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Abstract

Light field (LF) imaging has gained significant attention due to its recent success

in microscopy, 3-dimensional (3D) displaying and rendering, augmented and virtual

reality usage. Postprocessing of LF enables us to extract more information from a

scene compared to traditional cameras. However, the use of LF is still a research

novelty because of the current limitations in capturing high-resolution LF in all of

its four dimensions. While researchers are actively improving methods of capturing

high-resolution LF’s, using simulation, it is possible to explore a high-quality captured

LF’s properties. The immediate concerns following the LF capture are its storage and

processing time. A rich LF occupies a large chunk of memory —order of multiple

gigabytes per LF—. Also, most feature extraction techniques associated with LF

postprocessing involve multi-dimensional integration that requires access to the whole

LF and is usually time-consuming.

Recent advancements in computer processing units made it possible to simulate re-

alistic images using physical-based rendering software. In this work, at first, a trans-

formation function is proposed for building a camera array (CA) to capture the same

portion of LF from a scene that a standard plenoptic camera (SPC) can acquire. Us-

ing this transformation, LF simulation with similar properties as a plenoptic camera

will become trivial in any rendering software.

xxix



Artificial intelligence (AI) and machine learning (ML) algorithms —when deployed

on the new generation of GPUs— are faster than ever. It is possible to generate and

train large networks with millions of trainable parameters to learn very complex fea-

tures. Here, residual convolutional neural network (RCNN) structures are employed

to build complex networks for compression and feature extraction from an LF. By

combining state-of-the-art image compression and RCNN, I have created a compres-

sion pipeline. The proposed pipeline’s bit per pixel (bpp) ratio is 0.0047 on average.

I show that with a 1% compression time cost and 18x speedup for decompression, our

methods reconstructed LFs have better structural similarity index metric (SSIM) and

comparable peak signal-to-noise ratio (PSNR) compared to the state-of-the-art video

compression techniques used to compress LFs. In the end, using RCNN, I created a

network called RefNet, for extracting a group of 16 refocused images from a raw LF.

The training parameters of the 16 LFs are set to (α = 0.125, 0.250, 0.375, ..., 2.0) for

training. I show that RefNet is 134x faster than the state-of-the-art refocusing tech-

nique. The RefNet is also superior in color prediction compared to the state-of-the-art

—Fourier slice and shift-and-sum— methods.
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Chapter 1

Introduction

The two dimensional (2-D) images first might have been developed to capture mem-

ories. The plenoptic function [2], however, is the whole ray information of a scene,

which is seven-dimensional

P = P (θ, φ, λ, t, Vx, Vy, Vz), (1.1)

where θ and φ are the polar and azimuthal angles, λ stands for the wavelength, t

is the time and Vx, Vy, Vz are the position of each point in space. Using “integral

photography” [3], different slices as 2-D images can be extracted from a complete

plenoptic function. But, obtaining complete plenoptic function is nearly impossible,

at least by today’s existing technology. The light field LF [4] has a four dimensional

1



4-D representation that provides a portion of the plenoptic function. These two

additional dimensions make it possible to change the depth of focus, focus distance,

and perspective in postprocessing. Also, limited occlusion removal is possible in

captured LF [5] [6].

While the LF’s idea has been developed in the early 1900s, capturing LF has always

been challenging. The first method of LF capture was using a moving camera [4].

That method has been discontinued for two decades and substituted by camera array

CAs [7, 8] or plenoptic camera PCs [9, 10]. Again, google re-introduced the moving

cameras in capturing LF in 2018 [11]. But, the moving cameras are hard to use

because the target should remain stationary for a long time.

As already mentioned, both arrays of cameras and PCs can be used for LF capture.

Both methods have strengths and weaknesses. Among the available varieties of LF

capturing methods, CAs win in terms of spatial resolution, standard plenoptic cam-

era SPCs [12] are the winner of the angular resolution and focused plenoptic camera

FPCs [10] are holding the middle lane. Therefore, the LF capture by an SPC has

the least artifacts in extracted features by postprocessing. However, the spatial res-

olution in SPCs is inversely related to the number angular resolution. This problem,

slowly pushed SPCs out of the current commercial market. There were exactly two

commercialized SPCs and both have been discontinued. Hence, creating new and rich

2



datasets of this type of LF is now easy. This is where the simulation can help to over-

come the problem while the development of technology might reintroduce optimized

SPCs to the market.

Simulating PCs in any rendering software also has some limitations. In conventional

rendering engines, creating an microlens array MLA will introduce some artifacts. In

a computer, a curve is a combination of small straight lines [13]. Where any microlens

in an MLA is already very small. Therefore, many leading rendering software comes

short in creating high-quality MLAs. The first remedy to this problem is to think

of a way to transform SPC into another type of camera where the need for MLA is

nonexistent. If an SPC can be transformed to a CA in theory —where I derive this

transformation as part of this dissertation—, the physical size of the cameras prevent

the CA to be constructed in real-word. In the simulation, however, these constraints

can be neglected. Therefore, it is possible to have a CA with both high angular and

spatial resolutions when simulating. Such LF, nonetheless, suffers heavily from high

space occupation.

A high-resolution LF can easily reach the vicinity of multiple gigabyte GBs. There-

fore, a need for finding a data compression algorithm that can reduce LF’s data size

while keeping its features is evident. Another definition of the 4-D LF is essentially

the collection of 2-D images taken from different angles from the same scene. Thus, I

can expect a great amount of repeated or redundant information in the. Different LF
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compression algorithms have been developed but fast and efficient LF compression

is still an open problem. In general, there are lossy and lossless algorithms. In this

dissertation, I am interested in lossy algorithms. The state-of-the-art video compres-

sion algorithms have been used on LF compression with great success [14, 15, 16].

However, all of these techniques are slow in both compression and reconstruction.

None of them are suitable for real-time compression or LF video streaming. A fast

and high-quality compression and reconstruction algorithm for LF is still an open

problem. In case such a problem is solved, extracting interesting features such as

refocusing from the LF is slow.

The problem of slow LF postprocessing is more evident in the case of high-resolution

LFs. The two most widely used algorithms for refocusing are the Fourier refocusing

FLR [17] and shift-and-sum SaS [7]. FLR has the pre-processing time complexity

of O(n4 log n) and for the case of SaS, each refocused image has O(n4) asymptotic

time complexity. Therefore, both of them come short in real-time refocused image

extraction. For being able to use LF in any real-time detection, we need to have an

algorithm for fast LF feature extraction.
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1.1 Thesis statement

In this dissertation, I observe that one important challenge in LF postprocessing

is the excessive computation time if we have a high-resolution LF. This problem

prevents the use of LF in many detection and estimation tasks, e.g . autonomous

driving because they need real-time processing time. The main contribution of this

work is to first create a paradigm for easy simulation of LF in any rendering software

and then introduce ML algorithms to address the problem of long processing time.

My proposed approaches show significant run-time reduction compared to the state-

of-the-art methods.

1.2 Contributions

This dissertation makes the following contributions:

† I present a transformation function that can convert any SPC to a CA. I further

show that using my transformation, simulation of PC-like capturing devices will

be possible in any physically rendering machine with minimum requirements.

† I introduce a new compression algorithm for LF data compression that is signif-

icantly faster than the state-of-the-art LF compression techniques while having
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similar quality in reconstruction.

† I present a novel ML technique for extracting a set of sixteen refocused images

from a raw light field. I show that by employing learning-based methods, it is

possible to obtain refocused images with better color predictions compared to

the current state-of-the-art refocusing techniques. Also, this technique can be

deployed on a conventional GPU with real-time runtime.

1.3 Outline

The remainder of this dissertation has been organized as follows. In chapter 2, I

explain my proposed transformation function between an SPC and a CA. Then, in

chapter 3, I present a novel combination of machine learning ML with JPEG for LF

data compression, and I show how much it decreases the processing time compared to

the state-of-the-art. In chapter 4, I show how ML is used to extract refocused images

from raw LF. The contents of chapter 2 was published on July 1, 2020, in SPIE Optical

Engineering as “Modeling standard plenoptic camera by an equivalent camera array”

[18]. The content of chapter 3 has been accepted to publish in International Joint

Conference on Neural Networks (IJCNN 2021) [19], and the content of chapter 4

has been submitted to a high profile peer-reviewed computer vision conference and is

awaiting a decision [20]. Finally, chapter 5 concludes the dissertation by summarizing
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my findings throughout my research and provides some possible future paths to be

explored
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Chapter 2

Modeling standard plenoptic

camera by an equivalent camera

array

2.1 Introduction

The light field (LF) is a catch-all term for ways of thinking about imaging, sensing, and

displays that include both angular and spatial information. This modality stands in

contrast to traditional imaging techniques where only spatial information is captured.

Benefits of LF capture range from the artistic to the practical. For example, with
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access to the full four-dimensional (4-D) LF, a photographer can change the depth

of focus or focus distance in postprocessing. In traditional photography, these effects

are introduced by changing the physical configuration of the camera and cannot be

changed after the picture is taken. Practically, LF imaging also allows for limited-

removal of occlusions [5] [6].

Lippman [3] was the first to suggest the idea of LF capture as “integral photogra-

phy”. However, it was the advent of computer graphics and digital image processing

[4] that gave the idea substance. In this new incarnation, the LF was referred to

as the plenoptic function [2] and often used camera arrays (CA) [8] for LF capture.

Work in the area of plenoptic imaging and LF rendering remained mostly a research

novelty until Ng et al . demonstrated both a hand-held plenoptic camera (PC) [9] and

a way of quickly performing refocusing and other postprocessing using Fourier slice

photography [17]. Since that time, work in the area of LF technologies has expanded

to include LF displays used in augmented and virtual reality systems [21]. Here, I am

interested in modeling different methods of LF capture. As already mentioned, both

arrays of cameras and Ng et al .’s PC can be used for LF capture. Both methods have

strengths and weaknesses. Apart from issues of cost and size, CAs are also severely

constrained in their ability to sample the angle space leading to postprocessing ar-

tifacts. Ng et al .’s PC, also called plenoptic camera 1.0, or the standard plenoptic

camera (SPC) by Perwass and Wietzke, [12] is generally cheaper and smaller in size

compared to a CA. In an SPC configuration, a microlens array (MLA) is placed at the
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focus of the main lens. The f -number of the main lens and MLA elements are also

matched, and the imaging sensor is placed at one focal distance from the MLA. This

arrangement has the benefit of maximizing the relative angular and spatial sampling

and the use of the imaging sensor. A main drawback of the SPC is that the available

spatial resolution is limited to the number of MLA elements.

