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Abstract

Graphene has attracted a great share of research interest due to its extraordinary electrical, thermal,
mechanical, and physical properties. Such spectacular properties of graphene open a wide range
potential of applications in electronics, energy storage, composites, and biomedical fields. The
mechanical properties of graphene can have a huge impact on its performance in graphene-based
devices and thus it is important to study them. But the difficulties in experimental characterization
and computational limitations to simulate large graphene sample consisting of billions of atoms
makes it a challenging task. Thus, accurate and efficient simulation tools to predict the complex
deformation of large graphene samples are needed but are still elusive.

The objective of this thesis is to utilize the atomistic-continuum foliation (AC) model
developed by Ghosh and Arroyo (2013) and modified by Upendra Yadav, to reproduce the nano-
indentation experiments accurately. This atomistic - continuum foliation (AC) model enables one
to directly reproduce the experimental results, something that was not possible before. Using this
model we can study the effects of different variables like adhesion, frictional force, indenter radius
and stress concentration which is not possible to obtain from the experiments.

This thesis also includes the simulation results for different surface morphology like wrin-
kles and ripples generated on the multi-layer graphene samples under uniaxial and biaxial com-
pression for different van der Waals potential, which paves a way to study the multifunctionality
and control of crumpling and unfolding of graphene to enhance its performance in graphene-based
devices.

viii



1 Introduction

Carbon is one of the most abundant element in universe, forming backbone of every living organism
on earth. It is capable of forming hard diamond or soft graphite depending upon its structure.
Graphene is a 2D crystalline carbon allotrope, formed of a covalently bonded (sp2 – hybridized)
single layer of carbon atoms [27]. Graphene is the strongest and thinnest material which forms the
basis of 3D graphite to 1D carbon nanotubes [27]. Since its discovery, graphene has attracted a great
share of research interest due to its extraordinary 2D lattice structure and unique electrical, thermal,
mechanical and physical properties [25]. Such fascinating properties of graphene has driven a stim-
ulating research for its application in nanotechnology [19], like micro- and nanoelectromechanical
systems (MEMS/NEMS) consisting of integrated circuits [14], transparent conducting electrodes
[17], single molecule gas detectors [22], transistors [11], optical modulators [16] along with its
applications in surface coating, composite and sensing. Other Two-dimensional nanomaterials like
boron nitride (h-BN), tungsten disulfide (WS2), phosphorene and molybdenum disulfide (MoS2)
nanosheets have also generated a worldwide research interest due to their unique properties from
insulating h-BN to semi-conducting MoS2, promising wide range of application [9], [5], [15], [20].

Amongst many unique properties of graphene, mechanical properties such as Young’s
modulus E, Poisson ratio ν, and fracture strength σf play a crucial role for their performance in 2D
nano-devices [1]. Due to which, mechanical properties of graphene have been extensively studied
theoretically, experimentally and numerically. Experimental and simulation studies have reported
that the surface morphology of graphene and CNT can be controlled through external perturbation
like bending, compression, tension, in-plane shear, and thermally induced stresses. Several attempts
are made to control the ripple structure formation on the suspended graphene surface for improving
their performance in 2D nanodevices [27]. These mechanical properties can be effectively studied
through nanoindentation and compression loading of free-standing graphene films supported on the
soft elastic substrate [27], [1].

A new surge of interest has been generated by stacking layers of graphene on top of one
another, which are actively used in high - performance Nano-electromechanical devices and compos-
ite design reinforcements [23]. Understanding the surface morphologies in multilayer graphene is
important as well as challenging due to the difficulties in experimental characterization and atomistic
modelling for unknown boundary conditions [23]. Thus, investigation of the mechanical properties
of such layered structure is essential and studied experimentally and numerically under mechanical
loading like compression, tension, bending, stretching and hydrostatic pressure [8].

The objective of this thesis is to compare our recently developed state-of-the-art atomistic-
continuum (AC) models by Ghosh and Arroyo (2013) [24], with the nanoindentation experiments
conducted by Aleksey Falin et al. [9] and Lee et al. [13], to estimate the elastic properties of large-
scale multilayer graphene samples and study its deformation mechanism. Other Numerical methods
used to simulate 2D material like Density Functional Theory (DFT), Quantum-mechanics, and
Molecular-dynamic simulations are accurate, but they are computationally restrictive to the large-
scale graphene samples tested experimentally [24]. Besides, our atomistic-continuum (AC) model
can consistently simulate large size graphene samples making it possible to directly reproduce the
experimental results. Aleksey Falin et al [23] and Lee et al. [13], used Atomic Force Microscopy
technique to measure elastic properties of one to three-layered graphene films, the experimental
results of which are reproduced in this thesis work. Such comparison has never been reported before
because directly reproducing the experimental observation through atomistic simulations has been
a major challenge due to the large size of graphene samples tested experimentally [24]. Nonlinear
elastic behavior is observed in the load-displacement curve for two- and three-layered graphene
sheets in both simulation and experiment. Young’s modulus is computed by obtaining the slope of
the load-displacement curve for both two- and three-layered graphene sheets [23].

The second part of this thesis includes the large-scale AC simulation results showing mul-
tiple morphological deformation phases (wrinkles and ripples) observed in bilayer graphene samples
under uniaxial and biaxial compression for different adhesion potential between graphene layers.
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2 Atomistic Continuum Model

Atomistic and continuum-based models are the two different computational modeling approaches
widely used in the field of material science to understand the mechanical behavior of materials.
In atomistic based modeling approach, collective behavior of atoms and its interaction is modeled
on large scale, considering the atomic physics. But, this approach is computationally expensive
and time consuming. Continuum-based model are used to model materials by considering it as
continuous mass, but this approach ignores atomic physics. This thesis introduces the Atomistic-
continuum modeling approach that combines the atomistic and continuum modeling approaches to
simulate crystalline materials. Surface [2] model and Foliation [24] model are the two known models
developed by this approach.

