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Abstract 

Common partial cutting management methods in Lake States hardwoods include both 

selection management and diameter-limit cuttings. Single-tree selection in particular is a 

widely prescribed silvicultural system in northern hardwoods and has an established history 

of use throughout the entire range of the forest type. Using data from two historic 

silvicultural studies, long-term comparison of single-tree selection methods and other 

partial cutting practices in northern hardwoods reveals that single-tree selection to higher 

residual basal areas, as widely applied in Great Lakes northern hardwood forests, is inferior 

using financial and volume yield criteria. Alternatives that remove more of the larger trees 

appear to increase regeneration and harvested tree quality over time, which in turn drives 

financial performance. However, treatments with extremely high volume removals 

perform poorly against all others and have few, if any, redeeming financial, silvicultural, 

or ecological qualities. As applied in the Lake States, most single-tree selection follows the 

Arbogast (1957) guide, and the implementation of alternatives to this may provide greater 

financial returns and higher average quality while also having implications on regeneration 

and long-term sustainability. 
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1 Introduction 

Single-tree selection is an important and widely used forest management method in 

northern hardwoods (Kern et al. 2014; Pond et al. 2014). Selection management, in addition 

to other partial cutting methods, was first considered for use in the United States as an 

alternative to the clearcutting that was prevalent throughout the late 19th century (Kenefic 

and Kern 2013; O’Hara 2002). Studies testing the applicability of several different partial 

cutting methods in northern hardwoods were thus instituted in the Lake States to investigate 

the potential of such methods (Eyre and Zillgitt 1953; Niese et al. 1995; Reed et al. 1986). 

The first of these was installed at the Dukes Experimental Forest near Marquette, MI, in 

1926; subsequent results from this study led to the publishing of timber marking guide that 

is still widely influential today (Arbogast 1957; Pond et al. 2014). Instituted in part to 

expand on findings from the Dukes study, two other similar studies were set up in the 

region in the following decades: a study at the Argonne Experimental Forest in northern 

Wisconsin, and one at the Ford Forest owned and operated by Michigan Technological 

University in Alberta, MI.  

These two studies have been consistently maintained in Lake States northern 

hardwoods for over 60 years. Both studies were begun on previously impacted second 

growth forests, however, the Argonne study was begun on even-aged second growth forest, 

while the Ford Forest study was uneven-aged at study commencement (Previant 2015; 

Stoeckler 1955). Both studies have been maintained over time, with data collection and 

harvesting occurring on regular bases and thus allowing for a thorough evaluation of the 

long-term consequences of silvicultural alternatives. Since the establishment of these 

silvicultural experiments, three different financial analyses have been published based on 

data collected from the studies, and the accompanying literature has consistently mentioned 

the need for a continuation of the studies and accompanying further analysis (Erikson et al. 

1990; Niese et al. 1995; Reed et al. 1986). These previous analyses also focus on stand 

structure as well as characteristics such as species composition, quality, and volume 

changes through time in various partial cutting treatments including diameter-limit cuts, 

crop-tree treatments, and single-tree selection management.  
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There are both benefits and drawbacks that come to light through evaluation of these 

various partial cutting methods. Selection silviculture, at this point in time, has a long 

history of use and is known to produce sustained yield and high quality trees in northern 

hardwoods forest (Nyland 2016), but there have been recent disquisitions on its 

sustainability due to concerns about a lack of regeneration and reduction in overstory and 

structural diversity (Angers et al. 2005; Gronewold et al. 2010; Neuendorff 2007). 

Detractors critiquing diameter-limit treatments consistently mention the lack of tending in 

residual size classes, and the potential dysgenic effects that may result from repeated 

removal of more vigorous, faster-growing trees (Kenefic et al. 2005, Kenefic and Nyland 

2005, Fajvan 2006, Buongiorno et al. 2000,  Hawley et al. 2005, Howe 1989, Nyland 1988, 

O’Hara 2002). However, some studies have found sustained volume yield, high financial 

return, and greater overstory species diversity after long-term application of diameter-limit 

cuts (Smith and Miller 1987; Buongiorno et al. 2000), and that single-tree selection systems 

reducing basal area further than traditionally recommended have produced higher 

overstory species diversity and better financial performance (Erickson et al. 1990; Niese 

and Strong 1992). The existence of such possible advantages and disadvantages in these 

types of partial cutting management show the need for comparisons of various management 

methods, including these and other partial cutting methods such as thinning and 

improvement treatments. The long-term nature of the Ford Forest and Argonne 

Experimental Forest cutting methods studies facilitate such comparisons, which are 

important to identify trends through time, and have the potential to inform management 

decisions far into the future. 

This thesis is divided into two chapters. The first re-examines results from the first 

three decades of the Ford Forest study in the context of 30 years of additional data 

collection and management. The second chapter re-visits the Argonne study to complete a 

new financial analysis, and to examine the data collected in the 25 years since publications 

by Niese et al. (1995) and Strong et al. (1995). The main goal is to examine yield, structure, 

grade improvements, and financial performance through time, and to identify factors that 

may explain observed differences within and across treatments, particularly since the most 

recent analyses. 
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2 Six Decades of Financial Returns and Stand Dynamics in the 

Ford Forest Cutting Methods Study 

2.1 Introduction 

Single-tree selection is a silvicultural system that is widely prescribed in Lake 

States northern hardwoods and has an established history of use throughout the entire range 

of the forest type (Kern et al. 2014; Pond et al. 2014). At the start of the 20th century, partial 

cutting methods were well established in Europe, and questions had begun to arise about 

their use in the United States (Kenefic and Kern 2013; O’Hara 2002). To help answer these 

questions, studies testing the viability of several different partial cutting methods in 

northern hardwoods were instituted in the Lake States (Eyre and Zillgitt 1953; Niese et al. 

1995; Reed et al. 1986).  And indeed, initial research in the Lake States showed that single-

tree selection in uneven-aged northern hardwoods could shape and maintain an 

economically and ecologically productive forest (Eyre and Zillgitt 1953; Erdmann and 

Oberg 1973). The management goals of stands under single-tree selection usually include 

high quality sawtimber and a balanced diameter distribution (Nyland 1998; Tubbs 1977a). 

To help achieve these goals, analysis of stand structure and financial returns are useful 

evaluations that can provide important information about quality and value. 

Quality and volume directly affect financial gain and consequently also influence 

management decisions. Previous long-term studies evaluating silvicultural treatments in 

northern hardwoods have found that single-tree selection can increase quality and volume 

growth (Johnson 1984; Leak and Sendak 2002). The monetary value of most hardwoods is 

greatly affected by wood quality, and so managing to improve quality and reduce logging 

damage in northern hardwoods is important for improving financial yield; with an increase 

in quality and grade, the monetary value of a tree sharply increases (Miller 1991; 

Wiedenbeck and Smith 2018). Increases in quality resulting from single-tree selection in 

hardwoods have resulted in higher financial yield (Orr et al. 1994; Schuler et al. 2017). In 

a simulation in northern hardwoods, Bohn et al. (2011) found that initial harvest volumes 

will be greatest with diameter-limit cuts but may be later outperformed by single-tree 
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selection with up to 20-40% greater volumes per harvest. A simulation by Nyland (2005) 

also found that selection treatments will generate higher long-term revenues. However, in 

several long-term studies, diameter-limit cuts resulted in the greater financial returns than 

selection (Buongiorno et al. 2000; Erickson et al. 1990; Miller 1993; Reed et al. 1986; 

Smith and Miller 1987). A recent study in northern hardwoods also found that single-tree 

selection cuts did not greatly increase growth or survival in residual trees (Moreau 2019). 

This past research shows the value of long-term studies to test hypotheses based on 

simulation, while also exhibiting that there can be successful growth under various 

different partial cutting management regimes. Thus, there is a need to evaluate the long-

term success and applicability of different management regimes over many harvest entries, 

using both financial and ecological factors (Erickson et al. 1990).  

Data from the cutting methods study at the Ford Forest present an exceptional 

opportunity to evaluate long-term consequences from silvicultural alternatives in northern 

hardwoods. The study was established in 1956, with an objective of evaluating stand 

development and financial benefit under different partial cutting methods through time 

(Bourdo 1957). Methods tested include single-tree selection, cutting above a diameter 

limit, a “light improvement” cut emphasizing residual quality over structure, and an 

unmanaged control. Although the design uses single replicates of each cutting method, this 

case study and associated long-term dataset have generated results that increase the 

evidence base upon which solutions to management problems can be formed. An important 

precedent can be found in the historic northern hardwoods cutting methods study at the 

Dukes Experimental Forest in the Upper Peninsula of Michigan. While also unreplicated, 

it is nevertheless the foundation for the renowned Eyre and Zillgit (1953) publication, on 

which the influential and widely prescribed Arbogast (1957) marking guide for northern 

hardwoods is directly based. The cutting methods study at the Ford Forest was designed in 

consultation with Carl Arbogast with the intent to establish selection treatments similar to 

those at the Dukes Experimental Forest (Kern et al. 2014). Unfortunately, there are 

problems with the Dukes dataset including gaps in harvest cycle entries and damage to the 

control, making other long-term studies such as this one, that have been consistently 
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maintained and monitored in upper Great Lakes northern hardwoods forest, even more 

consequential.  

Two important publications have resulted from the cutting methods study at the 

Ford Forest:  Reed et al. (1986) and Erickson et al. (1990), which present 22 and 32-year 

results. In addition to examining yield and quality improvement, these studies contrast 

financial performance of the various treatments in terms of discounted net revenues to the 

initiation of the study (in 1956), and in terms of a long-term sequence of repeatable yields 

once stand structure has stabilized under several harvest cycles sensu Rideout (1985). 

These values are influenced by the interest rate chosen and the cost terms included, but 

often when comparing treatment performance, costs do not need to be included because 

the end result is a decision whether or not to take management action (Martin and Leudeke 

1989). These alternative approaches embody two perspectives: one of the landowner 

considering near-term financial implications of alternatives, and the other a long-term 

perspective on the continuous yield and financial return. Given a defining feature of 

selection silviculture is continuous stocking, when assessing the long-term consequences 

of alternative methods, the return under repeated cycles of the same treatment is arguably 

much more relevant than return from initial conversion. 

To evaluate long-term performance, both Reed et al. (1986) and Erickson et al. 

(1990) assumed that stand structure and periodic yield had stabilized 20-30 years after the 

initial conversion. A key conclusion from both analyses was the superiority of diameter-

limit methods over single-tree selection, based on financial criteria, particularly for a 

diameter limit of 41 cm in contrast to larger or smaller alternatives. These early studies 

also suggest that careful application of the selection system led to improvements in the 

grade of residual standing trees, in comparison to both diameter-limit treatments and an 

untreated control. While some shifts in ranking among the treatments occurred in the 10-

year interval between the two analyses, both questioned whether increases in grade under 

the selection treatment would eventually lead to an increase in return that would surpass 

those of the diameter-limit cuts, a result forecast by Bohn et al. (2011) and Nyland (2005) 

using models. These questions can only be addressed empirically following an extended 
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study period, and as Reed et al. (1986) note, they are “of utmost importance to small, 

nonindustrial ownerships.” 

The overall goal of this analysis was to re-examine this silvicultural experiment 

(Erikson et al. 1990; Reed et al. 1986), with an emphasis on changes that have accumulated 

over the second 30 years of the study. Specific objectives included: (1) to examine stability 

of yield and structure within and across treatments since the most recent analysis, (2) to 

explore the hypothesis that further improvement in standing tree grade would occur in 

single-tree selection but not diameter-limit treatments, (3) to revisit the hypothesis that 

single-tree selection treatments could “catch up” to the diameter-limit treatments on 

financial criteria, and (4) to identify factors that may explain observed differences in yield, 

structure, and financial performance with time, which may be explored in future research. 

2.2 Methods 
2.2.1 Site description 

The study is located at the Ford Forest in Baraga County, MI (46.66°N, 88.51°W) 

which is a research forest owned and operated by Michigan Technological University. The 

26.3 ha study area is uniform in soils and topography, and as a consequence is also uniform 

in ecological habitat type and site productivity. Soils are classified as Alouez gravelly 

coarse sandy loams, slopes 0-6%, habitat type ATD (Acer-Tsuga-Dryopteris; Burger and 

Kotar 2003), and sugar maple site index is 19-21 m base age 50 (Soil Conserv. Serv. 1988). 

Circa 1898 the white pine in the area was removed from what had initially been a pine-

hardwood forest, and subsequent selective logging in the early 1900s removed over 70% 

of the merchantable sawtimber (Bourdo 1957; Reed et al. 1986). In 1956 the Cutting 

Methods Study was begun on the residual northern hardwoods forest, which was an uneven-

aged sugar maple-dominated mix of regeneration and remnant trees from previous harvests; 

treatment units were uneven-aged to begin with, with overstory sugar maple in the control 

ranging from 38.5 to 252.5 years old as measured in 2014, and after 52-years of 

management, the age structure of all six treatments was similar (Previant 2015). 
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The study area was divided into eight different silvicultural treatments and a control, 

ranging from 1.2 to 5.7 ha in area, with an objective of showing the effects of various 

cutting methods on stand development and yield. Treatments are (i) 13 cm diameter-limit 

(DL13), (ii) 30 cm diameter-limit (DL30), (iii) 41 cm diameter-limit (DL41), (iv) 56 cm 

diameter-limit (DL56), (v) single-tree selection system cut to 21 m2ha-1 residual basal area 

(STS21), (vi) single-tree selection system cut to 16 m2ha-1 residual basal area (16 STS), 

(vii) single-tree selection system cut to 11 m2ha-1 residual basal area (STS11), (viii) light 

improvement (LI), and (ix) control (Bourdo 1957). The light improvement treatment is 

defined as a 15-16 m2ha-1 residual basal area treatment based on increasing quality. In the 

selection treatments, a balanced diameter distribution with a q-value of 1.3 and a maximum 

tree size of 61 cm was a goal for each harvest entry. Selection treatment guidelines followed 

Arbogast (1957) and emphasized removing trees that had poor quality or vigor, were high 

risk or cull, lacked the potential for improvement, or impeded the growth of other high-

quality trees. In diameter-limit cuts, harvesting was confined to trees above the diameter 

limit with no tending in the residual stand. 