For example, images from an SPC with an M ×M MLA and M = 256 would have a

resolution of 256× 256, which is small by the standard of today’s digital cameras. At

the same time, the angular resolution is set by the sampling of the image formed under

each microlens element; often called a “microlens image.” If this image is sampled by

an array of 10×10 pixels on the imaging sensor, and assuming no “dead” or “masked”

pixels, the pixel count quickly approaches millions of pixels. In response to this

limitation, Georgiev and Lumsdaine [10] have suggested the focused PC. His design

effectively images from within the aperture creating several overlapping Keplerian

telescopes (or Galilean depending on the placement of the microlens with respect to

the main lens focal distance). This approach provides improved spatial resolution

at the expense of angular sampling. Perwass and Wietzke [12] introduced another

version of the PC that does not fall in the category of earlier PCs. They proposed to

increase the lateral resolution by spreading microlenses with different focal distances

in the MLA with a specific pattern. Anisimov et al . [22] developed an LF camera by

combining CAs and PCs. Their camera has an array of lenses instead of the single

objective lens of the cameras in the array.
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While the theoretical model of SPC in any configuration is simple, the practical con-

struction of these devices is difficult. Practical devices require careful calibration

and suffer from a variety of postprocessing issues and other artifacts. Still, the fact

that these devices exist and are marketed commercially is evidence that the prob-

lems are surmountable. The varieties of PC’s exist because each can deliver some

unique benefits over others by compromising some other properties. Therefore, one

should consider the relative trade-offs in spatial/angular resolutions when choosing

one configuration over another. However, say I have a problem I want to solve but are

unsure what PC approach is most appropriate. One approach would be to simulate

a “perfect” LF and introduce practical effects. Here, it worth iterating some of the

works performed in simulating LF.

LF simulation is currently an active area of research. Marwah et al . [23] used Blender

to simulate LFs for the demonstration of their compressive LF model. Honauer et

al . [24] created a simulated LF dataset by creating a CA in Blender. Michels et

al . [13] created a PC model in Blender by creating a detailed MLA model. Their

camera is designed in such a way that the position of the MLA can be changed to

simulate different SPC configurations. Michels et al .’s work shows a fundamental

problem of modeling SPC in Blender with simulated physical elements. In Blender,

each curve is constructed by straight lines between vertices. Because each microlens

is very small and the number of vertices is limited, creating accurate models of these

physical elements is difficult and time consuming.
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One common way of postprocessing SPC LFs is to generate viewpoint images from

within the aperture. Conceptually, this suggests that one simple way of simulating

an LF would be to place cameras in the world such that they capture these viewpoint

images as a CA [25]. However, selecting the correct location, pose, and camera char-

acteristics in order to correctly model the SPC is not obvious. Dansereau suggested

placing the CA one focal distance away from its objective lens [26]. Hahne later re-

vealed an error in Dansereau’s model [27], showing instead that the cameras should

be centered on the main lens of the desired SPC. Hahne used the observed distance

of focus (DioF) of in depth of field (DoF) images to demonstrate the accuracy of his

model and the resulting improvement [28]. The configuration of each camera element

is also not obvious. While the spatial resolution of the cameras should be equal to

the number of MLA elements, other parameters, such as the aperture size and field

of view (FoV), are unclear but needed to set up a simulation model.

In this chapter, I introduce a transformation between the SPC 1.0 and and equivalent

CA, including the exact position, FoV, and aperture size for each camera. I model

an SPC 1.0 camera with the main lens with a 100-mm focal length and f/2 modeled

as a thin lens. The MLA is placed at the focal distance of the objective lens and

has the same f-number. The MLA has 500 × 500 elements. Each microlens image

is sampled by 25 × 25 pixels. I show the equivalency of these two systems by first

simulating a pristine LF using the Blender software [29] in the CA configuration.

Next, I compare the CA LF’s DoF focus distances to those predicted by Hahne’s
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Plenoptisign software [30]. Finally, I show how, starting with the simulated, pristine

LF, practical effects such as vignetting can quickly and easily applied to the entire

LF as a 4-D data object. The effects of angular downsampling and vignetting at the

main lens and MLA on refocus distance are also discussed.

In Sec. 2.2, I provide some background on LFs, LF cameras, the techniques used

for postprocessing the LF to create images, the CA to SPC transformation, and

how simple practical effects may be added. In Sec. 2.3, I describe our virtual CA

model and simulation set-up in Blender. Section 2.4 provides some example results.

Conclusions and directions for future work are outlined in Sec. 2.5.

2.2 Background

2.2.1 The Light Field

In the modern context, the LF or plenoptic function is a ray optics simplification

of the visible portion of the electromagnetic field intensity at all points in space

[2]. For a single wavelength and optical axis, this function can be described in four

dimensions. The most straightforward way of thinking of the LF is to place a plane

perpendicular to the optical axis described by the spatial coordinates (x, y). The other

two dimensions measure the incident rays from all directions (θ, φ). A more common
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Figure 2.1: Two-plane parameterization of the LF as popularized by Levoy.

representation found in the literature uses a two-plane parameterization popularized

by Levoy and Hanrahan [4]. Here, as shown in Fig. 2.1, the LF is described by the

intersection of rays with the (s, t) plane, which represents the spatial dimensions and

the (u, v) plane responsible for the angular dimensions. Thus, the LF on a given

optical axis is described by the function L(s, t, u, v). According to Ng et al . [9], the

conventional camera’s image is derived from the LF function as

I(s, t) =
1

D2

∫∫
L(s, t, u, v)A(u, v) cos4 θdu dv, (2.1)

D is the distance between sensor plane and aperture, and the aperture function is

referred as A(u, v). θ is the angle between the incident rays and the sensor. The

Eq.(2.1) directly suggests that by changing the aperture function A, different DoF

images will be extracted. The pinhole image (Ipinhole) at each view point (u′, v′) is
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extracted as

Iu′,v′(s, t) = L(s, t, u = u′, v = v′). (2.2)

Though other processing techniques such as depth estimation [31] and partial occlu-

sion removal [6] exist, the last one I will expound upon here is image refocusing. The

LF can be refocused by integrating along a slope defined by dividing the focal depth,

FD (the distance of the real image of the scene behind the objective lens), by the

focal length of the main lens, F or α = FD
F

. Specifically,

IFD(s, t) =

∫∫
L(u+

s− u
α

, v +
t− v
α

, u, v)A(u, v) cos4 θdu dv. (2.3)

2.2.2 Methods of LF Capture

So far, I have described a method by which a user may postprocess an LF to produce

certain effects. Missing are methods for actually capturing the LF and their practical

limitations. While a full discussion is beyond the scope of this paper, I begin by

providing a brief overview of Ng et al .’s SPC [9] and the CA.
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Figure 2.2: Configuration of an SPC

2.2.2.1 Standard Plenoptic Camera

As shown in Fig.2.2 the configuration of the SPC involves a primary lens, L, an MLA

placed at flen, and the detector at fMLA. The MLA is assumed to have M × M

elements. Likewise, N ×N sensor elements, or pixels, are arranged under each MLA

element. In this configuration, there are N2 viewpoint images with spatial resolution

M ×M . So, I see that the number of MLA elements limits the spatial sampling,

whereas the angular sampling is limited by the number of samples under each MLA

element. In this chapter, I will follow the convention of referring to the images formed

under each MLA element as “microlens” images. Here, the LF is sampled as L(u, s)

where u = −N
2

to N
2
− 1 and s = −M

2
to M

2
− 1.

In this configuration, the image sampled by the SPC sensor has (M × N,M × N)
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samples. To extract the 4-D LF from the plenoptic camera’s 2-D sensor (Lp)

L(s, t, u, v) = Lp

(
u+

(
(s− 1)×N

)
, v +

(
(t− 1)×N

))
, (2.4)

s, t are in range (1,M) and u, v are in range (1, N).

2.2.2.2 Camera Array

CAs also been used for LF capture [8]. Indeed, they were the first devices applied

to the task. In this case, I assume an N ×N CA and that each camera captures an

image with M ×M spatial resolution. Each camera is assumed to have an identical

configuration. The use of the same notation is intentional to make clear both the

similarities and differences between the two methods. Ignoring diffraction, the spatial

resolution of the CA is limited by the pixel pitch of the camera imaging system. The

angular resolution, however, is governed by the pitch of the CA. Immediately, I can

see a practical weakness of this approach: the minimum separation (pitch) between

camera centers is limited by the size of the aperture support equipment (the camera

or the sensor’s dimension, etc.). For this reason, LFs captured using a CA tend to

be severely undersampled in the angle space.
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2.2.2.3 Practical Issues Concerning LF Capture: Calibration

Another issue facing both LF capture techniques is calibration. As alluded to above,

the SPC captures the LF as a series of microlens images sampled under each MLA

element. Practically, images under MLA elements that are farther from the optical

axis will be displaced rather than falling directly under each element partially due to

the thickness of the main lens. Dansereau calculated parts of these displacements and

called it directionally dependent radial distortion [32]. Even on-axis, small misalign-

ments can result in uncertainty in the location of the microlens image in pixel space.

Though an aspect of Ng et al .’s work [9], Dansereau [32] first published techniques for

calibrating the SPC. Measuring the pose of each CA element introduces an entirely

different set of calibration challenges. These challenges are arguably more difficult

to address. Without going into detail, calibration requires one to know precisely

the relative orientation of each camera to another in six dimensions (three spatial

dimensions plus roll, pitch, and yaw).
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2.2.3 Transformation of Camera Array to Standard Plenop-

tic Camera

From the discussion above, both the CA and the SPC can be used for LF capture.

Here, I am concerned with simulating the LF. From a simulation perspective, the CA

is particularly appealing. For example, in simulation, I can have overlapping apertures

or sensors. I can also use a series of pinhole cameras without concern regarding the

available light. Intuitively, based on the discussion above, it also follows that for any

given SPC setup there is an equivalent CA. In the simulation, I can also perfectly

control CA’s geometry. Our goal is to create a CA that can record with the same

spatial and angular sampling as a given SPC. To do this, I need to specify the correct

placement and orientation of each camera in the array.

To create a transformation from SPC to CA, I need to know the number of cameras

in the array and two general quantities: the properties of each camera in the array

and the placement of each relative to the common optical axis of both devices. The

important properties of each camera are the aperture size, the FoV, and the spatial

resolution. I also need to know the precise six degrees of freedom pose of the CA

and each camera in it relative to the main optical axis, where the optical axis is

defined to be the optical axis of the SPC’s objective lens. To correctly find these

quantities, I trace the light rays inside an SPC by employing geometrical optics rules
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as demonstrated in Fig. 2.3(a).

Figure 2.3: Using geometric optics ray tracing principles to understand
the equivalence of the SPC and CA. (a) The rays of the microlens’ at the
boundaries of the MLA. (b) Rays traced from each pixel under a microlens
through the main lens. (c) Rays traced from a proposed CA element center
through each element in the MLA.

