HC-FastLORS

rs12594727 ILMN 1652797 (LOC400451) distant

rs17734920 ILMN 1652797 (LOC400451) distant

rs12594727 ILMN 1804277 (SPRED1) distant

rs4567674 ILMN 1692517 (LOC653381) distant

rs12440268 ILMN 1692517 (LOC653381) distant

rs1977035 ILMN 1710216 (AVEN) distant

rs11633486 ILMN 1690695 (PEX11A) distant

rs6606804 ILMN 1665859 (RAB27A) distant

rs1977035 ILMN 1693650 (FES) distant

rs11634559 ILMN 1748374 (LOC400304)

LORS-LORSEN

rs6151443 ILMN 1712082 (GCNT3) local

rs12441559 ILMN 1712082 (GCNT3) distant

rs9635390 ILMN 1656899 (CIB1) local

rs16970801 ILMN 1749096 (BCL2L10) distant

rs8024414 ILMN 1813430 (TRIM69) distant

rs288406 ILMN 1808238 (RBPMS2) distant

rs7162538 ILMN 1784364 (STARD5) local

rs16957709 ILMN 1792173 (76P) local

rs1347069 ILMN 1795822 (DIS3L) local

rs3825946 ILMN 1667199 (SQRDL) local

LORS-LORS

rs6151443 ILMN 1712082 (GCNT3) local

rs9635390 ILMN 1656899 (CIB1) local

rs7162538 ILMN 1784364 (STARD5) local

rs16957709 ILMN 1792173 (76P) local

rs12440502 ILMN 1805410 (C15orf48) distant

rs2292114 ILMN 1795524 (C15orf44) local

rs1347069 ILMN 1795822 (DIS3L) local

rs25431 ILMN 1748374 (LOC400304) distant

rs3825946 ILMN 1667199 (SQRDL) local

rs7177893 ILMN 1689274 (NIPA1) local
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Table 2.9: Top ten detected SNP-gene pairs for chromosome 17.

Method SNP Probe (Gene) Class

HC-FastLORS

rs8082184 ILMN 1747419 (PCGF2) distant

rs4790694 ILMN 1773352 (CCL5) distant

rs3213714 ILMN 1769550 (SLFN5) distant

rs2317668 ILMN 1769550 (SLFN5) distant

rs12950579 ILMN 1769550 (SLFN5) distant

rs17822338 ILMN 1769550 (SLFN5) distant

rs4985676 ILMN 1733811 (JUP) distant

rs4968140 ILMN 1706959 (TIMM22) local

rs6806 ILMN 1810486 (RAB34) distant

rs9915773 ILMN 1707448 (CRKRS) distant

LORS-LORSEN

rs4794776 ILMN 1808301 (MRPL45) local

rs4251704 ILMN 1773352 (CCL5) local

rs4789267 ILMN 1782778 (FAM100B) local

rs3809767 ILMN 1687247 (SPATA20) local

rs17657522 ILMN 1697227 (USP36) local

rs4796817 ILMN 1697227 (USP36) local

rs12952713 ILMN 1750511 (NT5C3L) distant

rs4968140 ILMN 1706959 (TIMM22) local

rs6504230 ILMN 1747347 (C17orf60) local

rs33926631 ILMN 1738027 (BRCA1) local

LORS-LORS

rs4794776 ILMN 1808301 (MRPL45) local

rs3809767 ILMN 1687247 (SPATA20) local

rs17657522 ILMN 1697227 (USP36) local

rs4796817 ILMN 1697227 (USP36) local

rs9905601 ILMN 1750511 (NT5C3L) local

rs11868362 ILMN 1733811 (JUP) distant

rs4791136 ILMN 1733811 (JUP) distant

rs4968140 ILMN 1706959 (TIMM22) local

rs6504230 ILMN 1747347 (C17orf60) local

rs33926631 ILMN 1738027 (BRCA1) local
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Table 2.10: Top ten detected SNP-gene pairs for chromosome 20.

Method SNP Probe (Gene) Class

HC-FastLORS

rs692862 ILMN 1713561 (C20orf103) distant

rs530652 ILMN 1814247 (TCFL5) distant

rs6084912 ILMN 1791771 (HCK) distant

rs16991099 ILMN 1758146 (SIRPA)

rs6084217 ILMN 1804822 (SRXN1)

rs16991131 ILMN 1666269 (CTSZ) distant

rs6041750 ILMN 1702237 (FKBP1A) local

rs692862 ILMN 1712347 (SFRS6) distant

rs6052369 ILMN 1712347 (SFRS6) distant

rs1292244 ILMN 1670841 (CPNE1) distant

LORS-LORSEN

rs760087 ILMN 1814247 (TCFL5) local

rs6115906 ILMN 1751330 (RBCK1) local

rs4911408 ILMN 1798014 (EIF2S2) local

rs16989514 ILMN 1721128 (TOMM34) local

rs2223246 ILMN 1666181 (SDC4)

rs6041750 ILMN 1702237 (FKBP1A) local

rs1410936 ILMN 1712347 (SFRS6) distant

rs2223246 ILMN 1712347 (SFRS6) local

rs6103330 ILMN 1712347 (SFRS6) local

rs13040414 ILMN 1712347 (SFRS6)

LORS-LORS

rs6109758 ILMN 1713561 (C20orf103)

rs6112999 ILMN 1713561 (C20orf103) distant

rs6075584 ILMN 1814247 (TCFL5) distant

rs760087 ILMN 1814247 (TCFL5) local

rs16989514 ILMN 1721128 (TOMM34) local

rs6041750 ILMN 1702237 (FKBP1A) local

rs209901 ILMN 1811315 (EEF1A2) distant

rs1410936 ILMN 1712347 (SFRS6) distant

rs6103330 ILMN 1712347 (SFRS6) local

rs13040414 ILMN 1712347 (SFRS6)
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Chapter 3