From 1956 to present day the treatments have been harvested on 10-year cycles, 

though some were cut only when volume growth had been sufficient to make an 

operational-scale harvest feasible. Efforts were consistently made throughout the study 

period to reduce site damage and potential harm to residual trees, although growth and 

survival of individual trees is primarily related to the competitive pre-harvest environment 

when compared to potential machinery damage (Moreau 2019). Skid trails present within 

compartments were re-used and crews were usually local, familiar with the area, and in 

regular contact with the supervising forester.  

2.2.2 Measurements 

Within each treatment unit, a single 0.4 ha plot was established and divided into 10 

equal-area subplots, with a preharvest inventory conducted in 1956. The following 

measurements were collected for trees greater than 12.6 cm dbh: species, dbh, 

merchantable sawlog height to a 25.4 cm outside bark minimum diameter, gross and net 
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volume (International ¼” rule) for trees greater than 28 cm dbh, cull percent, and butt-log 

tree grade. The same measurements were also collected prior to harvests in 1957, 1968, 

1978, 1988, and 1998. Prior to harvest in 2008, slightly different measurements were 

collected. These included, for trees greater than 12.6 cm dbh: species, dbh, location within 

plot, total height, height to live, merchantable height, and percent soundness and grade for 

sawtimber trees. Prior to harvest in 2018, measurements collected were species, dbh, 

number of 2.4-meter (8-ft) sawlogs and 2.4-meter pulp sticks, and percent soundness and 

grade for sawtimber trees. Standing tree grades were estimated following the USDA Forest 

Service Timber Management Field Book Region 9 (USDA Forest Service 2008) and 

volumes were estimated using Gevorkiantz and Olsen (1955).  

At each harvest entry, the harvest removal from the entire treatment unit was 

stacked and scaled by grade onsite. Logs were graded to the standards of the Northern 

Hardwood and Pine Manufacturers Association prior to 1988, and after to the standards of 

Timber Producers Association of Michigan and Wisconsin. These data were standardized 

to a per-unit-area basis for financial analyses, and volume was converted from board feet 

to cubic meters following Winn et al. (2020). 

2.2.3 Growth and yield 

Estimated butt-log grade for sawtimber size class trees was used to indicate stand 

quality improvement over time. Post-harvest standing volumes and cumulative volume 

removals by grade were used to compare outcomes from the different treatments. The effect 

of treatment on stand structure was evaluated by comparing pre-study diameter 

distributions from 1956, pre-harvest diameter distributions from halfway through the study 

in 1998, and the most recent pre-harvest diameter distributions from 2018 (Pond and Froese 

2015). Unfortunately, pre-harvest stand structure data from 1988 were not available, so 

1998 data were used instead.  

 Species abundance was reported to evaluate changes in overstory (trees > 12.6 cm 

dbh) species composition since 1956. Pre-treatment 1956 values were taken directly from 
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the establishment report (Bourdo 1957). Pre-harvest 2018 values were found using 

individual tree data. All values are reported as a percentage of stems per measurement area 

relative to each species, for each treatment. 

2.2.4 Financial analysis 

In this study, the managed forest value (MFV) was emphasized in financial 

analyses, following Rideout (1985). Rideout (1985) uses an analysis that looks at the 

managed forest value in conjunction with the net present value, in order to evaluate the 

return from conversion as well as an infinite series of repeatable returns once the stand has 

reached ‘sustainable stand structure’, where all future harvests will produce similar cash 

flow each cutting cycle.  MFV is the discounted value of the sum of an infinite series of 

harvests, assuming a stable structure and reliable estimate of future volume removals by 

grade, and is intended to represent the long-term applicability of a silvicultural system. Two 

assumptions about sustainable stand structure were evaluated: (1) that it was reached in 

1978 after two entries, following Reed et al. (1986) and Erickson et al. (1990), and (2) in 

1998, relying instead on the most recent 30 years of results since Erickson (1990). Financial 

performance was compared between each treatment and the control using discount rates of 

2% and 4%. Total revenue accumulated since 1978 was also evaluated at these same 

discount rates. 

In both MFV and total revenue calculations, 2018 dollars were used to facilitate 

comparison. While MFV for 1998-2018 uses current 2018 prices, the price structure used 

in total revenue calculations was that of regional historic prices from each year of harvest 

adjusted to a common 2018 basis using the producer price index for lumber and wood 

products (U.S. Bureau of Labor Statistics). Actual prices were used where available from 

timber sale records, augmented where necessary by historic pricing from Ulrich (1983) and 

Michigan DNR stumpage reports. The MFV values for 1978-1988, taken directly from 

Erickson et al. (1990), were also adjusted to a 2018 basis. No cost factors were introduced 

into the analysis due to the intent to compare relative, not absolute, measures of financial 

returns between treatments.  
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2.3 Results 
2.3.1 Quality 

The grade distribution for pre-harvest standing tree volume continually improved 

from 1968 through 2018 in the LI and the STS treatments, with the most notable change 

being a decline in the proportion of non-merchantable and sharp increase in grade 1 (Figure 

2. 1). The greatest increase in percentage of grade 1 trees since 1968 of the selection 

treatments was in the STS11 (increase by 283%) and by 2018 the proportion of grade 1 

had increased from about 15-20% to 30-50% in all STS treatments. In contrast, while the 

grade distribution improved somewhat between 1968 and 1988 in the DL treatments, there 

has been little change through 2018, and the proportion of grade 1 actually fell in all but 

the DL56 treatment. In 2018, the STS11 had the greatest proportion of grade 1 among the 

STS treatments, and the DL41 among the DL treatments. Still, over the entire duration of 

the study, grade 1 percentages in all treatments have increased, excluding the DL30 and 

DL13. 

Notably, by 2018 only the LI and STS11 had greater grade 1 percentages than the 

control. Since grade is strongly determined by tree size, the grade increase in the control 

with time likely reflects an increase in mean tree size, and thus comparisons may be 

confounded with the absence of treatment. To isolate treatment differences, grade 

proportion was re-calculated for only trees ≥ 46 cm dbh; this dbh was chosen because under 

the log grading rules used all trees 46 cm and above had equally the least stringent 

requirements to meet grade 1 criteria (smallest minimum length per clear cutting and 

greatest maximum number of clear cuts per face). Under this criterion, in 2018 all STS 

treatments and the LI had a larger proportion grade 1 standing tree volume than the control 

(Table 2. 1). For trees ≥ 30 cm dbh and ≤ 46 cm dbh, that is, trees likely to increase in grade 

as diameter increases, the DL41 had the highest number of grade 2 trees both pre-and post-

harvest. 
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Figure 2. 1 Ford Forest pre-harvest standing tree butt log grade distribution (%) by grade 
as measured in 1968, 1988, and 2018 in 0.4-hectare measurement units, for trees > 28 cm 
dbh (Erickson et al. 1990). Non-merchantable (nm) class consists of trees > 28 cm dbh 
without any merchantable volume, as well as cull trees. Grade 1 includes grade 1 and 
better. 
 

Table 2. 1 Ford Forest grade distribution (%) in 2018 by size classes corresponding to 
log grading rules threshold diameters. Grade 1 includes grade 1 and better. 
 

 

 

 

 

 

 

 

 

 

 

   Size 30-45 cm > 45 cm 
   Grade 1 2 3 nm 1 2 3 nm 

Pre-
harvest 

DL56 8 21 56 15 21 25 33 21 
DL41 22 40 32 6 - - - - 
DL30 67 33 - - - - - - 
DL13 - - - - - - - - 
STS21 11 41 60 18 73 14 13 - 
STS16 26 39 32 3 69 23 8 - 
STS11 30 55 10 5 89 11 - - 

LI 42 39 15 4 81 19 - - 
Control 18 36 40 6 65 17 11 6 

Post-
harvest 

DL56 8 22 59 11 22 28 39 11 
DL41 3 57 37 3 - - - - 
DL30 - - - - - - - - 
DL13 - - - - - - - - 
STS21 11 41 60 18 73 14 13 - 
STS16 28 44 28 - 80 20 - - 
STS11 31 56 13 - 86 14 - - 

LI 42 42 12 4 80 20 - - 
Control 18 36 40 6 65 17 11 6 
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2.3.2 Volume and yield 

Standing sawtimber volumes through time have persisted as expected, with the 

DL56, DL41, and DL30 treatments each retaining more volume than the next smaller limit, 

respectively (Table 2. 2, Figure 2. 2). Similarly, the residual volumes of the selection 

treatments line up as STS21 > STS16 > STS11. Since 1988 the DL41 treatment consistently 

had the greatest sawtimber volume growth, with an average of 2.92 m3ha-1 per year (Table 

2. 2). Prior to harvest in 2018, all treatments except for the harshest diameter-limit (DL30 

and DL13) cuts had greater per ha volumes than in 1956. 

While sawtimber volume yields since 1978 for the selection treatments follow the 

expected pattern of volume from STS11 > STS16 > STS21 treatment, the DL41 treatment 

produced greater yields than the DL30 or DL56 (Figure 2. 3, Table 2. 3). The DL41 

treatment had not only the greatest overall removal volume with an average of 2.2 m3ha-1 

per year, but the greatest total volumes of grade 1 and grade 2 sawtimber produced since 

sustainable stand structure was reached in 1978. The grades for these harvested volumes 

are more accurate than those estimated for standing trees.  

 
Figure 2. 2 Net residual standing sawtimber volume (m3ha-1, from 0.4-ha measurement 
units) over the 62-year study period (Int’l ¼” Rule, following Gevorkiantz and Olsen 
(1955)) at the Ford Forest. Conversion from board feet to cubic meters following Winn et 
al. (2020). Data not available post-harvest for 1968 and 1978. 
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Table 2. 2 Net residual standing sawtimber volume (m3ha-1, from 0.4-ha measurement 
units) over the 62-year study period (Int’l ¼” Rule, following Gevorkiantz and Olsen 
(1955)) at the Ford Forest. Conversion from board feet to cubic meters following Winn et 
al. (2020). Post-harvest values are shaded in grey; data are not available post-harvest for 
1968 and 1978. 

 

 
Table 2. 3 Ford Forest net scaled harvested sawtimber volume by grade (percent of total 
m3ha-1) and treatment (Int'l ¼” Rule, following Gevorkiantz and Olsen (1955)) from 1978 
- 2018. Volumes derived from entire-treatment unit removals. Conversion from board 
feet to cubic meters following Winn et al. (2020).  
 

aIncludes grade 1 and better. 
 

      Year       

 1956 1957 1968 1978 1988 1988 1998 1998 2008 2008 2018 2018 

DL56 57.8 49.4 70.4 74.5 74.0 74.0 95.9 78.9 102.
3 95.0 111.

7 97.5 

DL41 68.2 45.2 68.0 69.2 58.8 32.5 60.4 29.9 58.7 43.8 74.7 35.9 

DL30 85.3 19.7 26.9 47.6 66.4 2.7 19.5 19.5 39.5 2.4 12.2 0.6 

DL13 56.3 0.0 0.0 0.0 2.3 2.3 15.2 0.0 0.0 0.0 0.0 0.0 

STS21 82.4 67.2 83.7 93.9 76.3 76.3 108.
4 77.9 97.1 90.6 109.

2 
109.

2 
STS16 76.5 64.6 80.9 86.2 71.6 64.0 94.0 61.0 78.5 71.8 97.2 71.0 

STS11 46.2 36.7 55.5 65.3 51.2 40.3 65.5 38.1 59.6 38.0 56.0 44.0 

LI 81.8 81.0 117.
2 

129.
9 98.4 70.3 90.2 71.7 93.7 75.7 95.5 86.2 

Control 77.2 77.2 110.
2 

125.
5 

123.
8 

123.
8 

130.
6 

130.
6 

171.
6 

171.
6 

213.
9 

213.
9 

Year  DL56 DL41 DL30 DL13 STS21 STS16 STS11 LI 

1978
-

1988 

Grade 1a (%) 31 33 26 - 29 13 16 23 
Grade 2 (%) 38 35 46 - 41 33 37 52 
Grade 3 (%) 31 32 28 - 30 54 47 25 
Mean annual 

(m3ha-1) 0.3 2.7 2.7 - 0.9 0.9 1.6 2.1 

1998
-

2018 

Grade 1a (%) 41 41 7 08 43 31 35 51 
Grade 2 (%) 26 30 18 59 36 44 35 16 
Grade 3 (%) 33 29 75 33 21 25 30 33 
Mean annual 

(m3ha-1) 1.1 1.9 0.8 0.4 1.2 1.6 1.8 0.9 

Total mean annual 
(m3ha-1) 0.8 2.2 1.6 0.2 1.1 1.3 1.7 1.4 
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Figure 2. 3 Ford Forest net scaled harvested sawtimber volume by grade (percent of total 
m3ha-1) and treatment (Int'l ¼” Rule, following Gevorkiantz and Olsen (1955)) from 1978 
- 2018. Volumes derived from entire-treatment unit removals. Conversion from board 
feet to cubic meters following Winn et al. (2020). 

 
2.3.3 Financial returns 

Excluding 1957-1968, and thus the effects of initial stand conditions, the DL41, 

STS21, and LI perform best under MFV at a 4% discount rate in the first half of the study 

(Erickson et al. 1990; Table 2. 4). Using only returns from previous three decades, the 

DL41 is still ranked first, but is followed instead by the STS11 and STS16 (Table 2. 4). 

Real sugar maple stumpage prices were higher in 2018 than 1988 (Wagner et al. 2019), 

resulting in greater dollar values for the 1998-2018 MFV and periodic return calculations. 