Looking at either the top or bottom microlens in Fig. 2.3(a), I see that the microlens

separates the rays coming from different positions on the main lens. Rays with the

same color intersect at the camera locations at the main lens and correspond to

viewpoint images available from the LF. As I mentioned in Sec. 2.1, I have specified

these locations and I must also specify the properties of each element in the CA.

These properties are minimum FoV, the aperture, and minimum pixel resolution or

maximum pixel pitch of the image sensor of each camera in the array.

2.2.3.1 Transformation of Camera Array Properties from a SPC Model

Figure 2.3(b) shows the limitation of FoV for the top camera in the array, which

demonstrates that no light outside of the given boundaries in 2.3(a) can be recorded

21



by SPC. Therefore, the FoV of the top camera is governed by the same limitation

and will be

FoVC1 = 2× arctan

(
A

2F

)
, (2.5)

where A is the aperture size and F is the objective lens’s focal distance of the SPC.

As shown in Fig. 2.3(a) all of the cameras in the array have the same FoV. Therefore,

Eq. (2.5) holds for all of the cameras in the array.

The number of pixels under each microlens governs the number of cameras in the

array. Figure 2.3(c) shows that each pixel under a microlens should be captured by a

different camera. Therefore, the number of cameras in the array is equal to N ×N .

Because the pixels in the sensor have similar size, using the rules of similar triangles

I find that the aperture is equally divided and each pixel integrates the irradiance of

one of the divisions. Thus, the size of each camera’s aperture is calculated by

Aca =
A

N ×N
, (2.6)

where Aca is the aperture size of each camera in the array, A represents the SPC’s

main aperture size.

Finally, the resolution or pixel pitch on each camera’s sensor is governed by the

number of microlenses in the MLA (M ×M). Each camera in the array should have

the resolution equal to (M ×M).
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2.2.3.2 Constructing LF

Our goal is to obtain the same 4-D sampled LF or L(s, t, u, v) from the CA as its

corresponding SPC. In the CA, each camera is sampling the s, t plane while u, v

denotes the plane where the cameras in the CA are placed. Therefore, the correct

order of filling the L(s, t, u, v) matrix is

L(s, t, u, v) = ICu,v(s, t), (2.7)

ICu,v(s, t) is the captured image by each camera positioned at (u, v).

2.2.4 Adding Practical Effects

In any optical imaging system, from telescopes to conventional cameras, where there

are lenses and mirrors involved, there will be practical limitations, such as vignetting,

turbulence, aberrations, etc. Such effects will also be found in an SPC that may

consist of any number of optical elements in addition to the main lens and MLA.

Rather than try to model these effects as part of the simulation, my approach is to

add them via postprocessing to a pristine LF with the desired sampling.

Here, I use vignetting as an example of how practical effects can be introduced to
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a pristine LF. I use the Hadamard product (elementwise product [33]) scaling the

intensity of each pixel in the LF as

Lr = R ◦ L. (2.8)

In Eq. (2.8) ◦ denotes the Hadamard product, Lr is the LF with added effects, R

is any mask that can be expressed by scalar multiplication of positive real numbers,

and L is the pristine LF.

2.2.4.1 Main Lens and MLA Mask creation

We model vignetting using functions F that operate either on the entire LF or a

subset of the LF usually a microlens image. In the case of main lens vignetting, the

vignetting effect applies to the entire LF as

R′M = FM(Js×u,t×v), (2.9)

where FM is the desired vignetting effect, J is the matrix of ones of size (s×u, t× v)

[33], and R′M is a mask that has similar size to the SPC’s sensor. I use Eq. (2.4) to

transform the 2-D R′M to the 4-D RM which can be applied directly the 4-D LF as

outline in Eq.(2.8) without requiring reshaping the LF.
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For vignetting introduced by the MLA, the mask, RMLA is applied instead to each

microlens image

RMLAs,t = FMLA(Ju,v), (2.10)

where FMLA is vignetting for each microlens (s, t). Again, these masks can be applied

by Eq. (2.8) to the pristine LF as a whole rather than operating on each microlens

image.

2.2.5 Vignetting

We use a simple two parameter vignetting model for both main aperture and MLA

vignetting described using the piecewise function, F , as

F (d, r, a) =



0 d > r + a

1 d < r

1−
(
d−r
a

)2
r ≤ d ≤ r + a

, (2.11)

where d is the distance of each pixel from the middle of the image sensor. r represents

the main lens aperture radius and a is the fading attenuation distance.
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2.3 Method

We used Blender to render two scenes based on SPC 1.0 using a thin lens approx-

imation and verified our generated LF’s similarity to the converted SPC’s LF by

comparing the refocusing distance of the extracted DoF from the simulated LF with

the expected DioF derived from Hahne’s method [34] for the desired SPC and applied

simple vignetting effects by postprocessing.

In Blender, I used Cycle [35] a physically based ray tracing engine. I used the Blender

add-on tool generated by Honauer et al . [24] on our desired scenes to create the camera

grids. I used the infinite focus option in the tool to keep the camera grid in agreement

with our described conversion.

2.3.1 Camera Array Configurations

We use one camera configuration in Blender for simulating two scenes. The CA in

our simulation model consists of 25× 25 cameras. Each camera has an aperture of 2

mm and a focal distance of 4 mm and a resolution of 500× 500. This configuration,

according to Sec. 2.2.3, will transform to an SPC with an aperture of 50 mm, main

lens focal distance of 100 mm, MLA of 500 × 500, and 25 × 25 pixels under each
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microlens.

For each simulated scene, I also generated two downsampled LFs: one to 12× 12 and

another to 5 × 5 angular samples. These LFs are used for demonstrating the effects

of vignetting and to validate our transform model, respectively. The corresponding

SPCs to these two downsampled models have the same aperture size, 50 mm, main

lens focal distance, 100 mm, and MLA elements 500 × 500 but with the specified

microlens image sizes. Downsampling is accomplished by averaging adjacent view

point images.

2.3.2 Simulated Scenes

For this work, I simulated two different scenes. The first is a line of wooden seahorses

in a black background. This scene will be useful for model validation. The second

is a realistic scene of a pavilion in Barcelona [36]. This scene demonstrates that our

model can be used on realistic scenes and to better demonstrate practical effects,

vignetting in this case.
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2.3.3 Transformation Validation

We demonstrate that our transformation from CA to SPC is valid by comparing the

DioF of the LF obtained by our CA simulated in Blender and the estimated DioF

by Hahne’s Plenoptisign [30] software. Hahne’s software is capable of returning the

near and far DioF boarders and DoF for a given α by entering the physical properties

of the SPC of interest. Therefore, to test the correctness of our transformation, I

fed the properties of our transformed SPC driven from Sec. 2.2.3 to Plenoptisign for

α = 0.1, 0.2, 0.3, 0.4 and extracted the DioF values.

To validate our model, I constructed a scene made up of 10 seahorse models [37] and

numbers from 0 to 9 adjacent to each seahorse. Each number indicates the distance of

each seahorse from the Cartesian coordinate origin of the Blender model. The center

of the CA is located at (x, y, z) = (0,−5, 1.5) in the simulation world and units are

in meters. The CA optical axis is oriented along the positive x direction. Figure 2.4

(a) shows the center view simulated by the middle camera in the array. Given the

placement of the CA, the zeroth seahorse is ∼ 5.2 m away from the center of our

CA. The distance to each seahorse is then the number adjacent to the seahorse plus

5.2. Seahorses in our model are separated by 1 m. Therefore, all distance estimates

have a relative uncertainty of ±0.5 m. For each value of alpha, I evaluate the DioF

and DoF by examining the range of seahorses that are in focus and compare them to
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Plenoptisign estimates.

(a) (b)

Figure 2.4: The Blender rendered models. (a) The middle view of the
seahorse scene. (b) The middle view of the Barcelona Pavilion scene.

2.3.4 Application of Vignetting

While the seahorse scene is valuable for demonstrating the DioF, it is difficult to

observe vignetting effects because of the black background. To better visualize vi-

gnetting, I simulate a scene called “Barcelona Pavilion” architected by Mies in Blender

[36]. In this model, the CA’s optical center is at (x, y, z) = (−25,−5, 2) and the array

is looking at the main structure of the pavilion. Figure 2.4(b) is the center view of

our simulated LF. I explore the effects of vignetting on the DoF images extracted

from the pristine and vignetted LFs.
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2.4 Results and Discussion

In this section, I first demonstrate the validity of our transformation. Then, I illustrate

the introduction of practical effects via postprocessing (vignetting in this case).

2.4.1 Validation

In this section, our goal is to show agreement of our simulated DoF’s DioF with those

indicated by the Plenoptisign software.

In Fig. 2.5, I present DoF images for four different values of the refocusing parameter,

α. Images were extracted from the simulated LF with a 25 × 25 angular samples.

Referring to Table 2.1, I can see that for α = 0.33 the DoF predicted by Plenoptisign

is 2.4 with the near DioF border at 5.7 m. In corresponding subfigure, Fig. 2.5(c), the

second and third seahorses are sharpest, and the fourth seahorse is still a little sharper

than others. The distances of these two seahorses are 6.2 and 7.2 m, respectively, and

the fourth seahorse is located at 8.2 m away from the CA. This agrees with the

expected DioF’s extracted from the Plenoptisign software and shows that our model

results are within our measurement uncertainty. Other α’s results shown in Fig. 2.5

are also within the boundary of the estimated error compared to Table 2.1.
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One of the benefits of simulating an LF is I can easily change sampling by down-

sampling a high-resolution LF. The effect of angular resolution on the LF and LF

processing can be unintuitive. Therefore, in building an LF capture system, it is

useful to understand how much resolution is necessary to create the desired effect

or extract relevant information. In Fig. 2.6, I show two DoF images with the same

value of the refocusing parameter, α but with two different angular sampling rates.

Referring to Table 2.1, I see that all of the DoF properties have changed. These

changes are also obvious in the figure where the furthest seahorses are in focus for

the lower angular resolution image. In contrast only the closest seahorse is in focus

for the higher angular resolution image.
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(a) (b)

(c) (d)

Figure 2.5: Different focus points DoF images of seahorses with 25 × 25
camera in the array. (a) Refocused with α = 0.11. The sharpest seahorse
is the last two where they are more than 13 m away. (b) Refocused with
α = 0.2. I can see that from the third seahorse (8.2 m away) to eights one
(13.2 m away), I have sharper seahorses compared to the rest. (c) Refocused
with α = 0.3 and the second and third seahorses are the sharpest of all. (d)
Refocused with α = 0.4. I can see that the first seahorse is the sharpest one.
These results can be compared to the predicted focus distances in Table 2.1.
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(a) (b)

Figure 2.6: The same refocusing parameter α = 0.4 results in different
focusing points because of a difference in angular resolution. (a) The CA is
5× 5 and the focus point is 11.6 m so the last two seahorses are within the
DoF. (b) The array size is 25× 25. Here, the nearest seahorse is only within
the DoF because the far DioF is 5.9 m, and the second seahorse is placed at
6.2 m away from the CA.
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2.4.2 Adding Practical Effects:Vignetting

Here, I follow the explanation in Sec. 2.2.4 to create and add the main lens and

MLA vignetting to LF. The LF used for demonstrating these effects is the Barcelona

Pavilion model with a downsampled angular resolution of (12, 12).

