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Abstract 

Red mud is an industrial slurry waste that is produced as a byproduct of the Bayer 

process for alumina. The waste is generated in large quantities, up to a ratio of 2:1 against 

the valued product alumina. Red mud exhibits many chemical and physical properties 

that categorize it as a hazardous material. Due to the addition of sodium hydroxide in 

processing, the pH is typically at values close to 13. Small particle size discourages 

separation from water for disposal, so drying red mud happens over many years.  

The pH of red mud can be reduced with inexpensive reagents. Carbon dioxide is a 

greenhouse gas that is finding a great deal of research into potential sinks to reduce the 

footprint on the atmosphere. Combining carbon dioxide with red mud can effectively 

reduce the pH while also providing a sink for the greenhouse gas. Carbon dioxide is able 

to reduce the pH of red mud from 13 to 10 over long periods of time.  

Red mud can be utilized to produce a variety of value-added products. Most red muds 

around the world contain a large quantity of iron, titanium, aluminum, and rare earth 

elements. One method of removing the iron is through the iron nugget process which 

reduces iron and removes impurities in a single step. The iron nugget process is able to 

produce blast furnace quality pig iron (over 90% iron purity) with the addition of a 

carbonate flux material. Rare earth elements are concentrated in the slags from the iron 

nugget process and can be removed with acid leaches. 

The current view of red mud as a waste material is misleading. The proposed work will 

investigate methods to reduce the hazardous nature of red mud by reducing the pH and 
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also remove valuable minerals. This will effectively give value to the waste product while 

simultaneously reducing the overall amount of red mud waste that needs to be disposed.  

 



1 

1 General Introduction 

The waste created from alumina processing poses a large threat to the world and a 

problem for the mining industry has yet to solve. Its estimated that red mud is produced 

at a rate of 120 million tons per annum (Power et al, 2011). This red mud doesn’t 

disappear once its produced, it gets sequestered away to land based impoundments or 

lagoons where it sits for years as it dries slowly. The stockpiled of red mud around the 

world is estimated to be near 4 billion tons, including waste from 84 active plants and 

over 50 legacy site that are not shut down (Evans, 2016), (Wang et al, 2019). Red mud is 

an environmental and storage issue that continues to compile every year as aluminum 

demand increases.  

Red mud is composed of fine particles in a slurry which contain a multitude of different 

minerals. The particle size is typically in a range near 10 microns or smaller (Paramguru 

et al, 2004). Red mud also is recognized for its signature high alkalinity, which typical 

gives a pH over 13. This material is created with the Bayer process as seen in Figure 1-1. 

The bauxite ore is first crushed to the liberation size and then sent through the 

desilication step. Desilication dissolves silicates and reprecipitates them in an insoluble 

form so that they do not contaminate the aluminum liquor. The ore is then fed to 

digestion, where caustic sodium hydroxide dissolves the aluminum bearing minerals. The 

aluminum rich liquor is given to a precipitator to crystallize aluminates in a pure form. 

Calcining removes water molecules to yield the final product, alumina. Any material that 

did not dissolve in digestion is separated along with residual sodium hydroxide and 

thickened to yield red mud. 
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Figure 1-1: The Bayer Process, the generation of valuable alumina and red mud from 

bauxite ore. 

The current strategy for red mud disposal and storage is not working and needs to be 

adapted. Waste reservoirs for red mud do not effectively contain the hazardous material. 

For example, the red mud spill in Hungary on October 4th, 2010 saw a breach in the wall 

of its waste pond. The satellite image of the incident can be seen in Figure 1-2. 700,000 

cubic meters of red mud crashed into nearby towns and coated them with the fine slurry 

of residue. The tragedy that day killed 10 people and many others required medical 

attention for chemical burns (Rutyers et al, 2011). Longer term environmental risks were 

also caused by the spill including overwhelming the soil with high pH material, and the 

release of dangerous metals such as Al, As, Cr, Mo, and V (Mayes et al, 2016). 40 square 

kilometers were immediately affected by the spill, including the Marcal river (Khairul et 

al, 2019). More area is at potential risk as the red mud dries and fine dust is allowed to 
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travel by air farther from the spill. The reduction of material stored in these red mud 

ponds is critical for the environmental safety of the ecosystem and its people. 

 

Figure 1-2: Satellite image of the red mud spill in Ajka, Hungary in 2010. Jesse Allen, 

Devecser és Kolontár térsége a vörösiszap katasztrófa után, marked as public domain, 

more details on Wikimedia Commons 

Red mud can be utilized to remove minerals which possess value and could be sold. Most 

red muds contain a large weight percentage of iron that ranges from 20- 60% (Paramguru 

et al, 2004). Removing iron from red mud waste can potentially reduce the amount of 

waste by 60%. Red mud also contains a concentrated amount of rare earth elements. 

Akcil et al (2018) found that red muds around the world can contain total rare earth 

concentrations up to 1700 ppm. This puts red mud in a unique position to be able to 

produce critical materials that are necessary for the independence of the economy from 

China, who controls more than 95% of current rare earth element production (Akcil et al, 

2018).  
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This dissertation will investigate methods to reduce the amount of red mud as well as 

reduce its hazardous properties. Chapter 2 explores the current state of alumina and red 

mud production around the world and the current state of research into neutralization and 

element extraction. Carbon dioxide is used to neutralize red mud in Chapter 3. This 

chapter investigates how well carbon dioxide can reduce the pH of red mud and what 

materials can be generated from the reaction. In Chapter 4 iron is removed from red mud 

using the iron nugget process. This chapter focuses on optimizing the removal of iron 

using a heating process by changing variables such as residence time and carbon content. 

Chapter 5 goes further in the iron nugget process by investigating the role that flux 

additions play in the separation of iron. Chapter 6 will show potential to remove flux 

additions altogether by using CO2 neutralized red mud as feed material. Chapter 7 

focuses on rare earth elements and the potential to use red mud nugget slags as a feed 

stock for rare earth production in the United States. 
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2 Red mud: Fundamentals and new avenues for utilization1 

2.1 Abstract 

Red mud is generated at a rate of up to 175.5 million tons per year. The global stockpile 

of red mud is near 4 billion tons. This material is hazardous with pH values from 11 to 

13. Reduction of this waste is critical. Current industry practices for disposal of red mud 

involves different stockpiling techniques on valuable land area or disposing into critical 

bodies of water. This review studies processes which can reduce the negative 

environmental impact of red mud in an economic way. For instance, neutralization of red 

mud with CO2 can decrease the pH from 12.5 to 7. Treatment of red mud by this method 

lessens the negative environmental impact and prepares it for further processing for 

utilization. The current utilization rate of red mud is very low, only about 3 million tons 

per year are used as an additive for cement and construction. Red mud contains a large 

quantity of valuable minerals that can be extracted to both reduce the amount of red mud 

and provide value to the waste. This review investigates novel methods for treating red 

mud and extracting minerals like iron, titanium, and rare earth elements using a variety of 

smelting, direct reduction, and leaching processes. For example, the iron nugget process 

is a single step method to reduce iron oxides to metallic iron and separate them from red 

mud. Iron nuggets produced from red mud have an iron grade above 90%, which is 

comparable to pig iron generated by the blast furnace. 

                                                 
1 The material contained within this chapter has been published in the journal “Mineral Processing and 
Extractive Metallurgy Review.” 
Citation: 
Archambo M and Kawatra S.K. (2020): Red Mud: Fundamentals and New Avenues for Utilization. 
Mineral Processing and Extractive Metallurgy Review. DOI: 10.1080/08827508.2020.1781109 
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2.2 Introduction 

The increase in demand for products containing aluminum has led to a sharp increase in 

production of aluminum around the world. Only one method is suitable for economically 

producing alumina at such a large scale, which is the Bayer process. The byproduct of 

this process, known as red mud, has been considered a waste product for many years. 

Typically, industry disposes the red mud into landfills or into bodies of water over long 

periods of time. The total stockpile of red mud in the world is estimated to be near 4 

billion tons (Wang et al, 2019). Every year the stock grows and red mud is added at a rate 

of at least 120 million tons per year (Power et al, 2011).  

Red mud is a hazardous material with high pH ranges. These caustic sludges are 

dangerous to environments near red mud disposal sites and people that live near them. 

Reducing the risk of contamination is crucial and many research projects have 

investigated ways to lessen the negative impact of red mud. Many of these new projects 

are pH neutralization experiments. The most novel of these processes is the use of carbon 

dioxide to neutralize red mud. Since carbon dioxide is a greenhouse gas, there is 

incentive to sequester it. This effective method can reduce the pH of red mud and provide 

a sink for carbon monoxide (Archambo et al., 2020).   

Total utilization of red mud is only 3 million tons per year, mainly as an additive into 

cements (Pontikes and Angelopoulos, 2013). This equates to less than 1 percent of red 

mud being utilized which is shocking because red mud contains many valuables that 

could be recovered at a profit. Iron can be found in large quantities in most red muds with 

iron grades varying from 20 to 60% (Paramguru et al, 2004). Red mud has the potential 
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to be an excellent iron feedstock as its iron content is comparable to the iron range of 

North America. Steel plants in close proximity to Bayer process alumina plants have the 

potential to utilize the red mud as feed for iron and steel making and cut down on the 

large cost of shipping iron ore pellets over great distances. This review investigates novel 

methods for extracting iron from red mud that are not available in prior red mud review 

publications. One example is the red mud iron nugget process which generates pig iron of 

blast furnace quality in a single step using only red mud and powdered wood as feed 

material (Archambo and Kawatra, 2020). This is the first time that iron nuggets have 

been generated from red mud by using powdered wood as the reducing reagent. Steel 

plants are often in close proximity to alumina plants. Implementation of a nugget process 

from red mud could reduce the distance that iron pellets have to travel to be processed.  

Many red muds also contain elevated concentrations of rare earth elements, which are 

strategically critical resources that are becoming of even more vital importance to the 

world in recent times. China controls the market on rare earth elements at 78.7% of total 

worldwide production in 2017 (Balaram, 2019). Finding usable rare earth concentrates, 

such as red mud is essential for the health of the United States economy as well as the 

worlds. New research shows that these elements can be extracted from red mud (Wang et 

al., 2013; Abhilash et al., 2014; Alkan et al., 2017, 2018; Davris et al., 2018; Rivera et al., 

2018; Zhang et al., 2019). 

Understanding how red mud is generated and the physical and chemical properties 

associated with it helps to drive the investigation on extracting values from red mud 

while reducing the environmental risk and shrinking the total stockpile of red mud. This 



8 

review demonstrates the need to utilize red mud by investigating new up to date research 

on the neutralization of red mud pH as well as novel processes for the extraction of 

valuable minerals such as iron, titanium, and rare earth elements. If red mud can be 

viewed as a feed material rather than a waste product, the incentive to process it further 

will undoubtedly reduce its impact on the environment while increasing profit. 

2.2.1 Bauxite ore, mineral precursor to red mud 

Bauxite is the main feed ore that is used in alumina production. It can be found in 

different ore bodies around the world. Many countries have been mining bauxite to 

produce alumina and based on the U.S. Geological Survey in 2020, the worldwide 

bauxite resources are estimated to consist of Africa (32%), Oceania (23%), South 

America and the Caribbean (21%), Asia (18%), and elsewhere (6%); an estimated 55 to 

75 billion tons of total resources (U.S.G.S 2020). Table 2-1 shows the production of 

alumina from bauxite around the world based on country. The estimated reserves for each 

country are also reported. The top 5 reserves for bauxite ore are located in China, 

Jamaica, Brazil, Australia, and Guinea. China is the number five spot and is currently the 

third largest producer of bauxite on the planet behind Guinea and Australia.  
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Table 2-1:Bauxite ore reserves and production worldwide (U.S.G.S, 2020) 

Country 2019 Bauxite 

Production (x1000 tons) 

Estimated 

Reserves 

(x1000 tons) 

Australia 100,000 6,000,000 

Guinea 82,000 7,400,000 

China 75,000 1,000,000 

Brazil 29,000 2,600,000 

India 26,000 660,000 

Indonesia 16,000 1,200,000 

Jamaica 8,900 2,000,000 

Russia 5,400 500,000 

Vietnam 4,500 3,700,000 

Saudi Arabia 4,100 200,000 

Malaysia 900 110,000 

Other Countries 15,000 5,000,000 

World Total 370,000 30,000,000 

Bauxite is not one mineral, but rather a conglomerate of multiple aluminum bearing 

minerals with other gangue minerals. These gangues consist of iron oxides (Fe2O3 and 

FeO(OH)), clay minerals like silica and kaolinite, and titanium minerals such as rutile 

and anatase. Bauxite is mined for aluminum production because of high amounts of the 

following aluminum bearing minerals: 
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1. Gibbsite: Al(OH)3 

2. Boehmite: AlO(OH) 

3. Diaspore: AlO(OH) 

In terms of worldwide alumina production, 69.6% of ore mined is gibbsite, 24.6% is 

boehmite, and 5.8% is diaspore (Paramguru et al, 2004). These materials vary in their 

crystal structure and stability, resulting in differing difficulties in processing. Gibbsite 

requires the mildest conditions to process while boehmite and diaspore require 

considerably more energy. Table 2-2 outlines which areas of the world contain each of 

the three types of bauxite ore. The type of ore determines how aggressive the processing 

conditions are required during the Bayer Process. 
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Table 2-2: Bauxite ore types found in each producing country of alumina (Paramguru et 

al, 2004) 

 Bauxite Ore Type 

Country Gibbsite Boehmite Diaspore 

Australia  X X  

Guinea   X X 

China   X 

Brazil X   

India  X   

Indonesia  X   

Jamaica  X   

Malaysia  X   

Greece   X 

Ghana X   

Guyana X   

Hungary  X  

Romania    X 

Sierra Leone X   

Suriname     

Turkey   X 

Venezuela  X   
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2.2.2 The Bayer Process 

The Bayer process is the most commonly used method of producing alumina from 

bauxite on a large scale. The process consists of a series of unit operations that are 

chemically and energy intensive. Red mud is generated during this process in large 

quantities, each ton of alumina processed results in between 1.5 to 2.5 tons of red mud 

byproduct (Borra et al, 2016). The product of the Bayer process, alumina, is then sent to 

electrochemically produce aluminum metal using the Hall-Heroult process. Below is a 

summary of each of the steps of the Bayer process and Figure 2-1 shows a simplified 

process flow diagram for the Bayer process. 

Figure 2-1: Simplified process flow diagram for the Bayer process 
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2.2.2.1 Milling and Desilication 

To increase the available surface area for digestion, the first step of the Bayer process is a 

fine grinding step. This grinding aims to reduce the bauxite ore to a particle size of less 

than 150μm.  

The desilication step occurs before the dissolution of bauxite in order to transform 

chemical species that will react with caustic at the high pH range of the digestion tanks. 

The goal is to dissolve reactive species that would contaminate the product liquor and re-

precipitate them as an insoluble mineral that won’t interfere in the digestion stage. This 

includes many clay minerals such as kaolinite that will react with caustic at low 

temperatures and even quartz that will begin to react as the temperature increases. To 

avoid impurities in the aluminum bearing liquor later in the process, this step dissolves 

the soluble clay minerals and then precipitates them in an insoluble form. The dissolution 

reaction for these minerals is shown in Equation 2-1 (Kotte, 1981). The parameters that 

affect this dissolution are temperature, kaolinite surface area, caustic concentration, silica 

concentration, and alumina concentration.  

 (2H2O·Al2O3·2SiO2) + 6OH- ↔ 2𝑆𝑆𝑆𝑆𝑆𝑆3−2(aq) + 2Al(OH)4- (aq) + H2O  (2-1) 

Precipitation occurs via Equation 2-2 where Desilication product (DSP) is formed (Kotte, 

1981). Parameters that affect this reaction are temperature, silica concentration, alumina 

concentration, caustic concentration, and DSP surface area.  
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 2𝑆𝑆𝑆𝑆𝑆𝑆3−2(aq) + 2Al(OH)4- (aq) + 2𝑁𝑁𝑁𝑁+(aq) ↔ (Na2O·Al2O3·2SiO2) +4OH- 

(aq) + 2H2O 

(2-2) 

The ratios of different species are important to maximize efficiency of the process, high 

caustic concentration increases dissolution but decreases precipitation, and high alumina 

concentration decreases dissolution but increases precipitation (Kotte, 1981). This 

process generally occurs at moderate temperatures near 100 ℃ with residence times 

ranging from 6 to 12 hours in order for the reaction to achieve high enough conversion. 

With this long residence time, the desilication step is usually the limiting factor in 

determining total residence times of bauxite in the process (Thomas and Pei, 2007). Since 

the DSP is precipitated in this step, the particle size of these new insoluble minerals is 

very small, which contributes to the very fine particle size of red mud down the line of 

the process. 

2.2.2.2 Digestion and Clarification 

The desilication product is fed into the digestion tanks for dissolution. The conditions 

inside the tank vary depending on the primary type of bauxite being digested, as 

mentioned earlier the three most common types of bauxite ore are gibbsite, boehmite, and 

diaspore. The aluminum-bearing mineral is dissolved at a high pH using sodium 

hydroxide. The digestion occurs at pressures between 1 and 6 atm and at temperatures 

from 150- 250 ℃. Dissolution of gibbsite is the easiest because this mineral is a 

monohydrate and can be extracted at lower temperatures with weaker caustic solutions, 

while boehmite and diaspore require higher temperatures and more concentrated 
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solutions because they exist as trihydrate minerals (Adamson et al, 1963). Equations 2-3, 

2-4, and 2-5 show the dissolution reactions for each of the bauxite minerals (Wargalla 

and Brandt, 1981; Paramguru et al, 2004). 

Gibbsite (135-150 ℃) Al2O3·3H2O + 2NaOH ↔2NaAlO2 + 4H2O (2-3) 

Boehmite (205-245 ℃) Al2O3·H2O + 2NaOH ↔ 2NaAlO2 + 2H2O (2-4) 

Diaspore (220-255 ℃) Al2O3·H2O + 2NaOH ↔ 2NaAlO2 + 2H2O (2-5) 

At these temperatures and pressures the alumina-bearing minerals can be dissolved in 

highly alkaline solutions, but the other oxide minerals (including hematite and rutile) will 

remain insoluble. Silica can be dissolved depending on the type that is present in the 

bauxite ore. kaolinite for example is a reactive silica mineral and is susceptible to 

reaction with sodium hydroxide, this causes losses in caustic in the process (Adamson et 

al, 1963).   

The clarification process separates the pregnant liquor solution of aluminates from the 

remaining undissolved solids. This is the step of the Bayer process that generates red mud 

and it is a large aspect of alumina production as a whole. The separation of red mud and 

subsequent discharge from the facility can account for up to 50% of total plant operations 

(Paramguru et al, 2004). Plants process and discharge red mud based on local 

environmental regulations, the location of the plant, and economic considerations of 

disposal.  
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The solids are put through a series of filters and thickening tanks to increase the 

solid/water ratio of the waste and remove the aluminate liquor. Filtration of red mud must 

remove all solids from the aluminate liquor so that impurities do not persist later in the 

precipitation step of the process. The filters usually operate at elevated temperatures from 

95 to 110 ℃, at pressures from 4-5 bar, with a feed of solids content 200- 300 mg/L (Bott 

et al, 2008). Additives such as tricalcium aluminate (TCA) are added to the filter slurry 

feed to improve filtering behavior (Bott et al, 2008). Red mud is thickened with the aid of 

flocculants such as starch or synthetic polyacrylamides (Ballentine et al, 2011).   

2.2.2.3 Precipitation and Calcination  

After the red mud has been removed from the system, the purified pregnant aluminate 

solution is crystallized into a pure solid aluminum hydroxide. Reactions relevant to 

precipitation of solid aluminum hydroxides from the liquor solution can be seen in 

Equations 2-6 and 2-7 (Chaubal, 1990).  

 Al(OH)4- (aq) + H3𝑆𝑆+(𝑁𝑁𝑎𝑎) ↔ Al(OH)3 (s) + 2H2O (2-6) 

 𝐴𝐴𝐴𝐴3+(aq) + 6H2O (aq) ↔ Al(OH)3 + 3H3𝑆𝑆+(𝑁𝑁𝑎𝑎) (2-7) 

The next step of the process requires carefully controlling the precipitate’s size 

distribution. Within the precipitation unit operation, the seed crystal size distribution 

must be carefully controlled to keep the product size consistent. Within the precipitation 

unit operation, a size classification of the seed particles is also occurring in order to meet 

the required particle size distribution as seen in Figure 2-2. 



17 

 

Figure 2-2: Flow diagram for aluminum hydroxide precipitation and size classification in 

the Bayer process 

The solid product from precipitation is fed into the calciner to drive off moisture and 

yield solid alumina (Al2O3). Calcination of alumina is performed using rotary kilns, 

fluidized bed calciners, or other similar technologies. The chemical reaction of calcining 

aluminum hydroxide can be seen in Equation 2-8 (Hind et al, 1999). 

 2Al(OH)3 (s) ↔ 2Al2O3 (s) + 3H2O (2-8) 

This is the final product of the Bayer process. The total energy expended in the Bayer 

process to produce 1 kg of alumina is 12.77 MJ (Balomenos et al., 2011). The produced 

Alumina can be further processed by the Hall-Heroult process to electrochemically 

produce Aluminum. The Hall-Heroult process is very energy intensive, requiring 212.92 

MJ to produce 1 kg of metal aluminum (Balomenos et al., 2011). With such a large 

consumption of energy, there is incentive to innovate a new process to produce aluminum 

more energy efficiently. One such process is the carbothermic reduction of alumina under 
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a vacuum (Halmann et al., 2014). Under atmospheric pressures, the carbon reduction of 

alumina can only occur at temperatures above 2200 ℃, but performing the reduction 

under a vacuum shifts the energy curve down and the reduction is allowed to occur at 

lower temperatures around 1400 to 1800 ℃ (Halmann et al, 2014). Another setup 

attempted to utilize carbothermic reduction from bauxite ore to metal aluminum, which 

would eliminate both the Bayer process and the Hall-Heroult process (Halmann et al., 

2012). These processes seem to have issues with purity of the resulting aluminum, along 

with large amount of iron in bauxite needing to be removed before the process can start to 

be effective. Table 2-3 shows the worldwide production of alumina based on country. 

Leading producers of alumina in 2019 were China, Australia, and Brazil with China in 

the lead for alumina production by 53 million tonnes.  
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Table 2-3: Worldwide alumina production in 2019 (USGS, 2020) 

Country 2019 Alumina Production 
(x1000 tons) 

China 73,000 

Australia 20,000 

Brazil 8,900 

India 6,700 

Russia 2,700 

Jamaica 2,100 

Saudi Arabia 1,800 

United States 1,600 

Canada 1,500 

Vietnam 1,300 

Indonesia 1,000 

Guinea 300 

Other Countries 12,000 

World Total 130,000 

 

2.2.3 Characterization of red mud 

The solid residue that is rejected after digestion in the Bayer process is known as red 

mud. These are the materials which did not dissolve during the dissolution step. The 

mineral phase composition of red mud varies very widely depending on the source of the 

ore body that it originated from. The typical deviation of mineral compositions is shown 
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in Table 2-4. Red mud typically contains a large fraction of hematite, an iron-bearing 

mineral which may be worth extracting. Residual aluminates usually combine with silica 

to form aluminosilicates which could be useful for construction materials. Other 

noteworthy minerals are the potential titanium and rare earth elements, which are other 

valued minerals that could be extracted. 

Table 2-4: Mineral oxide composition ranges of red mud 

Mineral Component Weight % Range 

Fe2O3 4-55 

TiO2 2-17 

Al2O3 6-27 

SiO2 3-24 

Na2O 0-10 

CaO 0-40 

Rare Earth Elements 500- 1700 ppm (Akcil et al, 
2018) 

Table 5 shows the various composition of red mud around the world. The key takeaway 

from Table 2-5 is that red mud composition varies significantly from location to location, 

and characterization at the scale of individual plants is important for characterizing 

potential valuable extraction targets. In general, the two major components tend to be 

iron oxides and aluminum oxides, which usually account for half of the weight 

composition for red mud, though that is not true for all cases. The remaining oxides of 

silicon, titanium, sodium, and calcium typically play a smaller role in total composition 

of red mud.  
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Table 2-5: Mineral phase compositions of various red mud sources worldwide 

COUNTRY PLANT MAJOR COMPOSITION 

Fe2O3 Al2O3 TiO2 SiO2 Na2O CaO 

CHINA Chalco 
(Grafe et al, 
2011) 

6.81 18.36 10.45 14.49 5.53 25.22 

CHINA Pingguo 
(Grafe et al, 
2011) 

26.9 26.8 7.3 13.1 0 23.5 

CHINA Henan 
(Zhang et al, 
2016) 

11.77 25.48 4.14 20.58 6.55 13.97 

CHINA Guizhou 
(Zhang et al, 
2016) 

4.03 7.64 3.63 19.03 2.1 34.0 

CHINA Shandong 
(Zhang et al, 
2016) 

6.24 5.91 2.1 19.18 2.1 39.52 

AUSTRALIA AWAAK 
(Snars and 
Gilkes 2009) 

28.5 24 3.11 18.8 3.4 5.26 

AUSTRALIA Pinjarra 
(Grafe et al, 
2011) 

36.2 17.1 3.9 23.8 1.6 3.9 

BRAZIL Alunorte 
(Snars and 
Gilkes 2009) 

45.6 15.1 4.29 15.6 7.5 1.16 

INDIA Korba (Grafe 
et al, 2011) 

27.9 19.4 16.4 7.3 3.3 11.8 

INDIA Damanjodi 
(Grafe et al, 
2011) 

54.8 14.8 3.7 6.4 4.8 2.5 
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INDIA Hindalco 
(Paramguru 
et al, 2004) 

35.46 23.00 17.20 5.00 4.85 0 

INDIA  NALCO 
(Shamshad et 
al, 2018) 

51.04 17.57 3.24 8.65 8.03 1.64 

JAMAICA  Kirkvine 
(Grafe et al, 
2011) 

49.4 13.2 7.3 3.0 4.0 9.4 

GREECE Alumine de 
Greece 
(Grafe et al, 
2011) 

42.5 15.6 5.9 9.2 2.4 19.7 

ITALY Eurallumina 
(Sglavo et al. 
2000a) 

35.2 20 9.2 11.6 7.5 6.7 

FRANCE Aluminium 
Pechiney 
(Pera et al. 
1997) 

26.62 15 15.76 4.98 1.02 22.21 

UNITED 
KINGDOM 

ALCAN 
(Srikanth et 
al. 2005) 

46 20 6 5 8 1 

HUNGARY Ajka (Grafe 
et al, 2011) 

42.1 14.8 5.2 13.5 8.9 6.1 

CANADA ALCAN 
(Vachon et al. 
1994) 

31.6 20.61 6.23 8.89 10.26 1.66 

TURKEY Seydisehir 
(Altundoğan 
et al. 2002) 

36.94 20.39 4.98 15.74 10.1 2.23 

SPAIN Alcoa (Snars 
and Gilkes 
2009) 

37.5 21.2 11.45 4.4 3.6 5.51 



23 

GERMANY AOSG (Snars 
and Gilkes 
2009) 

44.8 16.2 12.33 5.4 4 5.22 

USA RMC (Snars 
and Gilkes 
2009) 

35.5 18.4 6.31 8.5 6.1 7.73 

USA Alcoa Mobile 
(Paramguru, 
2004) 

30.40 16.20 10.11 11.14 2 0 

Red mud mineral composition is not limited to what is shown in Table 4 and Table 5, 

depending on the source of the ore, a plethora of other elements could also be present in 

red mud waste. The red mud might have high content of valuable metal elements such as 

vanadium, gallium and other elements that are radioactive. It may also contain the oxides 

of manganese, magnesium, zirconium, zinc and chromium though at lower levels 

(Damayanti and Khareunissa 2016). Depending on the origin of bauxite trace quantities 

of barium, cadmium, mercury and nickel may be present (Borra et al. 2015). It has been 

demonstrated that REE’s in the red mud are twice as pure to that found in the bauxite ore. 

Red mud may contain the REE’s like Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and 

Yb (Damayanti and Khareunissa 2016). The average REE concentration found in red 

mud in Greece and Turkey is 900 ppm (Damayanti and Khareunissa 2016). The Bayer 

process concentrates rare earths present in the red mud by selectively removing 

aluminum-bearing minerals. In most cases, the rare earth concentration in red mud is 

considerably more concentrated than the average of earth’s crust. The content of rare 

earth elements in red muds around the world is shown in Table 2-6. From the table, most 
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cases show a significant increase in rare earth concentration compared to the average 

REE content in the earth’s crust.  