Total discounted revenues since 1978, when sustainable stand structure was 

assumed to have been reached (Reed et al. 1986), show the rate at which different 

treatments have been accumulating revenue (Figure 2. 4). At all discount rates the DL41 is 

uniformly superior. Other treatments such as the STS11 and LI that have been cut each 10-

year harvest cycle also perform well, but still do not show a rate of revenue accumulation 

that has allowed them to equal or surpass the DL41. The STS11 and STS21 begin in 1978 

with very similar revenue, but the STS11 rapidly surpasses the STS21 at all discount rates. 

The selection treatments, DL41, and DL30 have all been accumulating revenue at a greater 

rate than the DL56 and DL13 over the past three decades. 
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Table 2. 4 Comparison of MFV and periodic return from first two decades after 
sustainable stand structure was assumed at the Ford Forest study, and from the past three 
decades, with sawlog products valued at price in 2018 dollars. Discount rates of 2% and 
4% are shown. 

aValues from Erickson et al. 1990 adjusted to 2018 prices using the PPI for Lumber and Wood Products. 
Real sugar maple stumpage prices were higher in 2018 than in 1988 contributing to differences in value.  
bTreatment interval is the average of the cutting cycles lengths associated with each harvest by the end of 
the period, except for the DL13 where it is the interval between the only two harvests in entire study. 

 

 
 

Period Attribute DL 
56 

DL 
41 

DL 
30 

DL 
13 

STS 
21 

STS 
16 

STS 
11 LI 

1978-
1988a 

Periodic Return 
($·ha-1) 133 566 1060 1060 261 191 250 525 

Mean Treatment 
Interval (years)b 10 10 30 40 10 10 10 10 

MFV ($·ha-1)  
2% 609 2584 1306 878 1190 872 1142 2397 

MFV ($·ha-1)  
4% 277 1177 472 279 1095 398 521 1093 

Ranking 8 1 5 7 2 6 4 3 

1998-
2018 

Periodic Return 

($·ha-1) 2051 2240 1159 1425 1880 1781 2005 1145 

Mean Treatment 
Interval (years)b 17 10 20 40 13 10 10 10 

MFV ($·ha-1) 
2% 5126 10228 2385 1180 6403 8134 9155 5227 

MFV ($·ha-1)  
4% 2164 4664 973 375 2827 3709 4174 2384 

Ranking 6 1 7 8 4 3 2 5 
 ∆ MFV rank +2 0 -2 -1 -2 +3 +2 -2 
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Figure 2. 4 Cumulative revenue since 1978 in 2018 dollars by treatment at the Ford 
Forest: (A) 0% discount rate, (B) 2% discount rate, and (C) 4% discount rate. 
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2.3.4 Structure and density 

 When this study began in 1956, the diameter distribution followed a reverse-J 

shape that was relatively homogenous across treatments (i.e., in pre-treatment condition; 

Figure 2. 5A). By 1998, differences in pre-harvest maximum diameter were clearly 

apparent among the DL treatments and the control, but less so among the STS treatments 

(Figure 2. 5B). Between 1998 and 2018 structure was relatively stable in the DL 

treatments, with a sharp drop in density at the relevant diameter limit. In contrast, 

structure in the STS treatments appears more variable within than between treatments, 

but appears to have become more stable and more closely approximating the original 

reverse-J shape in 2018 (Figure 2. 5B, C). Pre-harvest, in both 1998 and 2018, the DL30 

and DL41 had the most trees in the pole and small sawtimber size classes, with the 

disparity between them and all other treatments growing larger with time. The 1998 and 

2018 pre-harvest structures of the selection treatments can still be described as reverse-J, 

but stocking in the smallest diameter classes is much lower than that measured in 1956.  

The DL30, DL41, and DL56 treatments have similar post-harvest basal areas to the 

STS11, STS16, and STS21 treatments, respectively (Figure 2. 6B). However, there is a 

clear difference in trees per hectare (TPH) between selection and diameter-limit treatments 

in that the diameter-limit treatments are associated with increasing stand density with time. 

For the past four harvest entries, these three diameter-limit treatments have had much 

higher post-harvest TPH than the single-tree selection treatments; even the DL56 treatment 

outperforms the selection treatments here. So, TPH has increased over time for the 

diameter-limit treatments while steadily decreasing for the selection treatments and control 

(Figure 2. 6A). This indicates the diameter-limit treatments are recruiting new trees, net of 

mortality and removals, whereas the selection treatments are not. The noticeable decline in 

post-harvest TPH without a corresponding decline in basal area (ideally kept at 11, 16, 21, 

and 15–16 m2ha-1for the STS11, STS16, STS21, and LI treatments respectively) also 

indicates that growth in selection treatments is increasingly accumulating on larger 

diameter trees. 
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Figure 2. 5 Ford Forest: (A) Stand structure pre-harvest at study commencement in 1956 
for trees ≥12.6 cm dbh. The 50 cm class contains all trees in larger diameter classes. (B) 
Stand structure pre-harvest in 1998 for trees ≥12.6 cm dbh. (C) Stand structure pre-
harvest in 2018 for trees ≥12.6 cm dbh. 
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Figure 2. 6 Ford Forest post-harvest stand density over time for all treatments, excluding 
the 13 cm DL cut, in terms of (A) number of trees (stems·ha-1) and (B) basal area (m2·ha-

1). 
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2.3.5 Species composition 

Relative overstory species composition pre-treatment in 1956 was sugar maple 

dominated, with the STS21 having the lowest relative sugar maple abundance at 72% and 

the LI having the highest at 94% (Table 2. 5). Sugar maple abundance increased in all 

three single-tree selection treatments from 1956 to 2018, as well as in the control, DL30, 

and DL56, with the STS21 and DL56 having the greatest gains (+13%) in sugar maple 

relative abundance. Notably the DL41 had the greatest decrease in relative abundance of 

sugar maple (-7%) from 1956 to 2018. In 2018, the control had the highest relative 

abundance of sugar maple at 97%. Yellow birch relative abundance decreased with time 

in all treatments except for the STS11. 

 

 
Table 2. 5 Initial 1956 pre-treatment relative species abundance (%) and total change to 
pre-harvest 2018, for trees > 12.6 cm dbh, in 1956 and 2018. 

a Other may include one or more of: Betula papyifera, Picea glauca, Prunus serotina, Ostrya virginiana, Tilia 
americana, or Tsuga canadensis 

 

 

 

 

 

Treatment Acer 
saccharum 

Betula 
alleghaniensis 

Ulmus 
americana Othera 

 Initial ∆ Initial ∆ Initial ∆ Initial ∆ 
DL56 76 +13 6 -2 6 -5 11 -6 
DL41 86 -7 7 -6 6 +1 1 +12 
DL30 79 +1 6 -6 6 -3 8 +9 
DL13 88 -4 3 -3 5 +2 4 +5 
STS21 72 +13 12 -9 12 -11 4 +7 
STS16 80 +4 14 -11 3 0 3 +7 
STS11 76 +10 8 0 8 -2 8 -8 

LI 94 -4 0 0 6 +1 0 +3 
Control 90 +7 5 -4 1 -1 4 -2 
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2.4 Discussion 

The continuation of the cutting methods study through 2018 extends the results 

reported at year 22 (by Reed et al. 1986) and year 32 (by Erickson et al. 1990) to a total of 

62 years. A key finding after the additional 30 years is the consistent superiority of the 

DL41 treatment over all others on both financial, harvested grade, and volume production 

criteria. This is a surprising result, given diameter-limit cutting is routinely critiqued as 

either inferior to selection, because of the lack of tending in residual size classes to improve 

tree quality (e.g., Niese et al. 1995, Kenefic et al. 2005, Kenefic and Nyland 2005, Fajvan 

2006), or ultimately dysgenic, by the repeated removal of trees of superior vigor that grow 

beyond the diameter limit and are removed in future cycles (e.g., Buongiorno et al. 2000, 

Erickson et al. 1990, Howe 1989, Nyland 1988, O’Hara 2002). Indeed, in the cutting 

methods study no tending was performed in the residual trees below the diameter limit 

across the entire 62-year duration, and over the past 30 years there has been no 

improvement in residual tree grade. Paradoxically, however, the DL41 has consistently and 

reliably produced the highest average annual yield of any treatment, greatest grade 1 

harvested volumes,  and a superior distribution of harvested tree grade that is exceeded only 

recently by the LI and STS21 (Table 2. 3). 

The first 32 years of the study demonstrated clear improvements in residual tree 

grade under all of the treatments, including in the reserve. Average standing tree grade can 

increase in time because inferior trees are targeted for removal, but also trees can simply 

grow large enough to cross size thresholds that delimit higher grades. By examining grade 

of only trees ≥46 cm dbh it appears to be clear that grade improvements have occurred 

through management. The key unanswered question posed by Reed et al. (1986) and 

Erickson et al. (1990) was whether, in time, one or more of the STS treatments could “catch 

up” to the DL41 because of an increasing grade profile. The results here clearly demonstrate 

a steady increase in standing tree grade in the STS and in particular in the LI since 1988, 

along with an associated increase in harvested tree grade. This makes sense, as eventually 

if inferior trees are removed only the superior trees remain to be harvested. However, these 
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increases have not translated into increases in revenue that, even without discounting, have 

proved superior to the DL41 (Figure 2. 4).  

The failure of the STS or LI treatments to financially surpass the 41 DL is, in 

retrospect, not particularly surprising. Financial return depends on both grade profile of 

harvested trees and periodic yield. Given the threshold diameter for a grade 1 sawlog is 41 

cm (USDA Forest Service 2008), in the DL41 soon after trees cross the threshold they are 

removed, leaving behind only smaller grade 2 and 3 trees that may increase in grade through 

the next cycle as they grow beyond size thresholds. Because STS treatments will retain 

some trees that already meet the size criteria for grade 1, much of the increase in value in 

those trees can come only from volume growth; however, growth is penalized by 

discounting, and these treatments in general have lower periodic yield than the DL41. 

Moreover, by maintaining some stocking in trees as large as 61 cm, any grade 2 trees that 

are approaching the 41 cm threshold are deprived of growing space leading to slower 

growth. The same logic can explain the inferiority of the DL56 and DL30 to the DL41. 

With a large threshold diameter, the DL56 carries many grade 1 trees to the next cycle and 

overall high residual basal area seems equated with low periodic yield. In contrast, while 

the DL30 has had high periodic yield over the life of the study, the low threshold diameter 

ensures that trees rarely, if ever, grow large enough to meet the much more valuable grade 

1 specification before they are harvested in the next entry.  

The DL41 is effectively a “sweet spot”, at least in this maple-dominated forest type, 

re-entry cycle, and level of site productivity, holding the greatest number of smaller 

sawtimber-sized grade 2 trees which are poised to increase significantly in grade and value 

between cycles (Godman and Mendel 1978; Power and Havreljuk 2018; Reed and Mroz 

1997; Webster et al. 2009). Because the DL30 also holds a large proportion of grade 2 trees 

post-harvest, it too has the potential for significant grade improvement. A lower diameter 

threshold for grade 1, a longer re-entry cycle, or higher site productivity would likely 

improve the financial performance of the DL30. The STS11 also holds a significant 

proportion of grade 2 trees (Figure 2. 1) and, combined with comparatively high periodic 

growth, has shown strong financial performance, especially in the last 30 years. Ultimately, 
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however, while the STS11 is perhaps the closest of the STS treatments to the “sweet spot” 

occupied by the DL41, the retention of some large trees beyond the grade 1 diameter 

threshold means some opportunity cost will always occur. This cost is only amplified by 

the potential loss of high-value residual trees due to destructive weather or degrade due to 

damage or decay. For example, in the Lake States there is an issue with increasing dark 

heart as trees age, and this defect degrades logs that would otherwise meet grade one or 

higher standards (Erickson et al. 1992). To minimize this opportunity cost, Reed and Mroz 

(1997) suggested favoring removal of larger grade 1 and 3 trees if single-tree selection is 

the chosen method. This captures value in grade 1 trees before any future degrade and 

concentrates growth on grade 2 trees which still contain some quality sawlogs. 

While the top-performing treatment by MFV has been consistently the DL41, 

significant shifts in ranking have occurred since 1988. For example, Erickson et al. (1990) 

suggested that the light improvement receive special attention, because of significant 

improvement in residual tree grade over the first 32 years and excellent performance based 

on MFV. However, while the LI was ranked 2nd in 1988, it has since been surpassed by the 

STS11 and STS16, which are now ranked 2nd and 3rd, respectively (Table 2. 4 Comparison 

of MFV and periodic return from first two decades after sustainable stand structure was 

assumed at the Ford Forest study, and from the past three decades, with sawlog products 

valued at price in 2018 dollars. Discount rates of 2% and 4% are shown.). By 2018 the LI 

easily has the best standing tree and harvested log grade profile, but middling and declining 

periodic yield does not allow the superior grade profile to be translated into outstanding 

financial return. In contrast, while the improvement in harvested grade was more modest 

in the STS11 and STS16, periodic yield has increased substantially. Since 1988, the already 

poorly ranked DL30 and DL13 treatments have further decreased in ranking, suggesting 

that extremely low residual basal area can be problematic. The DL13 treatment in particular 

has no redeeming qualities; it has extremely low MFV, poor structural diversity, and is 

easily outperformed in average sawtimber volumes harvested per year over the last 40 years 

by every other treatment. Harsh diameter-limit cuts like the DL13 and DL30 also present 
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a theorized greater potential to accumulate dysgenic effects through time (Buongiorno et 

al. 2000). 

Divergence of structure and density between the selection and diameter-limit 

treatments was present by post-harvest 1988, with the diameter-limit treatments retaining 

more trees in the pole and smaller sawtimber size classes (Figure 2. 5) and increasing in 

TPH where selection treatment stem numbers have consistently decreased (Figure 2. 6). 

However, structure since then has appeared to stabilize, with the same differences present 

in 2018. Consistency in structure and density lends greater weight to the financial analysis 

results due to the implication of sustained future yield; density is particularly important 

since it does affect quality in hardwoods, as higher density causes better form in survivor 

trees (Godman and Brooks 1971; Sonderman 1985). The greater numbers of stems present 

in the DL41 over the past 30 years bode well for the sustainability of its current quality and 

volume yield into the future. 