2.4.2.1 MLA Vignetting

Figure 2.7: MLA mechanical vignetting added to Barcelona Pavilion with
angular resolution of (12, 12). The middle chandelier is enlarged to see the
effects of the vignetting. A sample MLA aperture used to create this vi-
gnetting effect is depicted on top left of the enlarged chandelier.

An MLA vignetting filter was created using Eq. (2.10) and applied it to the LF via

Eq. (2.8). The resulting detector image is shown in Fig. 2.7. An inset shows both a

close up view and the MLA vignetting mask.

Figure 2.8(a) shows the LF viewpoint images with MLA vignetting applied. As I
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pointed out in Sec. 2.1, our intuition tells us that the CA and SPC are equivalent.

Here, I see one benefit of implementing practical effects as a separate step. I can see

that MLA vignetting will result in losing the view point images at the corners. By

applying this mask before rendering, I can safely eliminate rendering those viewpoints

complex, compute-intensive scenes.

From inspection, I can see that MLA vignetting does not reduce the spatial resolution.

However, referring again to Fig. 2.6, I know that reduced angular resolution will

have a deeper depth or longer DoF compared to the pristine LF. Figure 2.9 further

illustrates this concept. Comparing subfigure (a) to (c), I see that the effect of

applying MLA vignetting is to reduce the DoF.

2.4.2.2 Main Lens Vignetting

Main lens mechanical vignetting is added by applying the mask generated by Eq. (2.9)

to the pristine LF via Eq. (2.8). Figure 2.8(b) shows the resulting tiled viewpoint

images. I can see that compared to Fig. 2.8(a) the angular resolution is not reduced

by main lens vignetting. Intuitively, the effect of main lens vignetting is to only

reduce the spatial information in the LF.
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(a) (b)

(c) (d)

Figure 2.8: Applying vignetting mask to the Barcelona’s LF. (a) The tile
view of applying the MLA mask to the LF. I can see that some of the views
are lost. (b) The tile view of adding main lens vignetting to the pristine LF.
The spatial resolution reduction is evident, but none of the views are lost.
(c) The tile view of the LF with both main and MLA vignetting added. (d)
The LF with both vignetting with the shape of PC’s sensor.
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(a) (b)

(c) (d)

Figure 2.9: (a) The DoF image derived from the pristine LF with angular
resolution of 12 × 12. (b) DoF from the same LF but with the main lens
vignetting added, note that the DoF is unchanged. (c) DoF from the same
LF, with MLA vignetting. I can see (a) has shallower DoF compared to (c).
(d) The DoF of LF with applied MLA and main lens vignetting. This DoF
is as the same as (c).

2.4.2.3 MLA and Main Lens Vignetting

By applying both the main lens vignetting and the MLA vignetting, I can examine

both effects both in the sensor plane image [Fig. 2.8(d)] and the resulting viewpoint
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images [Fig. 2.8(c)]. Likewise, I also produce a DoF image as in Fig. 2.9(d). This

DoF here is the same as Fig. 2.9(c) because the main aperture does not change the

angular sampling.

2.5 Conclusions and Future Work

I have presented a transformation model allowing us to find the CA geometry for a

given SPC configuration. This transform includes in the the relative position of each

camera with respect to the principal optical axis of the SPC. Also, in contrast to

previous works, I define the FoV and aperture size of each camera. While physically

building such a CA configuration with proper calibration can be difficult, it is trivial

in a simulation model. Further, simulating a CA is much simpler than an SPC that

may potentially have multiple lens elements in addition to the MLA. To verify our

model, I evaluated the focusing distance of our simulated LFs. These distances were

compared to those estimated by the model described by Hahne [34] and were shown

to be in agreement within the expected measurement error.

Furthermore, I have presented a way of adding simple practical effects to a pristine

LF by postprocessing. By considering MLA and main lens vignetting separately,

I am able to effectively show that the MLA vignetting reduces the minimum DoF

available in LF’s DoF images. Likewise, that main lens vignetting filters only spatial
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information. While known theoretically, our approach to including practical effects

allows designers of LF capture systems to quickly and easily evaluate the effect of

design choices on the LF. In contrast, simulation approaches that model the entire

SPC may require extensive changes for each option evaluated. Our approach to

applying vignetting also has the benefit that it can be applied directly to the 4-D LF

data object without reshaping the matrix or extracting viewpoint images.

Extensions to this work would include exploring other PC geometries such as the

focused PC and irregular sampling geometries. Similarly, I plan to explore other

practical effects including intrinsic effects such as imaging system aberrations and

extrinsic effects such as motion blurring and environmental effects such as rain and

fog.
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Chapter 3

Light Field Compression by

Residual CNN-Assisted JPEG

3.1 Introduction

Light fields (LF), as compared to conventional images, have two extra dimensions

which represent angular information of the scene [2, 4, 9]. Hence, LFs contain a

relatively large volume of data that makes storing and portability time consuming and

costly. Also, decompression of LF video with a high angular resolution at acceptable

frames per second (fps) for streaming is challenging. I aim to address these challenges

by predicting the entire LF from its JPEG compressed center view.
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Direct application of standard image compression techniques, such as JPEG, PNG,

etc., on an LF does not take advantage of existing redundancies between LF views.

Video compression techniques, however, achieved better success in compressing LFs.

To use video compression algorithms on LFs, a sequence of images is built from

LF views, which is called pseudo-sequence[14]. A combination of machine learning

(ML) methods, capable of predicting LF views, and video compression techniques was

explored in [38]. In this chapter, I present a combination of JPEG compression with

ML view predictions. LF synthesis techniques have shown the possibility of estimating

the entire LF from a single view or a set of sparse views. Here, I show that there is

enough information in the JPEG compressed center view—as well as a group of sub-

aperture images (SAIs)—to predict the entire LF with a quality comparable to the use

of the state-of-the-art video compression techniques on the LF. I test the success of

our method by comparing it against state-of-the-art methods in LF compression that

use the existing HEVC compression. Some extensions using deep-learning and other

techniques are applied to improve the quality of HEVC application to the LF. But

the only compression, so far, that is possible to apply to any variation of LF is still

HEVC. For this reason, HEVC, while being the base model, is the state-of-the-are.

Our method is faster in compression and decompression by 100x and 10x, respectively,

compared to the direct use of HEVC. This speed up means a set of 30 LFs with a

spatial resolution of (375, 540) and angular resolution of (7, 7) can be decompressed on

a typical gaming GPU in less than 0.02 seconds, while HEVC-based methods require
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more than 0.39 seconds. With increases in spatial or angular dimensions, HEVC-

based methods reconstruction soon takes more than one second. Thus, streaming

will not be possible without pre-decompression. Furthermore, while speeding up the

process, I have maintained and, in most cases, improved the quality of reconstruction

at the same bit per pixel (bpp) ratio. I have used the mean of peak signal-to-noise

(MPSNR) ratio over all of the views and mean structural similarity index metric

(MSSIM) to compare the reconstructed LFs of my model with those that use HEVC.

I show that while the MPSNR of my method is comparable to the direct employment

of HEVC, my model can achieve higher MSSIM. This results in fewer artifacts and

better quality in the extracted synthetic aperture depth of field (DoF) images. Note

that I built my model to be fully convolutional, thus, it can be used on LFs with any

spatial resolution. Also, my model works in the RGB channel. This is an advantage

compared to other techniques, which are using YUV channel, because most of the

available LF datasets are in RGB and digital conversion between RGB and YUV is

not lossless [39].

The contributions of this paper are as follows. I achieved compression speed-up of

more than 100x and decompression speed-up of more than 10x compared to the use

of HEVC on pseudo-sequences of LF views. At an average bpp of .0047, the LF’s DoF

reconstructed with my method improved the SSIM by 0.31% on average over the test

dataset compared to the direct use of HEVC. Finally, I introduce a small, fast, and

efficient convolutional neural network (CNN) for enhancing JPEG images for use in
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LFs. This network also boosts the SSIM of the final decompressed LF.

Our code and trained network can be found at:

https://github.com/ehedayati/LFCompressionByRCNN-JPEG

3.2 Related Work

3.2.1 Light Field View Synthesis

Linear view synthesis by Levin and Durand [40] and depth of field extension and

super-resolution by Bishop and Favaro [41] are among the earliest works on LF view

synthesis and reconstruction. Flynn et al . [42] proposed a deep learning method to

predict novel views from a sequence of images with wide baselines. LF view synthesis

became more popular after Kalantari et al . [1] showed in their work that an LF

can be synthesized from its corner SAIs with high quality. Building on the work of

Kalantari et al ., Yeung et al . used different sets of views to reconstruct dense LFs

[43]. Srinivasan et al . demonstrate the possibility of estimating the entire LF from

its center view by extrapolating using machine learning methods [44]. Choi et al .

extended the extrapolation to an LF taken with arrays of cameras [45]. LF fusion

[46] and depth-guided techniques [47] have been popular in reconstructing an LF from

a single or a sparse set of SAIs. Hu et al . [48] aimed for a faster LF reconstruction
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method by using hierarchical features fusion.

The backbone of nearly every view synthesis method enumerated here is the depth-

map estimation. The current work is categorized as single view LF reconstruction.

my method is unique because I use a lossy compressed JPEG view from which to

estimate the entire LF. I use residual learning methods to guess the possible artifacts

from the JPEG compressed version of the center view to assist the main network for

accurately estimating the depth map.

3.2.2 Light Field Compression

Lossless and lossy compression methods have been investigated extensively in the

literature. For the lossless model, Perra [49] proposed an adaptive block differential

prediction method and Helin et al . [50] described a sparse modeling with a predictive

coding for SAIs of the LF.

The lossy models can be classified in to sub-categories of: i) standardized image/video

compression techniques and ii) machine learning assisted compression techniques.
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3.2.2.1 LF compression by standardized image/video compression meth-

ods

Standardized image and video compression techniques (especially HEVC) have been

directly used to address the problem of the bulkiness of the LF, see e.g., [14, 15, 16].

Other methods, such as homography-based low-rank models [51] and Fourier disparity

layers [52], have been used to reduce the angular dimension of the LF. In another

work, the LF depth was segmented into 4-D spatial-angular blocks, which were used

for prediction, followed by encoding the residue using JPEG-2000 [53].

