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Abstract

It is fascinating to see how natural materials like teeth enamel, bone and
nacre possess a very high stiffness and strength in spite of the fact that they
are composed of minerals mostly. Studies have shown the reason for this
aberration as the presence of weaker interfaces with intricate interlocking
architectures at microscopic levels in these materials. Inspired by the ar-
chitecture of these materials, micro-architectured sutures with jig-saw like
geometry is being studied in this research study. The main focus of this
study is to examine the effects of friction co-efficient and interlocking angles
of the jig-saw tabs on pullout strength, fracture toughness and energy ab-
sorption. We are using Phase-Field Fracture model to study these effects
in ABS (acrylonitrile-butadiene-styrene) material. We will also simulate the
fracture of the interlocking tabs when the interlocking angle goes beyond a
certain limit.



Chapter 1

Introduction

Fracture is one of those criterion which if not analysed properly can result
in destructive outcomes. Fracture in brittle material is of main concern as it
can occur without any warning and it is cumbersome to study the initiation
and propagation of cracks in brittle materials.

It was Griffith [1] who first gave the theory of crack evolution in brittle ma-
terials. Following which, Inglis [2] introduced a very important parameter,
Stress Intensity Factor, that gave us an idea about stress distribution near
and around the crack tip. Griffith and Inglis considered energy release rate as
the driving force behind opening of cracks. These theories could not describe
crack initiation, branching and curvilinear crack paths; however, they con-
tributed towards the development of a number of techniques to solve fracture
problems computationally.

One of such computational technique to solve fracture problem is the Phase-
Field Fracture model [3,4]. It is more robust in comparison to other meth-
ods like node-splitting [5] and cohesive surfaces [6] where a discrete crack
is needed and crack can propagate only between the elements. This makes
the crack propagation strongly dependent on mesh and the method is com-
putationally more expensive.On the contrary, phase-field approach considers
crack as a smeared /diffused damage. Here the damage is estimated by using
a scalar function whose value lies between zero and one, and this scalar func-
tion is estimated by an energy minimization variational process [7-11]. This
method is capable to simulate crack branching and curvilinear paths which
were the limitations of the discrete crack methods.



In this study we are studying the design of micro-architectured sutures with
jig-saw puzzle like geometry, which is inspired by the architecture of natural
materials like teeth enamel, bone and nacre [12]. These materials are majorly
composed of minerals, however, they exhibit a very unique combination of
strength, toughness and durability [13-15]. The reason for this unique and
anomalous behavior is the intricate architecture of building blocks that are
connected via weak interfaces [16]. These interfaces play a vital role as they
help channelize the crack along the interface, thus increasing the deformation
along with helping in the dissipation of energy through large volumes of bulk
materials [17]. Implementing sutures with jig-saw puzzle like geometry gives
similar response as it is seen in these materials [18]. We are implementing the
Phase-Field model to study the effect of friction coefficient and interlocking
angle of the jig-saw tabs on the pullout strength, ductility, deformability and
fracture. The novelty of this computational approach is the simulation of
fracture of tabs which have only been done experimentally before. It will be
seen that for a certain interlocking angle of the jig-saw tabs, the tabs break
before they are completely pulled apart.



Chapter 2

Theory of Phase-Field Fracture

2.1 Phase-Field Approach & Crack surface

Let us consider an infinitely long 1D bar as shown in Fig. 2.1. It contains a
sharp crack as shown at x=0. If we denote this crack with d(z) then

dlx)=1latzx =0, d(z)=0atx =+o0 (2.1)

Thus, the function d(x) is dirac-delta function here.

crack (cross section: ')
- 'rl
I F

1{7
- j -

X

Figure 2.1: 1D bar with sharp crack at x = 0 (Source: Molnar, [19])

Now it is known that the energy released (1) due to this crack can be cal-
culated by multiplying the critical fracture energy release rate G, with the
crack surface area (A), which is nothing but the cross-sectional area of bar
at x=0 (2.2).