Table 2-6: Rare earth element concentration of red mud comparison with earth average 

crust composition. Concentrations in parts per million (ppm). (Elements not tested for in 

each study are represented with a “-“) 

 Rare Earth Elements. Concentrations in parts per million (ppm) 

Location La Ce Pr Nd Sm Gd Tb Dy Ho Er Yb Y  Sc Ga 

Average 
in 
earth’s 
crust 
(Balara
m, 2019) 

39 66 9 41 7 6 1 5 1 3 3 33 22 - 

Chinalco, 
China 
(Ujaczki 
et al., 
2018) 

416 842 95 341 64 56 184 48 25 28 28 266 158 570 

Australia 
(Wang et 
al., 2013) 

- - - - - - - - - - - 68 54 89 

Brazil 
(Barbosa 
Botelho 
et al., 
2019) 

- - - - - - - - - - - 24 43 - 

India 
(Abhilas
h et al., 
2014) 

110 70 0.5 - - - - - - - - 1 5 - 

India 
(Singh et 
al., 2019) 

58 98 - - - - - - - - - - 48 - 

India 
(Ujaczki 
et al., 
2018) 

112 191 18 48 9 7 - 4 - 1 2 13 58 91 
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Jamaica 
(Narayan
an et al., 
2019) 

287 366 74 69 0 37 0 37 5 21 16 373 55 0 

Greece 
(Borra et 
al., 2015) 

114 386 28 98 21 22 - 16 4 13 14 75 121 - 

Alumine 
de 
Greece 
Greece 
(Vind et 
al., 2018) 

130 480 29 107 19 22 3 20 4 13 13 108 - - 

Greece 
(Deady 
et al., 
2016) 

127 409 28 103 20 18 2 19 3 11 13 98 - - 

Ajka, 
Hungary 
(Ujkazki 
et al., 
2014) 

114 368 - - - - - - - - - 68 - 89 

Turkey 
(Deady 
et al., 
2016) 

169 480 47 161 32 4 26 23 4 13 14 113 - - 

Russian 
Federatio
n 
(Martoya
n et al., 
2016) 

- - - - - - - - - - - 53 25 35 

Russian 
Federatio
n 
(Ujaczki 
et al., 
2018) 

- - - - - - - - - - - - 90 - 

Iran 
(Martoya
n et al., 
2016) 

- - - - - - - - - - - 1 19 30 
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Red mud is also characterized by its high alkalinity that comes from residual sodium 

hydroxide that was used to dissolve bauxite in the digestion stage of the Bayer process. 

As mentioned previously, the desilication product which removes soluble silicates from 

solution is stable at high pH. When red mud is neutralized, the DSP products begin to 

dissolve and they release sodium hydroxide anions back into solution which act as a 

buffer (Power et al, 2011). The particle size for red mud is another very important factor 

to acknowledge when characterizing this material. The DSP that was precipitated in the 

Bayer process are of a very small particle size, which can be less than 10 ums. Red mud 

slurries are also characterized as thixotropic, which means that its resistance to flow, or 

viscosity, increases with the amount of mixing energy applied (Power et al, 2011). This 

thixotropic property combined with the small particle size make red mud a formidable 

material to handle and dewater.  

Another major concern is the possibility of concentrating radioactive and toxic elements 

within the red mud, similar to how the rare earths can be concentrated. Elements such as 

uranium and thorium can be present in bauxite ores with radio activities reported to be 

120-350 Bq/Kg for U238 and 450-1000 Bq/Kg for Th232 (Damayanti and Khareunissa, 

2016). These quantities are greatly concentrated in red mud after it has left the Bayer 

process. Soil tests performed at red mud spill sites has confirmed elevated concentrations 

of toxic elements such as arsenic, chromium, mercury, lead, and zinc at concentrations 

above 100mg/kg of water (Rutyers et al, 2011). One study found that the soil contained 

high amounts of Al(OH)4 ions that were mobile in solution at toxic levels around 175 

mg/L; Cr(IV) was also present at dangerous levels of 0.15 mg/L (Milacic et al, 2012). 
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Responsible disposal of red mud should account for not only the caustic nature of red 

mud, but the toxicity or radioactivity of the red mud as well. 

2.2.4 Worldwide production of red mud 

The stockpile of red mud is only due to increase, due to continuously increasing demand 

for aluminum production around the world and a lack of competitive alternatives to the 

Bayer process. There were 130 million tons of alumina produced in 2019, as was shown 

in Table 3. This large number is coupled with the fact that for every ton of alumina that is 

produced around the world, 1-2.5 tons of red mud are generated (Patel and Pal, 2015). 

The worldwide average amount of red mud produced per ton of alumina produced is 1.35 

(Evans, 2016). This means that the growth of the red mud stockpile is estimated at a rate 

of at least 175.5 million tons per year in 2019, but the number is likely on the larger end 

of the estimate. It is estimated that since the alumina industry began in the late 1800s, the 

stockpile of red mud has grown considerably in recent years. In 1985, it was estimated 

that the global stockpile of red mud had reached 1 billion tons and in 2007 the stockpile 

was reported to be 2.6 billion (Power et al, 2011).  In 2015, the estimated stockpile of red 

mud was as high as 4 billion tons (Wang et al, 2019). The production of red mud is 

growing every year and space to dispose of red mud is becoming more limited. It is more 

critical than ever to develop solutions for utilization of red mud to reduce the global 

stockpile.  

Currently, there are 84 alumina plants around the world that operate and produce red mud 

(Patel and Pal, 2015). Most of these plants still utilize the Bayer process with some 

exceptions in countries like Russia, Iran, and China which use alternative processes 
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(Evans, 2016). In addition to the currently operating plants, there is a number of closed 

alumina plants which still contain their produced red mud stockpile with around fifty of 

these sites worldwide paired with actively producing sites, there is an estimated 3,000 

million tons of red mud (Evans, 2016).  

China is by far the largest producer of alumina and subsequently red mud in the world. In 

2019, China produced 73 million tons of alumina, from Table 3. On a red mud basis, 

China produced 88 million tons annually, 1.2 times the amount of alumina (Wang et al, 

2019). Of the 80 plus alumina plants that are in operation today, around 30 of them are 

located in China (Evans, 2016). Five of China’s provinces account for 77% of the total 

production of red mud; these provinces are Shanxi, Shandong, Guangxi, Henan, and 

Guizhou with production of red mud at 14.14, 18.50, 9.06, 12.13, and 4.50 million tons 

per year, respectively (Wang et al, 2019). Chinese bauxite ores are mostly comprised of 

diaspore which are the most difficult to process and require intensive energy and reagent 

dosages (Liu et al, 2014). With such a large amount of dangerous red mud in the country 

of China, the utilization of this material is important to ensure that disposal areas take up 

minimum land area. Between 2011 and 2013, the utilization rate of red mud decreased 

from 5.2% to 4% (Wang et al, 2019). Current utilization is estimated to be around 10% as 

of 2015, but the government of China is aiming to expand that to 20% (Liu et al, 2014; 

Patel and Pal, 2015).  

Australia is currently the number 2 producer of alumina in the world with a 2019 

production of alumina of 20 million tons. The annual production of red mud for this 

country is reported to be 30 million tons, 1.5 times the amount of alumina produced in the 
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country, while the global average production ratio is around 1.35 (Evans, 2016; Wang et 

al, 2019). Primary producers of red mud in Australia are from the following plants: 

• Yarwun (Queensland) – Rio Tinto Alcan 

• Kwinana (Western Australia) – Alcoa of Australia  

• Pinjarra (Western Australia) – Alcoa of Australia  

• Queensland Alumina Limited (Queensland)- Rio Tinto Alcan, Rusal 

• Wagerup (Western Australia) – Alcoa of Australia 

• Worsley (Western Australia) – South 32- Worsley Alumina  

Australia has dealt with its red mud issue by processing the waste so that it has a lower 

and less caustic pH. The neutralization method is with seawater to drive down the pH so 

that it can be used more easily in other projects or for extraction of other materials. This 

technology was developed by Queensland Alumina Limited (QAL) (Cristol and 

Greenhalgh, 2018) and will be discussed in more detail later in the review.  

In India, red mud is generated at six different plants; NALCO, HINDALCO, VEDANTA, 

UTKAL, RAYKAL, ADITYA, and JSW. The total production of red mud for these 

Indian plants is summarized in Table 2-7. Its estimated that India accounts for 6.25% of 

the world generation of red mud (Patel and Pal, 2015).  
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Table 2-7: Yearly generation of red mud in India by alumina plant (Patel and Pal, 2015) 

Indian Alumina Plant Red mud generation per year 
(million tons) 

NALCO 2.697 

HINDALCO 2.062 

VEDANTA 1.82 

UTKAL 1.95 

RAYKAL 1.82 

ADITYA 1.82 

JSW 1.82 

Total 13.73 

There is a strong push in European alumina plants to minimize the production of red 

mud, due to geographic necessity. Many European alumina plants do not have access to 

large amounts of land space for reservoirs. This results in two things, reduction in the 

total amount of produced alumina and the disposal of red mud into the nearby ocean. In 

order to reduce the amount of red mud produced, many European countries import higher 

quality bauxite ores from around the world to extract them under more rigorous process 

conditions which results in an average European ratio of red mud produced vs alumina to 

be 0.67, considerably lower than the global average ratio of 1.35 (Evans, 2016). Greece, 

for example has one alumina plant, Alumine De Greece and that produces yearly 0.7 

million tons of red mud (Wang et al, 2019).  
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The major producers of alumina and red mud in the Americas are Brazil and Jamaica. 

These countries have high amounts of bauxite ore reserves at 2.6 and 2.0 billion tons 

respectively from Table 1. Alunorte in Brazil produced 6 million tons per year in 2011 

(Power et al, 2011) and the current amount of bauxite residue generated by Brazil has 

reached 10.6 million tons (Wang et al, 2019). 

2.3 Disposal Practices for red mud 

Lagoon impoundments were common for red mud disposal before the 1980s. Dry 

stacking methods began to replace lagooning methods as land space for lagoons became 

scarce. Dry stacking reduces the land area required at the same time reducing the liquor 

release to the surrounding environment (Balomenos et al, 2018). Filter press technology 

was first employed in red mud disposal in 2006, allowing for the reduction of red mud 

moisture content below 28%. The filter press saw widespread adoption throughout the 

alumina industry between 2006 and 2012. Dry stacking is presently the predominant 

technology for red mud disposal, as it significantly reduces waste volume and land area 

requirements, and completely eliminates dam failure. Furthermore, the dried red mud is 

much easier to transport and utilize in other applications, such as construction or cement. 

Disposal of red mud is one of the key aspects of any aluminum processing operation. 

Between 1.9 and 3.6 tonnes of bauxite ore is required to generate 1 ton of alumina 

product and the rest becomes red mud (Hind et al, 1999). With the large environmental 

risk that is associated with red mud, disposal practices are essential for an operating 

alumina plant. Removal and disposal of red mud at any given plant can account for 30-
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50% of total operations (Paramguru et al, 2004). Many different techniques have been 

implemented around the world for red mud disposal. Factors that play into which disposal 

method is chosen for each plant are things like annual rainfall, topography of the 

surrounding land, the size of the refinery (production rate of red mud), and availability of 

land (Power et al, 2011). Table 2-8 shows aluminum plants around the world and which 

method they use for red mud disposal.  

Table 2-8: Red mud disposal practices by plant 

Plant Name Country  Disposal Method 

Kwinana (Evans, 2016) Australia  Dry Stacking with CO2 
Neutralization 

Kirkvine (Power et al, 
2011) 

Jamaica Lagoon 

Aluminum De Greece 
(Balomenos et al, 2018) 

Greece  Dry Stacking 

Gardanne (Power et al, 
2011) 

France Marine Disposal 

Ajka (Evans, 2016) Hungary Lagoon 

Pinjarra (Evans, 2016) Australia  Dry Stacking 

Queensland Alumina 
(Power et al, 2011) 

Australia  Lagoon with Seawater 
neutralization  

Gove Alumina (Power 
et al, 2011) 

Australia  Dry Stacking 

VAW Stade (Evans, 
2016) 

Germany  Lagoon 

Alunorte (Power et al, 
2011) 

Brazil Dry Stacking 
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Dhamanjodi (Power et 
al, 2011) 

India Dry Stacking 

Nalco (Rai et al, 2020) India Thickened Tailings 
Disposal 

Hindalco (Rai et al, 
2020) 

India Filter Pressure followed 
by dry stacking 

 

2.3.1 Seawater disposal and lagooning 

Seawater disposal of red mud is currently regarded as a method of last resort. The red 

mud is released directly into a nearby water source once it is separated from the alumina 

liquor. Marine ecosystems are greatly affected by red mud disposal because it creates an 

increase in turbidity seawater with ultrafine colloidal magnesium and aluminum 

compounds (Rai et al, 2012). Due to available land constraints for any kind of land-based 

storage, some plants must resort to this method for removal of red mud. Seven plants in 

the world (out of eighty-four total) utilize seawater disposal (Khairul et al, 2019). Plants 

located in countries with comparatively small land area like France, Greece, and Japan all 

currently dump their red mud wastes into the sea. The plants of Gardanne Alumina 

(France) and Aluminum De Greece (Greece) use seawater disposal due to economic and 

environmental reasons (Rai et al, 2012). Overall, the enormous negative effect that red 

mud disposal has on ocean life and ecosystems in general has led to seawater disposal of 

red mud to be a last resort.  

The second method of red mud disposal is referred to as lagooning. Red mud is pumped 

into land-based storage areas after it is removed from the Bayer process. Figure 2-3 
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shows an example of a red mud tailings reservoir in Germany. Lagooning requires a large 

amount of land area in order to sequester the red mud. Each tailings lagoon or dam is 

constructed based on many different factors such as; the amount of tailings expected, 

characteristics of the red mud, and topographic and geological considerations for the 

potential site of the reservoir (Gawu et al, 2012). To determine how much waste a given 

area of disposal land can sequester, it is important to be able to determine the yield stress 

of the material that is being disposed. A common and simple test to accurately determine 

yield stress, called the slump test, relates the height of the waste pile to the stress exerted 

on the material (Pashias et al., 2000). Techniques like this allow for more efficient 

disposal of waste piles.  

All parameters of importance must be considered when designing and installing tailings 

reservoirs. Doing so can prevent a breach in containment and spill caustic waste into the 

environment. In addition, the construction of the reservoirs usually includes a sealant or a 

layer or impermeable clay at the bottom of the reservoir in order to prevent any liquid 

from seeping into the soil beneath and potentially contaminating the groundwater. 

Research has gone into different type of sealants for reservoirs; multiple layers of 

impermeable clay along with geo-membrane and plastics have all been utilized to keep 

the red mud separate from the layer of soil. These seals are made more effective by 

decanting the surface water to minimize the hydrostatic pressure of the dam on the seal 

(Power et al, 2011). Benefits that lagooning provides over other methods are of lower 

capital cost to install as compared to the dry methods and a greater ability to suppress red 

mud dust escaping into atmosphere (Rai et al, 2012). 
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Figure 2-3: A red mud tailings reservoir in Stade, Germany. Ra Boe / Wikipedia 

(https://commons.wikimedia.org/wiki/File:Luftaufnahmen_Nordseekueste_2012-05-by-

RaBoe-478.jpg), “Luftaufnahmen Nordseekueste 2012-05-by-RaBoe-478“, 

https://creativecommons.org/licenses/by-sa/3.0/de/legalcode 

The careful consideration of the requirements for the construction of lagoons are very 

important for the consideration of the local communities. One example of a catastrophic 

failure of a red mud impoundment was the disaster at Ajka, Hungary. 700,000 cubic 

meters of red mud spilled into the town on October 4th, 2010. This tragedy killed 10 

people and many others were treated for chemical burns for being in contact with the 

hazardous material (Ruyters et al, 2011). This spill contaminated 40 square kilometers of 

land and the marine life of the nearby Marcal river was negatively affected (Khairul et al, 

2019).  

A study done in central China showed the effects of red mud reservoirs on the 

surrounding environment. Concentrations higher than China’s standard for surface water 

of dangerous ions such as fluorine ions, sulfate ions, mercury, and arsenic were reported. 

https://creativecommons.org/licenses/by-sa/3.0/de/legalcode
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The radioactivity of the red mud also contributes to disaster when it can be released into 

the environment (Wen et al, 2012).  

The lagooning of red mud has been a good way to dispose of red mud in the earlier years 

of alumina production, before demand became so high. For red mud disposal today, 

lagooning requires more land area to sequester mine waste that could be more effectively 

used for other purposes. With the aftermath of the accident in Hungary, the correct 

construction of these dams is critical for this disposal technology to be successful. 

Structural failures or leaks and seepages into the ground can cause disastrous effects. The 

incentive to reduce the amount of land area required to store these tailings has led to 

recent innovation in dry red mud disposal technology. 

2.3.2 Dry methods- Thickened tailings disposal  

Multiple factors have led to the development of improved disposal methods for red mud. 

These processes are named thickened tailing disposal (TTD) because generally the main 

objective is to decrease moisture content of the slurry. Lowering the moisture content 

reduces the volume and land area required to store the red mud, and the recovered liquid 

can be recycled back into the process. If enough water can be removed, the slurry can 

become stably dispersed and readily dried by spreading it into a thin layer. A 

combination of air drying and water drainage systems in the pond continue to dry the red 

mud (Glenister and Abbot, 1989). For red mud of Jamaican origin, it was found that 

dewatering by use of centrifuging was more effective than gravity dewatering and a solid 

content of 40 percent was achievable (Good and Fursman, 1968). 
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For dry stacking technologies, the rheology of the red mud slurry plays a substantial role 

in the effectiveness of the process. Red mud slurries are thixotropic, which means that the 

surface viscosity decreases as stress on the fluid increases. Therefore, a slurry that has 

been settled to a higher solids content will not be pumpable due to the high viscosity. 

Mixing the slurry will in turn lower the viscosity and allow the fluid to be pumped 

(Power et al, 2011). Alcoa’s refinery at Pinjarra noted that the yield stress from the 

thickener underflow varied from 280 to 550 N/m, but when the red mud was passed 

through a centrifugal underflow pump that supplies sufficient shearing stress, the yield 

stress was reduced to between 60 and 100 N/m (Glenister and Abbot, 1989). 

2.3.2.1 Thickening/Flocculants  

The particle size of red mud slurries proves to be one of the most difficult aspects of 

handling the material. With most red mud slurries containing particles smaller than 10 

microns at 80% passing, the settling rates for the solids in these slurries are intolerably 

slow. In order to improve the recovery of liquor in the plant along with reducing the 

moisture content of the red mud discharge, the particles must be settled or thickened to a 

higher solids content. This is widely done in industry using thickener tanks along with the 

aid of chemical flocculants. Many different types of thickeners have been designed 

specifically for the dewatering of red mud. Figure 2-4 shows a general flow diagram for 

the process thickening of red mud. The deep thickener along with other types of super 

thickeners was developed by Alcan, which provides a higher length to diameter ratio for 

better performance of red mud generation (Paramguru et al, 2004). 
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Figure 2-4: The thickening circuit for red mud before disposal discharge  

Chemical additives are introduced in order to increase the speed of sediment settling. 

These flocculants attach to many small particles like a glue and agglomerate to larger 

diameter particles which settle much faster. The flocculant bridges across many particles 

of fine red mud and increases the effective particle diameter and particles of higher 

diameter settle faster. Figure 2-5 illustrates the effect that flocculants have on fine particle 

slurries. The typical types of flocculants used in the Bayer process are starches, 

polyacrylamide, and polyacrylates. 
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Figure 2-5: Flocculation of Ultrafine Red Mud Particles. A) Red mud slurry suspension 

without flocculant B) Red Mud slurry suspension with the aid of flocculants 

The structures of each of these molecules can be seen in Figure 2-6. The starches amylose 

and amylopectin are used less frequently today because they have a limited charge 

density and a small molecular weight for an effective flocculant (Ballentine et al, 2011). 

This means that the starch does not adsorb very strongly onto the surface of the particle 

and the small molecular volume limits the amount of available spaces for attachment of 

particles. The synthetic flocculants do not have the disadvantages that starch has; they 

can be made to a specific molecular weight tailored to a specific plant’s needs (Ballentine 

et al, 2011). The polyacrylate also contains a very high surface charge in contrast to 

starches which can more effectively adsorb onto particle surfaces (Ballentine et al, 2011).  

Traditionally, starch had been the primary flocculant in thickening operations of red mud, 

but the industry has moved to using acrylamide and polyacrylate polymers as a means to 

settle red mud. The reasons for this are the lower dosages required for polymers 
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compared to starch and the ability to alter the molecular weight of the polymers to 

optimal size for each process (Sankey and Schwarz, 1982). 

 

Figure 2-6: Chemical structures of flocculants used to clarify Bayer process liquor and 

thicken red mud. (A) polyacrylamide (B) Polyacrylate (C) Amylose starch (D) 

Amylopectin starch 

2.3.2.2 Dry Stacking Slurry 

Dry stacking the red mud slurry involves thickening to between 45-55% solids and 

depositing it in thin layers in drying cells between 300 mm and 500 mm thick. At this 

moisture, the slurry is still pumpable and needs to evenly coat the drying cell. The red 

mud dries over the course of 30 to 60 days through a combination of solar heating and 
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water drainage. The target solids content by the end of the drying period is 65-70% 

(Mitsopoulus and Belanger, 2006). 

2.3.2.3 Dry Stacking Cake 

With the use of filtration alongside thickening, red mud can be thickened to up to 60% 

solids. Red mud of this moisture content no longer acts as a flowable fluid but as a wet 

solid. The red mud behaves non-thixotropically at this moisture content because it’s no 

longer behaving like a fluid. This enables the material to be hauled to impoundments by 

heavy machinery such as dozers and dump trucks. Multiple plants around the world have 

begun to utilize this method for bauxite residue disposal. The Hindalco plant in 

Renukoot, India uses vacuum drum filters; the plant in Stade, Germany along with the 

CVG plant in Venezuela have had success using hyperbaric filters (Power et al, 2011). 

The drawback to this method of disposal is that the extremely small dry particles are 

prone to dusting, which can cause the particles to travel distances beyond the disposal site 

through the air. With the harmful toxic elements that red mud contains, the contamination 

of nearby ecosystems through dust is more probable here. Ultimately, this method is most 

desirable, dry red mud can easily be transported with heavy machinery to a dump site. 

The dry material can also be transported elsewhere to be used in other processes as an 

additive, in processes such as cement or ceramic making. 

2.4 Neutralization techniques of red mud 

The high alkalinity of red mud is the most significant factor contributing to its 

classification as a hazardous waste. The typical range of pH for red mud discharged from 
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an alumina plant is between 11 and 13 due to residual strong bases and partially soluble 

metal hydroxides which tends to have long lasting nature. This is detrimental to any life 

and ecosystems that exist at or near a red mud waste pond. Disposing red mud at a pH of 

9 or lower would significantly decrease the environmental risk it would pose (Hanahan et 

al, 2004). The incentive to neutralize red mud comes from a need to make the process 

more environmentally friendly and treat the material for further processing to remove 

other valuable minerals. Many methods for red mud neutralization have been studied and 

some have seen some utilization on an industrial scale, such as seawater neutralization, 

carbon dioxide neutralization, and acid neutralization. 

2.4.1 Seawater neutralization  

As stated previously, red mud has a high pH once it exits the process to the disposal area. 

Much research has gone into methods to reduce the risk of red mud waste to the 

environment and the human population centers around it. One such method is to mix red 

mud with seawater to reduce the pH to an acceptable level so that the land can be 

reclaimed by vegetation. With this method, the seawater is mixed with red mud for 

neutralization, the solid particles then are allowed time to settle and the used seawater is 

decanted back into the ocean environment. Seawater has a high buffering capacity for 

alkaline materials, which makes it a good component to neutralize red mud (McConchie 

et al, 1996). Seawater neutralization converts highly caustic, soluble hydroxide 

compounds into less caustic, insoluble weakly alkaline solid compounds (Rai et al, 2012). 

The free calcium and magnesium ions in seawater react with red mud ions such as 

hydroxyls, carbonates, and aluminates to form precipitates. The neutralization is a very 
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complex process, the generalized reaction is shown in Equation 2-9 (Cristol and 

Greenhalgh, 2018). 

 6MgCl2 + 2NaAl(OH)4 + Na2CO3 + 8NaOH + 4H2O ↔ 

Mg6Al2CO3(OH)16·4H2O +12NaCl 

(2-9) 

The neutralized red mud exhibits a tendency to settle its fine particles more quickly than 

general red mud waste. Regular red mud waste contains high sodium concentrations, 

which can become bound to aluminosilicate and aluminum oxide minerals which cause 

mineral dispersion (Hanahan et al, 2004). The dispersed particles at high pH combined 

with the extremely fine particle size cause the settling times of these solids to be very 

large. With the addition of seawater, exchange cations, Ca and Mg act to flocculate the 

aluminosilicates and aluminum oxides by forming electrostatic bridges around them; the 

more agglomerated solids display increased settling times (Hanahan et al, 2004).  

Many are concerned that neutralizing red mud with seawater will contaminate the water 

with alkaline ions and concentrated toxic elements. McConchie et al. (1996) found that 

the seawater discharge from red mud contained concentrations that are very comparable 

to the world average seawater values. At a neutralization pH around 8, toxic metals are 

insoluble and will not be a hazard to the environment (Hanahan et al, 2004). Soil 

sediment around the release area of utilized bauxite residue seawater are within the limits 

of what would be considered an unpolluted estuarine sediment, based on trace element 

concentrations; also, no change in biodiversity was noted to be in the area (McConchie et 

al, 1996). One study looked at adding additions of gypsum and organic matter to remove 
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alkaline sodium ions after seawater neutralization. The study found that 5% gypsum 

addition would be needed to exchange free sodium ions and remove the alkalinity while 

additions of organics were useful in increasing microbial activity (Li et al, 2018). 

Queensland Unlimited Alumina (QAL) has begun to adopt this as a viable method for 

neutralizing its bauxite waste. The plant used seawater to neutralize red mud and stored it 

in lagoons until 2007 where they added a clarifier to dry the red mud and make use out of 

it as a construction material. According to Cristol and Greenhalgh (2018), the plant is 

able to reduce the pH of the red mud to under 9 and considers the clarifier overflow and 

underflow non-hazardous. The plant can treat 5,800 m3/h of waste containing nearly 520 

t/h of solid waste (Cristol and Greenhalgh, 2018). 

In the process developed by Queensland Alumina Limited (QAL), the mud from the last 

washer underflow is pumped to the residual disposal area using seawater (Cristol and 

Greenhalgh, 2018). The mud is allowed to mix with the excess of sea water in an agitated 

reactor to neutralize the caustic content. Insoluble precipitates settle out as a result of 

reaction of calcium and magnesium on hydroxides and carbonate minerals. The chemical 

reaction leading the precipitation are: 

6MgCl2 + 2NaAl(OH)4 + Na2CO3 + 8NaOH +4H2O  → 12 NaCl 
+Mg6Al2CO3(OH)16 4H2O(s) 

 

 (2-10) 

MgCl2 + 2NaOH → Mg(OH)2(s) +2NaCl 

 

(2-11) 

CaCl2 + 2NaOH → Ca(OH)2(s) +2NaCl 

 

(2-12) 
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The precipitates from the neutralization process and the red mud are separated using the 

clarifier. Clarifier underflow consists of neutralized red mud and the overflow consists of 

magnesium deficient sea water is fed to decant pond to recover any solid content before 

discharging it to sea. The two streams produced from the clarifier are non-hazardous and 

can be disposed as per environmental norms. The schematic of the process used at QAL 

is shown in Figure 2-7 (Scarsella et al, 2012). 

 

Figure 2-7: Process Flow diagram of Seawater Neutralization at QAL 

This process offers several advantages such as low cost of seawater addition, good 

quality of decanted water meeting regulatory expectations, low risk of ground water 

contamination due to seepage from the dam and low risk to employees due to non-

hazardous residue and discharge water. 
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2.4.2 Carbon dioxide neutralization 

Carbon dioxide is a byproduct of industry which majorly contributes to environmental 

pollution. Carbon dioxide that is released into the air is an unutilized source of material 

that can be used in other material processes. Research has gone into finding a use for this 

greenhouse gas which is significant enough to use on the large scale of CO2 production. 

Since CO2 is an acid gas, it has the potential to react with red mud and reduce the high 

pH so that the material in no longer hazardous and can be utilized or disposed of safely. 

CO2 has the advantage for neutralization over conventional acids because acids are 

generally more expensive and a plant can easily implement CO2 from wastes generated 

elsewhere in the process (Rivera et al, 2017). 

Carbon dioxide reacts in red mud primarily with its most prevalent alkaline component, 

Tri-calcium aluminate (TCA). Dissolution of TCA is what liberates the alkalinity in red 

mud by exposing OH anions. The following reactions show the interaction between CO2 

and TCA. (Smith et al, 2003). Equations 2-13 and 2-14 are the interaction with the CO2 

and the hydroxide ions from the caustic liquor and Equations 2-15, 2-16, and 2-17 are the 

dissolution of TCA in CO2. It should be noted that the liquor reactions are fast and the 

dissolution of TCA is slow; TCA transforms into minerals like calcite, dawsonite, and 

aluminum hydroxide and the pH will rebound if the reactions are incomplete since all of 

these equations are reversible and will push to equilibrium (Smith et al, 2003).  

 CO2 (aq) + OH-
(aq) ↔ HCO3

-
(aq) (2-13) 

 HCO3
-
(aq) ↔ H+

(aq) + CO3
-2

(aq) (2-14) 

 Al(OH)4
-
(aq) ↔ Al(OH)3(s) + OH-

(aq) (2-15) 
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 NaAl(OH)4(aq) + CO2(aq) ↔ NaAl(OH)2CO3(s) + H2O (l)  (2-16) 

 Ca3Al2(OH)12 (s) + 3CO2 ↔ NaAl(OH)3 (s) + H2O (l) (2-17) 

 

The pH of red mud is known to rise again after the CO2 gas has been added. The pH of 

red mud continues to change over large periods of time after the addition of CO2. 

Rivera’s work on CO2 neutralization before acid leaching for metal recovery was able to 

obtain a red mud pH of 8.6 (Rivera et al, 2017). His work shows that following 

neutralization, the compounds formed are water soluble and leachable. Patel achieved 

similar results with CO2 neutralization using multiple CO2 cycles, he achieved a red mud 

pH of 8.45 (Patel and Sahu, 2018). 