3.2.2.2 Machine learning assisted compression techniques

Followed by the breakthrough in synthesizing LF views from its four corners using

CNN learning techniques introduced by [1], another work introduced a compression

technique by using the same method and compressing the four corner views by HEVC

[54]. In another work, the authors proposed to keep half of the views and encode them

by HEVC and synthesize the other half by a CNN [38]. A CNN based epipolar plane

image super-resolution algorithm was used in cooperation with HEVC to compress

LF as well [55]. Wang et al . proposed a new LF video compression technique by

deploying view synthesis methods from multiple inputs while encoding the input views

by a proposed region-of-interest scheme [56]. Generative adversarial network based
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methods have been used in cooperation with video codec techniques to compress LF

in [57, 58]. There has been multiple works on LF compression with use of standard

video compression codecs in combination with learning based view synthesis [59,

60]. Unfortunately, I could not find any public version of these codes, or trained

networks for the purpose of comparing my results with them. Hence, I have chosen

the pseudo-sequence HEVC compression method for comparison because of its easy

implementation and availability of the HEVC codec.

To the best of my knowledge, because the view extrapolation is ill posed, LF re-

construction from a lossy compressed single input (specifically, JPEG) has not been

explored before my work.

3.2.3 JPEG Compression Artifact Reduction

For several decades, different researchers addressed the JPEG compression artifact

reduction generally in three main groups: prior knowledge-based, filter-based, and

learning-based approaches. Here though, I am interested in learning-based ap-

proaches. The basic intention of learning-based methods is to find a non-linear

mapping between the JPEG compressed image—compressed at different compres-

sion ratios—to the ground truth uncompressed image. To the best of my knowledge,

the first deep learning model to address this problem was created by Dong et al .
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[61], where they showed the possibility of enhancing the reconstructed JPEG im-

age by a relatively shallow CNN. Since then, multiple researchers have gradually

improved the performance of learning-based methods by introducing new networks

such as: dual-domain representations [62], deep dual-domain based fast restoration

[63], encoder-decoder networks with symmetric skip connection [64], CAS-CNN [65],

one-to-one networks [66], DMCNN [67], and dual-stream multi-path recursive residual

network [68]. While deeper networks and state-of-the-art architectures have improved

the task of JPEG artifact reduction, I am not focused solely on this task here. The

ultimate goal of my JPEG-Hance network is to improve the estimated depth-map

from the JPEG compressed center image of an LF. JPEG artifact reduction is the

natural first step for extracting better depth-maps.

3.3 The Proposed Method

Here I describe my compression and decompression pipeline. The compression

pipeline is simply extraction of the center view of the LF, compression by JPEG

at 50% quality, followed by discarding of all other views. The decompression pipeline

has the following steps:

1. JPEG decompression of the center view cJ
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2. Enhancing cJ by JPEG-Hance to cE,

cE = J(cJ). (3.1)

3. Estimating depth map d(x, u) of every view u from cE,

d = D(cE). (3.2)

4. Reconstructing LF by

L(x , u)u0→u = L(x+ (u− u0)d(x, u), u0), (3.3)

where L is the approximated LF and u0 is the middle view index. Variables x

and u are spatial and angular indices.

3.3.1 Networks architectures

3.3.1.1 JPEG-Hance

The main goal of my JPEG-Hance network is to assist the Depth-Net in providing

better depth map estimation. In doing so, it is certainly beneficial to improve the
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Figure 3.1: JPEG-Hance detailed structure

overall quality of the JPEG decompressed image by reducing the error between un-

compressed ground truth images and the lossy compressed ones. However, the goal

of my network is not general JPEG artifact reduction; instead, JPEG-Hance should

learn to enhance the parts of the image which have the most effect on improving depth

information extraction. To achieve this task, JPEG-Hance also needs to find corre-

spondence information from the extracted depth maps. Therefore, it is trained in two

phases: first, it learns to enhance any typical JPEG decompressed image, then again

as part of the whole depth estimation pipeline. The architecture of JPEG-Hance is

shown in Fig. 3.1. Inspired by ResNet50’s bottleneck building blocks structure [69],

I have designed my JPEG-Hance as residual blocks. I added a batch normalization

(BN) layer after each convolution followed by an exponential linear unit (ELU). The

ELU followed by a last layer tanh seems to be the most promising activation pair of

functions when dealing with regression of image data scaled to the interval [−1, 1].
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JPEG-Hance is pre-trained by minimizing the mean squared error of each pixel value

in the RGB channels. Then it is added to the training pipeline for full reconstruction

of LFs.

3.3.1.2 Depth-Net

Multiple images provide geometry information which can be used for LF reconstruc-

tion. A single image does not provide such information. Therefore, such information

needs to be extracted by other methods. Machine learning techniques, particularly

CNNs, showed a promising potential for estimating geometry from a single image

[1, 43, 44]. Thus, for the problem of depth estimation from my enhanced center

image, I use a residual CNN.

Our Depth-Net, depicted in Fig. 3.2, is responsible for estimating the depth map

(disparity map) for all 49 views from the middle JPEG compressed view. Depth-net

has three variants of residual blocks. The first variant is a down-sampler which uses

a 2-D convolution with strides of (2 × 2), halving the spatial dimension of the in-

put image. This block is used just before the first Depth Residual Block; each time

the feature size is increased. The second type of block, the Depth Residual block,

is the main residual block. This block is used the most and extracts most of the

features. The structure of the Depth Residual block mimics the bottleneck structure

of ResNet50 with added instance normalization after each of the first two convolution
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Figure 3.2: Depth-Net detailed structure

Figure 3.3: Depth-Net residual blocks

layers. Last, the Upsampler block is constructed to have a 2-D deconvolution (trans-

posed convolution) layer and two 2-D convolution layers with kernel size of (3 × 3).

The deconvolution layer’s stride is set to (2× 2). These blocks are shown in Fig. 3.3.
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Because I am training the Depth-Net on the actual LF data and not the ground

truth depth maps, my loss functions have to be designed to train the network in

an unsupervised manner. my Depth-net is predicting the LF’s depth while I do not

have the ground truth depth to supervise the training. Thus, I define the Depth-Net

pre-training loss function to be a weighted sum of four sub-functions: i) photometric

loss Lp , ii) defocus loss Lr , iii) depth-consistency loss Lc, and iv) DoF loss Ld . The

total loss is simply

Ldepth = αLp + α1Lr + α2Lc + α3Ld, (3.4)

where α, α1, α2 and α3 are chosen to be 2, 100, 0.02, and 10 in my conducted experi-

ments, which were empirically found to work well overall.

The image quality comparison sub-function ψ [47] is constructed by combining mean

absolute difference of pixels and image structural dissimilarity (DSSIM) that is derived

from the structural similarity index metric (SSIM) [70]:

ψ(I1, I2) = β
1− SSIM(I1, I2)

2
+ (1− β) ‖I1 − I2‖1 , (3.5)

where I1, I2 are two images that are being compared and β ∈ [0, 1], which I empirically

found that 0.15 yields the best training results. Using the sub-function ψ, photometric
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loss is defined as [47]

Lp =
∑
u

[
ψ(L(x, u)u0→u, L(x, u))+

ψ(L(x, u)u→u0 , L(x, u0))
]
. (3.6)

Because I am training an unsupervised Depth-Net, the more prior knowledge I can

give the network, the better will be the training quality. Zhou et al . [47] introduced

defocus cue loss

Lr = ψ
(
L(x, u0),

1

N

∑
u

L(x, u)u→u0

)
. (3.7)

Also depth consistency (left-right or forward-backward) has been shown in the liter-

ature [71, 72, 73] to be a promising regularizer for LF view synthesis purpose, where

du0→u(x) = du0

(
x, (u− u0)d(x, u)

)
, (3.8a)

Lc =
∑
u

||du(x)− du0→u(x)||1. (3.8b)

Finally I have included depth of field (DoF) loss to further assist the network in
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learning depth information, where

DoF =
1

u

∑
u

L(x, u), (3.9a)

Ld = ψ
(
DoF,DoFu0→u

)
. (3.9b)

3.4 Experiments

In this section, I describe my method’s implementation details. Then, I use public

data sets [1, 44] to evaluate my method and investigate the impact of different parts

of my network on the performance of my model.

3.4.1 Data sets

I have conducted my experiments over the two public data sets: Flowers [44] and

30 Scenes [1]. Both of these data sets are captured by a Lytro Illum camera. The

angular resolution of these data sets is 14 × 14 views and the spatial resolution is

variable between 375 × 540 and 376 × 541 pixels. The LF from these data sets are

cropped to the size of 7× 7× 375× 540 to have a consistent size and vignetting.
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3.4.2 Implementation details

Our pipeline was trained in multiple steps. I have implemented my model with

Tensorflow 2.2 in python 3.7 on a workstation with an Intel Xeon W-2223 3.60 GHz,

64GB DDR4 memory, and NVIDIA Quadro RTX 5000.

3.4.2.1 JPEG-Hance

Our JPEG-Hance was pre-trained on the 30 Scenes training data set, which contains

100 scenes. The center views of these 100 scenes were extracted and used for training.

In the training phase, the spatial dimensions of the JPEG-Hance were set to 128×128.

First a training pool of images with dimensions of 128× 128 was created by cropping

the center views of the 100 scenes at 8 pixels steps. Therefore, the training pool

had 150, 000 different crops which I found sufficient for the JPEG-Hance network to

be trained without over-fitting or under-fitting. The learning rate was set to 0.0004

which was empirically found to have sufficiently good results for pre-training step.

The JPEG-Hance has a relatively small network: only 202, 435 trainable parameters.

The pre-training phase took about 90 minutes to converge.
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3.4.2.2 Depth-Net

Our Depth-Net also has a pre-training step. The Depth-Net was pre-trained on

the Flowers data set, which has 3, 343 flowers. During the pre-training phase, the

JPEG-Hance was used for enhancing center images while only Depth-Net parameters

were trained. The input pipeline of the flowers contains random croppings to 128

and data augmentation with 50% selection rate for the original data, 15% chance

for random contrast change between [0.1, 0.5], 15% chance that the brightness was

changed randomly up to 0.4× original brightness, and the remaining 20% where

the hue was randomly changed by up to 0.4×. During the pre-training phase, 16

random crops were extracted for each epoch, and the network was trained for 10

epochs. The learning rate was 0.0004 that again proved empirically its sufficiency in

our experiment. Depth-Net is the main network responsible for extracting the depth

map; thus, it has more trainable parameters: about 38.2 million. The pre-training

phase takes about 7 hours to converge.

A sample estimated depth is depicted in Fig. 3.4. This illustration demonstrates that

the edges are not very sharp. This is because I have used the highly compressed lossy

JPEG on center view, which adds blur to the edges, to estimate the disparity map.

Thus, the resulting depth map is somewhat blurry.
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Figure 3.4: An estimated depth map. I can see that my network estimate
is correct for most parts of the image. The map indicates that the flower
is the nearest object to the LF camera and the leaves are just behind the
flower and the wall is at the background, which is very realistic.