— | G.dr = G A .
¥ / (2.2)



Figure 2.2: Diffused Crack (Source: Molnar, [19])

This is simple to find in case of 1D geometry, however, it becomes burdensome
to find the energy dissipated due to the cracks in higher dimensions as we
need the idea of crack path and its propagation.This is where Phase-Field
approach as shown by Miehe [4] comes into the picture by considering crack
as a diffused /smeared damage rather than a sharp discontinuity. Phase-field
considers the function d(z) as an exponential function (2.3) whose value lies
between 0 and 1. The diffused crack has been shown in Fig. 2.2. Through
this method we can calculate the crack surface area by integration over a
given domain and can easily obtain the energy dissipation due to fracture in
higher dimensional problems.

d(z) = e le (2.3)

Here, [, is the length scale parameter and d(x) is the diffused /smeared dam-
age. If [, = 0, the crack becomes sharp.
The function d(z) in (2.3) is the solution to the homogeneous differential
equation,

d(x) — 2d"(x) =0 in Q (2.4)

subjected to the Dirichlet boundary conditions in (2.1).
The quadratic functional can be obtained from the Galerkin-Weak form of
(2.4) and is given by,

I(d) :% /Q(d2 + 2d*)dVv (2.5)

Thus, it can be said that the differential equation (2.4) is the Euler-Lagrange



equation of the variational form,

= arg{ inf 1(d)} (2.6)

where W = {d|d(0) = 1, d(£o0) = 0}.
Now if dV=I'dz, it can be shown from (2.5) that
[([d=e %) =1T (2.7)

From (2.7) we can derive the relation between I' and 1(d) as,

I(d) il(d) (2.8)

or,I'(d) = 215 / (d* +12d?)dV = /Q v(d,d")dV (2.9)

v(d,d’) is the crack surface density function per unit volume in 1D. Equiva-
lently, in higher dimension the crack surface density function can be written
as,

v(d, Vd) = id2 + = o RV (2.10)

2.2 Energy Degradation

The potential energy of a solid body due to fracture can be written as,
" = E(u,d) + W(d) (2.11)

where E(u, d) is the strain energy and W (d) is the fracture energy in the solid.

The above calculation of crack surface was limited to one-dimension but we
can easily extend this concept into higher dimensions by expressing the solid
configuration as Q C R?, where § € (1,2,3), and §Q C R°"! represents the
surface of the solid. In this study we are studying time dependent crack
phase-field and displacement fields where 7" C R [4]. The time-dependent
phase-field can be represented as,

‘{QXT—> [0, 1] (21

(x,t) — d(x,1).

9



and the diplacement-field as,

OxT— R
:{ b (2.13)

(x,t) = u(x,t).

Now from Eq. (2.11), E(u,d) is the internal potential energy and can be
expressed as,

E(u,d) = /Q W(e(u), d)dV (2.14)

where (¢, d) is the internal potential energy density and can be written as,

(e, d) = g(d).1ho(e) (2.15)

In Eq.(2.15), 1g(€) is the internal strain energy density of the undamaged
material and g(d) is called a degradation function [19], such that

g(d)=(1—d)?+k (2.16)

k is a very small constant added for the numerical stability of the solution.

Eq. (2.15) is only valid for isotropic models, i.e, the full stress tensor is
degraded if this model is considered. This results in the energy release due
to fracture in both tension and compression cases. Isotropic model is limited
for cases that involves only tensile stresses. Thus, to overcome this model,
anisotropic energy degradation was introduced [4]. In this case only the ten-
sile part of stress tensor is degraded and the internal potential energy density
is given as,

(e, d) = g(d).vg + vy (2.17)

g is the elastic strain energy density due to tension and v, is the elastic
strain energy due to compression. Now considering the unbroken /undamaged
material as elastic, stress tensor can be written as,

09 — C()E (218)

and the strain energy density as,

1
o = §€TC06 (2.19)

10



Here, € is the vector of strain components and is given by,
1
€= 5((Vu)T + (Vu)) (2.20)

Now, by differentiating Eq. (2.15) with respect to the strain tensor we get,

o =g(d).oco = [(1 —d)?* + k].Cqe (2.21)
Similarly we can write,
C =[(1—-d)*+k].Co = g(d).Co (2.22)

It is evident from the above equations that along with strain energy, there is
also a degradation of stress and stiffness matrix.

The other term in the internal potential energy expression in Eq. (2.11) is
W (d). This is the energy released due to fracture and can be written as,

W(d) = /Q G. y(d, Vd)dV (2.23)

W (d) denotes the summation of energy released due to all the crack surfaces
that generated due to fracture.
Finally the external potential energy can be written as,

Hext:/iudv + / t.udA (2.24)
Q B9}

where, ¥ and t are the body and the surface forces acting on the body re-
spectively.