Archambo et al. (2020) neutralized red mud with CO2 in 1-hour cycles at a gas flow rate 

of 10 ml/min; the pH of the red mud was reduced down to as low as 7. The experimental 

setup is described in Figure 2-8. 1 Kg of Red mud was placed in an open 2000 mL beaker 

and mixed with 1 L of water in order for the red mud to be mixed homogeneously. A 

mixer was used to keep the particles suspended and a CO2 bubbler was inserted into the 

bottom of the cell. A pH probe was inserted into the cell to measure the pH periodically. 
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Figure 2-8: Process flow diagram for red mud pH neutralization using CO2 gas 

Nearly as soon as the CO2 stream was shut off from the experimental cell, the pH began 

to rise again as seen in Figure 2-9. Experiments were also done to determine a final pH 

for neutralized red mud, the red mud was neutralized for 1 hour and then the pH was 

recorded over a period of 7 days. Figure 2-10 shows the results of the pH initial 

neutralization followed by the pH rebound over 7 days. Ultimately, the pH rose to a pH 

near 10, which is an overall pH reduction of 2.5, from 12.5 to 10.5. 
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Figure 2-9: Red mud neutralized with CO2. pH recorded over a period of 15 hours. 

 

Figure 2-10: Red mud neutralized with CO2. pH recorded over a period of 7 days  

Over a longer period of 7 weeks, Rai et al. (2013) reduced the pH of red mud to around 7 

and allowed the pH to rebound for a week and then neutralized it again. For 7 

neutralization cycles, it was observed that the pH would always rise to 9-9.5 over the 

period of one week (Rai, 2013).  
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In order to determine which size fraction of red mud was most effective at sequestering 

carbon dioxide, neutralizing experiments of red mud were performed on three different 

average size fractions of 5 microns, 30 microns, and 50 microns (Yadav et al, 2010). The 

average size fraction of 30 microns proved to be the most effective due to a higher 

presence of cancrinite phases; sequestering CO2 at a maximum capture rate of 5.3g 

CO2/100 g red mud (Yadav et al, 2010). Rai et al. (2013) attributes the pH rise to the fact 

that the CO2 only interacts with and neutralizes the aqueous phase of the red mud slurry, 

the solid fraction of red mud remains largely undissolved due to the short contact time 

between the reactants. The solid phase contains alkaline solids that release alkaline 

hydroxide ions as they dissolve and if these minerals don’t completely react with CO2, 

the alkalinity of red mud will continue to be an issue.  

The Kwinana refinery in Australia conducted pilots scale experiments and eventually was 

able to implement a full-scale CO2 neutralization of red mud. They were able to initially 

achieve pH of 8.5 while under pressure, but over time once the red mud was released 

from the pressure vessel the pH rebound to 10.5 (Power et al, 2011). In all of these 

neutralization experiments, the pH rises again after each sequestration cycle. pH rebound 

can be attributed to the dissolution of compounds like TCA, which are unstable in the 

neutral pH range and they release hydroxide ions which buffer the red mud at a higher pH 

(Power et al, 2011). The use of CO2 as a solution for red mud alkalinity has the benefit of 

being able to reduce the overall pH and sequestering a small amount of CO2. Due to the 

buffering ability of minerals like TCA and kaolinite which bring the pH back into the 
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alkaline region after a small period of time, it’s unlikely that CO¬2 neutralization will be 

enough to remove the hazardous properties of red mud alone.  

A far more likely scenario is one where CO2 neutralization is used as a pretreatment for 

the extraction of minerals from red mud where the red mud is processed soon after 

neutralization and the pH rebound does not occur. Important chemical phases are formed 

during neutralization that can be used in further processing, but the pH rebound may 

cause them to react further. Table 2-9 shows and X-ray diffraction pattern for neutralized 

red mud.  

Table 2-9: X-Ray Diffraction of red mud that has been neutralized with CO2 

Chemical Component Weight 
Percent, % 

Calcium Carbonate, CaCO3 2.4 

Hematite, Fe2O3 29.0 

Goethite, FeOOH 19.0 

Gibbsite, AlO3 5.6 

Anatase, TiO2 5.0 

Rutile, TiO2 6.5 

Sodalite, Na4Al3(SiO4)3Cl 6.1 

Sodium Aluminum Silicate 
Hydrate, 1.08Na2O Al2O3 
1.68SiO2 1.8H2O 

26.5 

After a neutralization cycle, from the table, an XRD of red mud showed an increase in 

calcium carbonate content by 2%. Calcium carbonate, or limestone is a material used in 

iron and steelmaking as a flux material in order to enhance separation of impure slags 
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from the iron. This newly formed material can be utilized as a fluxing material in pyro 

metallurgical processes for the removal of iron (Archambo et al, 2020). For leaching 

techniques to extract minerals for red mud, a neutralizing step with CO2 can reduce the 

pH of red mud prior to acid leaching to reduce the amount of acid required for leaching 

(Rivera et al, 2017). The CO2 seemed to hinder the iron leach efficiency due to 

compounds such as calcite and cancrinite forming and depleting available acid that could 

have been used for iron dissolution. 

CO2 has proven to be effective in removing a portion of the alkalinity of red mud. 

Experimental work must still be done to discover a method for CO2 to completely and 

permanently remove the alkaline solids from red mud. This method of neutralization does 

provide a sink to utilize excess CO2 that is produced during the process while still 

lowering the overall pH. 

2.5 Utilizing red mud waste as a valuable material 

2.5.1 Iron recovery 

Because of the typically high weight percent of iron in red mud, many researchers have 

sought to extract this value from the waste using a variety of methods. Removing iron 

from red mud effectively reduces the total amount of red mud that is being discharged. In 

some cases, iron oxides account for half of the composition of red mud. If the iron is 

removed, up to half of the weight of red mud is utilized as a value-added product. 

Discovering alternative methods to produce iron are very important to the mineral 

processing industry because currently the majority of iron production lies on the 
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shoulders of the blast furnace. Blast furnaces need to be built to such a large scale to be 

economically feasible that anytime a furnace fails, there are serious economic 

consequences.  

Direct reduction of hematite present in red mud has been studied intensely. The direct 

reduction of iron ores reduces the iron oxides but does not separate it from gangue 

material. The product of an iron direct reduction process can be used as a feed for 

steelmaking in an electric arc furnace (Anameric and Kawatra, 2007b). The following 

Equations (2-19) through (2-22) outline the reduction of iron oxides to iron (Chen, 2017). 

 3Fe2O3 + CO ↔ 2Fe3O4 + CO2 (2-19) 

 Fe3O4 + CO ↔ 3FeO + CO2 (2-20) 

 FeO + CO ↔ Fe + CO2 (2-21) 

 Fe3O4 + 4CO ↔ 3Fe + 4CO2 (2-22) 

Using self-reducing pellets composed of red mud and varying amounts of crushed coal, 

iron bearing red mud was reduced and then subjected to a low intensity magnetic 

separation (Sadangi et al, 2018). It was found that the reduced red mud can be upgraded 

from 32.87% to 65.93% at 1150 ℃ for 60 minutes. Following magnetic separation, the 

iron recovery was found to be 61.85%. Gotsu et al. (2018) used a tube furnace at 550 ℃ 

with a reducing atmosphere of CO, CO2, and N2 to reduce hematite in red mud to 

magnetite and separated the iron using dry and wet magnetic separations. The maximum 

grade of the product was reported to be 60% Fe. A similar study separated iron from red 

mud by reducing it in an atmosphere of CO and H2 gases and then used magnetic 
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separation to remove the magnetic magnetite or metallic iron (Ksiazek et al, 2018). This 

separation was able to effectively reduce the iron content of red mud by 43%.  

Sodium salt additions have been shown to improve the separation of iron from red mud 

when reduced and then separated magnetically. The salt acts as a catalyst which allows 

reduced iron crystals in the red mud to grow to larger sizes, which improves efficiency in 

the magnetic separation step (Wei et al, 2019). The results of Wei et al. (2019) show an 

increase in iron recovery from 70% to 85% with the addition of sodium salts. Chun et al. 

(2014) achieved an iron recovery of 92.14%, iron grade of 90.28% and metallization 

degree of 94.87% with sodium salt roasting. The optimum parameters were 9% sodium 

sulfate, 9.46% lime, and 16% coal roasted at a temperature of 1150 ℃ for a residence 

time of 80 minutes (Chun et al, 2014).  

Bhoi et al. (2017) investigated direct reduction of red mud using hydrogen plasma. Dried 

red mud pellets were reduced with hydrogen plasmas at temperatures between 300 and 

800°C. The hydrogen plasma reduces the hematite and magnetite to metallic iron, with 

98.23% reduction achieved after 2 hours at 300°C and 99.3% reduction achieved after 1 

hour at 800°C. This process stands out from other direct reduction processes because the 

reducing material, hydrogen plasma can reduce iron at much lower temperatures than 

typical reductants and has a significantly lower environmental impact (Bhoi et al, 2017). 

Yiran et al. (2014) sought to improve the grade of high-grade red mud by using high 

gradient magnetic separation (HGMS). If iron rich red mud could be upgraded to iron ore 

pellet grade, then the red mud would be able to be charged into the blast furnace for 
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conventional iron and steel processes. With a magnetic field strength of 1.2 T and three 

stages of wet magnetic recovery, the red mud feed was upgraded from 56% to 65% iron 

(Yiran et al., 2014). This grade is similar to the quality of iron ore pellets that are used in 

blast furnace iron processing, pellet feed material from the north American iron range 

after the addition of flux has an iron content of 57.8% (McDonald and Kawatra, 2017). In 

the pelletization process, additives like flux and binders are mixed with the pellet to 

improve compression strength at the disadvantage of lowering the overall iron grade in 

the pellet (Srivastava et al., 2013). 

Another method for removal of iron from red mud is the generation of pig iron nuggets. 

This method begins with rolling self-reducing pellets containing a reducing agent such as 

coal or coke within them and firing them at high temperatures above 1400 ℃. At these 

temperatures, the reducing material removes oxygen from the iron oxides to form 

metallic iron. The variables that play the largest role in the iron nugget process are the 

furnace temperature and residence time. Anameric and Kawatra (2007a) developed a 

model from the Arrhenius equation to determine the required parameters in order to make 

pig iron nuggets. Incentives for industry to implement this process include the following. 

1. Use of iron reducing reagents other than coking coal (Anameric and Kawatra, 

2008).  

2. Lower grade feedstocks like red mud can be used (Srivastava and Kawatra, 2009).  

3. Iron can be produced on a smaller scale (Anameric and Kawatra, 2008). 
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Figure 2-11 shows the basics on how the process works to reduce and separate iron from 

red mud. The nugget process differs from blast furnace iron production because the 

melting iron is achieved through carburization, which decreases the melting temperature 

(Anameric and Kawatra, 2007c).  Following Equations (2-23) through (2-27), the fusible 

slag forms and iron bonds to carbon in the system to form iron carbide, which has a lower 

melting point than pure iron, allowing separation based on density (Anameric et al., 

2006): 

CaCO3 ↔ CaO + CO2 (2-23) 

CaO + SiO2 ↔ CaSiO3 (2-24) 

FeO + SiO2 ↔ FeSiO3 (2-25) 

FeSiO3 +CaO ↔ CaSiO3 + FeO (2-26) 

3Fe + C ↔ Fe3C (2-27) 
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Figure 2-11: The red mud iron nugget process iron separation diagram. (A) The mixed 

pellet of red mud and a reducing carbon material is heated. (B) the reduced iron begins to 

sink to the bottom of the pellet. (C) An iron nugget forms separate from the slag body 

based on density differences. 

Iron nuggets have also been generated using powdered wood as the reducing agent. Red 

mud is rolled into pellets with additives of powdered wood, bentonite, and dolomite flux 

and then dried in an oven to remove moisture. The pellets are placed into crucibles and 

placed into a furnace that has been preheated to 1475 degrees Celsius. Figure 2-12 shows 

a simple flow diagram of the red mud iron nugget experiments. 

 

Figure 2-12: Process flow diagram for the red mud iron nugget process (Archambo and 

Kawatra, 2020) 
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Iron recovery over 80% was achieved with the iron purity of the nuggets reaching 90% 

Fe (Archambo and Kawatra, 2020). Iron nuggets were formed over a range of residence 

times from 30 minutes to 120 minutes with similar iron purities above 90% iron. 

Microstructure analysis and apparent density measurements of pig iron nuggets shows 

that the iron is identical to iron produced with a blast furnace (Anameric and Kawatra, 

2006). This is a promising method to use low grade feeds such as red mud to create pig 

iron that can compete with the quality of blast furnace pig iron. Table 2-10 shows the 

elemental composition of the formed iron nuggets. From the table, the compositions are 

similar to those of blast furnace pig iron. Figure 2-13 shows the overall iron recovery of 

the iron nuggets with varying residence time.  

Table 2-10: X-Ray Fluorescence (XRF) of red mud iron nuggets chemical composition 

(Archambo and Kawatra, 2020).   

Element Fe C Al Ca S Cr Ti Total 

Weight 
Percent, 
% 

90.03 7.739 1.125 0.546 0.421 0.0774 0.0599 100 
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Figure 2-13: Red mud iron nugget process with powdered wood reducing agent. Total 

weight recovery of iron with changing residence time. (Archambo and Kawatra, 2020)  

Using anthracite coal, iron nuggets were produced in a furnace at 1500 ℃ yielding pig 

iron with an Fe purity of 96.52% (Guo et al, 2013). Pig iron nuggets have also been 

generated using thermal plasma technology (Jayasankar et al, 2012). Optimum iron 

recovery in the nuggets were found to be 71% in the plasma technology research with the 

optimum conditions being 15-minute residence time, 12% flux by weight percent, in a 35 

kW DC arc plasma reactor.  

In North America, iron ore is beneficiated using deslime thickening or selective 

flocculation. A flocculating reagent attaches selectively to iron ore and generates flocs 

with a larger particle size in a mineral suspension. These larger particles settle to the 

bottom of a thickening tank more quickly and can be separated. Huang et al (2016) 

applied this method of iron beneficiation to recovery of iron in red mud. Iron oxide was 
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flocculated from the red mud using various humic flocculants derived from brown coal. 

These tests found that 86% of iron could be recovered at a grade of 61%. Important 

parameters for this study were pH, flocculant dosage, and agitation speed.  

Due to the difficulty in dewatering red mud by filtering or thickening for 

pyrometallurgical extraction, hydrometallurgy seems to be a promising route for iron 

recovery. There have been a multitude of leaching studies for the extraction of iron from 

red mud. One study leached iron from bauxite ore before it could be process for alumina 

production in the Bayer process. First, the bauxite is calcined at a high temperature and 

then the iron is leached using sulfuric acid. At the optimum conditions, an iron removal 

efficiency of 47.33% was reached (Li et al, 2018). Ultrasonic waves were used to 

improve the efficiency of iron leaching in sulfuric acid, increasing the leaching efficiency 

from <30% to >40% (Lim and Shon, 2015).  The drawbacks to acid leaching of iron from 

red mud is that at such a low pH range, other metals tend to dissolve and leach out of the 

red mud as well. Many experiments leach combinations of aluminum, titanium, and rare 

earth elements along with iron and then separate each of them (Lu et al, 2012; Lim et al, 

2015; Li et al, 2018). Zhang et al. (2020) leached red mud with hydrochloric acid, mixed 

with an organic methyl trioctyl ammonium chloride, and then used NaH2PO4 to strip the 

iron from the leach solution selectively. At a concentration of 1.5 mol/L NaH2PO4, the 

maximum stripping efficiency was achieved to be 95.9% (Zhang et al., 2020). The 

implication here is that iron can be selectively leached from a red mud leachate, which 

means that other minerals like rare earths can be separated.  
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Oxalic acid has been selected to leach iron for a number of studies. One such study 

leached iron from HCl washed red mud using oxalic acid. The leach ratio of iron for this 

experiment was reported to be 94.15% and the oxalic acid was regenerated so that it can 

be reused for further use in iron leaching (Yang et al, 2015). A flow diagram for the 

process can be seen in Figure 2-14. 

 

Figure 2-14: Process flow diagram for iron leaching via oxalic acid (Yang, 2015) 

 Yang et al (2016) improved upon the process for iron leaching with oxalic acid by 

adjusting the pH with calcium carbonate to selectively dissolve the iron more efficiently.  

In summary, iron found in red mud can be reliably extracted using a variety of 

pyrometallurgical and hydrometallurgical processes. Recovering iron from red mud can 

reduce the total amount of disposed red mud by up to 55% by weight depending on the 

initial concentration in the ore. Smelting and direct reduction processes are an effective 
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alternative to blast furnace production of iron in terms of iron grade. Leaching processes 

for iron are also effective, but they also tend to dissolve other valued minerals as well. 

Effective iron leaching processes must also have a method for purifying the leach 

solution by extracting the other valued minerals. Iron removal is the most promising 

method for the reduction of red mud waste. 

2.5.2 Titanium recovery 

Available in smaller weight percent’s than iron in red mud, titanium is another metal that 

has potential for extraction. This is because titanium is a more expensive metal with a 

more difficult production process. Titanium rich ores also occur far less frequently in 

nature than that of iron, which makes finding an alternative source of titanium through 

concentrated mineral processing waste like red mud more appealing.  

Tests to recover titanium with sulfuric acid have shown that 64% of the titanium can be 

recovered along with amounts of iron and aluminum, a low solid to liquid ratio showed 

increased titanium recovery while lowering aluminum and iron recovery (Agatzini-

Lleonardou et al, 2008). Another study looked to avoid dissolving titanium along with 

other minerals by using HCl to remove iron and alumina while keeping titanium oxide 

insoluble to enrich the concentration in the red mud solids. The dissolution reactions of 

iron and aluminum oxides in the presence of HCl is shown in reactions 2-28 and 2-29 

(Kasliwal and Sai, 1999). The reported enrichment of titanium in the leaching step is 

0.36. 

 Fe2O3 + 6HCl ↔ 2FeCl3 + 3H2O (2-28) 
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 Al2O3 + 6HCl ↔ 2AlCl3 + 3H2O (2-29) 

The solids were then roasted with sodium carbonate to form water soluble minerals from 

the remaining aluminum and silica following reactions 2-30 and 2-31 (Kasliwal and Sai, 

1999). An increase in enrichment of titanium after the roasting step was determined to be 

0.76 under optimum process conditions of 115-minute residence and 1150 degrees 

Celsius roasting temperature. 

 Na2CO3 + Al2O3 ↔ 2NaAlO2 + CO2 (2-30) 

 Na2CO3 + SiO2 ↔ Na2O·SiO2 + CO2 (2-31) 

A study conducted by (Huang et al, 2016) sought to purify leached titanium from 

dissolved iron using a precipitate flotation method outlined in Figure 2-15.  A majority of 

iron is removed from red mud using a deslime- thickening process, then the tailings are 

subjected to a stage of acid leaching with H2SO4. The leachate is then sent to flotation 

where iron ions attach to a frothing agent, precipitate, and then float. After calcination, 

the remaining solution is concentrated titanium oxides. The final titanium recovery was 

92.7%, and 93% of the iron was rejected (Huang et al, 2016). 
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Figure 2-15: Simplified flow diagram for enriching titanium in red mud using 

precipitation flotation (Huang et al., 2016). 

In order for titanium to become a viable byproduct from Bayer red mud, the most 

promising processes are those that also produce iron through leaching. The development 

of processes that can separate iron and titanium from the leach solution will be the most 

beneficial as two valued products are created. Titanium is available in red mud at a much 

smaller fraction than iron, but its overall value maintains its position as an important 

mineral in red mud. 

2.5.3 Rare Earth element/Scandium/Gallium recovery 

The group of elements on the periodic table from atomic numbers 57 to 71 are considered 

as the rare earth elements. Scandium and yttrium are typically included in this category as 

well due to similarities in their chemical properties (Balaram, 2019). The rare earth 
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elements are widely applied in many new and developing technologies. The continuously 

high demand for rare earths has spurred a huge boom in their production and utilization 

over recent years. Applications for rare earth elements include a variety of things such as 

electronics, medicine, technology, and energy (Balaram, 2019). It is clear that these 

elements are an integral part of our way of life and will continue to be as technology 

advance further. The issue with these elements is that they do not typically occur in 

deposits that are high enough in concentration to mine profitably. This is the reason that 

they were coined as rare earth elements. REES are found in more abundance in two types 

of deposits, alkaline igneous formations which include minerals like bastnaesite and 

residual deposits caused by excessive weathering effects including minerals like bauxite 

(Balaram, 2019).  

Red mud is a promising source for critical rare earth elements. It is also worth mentioning 

that the compositions of rare earths in different red mud samples can vary widely, some 

elements may be most prevalent in one sample while not appearing in another. This 

implies that the removal process for rare earths will also depend on the mineralogy of the 

sample. Red mud may present a viable feedstock for extracting critical rare earth 

resources.  

The predominant methods for rare earth extraction have been in ion exchange methods, 

extraction with organic solvents, and precipitation of low soluble compounds (Akcil et al, 

2018). Most rare earth elements exhibit very similar chemical properties, which makes 

the separation of rare earths from each other uniquely difficult. One exception to this case 

it that of cerium, which can become stable at the Ce+4 oxidation state, making it easier to 



66 

separate from other rare earths (Meshram and Abhilash, 2019). One such process for the 

removal of cerium from red mud involves leaching red mud with sulfuric acid followed 

by solvent extraction with Cyanex 301; 99.9% of cerium was extracted at 3M H2SO4, 10 

g/L, and 1 hour (Abhilash et al, 2014). Borra et al. (2016) used acid leaching to remove 

REEs from red mud that had already been smelted to remove iron. The reason for this is 

that iron also dissolves at the same pH as the REEs and it would require further 

purification steps to remove the iron. Leaching iron deficient slag from red mud with 

HCl, sulfuric acid, and nitric acid extracted rare earth elements such as Sc, Y, La, Ce, Nd, 

Dy, and Ti with limited amounts of iron as a contaminant. A large amount of research 

that studies extraction of rare earth elements takes the acid leach route to remove rare 

earth elements along with valuable iron, titanium and aluminum. Some of the works that 

acid leach red mud is the following: (Ochsenkuehn-Petropoulou et al., 1996; Wang et al., 

2013; Abhilash et al., 2014; Alkan et al., 2017, 2018; Davris et al., 2018; Rivera et al., 

2018; Zhang et al., 2019). Table 2-11 shows the extraction efficiencies of different red 

mud leaching experiments. 

Table 2-11: Rare earth extraction percent from red mud utilizing different reagents, 

temperatures, and residence times. 

Reference Dissolving 
Reagent 

Residence 
Time (min) 

Temperature 
(℃) 

Element Extraction 
%  

Alkan et al, 
2017 

HNO3, 3M 120 90 Sc 34% 
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Borra et al, 
2015 

HNO3, 1N 1440 25 La 35%, Ce20%, Nd 
45%, Dy 50%, Y 
65%, Sc 45% 

Ochsenkuhn-
Petropulu et 
al, 1996 

HNO3 
0.5M 

30 30 La 35%, Ce 29%, Pr 
35%, Nd 52%, Sm 
49%, Eu 53%, Gd 
49%, Dy 52%, Er 
60%, Yb 70%, Y 
96%, Sc 80% 

Wang et al, 
2013 

HNO3, 0.5 
M 

120 23 Sc 80.2 

Alkan et al, 
2017 

HCl, 3M 120 90 Sc 36% 

Borra et al, 
2015 

HCl 1N 1440 25 La 35%, Ce 38%, Nd 
45%, Dy 50%, Y 
70%, Sc 42% 

Ochsenkuhn-
Petropulu et 
al, 1996 

HCl, 0.5 M 30 30 La 33%, Ce 32%, Pr 
25%, Nd 55%, Sm 
57%, Eu 50 %, Gd 
37%, Dy 45%, Er 
43%, Yb 60%, Y 
79%, Sc 68% 

Rivera et al, 
2018 

HCl 1440 25 La 34%, Nd 35%, Y 
43%, Sc 36% 

Wang et al, 
2013 

HCl, 0.5 M 120 30 Sc 80.7% 

Zhang et al, 
2019 

HCl 20 75 La 82.3%, Ce 
96.9%, Nd 98.3, Y 
95.6%, Sc 93.3% 
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Abhilash et al, 
2014 

H2SO4, 3M 60 35 La 99.9%, Ce 99.9% 

Alkan et al, 
2017 

H2SO4, 3M 120 90 Sc 78% 

Borra et  al, 
2015 

H2SO4, 1N 1440 25 La 25%, Ce 35%, Nd 
40%, Dy 45%, Y 
60%, Sc 45%  

Ochsenkuhn-
Petropulu et 
al, 1996 

H2SO4, 
0.5M 

30 30 La 28%, Ce 24%, Pr 
29%, Nd 21%, Sm 
33%, Eu 37%, Gd 
32%, Dy 43%, Er 
34%, Yb 52%, Y 
77% 

Rivera et al, 
2018 

H2SO4 1440 25 La 20%, Nd 19%, Y 
22%, Sc 22% 

Wang et al, 
2013 

H2SO4, 
0.5M 

120 30 Sc 83.8% 

Ujaczki et al, 
2019 

H2C2O4, 
2.5M  

1440 80 Ga 40% 

Borra et al, 
2015 

Citric Acid 
1N 

1440 25 La 20%, Ce 15%, Nd 
30%, Dy 35%, Y 
50%, Sc 40% 

Borra et al, 
2015 

Acetic 
Acid 1 N 

1440 25 La 15%, Ce 10%, Nd 
20%, Dy 15%, Y 
20%, Sc 20% 

Davris et al, 
2016 

HbetTf2N 240 150 La 68%, Ce 71%, Nd 
71%, Pr 81%, Sm 
68%, Eu 77%, Gd 
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82%, Dy 52%, Er 
71%, Yb 71%, Y 
56%, Sc 36% 

Davris et al, 
2016 

HbetTf2N 1440 150 La 85%, Ce 74%, Nd 
84%, Pr 82%, Sm 
69%, Eu 75%, Gd 
81%, Dy 65%, Er 
75%, Yb 76%, Y 
69%, Sc 43% 

Xue et al, 
2019 

NaOH 720 120 Ga 91.4% 

Yagmurlu et 
al, 2019 

H2SO4 

2.5M H2O2 

2.5 M 

120 75 Ce 60%, Sc 90% , Y 
50% 

Leaching REE’s from red mud using ionic liquids has also been studied. An ionic liquid 

is an ionic material that is typically a liquid at room temperature and it is made up 

entirely of ions. These ionic liquid solutions can dissolve rare earth oxides and form a 

complex, which can then be stripped with an aqueous acid. Davris et al. (2016) utilized 

betainium bis(trifluoromethylsulfonyl)imide (HbetTf2N) as an ionic liquid followed by 

HCl stripping to leach rare earth elements selectively. The rare earth extraction rate was 

found to be 70-85% while also maintaining iron extraction of less than 3% (Davris et al, 

2016).  

Biosorption routes have also been investigated in depth, different projects have reported 

the extraction of Lanthanum, Neodymium, Cerium, Erbium, Europium, Samarium, 

Praseodymium, and Dysprosium (Das and Das, 2013). The mechanism that allows 

biosorption to occur can be attributed to some of the following factors or a combination: 
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electrostatic interaction, surface complexation, ion-exchange, and precipitation (Das and 

Das, 2013). These processes are favorable to high concentration acid leaches because 

they do not produce hazardous waste products, the biomass materials are typically 

inexpensive, and the leaching can be performed in-situ. This research has yet to reach the 

scale of industry however, more research into its effectiveness is necessary. 

Research has recently put a heavy focus of extraction of scandium specifically from red 

mud. Scandium is one of the most expensive rare earth elements with a price of 3,487 

USD/Kg in 2020 (Mineral Prices, 2020). One route for scandium recovery is synthesizing 

scandium phosphate from red mud. This is done by depleting the red mud of iron using 

Pyrometallurgy and then leaching the slag with hydrogen peroxide and then precipitated 

to form scandium phosphate. From this study, 85% of the scandium was recovered as 

scandium phosphate (Yagmurlu et al, 2019). 

Another valued element that has potential to be removed from red mud sources is 

gallium, which tends to occur in red mud at similar quantities to that of scandium. Liu et 

al. (2018) found that the red mud from the Chalco aluminum plant in Shandong, China 

contained scandium and gallium at concentrations of 80 ppm and 920 ppm respectively. 

Based on the image analysis, it was concluded that gallium and scandium are more likely 

to be present in red mud that is rich in iron oxide and aluminum oxide as they have an 

affinity to exist near those minerals (Liu et al, 2018). One method for removing gallium 

from red mud is an alkaline leach process to oxidize all iron species (which have high 

surface area and coat gallium particles) to Fe2O3 to allow for more surface area for 

leaching; optimized results for this procedure are 91.4% of the gallium can be extracted 
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from the red mud and the leached solution contains a concentration of 73.44 ppm gallium 

oxide (Xue et al, 2019). 

Samples from the Turkish red mud plant Seydişehir were used in a gallium extraction 

experiment by alkaline leaching with lime followed by TCA precipitation and 

carbonation; the concentrate solution contained 3200 ppm gallium (Abdulvaliyev et al, 

2015). Another approach looked at acid leaching rather than alkaline leaching for gallium 

recovery, by dissolving red mud in hydrochloric acid, removing dissolved iron using 

chlorinated polystyrene resin, followed by an ion exchange step. The averaged results 

showed that 88.34% of gallium in red mud could be recovered in this way (Lu et al, 

2018). Ujaczki et al. (2019) found that oxalic acid can also be used for leaching to 

recover gallium from red mud in conjunction with adsorption onto zeolite HY; the oxalic 

acid was able to leach gallium at a concentration of 81.1 ppm at optimal conditions of 

2.5M acid concentration, 80-degree Celsius temperature, 21.7 h residence time, and 10 

g/L slurry concentration. The zeolite adsorbent was able to remove 99.4% of gallium 

from the leached solution (Ujaczki et al, 2019).  