3.4.2.3 Training the entire pipeline

After pre-training the two networks, I can now train the entire pipeline. I add 100

scenes from the Flowers data set pool and use the same input pipeline as the one used

for Depth-Net. The entire pipeline was trained for 45 epochs, gradually decreasing

the learning rate from 0.0001 to 0.000001. The learning rates schedule defined in a

way that the first 10 epochs was trained by 0.0001, then it was halved for the next 10

epoch. From epoch 20 to 40, each 5 epochs, the learning rate was halved. Finally, the

last 5 epochs were trained by setting the learning rate to 0.000001. These learning

rates were chosen based on observing the training procedure and the it was decreased

when no improvement was observed. I have stopped training after epoch 45 due to

not seeing any improvement afterward.

The last fine-tuning step includes training the pipeline on the data sets with input

spatial dimensions of 375 × 540. Here the augmentation selection is 25% original,

25% random contrast, 25% random brightness, and 25% random hue. Because of the
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structure of the Depth-Net network, the input images have to be zero-padded and the

resulting LFs should be cropped to the correct size. The input dimension of the Depth-

Net is 384× 544. The fine tuning phase takes 40 epochs for the network to converge

with gradually decaying learning rate from 0.00005 to 0.000001. The learning rate

scheduling here had the same terminology, except that the halving started at epoch

10 for each 5 epoch, and epoch 35 to 40 trained with 0.000001 as the learning rate.

The fine-tuning phase took around 20 hours to converge, while all other pre-training

phases took less than 10 hours cumulatively.

3.4.3 Performance comparison

We compared my compression-decompression results with a pseudo sequence method

using the HEVC video compression Codec. I chose a raster sequence over spiral

because raster had slightly better performance. The 30 scenes data set was used for

comparing my method with HEVC. I use MSSIM and MPSNR metrics as well as

SSIM and PSNR of the extracted DoF from LFs to compare the results, where

MSSIM =
1

M

∑
u

SSIM(LF, L̃F ), (3.10)

MPSNR =
1

M

∑
u

PSNR(LF, L̃F ). (3.11)
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To have a fair comparison, I tuned the QP factor of HEVC for each LF to reach ap-

proximately similar bpp between HEVC compressed LF and my method’s compressed

representative. The average bpp for both methods on the 30 scenes data is 0.0047.

Fig. 3.5 shows that the LFs reconstructed by my method have very similar MPSNR

and MSSIM to those decompressed by HEVC. By carefully examining Fig. 3.5 it is

evident that, while my method outperforms HEVC in MSSIM, it is slightly inferior in

MPSNR performance. Fig. 3.6 plots the PSNR and SSIM metrics for extracted DoFs

from the reconstructed LFs. Here, my method meaningfully outperforms HEVC in

SSIM metrics while further reducing the gap in PSNR. Because of this dual behav-

ior in SSIM and PSNR metrics between my method’s results and HEVC’s, I have

conducted experiment on the refocused images to find out which method is more

reliable.

The PSNR comparison between my model and HEVC over the test set for near and

far focus in shown in Fig. 3.7. These results show that in some cases my model is

superior and for other cases HEVC performs better. The mean PSNR of the HEVC

for the test set is greater than mine by 1.3db for the near focus and 0.6db or the

far focus. But for the case of the SSIM metric over the same test set, depicted in

Fig. 3.8, I can see that in both near and far focuses, my model is performing better.

my model has 0.4% greater SSIM for near focus and 1.8% for far focus.

While the quantitative results look nearly the same between my method and the
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Figure 3.5: The top figure is showing the MSSIM for each reconstructed
LF by my method and HEVC. The bottom figure is the MPSNR calculated
for each reconstructed LF.

Figure 3.6: The DoF images extracted from ground truth LFs and the
reconstructed LFs are compared using SSIM and PSNR metrics. The top
plot is representing SSIM and the bottom one is showing PSNR for each LF
in the 30 scenes.
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Figure 3.7: The reconstructed LFs from my model and HEVC is used to
extract refocused images with refocusing parameters of α = 0.15, 1.5, The
top plot is showing the PSNR of the near focus images, and the bottom on
is the far focus PSNRs.

Figure 3.8: The SSIM of the near and far focus images extracted from
HEVC and my proposed model is calculated and plotted.

62



HEVC compression technique, the reconstructed images show the real differences.

Fig. 3.9 shows the reconstructed view of a statue from the LF. It is the 25th LF

in the 30 Scenes data set. By looking at Fig. 3.6, I can see that HEVC’s MPSNR

for this LF is more than 3dB greater than my model. Yet, Fig. 3.9 shows that the

reconstructed LFs from my model are producing a visually better representation of the

ground truth image. The HEVC reconstructed LF generally has more blur all over the

image. This blur is, to some extent, caused by severe data loss. Fig. 3.10 illustrates

another example, where the second leaf behind the front one is not reconstructed

in HEVC decompressed LF. Last, I can see more details and better texture in the

extracted DoF from my model, demonstrated in Fig. 3.11. In the refocused images

extracted from my model, they have the same depth to the reference image and are

refocused to the same focal plane as the ground truth. Images reconstructed from

HEVC seem to lose the focal plane, especially in the one focused on the car in Fig. 3.9.

Here, it becomes clear that my model is more successful in retaining the LF physical

information. On the other hand, this finding indicates that the available quantitative

metrics do not tell the whole story in comparing the two LF reconstruction methods.

It is worth noting that for quality assessment, the SSIM metric is showing more

agreement with the qualitative comparison than PSNR.
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Figure 3.9: Two different focus points of an LF. The refocused DoFs
in the top row are focused with α = 0.1 to the nearest flower, and the
bottom row DoFs are focused at the car with α = 1.5. The images in the
left most column are ground truth images. The middle column shows DoF
images extracted from the HEVC reconstructed LF. The rightmost column
contains the results from the LF reconstructed by my model.

Figure 3.10: In this figure, a small slice from 3.9 shows HEVC loses more
physical information compared to my model. The second leaf just behind
the front leaf is not visible in the HEVC reconstructed LF’s DoF.

3.4.4 Speed Gain

Table 3.1 shows that the compression time of my proposed method is more than

100 times faster than that of HEVC, on the same computational hardware. This is
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Figure 3.11: For better texture comparison, a small leaf from the 3.9 is
magnified in this figure.

Table 3.1
The time takes to compress all 30 LFs in the 30 scenes data set using my

method and the HEVC. I can see an speed up of more than 102 times.

Method CUDA Comp time (s)
HEVC No 43.53
JPEG-Hance + Depth-Net No 0.42

because my compression pipeline is more efficient, which is just a JPEG algorithm on

a fraction of the LF (1/49 in my case with 49 views). The HEVC algorithm processes

all of the views.

For decompression, my method is 18 times faster than HEVC; see Table 3.2. To give

a fair comparison, I used the NVIDIA optimized HEVC codec using the GPU’s video

decoder. So on the same hardware, this will be the fastest implementation of HEVC.

Overall, these results indicate that my model is suitable for compressing LF videos

with high angular resolution. This is because my method can decompress in near real

time inside the GPU without the barrier of transferring high volumes of data from
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Table 3.2
The reconstruction time on all LFs from the 30 scenes data set by my

method and HEVC. I can see that my method is 18 times faster in
decompressing.

Method CUDA Rec time (s)
HEVC yes 0.399
JPEG-Hance + Depth-Net yes 0.022

host to GPU. The bandwidth used from host to GPU is equal to the size of only the

center view of the LF.

3.5 Conclusions

I have designed a machine-learning assisted LF compression technique. It contains

two sequential custom-designed CNNs: JPEG-Hance and Depth-Net. I showed that

there is enough information in a highly compressed LF center view to estimate the

depth-map of the LF and then use it to reconstruct the whole LF. Also, compression

and decompression are faster with my method. I have used the public Flowers and

30 Scenes data sets to conduct my experiment and also to evaluate my model. I

have achieved more than 100 times speedup during compression and about 18 times

faster reconstruction compared to using HEVC on LF pseudo sequences. Comparing

to HEVC, the reconstructed LFs using my method have superior MSSIMs, and they

have comparable MPSNRs. Furthermore, the visual quality of the focal plane images

reconstructed using my method are superior. For future work, I will try to add
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other views, with varied relative compression ratios, to further improve the quality of

reconstruction. I will also explore options, such as improving the network architecture,

other loss functions, larger training data sets, etc., to enhance the MPSNR. I am also

looking forward to deploying my method on an actual LF video to explore the achieved

compression ratio and streaming capabilities.
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Chapter 4

A Machine Learning Method for

Light Field Refocusing

4.1 Introduction

In order to have a sharp image with the desired information about the capture scene,

the choice of aperture size and focus point are very important. But if one can obtain

a complete light field (LF) from the scene, one can synthesize the aperture of choice

at any desired focus point by postprocessing. By summing the views inside the

aperture of choice, one can quickly obtain a synthetic-aperture image from the LF. In

the case of a plenoptic camera, one captures two extra dimensions in addition to the
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regular two spatial dimensions. This 4-D LF enables limited refocusing and synthetic-

aperture depth of field (DoF) images by post-processing, which are not available in

conventional cameras [2, 4, 9]. The shift-and-sum method [7] and Fourier refocusing

[17] are two widely used methods for LF refocusing.

The shift-and-sum refocusing method requires 4-dimensional integration for each new

refocused image, which is time-consuming. While Fourier slice photography [17] can

perform refocusing faster, it needs an initial 4-D Fourier transform, which is again

slow; also, the quality of the Fourier refocused images are less than that of the slower

shift-and-sum method because that discrete Fourier and inverse Fourier transform

on the same data is not lossless. Also, both Fourier slice method and the shift-

and-sum method are predicting each refocused image by interpolating some of the

missing points; thus, they are simply estimates of the reality. Both methods some-

times have color and brightness prediction problems, which may need to be fixed by

re-calibration.

While Fourier slice photography [17] can be used to extract multiple refocused im-

ages from LFs faster than the shift-and-sum method by sacrificing a little quality,

real-time refocusing of the LF, especially without time-consuming pre-processing, re-

mains a pertinent challenge. my goal is to address this problem by predicting the

refocused images using a machine learning algorithm. By employing my model with a

conventional desktop GPU, I can extract multiple focus-points from LFs in real-time
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with higher quality refocused images than both of the conventional refocusing meth-

ods. Real-time processing of the LFs can enable LF cameras to be used for detection

tasks as well, possibly with better accuracy than obtained with conventional cam-

eras. For example, LF cameras can be used for improved object detection because

such algorithms can find objects from different focus points in LFs [74]. In the case of

conventional cameras, just a single focus point is available for detection, and blurred

parts of the image need another capture with a different focus to be revealed. This

problem can be solved by employing an LF instead of a conventional image.