 Other investigations have found that medium-intensity diameter-limit cuttings can 

produce sustained volume yield. Smith and Miller (1987) reported that a 40 cm diameter-

limit cut had the greatest periodic annual board foot production when compared to two 

selection treatments and a clearcut, as well as the greatest compounded periodic harvest 

value. Results from Buongiorno et al. (2000) also suggest that sustainable management of 

Lake States northern hardwoods with diameter-limit cutting is possible; a 38 cm cut 

performed similarly to a heavy selection cut, with high overstory diversity as well as high 

present value and periodic harvest values. Interestingly both Smith and Miller (1987) and 

Buongiorno et al. (2000) recommend that a medium-intensity diameter-limit cut could be 

improved by removing poorly performing understory trees in order to increase future 

quality. This would effectively result in a diameter-limit treatment with stand improvement 

and would likely increase value and performance of treatments like the DL41 even more, 

a conclusion that can be tested in future studies, or through actual implementation by 

managers in the field. 
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As currently recommended in the Lake States, single-tree selection retains residual 

stocking levels of 16 to 21 m2ha-1 and is concerned with obtaining a specific residual 

reverse-J diameter distribution (Arbogast 1957; Eyre and Zillgitt 1953; Gilbert and Jensen 

1958; Nyland 1998; Tubbs 1977a), a structure commonly found in balanced, uneven-aged 

stands and widely accepted as a representation of such (Leak et al. 1987; Leak 1996; 

Nyland 2016). However, long-term application has not only been associated with a lack of 

regeneration, but also with a reduction in overstory species and structural diversity (Angers 

et al. 2005; Gronewold et al. 2010; Neuendorff 2007). Silvicultural methods that vary 

harvest intensity and stand structure can help mitigate or avoid the decline in overstory 

diversity that accompanies traditional single-tree selection (Hanson and Lorimer 2007), 

and in some studies partial cutting methods including diameter-limit cuts and selection to 

lower residual basal areas have been associated with higher overstory species diversity 

(Buongiorno et al. 2000; Niese and Strong 1992). Indeed, in this study the DL41 had the 

greatest decrease in sugar maple relative abundance since 1956, while abundance increased 

in all three selection treatments. Selection treatments that cut to lower residual basal areas 

than traditionally recommended have also been shown to help accommodate regeneration 

of less shade tolerant species (Bodine 2000; Leak et al. 1987; Tubbs 1977b), and the STS11 

was the only treatment to not decrease in relative abundance of the intermediately tolerant 

Betula alleghaniensis Britt. (Table 2. 5). Heavier cuttings and disturbance in northern 

hardwoods long-term management have been found to result in a rotated sigmoid diameter 

distribution that could be accompanied by an increase in softwoods and species diversity 

(Leak 1996). Higher intensity partial cutting also helps prevent the homogenization of 

understory stand structure common with single-tree selection (Angers et al. 2005), and 

decayed trees are common in diameter-limit cut stands, both factors important to wildlife 

habitat (Kenefic and Nyland 2005). Lower residual basal areas such as those found in the 

DL41, DL30, and STS11 also result in higher light availability, a factor associated with 

greater regeneration densities in Great Lakes northern hardwoods (Matonis et al. 2011). 

This is shown in how the DL41 and DL30 are doing a better job than the selection 

treatments of continually recruiting more trees into the smaller size classes (Figure 2. 5), 

contributing to structural diversity and implying greater levels of regeneration. Diameter-
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limit cuts have also been found to have a higher genetic diversity while containing rare 

alleles that may in the future be adaptively beneficial, which is particularly relevant in the 

context of climate change (Hawley et al. 2005). 

Overall, the DL41 and STS11 treatments perform well financially while also 

providing motivations apart from financial gain to consider alternatives to traditional 

single-tree selection in northern hardwoods, due to their favorable performance under 

ecological metrics such as species and structural diversity. This is especially important 

given concerns about the lack of regeneration under traditional uneven-aged single-tree 

selection silviculture (Bassil et al. 2019; Hupperts et al. 2019; Previant 2015). Due in part 

to those concerns, evaluating alternatives has become a point of interest for forest 

managers, with recent studies calling for alternatives to selection silviculture as it is 

currently practiced in northern hardwoods (Henry et al. 2021; Hupperts et al. 2019; Matonis 

et al. 2011) while also finding it is frequently applied in a manner inconsistent with 

accepted standards (Pond et al. 2014). Recognizing that alternatives to traditional single 

tree-selection, such as the DL41 and STS11, have the potential to address concerns about 

increased species diversity, structural diversity, and regeneration in northern hardwoods is 

increasingly significant in the face of climate change and prospective future changes in 

disturbance regimes (Campione et al. 2012; D’Amato et al. 2011; Gustafson et al. 2020).  
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3 Six Decades of Financial Returns and Stand Dynamics in 

the Argonne Experimental Forest Cutting Methods Study 

3.1 Introduction 

As historically applied in northern hardwoods, single-tree selection reduces basal 

area to around 18-21 square meters per hectare with an emphasis on maintaining a specific 

diameter distribution (Arbogast 1957; Eyre and Zillgitt 1953; Gilbert and Jensen 1958; 

Nyland 1998; Tubbs 1977). Current selection management recommendations in Lake 

States hardwoods do not vary much from this (Pond et al. 2014). However, there have 

recently been increasing concerns about lack of regeneration, species diversity, 

recruitment, and the overall sustainability of the selection system in northern hardwoods 

(Campione et al. 2012; Hupperts et al. 2019; Previant 2015). Species and structural 

diversity in particular are of growing importance in our forests as climate change and 

shifting disturbance regimes increasingly become potential management concerns 

(D’Amato et al. 2011). As a result, alternatives to single-tree selection to the traditionally 

higher residual basal areas are being considered, and many recent publications have called 

for alternatives to selection practices as they are currently prescribed in northern 

hardwoods (Campione et al. 2012; Henry et al. 2021; Matonsis et al. 2011; Danyagari et 

al. 2018). Management methods such as group selection, diameter-limit treatments, and 

selection to lower residual basal areas are some such alternatives all having a history of use 

in the Lake States. 

 Most single-tree selection as prescribed in Lake States hardwoods follows the 

Arbogast (1957) guide that calls for reduction in overstory basal area to around 19.5 square 

meters per ha while retaining a specific reverse-J diameter distribution. Such management 

is known to increase quality of hardwoods and produce sustained yield (Eyre and Zillgitt 

1953; Nyland 2016). However other partial cutting management methods can produce 

similarly desirable results. Medium-intensity diameter-limit treatments have been seen to 

produce of high-quality sawtimber and sustained yield while simultaneously 

outperforming selection treatments (Smith and Miller 1978; Buongiorno 2000; Erickson et 
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al. 1990). Crop-tree treatment is a version of a pre-commercial thinning used in northern 

hardwoods that focuses on improving quality and growth rates of individual trees (Leak 

2014), and residuals in thinned northern hardwoods stands grow faster than those in an 

unthinned control (Leak 2007). Thinning is successful when the value increase of residuals 

is outweighed by the volume loss (Zeide 2001). Single-tree selection systems that reduce 

basal area further than Arbogast (1957) recommends have benefits such as higher overstory 

species diversity and better financial performance (Erickson et al. 1990; Niese and Strong 

1992). Long-term comparison and analysis of these various partial cutting treatments is 

important to help determine if they present viable silvicultural alternatives to traditional 

selection practices in Lake States northern hardwood forests. 

However, changes in management are often not enacted without sufficient financial 

incentive. The lifespan and comparably slower growth of northern hardwoods forests 

ensure that financial analyses incorporating long-term results are particularly important. 

Tree quality in particular should be considered when evaluating long-term financial value 

of stands, as financial value in northern hardwoods sawtimber is strongly influenced by 

quality (Godman and Mendel 1978). Due to their influence on financial value, the metrics 

used to estimate quality in northern hardwood logs and standing timber, such as diameter, 

merchantable height, and percent cull, all become important indicators of the value of the 

stand. Management guides are often chosen with the objective of increasing sawlog volume 

production (Nyland 2016), however established economic theory recognizes that 

increasing quality and consequently value of saleable removals will increase financial 

return, particularly when stand value and volume are not directly correlated (Zobrist 2014; 

Lussier 2009). Single-tree selection emphasizes the improvement of the quality of the 

residuals (Leak 2014; Kenefic et al. 2005), but this improvement only translates to an 

increase in actual financial returns if those improved trees are removed at a later date. Thus 

silvicultural treatments that periodically remove all highest quality and large timber, while 

leaving pole and mid-sized intermediate quality growing stock maximize value (Lussier 

2009; Reed and Mroz 1997). 
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Past financial analyses of alternative management methods in Lake States northern 

hardwoods have found that medium-intensity diameter-limit treatments, as well as 

selection systems focusing on quality, outperform selection treatments to residual basal 

areas of 18-21 m2ha-1 (Reed et al. 1986; Erickson et al. 1990; Buongiorno et al. 2000). 

Long-term studies in northern hardwoods have also previously shown that selection 

treatments to residual basal areas around 16-17 m2ha-1  increase hardwood tree quality and 

value more than comparable treatments to 21 m2ha-1  (Bodine 2000; Niese et al. 1995; 

Strong et al. 1995), and that lower residual basal area in selection treatments can result in 

greater post-harvest diameter growth, periodic growth, and lower mortality (Forget et al. 

2007; Schuler and McGill 2007).  The long-term study at the Argonne Experimental Forest 

(EF) in northern Wisconsin provides an exceptional opportunity to compare selection 

treatments to various residual basal areas and evaluate their effect on growth, quality, and 

value in an even-aged forest managed with traditionally uneven-aged management 

methods. Single-tree selection, group selection, and diameter-limit treatments across three 

replications have all been maintained for almost 70 years, and these prescriptions have 

accumulated different results through the lenses of financial analysis, growth, yield, and 

quality metrics.  

Niese et al. (1995) and Strong et al. (1995) wondered which of the treatments 

maintained in this study allow for compatibility between high quality and value northern 

hardwoods management and management for ecosystem health; in the context of these 

previous studies it was hypothesized that if quality improvement and higher volume yield 

continued in selection treatments to lower residual basal areas, these would outperform 

other partial cutting treatments after an additional 25 years of management.  To measure 

treatment performance, a specific objective was to evaluate the financial success of each 

treatment based on solely harvested lumber volumes and values by completing a new 

analysis following Rideout (1985) that includes financial analysis methodology tailored to 

partial cutting methods, in contrast to the cash-flow analysis incorporating residual volume 

values from Niese et al. (1995). A final objective was to evaluate the sustainability of the 

treatments both financially and ecologically. This was done through the analysis of growth, 

mortality, and yield, as well as composition and structure due to their importance in 
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management prescriptions and field guides. Strong et al. (1995) in particular emphasize the 

importance of recruitment and continuous movement from one size class to another, and 

so special attention was paid in this evaluation to ingrowth, mortality, and structure through 

time. 

3.2 Methods 

3.2.1 Study site 

The Argonne EF consists mostly of second-growth, even-aged forest, which at 

study establishment in 1951 were primarily 45 years old, although there were some few 

residual poor quality trees older than the main stand (Stoeckler 1955). The experimental 

forest is located in Forest County, Wisconsin, with the study site being considered good 

for northern hardwoods and having a site index of 19-21 m base age 50 (Strong et al. 1995). 

The Acer/Osmorhiza-Caulophyllum habitat type and Argonne-Sarwet sandy loams with 1 

to 6 percent slopes occupy most of the site (Kotar et al. 2002; USDA Natural Resources 

Cons. Serv.). Pre-treatment at study commencement in 1951 density averaged just over 21 

m2ha-1  basal area in trees > 11.4 cm diameter (dbh), with sugar maple (Acer saccharum 

Marsh.) accounting for 57 percent of that basal area, basswood (Tilia americana L.) 10 

percent, hemlock (Tsuga canadensis L.) 9 percent, yellow birch (Betula alleghaniensis 

Britt.) 8 percent, white ash (Fraxinus americana L.) 6 percent, plus the occasional red 

maple (Acer rubrum L.), American elm (Ulmus americana L.), paper birch (Betula 

papyifera Marsh.), black ash (Fraxinus nigra Marsh.), black cherry (Prunus serotina 

Ehrh.), aspen (Populus spp.) , and ironwood (Ostrya virginiana Mill.) individuals making 

up the remainder (Erdmann and Oberg 1973).  

3.2.2 Long-term study design 

Nine different treatments, including a control, are grouped together in a randomized 

block design with three blocks each comprising 16.2-ha. Blocks 1, 2, and 3 are located at 

approximately 45° 44' 37.6836'' N, 88° 59' 19.4064'' W, 45° 44' 54.96'' N, 88° 58' 7.464'' 

W, and 45° 45' 36.1908'' N, 88° 57' 59.7888'' W, respectively. Three of the treatments (strip 

cutting, clearcut, and shelterwood) were applied historically but not maintained for the 

entirety of the study. The remaining six treatments have been regularly applied and 
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maintained for the past 68 years. These are single-tree selection to a residual basal area of 

21, 17, and 14 m2ha-1, an 18 centimeter diameter-limit cut, a crop tree treatment, and a 

control. Each individual treatment compartment for these six treatments is 1.01 ha. Within 

each compartment are five 0.04-ha circular permanent measurement plots with trees 

individually numbered. The original purpose of the study was to observe and collect data 

on changes in growth, mortality, stand structure, and yield between the different treatments 

over time, as well as to determine the economic feasibility of the various management 

methods (Stoeckler 1955; Niese and Strong 1992).  