BiNetPeR: A Bipartite

Network-Based Penalized

Regression Method For eQTL

Mapping

Abstract

Identification and characterization of the expression quantitative trait loci (eQTLs),

the genetic variations that regulate the expression of genes can greatly help us better

understand the cellular mechanisms underlying human complex diseases. With the

accumulation and the availability of a large volume of gene expression data and sin-

gle nucleotide polymorphism (SNP) genotype data, it is important and challenging to

develop more powerful statistical methods and more efficient computational tools for

the eQTL mapping. In this paper, we propose a new method called BiNetPeR (Bipar-

tite Network-based Penalized Regression) to identify the eQTLs. Most of the existing

methods that use the SNP-SNP network generally construct the SNP-SNP network

only from the SNP information and/or the SNP genotypes without the consideration

of the gene expression data or the relationship between the SNPs and the gene expres-
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sion. BiNetPeR utilizes the SNP-SNP network projected from the SNP-gene bipartite

network which is constructed based on the significant marginal associations between

the SNPs and the gene expression levels. BiNetPeR also uses the Laplacian matrix

of SNP-SNP network to control the amount of regularization for smoothness in the

penalized regression. We perform the extensive simulation studies to evaluate and

compare the performance of our proposed method with two commonly used methods,

FastLORS and mtLasso2G. Simulation studies show that our method outperforms

FastLORS and mtLasso2G in terms of average Area Under the Curve (AUC) in most

situations.

3.1 Introduction

With rapid advancements in high-throughput and sequencing technologies, a large

number of single nucleotide polymorphism (SNP) genotype data and gene expression

data have become available. It is necessary and important to develop effective sta-

tistical methods to investigate the associations between a set of SNPs and expression

levels of a set of genes. We usually refer it to as the expression quantitative trait

locus (eQTL) mapping. The eQTL mapping aims to identify the genetic variants

which have impact on gene expression levels and can reveal the genetic mechanism

of gene expression activities to further improve our understanding on how genetic

variations are related with human complex diseases. Therefore, the eQTL mapping

offers a promise for the understanding of the biological process of gene regulation

and interpretation for the findings obtained from genome-wide association studies

(GWAS) (Cookson et al., 2009).

A large number of statistical and computational methods have been proposed to

detect the eQTLs. The most commonly used methods are based on the regression

model in which gene expression levels are treated as the response variables and SNP

genotypes are treated as the predictors. The simplest application of the regression
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model in the eQTL mapping is to use the univariate regression to detect the marginal

association for each pair of SNP and gene (Shabalin, 2012). Since the eQTL map-

ping generally involves a large number of SNPs and a large number of genes, such

univariate regression model can avoid the computational challenges from the high

dimensionality of SNPs and genes, therefore can be efficiently performed. However,

the univariate regression model needs the adjustment for the multiple testing and

ignores the correlation structure of SNPs and genes, making it difficult to detect

weak association signals between SNPs and genes. Therefore, the methods that can

jointly model multiple SNPs and single gene (e.g., LSKM-LASSO (Yan et al., 2020))

or multiple genes have been developed (e.g., PANAMA (Fusi et al., 2012), JDAG

(Cao et al., 2020), PEER (Stegle et al., 2010), LORSEN 1, HEFT (Gao et al., 2014),

and LMM-EH-PS (Listgarten et al., 2010)). Such methods can take into considera-

tion the SNP linkage disequilibrium (LD) structure between SNPs and the gene-gene

correlations, thus are generally more powerful than the univariate regression model

to detect eQTLs.

In addition, the joint modeling of multiple SNPs and multiple genes can avoid

the adjustment for the multiple testing. However, the multivariate regression usually

requires the intensive computation since the penalty terms are generally needed to be

imposed to the regression coefficients to handle the large number of coefficients in the

model and the low signal-to-noise ratio (SNR).In summary, the univariate analysis

and the joint modeling have their advantages and disadvantages, respectively. Some

researchers have made efforts to combine them together. Wang et al. (2011) and Yang

et al. (2013) proposed to first select significant SNPs from the univariate analysis,

then analyze selected SNPs using the joint modeling.

Inspired by the success of data integration, some researchers have developed the

1The article has been submitted to Frontiers in Genetics, still under review. How to cite this

article: Gao, Cheng and Wei, Hairong and Zhang, Kui. LORSEN: fast and efficient eQTL mapping

with low rank penalized regression.
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methods that can include the external data (e.g. the protein-protein interaction

networks, the summary statistics from genetic association studies) as the prior or

auxiliary information in the eQTL mapping(e.g., GeP-HMRF (Wang et al., 2018a),

ARCHIE (Dutta et al., 2020), GFlasso (Lee and Xing, 2012)). In particular, some

researchers developed the methods, such as the two-graph guided multi-task Lasso

(mtLasso2G), the graph-regularized dual lasso (GDL), and the graph-guided fused

lasso (GFlasso), that can incorporate the correlation structure of SNP data and gene

expression data into a penalized regression model to boost the detection power of

the eQTL mapping. However, there are several drawbacks for the aforementioned

methods. First, the underlying assumption of such methods is that if two SNPs are

highly correlated with each other, then they should have similar genetic effects on

gene expression levels; if two genes are highly correlated with each other, then SNPs

should have similar overall genetic effects on expression levels of these two genes. This

assumption may not hold in general. Just because two SNPs are in high LD, it does

not mean that those two SNPs have the same pleiotropic effects on the gene expression

levels. Similarly, the polygenic effects of SNPs on two highly correlated genes are not

necessarily the same. This is mainly because that the gene expression levels are

not only regulated by genetic variants but also influenced by environmental factors

(e.g. random errors), confounding factors (hidden or known, e.g. batch effects),

and covariates (e.g. gender, age). Second, such methods often rely on the clustering

method and existing network information to obtain the structure information of SNPs

and/or genes. Clustering is an unsupervised learning approach. The number of

clusters and the clustering metric are usually artificially determined, which introduces

the uncertainty to such methods. Third, existing network information for SNPs and

genes are usually incomplete and may not be easily accessible, which restricts the use

of such methods. Fourth, such methods obtain the structure information of SNPs or

genes separately, which does not consider the relationship between SNPs and genes.