In this chapter, I introduce a residual network to estimate a set of 16 re-

focused images on different focal planes with refocusing parameters of α =

{0.125, 0.250, 0.375, ..., 2.0} 1 from an LF with 7 × 7 angular resolution. We show

that my approach can predict refocused images in real-time, with superior color pre-

diction, as compared to both of the conventional refocusing methods.

The code to accomplish my refocusing method will be publicly available upon accep-

tance.

1One can use any set of 16 refocusing parameters during the training phase.
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4.2 Related Work

4.2.1 Refocusing techniques

Here I review some of the previously developed refocusing methods in the literature.

Isaksnen et al . introduced some early algorithms to extract features like refocusing,

synthetic apertures, and occlusion removals from LFs. Their refocusing algorithm

is usually referred as brute force refocusing or reparametrization of LF [75]. This

method has time complexity of O(n4) and making it efficiently parallel is difficult.

This method is slow, particularly because it needs to apply a homography to the

whole LF for each requested focal plane. The shift-and-sum LF refocusing method

was first introduced by Vanish et al . [76] and later extended by Levoy et al . [7].

This method first derives a mapping for the LF capturing device and the refocused

images are extracted by warping the views in the LF using the calculated map. The

quantized form of the shift-and-sum method was first derived by Ng et al . [9]. But

the shift-and-sum method still has an asymptotic time-complexity of O(n4) and is

not useful for real-time refocusing. Fourier slice refocusing (FLR) was introduced

by Ng [17] in an attempt to speed-up the refocusing. Refocusing of the LF using

FLR has the time complexity of only O(n2) log n, which is almost ideal for real-time

refocusing. But the problem with this method is that it needs to calculate the 4-D
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Fourier transform of each LF. In the discrete world, the 4-D fast Fourier transform’s

asymptotic time complexity is O(n4 log n). Because of this pre-processing step, the

LF cannot be refocused in real-time immediately after capture. Also, the refocused

images extracted by the FLR method is inferior to the shift-and-sum method at some

focus points because taking FT−1(FT (x)) is not always equal to x in discrete world.

Nava et al . [77] addressed the problem of FLR’s quality by using generalization of the

discrete Radon transform in the process. Their discrete focal stack transform produces

better quality refocused images compared to FLR, but at the cost of reducing the

number of possible refocusing focus points. In both shift-and-sum method and FLR,

the camera array or the physically accurate conversion of the Plenoptic camera to

camera array [18] should be on a single plane. If the cameras are placed on different

planes the tilt-shift method can be used for refocusing [7, 78]. Other focus based

features of LFs include multi-focus image extraction [79] and super-resolved refocused

images [80, 81]. While these scenarios are not the focus of this paper, my method can

be easily applied to these situations as well.

4.2.2 ML Assisted Refocusing

Depth estimation from single [18, 44] or sparse LF views [1] and LF reconstruction

followed by using conventional refocusing techniques to demonstrate the quality of

the LF have been thoroughly investigated. Deep learning has been used to extract
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refocused images using a single image as well [82, 83]. In stereo cameras, because of

sparsity in the angular domain, the number of focal planes for refocusing are limited.

Neural network have been employed to extract and enhance the refocused images for

stereo cameras too [84, 85]. However, I could not find any work in the literature

targeting the particular problem of refocusing LFs captured by plenoptic cameras

using machine learning.

4.3 The Proposed Method

In this section, my procedure for extracting refocused images from an LF is described.

I have introduced a network for this purpose called RefNet. RefNet has the ability

to extract 16 refocused images at different but static, predetermined focal planes.

4.3.1 RefNet

Our network is constructed by employing 11 layers of modified ResNet50 bottelneck

building blocks [69], or ResBlocks. These blocks, shown in Fig. 4.1, have been used

for the main feature extraction. For filter dimensionality change, 2-D convolutions

with (1× 1) kernels have been used. The overall structure of the network is depicted

in Fig. 4.2.
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Figure 4.1: Structure of each ResBlock. Conv is short for 2-D convolution.
The kernel size of each convolution is noted in the beginning of each cell.
F represents the number of filters of each convolution. IN is the instance
normalization.

Figure 4.2: The detailed structure of RefNet. First the LF is reshaped to
s, t, u × v × 3, where in my experiment u, v = 7. I used a 2-D convolution
with 192 filters as the first layer of the network followed by a 11 ResBlocks.
Then with two additional convolution with RELU activation the final dimen-
sionality is reached. Finally, with a reshape, 16 estimated refocused image
extracted.
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Fig. 4.1 illustrates that each ResBlock is composed of a 2-D convolution with kernel

size of (3×3) and F/2 channels sandwiched between two 2-D convolution layers with

(1 × 1) kernels and F channels. Each of the first two convolutions are followed by

a Softplus activation function and an instance normalization. The input has a skip

connection to the last convolution and then a Softplus activation is applied to the

summed result. If the number of channels of the input differs from F , it will go

through an additional 2-D convolution with (1× 1) kernel and F channels, then, it’s

result will be added to the last convolution.

For a detailed illustration of the RefNet structure, see Fig. 4.2. First the LF is

reshaped to s, t, u × v × 3. I used a 2-D convolution with 192 channels as the first

layer of the network with an RELU activation; this is followed by 11 ResBlocks.

The network then has two additional 2-D convolution layers with RELU activation.

Finally, after a reshape, 16 refocused images are estimated as the network output.

The RefNet is trained in supervised manner. I use a weighted loss function for the

purpose of training. The training output labels are the refocused images extracted

from the LFs in my learning set by either the Fourier slice or shift-and-sum methods.

Next I describe the loss function.
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4.3.2 Loss function

Our loss function is a weighted sum of the mean squared error (MSE) and `1-norm

between the predicted and true images (as provided by the conventional reconstruc-

tions), and also the image quality losses as measured by structural similarity index

metric (SSIM) [70] and peak signal to noise ratio (PSNR).

The first component of the loss function the appearance matching loss [86], which

combines the SSIM with the `1-norm,

ψ1(Ip, Ig) = β
1− SSIM(Ip, Ig)

2
+ (1− β) ‖Ip − Ig‖1 , (4.1)

where Ip and Ig are the predicted and ground truth refocus images, respectively, and

β is a tuning parameter. The second component is the inverse PSNR,

ψ2(Ip, Ig) =
1

PSNR(Ip, Ig)
. (4.2)

These two components are then added to MSE to form the final version of the loss

function,

L = MSE(Ip, Ig) + ψ1(Ip, Ig) + γψ2(Ip, Ig). (4.3)

The tuning parameter γ allows the magnitude of the inverse PSNR in ψ2 to be tuned
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relative to the quantities in MSE and ψ1, which I found to be helpful in overall

performance. I provide the values of β and γ I used in my experiments in Section 4.4.

4.3.3 Metrics

For quantitative evaluation of the predictions, I used the SSIM and PSNR metrics.

The average PSNR and SSIM over all of the focus points of one LF are calculated as

MSSIM =
1

M

∑
u

SSIM([Ip]u, [Ig]u), (4.4)

MPSNR =
1

M

∑
u

PSNR([Ip]u, [Ig]u), (4.5)

where [Ip]u represents the uth refocused image extracted by my model and [Ig]u is the

respective ground truth. M is the total number of extracted refocused images.

4.4 Experiments

In this section, I describe my method’s implementation details for the experiments.

Then I use public LF data sets [1, 44, 87] to evaluate my method and investigate the

impact of different parts of my network on the performance of my model.
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4.4.1 Data sets

I have conducted my experiments over three publicly available data sets: Flowers

[44], 30 Scenes [1], and Stanford Lytro Light Field Archive [87]. I chose these data

sets because all three of them are captured by Lytro Illum cameras, which is the

most widely used LF camera. I cropped the LF from these data sets to the size of

7× 7× 375× 540 to have a consistent size and vignetting. We chose 648 specific LFs

from the Flowers data set, which were chosen to span a diverse set of viewing angles

and scenes of the flowers. I did this because I noticed a lot of the LFs of the flowers

were captured from the same scene with minimal camera movement. Another reason

was to balance the number of flower scenes with other categories to have a balanced

training set. Overall, my training data set contains 1, 101 LFs: 648 flowers, 100 LFs

from the 30 Scenes, and the 353 scenes from the Stanford archive. I used the 30 LFs

of the 30 Scenes test set to evaluate my results; note that these 30 LFs are typically

used as a benchmark set for LF reconstruction and are not contained in the training

data.
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4.4.2 Implementation details

We used the Fourier slice theorem and shift-and-sum method to pre-process the train-

ing and test sets. Two new data sets of refocused images were created by extracting 16

refocused images with α = {0.125, 0.250, 0.375, ..., 2} from each LF. During the train-

ing phase, the LFs and the corresponding refocused images were randomly cropped to

[192, 192, 7, 7]. This cropping technique was used as an augmentation to the training

data to prevent over-fitting the network during the training phase. I used a batch size

of 4 crops of each LF during a single epoch. RefNet has about 12.5 million trainable

parameters. The networks were trained by minimizing the loss function using the

ADAM optimizer [88] for 90 epochs in my experiments. Each epoch took approx-

imately 8 minutes to complete; hence, the total amount of time spend for training

was 13 hours. In the training phase, β = 0.65 was empirically found to yield the best

results. And γ = 500 performed well for training the network.

We implemented my model with Tensorflow 2.3 in python 3.7 on a workstation with

an Intel Xeon W-2223 3.60 GHz, 64GB DDR4 memory, and an NVIDIA Quadro RTX

5000.
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4.4.3 Performance

We compared my model’s result with shift-and-sum and the Fourier slice method.

Note that none of these methods can be claimed to be the actual ground truth refo-

cused images. To obtain actual ground truth images, physical cameras would have to

be used to capture images at different focus points. But such data are not available;

hence, I compared my results with these benchmark approaches and evaluated the

results visually as well. First I compared the my results quantitatively using PSNR

and SSIM metrics, then I provided the refocused images for qualitative comparison as

well. Please look at the electronic version of the paper for better quality assessment

of images. In my supplementary materials, the full results of refocusing on the whole

test set is available.

The MSSIM and MPSNR values for the predicted refocused images of my model

compared to the Fourier slice and shift-and-sum methods are plotted in Fig. 4.3.