In the experiments, periodic wavelike deformation patterns can be seen in the supported
graphene layer called rippling [24]. Graphene consists of crystalline membrane having very high
Young’s modulus and very low bending modulus [24]. Besides, the non-bonded interactions also
called van der Waals interactions or adhesion potential guide the deformation patterns and keep
the graphene layers separated [24]. Under loading, the graphene layers bend to minimize their in-
plane strain following a near isometric deformation, leading to wrinkling patterns [24]. Accurate and
efficient simulation tools to predict the complex deformation of large graphene samples are needed
but are still elusive [24]. MD, Quantum-mechanical, and DFT simulations are consistently accurate,
but they are computationally expensive to simulate large graphene samples having millions of atoms
[24]. Besides this, the atomistic-continuum (AC) model combines both atomistic and continuum
models, which follows a differential-geometric concept called Foliations [24]. The Foliation model
uses an inter-layer 4-10 Lennard-Jones potential for van der Waals interactions to describe non-
bonded interactions and a modified Brenner potential to describe bonded-interactions [24].

This atomistic-continuum foliation (AC) model can simulate a large-scaled 2D membranes
accurately, thus making it best suitable for the simulation of large graphene samples used in experi-
mental testing and real-world applications. It is now possible to directly reproduce the experimental
results using this atomistic-continuum foliation (AC) model developed by Ghosh and Arroyo (2013)
[10], which is the main focus of this thesis.

2.1 Kinematics

A configuration mapping function (ϕ0) maps a body from parametric configuration to the local
reference configuration. Another mapping function (ϕ) is defined from parametric configuration to
Euclidean configuration, R3 as shown in the Figure. 1 [24].

Figure 1: Schematic of kinamatics showing the configuration space, deformation maps, and coor-
dinate axes [2].

The deformation map can then be defined as Φ = ϕ ◦ ϕ−1
0 . Using this deformation map, the
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deformation gradient can be expressed as,

F = DξϕDξϕ
−1
0 (1)

Using the homogeneous deformation, the stretch and shear free reference configuration can be ex-
pressed as

T0(ξ) =

2π[Rinnξ
3 +Rout(1− ξ3)] 0 0

0 L 0
0 0 Rout −Rinn

 (2)

where Rinn and Rout is the inner and outer radius and L = length of graphene sample. The
deformation gradiant can be expressed as,

F = DξϕT
−1
0 (3)

The Cauchy-Green strain tensor of the layers can be expressed as,

Cl = (T l0)−T g(T l0)−1 (4)

where g = ∂ϕ
∂ξα is the metric tensor of each layer at each point. To obtain curvature tensor, the

pull-back of the Weingertan map can be computed as,

K = (T l0)−T k(T l0)−1 (5)

where K is the curvature of graphene layer, obtained as component of Weingertan map and can be
expressed as Kαβ =< n, gαβ > where, n is the unit normal vector at that point and comma denoted
the partial derivative with respect to ξα [24].

Using exponential Cauchy-Born rule [10], the energy density of the deformed graphene
layers can be obtained in terms of right Cauchy-Green’s strain field Cl, the transverse-to-the wall
stretch field of the deformation map (Φ) and the curvature tensor field K can be expressed as
W (Cl,K) [24]. The formulation of exponential Cauchy-Born rule is explained in detail in the next
section.

2.2 Strain Energy Density

2.2.1 Bonded Interaction Potential

Using the Cauchy-Born rule, we can obtain the deformed bond length and bond angles as a function
of the continuum variables. According to the standard Cauchy-Born rule, deformation of the lattice
vectors can be represented in the form of linear transformation a=F(X)A, where A represents
an undeformed vector originating from the reference coordinate X and a represents the deformed
vector [2].
where, F is Deformation Gradient, using Cauchy Born Rule, deformed bondlength and bond angles
can be expressed as, a = FA and cosθ = A.CB

||a||.||b|| respectively.

The standard Cauchy-Born rule fails to capture the mechanics of curved membrane. There-
fore to overcome this limitation, an extension of the Cauchy-Born rule was proposed to take into
account the mechanics of curvature of the crystalline membrane [2].

The exponential Cauchy-Born rule can be expressed as,

a = exp ◦ F (X)A (6)
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Figure 2: The exponential map representing the transformation of the vector a = FA from planer
undeformed configuration to planer deformed configuration a [2].

Figure 3: The exponential map representing the transformation of the vector w = FA tangent to
the surface to a chord of the surface a [2].

where, exp represents the exponential map of the surface at Φ(X) [2].
For planer underformed membrane, the exponential Cauchy-Born rule can be expressed as,

a = expΦ(X) ◦ F (X)A (7)

The length of a deformed bond and the angle between two deformed bonds a and b can be estimated
by a simple formula,

a = |a| =
√
acac (8)

and (9)

θ = arccos
〈a
/
b〉

ab
= arccos

acbc

ab
(10)

The bond lengths and the angles can now be expressed as a function of continuum variables C
(Cauchy-Green strain tensor) and K (Curvature tensor). We have computed the derived strain
measures a = f(C,K;A) and θ = g(C,K;A,B) [2]. These continnum variables are sufficient to
derive the continuum models from the atomistic description of the membrane system considering
both lattice structure and inter atomic potential [2], see Figure 3.
Consider Figure 4, it shows the representative hexagonal cell for the graphene honeycomb lattice,
containing two nuclei with surface area S0 = (3

√
3/2)A2

0. The strain energy per unit area of the
continuum membrane is expressed in the form of Tersoff-Brenner potential [2],

W = W (C,K) =
1

S0

3∑
i=1

[VR(ai)− ~B(aj , ak, θj , θk)VA(ai)] (11)

4



Figure 4: The hexagonal cells of graphene in multi-lattice honeycomb arrangement [2].