In this paper, we propose a novel method for the eQTL mapping, called Bipartite
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Network-based Penalized Regression, abbreviated as BiNetPeR. Our method con-

sists of the following steps. First, the significant marginal association of each pair of

SNP and gene is obtained and is used to construct a SNP-gene bipartite network. Sec-

ond, the SNP-SNP and/or gene-gene network is obtained by projecting the SNP-gene

bipartite network to SNPs and/or genes. Third, the SNP-SNP and/or gene-gene net-

work is used in the penalized multivariate regression to detect eQTLs. Based on the

framework of the Elastic Net penalty (Zou and Hastie, 2005), BiNetPeR can be formu-

lated as a Lasso-type problem, so the model parameters can be efficiently estimated.

When no significant marginal association evidence is present, BiNetPeR reduces to

LORS (or FastLORS (Jeng et al., 2020)), a commonly used method in eQTL map-

ping. Compared with the existing methods, BiNetPeR has several advantages. The

SNP-SNP and/or gene-gene network is obtained from a SNP-gene bipartite network

that is based on the marginal association of SNP genotypes and gene expression lev-

els. Therefore, the prior information of the correlation of SNPs and/or genes is not

needed. Second, since the SNP-SNP and/or the gene-gene network is based on the

marginal association of SNP genotypes and gene expression levels, we expect that

the corrected (or equivalently, correlated) SNPs have the similar pleiotropic effects

on the gene expression levels. Third, the existing method mainly use the structure

information of SNPs obtained from SNPs data only and/or the gene-gene network

obtained from the gene expression levels only, we expect BiNetPeR is more powerful

in the eQTL mapping.

To account for the non-genetic effects of potential hidden factors on the gene

expression levels, we first apply PEER (Stegle et al., 2010) to predict the hidden

factors that affect the gene expression levels, then we extract the predicted factors

from the gene expression levels, thereafter we use the gene expression residuals in

the subsequent analysis. Compared with existing methods such as LORS (Yang

et al., 2013) and LORSEN which consider the non-genetic effects of hidden factors,

BiNetPeR is more computationally efficient. This is because PEER is only applied
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once at the beginning while LORS and LORSEN estimate the non-genetic effects of

hidden factors at each iteration, which is computationally intensive especially when

a large number of SNPs and genes are used in the eQTL mapping.

We evaluate the performance of BiNetPeR and compare its performance with two

commonly used methods in the eQTL mapping, FastLORS and mtLasso2G, through

extensive simulation studies as well as the data from the International HapMap

Project (Gibbs et al., 2003). FastLORS is a low rank penalized regression model

in which the non-genetic effects of hidden factors are modeled as an unknown ma-

trix to be estimated and L1
2 penalty is imposed on association coefficients to force

a sparse solution. mtLasso2G considers L1 penalty and fussed Lasso-type penalty

on association coefficients, the latter one is based on the basic underlying assump-

tion mentioned above. The design of the latter penalty term is from the structure

information of SNP-SNP network and gene-gene network.

3.2 Materials and Methods

We assume that there are n samples involved in the study, and the genotype data

for p SNPs and the gene expression levels for q genes are collected from the samples.

Let X denote the n× p matrix of SNP genotypes coded in an additive manner, and

Y denote the n × q matrix of gene expression levels. The first step of our method

is to build a bipartite network G(S1, S2, E) where the nodes in S1 are the genetic

variants (or SNPs) studied, the nodes in S2 are the genes and E is the set of edges of

which each links one SNP and one gene indicating that the SNP is associated with

the expression levels of the gene. Different from the existing methods that use the

SNP-SNP networks based on the relationship between the SNPs and/or the gene-

gene interaction networks based on the relationship between the genes, BiNetPeR

2It means the L1 norm of the matrix, that is, the sum of the absolute values of the entries of the

matrix.
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uses a bipartite network based on the marginal association of the SNP-gene pairs. To

construct a bipartite network, we first use MatrixEQTL (Shabalin, 2012) to find all

the SNP-gene pairs that have the significant marginal association and then draw an

edge between the SNP and the gene if that pair of SNP and gene has the significant

marginal association. MatrixEQTL is an efficient method for the eQTL mapping, thus

allows us to find all the significant SNP-gene pairs from a large number of SNPs and

genes efficiently. Moreover, MatrixEQTL is able to incorporate the covariates in the

analysis. In the second step, we project the gene nodes onto the SNP nodes, also called

the bipartite network projection (Zhou et al., 2007), to obtain the weighted connected

components of SNPs. The weight wij of an edge in the connected component of SNPs

is the number of genes that are marginally associated with two SNPs linked by that

edge. Two SNPs lie in two different connected components if they are not marginally

associated with any gene in common. In the last step, if covariates are present in the

study, we first regress covariates out from gene expression data, then we standardize

the gene expression residuals (still denoted by Y ) and the SNP genotype data (still

denoted by X ); otherwise, we standardize the gene expression data (still denoted

by Y ) and the SNP genotype data (still denoted by X ). Then we use a penalized

regression model to find the associations between the SNPs and the genes. The steps

for BiNetPeR are illustrated in Figure 3.1.