 This analysis evaluates the previously mentioned six treatments that have been 

maintained throughout the study. The three single-tree selection treatments were applied 

on a 10-year cycle with entries during the winters of 1952, 1962, 1972, 1982, 1992, 2002, 

and 2012. The 14 m2ha-1 single-tree selection (STS14) treatment reduces trees > 11.4 cm 

dbh to a residual basal area of 14 m2ha-1 with a goal of a size class distribution with a q-

value of 1.3. The 17 m2ha-1 single-tree selection (STS17) and 21 m2ha-1 single-tree 

selection (STS21) treatments similarly reduce trees > 11.4 cm dbh to residual basal areas 

of 17 and 21 m2ha-1, respectively, with the same desired diameter distribution. Trees were 

selected for harvest to remove high risk, cull, and trees in overstocked size classes, and to 

release crop trees. 

In the crop tree release treatment, 25-50 selected trees were released to grow by 

thinning the crown to a residual basal area of 14 m2ha-1 in 1952, 17 m2ha-1 in 1972, 17 

m2ha-1 in 1982, 19 m2ha-1 in 2002, and 21 m2ha-1 in 2012, with small trees left near the 

crop tree as trainers (Strong et al. 1995). The 18 cm DL diameter-limit (DL18) treatment 

has only been cut twice over the length of the study; in 1952 and 1992 all trees 20 cm and 

larger at a 30.5-cm stump height, equivalent to about 18 cm dbh, were cut.  

3.2.3 Measurements 

Beginning in 1952, individual trees were numbered and tracked through time within 

each 0.04-ha measurement plot with dbh and species recorded at a maximum of 5-year 

intervals. Butt-log grade was recorded pre-harvest as an estimate of standing tree quality 

for all sawtimber-sized trees in 1972, 1982, 1992, 2002, and 2016, and for harvested trees 
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only in 1952 and 1962, using the U.S. Forest Service tree grading system (Hanks 1976). 

Cull percent and merchantable height as number of 4.88 m (16-ft) logs were recorded in 

these same years. Total sawtimber removals and residual standing timber volumes were 

estimated using Gevorkiantz and Olsen (1955) volume tables (Intl. ¼” rule) for Lake States 

hardwoods. Volume conversion to cubic meters follows Winn et al. (2020). 

3.2.4 Financial analysis 

A financial analysis was performed in the style of Rideout (1985), similar to the 

ones presented by Reed et al. (1986) and Erickson et al. (1990) for the Bourdo study. Three 

different measures of financial performance were calculated: managed forest value (MFV), 

present worth (PW) in 1952, and total value of all harvests discounted to 1952. Values 

presented in dollars per hectare are not an average per block but instead an actual value for 

entire study area. MFV and PW were used as financial criteria to evaluate treatments. No 

cost factors were introduced into the analysis due to the intent to compare relative, not 

absolute, measures of financial returns between treatments. MFV is the discounted value 

of the sum of an infinite series of harvests, and is intended to represent the long-term 

applicability of a silvicultural system, while PW is the sum of all revenues plus MFV, both 

discounted to 1952. MFV, as defined by Rideout (1985), requires sustainable stand 

structure to have been reached. Selection system silviculture treatments can require two 

cuttings to properly implement and reach ‘sustainable stand structure’ (Nyland 1998; Reed 

et al. 1986; Erickson et al. 1990), so for this analysis sustainable stand structure was 

assumed to have been reached in 1972 after two initial harvests. Financial performance 

was compared between each treatment and the control using discount rates of 2, 4, 6, and 

8%. 

This financial analysis evaluated the lumber value return of sawlogs. Potential 

factory grade lumber yield estimates for harvested trees were found using equations from 

Hanks (1976) and incorporated differences in quality into the financial analysis. Trees were 

also graded following methodology in Hanks (1976), so the equations for factory grade 

lumber yields could be accurately applied. Lumber prices were acquired from Hardwood 

Market Report (D. Caldwell, personal communication, October 5, 2020) with supplemental 
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data from Luppold et al. (2001).  Accurate regional historic pricing from each year of 

harvest was used, adjusted to a common 2018 basis using the producer price index for 

lumber and wood products (U.S. Bureau of Labor Statistics).  

3.2.5 Data analysis 

An analysis of variance (ANOVA) was completed to evaluate differences in 

treatment means for variation in grade, merchantable height, dbh, yield, ingrowth, and 

mortality using R version 4.0.2 (R Core Team 2020). The model used was for a randomized 

complete block design with subsampling (Kuehl 2000). When the ANOVA indicated 

statistically significant (p < 0.05) differences between treatments, post-hoc comparisons 

using the Tukey HSD test were made with the ‘emmeans’ package v1.4.7 (Lenth 2020). 

For species diversity, Shannon’s diversity index (H’) was calculated in R for the overstory 

(trees > 11.4 cm dbh) pre-treatment in 1951 and pre-harvest in 2011 using the ‘vegan’ 

package v2.5-6 (Oksanen 2020). 
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3.3 Results 

3.3.1 Growth and yield 

Average diameter growth for survivor trees through the entire study period was 

greatest under the STS14 treatment at 29 cm, or 0.45 cm per year, followed by the STS17 

at 0.40 cm per year (Table 3.1). The STS21 treatment had lowest average diameter growth 

after the control. The STS14 and STS17 treatments also had the greatest average 

merchantable heights in 2016. From 1972 to 2016, average merchantable height increased 

in all treatments except the DL18 and the control (Table 3.2). 

 
Table 3.1 Argonne EF average dbh (cm) in 1951 (pre-treatment), 1952 (post-treatment), 
2016 (4 years post-treatment), and average increase in diameter of individual trees ≥ 11.4 
cm dbh from 1952 - 2016. In the DL18 treatment there were no survivor trees for that 
time period. Standard error in parentheses, n = 15. Means in a column followed by the 
same letter are not significantly different, p < 0.05. 
 
 
 
 
 
 
 
 

 
Table 3.2 For trees > 24 cm dbh at the Argonne EF, average merchantable height by 
number of 4.88-meter logs in 1972 and 2016. Standard error in parentheses, n = 15. 
Means in a column followed by the same letter are not significantly different, p < 0.05. 

 

 

 

 

Treatment 1951 1952 2016 Δ dbh 
STS14 19.87(.84)a 19.02(.93)ab 24.64(.99)bc 28.97(1.1)a 
STS17 21.49(.50)a 20.94(.46)a 27.69(1.2)bc 25.92(.72)a 

Crop tree 19.74(.65)a 18.73(.64)ab 28.96(1.1)b 22.98(1.2)ab 
STS21 21.34(.72)a 20.86(.66)a 29.72(1.5)ab 22.94(.99)ab 
Control 20.33(.90)a 20.33(.90)a 35.81(1.5)a 17.56(1.2)b 
DL18 19.77(.81)a 14.82(.37)b 22.61(1.0)c --- 

Treatment 1972 2016 
STS14 1.52(.082)a 1.76(.096)a 
STS17 1.64(.050)a 1.73(.094)a 

Crop tree 1.42(.063)a 1.61(.073)a 
STS21 1.57(.085)a 1.60(.114)a 
Control 1.47(.044)a 1.22(.059)ab 
DL18 1.29(.048)a 0.72(.085)b 
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Average annual ingrowth into the smallest measured diameter class has been 

significantly greatest in the DL18 for the entire study period (Figure 3.1). The highest 

levels of ingrowth for the DL18 were directly following harvest in the 1960s, and 2000s. 

The control had significantly lower levels of annual ingrowth than all other treatments. 

Mortality was lowest in the STS14 at 0.028 m2ha-1yr-1. All three selection treatments 

minimized mortality, but were only significantly different than the control treatment which 

had easily the highest mortality rate at 0.265 m2ha-1yr-1 (Figure 3.1).  

 

Figure 3.1 Average annual ingrowth (into the smallest measured size class), mortality 
(m2ha-1yr-1), and removals (m2ha-1yr-1), for the entire study period at the Argonne EF. 
Within each graph (A, B, C) bars with the same letter are not significantly different, p < 
0.05, n = 15. 

 

 Basal area (BA) has exhibited a consistent, gentle decline through time for the 

selection and crop tree treatments through time, with similar but slightly lower BAs in 

2016 than in 1951 (Figure 3.2A). The second DL18 harvest reduced both BA and trees 

per ha (TPH) to much lower levels in 1992 than at any point previously, and the 

treatment has still not recovered to previous density levels. All treatments including the 

control have markedly lower TPH now than at the commencement of the study; there was 

a steady decline in TPH from 1951 on, until the late 1990s and early 2000s when there 

began an increase in TPH in all selection treatments and the DL18 (Figure 3.2B). 
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Figure 3.2 Stand density through time for trees ≥ 11.4 cm dbh at the Argonne EF. A) 
Basal area and B) trees per hectare from 1951 – 2016. 
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Estimated dry sawn lumber volume was greatest for the STS14 and STS17 (Table 

3.3). The two DL18 harvest entries produced much greater volumes than any other 

treatment in their specific harvest entry years, but due to the 40-year rotation time, the 

selection treatments outpace the DL treatment in total annual yield rates. Residual volume 

since 1972 has seen lumber volumes consistently increasing in the crop tree and control 

treatments (Table 3.4). Residual volumes in the selection treatments have persisted as 

expected, with the STS14, STS17, and STS21 treatments each retaining more volume than 

the previous, respectively (Table 3.4, Figure 3.3). Net volumes in the selection treatments 

increased from 1972 to 1982, have since fluctuated around similar levels, within 11 m3ha-

1 of the net volumes reached in 1982. 

 
Table 3.3 Average annual dry factory grade sawn lumber yield since 1972 (estimated 
following Hanks (1976), m3ha-1yr) by grade at the Argonne EF. Grade 1C+ includes 
selects and better. Within each column values with the same letter are not significantly 
different, p < 0.05, n = 15. Conversion to cubic meters following Winn et al. (2020). 

 

 

 

 
Table 3.4 Argonne EF residual sawtimber volumes (m3ha-1, Intl. ¼” rule) estimated by 
number of logs following Gevorkiantz and Olsen (1955) for trees > 24 cm dbh. In 2002 
merchantable height was not measured for the DL18 and crop tree treatments, so volume 
could not be estimated using Gevorkiantz and Olsen (1955). Conversion to cubic meters 
following Winn et al. (2020). 

 

 

Treatment 1C+ 2A, 2B, 2C 3A, 3B 
STS14 .710(.099)a .482(.054)a .585(.076)a 
STS17 .684(.090)a .473(.062)a .391(.059)b 
STS21 .549(.097)a .356(.062)a .293(.043)b 
DL18 .366(.063)a .396(.057)a .579(.058)a 

Crop tree .328(.065)a .315(.053)a .287(.042)b 

Treatment 1972 1982 1992 2002 2012 
Gross Net Gross Net Gross Net Gross Net Gross Net 

DL18 21.0 21.0 43.5 43.3 0.0 0.0 NA NA 16.5 15.2 
Control 69.7 68.9 89.3 87.3 97.7 94.7 118.6 97.5 137.1 123.3 

Crop tree 47.3 47.0 66.4 65.9 82.3 81.4 NA NA 97.7 88.1 
STS14 53.3 52.7 67.7 66.6 72.9 71.0 75.1 67.2 72.7 69.3 
STS17 64.4 63.6 86.0 84.5 80.6 78.1 84.1 72.2 89.0 83.5 
STS21 73.5 72.3 91.3 88.8 101.7 97.7 102.5 90.5 104.7 98.3 
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Figure 3.3 Argonne EF net residual sawtimber volume (m3ha-1, Intl. ¼” rule) estimated 
by number of logs following Gevorkiantz and Olsen (1955) for trees > 24 cm dbh. 
Conversion to cubic meters following Winn et al. (2020). 

 

 

 

Figure 3.4 Argonne EF average annual dry factory grade sawn lumber yield since 1972 
(estimated following Hanks (1976), m3ha-1yr-1) by grade. Panels A-C for grades 1-3, 
respectively. Grade 1C+ includes selects and better.  Within each graph (A, B, C) bars 
with the same letter are not significantly different, p < 0.05, n = 15. Conversion to cubic 
meters following Winn et al. 2020. 
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3.3.2 Quality and economics 

MFV was maximized by the STS14 treatment at all discount rates, closely followed 

by the STS17 treatment (Table 3.5). The DL18 treatment is not competitive under MFV. 

PW is the discounted sum of total revenue and MFV, and ranking as evaluated by PW 

shows that at lower discount rates such as 2 and 4%, the STS14 and STS17 perform best 

(Table 3.5). But as discount rate increases to 6 or 8%, the DL18 treatment surpasses all 

selection treatments. The STS21 and crop tree treatments performed poorest at all discount 

rates. 

 
Table 3.5 Financial analysis of Argonne EF treatments, with potential dry factory grade 
lumber yields valued at price in current 2018 dollars. Present worth is discounted to study 
start in1952.  

 
aPeriodic return is averaged yearly revenue from 1972 - 2012 multiplied by number of years in treatment 
interval.  
bTreatment interval is the average of the cutting cycles lengths associated with harvests between 1972 - 2012, 
except for the 18 cm DL where it is the interval between the only two harvests in entire study period.  
cCalculations assume sustainable stand structure was reached in 1972. 

 

 

 

 DL18 Crop tree STS14 STS17 STS21 
Periodic Return ($·ha-1)a 6889 1744 2910 2532 1981 
Mean Treatment Interval 

(years)b 40 13 10 10 10 

MFV ($·ha-1)c 

2% 5703 5941 13287 11599 9046 
4% 1812 2623 6059 5289 4125 
6% 742 1540 3679 3212 2505 
8% 332 1014 2511 2192 1709 

PW ($·ha-1) 

      
2% 9426 7000 12876 12305 9037 
4% 5754 3946 5847 6049 4162 
6% 4648 3002 3723 4124 2686 
8% 4188 2558 2776 3250 2027 
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In 2016, the STS14 treatment had the highest percent of grade 1 standing sawtimber 

trees (47.2%), the lowest amount of below-grade trees at 0%, and the highest average grade 

(Table 3.6; Table 3.7). The STS17 had similar percentages of grade 1 and below-grade 

trees, but had greater amounts of grade 3 than the STS14. The control and DL18 treatments 

had greater percentages of below-grade trees in 2016 (Table 3.7, Figure 3.5). The greatest 

gains in individual tree grade throughout the past 44 years were also seen under the STS14 

treatment, with the least increases in grade found in the STS21 and control (Table 3.6). The 

greatest amounts of the highest quality sawtimber produced were seen in the STS14 and 

STS17 (Figure 3.4). 