The hyper-elastic potential W is systematically derived from the atomistic interactions describing the
force and bond energy using a kinematic rule linking continuum and lattice deformations, averaging
the atomistic energy in one-unit cell of the lattice, and the exponential Cauchy-Born rule [2]. For
bonded interaction, the strain energy of graphene membrane can finally be expressed as [24],

Π1(ϕ) = W (Cl,K) (12)

A much simpler continuum model called Saint Venant-Kirchhof was used by Arroyo and Belytschko
(2005) [2], which provided reasonably accurate results as compared to atomistic continuum simula-
tions. This model is based on the Saint Venant-Kirchhof strain energy density and on the Helfrich
curvature energy

WK−SV−H(Cl,K) =
1

2
[2µEl : El + λ(trEl)2] +

1

2
[ca(2H)2 + cbK] (13)

where κ is the mean curvature and K = det[(Cl)−1K] is the gaussian curvature. µ and λ are the
two-dimensional Lame coefficients [2], El = 1

2 (Cl − Id),H = 1
2 (Cl)−1, ca and cb are the bending

elastic modulus. Saint Venant-Kirchhof model is inaccurate in modelling the non-linear system and
cannot be used for the large scale simulation of 2D material [10].

2.2.2 Non-Bonded Interaction Potential between Graphene Layers

To model the adhesion interaction between graphene layers, a simple pairwise 6-12 Lennard Jones
potential is computed as [27]:

V (r) = 4ε

(
−
(
σ

r

)6

+

(
σ

r

)12)
(14)

where, r denotes distance between two interacting atoms, ε denotes well depth and σ denotes equi-
librium spacing or distance at which atom-atom potential energy is zero. The above expression
estimates van der Waals interaction between single pair of atoms in the system at a time, which
makes it infeasible to compute the non-bonded interactions between millions pairs of atoms in a
system at a time. Besides, the van der Waals interactions over all atoms pairs in the system can
be obtained as a function of the distance between two layers of graphene by considering the sum of
pairwise 4-10 Lennard-Jones (LJ) potential expressed as [24],

VvdW = −|Vg(t0)|
0.6

[(
t0
t

)4

− 0.4

(
t0
t

)10
]

(15)
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where Vg(t0) is the well-depth and t0 is the equilibrium spacing. For mutilayer graphene system,
the total volumetric effective local van der Waals interaction can be expressed as [24],

Π2(ϕ) = V (λt, Cl) =
Nw − 1

Nw

1

t0J
Vvdw(λtt0) (16)

where Nw is the number of layers in a multilayer graphene system, λt is the transversal stretch and
J represents determinant of jacobian of layer.

2.2.3 Non-bonded Interaction Potential between Graphene and Substrate

To model the van der Waals interaction between graphene and the substrate, we again use 4-10
Lennard Jones potential [24]. The pair-wise Lennard-Jones 4–10 potential between a graphene and
substrate layer can be expressed as,

Π3(ϕ) = VvdW = −|Vg(t0)|
0.6

[(
t0
t

)4

− 0.4

(
t0
t

)10
]

(17)

2.2.4 Non-bonded Interaction Potential between Graphene and Indentor

The van der Waals intercation between graphene and indentor atoms can be computed by using
pairwise 6-12 Lennard Jones potential [27],

Π4(ϕ) = V (r) = 4ε

(
−
(
σ

r

)6

+

(
σ

r

)12)
(18)

2.2.5 Total Energy

Total internal energy of the system will be the sum of bonded and non-bonded interaction energies
expressed as,

Πint =

∫
~V

(Π1(ϕ) + Π2(ϕ) + Π3(ϕ) + Π4(ϕ))dV0 (19)

Considering the external energy potential πext(ϕ) corresponding to the applied external loading, the
total energy can be expressed as,

Πtotal(ϕ) = Πint(ϕ)−Πext(ϕ) (20)

For different external loading conditions, the deformed shape is obtained by minimization of the
total energy w.r.t the deformation map.

2.3 Numerical Implementation

A new discretization method called Iso-geometric analysis is used to discritize graphene surface in
atomistic continuum model. In this method, basis functions derived from B-Splines approximation
are used to generate the deformed shapes exactly. Discritized geometry is obtained by partitioning
the parametric body and then mapping the B-spline basis function and control points in parametric
space. In classical Iso-parametric analysis (used in Finite Element Method), a nice parent element
defined in local coordinate system is mapped into number of distorted elements on a real surface
in global coordinate system. Such approximation of geometry leads to errors, like inter-element
continuity and discontinuity of higher order derivatives. In Iso-geometric analysis, these errors are
eliminated as the entire surface is created by using B-spline basis function, knot vectors and control
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Figure 5: Mapping of parent element to the actual surface [18]

points without any approximation of geometry, see e.g piegl and Tiller (1997).
B-spline basis functions can be starting with piece wise constants (p = 0),

Ni,0 =

{
1, ifξi < n < ξi+1

0, Otherwise
(21)

For p = 1,2,3, . . ., they are defined by,

Np,i(ξ) =
ξ − ξi

ξi + p− ξi
Ni,p−1(ξ) +

ξi + p+ 1− ξ
ξi + p+ 1− ξi + 1

Ni+1,p−1(ξ) (22)

A knot vector is a set of coordinates in the parametric space, written as ξ = ξ1, ξ2, ..., ξn + p+ 1,
where, i is the knot index, (i = 1,2, . . ., n + p + 1), p is the polynomial order, and n is the number
of basis functions, see piegl and Tiller (1997). In one dimension, basis functions derived from open
knot vectors are interpolatory at the ends of the parametric space interval [ξ1, ξn+p+1], and at the
corners of patches, however they are not interpolatory at the interior knots. This is a differentiating
feature between knots and nodes of finite element analysis.