In summary, red mud contains a large amount of rare earth elements which have been 

concentrated from bauxite ore during the Bayer process. Utilization of red mud as means 

of rare earth element production can simultaneously reduce the amount of red mud being 

disposed while also providing a source for a critical material. The composition of each 

specific red mud source is an important factor in determining the feasibility of rare earth 

extraction. Rare earth elements are chemically similar and difficult to separate, so a 

universal process solution for rare earth extraction in red mud is unlikely. Process 
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solutions should be optimized on a plant basis in order to extract the most available and 

most concentrated rare earths in the most efficient way. Ultimately, as demand for new 

sources of rare earth elements increases, the viability for red mud as the source becomes 

more likely. Red mud has a large potential to be a supplier of necessary rare earth 

elements in the near future. 

2.5.4 Catalysis 

One area that red mud is seeing a sharp increase in utilization research is that of catalysis. 

This field has a wide range of applicability for the case of red mud. Red mud has been 

used as a catalyst for tests to remove organics from wastewater. With a high content of 

iron oxides like hematite, red mud was used to remove organics using the mechanism of 

iron oxide reducing and catalyzing the reaction sequence (Bento et al, 2016). The results 

from these tests show that up to 90% of organics were removed from the wastewater with 

a catalyst reusability for up to 4 cycles (Bento et al, 2016).   

Catalysis in oil and gas industries is a field that is growing in prominence. With 

increasing regulations on flue gas compositions that can be discharged to the 

environment, many research projects have investigated cost effective methods to remove 

hazardous gases from flue gas streams. Specifically, for this review, the utilization of red 

mud as a catalyst for these flue gas removal projects has been investigated. The removal 

of NO from simulated flue gas was investigated by passing the gas through a catalyst 

filter coated with red mud; the NO gas can adsorb on to the iron minerals in the red mud 

(Huangfu et al, 2020). The conversion of NO was found to be 74% without the presence 
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of other common gases like SO2 and water, with all of these gases together the 

conversion increased to over 90% conversion of NO (Huangfu et al, 2020).  

Red mud has also seen use as a catalyst in production of fuels. Contamination with sulfur 

components in fuel is very undesirable for the final product and they must be removed. 

One project used red mud as a catalyst with hydrogen peroxide and acetic acid to remove 

dibenzothiophene (DBT) by means of oxidation (Resende et al, 2014). It was also shown 

that the red mud could be regenerated to up to 97% of its original catalyst activity to be 

used again (Resende et al, 2014). Hemp oil can be converted to biofuel using pyrolysis 

techniques with hydrogen gas. It was found that when reduced red mud was used as a 

catalyst, the produced organic materials contained less reactive organics like alcohols, 

aldehydes, and acids and a higher amount of stable alkanes, alkenes and aromatics 

(Karimi et al, 2010). The bio oil produced using red mud as a catalyst also showed that 

the organic material was more stable over the course of 90 days whereas the untreated bio 

oil began to degrade and the alkanes, alkenes, and aromatics converted into a higher 

weight percent of reactive organics that cannot be useful as fuel (Karimi et al, 2010). 

Ammonia can be converted to hydrogen gas which can be used as a fuel with the help of 

red mud as a catalyst. The iron present in red mud was reduced to metallic iron and then 

reacted with ammonia to form nitrogen and hydrogen gas at a production rate varying 

from 72 to 196 mmol H2 per min with ammonia flow rates varying from 72,000 to 

240,000 cm3 NH3 per hour (Kurtoglu and Uzun, 2016). This study offers a use for red 

mud while also creating a storage mechanism for hydrogen gas, which is dangerous to 

store. 
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These processes are very interesting and novel uses for red mud which cover a series of 

different research fields. The overall utilization of the total amount of stored red mud via 

these methods will be low compared to other means of utilization. For each catalysis 

process, only small amounts of material are needed and much of it is regenerated in the 

process. There is little demand in catalysis for the enormous amount of red mud that is 

produced in industry. 

2.5.5 Construction/Ceramics 

Red mud has been considered as a bulk construction material over the years. The bulk 

utilization of red mud in long-term construction would eliminate the majority of storage 

costs and environmental hazards. Research is currently ongoing on how to effectively 

prepare red mud for this usage.   

Understanding the effects of different parameters on the strength of red mud for a 

building material are important. These were investigated in mixtures of red mud and 

lime, it was found that important parameters to consider are lime content, porosity, dry 

density, and water content (Kumar and Prasad, 2019). On its own, red mud and its 

components are not very reactive and do not effectively bind to itself or other materials. 

Red mud can be sintered in an oven to increase its reactivity. The slag of the sinter tests 

was used as the starting material for compression tests and a mechanical strength of 40 

MPa which can be compared to conventional cements (Arnout et al, 2018). 

Red mud has a similar particle size distribution to clays used to make insulation bricks. 

Red mud can be mixed with sawdust to form similar bricks comparable to standard 
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insulation bricks, with the best results occurring around a 7.5% saw dust content (Singh 

et al., 2014; Mandal et al., 2017). 

Due to the presence of minerals in red mud such as Fe2O¬3, Al2O3, and silica, red mud 

has potential to be an ingredient in the production of cement (Liu et al, 2011). One study 

blended fly ash with red mud for a cement additive in order to reduce the amount of 

alkali sodium in the product. The compressive strengths of these mixtures were tested 

over time and it was found that high weight percent of red mud showed a higher initial 

compressive strength but at long periods of time over 90 days the compressive strength 

suffered (Montini et al, 2018).  

Cement production could be an excellent method for bulk utilization of red mud. Lui et 

al. (2011) showed that the fine particle size of red mud helps to demonstrate a normal 

consistency in cements with strong mechanical properties. Lui et al. (2011) noted that 

many of the experiments that were performed using red mud for cement were all on lab 

scale and a complete bulk utilization of the total stockpile of red mud is still far away.  

The high content of largely inert components in red mud, such as quartz and hematite, 

give credibility to the idea that red mud can be used as a feed source of material for the 

ceramics industry. Heating tests to determine the properties of red mud at different 

temperatures was studied to see how red mud could be specifically applied to the process. 

It was found that under temperatures of 900 ℃ red mud was largely inert and the only 

chemical changes were the evaporation of water and the evolution of CO2 gas, which 

makes red mud useful for applications as an inert component for the production of bricks 
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and tile (Sglavo et al, 2000b). When red mud is fired above temperatures of 900 ℃ to 

1400 ℃, aluminum silicates begin to melt and form a liquid phase which can be utilized 

in ceramics to form materials with high strength and low porosity (Sglavo et al, 2000b).  

Work has been done to enhance the properties of red mud itself as a ceramic material, 

specifically using geopolymer technology. It was shown that when using red mud as the 

aluminosilicate precursor by submerging the mud alkaline activating solutions with 

combinations of SiO2 and Na2O, the produced geopolymer could be heated as a low 

temperature ceramic material (Lemougna et al, 2017). The reaction sequence begins with 

silicon and aluminum minerals dissolving at high pH, where the precursor minerals start 

to form in the aqueous phase as seen in equations (2-32) through (2-35) (Dimas et al., 

2009). 

 (SiO2, Al2O3) + 2NaOH + 5H2O → Si(OH)4 + 2Al(OH)− 4 + 2Na+ (2-32) 

 Si(OH)4 + Si(OH)4 ↔ (OH)3Si–O–Si(OH)3 + H2O (2-33) 

 Si(OH)4 + Al(OH)− 4 ↔ (OH)3Si–O–Al(−) (OH)3 + H2O (2-34) 

 2Si(OH)4 + Al(OH)− 4 ↔(OH)3Si–O–Al(−) (OH)2–O–Si(OH)3 + 
2H2O 

(2-35) 

Dimas et al. (2009) found that geopolymers formed using red mud as the precursor, had 

high compressive strength at 20.5 MPa, 1.28% cold water absorption, and 0 cm3/cm2 per 

day water permeability. Others studies have been done to determine an ideal weight ratio 

of red mud for optimal performance of the yielded ceramic products. Drawbacks noted 

for the process are low flexural strength and weakened structural properties following 

freezing and thawing cycles (Dimas et al, 2009). On such study determined that out of 
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mixtures containing 20, 35, and 50% red mud, that the highest weight ratio of red mud 

fired at a lower optimum sintering temperature which was attributed to Na+ solidification 

to promote sintering (Pei et al, 2017). 

Use of red mud as material for construction can utilize a large amount of red mud with 

little modification to the dry product. Demand for cement and other construction 

materials is high and if red mud can be implemented at a high weight percent, the 

reduction of the red mud stockpile is likely. 

2.5.6 Using red mud to remediate soil and water 

Red mud has been seen as a material that is detrimental to wildlife and a serious harm to 

the environment. Some research has gone into actually using red mud to improve the 

conditions of solid by removing dangerous heavy metal ions. This is possible because red 

mud that has been neutralized with seawater contains minerals known as hydrotalcites, 

which can adsorb to heavy toxic elements in solution (Palmer et al, 2010). Results from 

these experiments were performed with red mud samples from the Gove plant in 

Australia and it was found the seawater neutralized red mud could remove dangerous 

metals in aqueous solution like arsenate, vanadate and molybdate (Palmer et al, 2010). 

Another study conducted arsenic adsorption experiments with raw red mud and red mud 

that had been activated through heat-treatment and through acid washing. The results 

showed that arsenic can absorb to regular red mud and activated red mud but the 

adsorption to activated red mud which contained a lower pH was more effective 

(Altundogn et al, 2002).  
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Red mud can be effective at removing dangerous ions from other contaminated sources 

which is great for cleaning water sources and soils. The issue here is that the red mud that 

has been used now contains a higher concentration of dangerous metal ions and the 

storage of the material becomes an issue again. If red mud is used to remediate soil, much 

thought must put into the storage of red mud with more hazardous metal ions. Current 

storage techniques can contain the red mud to a certain degree. Remediation of soil and 

water is unlikely to be a major factor in the total reduction of red mud waste. 

2.6 Conclusions 

Red mud continues to be a serious issue in regards to the aluminum industry and the state 

of the environment impacted by mining operations. The variation in composition for red 

muds around the world creates a difficult problem for a unified method of bulk utilization 

and extraction of valuable minerals. Almost all red muds do contain a mineral of value 

that can be extracted, and in most cases, they contain multiple minerals of value that 

could be removed and in turn reduce the amount of red mud at a profit to industry.  

The properties of red mud from the Bayer process make the material very difficult to 

dispose of and where it is disposed, a large amount of land area is consumed with the 

potential of soil contamination from caustic levels, toxic, and radioactive elements. 

Disposal practices have been improved with technology advances in thickening and 

filtering. This alone is insufficient to deal with the increasing amounts of red mud 

generated each year. These technologies need to be coupled with new utilization 

technologies to totally dispel the issue that red mud presents.  
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The removal of alkalinity from red mud is one of high importance. Methods of pH 

reduction of red mud have been successful using simple reagents. Carbon dioxide 

neutralization provides an option for greenhouse gas sequestration in an industry that 

produces a large amount of CO2. Adding CO2 neutralization to red mud at the plant scale 

would be very easy due to the close proximity of gas emissions to red mud discharge. 

Processes that seek to remove iron from red mud can potentially decrease the amount of 

red mud by 50% by weight. Direct reduction, acid leach, and direct smelting processes 

have shown that reliable iron grades can be produced from red mud with the added 

benefit of red mud waste reduction. 

Rare earth elements have been found in concentrated quantities in red mud. During a time 

when finding a source of production for these vital minerals is critical, red mud seeks to 

become a promising feed stock for secondary production of rare earth metals.  

The large amount of laboratory studies shows that there is value in this process waste in 

the form of low to mid-grade iron ores, titanium ores, rare earths, and residual aluminum. 

This gives us another reason to look at red mud as a valued feedstock and not just a 

process waste.  

The large stockpile of red mud that has been building since the Bayer processes inception 

desperately requires utilization options. With the increasing demand for alumina in the 

world, the amount of red mud being produced every year is growing exponentially. The 

most reliable way to reduce the stockpile of red mud is projects that rely on bulk 

utilization of red mud so that there is no waste at the end of the process. The most 
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promising research and plant-based operations that have been seen are those that include 

seawater neutralization of red mud and the use of red mud clays in construction materials. 

The industry percent utilization of red mud today is still much lower than the production 

rate of red mud. If red mud can effectively be utilized as a valuable material, then the 

industry might see reduction of red mud stocks in a much more favorable light. 
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3 Optimization studies for red mud neutralization with 
carbon dioxide 

3.1 Abstract 

Red mud is a caustic aluminum byproduct that must be neutralized in order to process 

and recover valuable iron. Typically, red mud has a pH of 13 or higher, making it 

dangerous to handle and for the environment. Carbon dioxide is a greenhouse gas and 

finding an economically viable utilization method for carbon dioxide is critical for 

greenhouse gas mitigation. One technique for CO2 utilization is to bubble CO2 into red 

mud in order to neutralize the caustic sludge. In this study, CO2 was bubbled into a slurry 

of caustic red mud, and the pH was measured in regular intervals. This study found that 

CO2 is capable of neutralizing the pH to 7.5. Over large time periods, experimental work 

has shown that CO2 can effectively reduce the pH of caustic red mud. Neutralization of 

red mud can also be considered as preprocessing for iron removal. CO2 is stored in red 

mud as calcium carbonate, which aids the separation of iron. CO2 neutralization also 

impacts the surface properties of red mud, lowering the zeta potential to zero. This work 

aims to understand the neutralization of red mud with CO2 and find potential uses for its 

further processing. 

3.2 Introduction 

The alumina industry has grown considerably over the last few decades, using the Bayer 

process to produce valuable alumina from bauxite ore. The problem that grows yearly in 

the alumina industry is the generation and management of its processing waste. Red mud 

is produced at very large quantities compared to the alumina that is produced. Up to 2.5 
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tons of red mud are generated or every ton of alumina made (Patel and Pal, 2015). The 

Bayer process can be described simply using the flow diagram in Figure 3-1. Red mud is 

formed after the digestion of bauxite ore in caustic sodium hydroxide, shown in Equation 

3-1 (Hind et al, 1999). 

 Al(OH)3 (s) + NaOH (aq) ↔ 𝑁𝑁𝑁𝑁++ 𝐴𝐴𝐴𝐴(𝑆𝑆𝑂𝑂)4− (3-1) 

Figure 3-1: Simplified process flow diagram for the Bayer process. 

 
 After the aluminum rich liquor has been separated from the remaining undissolved 

material, a series of thickening and dewatering steps produce the red mud. Flocculants 

such as high anionic acrylamide and polyacrylates are added to red mud in order to settle 

fine solids more quickly (Sankey and Schwarz, 1982). Filtering the red mud using drum 

filters is also used in order to recover caustic liquor for reuse in the plant (Evans, 2016). 

The separation and dewatering of red mud can account for 30 to 50% of alumina plant 

operations (Paramguru et al, 2004). Even with the aid of these dewatering steps, the mud 
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is still very high in moisture content. The slurry is pumped into lagoon sites where it 

takes decades for it to dry. The current stockpile of red mud worldwide is estimated to be 

near 4 billion tons (Wang et al, 2019). 

The red mud that is generated in the Bayer process is detrimental to the environment for a 

variety of reasons. Toxic materials like arsenic, chromium, lead, and zinc have been 

discovered in excess at red mud spill sites (Rutyers et al, 2011). Red mud also exhibits 

very high alkalinity due to the residual sodium hydroxide that is left over from the 

digestion stage of the Bayer process, which makes storage of red mud a potentially 

dangerous endeavor (Power et al, 2011). When red mud is disposed, for every ton of 

solids, there is up to 2 tons of liquid with very high alkalinity from 5-20 g/l caustic 

material (Rai et al, 2012). Other concerns for red mud storage are that of seepage into the 

groundwater and traveling dust particles that can affect nearby environments (Rai et al, 

2012).  

Developing a solution to remove the environmental hazard from stockpiling red mud is 

critical to future sustainable aluminum mining processes. Using neutralization techniques 

to lower the caustic pH of red mud could prove effective at mitigating the environmental 

risk. The importance of finding inexpensive reagents to reduce red muds pH are critical 

for neutralization processes (Klauber et al, 2011).  

Carbon dioxide has become a very important gas across every industry because it is a 

byproduct of many processes and there are currently very few avenues for utilization. The 

capture and utilization of CO2 is another critical task for sustainable engineering. In 2019, 

CO2 emissions increased by 350 megatons, and the total emissions for that year were 
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estimated to be near 38 gigatons of CO2 (Olivier and Peters, 2020). Without harsher 

regulations, there is not much incentive for industry to curb their release of CO2. CO2 is 

an excellent alternative to using acids to neutralize red mud because it is typically 

produced elsewhere in a mineral processing plant and could be sequestered in red mud 

rather than being expelled into the atmosphere. Red mud can be neutralized from a 

relatively cheaper reagent that is typically generated at prices of 25 to 35 $/ton (Valluri 

and Kawatra, 2021). Most of the time carbon dioxide is generated elsewhere in the same 

plant, making shipping and logistics simpler.  

Red mud can be further processed to remove valuable minerals with the addition of CO2. 

Iron can constitute up to 50% of a given red muds weight (Paramguru et al, 2004). The 

iron can be removed with the addition of a flux using the novel iron nugget process 

(Archambo and Kawatra, 2020). This process separates the metallic iron from a more 

viscous slag layer with the aid of a flux material. A flux material is commonly used in 

steelmaking to remove impurities from molten pig iron. The reaction between red mud 

and CO2 can generate flux material in red mud to improve the iron nugget separation.  

Research has been done to investigate the ability of carbon dioxide to neutralize red mud 

slurries, with varying levels of success. Rai et al (2013), neutralized red mud with 

multiple cycles over a period of 7 weeks. For each cycle, red mud would be treated with 

CO2 and left alone for a week, the pH would be measured and it would be treated again 

with CO2. It was observed that the pH of the sample would always rise back to the pH 

range of 9.0 to 9.5 (Rai, 2013). Prior to rare earth element recovery, a neutralization step 

for the red mud with carbon dioxide was able to lower the pH to 8.6 (Rivera et al, 2017). 
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Patel and Sahu (2018), were able to achieve similar results by lowering the pH to 8.45. 

Some experimental work was done with different size fractions of red mud to determine 

which size can sequester the CO2 most effectively. The conclusion is that the 

intermediate size fraction of 30 microns was most effective due to the presence of 

cancrinite phases (Yadav et al, 2010). pilot scale CO2 neutralization setup had been 

implemented at the Kwinana plant in Australia. With vessels that were under pressure, 

the pH was lowered down to 8.5 but over time the pH rose again to 10.5 (Power et al, 

2011). All of these experiments show that red mud can be neutralized with carbon 

dioxide with the caveat that the pH will rise again after carbonation.  

This research investigates the capability of CO2 to neutralize red mud. Previous works 

have cited different mechanisms for red muds neutralization and pH rebound. This work 

aims to determine a more cohesive hypothesis for the red mud neutralization mechanism. 

Other aspects of neutralized red mud will be explored in this paper that have not been in 

other publications. The generation of carbonates in neutral red mud is important as a 

pretreatment to remove iron in further processing. The investigation into the zeta 

potential of red mud with mineral acids has been studies, this work will explore how the 

surface of red mud is affected with additions of CO2 for neutralization. With that 

knowledge, optimization of red mud neutralization is possible and avenues of further 

processing of red mud become available.  
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3.3 Experimental 

3.3.1 Materials 

The red mud that was used in the following experiments was acquired from an alumina 

plant located in Louisiana, USA. The plant processes bauxite ore that is mined in 

Jamaica. The original solids content of the mud sample was found to be near 60% and the 

particle size distribution can be seen in Figure 3-2. Particle size of the red mud was 

estimated using a Mictotrac SRA9200. From the figure, the 80% passing size of the red 

mud sample is 6.5 microns. The phase distribution of the initial red mud samples can be 

seen in Table 3-1. The red mud consists of large portions of iron bearing minerals such as 

hematite and goethite. Other large contributions to the phase distribution belong to a 

number of aluminosilicate clay minerals. 

 

Figure 3-2: Particle Size distribution for the red mud sample used for neutralization 

experiments  
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Table 3-1: Chemical distribution of red mud 

Component Chemical Formula Weight 
Percent 

Hematite 𝐹𝐹𝐹𝐹2𝑆𝑆3 27.3 

Sodium Aluminum 
Silicate Hydrate 

1.08𝑁𝑁𝑁𝑁2𝑆𝑆 ∙ 𝐴𝐴𝐴𝐴2𝑆𝑆3 ∙ 1.68𝑆𝑆𝑆𝑆𝑆𝑆2 ∙ 1.8𝑂𝑂2𝑆𝑆 33.9 

Goethite Fe𝑆𝑆2𝑂𝑂 18.3 

Gibbsite Al𝑆𝑆3 4.4 

Anatase 𝑇𝑇𝑆𝑆𝑆𝑆2 4.6 

Rutile 𝑇𝑇𝑆𝑆𝑆𝑆2 3.8 

Calcite 𝐶𝐶𝑁𝑁(𝐶𝐶𝑆𝑆3) 0.2 

Quartz 𝑆𝑆𝑆𝑆𝑆𝑆2 1.6 

Sodalite 𝑁𝑁𝑁𝑁4𝐴𝐴𝐴𝐴3(𝑆𝑆𝑆𝑆𝑆𝑆4)3𝐶𝐶𝐴𝐴 3.4 

Sodium Aluminum 
Silicate Hydrate  

(𝑁𝑁𝑁𝑁2𝑆𝑆)1.31𝐴𝐴𝐴𝐴2𝑆𝑆3(𝑆𝑆𝑆𝑆𝑆𝑆2)2.01(𝑂𝑂2𝑆𝑆)1.65 2.5 

3.3.2 Methods 

The neutralization setup for red mud with CO2 can be visualized in Figure 3-3. Red mud 

charges of 800 grams were placed in a 2-liter beaker and distilled water was added at a 

1:1 ratio so that the red mud could be mixed until it became homogeneous. The final 

solids content of the red mud before neutralization was 30% by weight. A Denver electric 

mixer was inserted into the beaker and continuously mixed the red mud at a speed of 900 

rpm. The pH of the red mud was monitored using an Oakton pH 700 benchtop meter. The 

initial pH of the red mud samples was over 13. A gas dispersion tube was inserted into 

the beaker and CO2 was introduced. During the experiments, the flow rate of CO2 was 
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varied from 0.5 – 5 LPM. The neutralization time was also varied between 1- and 6-hour 

neutralization cycles and studied under a constant CO2 flow rate of 1 l/min. 

 

Figure 3-3: Experimental setup for red mud neutralization using CO2 as a neutralizing 

agent 

Red mud was sent to X-Ray Diffraction for phase analysis both before and after CO2 

neutralization. Characterization of the samples were done using a Scintag XDS2000 

powder diffractometer, configured with a graphite monochromator and IBM compatible 

workstation running Scintag DMSNT software in Windows NT environment with scan 

parameters of 5.0°/90.0°/0.02°/0.75(s).  

Zeta potential measurements were taken using a Malvern Zetasizer Nano ZS. The red 

mud samples were inserted via a syringe into a DTS1070 folded capillary cell before 

being placed in the zetasizer. Zeta potential measurements were taken over a pH range of 

7.5 to 13.2 which was dictated by how far the CO2 could neutralize the red mud pH.  
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3.4 Results and Discussion 

Neutralization of red mud with CO2 is possible due to the fact that CO2 is an acid gas. 

When the acid gas reacts with basic hydroxide anions the following reactions 3-2 and 3-3 

occur in the solution (Sahu, 2010). 

 𝐶𝐶𝑆𝑆2(𝑁𝑁𝑎𝑎) + 𝑆𝑆𝑂𝑂 (𝑁𝑁𝑎𝑎) ↔ 𝑂𝑂𝐶𝐶𝑆𝑆3(𝑁𝑁𝑎𝑎) (3-2) 

 

 𝑂𝑂𝐶𝐶𝑆𝑆3(𝑁𝑁𝑎𝑎) ↔  𝑂𝑂+(𝑁𝑁𝑎𝑎) +  𝐶𝐶𝑆𝑆3−2(𝑁𝑁𝑎𝑎) (3-3) 

   

The initial reaction forms bicarbonate ions which can then break down further to generate 

carbonate ions. This carbonation of the solution is what will lower the pH. As the pH 

lowers closer to 7, the following reactions 3-4, 3-5, and 3-6 also occur within the red mud 

slurry (Smith et al, 2003).  

 𝐴𝐴𝐴𝐴(𝑆𝑆𝑂𝑂)4−1(𝑁𝑁𝑎𝑎) ↔ 𝐴𝐴𝐴𝐴(𝑆𝑆𝑂𝑂)3(𝑠𝑠) + 𝑆𝑆𝑂𝑂−1(𝑁𝑁𝑎𝑎) (3-4) 

 

 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴(𝑆𝑆𝑂𝑂)4(𝑁𝑁𝑎𝑎) + 𝐶𝐶𝑆𝑆2(𝑁𝑁𝑎𝑎) ↔ 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴(𝑆𝑆𝑂𝑂)2𝐶𝐶𝑆𝑆3(𝑠𝑠) + 𝑂𝑂2𝑆𝑆(𝐴𝐴) (3-5) 

 

 𝐶𝐶𝑁𝑁3𝐴𝐴𝐴𝐴2(𝑆𝑆𝑂𝑂)12(𝑠𝑠) + 3𝐶𝐶𝑆𝑆2(𝑁𝑁𝑎𝑎)

↔ 3𝐶𝐶𝑁𝑁𝐶𝐶𝑆𝑆3(𝑠𝑠) + 2𝐴𝐴𝐴𝐴(𝑆𝑆𝑂𝑂)3(𝑠𝑠) + 3𝑂𝑂2𝑆𝑆(𝐴𝐴) 

(3-6) 

 

One of the most important alkaline compounds found in red mud that contribute to its 

high pH is that of tricalcium aluminate, 𝐶𝐶𝑁𝑁3𝐴𝐴𝐴𝐴2(𝑆𝑆𝑂𝑂)12 (TCA). This mineral reacts with 
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the carbon dioxide in equation five to create divalent carbonates like calcite. Other 

minerals play a role in the alkalinity of red mud as well. Going back to the Bayer process, 

a step occurs before caustic digestion called desilication. The purpose of this step is to not 

waste the caustic NaOH by only dissolving bauxite in digestion. Desilication transforms 

mineral clays that would dissolve and contaminate the liquor into insoluble phases at high 

pH (Archambo and Kawatra, 2020). The issue with red mud neutralization and 

desilication is that these minerals become unstable and dissolve as CO2 lowers the pH. 

This removes alkalinity from them in the form of OH anions, which is counterproductive 

to neutralization (Power et al, 2011). These minerals that are formed are a range of 

aluminosilicates such as sodalite and cancrinite (Power et al, 2011). 

The effect of introducing CO2 on the red mud sample can be seen in Figure 3-4. The 

initial pH begins at 13.2 and quickly descends within the first five minutes. After the 

initial pH drop from 13 to 10, the reaction appears to slow down and the majority of 

neutralization time goes to dropping the pH from 10 to 7.5. The steady state value for the 

pH is achieved after 30 minutes with a flow rate of 1 liter per minute.  
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Figure 3-4: Neutralization of red mud with CO2. Flow rate of 1 liter per minute for 1 

hour. 

The chemical phases of the neutralized red mud were determined using X-Ray 

Diffraction. This can be seen in Table 3-2. An increase in carbonates from 0.2% to 2.4% 

can be seen from the table, in the form of calcite. The carbonate anions that are formed in 

equation 2 (previously shown) then react with calcium to form calcite. In addition to 

providing a means to neutralizing red mud, divalent carbonates may provide a further use 

in downline processing of red mud. For smelting iron nuggets from red mud, the new 

fraction of carbonate can be used as a flux material in the process to help remove the slag 

from the iron phase with no additional cost (Archambo and Kawatra, 2020).  

Table 3-2: Chemical phase composition of CO2 neutralized red mud  

Chemical Component Weight 
Percent, % 

Hematite, Fe2O3 29.0 
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Goethite, FeOOH 19.0 

Gibbsite, AlO3 5.6 

Anatase, TiO2 5.0 

Rutile, TiO2 6.5 

Calcite, CaCO3 2.4 

Sodalite, Na4Al3(SiO4)3Cl 6.1 

Sodium Aluminum Silicate 
Hydrate, 1.08Na2O Al2O3 
1.68SiO2 1.8H2O 

26.5 

 

After the CO2 is turned off, the pH was continued to be monitored. Over time, it was 

noted the pH of neutralized red mud was not stable at its steady state value of 7.50. The 

rebound of the pH can be seen in Figure 3-5. 
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Figure 3-5: CO2 neutralized red mud pH rebound. Neutralization was done with a CO2 

flow rate of 1 liter per minute. The neutralization cycle lasted for 1 hour and then the gas 

was turned off. pH of the slurry was measured daily. 

 
From the figure, the pH of the slurry began to rise after the CO2 was shut off. The 

increase was largest during the first two days after the experiment. The pH eventually 

steadied out to near 10. Including the rebound of the pH, the experiment saw an overall 

pH drop from 12.8 to 10. This is a much better scenario for the disposal of red mud as it 

will have a lessened negative impact on surrounding settlements and wildlife. The lower 

pH material may also prove useful for further processing (Archambo and Kawatra, 2020). 