For the convenience of description, we first introduce the notations used in the

penalized regression model. For a p × q matrix M with the elements Mij (i =

1, · · · , p; j = 1, · · · , q), the Frobenius norm of M is defined as ‖M‖F=
√∑p

i=1

∑q
j=1 M

2
ij,

the square root of the sum of squared elements in the matrix; the L1 norm of M is

defined as ‖M‖1 =
∑p

i=1

∑q

j=1 |Mij|, the sum of absolute value of each element in the

matrix. The penalized regression model is the following (Li and Li, 2010):

min
B

1

2
‖Y −XB‖2F + λ‖B‖1 + α× pen(GSNP , B), (3.2.1)

where pen(GSNP , B) =
∑m

k=1

∑
i∼j∈ESNP

k
wij

∑q

s=1(sign(β̃is)
βis√
di
− sign(β̃js)

βjs√
dj
)2 is
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the quadratic penalty term with respect to the association coefficients, GSNP
k (V SNP

k ,ESNP
k )

is some connected component (also a graph) of SNPs indexed by k as illustrated by

“d. SNP Projection Network” in Figure 3.1. V SNP
k is the set of vertices corresponding

to the SNPs in the graph GSNP
k . ESNP

k is the set of edges in the graph GSNP
k . m

is the total number of connected components of SNPs. wij is the weight of edge

i ∼ j in the k-th connected component of SNPs (GSNP
k ), actually the number of

common genes whose expression levels are affected by the i -th SNP and the j -th

SNP. We expect that if the weight of an edge is larger, then two SNPs linked by the

edge should have more similarity in affecting gene expression levels. sign(β̃is) is the

sign of the association coefficient of the i-th SNP for the s-th gene. Similar to that

described in (Li and Li, 2010), if the number of SNPs is smaller than the sample size,

the signs can be obtained from a standard least square regression; otherwise, we can

obtain the signs from the Elastic Net regression. λ and α are two tuning parameters

and control the amount of regularization for sparsity and smoothness, respectively.

When α = 0 or the connected components of SNPs are all single nodes, the penalized

regression reduces to the Lasso regression. When the normalized Laplacian matrix

is the identity matrix, the penalty term reduces to the Elastic Net penalty, and the

penalized regression problem becomes a special case of LORSEN.

To solve the problem 3.2.1, we reformulate it as

min
B

1

2

q∑

s=1

‖Ys −Xβs‖22 + λ

q∑

s=1

‖βs‖1 + α

q∑

s=1

m∑

k=1

∑

i∼j∈ESNP
k

wij(sign(β̃is)
βis√
di

− sign(β̃js)
βjs
√

dj
)2, (3.2.2)

equivalently, we have

min
B

1

2

q∑

s=1

‖Ys −Xβs‖22 + λ

q∑

s=1

‖βs‖1 + α

q∑

s=1

βT
s K

T
s LKsβs, (3.2.3)

where Ks = diag(sign(β̃ℓs)), ℓ = 1, 2, · · · , p, L is the sum of Lk, k = 1, · · · ,m. Lk is
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the p× p normalized Laplacian matrix corresponding to the graph GSNP
k , defined as

Lk(i, j) =





1 if i = j and dik 6= 0,

−wij/
√

dikd
j
k if i and j are adjacent,

0 otherwise,

where dik =
∑

j∼i∈ESNP
k

wij is the degree of the vertex i in the graph GSNP
k .

The optimization problem 3.2.3 can be decomposed into q independent subprob-

lems. We can parallelly solve the problems

min
βs

1

2
‖Ys −Xβs‖22 + λ‖βs‖1 + αβT

s K
T
s LKsβs, (3.2.4)

where s = 1, 2, · · · , q. There are two approaches to solve the optimization problem

3.2.4. One is based on the coordinate-descent algorithm (Li and Li, 2010). The other

one is to reformulate the problem as a Lasso problem with augmented data matrices

(Li and Li, 2008), then the R package Glmnet (Friedman et al., 2010) can be used to

solve the problem.

Because gene expression activities are not only regulated by genetic variants, but

also influenced by some hidden non-genetic factors. To account for the effects induced

by the non-genetic factors , we can firstly apply PEER (Stegle et al., 2010, 2012) to

predict the unknown factors, then extract the factors from gene expression. We use

the gene expression residuals obtained from PEER to replace the gene expression

levels in the subsequent analysis as described above.

3.3 Simulation Design

We perform the extensive simulations to evaluate the performance of BiNetPeR. We

first download the genotype data of Chromosome 1 for 165 CEU samples from the

third phase of the International HapMap Project (HapMap3) (https://www.genome.

gov/10001688/international-hapmap-project). The CEU samples refer to Utah
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residents with Northern and Western European ancestry from the CEPH collection.

After the quality-control (window size: 50; moving window increment: five SNPs;

cutoff value of R2: 0.5), the genotype data of 13,815 SNPs for n = 165 samples

are retained. For our simulations, we randomly choose p SNPs. To simulate the

gene expression levels for q = 200 genes on n = 165 samples, we use the following

regression model: Y = XB + U + e, where Y is an n× q matrix that represents the

gene expression levels for q genes on n samples, X is an n× p matrix that represents

the SNP genotypes for p SNPs on n samples, B is a p × q matrix that represents

the effects of p SNP genotypes on the gene expression levels of q genes, U is an

n × q matrix that represents the non-genetic effects of k hidden factors in the gene

expression levels of q genes, and e is an n × q matrix that represents the random

errors for the gene expression levels. We first simulate non-genetic effects of k hidden

factors. We independently generate nk random numbers from the standard normal

distribution to form a n × k matrix H, then independently generate each column of

U from the multivariate normal distribution with mean 0 and the covariance matrix

τHHT , where τ is the variance component and τ is set as either 0.1 or 1.2 in our

simulations. We then independently generate nq random numbers from the standard

normal distribution to form the error matrix e. Because the expression of one gene

may be regulated by multiple genetic variants and one genetic variant may affect the

expression levels of multiple genes. We consider the following scenarios to simulate

B, the matrix for the regression coefficients.