 

Table 3.6 For trees > 24 cm dbh at the Argonne EF, average tree grades in 1972 and 
2016, and average increase in grade of individual trees from 1972 - 2016. Grade scale 
from Hanks (1976), sawtimber grades 1-3 with below grade assigned a value of 4. In the 
DL18 treatment there were no survivor trees from 1972 to 2016. Standard error in 
parentheses, n = 15. Means in a column followed by the same letter are not significantly 
different, p < 0.05. 
 

 

 

 

 
Table 3.7 For trees > 24 cm dbh at the Argonne EF, average proportion of trees in each 
grade as measured in 2016, following Hanks (1976). 
 

 

 

 

Treatment 1972 2016 Δ grade 
STS14 2.54(.119)a 1.69(.115)a 1.36(.125)a 
STS17 2.62(.097)a 1.89(.113)ab 0.97(.331)a 

Crop tree 2.82(.106)ab 2.13(.135)ab 0.86(.193)a 
STS21 2.54(.108)a 2.14(.133)ab 0.69(.211)a 
Control 3.04(.086)ab 2.61(.061)bc 0.51(.080)a 
DL18 3.33(.106)b 3.20(.072)c --- 

Treatment G1 G2 G3 BG 
STS14 47.2 36.1 16.7 0 
STS17 45.9 21.1 30.8 2.2 
STS21 34.9 26.1 28.7 10.3 

Crop tree 29.0 33.0 34.3 3.7 
Control 17.2 26.9 34.0 22.0 
DL18 0 7.7 64.3 28.0 
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Figure 3.5 For trees > 24 cm dbh at the Argonne EF, average proportion of trees in each 
grade as measured in 2016, following Hanks (1976). 

 
3.3.3 Structure and composition 

Initial stand conditions in 1951 in all treatments were similar, with size class 

distributions typical for a young, pole-sized even-aged forest with few remnant trees 

(Figure 3.6). There were very few trees above 50 cm dbh, and only small differences in 

average diameter between treatments pre-harvest in 1951 (Figure 3.6A; Table 3.1) One 

treatment entry was enough to create significant differences in average diameter between 

treatments by measurement post-harvest in 1952 (Table 3.1). By 1992, post-harvest, the 

cohort of initially pole-sized trees had moved into the smaller sawtimber size classes 

(Figure 3.6B). The DL18 treatment had by far the most trees in the 15-cm diameter class 

in 1992, and all selection treatments had below 37 stems per ha in the 15-cm diameter class. 

In 2016, after 65 years of management, average diameter was greatest in the control 

and STS21, and smallest in the STS14 and DL18 treatments (Table 3.1). The STS14 had a 

lower, although not significantly different, average diameter than all other selection 

treatments, as well as the greatest amount of trees in the 15-cm diameter class (Figure 3.6C; 

Table 3.1). The STS21 and STS17 had trees above 66 cm dbh, whereas the STS14 did not. 
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 All treatments were sugar maple-dominated at pre-harvest in 1951. Overstory sugar 

maple abundance increased from 1951 to 2011 in all treatments except for the DL18 and 

STS17 (Table 3.8). The greatest increases were seen in the crop tree and STS21, with the 

least in the STS14. Shannon’s diversity index (H’) decreased in all treatments except for 

the crop tree and diameter-limit treatment, with the greatest decrease in the control (Table 

3.8 ).   

 

 

Table 3.8 Relative species abundance and diversity for trees > 11.4 cm dbh at the 
Argonne EF, pre-treatment in 1951 and pre-harvest in 2011.  
 

aOther may include one or more of: Betula papyifera, Fagus grandifolia, Prunus serotina, Fraxinus nigra, 
Populus tremuloides, Quercus rubra, Abies balamea. 

 

Treatm
ent Year 

Acer 
saccha

rum 

Acer 
rubru

m 

Betula 
allegh
aniens

es 

Fraxin
us 

americ
ana 

Ostrya 
virgini

ana 

Tilia 
americ

ana 

Tsuga 
canad
ensis 

Ulmus 
americ

ana 
Othera 

H’ 
(Shan
non’s 
index) 

STS14 
1951 .70 .06 .06 .03 .03 .05 .04 .00 .03 1.30 
2011 .73 .03 .03 .14 .03 .04 .00 .00 .00 1.05 

∆ +.03 -.03 -.03 +.09 0 -.01 -.04 0 -.03 -.25 

STS17 
1951 .57 .04 .06 .07 .04 .08 .04 .03 .07 1.74 
2011 .56 .02 .05 .11 .12 .11 .01 .00 .01 1.48 

∆ -.01 -.02 -.01 +.04 +.08 +.03 -.03 -.03 -.06 -.26 

STS21 
1951 .51 .01 .17 .07 .04 .13 .06 .01 .01 1.62 
2011 .61 .02 .06 .10 .03 .17 .01 .00 .01 1.39 

∆ +.10 +.01 -.11 +.03 -.01 +.04 -.05 -.01 0 -.23 

DL18 
1951 .65 .01 .04 .08 .02 .08 .09 .00 .02 1.38 
2011 .55 .03 .01 .13 .06 .01 .00 .18 .02 1.51 

∆ -.10 +.02 -.03 +.05 +.04 -.07 -.09 +.18 0 +.13 

Crop 
tree 

1951 .52 .10 .04 .04 .05 .09 .07 .03 .06 1.39 
2011 .71 .04 .01 .06 .02 .10 .01 .03 .03 1.60 

∆ +.19 -.06 -.03 -.02 -.03 +.01 -.06 0 .-03 +.21 

Control 
1951 .59 .06 .05 .06 .03 .15 .02 .03 .02 1.53 
2011 .65 .07 .04 .05 .00 .17 .03 .00 .00 1.22 

∆ +.06 -.01 -.01 -.01 -.03 -.02 -.01 -.03 -.02 -.31 
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Figure 3.6 Argonne EF stand structure through time for trees > 12.4 cm dbh. At 
commencement of study (A, 1951, pre-harvest), at time of last analysis (B, 1992, post-
harvest), and at most recent measurement (C, 2016, 4-years post-harvest). 
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Table 3.9 Mean squares for analysis of variance of diameter, merchantable height, grade, 
grade proportions, annual ingrowth, and annual mortality at the Argonne EF. * = 
significance at p < 0.05, ** = significance at p <0.01, *** significant at p < 0.001, ns = 
not significant.  

aNo estimated lumber removal volumes for the control. 

 

 

 

 

 

 

Variable Source of Variation 
 Block Treatment Experimental  

error 
Sampling 

error 
df 2 5 10 72 

diameter 1951 83.9* 8.6 18.2 4.9 
diameter 1952 69.8* 79.5 15.3 4.3 
diameter 2016 278.1** 315.7*** 23.7 15.7 

diameter growth 126.9* 266.1** 27.3 10.3 
     

merch height 1972 0.21 0.23 0.11 0.05 
merch height 2016 0.62 2.45*** 0.19 0.09 

     
grade 1972 0.08 1.52* 0.31 0.14 
grade 2016 0.49 4.48** 0.13 0.13 

grade increase  1.98 1.32 0.93 0.55 
     

total annual ingrowth 0.007** 0.026*** 0.001 0.001 
total annual mortality 0.007 0.097*** 0.002 0.006 

     
dfa 2 4 8 60 

total annual removalsa 0.14* 0.11* 0.02 0.01 
annual 1C+ yielda 12.9 42.2 15.3 8.8 

annual 2A, 2B, and 2C 
yielda 33.9** 7.1 3.0 3.8 

annual 3A and 3B yielda 5.39 29.6** 3.8 4.7 
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3.4 Discussion 

In northern hardwoods, financial return is influenced by tree quality (Reed et al. 

1987; Sendak et al. 2000). Grade improvements result in the greatest increases in monetary 

value, more so than growth in diameter or height (Godman and Mendel 1978). The 

treatments which continually produce high-quality sawtimber while also increasing quality 

of residuals were thus expected to perform best financially. Single-tree selection is known 

to increase quality of both harvested and residual trees (Brown et al. 2018; Leak and Sendak 

2002), and lower residual basal areas have been seen to produce higher quality trees 

(Erickson et al. 1990). Thinning is known to positively affect residual timber size and 

quality, and in long-term studies has increased species diversity, regeneration, and 

structural development (Zeide 2001; Curtis et al. 1997). Previous long-term studies at the 

Argonne EF (Niese et al. 1995; Strong et al. 1995) found that a medium selection treatment 

to 17 m2ha-1 residual basal area had the greatest increase in quality over 40 years, but the 

heavy selection treatment to 14 m2ha-1 residual basal area had the highest economic returns.   

The additional two decades of treatment captured in this analysis have resulted in a 

confluence of quality and economic success; the STS14 now has the greatest economic 

returns as well as greatest gains in individual tree quality. MFV, proportion of residual 

grade 1 trees in 2016, and average grade 1C and better lumber volume produced are all 

high in the STS14 and STS17. Managed forest value is a good indication of continuous 

repeatable return, and since a key feature of selection silviculture is continuous stocking, a 

measurement like MFV that assesses return under repeated harvest entries of the same 

treatment is extremely applicable when evaluating selection and other partial cutting 

treatments. The financial performance of the STS14 and STS17 under MFV at all discount 

rates thus indicates success on an ongoing basis, as well as substantial future financial 

returns. At lower discount rates, the STS14 and STS17 also have the highest present worth, 

so both present and future financial returns are maximized by these treatments.  

The STS14 and STS17 have outperformed others financially in part because 

diameter growth greatly affects tree quality (Dey et al. 2017; Webster 2009). As trees 

become larger they surpass more of the threshold requirements for grade 1 and grade 2 
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standards (Hanks 1976), so it follows that both diameter growth and grade increases are 

optimized by the STS14. The STS17 had the second greatest increase in both quality and 

diameter for individual survivor trees over the entire study period. Indeed, the ranking of 

treatments for average diameter growth of individual trees throughout the study period is 

exactly the same as the ranking for average increase in grade of individual trees since 1972. 

Greater volume removals in the STS14 boosted the growth rate in the residuals so that more 

high quality sawtimber could be produced over time. Not only were there greater overall 

volume removals as a result of the STS14, but more grade 1 and better volume was 

removed which significantly impacts the financial success of any given treatment. Lower 

densities in northern hardwood forests are known to improve diameter growth (Eyre and 

Zillgitt 1953) but selection treatments to 18 to 21 ft2ac-1 are thought to maximize 

merchantable height (Erdmann 1986) as a consequence of higher stand density improving 

form. Results from this analysis show that both diameter growth and merchantable height 

at the most recent measurement were greatest in the STS14, followed closely by the STS17. 

However, there is a limit to the gains in quality afforded through diameter growth; 

the rate of value gains declines in larger trees (Godman and Mendel 1978), and larger trees 

present a higher chance for damage, decay, or defect (Erickson et al. 1992; Dey et al. 2017; 

Luley et al. 2009). Quality as assigned by grade is also size dependent, so not all diameter 

growth is equally comparable; faster growth rates of trees cut prior to reaching grade 1 is 

not equal to volume growth of trees cut immediately after achieving an assignation to the 

highest grade. For these reasons maturity in northern hardwoods is a result of economics, 

not age (Arbogast 1957).  In the Lake States there is a particular issue with increasing dark 

heart as sugar maple trees age (Erickson et al. 1992), which has been shown to be more 

prevalent in trees with slower growth rates and larger diameters (Kaminski et al. 2019). 

The greatest gains in value are often seen in trees just entering the sawlog class, plus those 

in the 31, 36, and 41-cm diameter classes (Power and Havreljuk 2018; Reed and Mroz 

1997; Smith and Miller 1987). So once a high-quality tree surpasses these thresholds, the 

optimal time to harvest is likely before there is an opportunity to decrease in value. The 

STS14 has produced greater volumes of high-quality sawtimber by removing more of the 

trees in these size classes, and by holding on to fewer in the largest classes. By 2016 the 
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STS14 also had a smaller average diameter than all other selection treatments, decreasing 

the risk of dark heart or other quality reducing defect.  

Despite its success in most metrics that contribute to quality, the structure of the 

STS14 has not been consistently ideal for single-tree selection silviculture. The application 

of the uneven-aged selection silvicultural systems without modification to this initially 

even-aged forest has influenced recruitment and growth, and thus sustainable yield, 

through time. Past studies (Kelty et al. 2003; Nyland 2001; Bédard et al. 2014) show that 

conversion from even-aged to uneven-aged forest can be accomplished this way, but doubts 

have recently been cast on the feasibility of this (Bassil et al. 2019), at least in Great Lakes 

northern hardwoods. Traditional selection management in an uneven-aged forest is 

concerned with retaining a specific reverse-J diameter distribution to maintain consistent 

production (Arbogast 1957). However, in this study after  40 years of management, the 

post-harvest structure does not resemble a reverse-J. The young, even-aged nature of the 

initial stand led to increasing volume in both removals and residuals through time, but this 

may change as the forest matures if the selection system as applied fails to consistently 

recruit new trees. High levels of ingrowth in the 2000s (results not shown) resemble a 

second cohort beginning to develop, which can also be seen in the increase of stems in the 

15 and 20-cm diameter classes from 1992 - 2016 (Figure 3.6B,C) and in the increase in 

TPH in all treatments since the early 2000s (Figure 3.2), but this is not a consistent source 

of ingrowth for the treatments.  

By definition silvicultural systems plan for regeneration, and so the practice of 

applying an uneven-aged single-tree selection silvicultural system to an even-aged forest 

may need to be re-evaluated in light of the lack of regular ingrowth into smaller size classes 

that is present in the selection systems evaluated here. Some combination of treatments 

might be superior; the highest ingrowth levels are seen in the DL18. However, northern 

hardwoods managed with both uneven-aged and even-aged methods do have more 

structural complexity than unmanaged second-growth hardwoods (Crow et al. 2002). 