2.3 Staggered approach for phase-field solu-
tion

Fig. 2.3 gives a schematic representation of how the phase-field problem is
solved using staggered method. Here, we solve the problem by dividing it
into two different energy minimization process. The first functional that will
be minimized to find phase-field is given as,

I = /[Gc v(d, Vd) + (1 — d)*H] dV (2.25)

11



1) displacement field

L4

\ 2) history field

)

3) phase field

Figure 2.3: Schematic representation of staggered phase-field problem
(Source: Molnar, [19])

where H is called history function and can be represented as follow:

I_ {¢0(€) if 1o(e) > H, (2.26)
H, otherwise

where H,, is the energy calculated at the previous step n. This history func-

tion not only couples the phase-field and displacement, but it also takes care

of irreversibility of damage by preventing any reduction in damage value, i.e,

d' > 0 is always satisfied.

Now, the functional to solve for displacement is given as,

I = /Q[Qﬁ(u,d) +7.u] dV — /mf.u dA (2.27)

Finally by finding the first variation of Eqs. (2.25) and (2.27) we can write
the strong form for phase-field and displacement field as shown in Egs. (2.28)
and (2.29) respectively.

Phase-field strong form:

12



SIY =0V dd — %(d —I2Ad) =2(1 —d)H in ©, and

C

Vdn=0inT. (2.28)

Displacement field strong form:

MI"=0V du— Vo—-—75=0in ()
cn=0onIy

u=71uon'p (2.29)

2.4 Finite Element Implementation

The phase-field fracture problem is solved through Abaqus User Defined El-
ements (UEL) where the two minimization problems given in Eq. (2.25) and
Eq. (2.27) are solved iteratively. First Eq. (2.25) is solved to find the phase-
field at time ¢, 1 based on the quantities obtained at time t,, and can be
written as,

dpy1 = avg{int /Q (G, v(d,Vd) + (1 — d)*H] dV'} (2.30)

Using Newton-Raphson method, the linear equation obtained through the
above minimiation can be solved as,

d d
Kndn+1 = —T

n

(2.31)

where, d,y1 is the vector containing phase-field values at all integration
points at time ¢,,1, K9 is the stifness matrix at time ¢,, and rd is the resid-
ual vector at time ¢,,.

Similarly we can solve for the displacement field at time ¢,,,; from the other
quantities obtained at time ¢,, through the following minimization process,

Upr1 = arg{inf/[@/)(u, d) +7.u] dV —/ tu dA} (2.32)
v Ja 59
Similar to Eq. (2.31), this problem can be solved as,
Kiupq = —rp (2.33)

13



Layered FE structure

hase-field element .- 5
p i stiffness from

3" DOF

displacement element -~
UMAT element

no stiffness
~_l
stiffness from
DOF - degree of freedom 1®and 2" DOF

Figure 2.4: Schematic representation of the three layered UEL (Source: Mol-
nar, [19])

Molnar [19] used two 4 noded isoparametric 2D element types in Abaqus
to obtain the solution. Fig 2.4 clearly explains the implementation. The
first layer is utilized to store the phase-field values and thus only has one
degree of freedom (DOF). On the other hand, the second layer is used to
store the displacement values and can have two or three DOF based on the
dimensionality of the material. It is not possible to visualize the user defined
elements (UEL) in Abaqus. Thus, apart from these two layers there is an
additional UMAT layer added to the UEL. Table 2.1 & 2.2 show the various
State Dependent Solutions obtained from the Abaqus simulation.

The staggered scheme connects the two element layers through the common
block and solves the system of linear equations in Eq. (2.31) and (2.33) iter-
atively using Newton-Raphson method as shown below,

Kg 0 dn+1 o I‘g
{ ‘ Kz] [UM | (2.34)

n

Fig. 2.5 can explain this iterative solution clearly. In this approach, the
history function g, obtained by the displacement element at n'* time step
is utilized by the phase-field element to calculate the damage value d,,,; at

14



Solution Dependent Variables (SDV) in Displacement Element
Variable 2D (x,y)
Displacement - u, u, SDV1 - SDV2
Axial Strains - €, €, SDV3 - SDV4
Engineering Shear Strain - 7, SDV5
Principal Strain - €, €5 SDV6 - SDV7
Volumetric Strain - €; + € SDV8