Now consider the following notation, let (ϕh0 )J be the nodal coefficient in global coordinate
system and (ϕe0)I be the nodal coefficients in local coordinate system [2]. A parametric element Ωe0
is mapped from undeformed space to deformed space through a deformation map ϕh0 [2]. A B-spline
approximation of the configuration map can be expressed as,

ϕh(ξ1, ξ2, ε3) =
∑
I

∑
J

∑
K

NI(ξ1)NJ(ξ2)NK(ξ3)XIJK (23)

where NI , NJ , andNK represents the B-spline basis functions and XIJK represents the corresponding
control points defining the configuration [24]. Following this discretized configuration map for strain
fields can be obtained [24]. A direct minimization of the potential energy Π(ϕh) can be obtained to
accomplish a stable configuration of the discrete system. The numerical methods, namely Newton
Raphson and L-BFGS only require gradients of discrete energy w.r.t degree of freedom and can be
used effeciently to numerically calculate internal strain energy and non-bonded energy. Detailed
explanation of methods used to obtain equilibrium configuration of the system is given in next
section.
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2.4 Equilibrium configuration

2.4.1 Newton Raphson

In numerical optimization, Newton’s method is a most iterative method that uses both first and
second order derivatives. At a given initial point, Newton Raphson method constructs a quadratic
approximation of the objective function that matches first and second order derivatives at that
point [6]. We then obtain minimization of the approximate function and uses its minimized value
as a starting point in the next step and repeat this process iteratively until we reach minima [3].
In Newton Raphson Method we find the quadratic approximation to the twice (C2) continuously
differentiable function f : Rn → R, by obtaining roots of a differentiable function f [6], Considering
Taylor’s expansion of f about the current point xk [6],

f(x) = f(xk) + (x− x(k))Tg(k) +
1

2
(x− x(k))TF (x(k))(x− x(k))

∆
= q(x) (24)

where g(k) = ∇F (x(k)), using First order necessary condition to q we get,

∇q(x) = g(k) + F (xk)(x− x(k)) (25)

If f(x(k)) > 0 then achieves a minimum at,

x(k+1) = xk − F (x(k))−1g(k) (26)

0 = q′(x) = f ′(x(k)) + f”(x(k))(x− x(k)) (27)

x(k+1) = x(k) − f ′(x(k))

f”(xk)
(28)

2.4.2 L-BFGS

The Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm is a limited-memory
form of BFGS that is particularly suitable for solving high-dimensional minimization problems [7].
This method belongs to the category of quasi-Newton optimization.

This algorithm obtains solution to the minimization problem by interactively approxi-
mating Hessian matrix of the objective function. Using a quadratic approximation, quasi-newton
methods locally model function f(xk) at the point ~xk at each iteration [7],

Q( ~xk) = f( ~xk) + (~x− ~xk)T ~gk +
1

2
(~x− ~xk)Bk(~x− ~xk) (29)

A search direction can then be obtained by computing the vector ~x∗ that minimizes Q(~x)
[7]. Assuming that the Hessian is positive-definite, this is ~x∗ = ~xk − Hk ~gk [7]. The next search
point is then found along the ray defined by ~xk − αHk ~gk. With some degree of convergence toler-
ance, this process is iterated until we obtain zero [7]. The L-BFGS algorithm generalize well for
higher dimensional optimization problems because it avoids storing the sequential approximation of
the Hessian matrix. This indeed reduces the cost of memory storage [7]. Instead, L-BFGS stores
curvature information from the last iterations, more specifically the information about the spatial
displacement and the change in gradient, and uses them to find the new search direction without
storing or computing the Hessian explicitly [7]. Due to the advantage of less memory space require-
ment and elimination of double derivation step of Newton Raphson, L-BFGS optimization method is
used in the atomistic-continuum model for direct minimization of potential energy in multi-layered
graphene system [7].
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Figure 6: Convergence of total energy for 12000 iterations.

2.4.3 Internal Energy

The undeformed configuration ϕh0 is fixed, the deformation map Φh is determined by the nodal
coefficients ϕhJ [2]. The internal energy for this deformation map is estimated by splitting the
integral over the undeformed body into elements and transforming these element integrals to integrals
ovre parent element [2]. These integrals are then approximated by numerical Gauss quadrature,
expressed as [2],

Πint[Φ
h] =

∫
Ω0

~W (C(Φh),K(Φh))dΩ0 (30)

using the numerical Gauss quadrature,

Πint[Φ
h] =

nel∑
e=1

nint∑
i=1

~W (C,K)|ξidet[(Tϕe0)Aα ]|ξi ~wi (31)

where ~wi represent the corresponding weights, ξi represents the quadrature points and nint represents
the number of quadrature points for the internal energy [2].

2.4.4 Internal Force

The internal forces at nodes of the discretized system can be computed by obtaining the derivatives
of the internal energy w.r.t the nodal degrees of freedom [2].

(f int)J =
∂Πint

∂ϕhJ
(32)
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Figure 7: Image of Convergence of norm of residual force for 12000 iterations.
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3 Mathematical models used to represent 2D materials

The classical models of beam bending and membrane stretching have been used in the experiments
and simulations to predict the indentation response of 2D materials [4].

3.1 Doubly Clamped Beam Model:

Consider a doubly clamped beam section, subjected to a point load at the center of the beam.
Relationship between the indentation load and displacement is given by [4]:

P =

(
π4EW

6

( t
L

)3

+
π2T

2L

)
δt +

π4EWt

8

(δt
L

)3

(33)

Where, T is pre-tension in the beam, W is beam width, L is beam length and t is beam thickness.

Figure 8: Schematic of doubly-clamped beam structure for 2D material before and after applying
the indentation load [4].

3.2 Clamped circular thin plate:

Consider a clamped circular thin plate, subjected to a point load at the center of the beam. The
relationship between the indentation load and displacement of clamped circular thin plate is given
as follows [4]:

P =

(
4πEt3

3(1− ν2)a
+ T

)
δt
a

+ E(q3ta)
(δt
a

)3

(34)

Where,q=1/(1.049-0.15ν-0.16ν2) is a function of Poisson ratio ν, T is pre-tension in the beam, W
is beam width, L is beam length and t is beam thickness.

3.3 Sandwich structure under centrally pointed load:

Aleksey Falin et al [9], proposed sandwich beam geometries to explain the sliding tendencies in
bi-layer graphene shown in the Figure 10. The beam is under a central indentation load F’. F’ was
set to the measured fracture load proportional to the fractional area of the sandwich beam used.
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Figure 9: Schematic of clamped circular thin plate model for 2D material under indentation load
[4].

Figure 10: Schematic of sandwich beam geometry under centrally pointed load [9].
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4 Boundary Conditions used in Atomistic Continuum Simu-
lations

4.1 Boundary Condition 1

In this boundary condition, all graphene layers are fixed outside the substrate hole radius, indenter
radius region is constrained in x and y direction and allowed to move freely in negative z direction.