Diversification of forest structure by acquiring many different size classes and successional 

types is important for many reasons including forest health, wildlife, and continual 
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productivity (Wiedenbeck 2020). Varying stand structure can also help increase overstory 

diversity (Hanson and Lorimer 2007), which is important in this context because uneven-

aged management increases the dominance of shade-tolerant trees in Great Lakes northern 

hardwoods (Crow et al. 2002).  

Relatively larger removal of the basal area in a stand can result in greater ingrowth 

and help mitigate this dominance of shade-tolerant trees (Curzon et al. 2017). There have 

been concerns about trends towards sugar-maple monoculture under traditional single-tree 

selection as applied in northern hardwoods (Neuendorff et al. 2007; Angers et al. 2005), 

and so it is important for future management to recognize that reducing basal area to a 

greater degree may offset this trend. Including aspects of larger scale disturbance in 

selection methods could help preserve diversity (Angers et al. 2005), and indeed lower 

basal areas in selection methods have been associated with higher overstory diversity 

(Niese and Strong 1992; Strong et al. 1995). In this study, total annual ingrowth was highest 

in the DL18 and STS14. Sugar maple relative abundance over six decades increased the 

least in the STS14, and actually decreased by 1% in the STS17, and by 10% in the DL18. 

The presence of mid-tolerant species in a stand has often been seen to increase the 

economic value of the stand when compared to a stand dominated by shade-tolerant species 

(Erdmann 1986), helping to offset any financial loss due to comparably lower merchantable 

height, so there are also financial incentives to strive towards greater overstory species 

diversity. 

Overall, treatments that remove more of the basal area result in a better return on 

investment. In selection treatments, lower residual basal areas have been found to result in 

greater residual growth and lower mortality (Forget et al. 2007). Schuler and McGill (2007) 

found that basal areas of about 12.6 m2ha-1 may be optimal for increasing periodic 

sawtimber yield in hardwoods. The STS14 has had consistently the lowest mortality as 

well as greatest grade 1+ and total volumes harvested. All of these factors contribute to 

higher economic returns. Moreover, there is an opportunity cost inherent in retaining older 

trees. Economic return is not realized until volume is removed from a stand and sold. 

Treatments such as the STS21 that retain a lot of volume, especially in larger trees, are not 
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capitalizing on the value of high-quality trees. The ratio of growth to removals in northern 

hardwood forests has been the highest in the country for many decades, indicating that 

increased sawtimber removals can be implemented and may benefit forests (Wiedenbeck 

2020). However, extremely high volume removals, particularly severe diameter-limit cuts, 

are not successful in producing high-quality trees or consistent yield and returns. The DL18 

ranked last in all assessed quality and growth metrics. Harsh diameter-limit cuts carry other 

concerns for forest managers as well, such as potential dysgenic effects that can accumulate 

through time (Buongiorno et al. 2000). 

Return on investment and continual financial success are strong incentives for any 

management method, and so treatments such as the STS14 that encourage ingrowth, lower 

mortality, improve quality, and perform well financially could be considered as potential 

alternatives to traditional single-tree selection as it is currently prescribed in northern 

hardwoods. Such alternatives are being increasingly considered as concerns about the 

sustainability of the selection system become more prevalent (Campione et al. 2012; 

Danyagari et al. 2018; Henry et al. 2021; Kern et al. 2014; Matonsis et al. 2011). For 

example, silvicultural approaches like group selection and gap-based management that 

incorporate greater levels of disturbance than traditional single-tree selection are being 

implemented in northern hardwoods, to help increase diversity and desirable regeneration 

(Kern et al. 2017; Hupperts et al. 2019; Knapp et al. 2019). Alternative silvicultural 

methods should also incorporate and acknowledge the idea that financial gain drives many 

management decisions, and so a balance between managing for financial returns (by 

increasing quality and periodic yield) and ecological concerns (such as increasing structural 

diversity and species diversity) is often favorable. Considering the results from this 

analysis, that might comprise a combination of a selection treatment to lower residual basal 

areas, and a diameter-limit cut, perhaps less harsh than the DL18. Management 

recommendations in line with this idea have been previously expressed in past studies; 

medium-intensity diameter-limit cuts with improvement are suggested by Buongiorno et 

al (2000) and Smith and Miller (1987), and financial-maturity diameter-limit treatments 

have been used as a variant on the selection system to combine silvicultural considerations 

with financial concerns (Trimble et al. 1974; Schuler and McGill 2007).  
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A Summary Information for the Cutting Methods 

Studies 

A.1 Plot Layout Maps 

Figure A.1.1 Ford Forest Study Layout 

 
[re-created following Bourdo 1957]  
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Figure A.1.2 Argonne Example Treatment Plot 

 
[re-created following Stoeckler 1955] 
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A.2 Studies Summary Table 

Table A.2.1 Summary Information 

a Harvest usually completed in fall/winter of the stated year 
b For harvests 1956-1988 the residual basal area target was applied to trees 25 cm and above. Starting with 
the 1998 harvest, the residual target was applied to trees 13 cm and above. 
c A salvage harvest to remove dead and dying Ulmus americana was performed in 1980 in these treatment 
compartments. 
 

Site Treatment 
Abbreviation Treatment Description 

Total 
Treatment 
Unit Area 

(ha) 

Total 
Measurement 
Plot Area (ha) 

Harvest Entry Yeara 

Ford 
Forest LI 

"Light Improvement" 
treatment to 15-16 m2ha-1 
residual basal area based 

on increasing quality. 

3 0.4 
1957, 1968, 1978, 
1988, 1998, 2008, 

2018 

Ford 
Forest STS21b,c 

Selection system to 21 
m2ha-1 residual basal area, 

with a 61 cm limiting 
diameter and a q-value of 

1.3. 

1.7 0.4 1956, 1968, 1978, 
1998, 2008 

Ford 
Forest STS16b,c 

Selection system to 16 
m2ha-1 residual basal area, 

with a 61 cm limiting 
diameter and a q-value of 

1.3. 

2.3 0.4 
1956, 1968, 1978, 
1988, 1998, 2008, 

2018 

Ford 
Forest STS11b,c 

Selection system to 11 
m2ha-1 residual basal area, 

with a 61 cm limiting 
diameter and a q-value of 

1.3. 

2.1 0.4 
1957, 1968, 1978, 
1988, 1998, 2008, 

2018 

Ford 
Forest DL56c 

Cut all trees above a 
limiting diameter of 56 

cm. Marked strictly based 
on dbh with no tending. 

1.9 0.4 1956, 1968, 1998, 
2008, 2018 

Ford 
Forest DL41c 

Cut all trees above a 
limiting diameter of 41 

cm. Marked strictly based 
on dbh with no tending. 

1.5 0.4 
1956, 1968, 1978, 
1988, 1998, 2008, 

2018 

Ford 
Forest DL30c 

Cut all trees above a 
limiting diameter of 30 

cm. Marked strictly based 
on dbh with no tending. 

2 0.4 1957, 1988, 2008, 
2018 

Ford 
Forest DL13 

Cut all trees above a 
limiting diameter of 13 

cm. Marked strictly based 
on dbh with no tending. 

1.9 0.4 1956, 1998 

Ford 
Forest control 

Reserve area not 
harvested over period of 

study. 
5.8 0.4 N/A 
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Site Treatment 
Abbreviation 

Treatment 
Description 

Total 
Treatment 
Unit Area 

(ha) 

Total 
Measurement 

Plot Area 
(ha) 

Harvest Entry 
Yeara 

Argonne 
EF DL18 

All trees 20 cm or 
larger at a 30.5 inch 
stump height (about 

18 cm dbh) 

3 0.6 1952, 1992 

Argonne 
EF STS21 

Selection system to 
21 m2ha-1 residual 

basal area, with a 61 
cm limiting 

diameter and a q-
value of 1.3. 

3 0.6 
1952, 1962, 1972, 
1982, 1992, 2002, 

2012 

Argonne 
EF STS17 

Selection system to 
17 m2ha-1 residual 

basal area, with a 61 
cm limiting 

diameter and a q-
value of 1.3. 

3 0.6 
1952, 1962, 1972, 
1982, 1992, 2002, 

2012 

Argonne 
EF STS14 

Selection system to 
14 m2ha-1 residual 

basal area, with a 61 
cm limiting 

diameter and a q-
value of 1.3. 

3 0.6 
1952, 1962, 1972, 
1982, 1992, 2002, 

2012 

Argonne 
EF crop tree 

25-50 selected trees 
were released to 
grow by thinning 

the crown to a 
residual basal area 

of 14 m2ha-1 in 
1952, 17.5 m2ha-1  
in 1972, 17 m2ha-1 
in 1982, 19 m2ha-1 

in 2002, and 21  
m2ha-1 in 2012, with 
small trees left near 

the crop tree as 
trainers 

3 0.6 1952, 1972, 1982, 
2002, 2012 

Argonne 
EF control 

Reserve area not 
harvested over 
period of study. 

3 0.6 N/A 
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	2.2 Methods
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	In this study, the managed forest value (MFV) was emphasized in financial analyses, following Rideout (1985). Rideout (1985) uses an analysis that looks at the managed forest value in conjunction with the net present value, in order to evaluate the re...
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	2.3 Results
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	Notably, by 2018 only the LI and STS11 had greater grade 1 percentages than the control. Since grade is strongly determined by tree size, the grade increase in the control with time likely reflects an increase in mean tree size, and thus comparisons m...
	Figure 2. 1 Ford Forest pre-harvest standing tree butt log grade distribution (%) by grade as measured in 1968, 1988, and 2018 in 0.4-hectare measurement units, for trees > 28 cm dbh (Erickson et al. 1990). Non-merchantable (nm) class consists of tree...
	Table 2. 1 Ford Forest grade distribution (%) in 2018 by size classes corresponding to log grading rules threshold diameters. Grade 1 includes grade 1 and better.

	2.3.2 Volume and yield
	Standing sawtimber volumes through time have persisted as expected, with the DL56, DL41, and DL30 treatments each retaining more volume than the next smaller limit, respectively (Table 2. 2, Figure 2. 2). Similarly, the residual volumes of the selecti...
	While sawtimber volume yields since 1978 for the selection treatments follow the expected pattern of volume from STS11 > STS16 > STS21 treatment, the DL41 treatment produced greater yields than the DL30 or DL56 (Figure 2. 3, Table 2. 3). The DL41 trea...
	Figure 2. 2 Net residual standing sawtimber volume (m3ha-1, from 0.4-ha measurement units) over the 62-year study period (Int’l ¼” Rule, following Gevorkiantz and Olsen (1955)) at the Ford Forest. Conversion from board feet to cubic meters following W...
	Table 2. 2 Net residual standing sawtimber volume (m3ha-1, from 0.4-ha measurement units) over the 62-year study period (Int’l ¼” Rule, following Gevorkiantz and Olsen (1955)) at the Ford Forest. Conversion from board feet to cubic meters following Wi...
	Table 2. 3 Ford Forest net scaled harvested sawtimber volume by grade (percent of total m3ha-1) and treatment (Int'l ¼” Rule, following Gevorkiantz and Olsen (1955)) from 1978 - 2018. Volumes derived from entire-treatment unit removals. Conversion fro...
	aIncludes grade 1 and better.
	Figure 2. 3 Ford Forest net scaled harvested sawtimber volume by grade (percent of total m3ha-1) and treatment (Int'l ¼” Rule, following Gevorkiantz and Olsen (1955)) from 1978 - 2018. Volumes derived from entire-treatment unit removals. Conversion fr...

	2.3.3 Financial returns
	Excluding 1957-1968, and thus the effects of initial stand conditions, the DL41, STS21, and LI perform best under MFV at a 4% discount rate in the first half of the study (Erickson et al. 1990; Table 2. 4). Using only returns from previous three decad...
	Total discounted revenues since 1978, when sustainable stand structure was assumed to have been reached (Reed et al. 1986), show the rate at which different treatments have been accumulating revenue (Figure 2. 4). At all discount rates the DL41 is uni...
	Table 2. 4 Comparison of MFV and periodic return from first two decades after sustainable stand structure was assumed at the Ford Forest study, and from the past three decades, with sawlog products valued at price in 2018 dollars. Discount rates of 2%...
	aValues from Erickson et al. 1990 adjusted to 2018 prices using the PPI for Lumber and Wood Products. Real sugar maple stumpage prices were higher in 2018 than in 1988 contributing to differences in value.
	bTreatment interval is the average of the cutting cycles lengths associated with each harvest by the end of the period, except for the DL13 where it is the interval between the only two harvests in entire study.
	Figure 2. 4 Cumulative revenue since 1978 in 2018 dollars by treatment at the Ford Forest: (A) 0% discount rate, (B) 2% discount rate, and (C) 4% discount rate.

	2.3.4 Structure and density
	When this study began in 1956, the diameter distribution followed a reverse-J shape that was relatively homogenous across treatments (i.e., in pre-treatment condition; Figure 2. 5A). By 1998, differences in pre-harvest maximum diameter were clearly a...
	The DL30, DL41, and DL56 treatments have similar post-harvest basal areas to the STS11, STS16, and STS21 treatments, respectively (Figure 2. 6B). However, there is a clear difference in trees per hectare (TPH) between selection and diameter-limit trea...
	Figure 2. 5 Ford Forest: (A) Stand structure pre-harvest at study commencement in 1956 for trees ≥12.6 cm dbh. The 50 cm class contains all trees in larger diameter classes. (B) Stand structure pre-harvest in 1998 for trees ≥12.6 cm dbh. (C) Stand str...
	Figure 2. 6 Ford Forest post-harvest stand density over time for all treatments, excluding the 13 cm DL cut, in terms of (A) number of trees (stems ha-1) and (B) basal area (m2 ha-1).