Axial Stress - 0,, 0, SDV9 - SDV10
Shear Stress - 7,, SDV11

Strain Energy - ¢ SDV12

Elastic Strain energy - 1/ SDV13
Phase-Field - d SDV14

Table 2.1: Solution Dependent Variables in Displacement Elements

Solution Dependent Variables (SDV) in Phase-Field Element
Variable 2D (x,y)

Phase-Field - d SDV15

History Field - H SDV16

Table 2.2: Solution Dependent Variables in Phase-Field Elements

(n+1) time step. Similarly, the damage value d,, obtained by the phase-field
element at n'* time step is utilized by the displacement element to calculate
displacement w,,,; & history function ¢y.,+1 at the (n + 1)™ time step.

Staggered scheme

u, =0 u, u (i .d)
w“

-u'fll,o= 0 ;al‘l_,lr W;I,I,'-l(ﬁl,l- |"dlll}
Displacement field ¢ = —+ E
P el
Phase-field 0 0 dn I_/f .R'Hg‘; E"‘ru—l‘:"l'lr.lr- 1= Yo ) “____d

Time t=0 ! f

Figure 2.5: Iterative algorithm to solve the coupled displacement-phase-field
solution
(Source: Molnar, [19])

15



Chapter 3

Phase-Field Fracture in
Micro-Architectured
Geometries

Looking at the high fracture strength, toughness and durability of natural
materials like nacre, tooth and bones, many studies have been done to study
their micro-structures [12 - 15]. It is seen that these materials have very intri-
cate geometries with weak interfaces and are the reason behind the superior
mechanical properties they possess. Inspired by these materials, Barthelat
[12] tried to incorporate micro-structure in brittle materials with the inten-
tion of obtaining the same enhancement in mechanical properties as it can
be seen in the above mentioned natural materials. Fig. 3.1 shows the in-
terlocking jigsaw suture that Barthelat [12] introduced in ABS material. He
gave an analytical traction-separation model for the shown jigsaw suture and
compared the results with FEA and experimental results to verify the ana-
lytical model. It was seen that the traction-separation curves were strongly
dependent on the friction coefficient (f) and the interlocking angle (6y). He
also showed experimentally that the tabs break due to pull out at 6, = 20°
and f = 0.35. In this chapter we are going to computationally simulate frac-
ture in the tabs at 6§, = 20° and f = 0.35 through the implementation of
Phase-Field Fracture Model.

16
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Figure 3.1: An interlocking jigsaw suture (Source: Barthelat, [12])

3.1 Interlocking Jigsaw Geometry

It can be seen that two tabs are connected to form a jigsaw like structure.
The edges are rounded to avoid any stress concentration and the two tabs are
connected in such a way that the blended edge makes an angle 6, with the
vertical axis. Here, the interlocking angle 6y and friction coeffiecient f are the
independent parameters and determine the tab length L, width w, pullout
distance ¢ and strength as the tabs are in contact for a longer distance for
larger interlocking angles 6, . The tab length and width can be represented
as:

L = 2R(1 + sin ) (3.1)

w = 4R cos 6 (3.2)

The value of 6 is greater than 0° and less than 60° [12]. If 6 is equal to
0° then there will be no interlocking and if it is greater than or equal to 60°,
the neck of the interlocking geometry intersects.

17



Pullout distance ~ u

w

(a)

(d)

Figure 3.2: (a) Interlocking gigsaw geometry; (b) Symmetric form of the
geometry in (a) with boundary conditions; (c) free body diagram of the sym-
metric geometry; (d) free body diagram of the lower tab. (Source: Barthelat,

[12])
3.2 Analytical Model

In this analytical model by Barthelat [12], the pullout behavior of interlock-
ing jigsaw geometry is studied.The material is considered to be isotropic and
elastic. The interlocking geometry shown in Fig. 3.2 (a) has tab raidus R,
interlocking angle 6y, tab length L, tab width w, friction coefficient f and
plate thickness t. Fig 3.2 (b) shows the same tab but in the symmetric form
and with the necessary boundary conditions. The bottom edge is fixed in
horizontal and vertical axes, the left and right edges are fixed in horizontal di-
rections and a displacement wu is applied at the top edge. ¢ is the interference
between the two interlocking tabs when the top edge is displaced.