The cause of the pH rebound in red mud is not a simple problem, it is a complicated 

chemistry that even varies between samples of red mud. A summary of the reactions 

taking place is that of a buffering reaction between alkaline solids in the red mud 

(Venacio et al, 2013). Smith et al (2003), proposes that the liquor and the solids in red 
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mud behave differently. The neutralization of the liquor is fast and generates a solution of 

dissolved bicarbonate, while the solids neutralize much slower due to the presence of the 

highly alkaline solids such as TCA. If the store of carbonate in the liquor is large enough 

to neutralize all of the alkaline solids over time, then the pH will rise to 9.5 – 10, a typical 

pH for carbonate and bicarbonates to buffer at (Smith et al, 2003). If the bicarbonate in 

the solution is not enough to neutralize the solids, the pH will return to a pH likely close 

to its original value as the reversible reactions with the alkaline solids will be pushed 

back (Smith et al, 2003). Another theory is that the large surface area of red mud 

contributes to the pH rebound. During the typically short neutralization times with CO2, 

the alkaline solids are not given the proper amount of time to react, resulting in the 

rebound of pH (Rai et al, 2013).  

To determine what the long-term final effects of the rebound would be on red mud pH, a 

sample was left alone for 24 weeks or 6 months to determine the final pH that can be 

expected of neutralized red mud. The rebound effect after 6 months can be seen in Figure 

3-6. From the figure, it can be seen that the pH is stable near 10. Based on the previous 

figure of pH rebound, it can be concluded the rebound of the pH occurs within the first 

two weeks of neutralization, after that amount of time the rise in pH due to the rebound 

becomes insignificant.  
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Figure 3-6: Long term effect of pH rebound on the neutralization of red mud with CO2. 

Recorded red mud pH up to 24 weeks after initial neutralization at a flow rate of 1 liter 

per minute. 

3.4.1 Effect of CO2 Flow Rate on pH neutralization 

The effect of flow rate on the overall neutralization of the red mud can be seen in Figure 

3-7. The pH of the red mud was recorded over the period of 1 hour for each flow rate. All 

flow rates are able to lower the pH to the same level near 7.50 within a 1-hour time 

frame. 0.5 liters per minute took the largest amount of time to neutralize, stabilizing after 

45 minutes. The 1 liter per minute flow rate was able to neutralize more quickly at around 

30 minutes. The flow rate of 5 liters per minute was able to neutralize the red mud the 

most quickly, only taking about 10 minutes to reach its steady state pH value.  
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Figure 3-7: Red mud neutralization with CO2 with flow rates of 0.5, 1, and 5 liters per 

minute 

Table 3-3 shows the amount of CO2 required for each flow rate to neutralize a red mud 

sample at standard temperature and pressure while the red mud container is open to the 

atmosphere. From the table, the flow rate trends linearly with the amount of CO2 required 

to neutralize the red mud. On a basis of tons of red mud, up to 144.1 kilograms of CO2 

would be required to neutralize at the highest flow rate. At the lowest flow rate, only 64.9 

kilograms of CO2 would be required. 

Due to the neutralizing experiments being open to atmosphere, the true value for the CO2 

sequestered in the red mud is lower than the one given in the table for each flow rate. 

CO2 can escape the container and be released into the atmosphere. This table simply 

shows how much CO2 would be required to neutralize a sample with this setup on this 

scale. Based on this logic, the lowest flow rate of CO2 is most efficient at utilizing and 
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sequestering CO2. If CO2 sequestration is the more important goal, then a lower flow rate 

should be used to sequester more of the CO2 as the cost of longer neutralization times. If 

the fast neutralization of red mud is the priority, then the highest flow rate should be used 

to lower the pH very quickly at the cost of wasting carbon dioxide in the environment. 

The optimum flow rate then, with both goals in mind would be the intermediate flow rate. 

This will neutralize the red mud quickly while also sequestering the CO2 with a moderate 

efficiency. 

Table 3-3: Amount of CO2 required in red mud neutralization with varying flow rates 

Flow Rate 
(LPM) 

Total Weight CO2 (g) Kg CO2 per Ton Red 
Mud 

0.5 41.2 64.9 

1 54.9 86.5 

5 91.5 144.1 
 

The pH was also recorded after the neutralization for the different flow rates to determine 

if higher or lower rates had an impact on the pH rebound of red mud. The pH rebound for 

the CO2 flow rates of 0.5 and 5 liters per minute can be seen in Figure 3-8. The flow rate 

of 0.5 LPM rebounded more quickly during the first day than the 5 LPM. After 2 days, 

both flow rates behaved very similarly until the final measurement at 14 days. The final 

pH of the 0.5 and 5 LPM samples was 9.94 and 9.85 respectively. The higher flow rate of 

CO2 was able to slow the rebound initially but ultimately the pH becomes very similar. 

The likely cause of this similarity is that with enough CO2 to complete the forward 

reaction to carbonate, the pH becomes buffered at values typical to carbonate solutions 
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(Smith et al, 2003). Then, as long as the neutralization time is long enough for any flow 

rate, the pH will find its end point near 10, similar to what is seen in Figure 5. 

 

Figure 3-8: pH rebound of CO2 neutralized red mud at varied flow rates. pH was 
recorded daily after neutralization for 14 days.  

3.4.2 Effect of Neutralization time on red mud pH 

 
According to work done by Rai et al (2013), the rebound in pH can be attributed to the 

small particle size and subsequent large surface area of red mud. The surface area of red 

mud can be ranged from 13-16 m2/g (Paramguru et al, 2004). This would indicate that 

the CO2 does not have enough time to react with all of the red mud particles in short 

amount of neutralization. Previous studies have not investigated the effect of longer 

exposure of red mud to CO2. Smith et al (2003), also notes that incomplete neutralization 

of solids materials in red mud slurries is the cause of pH rebound.  
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This experiment exposes the red mud to a much longer neutralization cycle of six hours 

with a constant flow rate of 1 liter per minute in order to determine if the large surface 

area of red mud is contributing the pH rebound. After the six-hour neutralization, the pH 

was recorded for 14 days. The rebound of pH for the six-hour neutralization cycle can be 

seen in Figure 3-9. From the figure, the red mud behaves similarly to other experiments 

in terms of its pH rebound. The pH rise is fastest within the first two days after 

neutralization. The final pH recorded after 14 days was 9.75, which is lower than 10.04, 

the value of pH for 1 hour of neutralization. The effect of neutralization time on the final 

pH of red mud shows that the pH can be slightly lowered but not by a large amount. The 

amount of CO2 required to reduce the pH rebound is likely not efficient enough to have 

this as the most optimal condition.  

 

Figure 3-9: Red mud pH after being neutralized with CO2 for 6 hours. Flow rate of CO2 

was held constant at 1 LPM. pH was recorded daily for 14 days. 
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3.4.3 Effect of CO2 neutralization on red mud zeta potential 

Red mud exhibits typical surface properties of a dispersed slurry, which implies a low 

settling rate of solids for dewatering (Alam et al, 2018). In order to enhance the 

dewatering of red mud, current practices employ the addition of flocculants. These 

chemicals act as a glue and bridge small particles together to create larger conglomerate 

particles. These larger diameter particles then settle more quickly. Typical reagents used 

in red mud flocculation are anionic polyacrylamides, polyacrylates, and corn starch 

(Sankey and Schwarz, 1982).  

The effect that carbon dioxide has on the surface properties of red mud may have 

interesting implications for processing technologies of the waste. Manipulation of the 

effective surface charge of red mud may be able to dissipate the dispersion properties of 

caustic red mud. The zeta potential of red mud is one way to measure the effective 

surface charge of particles in a slurry by measuring the electric potential at the shear 

plane of a particle (Carlson and Kawatra, 2013). The surface charge density of particles 

can be broken down into different layers to understand what the zeta potential is 

measuring. When a particle is moved, the area where the bulk fluid leaves and the fluid 

near the particle stays in place is called the shear plane, this is where the electric potential 

is measured as the zeta potential (Carlson and Kawatra, 2013). This can be seen in Figure 

3-10.  
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Figure 3-10: Visual explanation of the electric double layer. The zeta potential is the 

electric potential measured at the shear plane. 

Experimental work that was conducted by Rao and Reddy (2017), shows that when red 

mud is neutralized with acid there is a significant change in the zeta potential of the 

material. The implication of this study is that when red mud is neutralized, the zeta 

potential may favor more flocculating conditions which can improve dewatering. Using 

carbon dioxide as the acidic material to neutralize red mud may show similar results.  

The zeta potential was plotted against pH of CO2 neutralized red mud in Figure 3-11. In 

its initial state at a pH above 13, the red mud has a high negative value for zeta potential 

which indicates that it is in a dispersing condition. In the dispersed slurry, all of the 

particles have a like charge which causes electrostatic repulsion and prevents 

agglomeration for settling. From the figure, as the pH drops the zeta potential approaches 

zero. Close to the zero point of the figure is where flocculating conditions occur. Zeta 
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potentials near zero, along with cohesive and adhesive forces imbalances, and van der 

waals forces are factors that impact agglomeration of particles and improve settling 

times. 

 

Figure 3-11: Zeta potential vs pH of red mud before and after neutralization with CO2. 

 

After pH neutralization, the pH of red mud rises again due to the complex internal 

chemistry of the slurry (Smith et al, 2003). The zeta potentials measured at the rebound 

of the red mud neutralization were a large negative number, but not quite as severe as the 

initial values of red mud. It would be advisable then to dewater red mud quickly after 

neutralization in order to achieve the most efficient performance.  
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3.5 Conclusions 

Use of CO2 with caustic red mud provides a simple method to neutralize the high slurry 

pH. Initially, the pH can be reduced to 7.5. Experiments show that variation in flow rate 

of CO2 can decrease the time needed to neutralize red mud. The pH rebounds after each 

neutralization cycle to near 10. Longer exposure times of CO2 to the red mud samples did 

not significantly reduce or slow the rebound of red mud. The more likely cause of pH 

rebound is that alkalinity is converted into carbonates which then buffer the slurry back to 

typical carbonate pH. Despite the pH rebound, the overall reduction of red mud pH is 

more than 3 points on the pH scale, which makes neutral red mud a much safer material 

to handle.  

The alkalinity of red is reduced and calcium carbonate is generated. Calcium carbonate 

was generated in red mud at a weight percent of 2.5%. This lower alkalinity red mud can 

be used further to remove iron. The carbonates that are generated during neutralization 

can be effective reagents in downline processing of red mud to remove valuable minerals 

like iron. The carbonates can act as a fluxing agent to remove slags from the iron phase in 

smelting.  

Zeta potential measurements approach zero for neutralized red mud. This indicates that 

dewatering may be more effective when red mud is reduced to a neutral pH range. The 

neutralized red mud, with reduced alkalinity, poses a smaller threat to the environment. 

Carbon dioxide is affectively sequestered in red mud, reducing the emissions of 

greenhouse gases into the atmosphere.  



104 

4 Utilization of Bauxite Residue: Recovering Iron Values 
Using the Iron Nugget Process2 

4.1 Abstract 

Red mud waste from aluminum processing was utilized as a material for extraction of 

iron. Red mud contains a high amount of iron, comparable to feedstock to North 

American iron mines, and extracting this iron value is paramount. The iron nugget 

process can extract iron from the iron minerals in red mud. The nugget process is a one-

step alternative to the blast furnace which simultaneously reduces and separates metallic 

iron from the red mud. A mixture of powdered hard wood and soft wood was used as the 

reducing agent. Resulting iron nuggets have an iron grade that is comparable to blast 

furnace pig iron. 

4.2 Introduction 

Bauxite residue (red mud) is an aluminum processing waste that contains valuable 

minerals and can be exploited as a feedstock. Red mud is an environmental problem for 

industry due to its high pH, small particle size, and high disposal costs. Bauxite Residue, 

more commonly referred to as red mud is a potential source of valuable minerals such as 

iron, aluminum, titanium, and rare earth metals. In this paper, the term red mud will be 

used. Worldwide, more than 4 billion tons of bauxite residue has been produced over the 

                                                 
2 The material contained in within this chapter has been published in the journal “Mineral Processing and 
Extractive Metallurgy Review.” 
Citation: 
Archambo M and Kawatra S.K. (2020): Utilization of Bauxite Residue: Recovering Iron Values Using the 
Iron Nugget Process. Mineral Processing and Extractive Metallurgy Review. DOI: 
10.1080/08827508.2020.1720982 



105 

course of 120 years. This accumulated waste continues to increase by a rate of around 

120 million tonnes per year (Power, 2011). These wastes are difficult and costly to 

dispose of for aluminum producing companies. Red mud is a slurry of very fine particles, 

making drying and disposal a difficult task. The complication is the caustic nature of the 

red mud; most red mud wastes have a pH in the range of 11 to 13.  

The Bayer Process treats bauxite ore to produces alumina. Red mud is a byproduct 

created as a result of the process. Following the digestion of bauxite in sodium hydroxide 

(NaOH), the green liquor containing dissolved aluminates is removed so that it can be 

further processed. The remaining solids are dosed with flocculants in a series of thickener 

tanks in order to increase the solids content before discharge to the red mud containment 

reservoirs. Red mud disposal is not a negligible part of the process for alumina 

production, removal of red mud accounts for 30 – 50% of operations in any given 

alumina facility (Paramguru, 2004). Studies have been done to optimize the Bayer 

process using a technique called mechanical activation which increases reactivity of 

aluminum oxide particles through milling by increasing surface area. Increasing 

reactivity could reduce the large amount of caustic needed in the Bayer process, but this 

work has only been done at the laboratory scale (Alex, 2016).  

Removing the environmental hazard of red mud is beneficial for those who work with the 

material and those who live near the reservoirs. Red mud storage reservoirs can collapse 

and cause serious damage to the surrounding area. In 2010, a red mud dam collapsed in 

Ajka, Hungary and spilled 700,000 cubic meters of red mud into the town. This tragedy 
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killed 10 people and many others were treated for chemical burns for being in contact 

with the hazardous material (Ruyters, 2011).  

Bulk utilization of red mud has been expanded into many different research areas. Most 

prominently, red mud can be used as a component to make cement, with various mixtures 

including lime, bauxite, and gypsum (Liu, 2011). Mixing red mud with other components 

prove to be a promising gateway towards making stronger construction materials. Mixing 

red mud with lime increases the mixtures compressive strength due to pozzolanic 

reactions with calcium ions and available silica in the red mud (Sujeet, 2019). One 

method for the construction industry is to create insulating bricks from red mud by 

mixing with sawdust to improve porosity for thermal conductivity (Mandal, 2017), 

(Singh, 2014). Synthesis of geopolymers with red mud has been researched for practical 

applications such as pH regulation for wastewater treatment and bioreactors (Novais, 

2018). For polluted soils containing high amounts of heavy elements such as Pb, Cu, Zn 

etc., red mud has been successful in tests as a material that can remove available heavy 

metals from soil (Zhou, 2017). One approach to removing this hazard is the neutralization 

of red mud using CO2 as an acid gas. This technology actually achieves multiple goals at 

once (Power, 2011). 

1. It reduces the hazard of red mud and makes it a more valuable feedstock.  

2. It provides a sink for carbon emissions to reduce greenhouse gases.  

3. Improve the quality of used process water  

4. Reduce the risk of groundwater contamination  
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Red mud has a chemical composition that varies widely and very often contains valuable 

minerals. These mineral compositions change because the ore bodies at each location are 

different. Table 4-1 shows red mud compositions throughout the world. As can be seen, 

the mineral composition varies significantly from location to location, but in general the 

values range for each mineral are as follows: Fe2O3, 20 – 60%; Al2O3, 10-30%; SiO2, 2-

20%, Na2O, 2-10%; CaO, 2-8%, TiO2, trace-28% (Paramguru, 2004). For these ore 

bodies, hematite and goethite are the main chemical components. These are both iron 

bearing minerals, which will add value to the red mud if a utilization process is 

developed. 

 

Table 4-1: Red mud compositions from various plants and laboratories around the world. 

Elemental compositions determined by XRF. Redrawn from (Grafe, 2011) and (Sutar, 

2014) 

Bauxite 
Origin  

Refinery 𝐴𝐴𝐴𝐴2𝑆𝑆3% 
By Wt 

𝐹𝐹𝐹𝐹2𝑆𝑆3% 
By Wt 

𝑆𝑆𝑆𝑆𝑆𝑆2% 
By Wt 

𝑇𝑇𝑆𝑆𝑆𝑆2% 
By Wt 

CaO% 
By Wt 

𝑁𝑁𝑁𝑁2𝑆𝑆% 
By Wt 

USA RMC 18.4 35.5 8.5 6.31 7.73 6.1 

Canada ALCAN 20.61 31.60 8.89 6.23 1.66 10.26 

China Chalco 18.36 6.81 14.49 10.45 25.22 5.53 

Southern 
Brazil 

Laboratory  6.8 71.9 1.35 7.8 3.2 0.4 

Jamaica Laboratory 2.34 62.1 1.3 12.9 15.9 0.8 

India Damanjodi 14.8 54.8 6.4 3.7 2.5 4.8 

India Korba 19.4 27.9 7.3 16.4 11.8 3.3 
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Greece Alumina 
De Greece 

15.6 42.5 9.2 5.9 19.7 2.4 

Extracting value of red mud is critical to reducing the amount of waste produced. Red 

mud could serve as an iron feedstock comparable to the iron ore feed stocks for 

Midwestern mining facilities. Determining how to economically extract this iron value is 

key to eliminating a large fraction of this mineral waste. Utilized red mud will not need to 

be stored in large impoundments for decades while it dries out and a new source of iron 

for steelmaking would be available. Work has been done to utilize red mud as a 

construction material by a process called geopolymerization; the red mud can be made 

into building material like bricks through this process to minimize waste of aluminum 

processing further (Dimas, 2009).  

The primary method for making steel has always been the blast furnace. This method 

uses iron ore pellets, coke, and flux to make metallic pig iron. This process has its 

drawbacks and limitations (Zervas, 1996): 

1. The metallurgical coke required as a reducing agent for iron reduction is 

becoming more difficult to obtain due to environmental restrictions.  

2. Efficiency of the blast furnace can only be achieved at the large scale, so 

small-scale blast furnace operations are not possible. This makes any change 

in supply of iron ore feed and demand for steel produced to be a detriment to 

the economics of the process. 

To effectively compete with the blast furnace, a process would have to be one which can 

operate on a small scale and effectively handle iron feed stocks with widely varying 
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grades. A large flaw that the blast furnace has is that it can only be done economically on 

a very large scale, so any alternative that can operate on a small scale is favorable. The 

direct reduction process can effectively reduce iron ore, but the sponge iron that is 

created still contains a large amount of impurities that must be separated for steel 

production. Recovery of iron via the direct reduction pathway has been investigated. 

Reduction roasting of red mud mixed with coal, followed by magnetic separation was 

able to generate an iron concentrate of 65.93% iron with 61.85% recovery (Sandangi, 

2018).  

The process that can achieve these goals, both reduction and separation, is the iron nugget 

process (Anameric, 2006). The nugget process works in a single step to reduce iron 

oxides to metallic iron and separate them from the gangue minerals at furnace 

temperatures at 1425℃. A reducing agent containing carbon is mixed into a pellet with 

iron ore and it is heated to high temperatures. Iron oxides are converted to metallic iron- 

and as the iron melts it separates from the slag layer (Anameric, 2006). Iron nuggets have 

been studied using iron ores such as magnetite or hematite as a feed stock. Investigations 

on the compositions of the slag formed during the process say that in order for a good 

separation, the gangue material must have a low liquidus temperature to separate from the 

iron. This can be done with the help of flux and binder additions (Mourao, 2010). A 

continuous process was developed for production of pig iron from iron ore using 

microwaves at 2.45 GHz (Hara, 2011). Mixed carbon pellets have also been formed with 

aluminum oxide, the product of the Bayer process to form metallic aluminum using 

vacuum reduction; the energy required to reduce aluminum in this way currently is far 
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greater than that of the current method of aluminum production, the Hall-Heroult process 

(Halmann, 2014). 

The iron nugget process can handle very low-grade ores with little to no beneficiation, 

impurities are all removed in a single step.  The iron nugget process is therefore ideal for 

handling red mud, which is essentially impossible to process via the blast furnace route to 

its disagreeable characteristics. The fine particle size prevents effective filtration or 

density separations in any reasonable or economical amount of time (Power, 2011). Due 

to the presence of chemical additives such as surfactants to aid in the thickening of red 

mud, surface separations in mineral processing such as selective flocculation or flotation 

are also ineffective (Power, 2011). Pig iron has been recovered from red mud using 

different furnace and heating technologies. Pig iron has been formed from red mud using 

thermal plasma heating with graphite as the reducing material in the pellet; this resulted 

in a maximum iron recovery of 71% (Jayasankar, 2011). Iron nuggets were also formed 

from red mud by Guo (2013), which yielded iron nuggets with 96.52% iron from an ore 

containing 63.20% hematite. Carbon graphite was used as the reducing material. A much 

cheaper source of carbon that can be used from production of nuggets from red mud is 

powdered wood. Powdered wood has seen little research done in its ability to act as a 

reducing agent for iron. This research investigates the effectiveness of the iron nugget 

process on red mud using powdered wood as the reductant, which has not yet been 

studied. Overall, there has been very little initiative to extract iron from bauxite tailings at 

all. The novelty of this process both gives value to a waste product while also removing 

red mud as an environmental and safety hazard. 
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4.3 Experimental  

4.3.1 Materials 

At Michigan Technological University, a sample of red mud was obtained for the 

valorization project. This sample ore was mined in Jamaica and processed in an alumina 

facility in Louisiana. The ore was sampled at a low solids content of about 50% percent 

solids.  

Particle size analysis was completed with a laboratory MicroTrac SRA 9200 laser 

diffraction. Figure 4-1 shows the results for the particle size distribution. The sample had 

a D80 of 10 µm. This is a typical result for size of red mud. 

 

Figure 4-1: Particle size distribution of the Jamaican red mud sample 

Elemental compositions were found using X-Ray Fluorescence as shown in Table 4-2. 

From the table, iron, aluminum, and silicon are the most prevalent elements with the rest 

being minor contributors. This technique is unable to detect elements lighter than sodium, 
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so any of these elements are absent from the analysis. Many of the elements shown from 

XRF are actually in oxidized forms but the device will not detect oxygen. From the XRF 

data, the mineral phases can be more easily identified using another technique, X-Ray 

Diffraction. 

Table 4-2: XRF elemental compositions of Jamaican red mud 

Element Weight % 

Fe 50.97 

Al 15.253 

Si 10.258 

Na 7.611 

Ag 7.621 

Ti 4.303 

Ca 1.583 

Si 0.156 

Cr 0.013 

Zr 0.035 

The mineral composition of the red mud samples was determined using X-ray diffraction 

(XRD). The compositions were found using a Scintag XDS 2000 powder diffractometer. 

Figure 4-2 shows the raw diffraction data. From the phase composition breakdown in 

Table 4-3, it can be seen that the two most common components are both iron bearing 

minerals, hematite and goethite. Residual aluminum and silicates are also present in the 

sample; as multiple different complex mineral phases. 
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Figure 4-2: Raw X-Ray diffraction pattern for the bauxite residue sample (major 

components labeled) 

 

Table 4-3: Phase composition of red mud by weight percent 

Component Chemical Formula Weight Percent 

Hematite 𝐹𝐹𝐹𝐹2𝑆𝑆3 14.0 

Sodium 
Aluminum 
Silicate Hydrate  

1.08Na2O-Al2O3-
1.68SiO2-1.8H2O 

17.3 

Goethite Fe𝑆𝑆(𝑆𝑆𝑂𝑂) 6.8 

Gibbsite Al2𝑆𝑆3·3H2O 11.5 

Chromium Iron 
Oxide 

CrFeO3 10.1 
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Anatase  TiO2 2.1 

Sodalite 𝑁𝑁𝑁𝑁4𝐶𝐶𝐴𝐴(𝐴𝐴𝐴𝐴3𝑆𝑆𝑆𝑆3𝑆𝑆12) 11.6 

Perovskite CaTiO3 4.9 

Iron Zirconium ZrFe2 0.1 

Silver Aluminum 
Silicate 

Ag61.1Al69.8Si122.2O384 0.2 

Ca8.5NaAl6O18 Ca8.5NaAl6O18 21.5 

Total  100 

In literature, it has been noted that rare earth elements are often contained in high 

concentrations in red mud residue (Borra, 2015). The presence of rare earths should be 

investigated in bauxite because most of the REEs are discharged from the Bayer Process 

in the red mud. Akcil et al described a process that could be used to concentrate rare earth 

elements in red muds with a high REE concentration. Using ICP-AES (Inductively 

Coupled Plasma Atomic Emission Spectroscopy) the presence of rare earth elements 

including scandium was shown to be negligible for this sample of red mud. Table 4-4 

shows the results for concentration of rare earth elements in the red mud sample. In this 

particular red mud sample, however, rare earths were found to be negligible, and were 

not investigated further. 
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Table 4-4: Concentration of rare earth elements (REE) including Sc in the Jamaican red 

mud sample 

Rare Earth Element Concentration (ppm) 

Lanthanum (La) 0.02 

Cerium (Ce) 0.02 

Neodymium (Nd) 0.02 

Scandium (Sc) 0.01 

Praseodymium (Pr) < 0.01 

Previous work (Anameric, 2006) with the iron nugget project showed that metallic iron 

could be produced using iron ore feed stock pellets with a coal reducing agent. In this 

study, the iron ore feed stock was substituted with the iron bearing red mud. This 

research also utilizes a different reducing agent, a powdered hard and soft wood mixture. 

The carbon content of the powdered wood sample was determined in triplicate using a 

Costech 4010 Elemental Analyzer to be 50.16 ±0.11% Carbon. Moisture content of the 

powdered wood sample was measured to be 6.83%. 

4.3.2 Methods 

4.3.2.1 Sample Preparation 

A sample of red mud was dried in a drying oven at 105 ℃ to remove all moisture so that 

it could be pelletized. A process flow diagram for the nugget furnace experiments is show 

in Figure 4-3. The following samples were added together and mixed in a mixing bowl at 

the following total weight percentages: 
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Powdered wood with moisture: 10% by weight  

Dry Red Mud: 81.84% by weight 

Dolomite: 7.5 % by weight 

Bentonite Clay: 0.66% by weight 

The red mud and wood were mixed with 7.5% dolomite flux to help encourage slag 

separation and with 0.66% bentonite for stronger pellet strength. The mixed material was 

then fed into a pelletizing drum where pellets formed to a diameter of 3 mesh and were 

then screened and dried in a drying oven. The dry pellets were placed into crucibles, 

placed into a Micropyretics MXI high temperature box furnace preheated to 1475 ℃. The 

temperature was kept constant for all experiments due to the limitations of the furnace 

available in the laboratory. Pellets were placed into the furnace for varying residence 

times and removed to cool quickly on a bed of sand. Determining the heating rate of the 

pellet sample is valuable but due to the limitations of the experimental setup, it is not 

present in this paper. A thermal couple could not be safely placed into the furnace while 

the crucible was placed so the heating gradient of the pellets themselves could not be 

determined. 
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Figure 4-3: Process flow diagram for the red mud iron nugget experiments 

4.3.2.2 Iron Content Analysis 

Iron content of each sample was determined using ultraviolet spectroscopy. Iron nuggets 

and slags were digested in 20 mL of concentrated 12M hydrochloric acid (HCl) and 

diluted in distilled water. The iron nuggets were diluted to 1000 mL and the slags were 

diluted to 100 mL. 0.1 mL of that solution was transferred to a 50 mL volumetric flask 

and diluted again with distilled water. Hydroxylamine hydrochloride was added in excess 

to reduce all iron ions from the +3 to the +2 state. Ammonium acetate was added as a pH 

buffer and 1-10 phenanthroline as an indicator. The absorbance of the solution was 

measured using UV-VIS spectroscopy, set at a single wavelength of 510 nm. Iron content 

can be calculated by the relationship of light absorbance to concentration (Day, 1991). 
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4.4 Results and Discussion 

Red mud pellets placed into a preheated 1475 ℃ begin to react with the mixed carbon 

source immediately after being placed in the pre-heated furnace. The powdered wood 

decomposes and form gases that will react with iron oxides. The reactions for the thermal 

decomposition of the reducing material is as follows from Equations 4-1 through 4-6 

(Anameric, 2006): 

 𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝐹𝐹 → 𝐶𝐶𝑆𝑆,𝐶𝐶𝑆𝑆2,𝑂𝑂2,𝑁𝑁2,𝐶𝐶𝑛𝑛𝑂𝑂𝑚𝑚,𝐶𝐶 (4-1) 

 𝐶𝐶 + 𝑆𝑆2 ↔ 𝐶𝐶𝑆𝑆2 (4-2) 

 𝐶𝐶𝑆𝑆2 + 𝐶𝐶 ↔ 2𝐶𝐶𝑆𝑆 (4-3) 

 𝐶𝐶 +
1
2
𝑆𝑆2 ↔ 𝐶𝐶𝑆𝑆 (4-4) 

 𝐶𝐶𝑂𝑂4 + 𝐶𝐶𝑆𝑆2 ↔ 2𝐶𝐶𝑆𝑆 + 2𝑂𝑂2 (4-5) 

 𝐶𝐶 +  𝑂𝑂2𝑆𝑆 ↔ 𝐶𝐶𝑆𝑆 + 𝑂𝑂2 (4-6) 

The mechanism that reduces iron oxides is complex and occurs in multiple steps. The 

reduction of hematite to metallic iron can be thought of as a multistep reaction or several 

single step reactions. Hematite reduces to magnetite, then magnetite to wustite, and 

wustite to iron. The reduction of hematite to magnetite is the fastest; the reduction 

reactions occur as follows (Chen, 2017). As a form of direct reduction of iron, iron oxides 

in the presence of an excess of reducing substance can reduce at low temperatures 

relative to blast furnace operation. Direct reduction of iron oxides begins to occur at 

temperatures above 900 ℃ (Fruehan, 1998). In the pellet, the close contact of iron oxides 

to the reactive sites of the reducing agent improves the utilization of the reductant in the 

pellets by increasing the rate of reactions (Anameric, 2006).  
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At furnace temperatures exceeding 1200 ℃, the slag in the pellet’s melts. Important slag 

forming reactions are shown below with Equations 4-11 through 4-15 (Anameric, 2006). 