• Scenario 1: To evaluate the false positive rates, we assume that the SNP geno-

types do not affect the expression level of any gene considered, that is, B = 0

for this simulation scenario. We use τ = 0.1 and k = 15 hidden factors for this

simulation scenario.

• Scenario 2: To assess the performance of our method when we vary the influence

of non-genetic effects of hidden factors on gene expression levels, we set two

different values (15 and 30) for k and two different values (0.1 and 1.2) for τ , we
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consider four different combinations: (A) k = 15, τ = 0.1; (B) k = 30, τ = 0.1;

(C) k = 15, τ = 1.2; (D) k = 30, τ = 1.2. We expect that our method has

robust performance for these four combinations where p = 300, the number of

causal SNPs is 80. For each causal SNP, we first randomly choose m = 50 genes

among q = 200 gene as the genes whose expression levels are affected by that

SNP. We either generate the regression coefficient for a SNP-gene pair from a

uniform distribution between 0.5 and 1 if the gene expression is affected by the

SNP or set the regression coefficient as 0 otherwise.

• Scenario 3: To assess the performance of our method when we keep a constant

ratio of the number of causal SNPs and the total number of SNPs used in the

simulations, we consider the following three cases: (1) the number of causal

SNPs is 40 and the total number of SNPs is 150; (2) the number of causal SNPs

is 80 and the total number of SNPs is 300; and (3) the number of causal SNPs

is 160 and the total number of SNPs is 600. Again, for each causal SNP, we

first randomly choose m = 50 genes among q = 200 gene as the genes whose

expression levels are affected by that SNP. We either generate the regression

coefficient for a SNP-gene pair from a uniform distribution between 0.5 and 1

if the gene expression is affected by the SNP or set the regression coefficient as

0 otherwise. For this simulation scenario, we set τ = 0.1 and k = 15.

• Scenario 4: To evaluate the performance of the proposed method with different

correlation structures of the causal SNPs, we consider the following simulations.

We first randomly choose na SNPs as the primary causal SNPs. For each

primary causal SNP, we find additional nb causal SNPs such that, first, the

distance between any one of those nb causal SNPs and the primary causal SNP

is less than 100 kb; second, the correlation between any one of those nb causal

SNPs and the primary causal SNP is large. In our simulations, we use r2 > 0.7 as

the criteria. Therefore, we first find na sets of causal SNPs and the total number
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of causal SNPs is na(nb+1). We then randomly choose (300−na(nb+1)) SNPs

that are far away from and nearly independent of causal SNPs to be non-causal

SNPs. We use the following combinations of na and nb: na = 40, nb = 1;

na = 20, nb = 3. For each set of (nb + 1) SNPs, we generate the regression

coefficients in the following way: for primary causal SNP, we randomly choose

50 genes whose expression levels are affected by the primary causal SNP and

generate each regression coefficient from a uniform distribution between 0.5

and 1. For each of nb non-primary causal SNPs, we randomly choose 40 genes

among 50 genes affected by the primary causal SNP and 10 genes from the

rest of 150 genes. By doing this, we actually conduct our simulations based on

the assumption that the highly correlated SNPs may have the similar effects

on the gene expression levels. Again, for a SNP-gene pair, we generate the

corresponding regression coefficient from a uniform distribution between 0.5 and

1 if the gene expression levels are affected by the SNP. We set the corresponding

regression coefficient as zero if the gene expression levels are not affected by the

SNP. For this simulation scenario, we set τ = 0.1 and k = 15.

For each simulation scenario, we repeat the simulations ten times and use the average

Area Under the Curve (AUC) as the criteria to compare different methods.

3.4 Simulation Results

In simulation scenario 1, the SNP genotypes have no effect on the gene expression

levels. We expect that the false positive rate (FPR) should be close to zero for each

method. Here, we use two thresholds (0 and 0.001) for the absolute value of the

estimated regression coefficient to determine if a SNP is significantly associated with

a gene. First, we consider a SNP is significantly associated with the expression levels

of a gene if the absolute value of the estimated regression coefficient is greater than 0.

For BiNetPeR, the average FPR of ten replicates is 4.67× 10−5; for mtLasso2G, the
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average FPR is 1; for FastLORS, the average FPR is 6.81×10−3. Second, we consider

a SNP is significantly associated with the expression levels of a gene if the absolute

value of the estimated regression coefficient is greater than 0.001. Then we calculate

the average FPR for each method. For BiNetPeR, the average FPR of ten replicates

is 4.33 × 10−5; for mtLasso2G, the average FPR is 3.13 × 10−2; for FastLORS, the

average FPR is 2.17 × 10−5. We conclude that BiNetPeR is a valid method. It can

be seen that our method (BiNetPeR) maintains the low FPR in two situations while

mtLasso2G has the largest FPR. FastLORS has a much larger FPR than BiNetPeR

when 0 is used as the threshold, while it has a similar FPR to BiNetPeR when 0.001

is used as the threshold.

In simulation scenario 2, we consider four different combinations for the values

of τ and k to evaluate the influence of non-genetic effects of hidden factors on the

detection of eQTLs by BiNetPeR, FastLORS, and mtLasso2G (Figure 3.2). In the

simulations, we consider a SNP is significantly associated with the expression levels

of a gene if the absolute value of the estimated regression coefficient is greater than

0.001. For k = 15 and τ = 0.1, the average AUCs for BiNetPeR, mtLasso2G, and

FastLORS are 0.815, 0.619, and 0.734, respectively. For other combinations of τ and

k, the AUCs for BiNetPeR, mtLasso2G, and FastLORS are similar to those from

k = 15 and τ = 0.1. So, the values of τ and k do not have influence on the detection

of eQTLs for three methods considered here.