	2.3.5 Species composition
	Relative overstory species composition pre-treatment in 1956 was sugar maple dominated, with the STS21 having the lowest relative sugar maple abundance at 72% and the LI having the highest at 94% (Table 2. 5). Sugar maple abundance increased in all th...
	Table 2. 5 Initial 1956 pre-treatment relative species abundance (%) and total change to pre-harvest 2018, for trees > 12.6 cm dbh, in 1956 and 2018.
	a Other may include one or more of: Betula papyifera, Picea glauca, Prunus serotina, Ostrya virginiana, Tilia americana, or Tsuga canadensis


	2.4 Discussion
	The continuation of the cutting methods study through 2018 extends the results reported at year 22 (by Reed et al. 1986) and year 32 (by Erickson et al. 1990) to a total of 62 years. A key finding after the additional 30 years is the consistent superi...
	The first 32 years of the study demonstrated clear improvements in residual tree grade under all of the treatments, including in the reserve. Average standing tree grade can increase in time because inferior trees are targeted for removal, but also tr...
	The failure of the STS or LI treatments to financially surpass the 41 DL is, in retrospect, not particularly surprising. Financial return depends on both grade profile of harvested trees and periodic yield. Given the threshold diameter for a grade 1 s...
	The DL41 is effectively a “sweet spot”, at least in this maple-dominated forest type, re-entry cycle, and level of site productivity, holding the greatest number of smaller sawtimber-sized grade 2 trees which are poised to increase significantly in gr...
	While the top-performing treatment by MFV has been consistently the DL41, significant shifts in ranking have occurred since 1988. For example, Erickson et al. (1990) suggested that the light improvement receive special attention, because of significan...
	Divergence of structure and density between the selection and diameter-limit treatments was present by post-harvest 1988, with the diameter-limit treatments retaining more trees in the pole and smaller sawtimber size classes (Figure 2. 5) and increasi...
	Other investigations have found that medium-intensity diameter-limit cuttings can produce sustained volume yield. Smith and Miller (1987) reported that a 40 cm diameter-limit cut had the greatest periodic annual board foot production when compared to...
	As currently recommended in the Lake States, single-tree selection retains residual stocking levels of 16 to 21 m2ha-1 and is concerned with obtaining a specific residual reverse-J diameter distribution (Arbogast 1957; Eyre and Zillgitt 1953; Gilbert ...
	Overall, the DL41 and STS11 treatments perform well financially while also providing motivations apart from financial gain to consider alternatives to traditional single-tree selection in northern hardwoods, due to their favorable performance under ec...


	3 Six Decades of Financial Returns and Stand Dynamics in the Argonne Experimental Forest Cutting Methods Study
	3.1 Introduction
	As historically applied in northern hardwoods, single-tree selection reduces basal area to around 18-21 square meters per hectare with an emphasis on maintaining a specific diameter distribution (Arbogast 1957; Eyre and Zillgitt 1953; Gilbert and Jens...
	Most single-tree selection as prescribed in Lake States hardwoods follows the Arbogast (1957) guide that calls for reduction in overstory basal area to around 19.5 square meters per ha while retaining a specific reverse-J diameter distribution. Such ...
	However, changes in management are often not enacted without sufficient financial incentive. The lifespan and comparably slower growth of northern hardwoods forests ensure that financial analyses incorporating long-term results are particularly import...
	Past financial analyses of alternative management methods in Lake States northern hardwoods have found that medium-intensity diameter-limit treatments, as well as selection systems focusing on quality, outperform selection treatments to residual basal...
	Niese et al. (1995) and Strong et al. (1995) wondered which of the treatments maintained in this study allow for compatibility between high quality and value northern hardwoods management and management for ecosystem health; in the context of these pr...

	3.2 Methods
	3.2.1 Study site
	The Argonne EF consists mostly of second-growth, even-aged forest, which at study establishment in 1951 were primarily 45 years old, although there were some few residual poor quality trees older than the main stand (Stoeckler 1955). The experimental ...

	3.2.2 Long-term study design
	Nine different treatments, including a control, are grouped together in a randomized block design with three blocks each comprising 16.2-ha. Blocks 1, 2, and 3 are located at approximately 45  44' 37.6836'' N, 88  59' 19.4064'' W, 45  44' 54.96'' N, 8...
	This analysis evaluates the previously mentioned six treatments that have been maintained throughout the study. The three single-tree selection treatments were applied on a 10-year cycle with entries during the winters of 1952, 1962, 1972, 1982, 1992...
	In the crop tree release treatment, 25-50 selected trees were released to grow by thinning the crown to a residual basal area of 14 m2ha-1 in 1952, 17 m2ha-1 in 1972, 17 m2ha-1 in 1982, 19 m2ha-1 in 2002, and 21 m2ha-1 in 2012, with small trees left n...

	3.2.3 Measurements
	Beginning in 1952, individual trees were numbered and tracked through time within each 0.04-ha measurement plot with dbh and species recorded at a maximum of 5-year intervals. Butt-log grade was recorded pre-harvest as an estimate of standing tree qua...

	3.2.4 Financial analysis
	A financial analysis was performed in the style of Rideout (1985), similar to the ones presented by Reed et al. (1986) and Erickson et al. (1990) for the Bourdo study. Three different measures of financial performance were calculated: managed forest v...
	This financial analysis evaluated the lumber value return of sawlogs. Potential factory grade lumber yield estimates for harvested trees were found using equations from Hanks (1976) and incorporated differences in quality into the financial analysis. ...

	3.2.5 Data analysis
	An analysis of variance (ANOVA) was completed to evaluate differences in treatment means for variation in grade, merchantable height, dbh, yield, ingrowth, and mortality using R version 4.0.2 (R Core Team 2020). The model used was for a randomized com...


	3.3 Results
	3.3.1 Growth and yield
	Average diameter growth for survivor trees through the entire study period was greatest under the STS14 treatment at 29 cm, or 0.45 cm per year, followed by the STS17 at 0.40 cm per year (Table 3.1). The STS21 treatment had lowest average diameter gro...
	Table 3.1 Argonne EF average dbh (cm) in 1951 (pre-treatment), 1952 (post-treatment), 2016 (4 years post-treatment), and average increase in diameter of individual trees ≥ 11.4 cm dbh from 1952 - 2016. In the DL18 treatment there were no survivor tree...
	Table 3.2 For trees > 24 cm dbh at the Argonne EF, average merchantable height by number of 4.88-meter logs in 1972 and 2016. Standard error in parentheses, n = 15. Means in a column followed by the same letter are not significantly different, p < 0.05.
	Average annual ingrowth into the smallest measured diameter class has been significantly greatest in the DL18 for the entire study period (Figure 3.1). The highest levels of ingrowth for the DL18 were directly following harvest in the 1960s, and 2000s...
	Figure 3.1 Average annual ingrowth (into the smallest measured size class), mortality (m2ha-1yr-1), and removals (m2ha-1yr-1), for the entire study period at the Argonne EF. Within each graph (A, B, C) bars with the same letter are not significantly d...
	Basal area (BA) has exhibited a consistent, gentle decline through time for the selection and crop tree treatments through time, with similar but slightly lower BAs in 2016 than in 1951 (Figure 3.2A). The second DL18 harvest reduced both BA and trees...
	Figure 3.2 Stand density through time for trees ≥ 11.4 cm dbh at the Argonne EF. A) Basal area and B) trees per hectare from 1951 – 2016.
	Estimated dry sawn lumber volume was greatest for the STS14 and STS17 (Table 3.3). The two DL18 harvest entries produced much greater volumes than any other treatment in their specific harvest entry years, but due to the 40-year rotation time, the sel...
	Table 3.3 Average annual dry factory grade sawn lumber yield since 1972 (estimated following Hanks (1976), m3ha-1yr) by grade at the Argonne EF. Grade 1C+ includes selects and better. Within each column values with the same letter are not significantl...
	Table 3.4 Argonne EF residual sawtimber volumes (m3ha-1, Intl. ¼” rule) estimated by number of logs following Gevorkiantz and Olsen (1955) for trees > 24 cm dbh. In 2002 merchantable height was not measured for the DL18 and crop tree treatments, so vo...
	Figure 3.3 Argonne EF net residual sawtimber volume (m3ha-1, Intl. ¼” rule) estimated by number of logs following Gevorkiantz and Olsen (1955) for trees > 24 cm dbh. Conversion to cubic meters following Winn et al. (2020).
	Figure 3.4 Argonne EF average annual dry factory grade sawn lumber yield since 1972 (estimated following Hanks (1976), m3ha-1yr-1) by grade. Panels A-C for grades 1-3, respectively. Grade 1C+ includes selects and better.  Within each graph (A, B, C) b...

	3.3.2 Quality and economics
	MFV was maximized by the STS14 treatment at all discount rates, closely followed by the STS17 treatment (Table 3.5). The DL18 treatment is not competitive under MFV. PW is the discounted sum of total revenue and MFV, and ranking as evaluated by PW sho...
	Table 3.5 Financial analysis of Argonne EF treatments, with potential dry factory grade lumber yields valued at price in current 2018 dollars. Present worth is discounted to study start in1952.
	aPeriodic return is averaged yearly revenue from 1972 - 2012 multiplied by number of years in treatment interval.
	bTreatment interval is the average of the cutting cycles lengths associated with harvests between 1972 - 2012, except for the 18 cm DL where it is the interval between the only two harvests in entire study period.
	cCalculations assume sustainable stand structure was reached in 1972.
	In 2016, the STS14 treatment had the highest percent of grade 1 standing sawtimber trees (47.2%), the lowest amount of below-grade trees at 0%, and the highest average grade (Table 3.6; Table 3.7). The STS17 had similar percentages of grade 1 and belo...
	Table 3.6 For trees > 24 cm dbh at the Argonne EF, average tree grades in 1972 and 2016, and average increase in grade of individual trees from 1972 - 2016. Grade scale from Hanks (1976), sawtimber grades 1-3 with below grade assigned a value of 4. In...
	Table 3.7 For trees > 24 cm dbh at the Argonne EF, average proportion of trees in each grade as measured in 2016, following Hanks (1976).
	Figure 3.5 For trees > 24 cm dbh at the Argonne EF, average proportion of trees in each grade as measured in 2016, following Hanks (1976).

	3.3.3 Structure and composition
	Initial stand conditions in 1951 in all treatments were similar, with size class distributions typical for a young, pole-sized even-aged forest with few remnant trees (Figure 3.6). There were very few trees above 50 cm dbh, and only small differences ...
	In 2016, after 65 years of management, average diameter was greatest in the control and STS21, and smallest in the STS14 and DL18 treatments (Table 3.1). The STS14 had a lower, although not significantly different, average diameter than all other sele...
	All treatments were sugar maple-dominated at pre-harvest in 1951. Overstory sugar maple abundance increased from 1951 to 2011 in all treatments except for the DL18 and STS17 (Table 3.8). The greatest increases were seen in the crop tree and STS21, wi...
	Table 3.8 Relative species abundance and diversity for trees > 11.4 cm dbh at the Argonne EF, pre-treatment in 1951 and pre-harvest in 2011.
	aOther may include one or more of: Betula papyifera, Fagus grandifolia, Prunus serotina, Fraxinus nigra, Populus tremuloides, Quercus rubra, Abies balamea.
	Figure 3.6 Argonne EF stand structure through time for trees > 12.4 cm dbh. At commencement of study (A, 1951, pre-harvest), at time of last analysis (B, 1992, post-harvest), and at most recent measurement (C, 2016, 4-years post-harvest).
	Table 3.9 Mean squares for analysis of variance of diameter, merchantable height, grade, grade proportions, annual ingrowth, and annual mortality at the Argonne EF. * = significance at p < 0.05, ** = significance at p <0.01, *** significant at p < 0.0...
	aNo estimated lumber removal volumes for the control.


	3.4 Discussion
	In northern hardwoods, financial return is influenced by tree quality (Reed et al. 1987; Sendak et al. 2000). Grade improvements result in the greatest increases in monetary value, more so than growth in diameter or height (Godman and Mendel 1978). Th...
	The additional two decades of treatment captured in this analysis have resulted in a confluence of quality and economic success; the STS14 now has the greatest economic returns as well as greatest gains in individual tree quality. MFV, proportion of r...
	The STS14 and STS17 have outperformed others financially in part because diameter growth greatly affects tree quality (Dey et al. 2017; Webster 2009). As trees become larger they surpass more of the threshold requirements for grade 1 and grade 2 stand...
	However, there is a limit to the gains in quality afforded through diameter growth; the rate of value gains declines in larger trees (Godman and Mendel 1978), and larger trees present a higher chance for damage, decay, or defect (Erickson et al. 1992;...
	Despite its success in most metrics that contribute to quality, the structure of the STS14 has not been consistently ideal for single-tree selection silviculture. The application of the uneven-aged selection silvicultural systems without modification ...
	By definition silvicultural systems plan for regeneration, and so the practice of applying an uneven-aged single-tree selection silvicultural system to an even-aged forest may need to be re-evaluated in light of the lack of regular ingrowth into small...
	Relatively larger removal of the basal area in a stand can result in greater ingrowth and help mitigate this dominance of shade-tolerant trees (Curzon et al. 2017). There have been concerns about trends towards sugar-maple monoculture under traditiona...
	Overall, treatments that remove more of the basal area result in a better return on investment. In selection treatments, lower residual basal areas have been found to result in greater residual growth and lower mortality (Forget et al. 2007). Schuler ...
	Return on investment and continual financial success are strong incentives for any management method, and so treatments such as the STS14 that encourage ingrowth, lower mortality, improve quality, and perform well financially could be considered as po...
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	Figure A.1.1 Ford Forest Study Layout
	Figure A.1.2 Argonne Example Treatment Plot
	[re-created following Stoeckler 1955]
	A.2 Studies Summary Table

	Table A.2.1 Summary Information
	a Harvest usually completed in fall/winter of the stated year
	b For harvests 1956-1988 the residual basal area target was applied to trees 25 cm and above. Starting with the 1998 harvest, the residual target was applied to trees 13 cm and above.
	c A salvage harvest to remove dead and dying Ulmus americana was performed in 1980 in these treatment compartments.