After the reduction reactions occur, the liquidus temperature of the metal decreases due to 

carburization of the metal as shown in equation 4-15. This allows the slag separation to 

be achieved by forming two immiscible liquid phases. Density and surface tension effects 

are the driving forces in this separation (Anameric, 2006). 

 𝐶𝐶𝑁𝑁𝐶𝐶𝑆𝑆3 ↔ 𝐶𝐶𝑁𝑁𝑆𝑆 + 𝐶𝐶𝑆𝑆2 (4-11) 

 𝐶𝐶𝑁𝑁𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑆𝑆2 ↔  𝐶𝐶𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆3  (4-12) 

 𝐹𝐹𝐹𝐹𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆2 ↔ 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆3 (4-13) 

 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆3 + 𝐶𝐶𝑁𝑁𝑆𝑆 ↔ 𝐶𝐶𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆3 + 𝐹𝐹𝐹𝐹𝑆𝑆 (4-14) 

 3𝐹𝐹𝐹𝐹 + 𝐶𝐶 ↔  𝐹𝐹𝐹𝐹3𝐶𝐶 (4-15) 

A total mass balance for this process is shown with Equation 4-16. F, C, T, and G 

represents the feed, concentrate, tailings, and gases respectively. An iron balance is 

represented in Equation 4-17 where lower-case letters signify weight percent. 

 F = C + T + G (4-16) 

 Ff = Cc +Tt (4-17) 

Iron nuggets generated from this method fall into three categories, which are dependent 

on residence time (Anameric, 2006): 

1) Direct reduced iron: Single solid product with no slag separation 

2) Transition direct reduced iron: liquid and solid-state products with partial slag 

separation 

3) Pig iron nuggets: liquid state products with complete slag separation.  
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4.4.1 Residence Time Variation  

Iron nuggets were produced from dry red mud/powdered wood pellets in the laboratory at 

Michigan Tech at varying residence times. Red mud pellets were placed fired in the 

furnace at 1475 ℃ for 30, 45, 60, 90 and 120 minutes. Table 4-5 shows the elemental 

composition of the iron nuggets that were formed. They contain the majority of iron 

which is similar to pig iron with a high carbon content relative to blast furnace pig iron 

which typically contains 3 to 4.5% (McGannon, 1971). Small amounts of aluminum 

appear in the nugget due to red mud being rich in aluminum minerals left over from the 

bauxite. Figure 4-4 shows the resulting iron nugget and slag bodies that formed during 

the firing process. The iron recovery of the pellets at each of these conditions is recorded 

in Table 4-6 and Figure 4-5. All remaining iron that is not captured in the iron nugget is 

contained in the slag body as partially reduced iron oxides. 

 

Figure 4-4: Photographs of iron nugget process using red mud. Products were fired at a 

furnace temperature of 1475 ℃ with a 120-minute residence time. A) Iron nugget B) 

Fusible slag  
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Table 4-5: X-Ray Fluorescence (XRF) of red mud iron nuggets chemical composition.   

 

Table 4-6: Red mud iron nugget iron recovery. Fired in a furnace heated to 1475 ℃. 

Furnace 
Conditions  

Residence 
Time 

30 
Minute  

Residence 
Time  

45 
Minute  

Residence 
Time 

60 
Minute  

Residence 
Time 

90 
Minute  

Residence 
Time 

120 
Minute  

Iron 
Recovery 
% 

55.48% 59.43% 69.93% 70.02% 76.14% 

 

Figure 4-5: Weight recovery of iron from the red mud using the iron nugget process for 

varying residence times. Error bars represent 95% confidence intervals. 
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For low residence times under 30 minutes, slag separation was unable to occur. This is 

due to the iron and the slag not both being completely in the liquid phase, the separation 

occurs because of density differences between the two fluids. The overall reduction of 

hematite to metallic iron occurs more quickly than the slag separation. Tanako (1996) 

showed the reduction time for their self-reducing pellets at temperatures near 1000 ℃ 

were reduced completely after 20 minutes. If one or both are not fluids, then the 

separation will be incomplete. Residence times above 30 minutes showed an iron 

separation. With more time to melt and separate, the reduced and melted iron is allowed 

to sick to the bottom of the crucible. Lower iron content at lower residence times can be 

attributed to entrainment of slags in the iron nugget body that have not been able to 

properly separate.  

The iron nuggets produced via the nugget process have an iron content higher than 90%. 

Most tests showed comparable results with blast furnace pig iron in regards to iron 

content. Generally, when pig iron is produced it has a purity of over 90% iron (Fruehan, 

1998). Nugget process iron is similar to blast furnace iron in terms of carbonation as well, 

with high amount of carbon appearing in the nugget. For all residence times, iron content 

exceeded 90%. With increasing residence time, the grade of the iron nuggets increases.  

Overall recovery of iron in the nugget process was also studied, as shown in Table 4 for 

varying furnace residence times. Recovery varies from 55 to 80%, but in general as 

residence time increases the recovery of iron increases.  
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4.4.2 Carbon Content Variation 

The amount of reducing material in the feed pellets is an important parameter to consider 

in the nugget process for red mud. Powdered wood contains much less total weight 

percent carbon than coal and coke which is also used in self reducing pellets. The sample 

of powdered hard/soft wood mixture contained 50.16% carbon. Experiments were carried 

out by changing the weight percent of the wood in the pellets from 1, 5, 10, 20, and 30%. 

Other parameters were held constant such as residence time, temperature, and flux 

content at 30 minutes, 1475 ℃, and 7.5% respectively. From Figure 4-6, the iron 

recovery increases with increasing wood content. With low amounts of reducing material, 

the surface area of contact between the hematite and the wood is small which causes less 

of the iron to be reduced and recovered in the nugget. In contrast, when the reducing 

content is high the hematite has a large amount of surface contact with the reducing 

material which causes a more complete reduction and improved recovery in the iron 

nugget. The effect of powdered wood percent change is most significant for the lower 

portion of the graph, where to slope of the change is much higher. From 10 to 30%, the 

increase in recovery appears linear with a smaller slope. At the point where the slope 

changes in this graph would be the optimum point for nugget production, which occurs at 

10% powdered wood. 
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Figure 4-6: Iron recovery from the nugget process with changing powdered wood 

content by total weight percent. Error bars represent 95% confidence intervals. 

4.4.3 Flux Content Variation 

In the nugget process, the separation is completed between the liquid phases of iron and 

slag mainly on differences in density and viscosity. Flux additions to the slag decrease 

the liquidus temperature at which all of the slag becomes a liquid an in turn decreases the 

viscosity (Mourao, 2010). Optimizing the addition of flux for each ore body is necessary 

in order to maximize iron recovery.  

Experiments altered the amount of dolomite flux in the feed pellets by total weight 

percent. 0, 1, 2.5, 5, 7.5, and 10 total weight percent were fired in the furnace and 

recovery was calculated. Residence time, temperature, and reducing content were held 

constant at 30 minutes, 1475 ℃, and 10% respectively. Figure 4-7 shows the result of 
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these experiments. At 0% flux content, no iron nuggets were formed. This is caused by 

materials that have not melted inside the red mud pellet. The liquidus temperature is too 

high for the slag and no separation can occur.  

High amounts of flux over 7.5% saw a steep decrease in iron recovery, this could be due 

to the composition of the slag becoming too saturated with Mg and Ca. The liquidus 

temperature of the slag begins to rise again at this point of flux addition and separation 

from the iron becomes more difficult (Mourao, 2010). The optimal range for flux in the 

red mud case was from 2.5 to 7.5%. The highest iron recovery was found at 2.5% flux at 

80.9% iron recovery. 

 

Figure 4-7: Iron recovery from the nugget process with changing dolomite flux by total 

weight percent. Error bars represent 95% confidence intervals. 
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4.4.4 Slag Analysis 

The slag obtained from the box furnace after physically separation from the iron nugget 

body was analyzed by x-ray fluorescence and x-ray diffraction. Table 4-7 displays the 

elemental analysis of the nugget slag. Iron is still present in the sample but is much lower 

in the case of the slag. The same spread of elements that were present in the red mud feed 

material are present in the slag with the addition of Mg and Ca that were added with the 

dolomite flux. Table 4-8 shows the chemical compositions for the slag. We can see that 

the aluminum silicates were left mainly in the slag, accounting for the majority of the 

slag’s total weight. This implies that side reactions with these compounds are not 

competing with the iron oxides or appearing in the iron nuggets. The remaining unreacted 

iron oxides appear in the form of goethite at 8.3%. Supply of CO reducing gas from wood 

decomposition may be limiting the exposure of reducing gas to iron oxides preventing all 

of it from being separated. Residual carbon in the forms of carbon and graphite are 

present in the spectrum. Much of the sodium aluminum silicate from the red mud has 

been transformed to nepheline. 

Table 4-7: XRF elemental composition of red mud nugget slags 

Element Weight % 

Fe 16.257 

Al 22.705 

Si 21.773 

Ca 15.363 

Na 7.91 
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Ag 5.672 

Ti 6.407 

S 0.234 

Zr 2.729 

Cr 0.116 

Mg 0.0534 

 

Figure 4-8: Raw X-Ray diffraction pattern for slags produced with the red mud iron 

nugget process (major peaks labeled)  
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Table 4-8: Chemical component distribution in red mud iron nugget slags. Pellets fired at 

1475 ℃ for a residence time of 60 minutes 

Component  Chemical Formula Weight Percent 

Quartz 𝑆𝑆𝑆𝑆𝑆𝑆2 3.7 

Goethite 𝐹𝐹𝐹𝐹𝑆𝑆(𝑆𝑆𝑂𝑂) 8.3 

Nepheline 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆4 46.4 

Sodium Aluminum Silicate 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆4 21.4 

Carbon Sulfide C3S4 1.2 

Pyrope Mg3Al2Si3O12 8.4 

Aluminum Hydroxide Al(OH)3 2.1 

Calcium Iron Oxide CaFe5O7 4.3 

Calcium Silicon Oxide 
Nitride 

CaSiN1.86O0.21 4.1 

Total  100.0 

In the blast furnace, the goal is to remove all impurities through the slag body. Slag 

compositions vary depending on several variables including the ore body and furnace 

conditions. Iron content of blast furnace slags has been investigated on many occasions in 

attempts to understand and improve the process. The four oxides that are most present in 

blast furnace slags are alumina, magnesia, lime, and silica. Iron content is typically very 

low in these slags, ranging from 0.3% to 2% (Josephson,1949). McCaffery et al. (1928) 

developed a model to calculate compositions of ternary blast furnace slags which were 

based on an alumina-silica-lime-magnesia system. They calculated compositions for 74 
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blast furnace slags around the world with FeO compositions ranging from 0.43% to 

3.70% (McCaffery et al, 1928).  

The iron nugget process generates a large amount of slag due to the comparatively low 

iron grade of red mud as the feed material. It is important to note that the slag generated 

has existing industrial applications. The nugget process slag has the potential to be 

utilized in a variety of industrial situations. For example, blast furnace slag has been 

known to be utilized in cement, glass sand, slag wool, ceramics, soil treatment, roofing, 

sewage filter media, paint filler, abrasives, and cast products (Josephson, 1949). 

4.5 Conclusions 

Hematite and Goethite were found to be present in red mud at an iron grade of 22%, 

similar to taconite feedstocks in North America. It was found that rare earth elements are 

present in this red mud sample at concentrations of less than 1 ppm and so no further 

effort was made to extract them. The iron nugget process was used to extract the iron 

value from the red mud sample because it can process ores at very low feed grade and 

produce metallic iron. 

Iron nuggets were produced experimentally from red mud using the 1-step iron nugget 

process. Iron nuggets exceeding 90% iron content, comparable with blast furnace pig 

iron, were formed at residence times exceeding 30 minutes. The iron recovery was found 

to be dependent on residence time, reducing material content, and flux content. 

Recoveries between 55% and 80% with increasing residence time. Iron recovery steeply 

increases with increasing reducing material with an optimal point at 10% powdered 



130 

wood. Optimal flux content was found to be 2.5%. The slag that was generated from this 

process contained the remaining iron in the form of goethite.  

This method is promising due to its ability to work with very low-grade iron ore sources, 

as opposed to the blast furnace which requires concentrated iron ore pellets to be 

effective. The nugget process can also be done on a small scale while the blast furnace is 

notorious for its huge scale of operation. Extra care should be exercised when handling 

red mud due to its hazardous properties. High pH red mud solutions between 11 and 13 

pose a threat to workers and people that are near the waste reservoirs that contain it. 

Removing iron from red mud increases the value of a process waste while also making it 

more manageable to dispose. Decreasing the amount of waste from aluminum plants is 

beneficial because these disposal areas require significant amounts of land area that 

become unusable do to the caustic nature of red mud.   
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5 Effects of various flux material additions on red mud iron 
nugget quality  

5.1 Abstract 

Iron nuggets can be generated from red mud, a process waste discarded from the alumina 

making Bayer process. Red mud is a hazardous waste that threatens the aluminum and 

mining industry. Forming iron nuggets from red mud reduces the overall waste and adds 

value to the materials. The iron nuggets do not form and separate from the molten slag 

unless a carbonate flux material is added to the pellet before firing. The flux aids 

separation by lowering slag viscosity. Previous work with red mud iron nuggets has 

shown that dolomite additions can be effective as a flux. This study aims to study other 

carbonate flux materials and determine which is most effective at lowering slag viscosity 

and improving separation. It was found that magnesium and calcium carbonates improve 

recovery most effectively. 

5.2 Introduction 

Red mud contains a high amount of iron that can range from 20%-60% (Paramguru et al, 

2004). Currently, the industry treats red mud slurries as a waste material with little 

inherent value. In reality, red mud is a mixture of concentrated valuable minerals that can 

be removed for economic gain (Archambo and Kawatra, 2020a). Removal of iron from 

red mud is critical to reduce the amount of red mud that is being stockpiled worldwide. 

Current estimates show that the total amount of red mud that is stockpiled in the world is 

near 4 billion tons and it is increasing every year with larger demand for aluminum 

products (Wang et al, 2020). Research is currently searching for ways to lower the 
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amount of red mud, but without economic incentive, the reduction of red mud will be 

unlikely. Further production of red mud to extract these minerals of value can provide the 

required economic incentive.  

One novel method for removing iron from red mud is the iron nugget process. Unlike the 

blast furnace, the nugget process reduces and separates metallic iron from the gangue in a 

single step and can be used on much smaller scales (Anameric and Kawatra, 2006). The 

iron nugget process is ideal for low grade iron ores such as that of red mud as it can 

tolerate a larger amount of slag than the blast furnace. Iron is also in a purer state than 

that of direct reduction or leaching processes, acid leaching in particular tends to also 

remove other minerals that would contaminate an iron concentrate like titanium or 

aluminum (Agatzini-Lleonardou et al, 2008). 

Archambo and Kawatra (2020b) showed that a flux addition is required in order to 

produce iron nuggets from red mud. The flux that was used was a dolomite flux. An 

analysis of different available flux materials, the properties they exhibit, and their 

industrial pricing will be able to identify how to increases iron recovery in the iron 

nuggets and produce the valuable product more economically. Better understanding the 

role that the flux material plays in the generation of the iron nugget will enable the most 

efficient production of iron. This research will focus on generating iron nuggets using 

different carbonate flux materials to determine which causes the best separation of iron 

and which is the most economically viable.  
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5.3 Materials and Methods 

Red mud slurry was received from a Louisiana alumina plant for experimental work. A 

flow diagram for the experimental process can be seen in Figure 5-1. 

 

Figure 5-1: Process flow diagram for red mud iron nugget preparation with varied flux 

materials 

The red mud was dried in an oven and rolled into pellets. The red mud was mixed with 

powdered wood and bentonite clay. Four flux materials were tested in this study and they 

were added individually to pellet batches and then rolled into large pellets that weighed 

close to 10 grams each. The rolled pellets were then dried overnight in an oven to remove 

moisture.  

Pellets were placed into graphite crucibles with a bed of anthracite coal to prevent 

sticking and went into a preheated box furnace at 1475 degrees Celsius for a residence 
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time of 30 minutes. The iron nuggets were physically separated from the slag and were 

subjected to iron content determination using spectroscopy techniques. The slag was 

pulverized in a puck mill and sent for X-Ray diffraction analysis. Diffraction was 

performed using a Scintag XDS 2000 powder diffractometer. 

5.4 Results and Discussion 

Iron nuggets can be produced from red mud by first reducing the iron oxides present with 

a reducing material. Previous research has shown that iron nuggets can be reduced with 

coal or powdered wood (Anameric and Kawatra, 2006) (Archambo and Kawatra, 2020). 

Decomposition of the reducing agent occurs via the chemical Equations 5-1 through 5-6 

(Archambo and Kawatra, 2020b). The carbon source (coal or wood) is heated to its 

thermal decomposition temperature where the carbon is converted into CO and CO2. The 

carbon monoxide that is produced is the reducing agent that interacts with iron oxides. 

 𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝐹𝐹 → 𝐶𝐶𝑆𝑆,𝐶𝐶𝑆𝑆2,𝑂𝑂2,𝑁𝑁2,𝐶𝐶𝑛𝑛𝑂𝑂𝑚𝑚,𝐶𝐶 

 

(5-1) 

 𝐶𝐶 +  𝑆𝑆2 ↔ 𝐶𝐶𝑆𝑆2 

 

(5-2) 

 𝐶𝐶𝑆𝑆2 + 𝐶𝐶 ↔ 2𝐶𝐶𝑆𝑆 

 

(5-3) 

 𝐶𝐶 +
1
2
𝑆𝑆2 ↔ 𝐶𝐶𝑆𝑆 

 

(5-4) 

 𝐶𝐶𝑂𝑂4 + 𝐶𝐶𝑆𝑆2 ↔ 2𝐶𝐶𝑆𝑆 + 2𝑂𝑂2 

 

(5-5) 
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 𝐶𝐶 +  𝑂𝑂2𝑆𝑆 ↔ 𝐶𝐶𝑆𝑆 + 𝑂𝑂2 (5-6) 

Iron oxide reduction to metallic iron is shown in Equations (5-7) through (5-10) (Chen, 

2017). 

 𝐹𝐹𝐹𝐹2𝑆𝑆3 +
1
3
𝐶𝐶𝑆𝑆 →  

2
3
𝐹𝐹𝐹𝐹3𝑆𝑆4 +  

1
3
𝐶𝐶𝑆𝑆2 

 

(5-7) 

 𝐹𝐹𝐹𝐹3𝑆𝑆4 + 𝐶𝐶𝑆𝑆 → 3𝐹𝐹𝐹𝐹𝑆𝑆 + 𝐶𝐶𝑆𝑆2 

 

(5-8) 

 𝐹𝐹𝐹𝐹𝑆𝑆 + 𝐶𝐶𝑆𝑆 → 𝐹𝐹𝐹𝐹 +  𝐶𝐶𝑆𝑆2 

 

(5-9) 

 𝐹𝐹𝐹𝐹3𝑆𝑆4 + 4𝐶𝐶𝑆𝑆 → 3𝐹𝐹𝐹𝐹 + 4𝐶𝐶𝑆𝑆2 (5-10) 

While iron is being reduced, the impurities in the pellet are forming the slag layer. 

Anameric and Kawatra  (2006) outlined some of the important slag forming equations as 

can be seen in Equations (5-11) through  (5-16). In the case of red mud nugget slag, the 

much more complex and diverse chemical phases will also lend to additional reactions 

that are occurring in the slag. It is critical that both the iron and slag achieve a liquid 

phase in the nugget process for the separation to occur. The addition of fluxing materials 

to the pellet before firing assists in altering the chemical properties of the slag to allow 

the separation. 

 CaCO3 ↔ CaO + CO2 (5-11) 

 CaO + SiO2 ↔ CaSiO3 (5-12) 
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 SiO2 + 2C ↔ Si +2CO (5-13) 

 FeO + SiO2 ↔ FeSiO3 (5-14) 

 FeSiO3 + CaO ↔ CaSiO3 + FeO (5-15) 

 FeS + CaO + CO ↔ CaS + FeO + CO (5-16) 

5.4.1 Flux material effect on slag viscosity  

The viscosity of the slag is an important factor that determines how well the iron can 

separate from the slag. In order to produce an iron nugget with the lowest iron bearing 

slag, the slag viscosity must also be very low. In the nugget process, the molten iron 

separates from the slag body based on the difference in viscosity of the two phases 

(Anameric and Kawatra, 2020). The viscosity of the slag can be altered by changing the 

chemical phase composition of the red mud pellet, this was done by adding different flux 

materials to the pellet. Figure 5-2 shows the effect of different flux materials on the 

overall viscosity of the slag. From the table, it can be seen that pellets with no flux 

addition should have the highest viscosity. Previous work with red mud to make iron 

nuggets shows that pellets with no flux addition do not generate iron nuggets (Archambo 

and Kawatra, 2020). Increasing the amount of sodium in the pellet with sodium carbonate 

is able to lower the slag viscosity to an intermediate effect. Calcium carbonate and 

magnesium carbonate show similar results being able to greatly reduce the slag viscosity. 

The fact that they are both divalent cations likely give reason to their similar results. 
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Borate is estimated to lower the slag viscosity to the greatest extent. Borates are often 

used in glass making as an additive. 

 

Figure 5-2: Effect of different fluxes for iron nuggets produced with red mud. 

Theoretical data simulated using FASTSAGE software and chemical phase compositions 

determined by X-Ray Diffraction 

5.4.2 X-Ray Diffraction Analysis 

X-Ray diffraction was used to analysis the chemical phases that were produced during 

the iron nugget process for each separate case of flux additions. Figure 5-3 shows the 

chemical phases that appeared in the slag containing magnesium carbonate flux. Sodium 

aluminum silicate and nepheline formed in the magnesium bearing slag. The magnesium 

itself was sequestered in the form of dolomite and periclase. 
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Figure 5-3: X-Ray Diffraction pattern for iron nugget slag with 7.5% MgCO3 added to 

the pellet as a flux material 

 

The chemical phases for calcium carbonate fluxed slag can be seen in Figure 5-4. The 

most notable peaks formed with calcium flux are those of sodium aluminum silicate and 

nepheline. The calcium from the flux has been sequestered in the slag in the forms of 

calcite and perovskite. 
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Figure 5-4: X-Ray Diffraction pattern for iron nugget slag with 7.5% CaCO3 added to 

the pellet as a flux material 

 

The chemical phases for sodium carbonate fluxed slag can be seen in Figure 5-5. The 

addition of sodium carbonate created a much more intense peak for the chemical phase 

for sodium aluminum silicate with other smaller contributions by quartz, magnetite, and 

hematite. Nepheline was not formed from sodium flux as was the case for the previous 

divalent fluxes. A large amount of sodium is added to crushed bauxite ore in the form of 

sodium hydroxide, boehmite and diaspore minerals in particular require a more 

concentrated amount of caustic for dissolution (Adamson, 1963). Large amounts of 

sodium and other alkali earth metals like potassium have been cited to cause issues 

during iron production in the blast furnace (Liu et al, 2016). The blast furnace operation 
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typically seeks to remove as much sodium as possible before reduction. When bentonite 

clay is added in iron ore pelletization, even more sodium introduced in the form of 

sodium bentonite (Landis and Maubeuge, 2004). It is probable that the introduction of 

sodium as a flux material as well will contribute to the higher viscosity and a lower 

degree of iron separation. 

 

Figure 5-5: X-Ray Diffraction pattern for iron nugget slag with 7.5% Na2CO3 added to 

the pellet as a flux material 

 

The chemical phases for borate fluxed slag can be seen in Figure 5-6. The diffraction 

pattern for the borate slag is only able to identify peaks that are associated with silica. X-

Ray diffraction is often unable to accurately determine the phase composition of a 

material that is amorphous. An amorphous material is one that do not have long range 
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crystallographic order and in turn produce large humps instead of sharp peaks in a 

diffraction pattern (Rowe and Brewer, 2018). It can be seen that one of these humps 

covers the scatter angle from roughly 15 to 40 degrees in the case of the boron slag. Since 

this phenomenon doesn’t occur in the other diffraction patterns of flux additions, this is 

indicating that the borate has created an amorphous slag during firing. The material does 

not have a rigidly defined shape with an ordered crystal structure compared to the other 

fluxed slags that do have crystalline structure. One study on quartz-based slags with the 

addition of B2O3 showed that with increasing borate content, the viscosity of the slag 

decreased (Wang et al, 2020). This may imply that a different mechanism is driving the 

separation from iron in the case of borate slags. Wang et al (2020) theorized that borate 

interacts with silica and removes oxygen to for boroxyl rings and increases the degree of 

polymerization of the slag. 
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Figure 5-6: X-Ray Diffraction pattern for iron nugget slag with 7.5% B4O7 added to the 

pellet as a flux material 

5.4.3 Grade and Recovery of iron 

The experimental results for adding different fluxes to the red mud pellets can be seen in 

Figures 5-7 and 5-8. Iron grade in the nuggets was the greatest using the sodium 

carbonate flux, followed by calcium carbonate, magnesium carbonate, and borate 

performed the worst.  

In regards to iron recovery, magnesium and calcium carbonate performed well. Each 

achieved a recovery above 80%, with magnesium carbonate slightly outperforming 

calcium. In the case of magnesium oxide flux, when in a molten slag it can release 

oxygen to simplify the structure of the slag by modifying the silica network (Xing et al, 

2020). As expected from the FACTSAGE slag viscosity calculations, sodium carbonate 

yielded very low recovery below 20%. The is likely due to the fact that the slag viscosity 
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was not low enough to allow the buoyant forces of the iron to separate completely from 

the slag (Shannon et al, 2008). The borate addition to the slag breaks away from the 

simulated viscosity calculations, producing the intermediate results for recovery near 

60%. 

 

Figure 5-7: Effect of different flux materials on the iron grade of iron nuggets produced 

from red mud. 
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Figure 5-8: Effect of different flux materials on the recovery of iron in iron nuggets 

generated from red mud. 

Along with the recovery of iron as a product, the resulting slag is the new waste material 

that has been reduced in mass compared to the original red mud. Table 5-1 shows the 

percent of waste removed by weight using the iron nugget process. The most effective 

flux for waste reduction was magnesium carbonate, removing 39% of waste. If the iron 

nugget process were to be used to process iron from the entire stockpile of worldwide red 

mud, 4 billion tons (Wang et al, 2019), then the new total stockpile would be 2.4 billion 

tons. Some plants around the world have red muds that contain much higher-grade iron 

and they would see a waste reduction even larger.  

Table 5-1: Waste reduction weight percent of red mud using the iron nugget process 
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CaCO3 37.39 0.85 

MgCO3 39.19 1.41 

Na2CO3 20.27 0.76 

B4O7 33.07 1.53 

5.4.4 Cost of flux reagents 

The effectiveness of each flux must also be paired with its availability and pricing when 

considering which choice is most economic for an industrial process. Table 5-2 shows the 

pricing data for each of the studied flux materials. In this case, the most effective fluxes, 

calcium carbonate and magnesium carbonate, are also the cheapest to purchase 

industrially. Sodium carbonate is nearly twice as expensive and sodium borate 

decahydrate is more than three times more expensive. Despite being effective at reducing 

the viscosity of the slag and improving iron recovery, it is still a cost to purchase and add 

the flux material to the red mud pellets. If the carbonate flux could be generated from 

costless reagents such as CO2 in the plant, it would be extremely advantageous.  

Table 5-2: Industrial bulk price data for fluxing reagents used in the nugget process 

Name 
Calcium 
Carbonate 

Magnesium 
Carbonate 

Sodium 
Carbonate 

Sodium 
Borate 
Decahydrate 

Chemical 
Formula CaCO3 MgCO3 Na2CO3 

NaB4O7 
10H2O 

Industrial 
Price 
($/Ton) 80 80 150 300 

Date 10/28/2020 10/28/2020 10/28/2020 10/28/2020 
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Source Alibaba Alibaba Alibaba Alibaba 

URL https://offer.alibaba.com/cps/e1f5f93f?tp1=5bc719a63ad4e 

 

5.5 Conclusions 

Flux addition plays a significant role in the iron nugget process for red mud. Fired pellets 

that contained no flux did not form separate molten iron and slag layers. The flux 

material impacts the viscosity of the slag and the lower the viscosity the better the 

separation. Of the fluxes tested in this study it was found that magnesium carbonate and 

calcium carbonate performed the best achieving iron recoveries of 84% and 81% 

respectively. Sodium carbonate was not an effective flux due to the fact that it was not 

able to lower the slag viscosity enough for separation. The use of borate as a flux material 

generated an amorphous slag whereas the others were crystalline. The amorphous nature 

of the borate slag also prevented separation of iron from the slag body. From a cost 

perspective, Magnesium and calcium fluxes are comparable. If the flux can be generated 

from costless reagents in the plant such as CO2, the expenditures for flux reagents can be 

removed. 
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6 Using CO2 Neutralized Red mud to Generate Iron Nuggets  

6.1 Abstract 

Alumina plant waste, or red mud is a problem due to the large amount of waste generated 

and the hazardous properties it exhibits. Much research has gone into studying the 

material for its better waste disposal and processing of valuable minerals. Research at 

Michigan Tech has shown that iron can be removed from red mud using the iron nugget 

process with the addition of flux materials. The addition of CO2 can reduce the pH while 

simultaneously generating carbonate flux material. Combining the iron nugget process 

with red mud neutralization of CO2 can remove valuable iron from red mud, remove 

hazardous alkalinity, and reduce the need for reagent additions such as flux for nugget 

smelting. CO2 neutralized red mud was used to generate iron nuggets of similar quality of 

high pH red mud and blast furnace pig iron without the addition of a flux material. 