In simulation scenario 3, we keep the ratio of the number of causal SNPs and the

total number of SNPs used as a constant. From the simulation results (Figure 3.3),

we observe that our method has the best performance. Specifically, when the number

of causal SNPs is 40 and the total number of SNPs used in the simulation is 150,

the average AUCs for BiNetPeR, mtLasso2G, and FastLORS are 0.850, 0.827, and

0.587, respectively. When the number of causal SNPs is 80 and the total number of

SNPs used in the simulation is 300, the average AUCs for BiNetPeR, mtLasso2G, and

FastLORS are 0.815, 0.619, and 0.734, respectively. When the number of causal SNPs
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is 160 and the total number of SNPs used in the simulation is 600, the average AUCs

for BiNetPeR, mtLasso2G, and FastLORS are 0.710, 0.635, and 0.711, respectively.

We can see that BiNetPeR outperforms mtLasso2G and FastLORS in terms of average

AUC in all the three cases. Of course, as expected, as the number of non-causal SNPs

becomes larger, the average AUC of BiNetPeR becomes smaller.

In simulation scenario 4, we explore the influence of the relationship of causal

SNPs on the performance of three methods considered here (Figure 3.4). When we

randomly choose 300 SNPs in the analysis and randomly choose 80 SNPs out of 300

SNPs to be causal, it is expected that the correlation between the causal SNPs is not

strong and the causal SNPs independently influence the expression levels of genes. In

this case, BiNetPeR has the best performance with an average AUC of 0.815 while

the AUCs of mtLasso2G and FastLORS are 0.619 and 0.734, respectively (Figure

3.4). When the number of primary SNPs is 40 and the number of non-primary causal

SNPs is one, the average AUCs for BiNetPeR, mtLasso2G, and FastLORS are 0.751,

0.682, and 0.817, respectively. When the number of primary causal SNPs is 20 and

the number of non-primary causal SNPs is three, the average AUCs for BiNetPeR,

mtLasso2G, and FastLORS are 0.690, 0.730, and 0.811, respectively. We can see that

when tightly linked causal SNPs have the similar effects on the expression levels of

genes, BiNetPeR does not perform well: the average AUC of BiNetPeR is lower than

the AUC of FastLORS in two situations and the average AUC of BiNetPeR decreases

from 0.751 to 0.690 when the ratio of the number of non-primary causal SNPs and

the number of primary causal SNPs increases from 1 to 3. In contrast, the average

AUC of FastLORS is the highest and does not change much with the ratio of the

number of non-primary causal SNPs and the number of primary causal SNPs.
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3.5 Discussion

As a large volume of human gene expression data and SNP genotype data becomes

available, it is desirable to develop more powerful and efficient statistical methods and

computational tools to fully take advantage of such data to investigate the relation-

ship between genetic variants and gene expression levels to help us further understand

the genetic mechanism underlying human complex diseases. A number of methods

that can jointly model the multiple genetic variants and the expression levels of mul-

tiple genes and can incorporate the correlation between SNPs and/or genes have been

developed. In this paper, we propose a novel bipartite network-based penalized re-

gression method (BiNetPeR) to detect eQTLs. Our method constructs and uses the

SNP-SNP network and/or the gene-gene network projected from the SNP-gene bi-

partite network based on the significant marginal associations of each SNP-gene pair.

Thus, our method actually incorporates the marginal association of SNPs and gene

expression levels and does not require the prior information of the SNP-SNP network

and/or the gene-gene network. We conduct comprehensive simulations to evaluate

and compare the performance of BiNetPeR with two commonly used methods, mt-

Lasso2G and FastLORS, in the eQTL mapping. Several conclusions are emerged

from our simulation studies. First, BiNetPeR has the appropriate false positive rate,

thus is a valid method for the eQTL mapping. Second, BiNetPeR is robust to the

non-genetic effects of hidden-factors on the gene expression levels and has the high-

est average AUC in four cases under consideration in simulation scenario 2. Third,

BiNetPeR has the highest average AUC in three cases under consideration in simu-

lation scenario 3, when the ratio of the number of causal SNPs and the total number

of SNPs is constant. In summary, BiNetPeR is a valid and more powerful method to

detect eQTLs.

There are several limitations for BiNetPeR. In one of simulation scenarios, we

consider that some SNPs that are in high linkage disequilibrium have the similar
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effects on the gene expression levels. FastLORS has the better performance than

BiNetPeR in such situation. We are planning to conduct more extensive simulations

to find why BiNetPeR does not perform as well as FastLORS. In addition, in our

current model, we only use the SNP-SNP network projected from the SNP-gene

bipartite network. We are in the process to explore how to also incorporate the gene-

gene network projected from the SNP-gene bipartite network to further improve the

power for the eQTL mapping.
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3.6 Tables and Figures
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e. Normalized Laplacian Matrix (𝑳𝑳)

Figure 3.1: Schematic of BiNetPeR: a. SNP genotypes and gene expression levels

are obtained; b. MatrixEQTL is used to identify the significant marginal associations

between SNPs and genes; c. A SNP-gene bipartite network is constructed based on

the marginal associations; d. A weighted SNP-SNP network is obtained by projecting

the SNP-gene bipartite network onto the SNPs; e. The degree matrix and adjacency

matrix are obtained and used in the regularized regression model.