Figure 11: Schematic of Boundary condition 1.

where, u, v and w are the displacements in x, y and z directions respectively.

4.2 Boundary Condition 2

Figure 12: Schematic of Boundary condition 2.
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4.3 Boundary Condition 3

Boundary Condition-3 is same as boundary condition-2 except nodal displacement at all edges are
fixed in z-direction.

Figure 13: Schematic of Boundary condition 3.

The boundary conditions in the experiments are unknown therefore we ran our simulations
using all these three boundary conditions and obtained a good match with the experiment using
boundary condition-1, see Figure 11.
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5 Measurement of Elastic Properties of Multi-layer
Graphene Using Nano-indentation Technique

5.1 Nanoindentation Experiment by Aleksey Falin et al. [9]

The extraordinary Young’s moduli and third-order elasticity moduli of suspended free-standing
graphene sheets are experimentally measured using Atomic force microscopy (AFM) by Aleksey
Falin et al [9]. The graphene nanosheets were mechanically exfoliated on a 90 nm thick silicon
oxide-covered silicon (SiO2/Si) substrate with prefabricated micro-wells of 650 nm in radius [9].
Figure 14. (a) shows atomic force microscopy (AFM) images of one, two- and three-layers graphene
lying on the substrate. Two cantilevers with diamond tips of radii 5.6 nm and 6.3 nm were used for
indentation purposes [9]. The load-displacement curve of multi-layered graphene was fitted till 50
nm of deflection for estimation of Youngs’s modulus [9].

Figure 14: (a) AFM images of multi-layer graphene [9]. (b) Load-displacment data and curve
fitting of Eq. (35) for monolayer, bilayer and trilayer graphene [9].

The force-displacement behavior in indentation is interpreted as a result of the nonlinear elastic
properties of graphene as shown in Figure 14 (b). Aleksey Falin et al. employed AFM to implement
nano-indentation tests and reported experimental values of 2D Young’s Modulus for 1, 2 and 3 layers
of graphene as 342 ± 8 Nm−1, 645±16 Nm−1 and 985±10 Nm−1 [9].

5.2 Nanoindentation Experiment by Lee et al. [13]

Lee et al. reported direct measurement of elastic properties and frictional behavior of monolayer
and multilayer graphene membranes by implementing the nanoindentation experiment using AFM
technique [13]. the graphene nanosheets were mechanically exfoliated onto a Si substrate with 300
nm SiO2 epilayer patterned with an array of circular wells of diameter 1.5 and 1 µm and 500 nm
depth. The thickness of the graphene samples was measured using Raman spectroscopy and AFM
contact mode imaging. Optical microscopy was used to identify the monolayer, bilayer and trilayer
graphene flakes [13].

The Non-contact mode AFM imaging (Figure 15. (B)) reveals that the graphene membrane
adheres to the vertical wall of the hole for 2-10 nm due to van der Waals interaction with the substrate
resulting in a considerable amount of pre-tension in the free-standing graphene membrane [13]. The
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elastic properties of graphene film were estimated by indenting the graphene membranes using AFM
tips, as illustrated in Figure 15. (c). For indentation experiment two cantilevers with diamond
tips of radii 27.5 nm and 16.5 nm were used [13]. The force-displacement data for monolayer and

Figure 15: Experimental Results for the elastic properties of multilayer graphene [16]. (A) Images
of suspended graphene membranes. (B) AFM image of monolayer graphene, 1.5 mm in diameter.
(C) Image of AFM experimental setup. (D) AFM image of a fractured membrane [13]. (E) Load-
displacement data and curve fitting of Eqn. (35) of suspended bilayer graphene membranes [13].

bilayer graphene sample was then recorded to determine elastic stiffness and breaking stress [13].
Lee et al. reported that, elastic modulus obtained for different flakes, tip radii, well depth, well radii
and indentation speed and depth were statistically indistinguishable [13]. The force displacement
curve for bilayer graphene follows equation (35) up to 50 nm deflection as seen in Figure 15 (E),
[13]. However curve shows a considerable amount of softening for displacement larger than 50 nm
deflection and the experimental data falls significantly below the curve [13]. According to Lee et
al., possibility of this phenomenon could be slip between graphene layers. The measured Young’s
modulus for 1, 2 and 3 layers of graphene were 340 Nm−1,698 Nm−1 and 986 Nm−1 respectively
[13].
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6 Results and Discussion

By perform nanoindentation experiment on multilayer graphene sheets, Lee et al. reported that
strength of graphene reduces as we increase the number of layers from one to three [12]. By corre-
lating the atomistic-continuum simulation with nanoindentation experiment conducted by Aleksey
Falin et al. [9] and Lee et al. [13], we evaluated the elastic performance of multilayer graphene and
revealed its deformation mechanism. We followed the load-displacement results reported by Lee et al
[13] (Figure 15 (E)) and Aleksey Falin et al. [9] (Figure 14 (B)) for multi-layer graphene sheets using
nanoindentation experiment. As our atomistic continuum model is limited to multi-layer graphene,
(monolayer layer graphene can not be simulated), therefore, we compared the elastic properties of
bilayer and tri-layer graphene with experimental results reported by Aleksey Falin et al [9] and Lee
et al [13].

Because of large ratio of film radius to tip radius in experiment, clamped circular free-
Standing membrane made up of linear isotropic elastic material under central point load is considered
[13]. For such a model, the relationship between indentation load and membrane deflection can be
analytically expressed as [12]:

P = σ0
2D(πa)

(
δ

a

)
+ E(q3a)

(
δ

a

)3

(35)

where, E = Elastic Modulus, t = thickness, a = sample radius, q = function of Poisson’s ratio ν, q =
1/(1.0491−0.1462ν−0.15827ν2), ν = Poisson′s ratio = 0.17. The pretension σ0 and elastic modulus
E of material are obtained by fitting the experimental results at non-linear elastic response at large
deflection [12]. The constitutive behavior of graphene layer undergoing small deformation can be
assumed to have isotropic and linear elastic with young’s modulus E and poisons ratio ν [12]. The
behavior of graphene under moderate to large deformation is often assumed to be nonlinear elastic
(and model as continuum thin shell), the elastic response is expressed as [12]:

σ = Eε+Dε2 (36)

Where E is Young’s modulus and D is third-order elastic constant [16]. The Equation (35) is derived
from the equation of strain energy given by U = 1

2σε = Eε2 + Dε3, Where σ = second order Piolo
Kirchhoff stress, ε = Uni-axial Lagrange Strain.