6.2 Introduction  

Mineral processing waste management has and continues to be a challenge across the 

mining industry. The handling of such wastes is an environmental, logistical, and 

economic problem which is always seeking to be improved upon. In the case of alumina 

processing the obstacle is especially high. The Bayer process used to make alumina, 

generates waste at a rate of 175.5 million tons per year (Archambo and Kawatra, 2020). 

For every ton of alumina product made, between 1.5 to 2.5 tons of processing waste are 

generated (Borra et al, 2016). This waste is named red mud; and disposal of it is a huge 

task for the operation. Its disposal typically consists of 30- 50% of the total plant’s 

operations (Paramguru, 2004). The red mud can either be thickened and pumped into 
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land-based impoundments or be discharged into nearby bodies of water. Countries with 

small amounts of available land area choose the latter such as Japan, France, and Greece 

(Rai et al, 2012). Most alumina plants however, have moved to thickening the red mud to 

a higher solids content and disposing in an enclosure on land.  

Red mud is a dangerous waste product for many different reasons, so its correct disposal 

is paramount. The bauxite ore used in alumina processing is subjected to high 

temperature dissolution in sodium hydroxide. After this step, the undissolved solids are 

washed off with residual caustic and that becomes the red mud. The pH of red mud is 

typically above 11; due to the large amount of caustic used in processing (Grafe et al, 

2011). Concentrated amounts of radioactive elements such as thorium and uranium have 

been identified in some red mud samples (Damayanti and Khareunissa, 2016). Many 

other toxic elements such as As, Cr, Hg, Pb, and Zn are also concentrated in red mud 

which poses as danger to human health and the safety of the environment (Rutyers et al, 

2011). These characteristics of red mud show that it needs to be handled carefully and 

dealt with in a way that allows for the safety of people and the environment. The 

compilation of these factors has given red mud the reputation as a hazardous waste.  

The viewpoint of seeing red mud as purely as waste product is incorrect. Red mud is 

composed of a multitude of minerals that can be further processed for profit. Major 

chemical phase ranges for red mud around the world can be seen in Table 6-1. The 

variation in composition of red mud is large, but many sources of red mud have iron 

grades hovering near 50%. These grades of iron are higher than iron grade feedstocks in 

the north American iron range. Residual aluminum can also be present at a large quantity 
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which may find use in a recycle stream into the alumina plant for enhanced recovery. 

Titanium bearing elements are also common among many red muds, which could be 

processed into titanium-based products.  

 

Table 6-1: Composition ranges of major minerals in red mud wastes (Archambo and 

Kawatra, 2020). 

Mineral Component Weight % Range 

Fe2O3 4-55 

TiO2 2-17 

Al2O3 6-27 

SiO2 3-24 

Removal of the iron value from red mud provides a number of benefits. With red mud 

that constitutes more than 50% iron, the removal of iron reduces that amount of waste 

disposed by 50%. Reduction of mineral processing waste by such a large margin would 

allow for much less land area to be consumed as a waste dump. Economic incentive to 

produce iron as a byproduct from a waste is another bonus.  

Research has shown that iron can be removed from red mud by various methods. Iron in 

red mud can be reduced directly at temperatures above 500 Celsius in the presence of a 

reducing atmosphere of CO, N2, and CO2 (Gotsu et al, 2018). Another study was 

conducted with a reducing atmosphere of CO and H2 in order to reduce red mud iron by 

43% (Ksiazek et al, 2018). Red mud that has been subjected to direct reduction 
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techniques will also need to employ a secondary separation step in order to remove the 

metallic iron from the gangue. In most cases, magnetic separation is chosen to separate 

the metallic iron from the gangue. Several studies have shown that acid leaching is a 

viable option to remove iron from red mud (Li et al, 2018), (Zhang et al, 2020), (Yang et 

al, 2015). Leaching under acidic conditions also removes other minerals however, 

making a pure iron extract difficult to achieve.  

The iron nugget process is one that can effectively reduce iron oxides, melt the metallic 

iron, and separate the iron from the slag in a single step (Anameric and Kawatra, 2006). 

The iron that is produced via this method can be compared to the quality of blast furnace 

pig iron. A comparison of apparent densities of iron nuggets to various iron sources can 

be seen in Table 6-2. From the table, iron nuggets produced from both red mud and 

magnetite ore are able to produce iron with apparent densities near 7. Blast furnace pig 

iron apparent densities are near 7.2, while higher grades of iron and steel are above 7.5. 

Pig iron and iron nugget apparent densities are lower because of the higher carbon 

content that is present in each of these irons. The carbon content of iron is lowered inside 

of the basic oxygen furnace.  
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Table 6-2: Apparent densities of various forms of iron compared to iron nuggets 

produced at Michigan Technological University. 

Material Density Reference 

Red mud iron nugget 
with wood 6.95 Archambo and Kawatra, 2020 

Magnetite iron 
nugget with coal 6.6-7.06 Anameric and Kawatra, 2007 

Magnetite  4.9-5.2 Weiss N.L. 1985 

Wustite 6.00 Lide D.R. 2001 

Blast Furnace Pig 
Iron 7.20 Weiss N.L. 1985 

Low Carbon White 
Cast Iron 7.6-7.8 Shackelford et al, 1994 

Steel 7.8 
Ashby M.F. and Jones D.R. 

1986 

Iron 7.87 Lide D.R. 2001 

Another pathway for improving recovery of iron in the red mud iron nuggets comes from 

the addition of CO2 to the red mud slurry. Previous research has shown that red mud can 

be neutralized to a moderate pH with the addition of CO2. One experiment employed CO2 

before acid leaching for metal recovery and achieved a pH of 8.6 in the red mud (Rivera 

et al, 2017). The neutralization of red mud with CO2 produces calcite as a solid 

precipitate, which can also be used as a flux material for the iron nugget process 

(Archambo and Kawatra, 2020).  

If flux can be generated naturally by adding CO2, another waste product that is generated 

on a large scale at nearly every industrial plant, that puts the iron nugget process in a 
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great position to capitalize. The addition of CO2 can potentially eliminate the need of 

fluxing additives during pelletization for iron nugget production with red mud. 

6.3 Materials and Methods 

Red mud was provided for experimental work from an alumina plant in Louisiana. The 

iron nuggets were produced following the process flow diagram shown in Figure 6-1. 

 

Figure 6-1: Process flow diagram for iron nugget production from neutralized red mud. 

Red mud was placed in a 2000 mL beaker with a 1:1 ratio of distilled water and mixed 

until homogeneous. Carbon dioxide gas was bubbled into the beaker using a gas 

dispersion tube at a flow rate of 1 liter per minute for 1 hour. Once the pH was brought 
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down from 13 to 7.5, the slurry was either filtered and dried immediately, or allowed to 

sit in an open container for 1 week until the pH rose to 10.  

Pellets were prepared for high temperature firing. The pellets were composed of 10% 

powdered wood and 0.66% bentonite clay. The sample was mixed thoroughly and rolled 

into pellets by hand. The pellets were dried overnight and weighed on the day of firing. 

Each pellet weighed close to 10 grams.  

Pellets were individually placed into crucibles layered with anthracite coal in order to 

prevent melted samples from sticking to the crucible walls. A Micropyretics MXI high 

temperature box furnace was used to heat the pellets. The furnace was preheated to 1475 

℃. Crucibles were placed into the furnace for constant residence times of 30 minutes. 

The formed iron nuggets and slag bodies were then subjected to analysis. 

Iron content analysis was performed with ultraviolet spectroscopy. X-ray diffraction 

Scintag XDS 2000 powder diffractometer was used to identify the chemical phase 

analysis of the samples. 

6.4 Results and Discussion 

6.4.1 Generation of calcium carbonate during red mud neutralization  

Equations 6-1 and 6-2 show that carbonates can be produced as a result of CO2 

neutralization (Sahu et al, 2010). The carbonate anions that are generated can then react 

with divalent metal cations in solution such as calcium and magnesium to for calcite or 

dolomite. 



154 

 𝐶𝐶𝑆𝑆2(𝑁𝑁𝑎𝑎) + 𝑆𝑆𝑂𝑂 (𝑁𝑁𝑎𝑎) ↔ 𝑂𝑂𝐶𝐶𝑆𝑆3(𝑁𝑁𝑎𝑎) (6-1) 

 

 𝑂𝑂𝐶𝐶𝑆𝑆3(𝑁𝑁𝑎𝑎) ↔  𝑂𝑂+(𝑁𝑁𝑎𝑎) +  𝐶𝐶𝑆𝑆3−2(𝑁𝑁𝑎𝑎) (6-2) 

 

When red mud is neutralized, the pH is not stable at the neutral level and it will rebound 

once the CO2 is turned off. Many research projects involving the CO2 neutralization of 

red mud cite a rebound of pH after the neutralization cycle is complete (Archambo and 

Kawatra, 2020), (Rai et al, 2013), (Rivera et al, 2017). Smith et al (2003) contributes the 

pH rebound to the buffering ability of calcite that is generated via the neutralization.  

Rai et al (2013) studied the effect of multiple neutralization cycles of red mud with CO2 

and found that the pH would always rebound to a similar pH. It was also found that 

multiple cycle neutralization didn’t change the amount of calcite that was generated. 

Red mud was neutralized to a pH of 7.5 and 10 for nugget making. Table 6-3 Shows the 

chemical phases present in red mud that has been neutralized with CO2. As a result of 

neutralization, calcium carbonate has been produced which should assist in lowering slag 

viscosity to form iron nuggets. Calcium carbonate was formed at 2.4% weight for these 

experiments. Iron nuggets had also been generated using a 2.5% dolomite flux in 

previous works (Archambo and Kawatra, 2020).  

Table 6-3: Chemical phases present in red mud that has been neutralized with CO2 

Chemical Component Weight 
Percent, 
% 
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Calcium Carbonate, CaCO3 2.4 

Hematite, Fe2O3 29.0 

Goethite, FeOOH 19.0 

Gibbsite, AlO3 5.6 

Anatase, TiO2 5.0 

Rutile, TiO2 6.5 

Sodalite, Na4Al3(SiO4)3Cl 6.1 

Sodium Aluminum Silicate 
Hydrate, 1.08Na2O Al2O3 
1.68SiO2 1.8H2O 

26.5 

 

6.4.2 Iron Nugget recovery with CO2 neutralized red mud 

The resulting iron nuggets formed from pH 7.5 and pH 10 CO2 neutralized nuggets were 

compared to a baseline where no neutralization occurred but pure CaCO3 was added to 

pellets before firing at a weight percent of the standard 7.5%. Figure 6-2 shows the iron 

grade of the resulting pellets. Iron grade at pH 7.5 neutralized red mud are very similar to 

that of the baseline results, with grades above 90%. These values compare well with pig 

iron that is generated from the conventional blast furnace, which typically produced iron 

grades above 90% (Fruehan, 1998). 

Iron recovery for the CO2 neutralized pellets can be seen in Figure 6-3. Compared to the 

baseline results, the pH 10 red mud pellets achieved a similar recovery. The baseline 

recovered 81% while pH 10 pellets recovered 79%. The pH 7.5 red mud pellets achieved 
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an iron recovery of 68%. When CO2 reacts with the red mud slurry system, the calcite 

flux is not immediately formed. The pH reduction of red mud occurs very quickly as CO2 

is introduced to the system and interacts with available ions in solution, the dissolution of 

Tricalcium aluminate (TCA) is much slower and occurs over a period of days (Smith et 

al, 2003). It is the dissolution of TCA that allows calcium carbonates to form following 

Equation 6-3 (Sahu et al, 2010). 

 3Ca(OH)2·2Al(OH)3 (s) +3CO2 (aq) ↔ 3CaCO3 (s) + 2Al(OH)3 (s) + 3H2O (6-3) 

 

pH 7.5 neutralized red mud generated lower recovery of iron due to the fact that it was 

not given enough time for Equation 6-3 to dissolve the TCA and form calcite. Once the 

red mud was neutralized, it was immediately dried for pelletization so the TCA couldn’t 

react with an aqueous phase CO2. The pH 10 neutralized red mud was given a full seven 

days before it was dried for pelletization. Smith et al (2003) reports that 3 days is 

required for the neutralized slurry to completely react and generate the maximum amount 

of calcite. 
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Figure 6-2: Iron nugget grade using carbonate flux generated during CO2 neutralization 

of red mud 
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Figure 6-3: Iron recovery in nuggets from red mud that have been neutralized with CO2 

to generate carbonate flux. 

The removal of iron from red mud allows a waste material to become more economically 

feasible and it also reduces the amount of material that it disposed at the end of the 

process. Table 6-4 shows the overall waste reduction compared to the original red mud. 

All cases show that waste can be reduced by more than 37% by removing the iron via the 

iron nugget process. The optimal point, where flux material is generated at a maximum at 

pH 10 sees the highest waste reduction at nearly 40%. Disposal of red mud in this fashion 

can greatly limit its negative impact on the environment. 
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Table 6-4: Waste reduction percent of red mud using the iron nugget process by wt % 

  
Percent of waste 
removed (wt %) 

Error 
(±) 

pH 7.5 
Neutral 37.91 2.04 

pH 10 
Neutral 39.96 1.41 

CaCO3 37.29 0.85 

 

6.5 Conclusions 

Iron nuggets were generated using red mud that had been neutralized with CO2 prior to 

iron extraction. The neutralization formed calcium carbonate that was used as the flux 

material for iron nuggets. The red mud was neutralized to pH 7.5 and immediately dried. 

Red mud was also neutralized and allowed to rebound for 1 week back to pH 10. Results 

showed that both neutral red muds can generate nuggets. The recovery of iron was 

highest with the pH 10 red mud. This is because the reaction with aqueous CO2 and 

tricalcium aluminate (TCA) to form calcium carbonate requires time to run to 

completion. For nugget production, the rebound of pH is actually favorable to the lowest 

pH red mud obtainable. The material that is disposed at the end of the process is also 

reduced to nearly 40%. Further processing of iron nugget slags can yield potential for 

concentrated valuable minerals such as the elusive rare earth elements. 
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7 Extraction of rare earth elements from red mud with oxalic 
acid3 

7.1 Abstract 

Red mud contains large amounts of rare and valuable minerals. Specifically, rare earth 

elements are present at a concentrated amount in many red mud samples around the 

world. There is currently only one ore source in the United States that can produce rare 

earth elements. Pursuing avenues to extract rare earths from red mud is highly 

advantageous to reduce the amount of red mud being stockpiled, give value to red mud as 

a waste, and utilize a source for producing rare earths. The iron nugget process 

effectively increases the concentration of rare earth elements by removing iron. Slag from 

the iron nugget process upgraded the concentration of rare earth elements by 100%, 

which makes this a desirable feed for processing. Hydrochloric acid was used to dissolve 

the rare earth oxides present in the nugget slags, rare earths were then precipitated as a 

solid using oxalic acid. HCl leach can recover 170 grams of rare earths per ton of red 

mud nugget slag and Oxalic acid precipitation can recover 45 grams per ton.  

7.2 Introduction 

Rare earth elements can be found in alumina process waste called red mud. These rare 

earths can be concentrated by removing iron, which constitutes a large amount of red 

mud by weight. Many everyday aspects of our society rely on the availability of rare 

                                                 
3 The material contained within this chapter has been submitted to the journal “Mineral Processing and 
Extractive Metallurgy Review.” 
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earth elements.  The rare earth elements have become critical to the expanding world of 

technology. On the periodic table, the rare earth elements are considered to be elements 

57 through 71 including scandium and yttrium. Light rare earth elements (LREE) are the 

first eight from lanthanum to gadolinium and the heavy rare earth elements (HREE) are 

the remaining (Krishnamurthy and Gupta, 2016). They are considered rare not because 

there is a small amount present in the earth but because these elements are rarely found in 

concentrated ores. Ore bodies that contain high amounts of rare earth elements do exist, 

however. Bastnaesite ((REE)CO3F) and monazite ((REE)PO4) are minerals that typically 

contain high concentrations of the light rare earths and xenotime contains heavy rare 

earth elements (Ganguli and Cook, 2018). The rare earth elements are shown in Table 7-

1. All of these elements have a wide variety of applications with critical uses for the 

military in weapon targeting systems, in nuclear energy, wind, and battery, and in the 

medical field for imaging.  

Table 7-1: Rare earth elements and their typical uses  

Element  Atomic 
Number 

Light or Heavy 
Rare Earth 
(LREE, HREE) 

Uses Reference 

Scandium 21 NA Ceramics, lasers, 
and aerospace 
alloys 

Krishnamurthy 
and Gupta, 
2016 

Yttrium 39 NA Molten metal 
containment 
ceramics, thermal 
plasma sprays for 
aerospace 
surfaces, 
superconductors 

Krishnamurthy 
and Gupta, 
2016 
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Lanthanum  57 LREE Battery and metal 
alloy, petroleum 
refining, optics  

Ganguli and 
Cook, 2018 

Cerium 58 LREE Battery and metal 
alloy, automotive 
catalyst, ceramics 

Ganguli and 
Cook, 2018 

Praseodymium 59 LREE Ceramics, 
glasses, pigments 

Charalampides 
et al, 2015 

Neodymium 60 LREE Permanent 
Magnets 

Krishnamurthy 
and Gupta, 
2016 

Promethium 61 LREE Sources for 
measuring 
devices, miniature 
nuclear batteries  

Charalampides 
et al, 2015 

Samarium 62 LREE Permanent 
magnets, 
microwave filters, 
nuclear power 

Charalampides 
et al, 2015 

Europium  63 LREE Phosphors for 
luminescent 
characteristics, 
Targeting and 
weapon systems  

Krishnamurthy 
and Gupta, 
2016 

Gadolinium  64 LREE Visualization of 
images in 
medicine. Optical 
and magnetic 
detection. Crystal 
scintillators  

Charalampides 
et al, 2015 

Terbium 65 HREE Fluorescent lamp 
phosphors, 
magnets 

Haque et al, 
2014 
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Dysprosium 66 HREE Additive to 
NdFeB magnets 
in the electric 
vehicle and wind 
energy industries  

Krishnamurthy 
and Gupta, 
2016 

Holmium 67 HREE Permanent 
magnets, nuclear 
energy, 
microwave 
equipment 

Ganguli and 
Cook, 2018 

Erbium 68 HREE Fiber optical 
amplifiers, high 
speed optimal 
communication 

Haque et al, 
2014 

Thulium 69 HREE Portable X-Ray 
sources, crystals 
and laser 

Krishnamurthy 
and Gupta, 
2016 

Ytterbium 70 HREE Fluorescent 
lamps, ceramics, 
phosphors 

Haque et al, 
2014 

Lutetium 71 HREE Petroleum 
refining 

Ganguli and 
Cook, 2018 

 

Rare earth mining and production has grown quickly as innovation in technology has 

exploded. Table 7-2 shows the production of rare earth oxides by country. The largest 

producer by far of rare earths is China. Other notable producers in today’s market for rare 

earths are the United States, Myanmar, and Australia. The next largest producer, the 

Unites States, generates 20% of the rare earths that China does. Currently, in the U.S. 

these rare earths are only produced from 1 mine in California. The Mountain Pass mine in 

California was shut down in 2015 due to lower prices for rare earths, which made the 

U.S. 100% dependent on foreign mined rare earths (Ganguli and Cook, 2018). Since 
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2018, the Mountain pass mine has begun operating again, but it is the only substantial ore 

source for directly mining rare earth elements currently in the U.S. This indicates that a 

push is required to develop methods to extract rare earth elements by other means or 

secondary sources. Some potential secondary sources of rare earth elements are coal, coal 

byproducts, iron ore, apatite, phosphate byproducts, cation adsorption clays, recycled 

materials, and red mud (Peiravi et al, 2021). Utilizing mine tailings from other operations 

can yield a more profitable margin for the rare earth industry.  

Table 7-2: Rare earth oxide reserves and production worldwide (U.S.G.S, 2020) 

Country  2019 Rare Earth Oxide 
Production (Tons) 

Estimated Reserves (Tons) 

China 132,000 44,000,000 

United States  26,000 1,400,000 

Burma (Myanmar) 22,000 NA 

Australia  21,000 3,300,000 

India 3,000 6,900,000 

Russia 2,700 12,000,000 

Madagascar 2,000 NA 

Thailand  1,800 NA 

Brazil 1,000 22,000,000 

Vietnam 900 22,000,000 

Burundi 600 NA 
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Red mud makes for an excellent candidate for rare earth element extraction. It is noted 

that some red mud wastes contain a concentrated value of rare earth elements (Balaram, 

2019). Vind et al (2018) finds that rare earth elements are almost completely transferred 

to the waste of the Bayer process and in turn, concentrating them significantly. Jamaican 

bauxite residue in particular contains a significant amount of rare earth elements. Wagh 

and Pinnock (1987) report that Jamaican red mud contains between 1690 to 2760 ppm of 

total rare earth elements. The hazardous nature of red mud combined with the difficulties 

of processing it economically have been problematic for the aluminum industry. 

However, if the red mud represents a cache of valuable rare earth elements, then the cost 

of processing it to remove the rare earths and reduce the total volume of red mud can 

potentially be offset.  

There has been a great deal of research that has gone into how rare earth elements can be 

leached from red mud. Borra et al (2015) investigated a series of acids for acid leaching 

red mud to recover rare earths in the liquor. Their research found that hydrochloric acid 

performed the best at ambient temperature for 24-hour residence time and recovered 70-

80% of the rare earth elements. Hydrochloric acid and sulfuric acid were tested using a 

dry digestion of the red mud followed by water leaching; the finding is that HCl was 

more effective at dissolving the rare earth elements than sulfuric acid (Rivera et al, 2018).  

Zhang et al (2019) sought to remove iron and rare earth elements together using a 

leaching system with hydrochloric acid followed by solvent extraction; the leaching 

efficiencies for the leaching were above 80%. Cerium, the most abundant of the rare earth 

elements can be extracted due to its unique ability as a rare earth element to be oxidized 



166 

to the 𝐶𝐶𝐹𝐹4+state. This paves the way for selective dissolution of trivalent rare earths to 

separate cerium (Meshram and Abhilash, 2019). The most valuable of the rare earth 

elements, scandium, can be separated from red mud and the rest of the lanthanides using 

a combined ion exchange – solvent extraction method (Akcil et al, 2018). One proposed 

method of rare earth extraction that produces no chemical sludge is biosorption, but it has 

yet to be used industrially on a large scale (Das and Das, 2013).    

For most acid leaching processes involving red mud, contaminants can easily dissolve 

into the leach solution. Aluminum, titanium, and most notably iron also dissolve into 

solution at low pH during acid leaching. For example, in the research of Borra et al 

(2015), more than 80% of the iron from red mud was also digested into the leach 

solution. Other notable works involving the acid digestion of rare earths include 

(Ochsenkuhn-Petropulu et al, 1996; Walawalkar et al, 2016; Zhang et al, 2019).  

In order for an acid leach process for rare earths to work efficiently, contaminating 

elements such as iron must be removed first before processing rare earths. The removal 

of iron can significantly reduce the amount of red mud, up to 50% of red mud weight can 

be removed in some cases by removing the iron (Archambo and Kawatra, 2020). 

Smelting red mud at 1600 Celsius was able to remove 85% of the iron and much less iron 

was found in a leachate of the slags with HCl, H2SO4, and HNO3 (Borra et al, 2016). 

With the iron nugget process, more than 80% of the iron in red mud can be removed at a 

lower temperature than iron smelting at 1475 Celsius. The removal of iron also occurs in 

a single step which is a significant improvement to the operations of the blast furnace, the 

conventional method for pig iron manufacture. Acid leaching the slag of the nugget 
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process is more beneficial because it has no significant amount of iron to contaminate the 

rare earth concentrate.  

Leach solutions of rare earth concentrates need to be processed further to produce a solid 

rare earth product. Techniques like solvent extraction have been utilized to produce a 

solid product of rare earths (Liu and Li, 2015; Wang et al, 2013; Zhu et al, 2019). Solvent 

extraction requires the use of chemical additives that carry significant cost. A better way 

to produce the solid precipitate would be to form the precipitation from readily available 

reagents at the plant site. Carbon dioxide can be removed up to 99% from flue gases in a 

plant with reagents like bicarbonate and the addition of surfactants (Valluri and Kawatra, 

2021). Carbon dioxide can be efficiently converted to oxalic acid using electro catalytic 

reduction and a low amount of electrical energy input; oxalic acid was chosen as the 

primary product due to the lowest amount of energy input required to produce compared 

to other sellable commodities (Valluri and Kawatra, 2019). The oxalic acid can react with 

rare earth ions in a leach solution and precipitate them as rare earth oxalates. This method 

of rare earth processing is favorable because it is a simple process that requires less 

equipment than other precipitation methods (Liu et al, 2008). Oxalic acid has seen 

research with the application of red mud precipitation for iron, where it was precipitated 

as an iron oxalate (Yang et al, 2015), (Yang et al, 2016). Using red mud iron nugget 

slags, which are removed from iron, removes the reaction of iron with oxalate which 

would also contaminate the solid rare earth concentrate. Utilizing a process which 

removes iron, acid leaches slag, and precipitates solid rare earths could be an effective 
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method to separate valuable minerals from red mud and purify them to a level of 

economic value.  

7.3 Experimental 

7.3.1 Materials 

Red mud samples were received from a plant in Louisiana, USA. The red mud had been 

produced from a bauxite ore that was mined in Jamaica. Initial analysis of the red mud 

found that it was composed of a particle size distribution less than 10 microns, the 

moisture content of the sample was 30%, and the pH of the material was higher than 13. 

The sample also contained a weight percent of iron near 30%.  

The iron was extracted from the red mud sample using the iron nugget process 

(Archambo and Kawatra, 2020). Using this process, up to 80% of the iron is recovered in 

an iron nugget concentrate. The slag produced from the nugget process contains the 

remainder of the red mud material. The major chemical phase distribution can be seen in 

Figure 7-1. Some remaining iron is present in the form of goethite along with a majority 

of aluminosilicate phases. 
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Figure 7-1: X-Ray diffraction pattern for slags produced from the iron nugget process 

utilizing red mud as a feed. 

Inductive coupled plasma (ICP) shows the trace amounts of rare earth elements in the red 

mud sample and in the iron nugget slag in Table 7-3. From the table, the concentration of 

rare earth elements had doubled from the original red mud samples. The most 

concentrated elements are Scandium, Yttrium, Lanthanum, Cerium, and Neodymium. 

The concentrated nugget slags were used in leaching experiments to remove the rare 

earths. Nearly all of the rare earth elements are consolidated in the slag phase during the 

nugget process. Figure 7-2 shows a total rare earth element mass balance around the iron 

nugget process. The rare earths are recovered at 97% in the slag, the remaining 3% have 

been incorporated into the iron nugget as trace material at 21.3 ppm. The slag is waste 

material for the iron nugget process, but rare earth elements have been concentrated in 

the slag with a recovery of 97%. This implies that the waste material from the nugget 

process can generate rare earth elements. 
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Table 7-3: Rare earth element concentrations in parts per million for red mud samples 

and iron nugget slag samples at Michigan Tech 

  

Red 
Mud 
(ppm) 

Nugget Slags 
(ppm) 

Percent 
Upgraded (%) 

Sc 25 35 40 

Y 24 45 88 

La 12 29 142 

Ce 20 48 140 

Pr 1.6 4 150 

Nd 6 15 150 

Sm 1.4 3.2 129 

Eu 0.4 0.7 75 

Gd 2.1 3.9 86 

Tb 0.5 0.8 60 

Dy 3.5 6.7 91 

Ho 0.9 1.6 78 

Er 3.7 5.8 57 

Tm 0.7 1.1 57 

Yb 5 8.7 74 

Lu 1 1.6 60 

Total 
REE 107.8 210.1 95 
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Figure 7-2: Total rare earth element mass balance around the iron nugget process. 

Concentrations are given in ppm. Recoveries given in weight percent. 

7.3.2 Methods 

The process flow diagram for the rare earth leaching and precipitation can be seen in 

Figure 7-3. The powdered slag was weight into 10-gram samples and placed into a 500 

mL boiling flask. 12 molar hydrochloric acid was added to the boiling flask at a L/S ratio 

of 20. A reflux condenser was fitted to the boiling flask and cooled with tap water. The 

Sample was agitated at a rate of 500 rpm while leaching at a fixed temperature of 90 

degrees Celsius. After a residence time of 1 hour, the leach solution was centrifuged to 

remove any solids and diluted for ICP analysis.  

50 mL of leach solution was added to a large beaker and mixed with 50 mL of 0.5M 

oxalic acid. The pH was then controlled to 2 using sodium hydroxide. The solution was 

mixed for one hour using a magnetic stir bar at 400 rpm for 1 hour. The sample was then 
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filtered to remove solid precipitates that formed. Both the solid precipitate and the tailing 

liquor was subjected to ICP analysis for rare earth concentrations. All experiments were 

done in duplicate for experimental reproducibility. 