83



0.00

0.25

0.50

0.75

1.00

1 2 3

Method

A
ve

ra
g

e
 A

U
C

A

0.00

0.25

0.50

0.75

1.00

1 2 3

Method
A

ve
ra

g
e

 A
U

C

B

0.00

0.25

0.50

0.75

1.00

1 2 3

Method

A
ve

ra
g

e
 A

U
C

C

0.00

0.25

0.50

0.75

1.00

1 2 3

Method

A
ve

ra
g

e
 A

U
C

D

Method

BiNetPeR

FastLORS

mtLasso2G

Figure 3.2: Average AUC of three methods in simulation scenario 2. (A): k = 15,

τ = 0.1; (B): k = 30, τ = 0.1; (C): k = 15, τ = 1.2; (D): k = 30, τ = 1.2.
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Figure 3.3: Average AUC of three methods in simulation scenario 3.

85



0.00

0.25

0.50

0.75

1.00

(a) (b) (c)

Scenario

A
ve

ra
g

e
 A

U
C Methods

BiNetPeR

FastLORS

mtLasso2G

Figure 3.4: Average AUC of three methods in simulation scenario 4. (a) corresponds

to case (A) in simulation scenario 2; (b) corresponds to the case in which na = 40,

nb = 1; (c) corresponds to the case in which na = 20, nb = 3.
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Appendix A

Details & Proofs

A.1 Theoretical Details In Chapter 1

A.1.1 Lemmas

Lemma A.1.1. Assume A is an n × n symmetric matrix, x an n × 1 vector, B an

n× n nonsingular symmetric matrix. Then,

max
x 6=0

xTAx

xTBx
= max

x⋆ 6=0

x⋆TQx⋆

x⋆Tx⋆
= max

‖x⋆‖2=1
x⋆TQx⋆ = λmax(Q), (A.1.1)

where x⋆ = B
1
2x and Q = (B− 1

2 )TA(B− 1
2 ).

Proof. From linear algebra, we know there exists an orthogonal matrix P such that

Q = P TΛP , Λ is a diagonal matrix. Then

x⋆TQx⋆ = x⋆TP TΛPx⋆ = yTΛy =
n∑

i=1

λiy
2
i ≤ λmax(Q) ‖y‖22 , (A.1.2)

where y = Px⋆, ‖y‖ = ‖Px⋆‖ = 1. Without loss of generality, assume λmax(Q) = λ1,

then equality holds if and only if y1 = 1, yi = 0 for i ≥ 2. �

Lemma A.1.2. Assume A is an m× n matrix, and B is an n×m matrix. Then,

λmax(AB) = λmax(BA). (A.1.3)
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Proof. Without loss of generality, assume λ1 = λmax(AB), α1 = λmax(BA). Then

we have (AB)v = λ1v, for some eigenvector v corresponding to eigenvalue λ1, and

(BA)u = α1u, for some eigenvector u corresponding to eigenvalue α1.

Furthermore, we have

B(AB)v = (BA)(Bv) = λ1(Bv), A(BA)u = (AB)(Au) = α1(Au). (A.1.4)

So λ1 is also an eigenvalue of BA, λ1 ≤ α1. Similarly, α1 is also an eigenvalue of AB,

α1 ≤ λ1. Therefore, λ1 = α1. �

A.1.2 Derivation Of Test Statistics

Under the linear model

xi = βTyi + (γT zi) + ǫi, ǫi ∼ N(0, σ2Φ). (A.1.5)

In the above formula: Y = (yT1 , y
T
2 , ..., y

T
n )

T : n×K matrix of phenotypes

Xi = (xi1, xi2, ..., xiM)T , i = 1, 2, ..., n: genotypes at M markers of the i-th individual

X = (XT
1 , X

T
2 , ..., X

T
n )

T : n×M matrix of genotypes of all n individuals

xi = wTXi, x = (x1, x2, ..., xn)
T : weighted combination of genotypes of all n individ-

uals

Z = (zT1 , z
T
2 , ..., z

T
n )

T : n× L matrix of covariates, L is the number of covariates

Φ: n× n kinship matrix of all n individuals

A.1.2.1 Without Covariates

l = exp{− 1

2σ2
(x− Y β)TΦ−1(x− Y β)}(2π)−n

2 (σ2)−
n
2 |Φ|− 1

2 , (A.1.6)

logl = − 1

2σ2
(x− Y β)TΦ−1(x− Y β)− n

2
log2π − n

2
logσ2 − 1

2
log|Φ|, (A.1.7)
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∂logl

∂β
=

1

σ2
Y TΦ−1(x− Y β), (A.1.8)

∂2logl

∂β2
= − 1

σ2
Y TΦ−1Y. (A.1.9)

So, under the null hypothesis, the score test statistic is

Tscore =
wTXTΦ−1Y (Y TΦ−1Y )−1Y TΦ−1Xw

σ̂2
. (A.1.10)

Notice that MLE of σ2 is σ̂2 = 1
n
xTΦ−1x. We use D to represent 1

n
XTΦ−1X in the

score test statistic. So, we have

T 0
score =

wTXTΦ−1Y (Y TΦ−1Y )−1Y TΦ−1Xw

wTDw
. (A.1.11)

Using lemmas A.1.1 and A.1.2, the final test statistic is

TMF−TOWmuT = max
w

T 0
score = λmax((Y

TΦ−1Y )−1Y TΦ−1BΦ−1Y ), B = XD−1XT .