6.1 Atomistic Continuum Simulation Results to Reproduce Nano-
indentation Experiment Conducted by Aleksey Falin et al.

6.1.1 Atomistic continuum simulations for suspended bi-layer graphene

To reproduce the nanoindentation experiment conducted by Aleksey Falin et al. using atomistic
continuum simulation, we carried out nanoindentation on bilayer and tri-layer graphene membrane
freely suspended on soft elastic substrate. The graphene sheets are modelled as axisymmetric mem-
brane of size 1310 x 1310 nm2. A total of 1311 x 1311 axisymmetric membrane elements were used
for meshing each graphene layer. In the simulation, square sheets are suspended on a circular hole of
diameter 650 nm and probed at the center. Boundary conditions in the experiments conducted by
Aleksey Falin et al. [9] and Lee et al. [13] are unknown, therefore we obtained simulation results
for all the three boundary conditions mentioned in the section (4). We got a good match with
the experiment using Boundary condition-1, possibly due to use of Equation (35) (The relationship
between the indentation load and displacement of clamped circular thin plate) in this boundary
condition.

Comparison of force-displacement curve obtained by atomistic continuum simulation with
experiment for bilayer graphene is show in the Figure 14. Aleksey Falin et al., reported presence of
a finite amount of pretension in suspended graphene sample tested experimentally [9]. However,
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Figure 16: Comparison of Load - displacement curves for bi-layer graphene obtained from the
simulation (Red curve) with the load-displacement curve reported in the experiment (blue curve)
conducted by Aleksey Falin et al., [9] consider zero initial pretension.

in the atomistic continuum simulation, the graphene layer is under fully relaxed state and have
zero initial pretension. Thus, we have shown the comparison of atomistic simulation results with
experiment by eliminating pretension (i.e linear term in equation 35). The total time required to run
this entire simulation using 8 nodes with 24 processors per node (Total 192 processors) was around
61 hours and 35 minutes (3695 minutes).

(a) 2D images of radial deformation (b) 3D images of radial deformation
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(c) 2D images of out-of-plane deformation (d) 3D images of out-of-plane deformation

Figure 17: Post-processed results showing radial and out-of-plane deformation of bi-layer graphene
for 50 nm indentation depth.

The force - displacement data obtained by AC simulation is superimposed on the exper-
imental data (See Figure 16). This observation clearly shows that, the elastic modulus of bi-layer
graphene is in good agreement with the experiment. The Young’s modulus obtained by AC simula-
tion is found to be approximately 644.5619 N/m for bi-layer graphene, which is in a good agreement
with Young’s moduli reported in the experiment conducted by Aleksey Falin et al., (645± 16N/m)
[9]. The post processed results for out-of-plane deformation of bilayer graphene indented to 50 nm
depth is shown in Figure 17.

6.1.2 Atomistic continuum simulations for suspended tri-layer graphene

Figure 18, shows comparison of load-displacement curve obtained by the atomistic continuum sim-
ulation with nanoindentation experiment for trilayer graphene. The graphene layer is under fully
relaxed state and have zero initial pretension. The load - displacement curve obtained by the sim-
ulation is superimposed over the experimental results, clearly indicates that the elastic modulus of
tri-layer graphene is in good agreement with the experiment. The Young’s modulus obtained by
AC simulation is found to be approximately 1109.6 N/m for tri-layer graphene, which is in a good
agreement with Young’s moduli reported in the experiment conducted by Aleksey Falin et al (985
± 10 N/m) [9].

The post processed results for out-of-plane deformation of trilayer graphene indented to 50
nm depth is shown in Figure 19. The deviation of force-displacement curves and difference between
Young’s modulus obtained from AC simulation and the experiment is possibly due to unknown
boundary conditions and unknown Pre-tension in the actual experiment. The total time required
to run this entire simulation using 8 nodes with 24 processors per node (Total 192 processors) was
around 69 hours and 55 minutes (4195 minutes).

19



Figure 18: Comparison of Load - displacement curve for tri-layer graphene obtained from the
simulation (Red curve) with the load-displacement curve reported in the experiment (blue curve)
conducted by Aleksey Falin et al., [9] consider zero initial pretension.

(a) 2D images of radial deformation (b) 3D images of radial deformation
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(c) 2D images of out-of-plane deformation (d) 3D images of out-of-plane deformation

Figure 19: Post-processed results showing radial and out-of-plane deformation of tri-layer graphene
for 50 nm indentation depth.

6.2 Atomistic Continuum Simulation Results to Reproduce Nano-
indentation Experiment Conducted by Lee et al.

To compare the nanoindentation experiment conducted by Lee et al. (2009), using atomistic con-
tinuum simulation, we carried out nanoindentation on bilayer graphene sample freely suspended on
soft elastic substrate. The graphene sample is modelled as axisymmetric membrane of size 1510
X 1510 nm2. A total of 1001 X 1001 axisymmetric membrane elements were used for meshing.
In the simulation, square sheets are suspended on a circular hole of diameter 750 nm and probed
at its center. The area outside the suspended region is fixed (Boundary Condition-1 given in sec-
tion 4). Comparison of load-displacement curve obtained by atomistic continuum simulation with
experiment for bilayer graphene is show in the Figure 15 (E). Lee et al., reported presence of a
finite amount of pretension in suspended graphene sample tested experimentally [13]. However, in
atomistic continuum simulation, the graphene layer is under fully relaxed state and have zero initial
pretension. Thus, we have shown the comparison of atomistic simulation results with experiment
by eliminating pretension (i.e linear term in equation 35).