It can be assumed that the deformations near the contact is much larger
in comparison to deformation in the bulk material. And based on this as-
sumption we can give the kinematic equations for the pullout response that

18



connects initial and deformed configurations as,

(2R — ) cos 6 = 2R sin 0 (3.3)
u=2R sin 0y — (2R — ) sin 0 (3.4)

Here, 6 is the instantaneous angle generated by the line line joining the
centres of the two tabs with the horizontal axis (Fig. 3.2 (b)) during the
pullout. This 6 varies from +6 to —6, such that, +6 represents the initial
configuration and —@ represents the final state when the two tabs are com-
pletely pulled apart. It can also be seen that the distance between the two
centers is 2R initially, but it reduces to (2R - 0) as the tabs are pulled apart.
The interference § produces a force that results in the force required for the
pullout. But it also produces some horizontal force components on both sides
of the model. However, these forces are balanced by tensile forces acting on
the top and bottom part of the bulk as shown in Fig. 3.2 (¢) (F. = 2F}).
Further considering the normal force P and the frictional force fP as shown
in Fig. 3.2 (d), the total pullout force can be given as,

F =2P (sin 0+ f cos 0) (3.5)

Barthelat in his paper on bio-inspired interlocking sutures [12], gave the
analytical formula for normalized pullout force (Eq. 3.6) and the normalized
pullout distance (Eq. 3.7).

F P sinf+fcost
wtE  RtE 2 cos 6,

(3.6)

u sin By — co§ Oy tan 6 (3.7)
L 1+ sin 6

These quantities are used to generate the typical traction-separation curve
for the analytical model as shown in Fig. 3.3. A sinusoidal curve is obtained
for the frictionless case. This can be explained by the fact that only pullout
force generated by the interference at the contact region is responsible for the
traction. It can be seen that this pullout force starts acting downwards as the
angle 6 becomes zero or less. Due to this reason, the tensile force becomes
compressive at # = 0 and we obtain a sinusoidal cure for the frictionless
case. But when the friction at the contact surfaces is greater than 0, there is
always a pullout force upwards that results in the nature of the traction curve
to be tensile for a larger portion of the pullout distance. Once the friction

19



coefficient is greater than tan 6, the traction-separation curve is completely
tensile and there is no compressive force throughout the separation of the

tabs.
F
;
Increasing |
i friction ! C: - !
r NS
witE ! : :
Frictionless »
case f=0
0 : :
9=6, 6=0 8=-6,
L u_ sin 6, u_ 2sin G,
1, L 1+sing, L 1+sing,

Figure 3.3: Traction separation curve obtained from the analytical model.
(Source: Barthelat, [12])

3.3 Phase-Field Fracture modeling in inter-
locking jigsaw geometries using ABAQUS
UEL

We implemented the Phase-Field fracture model using ABAQUS UEL as
explained in Chapter 2. We performed Phase-Field FEA simulations on two

20



interlocking jigsaw specimen with different interlocking angles. The first
specimen has 5° interlocking angle and the other one has 20°. The radius of
tabs of the specimen were 1 mm for all the simulations and the plate thickness
was 2 mm. Tab length and width can be easily calculated using Eq. (3.1)
& (3.2). First, the FEA model was created using ABAQUS. We kept a gap
of 0.5 micron between the interlocking tabs and applied surface-to-surface
contact between the two interlocking edges. The meshing was done in such
a way that the length scale parameter [, was double (or even greater) than
the the smallest mesh size [4]. The input file obtained from this model was
modified according to the Phase-Field UEL using MATLAB.

3.3.1 5 degree interlocking angle

Four different simulations were run for the 5° interlocking angle specimen.
The models were created exactly as mentioned above and the total displace-
ment of 0.6 mm was given through 660 steps. The traction-separation re-
sponse has been shown in Fig. 3.4 and Fig. 3.5 shows how the tabs completely
get pulled out without any damage. It can be seen that the traction increases
with an increase in the friction coefficient f and our FEA result matches with
the analytical result. Now if we perform the same test on interlocking jigsaws
with different interlocking angles, it can be clearly visible that the strength
and energy absorption increase with the increase in interlocking angle 6.
Thus, an increase in the interlocking angle and the friction coefficient results
in an increase in the strength and energy absorption of the interlocking ge-
ometry. The higher interlocking angle 6, causes the two tabs to remain in
contact for a longer time and thus results in the application of upward acting
force for a longer duration. However, it is not the same if the friction coef-
ficient increases. Friction coefficient has no effect on how long the two tabs
remain in contact. But, the component of the frictional force acting towards
the pull out direction increases with an increase in friction coefficient and
thus results in an increased traction. Nonetheless, these parameters cannot
be increased beyond a certain value as the generated high stresses can cause
fracture in the tab before the completion of the pullout process. In section
3.3.2 we will study a scenario where there is a failure of tab due to certain
interlocking angle and friction.
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Phase Field Theory (f =0 to 0.4)
Analytical (f = 010 0.4)