(A.1.12)

A.1.2.2 With Covariates

l = exp{− 1

2σ2
(x− Y β − Zα)TΦ−1(x− Y β − Zα)}(2π)−n

2 (σ2)−
n
2 |Φ|− 1

2 , (A.1.13)

logl = − 1

2σ2
(x−Y β−Zα)TΦ−1(x−Y β−Zα)−n

2
log2π−n

2
logσ2− 1

2
log|Φ|, (A.1.14)

∂logl

∂β
=

1

σ2
Y TΦ−1(x− Y β − Zα), (A.1.15)

∂logl

∂α
=

1

σ2
ZTΦ−1(x− Y β − Zα). (A.1.16)

Under the null hypothesis, MLE of α is α̂ = (ZTΦ−1Z)−1ZTΦ−1x, and MLE of σ2

is σ̂2 = 1
n
xTΦ−1(I − P )x, P = Z(ZTΦ−1Z)−1ZTΦ−1. Notice that (I − P )2 = I − P ,

(Φ−1(I − P ))T = (I − P )TΦ−1 = Φ−1(I − P ).




∂logl

∂α

∂logl

∂β




∣∣∣∣∣
β=0,α=α̂,σ2=σ̂2

=
1

σ̂2


ZT

Y T


Φ−1(I − P )x, (A.1.17)
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∂2logl

∂α∂αT
= − 1

σ̂2
ZTΦ−1Z

∂2logl

∂β∂βT
= − 1

σ̂2
Y TΦ−1Y (A.1.18)

∂2logl

∂α∂βT
= − 1

σ̂2
ZTΦ−1Y

∂2logl

∂β∂αT
= − 1

σ̂2
Y TΦ−1Z, (A.1.19)

so Fisher information matrix is

I =
1

σ̂2


ZTΦ−1Z ZTΦ−1Y

Y TΦ−1Z Y TΦ−1Y


 . (A.1.20)

So, under null hypothesis, score test statistic is

T̃score =
wTXTATY (Y TAY )−1Y TAXw

σ̂2
, A = Φ−1(I − P ). (A.1.21)

Let X̃ = (I − P )X,Ỹ = (I − P )Y , D̃ = 1
n
X̃TΦ−1X̃. So, we have

T̃ 0
score =

wTXTATY (Y TAY )−1Y TAXw

wT D̃w
. (A.1.22)

Similarly, using lemmas A.1.1 and A.1.2, the final test statistic is

T̃MF−TOWmuT = max
w

T̃ 0
score = λmax((Ỹ

TΦ−1Ỹ )−1Ỹ TΦ−1B̃Φ−1Ỹ ), B̃ = X̃D̃−1X̃T .

(A.1.23)

A.2 Theoretical Details In Chapter 2

A.2.1 Lemmas and Theorems

Lemma A.2.1. For each τ > 0 and Y ∈ R
n1×n2, the solution of

min
X

1

2
‖X − Y ‖2F + τ‖X‖∗ (A.2.24)

is Sτ (Y ) := USτ (Σ)V
T (= Proxτ‖·‖∗(Y )), where Sτ (Σ) = diag({(σi − τ)+}), Y =

UΣV T , the singular value decomposition of matrix Y , Σ = diag({σi}16i6r), r is the

rank of Y . Sτ (·) is called singular value shrinkage operator.

Proof. see (Cai et al., 2010) or (Mazumder et al., 2010). �
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Lemma A.2.2. For each fixed non-negative λ and v ∈ R
n, the solution of

min
x

1

2
‖x− v‖22 +

λ

2
‖x‖22 (A.2.25)

is (Proxλ
2
‖·‖22(v))i = sign(vi)(|vi| − λ)+, i = 1, 2, · · · , n, known as the (elementwise)

soft thresholding operator.

Proof. see (Parikh and Boyd, 2014). �

Lemma A.2.3. For each fixed non-negative ρ and v ∈ R
n, the solution of

min
x

1

2
‖x− v‖22 + ρ‖x‖1 (A.2.26)

is Proxρ‖·‖1(v) = (1− ρ

max{‖v‖2,ρ})v.

Proof. see (Parikh and Boyd, 2014). �

Lemma A.2.4. For the optimization problem

min
X

1

2
‖PΩ(Y −X)‖2F + τ‖X‖∗

= min
X

1

2
‖[PΩ(Y ) + PΩ⊥(X)]−X‖2F + τ‖X‖∗,

the optimization solution can be obtained via updating X using X ← Sτ (PΩ(Y ) +

PΩ⊥(X)) with an arbitrary initialization.

Proof. see (Mazumder et al., 2010). �

Theorem A.2.5. A sufficient condition for Proxf+g = Proxf ◦ Proxg is ∀ x ∈ H,
∂g(Proxf (x)) ⊇ ∂g(x), where H represents Hilbert space and ◦ represents composition

of two operators.

Proof. see (Yu, 2013). �
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A.2.2 Algorithms

Algorithm 1: FISTA with constant step size

Input: tL, tB, tµ, L̃1 = L0 ∈ R
n×q, B̃1 = B0 ∈ R

p×q, µ̃1 = µ0 ∈ R
q×1, t1 = 1,

the maximum number of iterations N , Ω

Output: optimal feasible solutions L∗, B∗, µ∗

for k = 1 to N

Lk ← StLρ(L̃k − tLΩ⊙ (XB̃k + 1µ̃T
k + L̃k − Y ))

B1
k ← B̃k − tBX

T (Ω⊙ (XB̃k + 1µ̃T
k + Lk − Y ))

B2
k ← sign(B1

k)⊙ (|B1
k| − λ1J)+

for j = 1 to q

Bk[, j] ← {1− λ2

max{‖B2
k[,j]‖2,λ2}}B

2
k[, j]

end

µk ← µ̃k − tµ(Ω⊙ (XBk + 1µ̃T
k + Lk − Y ))T1

tk+1 ← (1 +
√
1 + 4t2k)/2

L̃k+1 ← Lk +
tk−1
tk+1

(Lk − Lk−1)

B̃k+1 ← Bk +
tk−1
tk+1

(Bk − Bk−1)

µ̃k+1 ← µk +
tk−1
tk+1

(µk − µk−1)

if stopping criteria is satisfied

break;

end

end
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