Force - displacement data obtained by the simulation is superimposed over the experimen-
tal results (see Figure 20), indicating the elastic modulus of tri-layer graphene is in good agreement
with the experiment. The Young’s modulus obtained by AC simulation is found to be approximately
790.4883 N/m, which is in a good agreement with Young’s moduli reported in the experiment con-
ducted by Lee et al. [13] for bilayer graphene sample. The post processed results for out-of-plane
deformation of bilayer graphene indented to 120 nm depth is shown in Figure 21. The deviation
of force-displacement curves and difference between Young’s modulus obtained from AC simulation
and the experiment is possibly due to unknown boundary conditions and unknown pre-tension in
the actual experiment. The total time required to run this entire simulation using 8 nodes with 24
processors per node (Total 192 processors) was around 110 hours and 25 minutes (6625 minutes).
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Figure 20: Comparison of Load - displacement curve for bi-layer graphene obtained from the
simulation (Red curve) with the load-displacement curve reported in the experiment (blue curve)
conducted by Lee et al., [13] consider zero initial pretension.

(a) 2D images of radial deformation (b) 3D images of radial deformation
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(c) 2D images of out-of-plane deformation (d) 3D images of out-of-plane deformation

Figure 21: Post-processed results showing radial and out-of-plane deformation of bi-layer graphene
at 120 nm indentation depth.

6.3 Computational Platform

6.3.1 Nanoindentation Simulation

All simulations involving nanoindentation were run using Comet, a dedicated XSEDE cluster with
24 Cores/node operated by the San Diego Supercomputer Center at UC San Diego and available
through Extreme Science and Discovery Environment (XSEDE) program. Each compute node of
comet HPC system has an Intel 24-Cores Xeon E5-2680v3 processor (24:75 MB cache, running at 2:5
GHz), 128 GB of DRAM and a 400 GB of Solid-State Drive (SSD). Compilation of Fortran routines
was carried out using intel application of interface version 2018.1.163.

6.3.2 Uniaxial and Biaxial Compression Simulation

All simulations involving uniaxial and biaxial compression were run using Michigan Tech’s shared
high-performance computing infrastructure, Superior. Its Generation 2.0 consist of 85 CPU compute
nodes, each having Intel 32 CPU cores Xeon E5-2683, running at 2.10 GHz, 256 GB RAM and
providing 91 TFLOPS. Compilation of Fortran routines was carried out using Intel custom parallel
program (MPICH + Intel 2016.1). The total time required to run each simulation using 96 CPU
processors was 3 hours, 22 minutes.

6.3.3 Post Processing

MATLAB version 2020a was used for reading the data files, curve fitting and plotting graphs for
the simulations. Tecplot 360, version 2019 R1 was used to produce the post-processed images of
deformed shapes of graphene. The underlying numerical data for load-displacment curve reported
in the experiments was extracted for comparison purpose using WebPlotDigitizer software version
4.4 [21].
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7 Uniaxial and Biaxial Compression of Graphene to Study
the Surface Morphology:

Crumpled graphene films possess many novel properties due which they are extensively used in the
applications like biomechanics, electronics, energy storage and composites. [26]. Zang et al. reported
a method to control crumpling of graphene that can be used as conductive coating on electrodes
to accomplish superhydrophobic property. The amount of crumpling affects the performance of
graphene in graphene-based devices and materials [26]. Thus, controlling these surface morphologies
is extremely important to control the performance of graphene in the graphene-based devices [26].
Ripples and wrinkles formation on supported graphene has been reported by (Zhang, K. and M.
Arroyo (2013)) [25].

To study the surface morphology of graphene sheet, here we report the deformed shapes
of the bilayer graphene under uniaxial and biaxial compression [25]. The surface morphology of
graphene film under uniaxial compression is distinct from that of biaxial compression. We observe
that graphene layers show wrinkles with smooth undulations and crumpling with sharp folds, ridges
and vertices [25]. Graphene layers shows widely spread wrinkles of larger amplitudes for weaker
adhesion potential (0.096 aJ/nm2) between graphene layers, while densely spaced small amplitude
wrinkles can be seen on graphene sample for stronger inter-layer adhesion potential (0.96 aJ/nm2).

Figure 22: a, schematic illustration of deformation of a graphene membrane on a biaxially pre-
stretched substrate followed by relaxation of the substrate. b–e, SEM images of different morpholo-
gies generated on the graphene sheet: (b) shows wrinkles formation, then formation of delaminated
buckles formation as the substrate relaxed uniaxially (c), followed by the formation of crumples as
the substrate is relaxed biaxially (d), followed by unfolding of graphene as the substrate is biaxially
stretched back (e). (f) Atomistic simulation results of the crumpling of a single-layer graphene under
uniaxial and biaxial compression. Nat. Mater. 12 (2013) 321–325 [25].
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7.1 Simulation Results

Graphene of 500 nm x 500 nm bilayer samples are considered for simulations purpose. A total of
501 x 501 non-linear axisymmetric membrane elements are used. Ripples formation on the graphene
film is then studied under uniaxial and biaxial compression. Initially graphene seems to be planar
until a threshold point after which it develops periodic, small amplitude ripples, see Figure (22).
Under uniaxial compression, graphene develops a pattern of parallel delaminated buckles [26]. On
biaxial compression, these delaminated buckles are compressed along the ridges and from crumpled
surface morphology [27], see Figure (25,26). An intersecting crumpling pattern is formed due to
the intersection of two orthogonal buckles [27]. Amplitude and arrangement of wrinkles formed on
the surface largely depends upon inter-layer adhesion potential. In case of high inter-layer adhesion
potential (0.96 aJ/nm2), dense wrinkles of smaller amplitudes are observed. However, at low inter-
layer adhesion potential (0.096 aJ/nm2), widely spread wrinkles of larger amplitudes are formed on
the graphene surface. The results of atomistic simulation reveal high stress concentration around
the ridges and vertices [27]. There are not much experimental results supporting the distributed
ripples associated to compression of graphene layers [27].

7.2 Observation and Discussion

1. Our large-scale atomistic simulations results observe multiple morphological deformation
phases in bilayer graphene under uniaxial and biaxial compression depending upon van der
Waals interaction between graphene layers.