25— =

FMWE

05— =

0.02 004 0.06 0.08 0.1 012 0.14 0.16

Figure 3.4: Traction-Separation curve for 5° interlocking angle obtained
through Phase-field model vs. Analytical model

Figure 3.5: Total pullout of the tabs with 5° interlocking angle

22



SDvVi4

(Avg: 75%)
+1.003e+00
+9.194e-01
+8.362e-01
+7.530e-01
+6.699e-01
+5.867e-01
+5.035e-01
+4,203e-01
+3.372e-01
+2.540e-01
+1.708e-01
+8.764e-02
+4.461e-03

Figure 3.6: Fracture of tab with 20° interlocking angle

3.3.2 20 degree interlocking angle

The traction-separation curve for 5° interlocking angle proves that the Phase-
Field model is working properly. The novelty of this work is the simulation
of tab fracture using Phase-Field UEL. Barthelat [12] proved experimentally
that the total pullout of tabs is not possible for all interlocking angles and
friction coefficient values. He experimentally performed the tensile tests on
interlocking geometries with 5°, 10°, 15° and 20° angles and with f = 0.35,
E = 1.72 GPa and v = 0.4. It was seen that the tabs with 5°, 10° and
15° angles separated completely without tab fracture at the end of pullout
process, thus satisfying the analytical results. The fracture toughness and
energy absorption increases with increase in 6y upto 15°. However, the tab for
the interlocking jigsaw geometry fails at interlocking angle 6y = 20°. In this
study we implemented Phase-Field fracture model to simulate the fracture
of the tab at 20° interlocking angle. We considered the following properties
for this fracture modeling : E = 1.72 GPa, v = 0.4, f = 0.35 and Energy
release rate G. = 0.1376 N/mm. It can be seen from Fig. 3.6 that the tab
completely fractures in the middle where the damage (SDV14) value is equal
to 1.
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Figure 3.7: Traction-Separation plot of tab with 5°, 10°, 15° and 20° in-
terlocking angle obtained by Barthelat [12] through experiments (Source:
Barthelat [12])
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Figure 3.8: Traction-Separation plot of tab with 5°, 10°, 15° and 20° inter-
locking angle obtained through phase-field model
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Traction-separation plot have also been provided in Fig. 3.7 and Fig. 3.8 for
experimental and phase-field model results respectively. It is evident from
the plot that the tab fails abruptly even before the force becomes compressive
in nature for 20° interlocking angle. It is also evident that the phase-field
fracture model simulates the experiment almost exactly.
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Chapter 4

Conclusion

Staggered Phase-Field Fracture model was implemented through ABAQUS
UEL to simulate fracture in micro-architectured materials. In this fracture
model, crack is considered as a diffused/smeared damage rather than a sharp
discontinuity. The staggered model incorporates two layers : displacement
layer and phase-field layer. The layers utilize the required quantities from
the previous time step to calculate the required solution in current time step.
Apart from these layers, there is an additional UMAT layer that is applied
for element visualization purposes.

Apart from fracture modeling, the other focus of this study was to under-
stand the effect of interlocking angle and friction coefficient on the strength
and energy absorption of the interlocking micro-architectured materials through
computational simulations. It was found that with an increase in the inter-
locking angle and friction angle, the strength and energy absorption of the in-
terlocking micro-architectured materials increased comprehensively. Nonethe-
less, there is a limit on the increase of these parameters. Based on previous
experimental studies by Barthelat [12], it was seen that the tabs formed by
these interlocking angles fails at 20° interlocking angle and 0.35 frictional
coefficient. However, these results were obtained experimentally and not
computationally. Thus, the primary focus of this research was to simulate
this experiment computationally using Phase-Field Fracture model. By in-
corporating correct material properties, the fracture of tabs was simulated
for 20° interlocking angle and 0.35 frictional coefficient.
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