When the Fourier slice method is used as the ground truth for training, I can see

that, most of the mean MSSIM values are more than 92.5%, and there are only two

of them with a value less than 90%. I will show that RefNet’s refocused images for

these two LFs are better estimates compared to the FLR. For the case of MPSNR,

the results are a bit worse than MSSIM in term of fluctuations. The majority of the

MPSNR values are more than 30dB; however, at least seven trials show MPSNR values
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Figure 4.3: The MPSNR and MSSIM of the refocused images extracted
from RefNet, compared to the shift-and-sum and Fourier slice methods. Blue
points represent the MPSNRs and MSSIMs when the shift-and-sum refo-
cused images are used as ground truth, while the red points represent the
MPSNR and MSSIM of the RefNet refocused images predicted by the RefNet
when it is trained on the Fourier slice method’s refocused images. The set of
refocused images for calculating the MPSNR and MSSIM are 16 refocused
images with different focus points.

of less than 25dB. Similar behavior is observed for when the ground truth images are

shift-and-sum refocused images. In this case, the average MSSIM and MPSNR is

higher than the Fourier slice method, but there are still some trials that seem like

outliers. By carefully looking at Fig. 4.3, I can see that some of the trials have high

MSSIM and low MPSNR. This behavior—low MPSNR and high MSSIM—suggests

a large color mismatch between the two sets but with a high structure similarity,

which means they are focused roughly at the same focus point. Figs. 4.4 and 4.5

demonstrate this impression.
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For qualitative comparison of the refocused images, I have compared refocused images

extracted from RefNet trained with both the Fourier slice and shift-an-sum images for

three different focus points, α = (0.125, 1.0, 2.0). See Figs. 4.4 and 4.5. The chosen

LFs are number 5 and 16 in the test set. These LFs are selected because they are

among the 5 trials in Fig. 4.3 where MPSNR is around or below 20dB, indicating

that the RefNet and ground truth are very different in either brightness or color.

LF number 5 shows significant brightness differences and LF number 16 shows color

differences. Similar figures that compare the refocused images for all of the 30 LFs

in the test set are available in the supplementary materials.

In both of these figures, I can see that RefNet and the ground truth methods seemingly

have the same DoF and focus point but they have distinction in color and brightness.

Fig. 4.4 shows that the refocused images from the Fourier slice method are significantly

brighter than the DoF image without refocusing, while the brightness is not consistent

among the three different focus points. For the shift-and-sum method, the brightness

is consistent between different focus points but all of them are still brighter than the

DoF image without refocusing while it has better predictions compared to the Fourier

slice method. The RefNet trained on Fourier slice labels is performing almost similar

to the shift-and-sum refocused images in brightness prediction and consistency. I

can see that the RefNet with shift-and-sum labels has the best performance visually

and the brightness of the RefNet refocused images are almost identical to the DoF

image without refocusing. So, in terms of robustness in predictions, both trained
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RefNet networks are performing better than the Fourier slice method in terms of

visual quality, while being able to produce these refocused images in real-time.

In Fig. 4.5 I see that the RefNet approach is superior in terms of color reconstruction.

The only difference is that the color of the predicted refocused images from RefNet

that is trained by shift-and-sum labels is not identical to the DoF without refocusing,

but it is the closest compared to other methods.

4.4.4 Speed comparison

A truly fair speed comparison of FLR and RefNet is out of scope of this paper, as FLR

requires a 4-D fast Fourier transform (FFT) while the available GPU based FFTs are

at most 3-dimensional. Thus, I cannot implement the FLR method on GPU without

tweaking the available tools and further optimizing for 4-D FFTs; though, I recognize

this could be accomplished. Nor did I find an available GPU based implementation

of the FLR. Hence, it was not possible to compare the speeds of the algorithms on

the exact same GPU.

For the FLR method, the average time spent for 4-D FFT using NumPy’s fftn [89]

over 1,000 samples, when the LF was loaded into CPU RAM, was 0.5137 seconds

over just the R channel. So the whole RGB LF would need 1.5411 seconds just for

the pre-processing step of the FLR. For RefNet, when the network is loaded into the

84



GPU’s memory and the LF is in CPU RAM (i.e., not yet loaded to GPU), a single

forward propagation of one LF with all 3 RGB channels which extracts 16 refocused

images takes 0.0209 seconds. This is at least 73× speed up compared to the pre-

processing step of the FLR. If the LFs are grouped in batches, the speed gain of

RefNet will be further improved. Using RefNet, a batch of 4 LFs can be processed,

with 16 refocused images for each, in 0.046 seconds. This is over 134× faster than

FLR. The significance of this speedup enables the possibility of real-time processing

of LF videos concurrently with capturing. It is worth noting that the whole process

of reading each LF from the hard drive to the final extraction of refocused images

takes ∼ 0.2 seconds per LF, which is still about an order of magnitude faster than

just the pre-processing step of FLR, where, if the LF is being read from the hard

drive, takes 1.85 seconds.

4.5 Conclusions and Future Work

In this chapter I have proposed a machine learning technique, called RefNet, to extract

refocused depth of field images from a light field captured using a plenoptic camera.

I demonstrated that by using my method, a light field can be refocused in real-time

without pre-processing on conventional desktop GPUs. Furthermore, my method was

demonstrated to be more visually pleasing in terms of color prediction when compared

to the Fourier slice and shift-and-sum methods. RefNet is capable of extracting
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16 refocused images with refocusing parameters of α = 0.125, 0.250, 0.375, ..., 2.00,

though other refocusing parameter values could be trained for given proper training

data. Possible future work includes exploring methods for training a network that

can refocus light fields for any refocusing parameter, perhaps even using training data

composed of other refocusing parameter values. Another avenue that can be explored

is to extract multi-focus images from the light field using machine learning, which

could enable 3-D object detection or reconstruction techniques.
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Figure 4.4: In this figure, three refocused images from each refocusing
method are shown. Each row contains one method’s refocused images with
refocusing parameters of α = 0.125, α = 1.0 and α = 2.0 from left to right.
In the middle, an unfocused DoF image is provided for visual comparison
of the predicted brightness. From top to bottom, the used methods for
refocusing are RefNet with Fourier slice ground truth, Fourier slice method,
RefNet with shift-and-sum ground truth, and shift-and-sum method. The
LF used for this figure is the fifth LF in the 30 Scenes data set [1].
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Figure 4.5: In this figure, three refocused images from each refocusing
method are shown. Each row contains one method’s refocused images with
refocusing parameters of α = 0.125, α = 1.0 and α = 2.0 from left to right.
In the middle, an unfocused DoF image is provided for visual comparison of
the predicted colors. From top to bottom, the used methods for refocusing
are RefNet with Fourier slice ground truth, Fourier slice method, RefNet
with shift-and-sum ground truth, and shift-and-sum method. The LF used
for this figure is the 16th LF in the 30 Scenes data set [1].
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Chapter 5

Conclusion

In this dissertation, it was shown that Machine Learning Methods are very efficient

LF Compression and refocusing. A transformation function between PCs and CAs

is physically derived in chapter 2. Using that transformation function, simulation of

high angular and spatial resolution LF in any physically rendering software is possible.

These high-resolution simulated LFs have large are very bulky. We provide an ML

algorithm for lossy compression and decompression of bulky LFs In chapter 3 to

overcome this problem. Finally, in chapter 4 a real-time LF refocusing algorithm has

been developed by use of residual CNNs. My new algorithm, increased the quality of

refocused images while being faster than state-of-the-art. The function and algorithms

described in this dissertation can be used by researchers to improve the quality of LFs

both in capture and postprocessing. Also, the refocusing methods may be used for
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the detection task of choice by making some changes to the dataset.

5.1 Summary of findings

The body of this dissertation provides the following key results. First, a transforma-

tion model was physically derived by the use of geometrical optics that allows finding

the placement of cameras in the array to build a CA with the capability of capturing

an LF similar to one that is captured by the SPC of choice including how to apply

vignetting to the pristine simulated LF. This model is developed by considering the

thin lens approximation. The model is validated by first conducting simulations in

Blender software. Then, using the refocusing parameter, some refocused images are

extracted. The refocusing distance of them was compared to the estimated distances

derived from the Plenoptisign software [34] and proofed to have similar distances

within the expected measurement error. Second, an ML decompression network is

trained that is capable of estimating the entire LF from a single-center view of LF

that is compressed by the JPEG lossy algorithm at 50% quality. This algorithm is

faster in compression by 100 times while being at least 18 times faster in decom-

pression compared to the state-of-the-art video encoder used compression techniques

when the quality and the bit rate are kept the same. On the other hand, it is shown

that the PSNR and SSIM of the postprocessing extractions like refocused images

from the proposed algorithm’s reconstructed LF has higher values compared to the
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state-of-the-art. This superiority has been visually confirmed as well. Third, a novel

ML technique is proposed that uses residual CNN types of network to extract a set

of 16 refocused images with refocusing parameters of α = 0.125, 0.250, 0.375, ..., 2.00

from a raw LF in real-time without pre-processing. The set of refocused images have

better color prediction compared to the other available refocusing techniques while

being faster. The dataset used for training and testing RefNet, JPEG-Hance, and

Depth-Net are the public datasets captured specifically by the Lytro Illum camera.

5.2 Possible future extensions

While I have been able to address some of the problems in LF processing to some

extent, there are still so many unanswered problems that remained untouched. Also,

further improvements to the proposed algorithm are possible. As an example, the

transformation function proposed in this dissertation for conversion of SPC to CAs

can be further improved to take compound lenses into account and go beyond the

thin lens approximation. Also, the transformation can be expanded to other types of

PCs like FPCs.

While I have been able to propose a fast LF compression algorithm, the quality of

reconstructed LF needs to be improved while maintaining the speed. Using the same

idea, LF video compression can be explored too. The proposed network structure and
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loss functions also can be improved. Using simulated LFs and LF videos, the dataset

can be expanded for achieving a better result.

My refocusing algorithm is the first ML method for refocusing LFs captured by a PC.

The next step would be to remove the constraint of predefined refocusing parameters.

Also, the current network can refocus any light field with angular resolution of 7× 7.

One important extension is to make it suitable for any number of angular resolution.

On the other hand, generalization to other types of LF capture is also an important

avenue that should be explored. Other future paths that could be explored are ex-

tracting multi-focus compositions from LF using ML methods. Such refocused images

can be included in an object detection pipeline to improve the detection quality.

92



References

[1] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi, “Learning-based view syn-

thesis for light field cameras,” ACM Trans. Graph., vol. 35, no. 6, 2016.

[2] E. H. Adelson and J. R. Bergen, The Plenoptic Function and the Elements of

Early Vision, vol. 2. Vision and Modeling Group, Media Laboratory, Mas-

sachusetts Institute of Technology, 1991.
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crete focal stack transform,” in 2008 16th European Signal Processing Confer-

ence, pp. 1–5, 2008.

[78] C. Xiao, J. Yang, Y. Wang, and W. An, “Reprojection-based method for cam-

era arrays of refocusing onto arbitrary focal surfaces,” in Fifth Conference on

Frontiers in Optical Imaging Technology and Applications (J. Chu, W. Liu, and

H. Jiang, eds.), vol. 10832, pp. 237 – 242, International Society for Optics and

Photonics, SPIE, 2018.

[79] S. Sugimoto and M. Okutomi, “Virtual focusing image synthesis for user-specified

image region using camera array,” in 2008 19th International Conference on

Pattern Recognition, pp. 1–4, 2008.

105
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