2. We study the variation of height and quantity of spontaneous localized wrinkles upon
anisotropic uniaxial and biaxial compression w.r.t inter-layer adhesion potential, see Figure
27.

3. Smaller amplitude ripples are developed on graphene sheets due to strong inter-layer adhesion
potential (0.96 aJ/nm2), see Figure 24, 26.

4. Ripple height increases with decrease in inter-layer adhesion potential (0.096 aJ/nm2), see
Figure 23, 25.

5. As we increase the compression (3%), the small amplitude ripples are formed which undergoes
partial release of rippling in their vicinity [27].

6. At the junctions where these wrinkles meet under biaxial compression, an abundance of com-
plex T-junction can be seen forming complex structures at these junctions [27], see Figure
25.

7. We have chosen equilibrium spacing of 0.6 aJ/nm2 to better visualize the ripples and wrinkle
formed, which results in compliant interaction.

8. These simulation results can be used to study and control the wrinkling network by compressing
supported graphene to improve graphene performance in graphene-based devices.
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7.3 Results of Uniaxial Compression:

7.3.1 Weak Adhesion Potential Between Graphene Layers (0.096 aJ/nm2).

(a) 2D images of out-of-plane deformation (b) 3D images of out-of-plane deformation

Figure 23: Post processed images of atomistic simulation results showing ripples and wrinkles
formation on graphene layers under 5% uniaxial compression strain and weak adhesion potential.

7.3.2 Strong Adhesion Potential Between Graphene Layers (0.96 aJ/nm2).

(a) 2D images of out-of-plane deformation (b) 3D images of out-of-plane deformation

Figure 24: Postprocessed images of atomistic simulation results showing ripples and wrinkles
formation on graphene layers under 5% uniaxial compression strain and strong adhesion.
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7.4 Results of Biaxial Compression:

7.4.1 Weak Adhesion Potential Between Graphene Layers (0.096 aJ/nm2).

(a) 2D images of out-of-plane deformation (b) 3D images of out-of-plane deformation

Figure 25: Postprocessed images of atomistic simulation results showing ripples and wrinkles
formation on graphene layers under 5% biaxial compression strain and weak adhesion.

7.4.2 Strong Adhesion Potential Between Graphene Layers (0.96 aJ/nm2).

(a) 2D images of out-of-plane deformation (b) 3D images of out-of-plane deformation

Figure 26: Postprocessed images of atomistic simulation results showing ripples and wrinkles
formation on graphene layer under 5% biaxial compression strain and strong adhesion.
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(a) Amplitude - uniaxial compression strain (0-5%) plot for weak and strong inter-layer adhesion potential

(b) Amplitude - biaxial compression strain (0-5%) plot for weak and strong inter-layer adhesion potential

Figure 27: Ampltitude - compression plots for bilayer graphene subjected to uniaxial and biaxial
compression strain at different adhesion potential
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8 Future Scope

Nano-indentation

1. Obtain optimal boundary condition to minimize the error in atomistic continuum simulation
results in comparison with the experiments.

2. Obtain wrinkling pattern at each displacement of indentation depth.

3. Study the effect of indenter radius, pre-tension, number of graphene layers on the elastic and
frictional properties of graphene.

Uniaxial/Biaxial Compression

1. Study the effect of substrate Van der Waals interaction with the graphene layers.

2. Study the effect of friction between substrate and graphene.

3. Study the effect of number of graphene layers on the elastic properties like intrinsic breaking
strength, elastic modulus and frictional properties.
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9 Conclusion

1. Direct reproduction of the nano-indentation experiment through atomistic simulations has
been a major challenge due to the large size of graphene samples tested experimentally.

2. The greatest drawback of MD, DFT, and Quantum mechanics simulation is its inconsistency
in modeling monolayer and multilayer graphene samples greater than 30 nm in radius making
them computationally expensive and prohibitive to simulate large-scale graphene samples [23].

3. This atomistic continuum model developed by Ghosh and Arroyo [10], can simulate large-scale
graphene accurately, making it best suitable for the simulation the graphene samples which
are often used in experiments and real-world applications.

4. This work reports the comparison of atomistic continuum simulation results for nano-
indentation with the experiments conducted by Lee et al., and Aleksey Falin et al. Simulation
results of bilayer and trilayer graphene up to 50 nm indentation depth yields in-plane Young’s
modulus of 644.5619 N/m and 1109.6 N/m respectively (Bulk Young’s modulus = 0.9078 TPa
and 1.041 TPa respectively which falls within a range of the experimental results reported by
Aleksey Falin et al., [9].

5. Simulations on bilayer graphene for 120 nm indentation depth yields in-plane Young’s mod-
ulus of 790.4883 N/m (Bulk Young’s modulus = 1.11 TPa) which falls within a range of the
experiment reported by Lee et al., [13].
Graphene Samples Experiment (N/m) Simulation (N/m) Error (%)
Bilayer (Falin et al.) 645±16 644.5619 0
Trilayer (Falin et al.) 985±10 1109.6 10.32
Bilayer (Lee et al.) 698 790.4883 11.7

6. The deviation of force-displacement curves and difference between Young’s modulus obtained
from AC simulation and the experiment is possibly due to unknown boundary conditions and
unknown pre-tension in the actual experiment.

7. Pretension value highly manipulates the load-displacement plot. We note that while there is a
finite amount of pretension in the experiments, in simulations the graphene samples are fully
relaxed and have no initial tension.

8. The energy at 12000 iterations is better converged than 1000 iterations. Therefore, we ran the
simulations of nano-indentation for 12000 iterations (for each load-step) to get fully converged
and accurate results.

9. Our large-scale atomistic simulations observe spontaneous localized wrinkles in bilayer
graphene under uniaxial and biaxial compression depending upon adhesion (van der Waals)
interactions between graphene layers.

10. Smaller amplitude ripples are developed in graphene samples for high inter-layer adhesion po-
tential. Besides, ripple amplitudes increase with the decrease in inter-layer adhesion potential.
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