 

Figure 7-3: Process flow diagram for rare earth element extraction from red mud iron 

nugget slags via leaching with HCl and precipitation with oxalic acid 

7.4 Results and Discussion 

7.4.1 Nugget slag digestion in HCl 

The slag from the iron nugget process for red mud was digested in concentrated 

hydrochloric acid. The concentration of the leach solution can be seen in Table 7-4. The 

concentrations of the rare earth elements in the leach solution are lower than the 
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concentrations of the solid nugget slags because 20 grams of solids were digested and 

diluted into 200 mL of acid. During the digestion, it was also noted that silica gel began 

to form in the boiling flask. Silica gel begins to polymerize at low pH under 1.7 following 

reactions 7-1 through 7-4 (Rivera et al, 2018). The formation of silica gel is problematic 

to leaching because the ability to filter the solution is taken away. High concentration of 

HCl coupled with centrifuging the leachate rather than filtering was sufficient to remove 

the liquid from the gelled solid silica. A high liquid to solid ratio also reduces the impact 

of silica gel formation (Borra et al, 2015).  

 M2SO4 (s) + 4HCl (l) + H2O (l) ↔ 2MCl2 (aq) + H2O (l) + 
H4SiO4 (aq) 

 

(7-1) 

 H4SiO4 (aq) + H2O ↔ H3SiO4 + H3O 
 

(7-2) 

 H3SiO4 + H4SiO4 ↔ OH + H6Si2O7 

 

(7-3) 

 SinOmOH + H4SiO4 ↔ Sin+1Om+2OH + 2H2O 
 

(7-4) 

The most prevalent rare earth ions in the solution are Sc, Y, La, and Ce. In general, the 

highest concentration elements in the acid leachate are the light rare earth elements. The 

heavy rare earth elements were also dissolved and are present in the leach solution, but 

they are at a much lower concentration.  

Table 7-4: Rare earth element concentration in parts per million (ppm) in 200 mL leach 

solution of 12M Hydrochloric Acid.  

Element 

Nugget Slag 
Concentration 
(PPM) 

HCl Leach 
Concentration 
(PPM) 

Measurement 
error (± PPM) 

Sc 35 3.545 0.005 



174 

Y 45 4.35 0.05 

La 29 2.5 0.02 

Ce 48 3.96 0.05 

Pr 4 0.335 0.005 

Nd 15 1.215 0.005 

Sm 3.2 0.305 0.005 

Eu 0.7 0.065 0.005 

Gd 3.9 0.335 0.015 

Tb 0.8 0.075 0.005 

Dy 6.7 0.635 0.015 

Ho 1.6 0.16 0 

Er 5.8 0.6 0.02 

Tm 1.1 0.105 0.005 

Yb 8.7 0.87 0 

Lu 1.6 0.145 0.005 

 

Table 7-5 and Figure 7-4 show the results of rare earth leaching in terms of total rare 

earth recovery. Under these process conditions, the extraction of rare earths was 

successful. Elements such as scandium (Sc), holmium (Ho), erbium (Er), and ytterbium 

(Yb) achieved over 95% recovery. The lowest recovery was from neodymium and cerium 

which were near 80%. Each of these elements are extracted to differing degrees due to 

their differences in ionic radii and the minerals they might be associated with (Borra et al, 

2015). The total recovery of all rare earth elements together was found to be 90.41%. 
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Elements with low initial concentrations in the nugget slag such as europium and terbium 

had higher degrees of error. This is likely due to the concentrations being near the low 

end of the detection range for the ICP to identify accurately. The majority of the rare 

earths however, contain a small degree of error. The acid leach was able to remove most 

of the rare earth elements and put them in the leach solution so that they can be recovered 

as a precipitate with the addition of oxalic acid.  

 

Table 7-5: Rare earth recoveries in weight percent from red mud nugget slag via acid 

leaching with 200 mL of 12M Hydrochloric acid. 

Element Recovery (%) Error (±%) 

Sc 98.42 0.59 

Y 94.51 1.52 

La 84.28 0.28 

Ce 80.66 1.39 

Pr 81.87 0.84 

Nd 79.19 0.03 

Sm 93.19 1.95 

Eu 90.75 6.56 

Gd 83.99 4.14 

Tb 91.63 5.68 

Dy 92.67 2.61 

Ho 97.76 0.45 
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Er 97.31 3.83 

Tm 93.34 4.87 

Yb 97.76 0.45 

Lu 88.61 3.46 
 

 
Figure 7-4: Rare earth recoveries in weight percent from the red mud iron nugget slag. 

Rare earths were recovered in the leach solution of 200 mL 12M Hydrochloric acid.  

7.4.2 Rare earth precipitation with oxalic acid 

Oxalic acid (H2C2O4) was added to the leach solution to generate rare earth precipitate. 

The following Equation 7-5 shows the generation of rare earth oxalates (Chi and Zu, 

1999). Iron can also precipitate using oxalic acid at higher pH, Equations 7-6 and 7-7 

show the mechanism for iron precipitation (Yang et al, 2016). Iron precipitation along 

with other impurities is troublesome to the rare earth separation. The precipitation of the 

50
55
60
65
70
75
80
85
90
95

100

Sc Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

R
ec

ov
er

y 
(W

t %
)

Element



177 

impurities like iron and aluminum occur at higher pHs above 3. Yang et al (2016) found 

that significant recovery of iron and aluminum in the rare earth precipitate did not occur 

until the pH rose above 3.  

 2𝑅𝑅𝐹𝐹3+ + 3𝑂𝑂2𝐶𝐶2𝑆𝑆4 + 10𝑂𝑂2𝑆𝑆↔ Re2(C2O4)3·H2O + 6𝑂𝑂+ 

 

(7-5) 

 𝐹𝐹𝐹𝐹(𝐶𝐶2𝑆𝑆4)3−3 ↔ 3(𝐶𝐶2𝑆𝑆4)4−2  + 𝐹𝐹𝐹𝐹3+ 

 

(7-6) 

 𝐹𝐹𝐹𝐹3++ 3𝑆𝑆𝑂𝑂− ↔ Fe(OH)3 (s) (7-7) 

The oxalic acid dissociates into two different ionic phases 𝑂𝑂𝐶𝐶2𝑆𝑆4− and 𝐶𝐶2𝑆𝑆42− depending 

on the pH (Gomes Silva et al, 2019). The balance of these two species is important in 

maximizing the recovery of rare earths in the precipitate. The optimal pH for rare earth 

precipitation has been determined to be near 2, the reasons are to maintain the correct 

ratio of the ionic phases of oxalic acid while also keeping the pH low enough so not to 

coprecipitate impurities such as iron, aluminum, etc. (Chi and Zhu, 1999).  

Table 7-6: Rare earth element recovery in the precipitate with oxalic acid 

Element Recovery (%) 
Measurement 
Error (±%) 

Sc 20.73 0.58 

Y 25.97 0.47 

La 26.15 1.64 

Ce 31.11 2.59 

Pr 32.64 6.12 
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Nd 35.84 6.75 

Sm 46.20 0.00 

Eu 0.00 0.00 

Gd 20.40 6.12 

Tb 0.00 0.00 

Dy 35.39 0.00 

Ho 23.08 0.00 

Er 17.95 13.68 

Tm 0.00 0.00 

Yb 26.91 7.07 

Lu 15.12 0.00 
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Figure 7-5: Rare earth recovery in the precipitate of oxalic acid. Rare earth precipitate as 

oxalates. From 0 to 50% recovery. As shown in the graph, Eu, Tb, and Tm could not be 

recovered 

 

The recovery of rare earth elements in the precipitate can be seen in Table 7-6 and Figure 

7-5. The highest recovery was that of samarium at 46%, the majority of elements were 

recovered between 20 and 35%. The total average recovery of all rare earths in the 

precipitate was found to be 22.34%. In the case of Eu, Tb, and Tm, the concentration in 

the precipitate was below the detection limit of the ICP, so it is assumed that none of it 

was recovered. The recovery was below 50% in the precipitate for all rare earth elements. 

During the precipitation of rare earth elements in other works, it was found that the initial 

concentration of rare earths in the leach solution impacted the recovery in the precipitate. 

The higher the initial concentration of rare earth elements in the leach solution, the higher 

0
5

10
15
20
25
30
35
40
45
50

Sc Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

R
ec

ov
er

y 
(W

t %
)

Element



180 

the overall recovery in the precipitate (Chi and Xu, 1999). The hypothesis for why initial 

concentration affects recovery involves the availability of ions to react. In order for 

Equation 7-5 to proceed, 2 rare earth ions must interact with oxalate ions, when the initial 

concentration of rare earths is extremely low, it is unlikely that the oxalate will find 

enough rare earths to form the complex and precipitate.  

Experiments in literature that have seen greater success with oxalic acid precipitation had 

been working with leach samples that were composed of a much higher rare earth initial 

concentration. Gunes et al (2019), were able to precipitate rare earths from an HCl leach 

liquor and achieved between 89.5 and 100% precipitation efficiency. The total rare earth 

concentration was in excess of 32,000 ppm, which is 1600 times higher than the 

concentration found in this red mud sample. Gomes Silva et al (2019) precipitated rare 

earth oxalates from rare earth ores which contained between 2 and 6% rare earth oxides. 

This research was able to recover between 72% and 100% of rare earth elements using 

oxalic acid precipitation. Other red muds found elsewhere in the world contain 

significantly more rare earth elements than this sample, in some case more than 2800 

ppm (Archambo and Kawatra, 2020). A red mud sample with a higher concentration of 

rare earths is likely to be a better candidate for oxalic acid precipitation.  

The presence of contaminant ions such as Al, Fe, Ca, and Mg have also been shown to 

negatively impact precipitation efficiency of oxalic acid, when these ions are present, a 

higher dosage of oxalic acid is required to compensate (Zhang et al, 2020). Red mud 

leach solutions contain a large number of contaminants, even though the iron has been 

minimized through extraction in the nugget process, the other contaminant ions are likely 
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decreasing the leach efficiency significantly. Slags from the iron nugget process have 

been shown to still contain iron values that weren’t recovered, up to 8% by weight 

(Archambo and Kawatra, 2020). 

Table 7-7 shows the production capability of this process for rare earth elements in grams 

per ton. From the table, the acid leach step can extract 170 grams of rare earth elements 

per ton of nugget slag and the oxalic acid can precipitate 45 grams of rare earths per ton 

of nugget slag. Typical recoveries from ion adsorption clays are in excess of 5000 g/ton 

and 15,000 g/ton for rare earth ores (Talens Peiro and Villalba Mendez, 2013). The 

values for this particular sample are low due to the low grade of rare earth elements 

present in this red mud. More concentrated samples of red mud would be able to enhance 

the kinetics of the oxalic acid precipitation and improve the production capabilities of this 

rare earth extraction process.  

Table 7-7: Rare earth element production from red mud nugget slag. Rare earths were 

produced with an acid leach step followed by oxalic acid precipitation. Production rate 

given in grams REE per ton of slag 

  

REE 
produced 
with HCl 
leach 

REE 
produced 
with oxalic 
acid 
precipitation 

Sc 31.4 6.5 

Y 38.6 10.0 

La 22.2 5.8 

Ce 35.1 10.9 
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Pr 3.0 1.0 

Nd 10.8 3.9 

Sm 2.7 1.2 

Eu 0.6 0.0 

Gd 3.0 0.6 

Tb 0.7 0.0 

Dy 5.6 2.0 

Ho 1.4 0.3 

Er 5.1 0.9 

Tm 0.9 0.0 

Yb 7.7 2.1 

Lu 1.3 0.0 

Total 170.1 45.3 

 

7.5 Conclusions 

Rare earth elements are present in Jamaican red mud. These minerals require immediate 

attention because they are used heavily in many different technological sectors. The 

mining and production of these elements has been dominated by China in the last 2 

decades which has caused the U.S. and other countries to become dependent. Research 

must investigate methods to produce rare earth elements on home soil from low grade 

ores and secondary sources such as red mud.  
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Rare earths alone may not have value to be processed from red mud, but extracting iron 

and rare earths may have value. The slags produced from the iron nugget process 

concentrate the rare earth elements even further, up to double the concentration. Use of a 

strong acid such as HCl is effective to dissolve rare earth elements found in red mud at 

recoveries ranging from 80 to 100% depending on the specific element with an average 

total recovery of 90.41%. The formation of silica gel was combatted by using high liquid 

to solid ratios with high molarity acid dosages. The precipitation of rare earth oxalates 

was able to recover between 15 and 50% of the rare earths, depending on the element 

with the average total recovery at 22.34%. It was found that the initial concentration of 

rare earths in the acid leach solution impacts the recovery of rare earth oxalates in the 

precipitate. The low concentration of rare earth elements in this particular sample of red 

mud impacted to recovery significantly.  

Continuing work on this subject should investigate precipitation of rare earths with oxalic 

acid by upgrading the slags by other means such as solvent extraction first. Utilizing red 

mud samples that contain a significantly higher rare earth concentrations may also 

improve recovery of oxalic acid precipitation. Concentrating the rare earths in red mud 

further by removing more impurities such as titanium, aluminum, and silica may also 

prove more effective at generating more rare earth oxalate precipitate.  
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8 Conclusions and Future Work 

The purpose of this dissertation was to find methods to produce red mud that is 

environmentally safe, reduce the amount of red mud that is disposed, and to produce 

valuable minerals from red mud so that they can compete economically with current 

industrial practices. In its current form, red mud is a dangerous material with highly 

alkaline characteristics and concentrations of toxic metals. The growing stockpile of red 

mud globally is a challenge that needs to be address soon in order to prevent the mining 

waste from permanently degrading the environment. The high amounts of iron and rare 

earth elements that are present in red mud can be extracted in order to give the waste 

material value and reduce the amount of waste that is discarded. Cheap and easily 

accessible reagents such as CO2 can be utilized to help prepare red mud for metal 

extraction. 

Carbon dioxide has been shown to be able to significantly reduce the alkalinity of red 

mud by reducing the pH from 13 to 7.5. The reaction of carbon dioxide with red mud 

generates calcium carbonate which can be utilized as a flux material for further 

processing. The calcium carbonate helps to separate iron from red mud using the nugget 

process. This process can reduce iron and remove it from impurities in a single step. This 

process has been shown to generate iron nuggets from red mud at qualities similar to 

blast furnace production. The mechanism of this separation is dependent on the viscosity 

of the nugget slag, which is significantly improved with the addition of calcium or 

magnesium fluxes. Iron nuggets can be produced using calcium carbonate that was 

generated during CO2 neutralization at similar quality to flux added nuggets. This reduces 
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the need to purchase flux material and allows CO2 to be sequestered. The amount of 

material that is disposed of is now up to 40% less than that of the original red mud.  

Red mud on its own can contain a concentrated amount of rare earth elements. These 

metals are critical for many technological sectors of the economy including medicine, 

military, and renewable energy. The dependence of the rest of the world on China for the 

production of these metals needs to be broken by production through secondary sources 

of concentrated rare earths, such as red mud. Iron depleted slags from red mud sent 

through the iron nugget process is able to double the concentration of rare earth elements. 

Using hydrochloric acid, 90% of the rare earths were digested into the leach solution. 

Oxalic acid can be produced cheaply using electrochemical methods from carbon dioxide 

and can be used as a precipitating reagent to form a pure solid rare earth concentrate. 

22.34% of rare earths can be precipitated out of solution using this method with the red 

mud sample that was used at Michigan Tech. The concentration of the leach solution is 

an important factor to optimizing recovery in the precipitate. Utilizing this process with 

higher concentration red muds will likely improve recovery significantly. 
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Figure 8-1: Proposed process flow diagram for efficient utilization of red mud and carbon 

dioxide 

With all of these innovations in mind, Figure 8-1 displays how each of these projects can 

be put together in a single process. With this process flow, carbon dioxide can be 

captured and sequestered in the red mud and converted to produced oxalic acid to 

generate rare earths. The red mud is neutralized with carbon dioxide and then stripped of 

iron and rare earth values, reducing the amount of waste material by 40%.  
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To continue the research that began with this dissertation, red mud samples with different 

compositions should be studied. The chemical phases can vary greatly between red mud 

samples and the optimization of each process on a particular red mud sample may be 

different. Determining optimum parameters for carbon dioxide neutralization and the 

nugget process in varying red mud grades would be beneficial knowledge for the global 

red mud issue. In addition, red mud samples with rare earth contents below 100 ppm 

should not be considered for extraction and higher rare earth content muds should be 

investigated. New methods may be explored to remove valuable minerals from bauxite 

ore to circumvent the generation of red mud entirely.  
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	Abstract

	Red mud is an industrial slurry waste that is produced as a byproduct of the Bayer process for alumina. The waste is generated in large quantities, up to a ratio of 2:1 against the valued product alumina. Red mud exhibits many chemical and physical pr...
	The pH of red mud can be reduced with inexpensive reagents. Carbon dioxide is a greenhouse gas that is finding a great deal of research into potential sinks to reduce the footprint on the atmosphere. Combining carbon dioxide with red mud can effective...
	Red mud can be utilized to produce a variety of value-added products. Most red muds around the world contain a large quantity of iron, titanium, aluminum, and rare earth elements. One method of removing the iron is through the iron nugget process whic...
	The current view of red mud as a waste material is misleading. The proposed work will investigate methods to reduce the hazardous nature of red mud by reducing the pH and also remove valuable minerals. This will effectively give value to the waste pro...

	1 General Introduction
	The waste created from alumina processing poses a large threat to the world and a problem for the mining industry has yet to solve. Its estimated that red mud is produced at a rate of 120 million tons per annum (Power et al, 2011). This red mud doesn’...
	Red mud is composed of fine particles in a slurry which contain a multitude of different minerals. The particle size is typically in a range near 10 microns or smaller (Paramguru et al, 2004). Red mud also is recognized for its signature high alkalini...
	Figure 1-1: The Bayer Process, the generation of valuable alumina and red mud from bauxite ore.
	The current strategy for red mud disposal and storage is not working and needs to be adapted. Waste reservoirs for red mud do not effectively contain the hazardous material. For example, the red mud spill in Hungary on October 4th, 2010 saw a breach i...
	Figure 1-2: Satellite image of the red mud spill in Ajka, Hungary in 2010. Jesse Allen, Devecser és Kolontár térsége a vörösiszap katasztrófa után, marked as public domain, more details on Wikimedia Commons
	Red mud can be utilized to remove minerals which possess value and could be sold. Most red muds contain a large weight percentage of iron that ranges from 20- 60% (Paramguru et al, 2004). Removing iron from red mud waste can potentially reduce the amo...
	This dissertation will investigate methods to reduce the amount of red mud as well as reduce its hazardous properties. Chapter 2 explores the current state of alumina and red mud production around the world and the current state of research into neutr...

	2 Red mud: Fundamentals and new avenues for utilization0F
	2.1 Abstract
	Red mud is generated at a rate of up to 175.5 million tons per year. The global stockpile of red mud is near 4 billion tons. This material is hazardous with pH values from 11 to 13. Reduction of this waste is critical. Current industry practices for d...

	2.2 Introduction
	The increase in demand for products containing aluminum has led to a sharp increase in production of aluminum around the world. Only one method is suitable for economically producing alumina at such a large scale, which is the Bayer process. The bypro...
	Red mud is a hazardous material with high pH ranges. These caustic sludges are dangerous to environments near red mud disposal sites and people that live near them. Reducing the risk of contamination is crucial and many research projects have investig...
	Total utilization of red mud is only 3 million tons per year, mainly as an additive into cements (Pontikes and Angelopoulos, 2013). This equates to less than 1 percent of red mud being utilized which is shocking because red mud contains many valuables...
	Many red muds also contain elevated concentrations of rare earth elements, which are strategically critical resources that are becoming of even more vital importance to the world in recent times. China controls the market on rare earth elements at 78....
	Understanding how red mud is generated and the physical and chemical properties associated with it helps to drive the investigation on extracting values from red mud while reducing the environmental risk and shrinking the total stockpile of red mud. T...
	2.2.1 Bauxite ore, mineral precursor to red mud
	Bauxite is the main feed ore that is used in alumina production. It can be found in different ore bodies around the world. Many countries have been mining bauxite to produce alumina and based on the U.S. Geological Survey in 2020, the worldwide bauxit...
	Table 2-1:Bauxite ore reserves and production worldwide (U.S.G.S, 2020)
	Bauxite is not one mineral, but rather a conglomerate of multiple aluminum bearing minerals with other gangue minerals. These gangues consist of iron oxides (Fe2O3 and FeO(OH)), clay minerals like silica and kaolinite, and titanium minerals such as ru...
	In terms of worldwide alumina production, 69.6% of ore mined is gibbsite, 24.6% is boehmite, and 5.8% is diaspore (Paramguru et al, 2004). These materials vary in their crystal structure and stability, resulting in differing difficulties in processing...
	Table 2-2: Bauxite ore types found in each producing country of alumina (Paramguru et al, 2004)

	2.2.2 The Bayer Process
	The Bayer process is the most commonly used method of producing alumina from bauxite on a large scale. The process consists of a series of unit operations that are chemically and energy intensive. Red mud is generated during this process in large quan...
	Figure 2-1: Simplified process flow diagram for the Bayer process
	2.2.2.1 Milling and Desilication
	To increase the available surface area for digestion, the first step of the Bayer process is a fine grinding step. This grinding aims to reduce the bauxite ore to a particle size of less than 150μm.
	The desilication step occurs before the dissolution of bauxite in order to transform chemical species that will react with caustic at the high pH range of the digestion tanks. The goal is to dissolve reactive species that would contaminate the product...
	Precipitation occurs via Equation 2-2 where Desilication product (DSP) is formed (Kotte, 1981). Parameters that affect this reaction are temperature, silica concentration, alumina concentration, caustic concentration, and DSP surface area.
	The ratios of different species are important to maximize efficiency of the process, high caustic concentration increases dissolution but decreases precipitation, and high alumina concentration decreases dissolution but increases precipitation (Kotte,...
	2.2.2.2 Digestion and Clarification
	The desilication product is fed into the digestion tanks for dissolution. The conditions inside the tank vary depending on the primary type of bauxite being digested, as mentioned earlier the three most common types of bauxite ore are gibbsite, boehmi...
	At these temperatures and pressures the alumina-bearing minerals can be dissolved in highly alkaline solutions, but the other oxide minerals (including hematite and rutile) will remain insoluble. Silica can be dissolved depending on the type that is p...
	The clarification process separates the pregnant liquor solution of aluminates from the remaining undissolved solids. This is the step of the Bayer process that generates red mud and it is a large aspect of alumina production as a whole. The separatio...
	The solids are put through a series of filters and thickening tanks to increase the solid/water ratio of the waste and remove the aluminate liquor. Filtration of red mud must remove all solids from the aluminate liquor so that impurities do not persis...
	2.2.2.3 Precipitation and Calcination
	After the red mud has been removed from the system, the purified pregnant aluminate solution is crystallized into a pure solid aluminum hydroxide. Reactions relevant to precipitation of solid aluminum hydroxides from the liquor solution can be seen in...
	The next step of the process requires carefully controlling the precipitate’s size distribution. Within the precipitation unit operation, the seed crystal size distribution must be carefully controlled to keep the product size consistent. Within the p...
	Figure 2-2: Flow diagram for aluminum hydroxide precipitation and size classification in the Bayer process
	The solid product from precipitation is fed into the calciner to drive off moisture and yield solid alumina (Al2O3). Calcination of alumina is performed using rotary kilns, fluidized bed calciners, or other similar technologies. The chemical reaction ...
	This is the final product of the Bayer process. The total energy expended in the Bayer process to produce 1 kg of alumina is 12.77 MJ (Balomenos et al., 2011). The produced Alumina can be further processed by the Hall-Heroult process to electrochemica...
	Table 2-3: Worldwide alumina production in 2019 (USGS, 2020)

	2.2.3 Characterization of red mud
	The solid residue that is rejected after digestion in the Bayer process is known as red mud. These are the materials which did not dissolve during the dissolution step. The mineral phase composition of red mud varies very widely depending on the sourc...
	Table 2-4: Mineral oxide composition ranges of red mud
	Table 5 shows the various composition of red mud around the world. The key takeaway from Table 2-5 is that red mud composition varies significantly from location to location, and characterization at the scale of individual plants is important for char...
	Table 2-5: Mineral phase compositions of various red mud sources worldwide
	Red mud mineral composition is not limited to what is shown in Table 4 and Table 5, depending on the source of the ore, a plethora of other elements could also be present in red mud waste. The red mud might have high content of valuable metal elements...
	Table 2-6: Rare earth element concentration of red mud comparison with earth average crust composition. Concentrations in parts per million (ppm). (Elements not tested for in each study are represented with a “-“)
	Red mud is also characterized by its high alkalinity that comes from residual sodium hydroxide that was used to dissolve bauxite in the digestion stage of the Bayer process. As mentioned previously, the desilication product which removes soluble silic...
	Another major concern is the possibility of concentrating radioactive and toxic elements within the red mud, similar to how the rare earths can be concentrated. Elements such as uranium and thorium can be present in bauxite ores with radio activities ...

	2.2.4 Worldwide production of red mud
	The stockpile of red mud is only due to increase, due to continuously increasing demand for aluminum production around the world and a lack of competitive alternatives to the Bayer process. There were 130 million tons of alumina produced in 2019, as w...
	Currently, there are 84 alumina plants around the world that operate and produce red mud (Patel and Pal, 2015). Most of these plants still utilize the Bayer process with some exceptions in countries like Russia, Iran, and China which use alternative p...
	China is by far the largest producer of alumina and subsequently red mud in the world. In 2019, China produced 73 million tons of alumina, from Table 3. On a red mud basis, China produced 88 million tons annually, 1.2 times the amount of alumina (Wang...
	Australia is currently the number 2 producer of alumina in the world with a 2019 production of alumina of 20 million tons. The annual production of red mud for this country is reported to be 30 million tons, 1.5 times the amount of alumina produced in...
	• Yarwun (Queensland) – Rio Tinto Alcan
	• Kwinana (Western Australia) – Alcoa of Australia
	• Pinjarra (Western Australia) – Alcoa of Australia
	• Queensland Alumina Limited (Queensland)- Rio Tinto Alcan, Rusal
	• Wagerup (Western Australia) – Alcoa of Australia
	• Worsley (Western Australia) – South 32- Worsley Alumina
	Australia has dealt with its red mud issue by processing the waste so that it has a lower and less caustic pH. The neutralization method is with seawater to drive down the pH so that it can be used more easily in other projects or for extraction of ot...
	In India, red mud is generated at six different plants; NALCO, HINDALCO, VEDANTA, UTKAL, RAYKAL, ADITYA, and JSW. The total production of red mud for these Indian plants is summarized in Table 2-7. Its estimated that India accounts for 6.25% of the wo...
	Table 2-7: Yearly generation of red mud in India by alumina plant (Patel and Pal, 2015)
	There is a strong push in European alumina plants to minimize the production of red mud, due to geographic necessity. Many European alumina plants do not have access to large amounts of land space for reservoirs. This results in two things, reduction ...
	The major producers of alumina and red mud in the Americas are Brazil and Jamaica. These countries have high amounts of bauxite ore reserves at 2.6 and 2.0 billion tons respectively from Table 1. Alunorte in Brazil produced 6 million tons per year in ...


	2.3 Disposal Practices for red mud
	Lagoon impoundments were common for red mud disposal before the 1980s. Dry stacking methods began to replace lagooning methods as land space for lagoons became scarce. Dry stacking reduces the land area required at the same time reducing the liquor re...
	Disposal of red mud is one of the key aspects of any aluminum processing operation. Between 1.9 and 3.6 tonnes of bauxite ore is required to generate 1 ton of alumina product and the rest becomes red mud (Hind et al, 1999). With the large environmenta...
	Table 2-8: Red mud disposal practices by plant
	2.3.1 Seawater disposal and lagooning
	Seawater disposal of red mud is currently regarded as a method of last resort. The red mud is released directly into a nearby water source once it is separated from the alumina liquor. Marine ecosystems are greatly affected by red mud disposal because...
	The second method of red mud disposal is referred to as lagooning. Red mud is pumped into land-based storage areas after it is removed from the Bayer process. Figure 2-3 shows an example of a red mud tailings reservoir in Germany. Lagooning requires a...
	All parameters of importance must be considered when designing and installing tailings reservoirs. Doing so can prevent a breach in containment and spill caustic waste into the environment. In addition, the construction of the reservoirs usually inclu...
	Figure 2-3: A red mud tailings reservoir in Stade, Germany. Ra Boe / Wikipedia (https://commons.wikimedia.org/wiki/File:Luftaufnahmen_Nordseekueste_2012-05-by-RaBoe-478.jpg), “Luftaufnahmen Nordseekueste 2012-05-by-RaBoe-478“, https://creativecommons....
	The careful consideration of the requirements for the construction of lagoons are very important for the consideration of the local communities. One example of a catastrophic failure of a red mud impoundment was the disaster at Ajka, Hungary. 700,000 ...
	A study done in central China showed the effects of red mud reservoirs on the surrounding environment. Concentrations higher than China’s standard for surface water of dangerous ions such as fluorine ions, sulfate ions, mercury, and arsenic were repor...
	The lagooning of red mud has been a good way to dispose of red mud in the earlier years of alumina production, before demand became so high. For red mud disposal today, lagooning requires more land area to sequester mine waste that could be more effec...

	2.3.2 Dry methods- Thickened tailings disposal
	Multiple factors have led to the development of improved disposal methods for red mud. These processes are named thickened tailing disposal (TTD) because generally the main objective is to decrease moisture content of the slurry. Lowering the moisture...
	For dry stacking technologies, the rheology of the red mud slurry plays a substantial role in the effectiveness of the process. Red mud slurries are thixotropic, which means that the surface viscosity decreases as stress on the fluid increases. Theref...
	2.3.2.1 Thickening/Flocculants
	The particle size of red mud slurries proves to be one of the most difficult aspects of handling the material. With most red mud slurries containing particles smaller than 10 microns at 80% passing, the settling rates for the solids in these slurries ...
	Figure 2-4: The thickening circuit for red mud before disposal discharge
	Chemical additives are introduced in order to increase the speed of sediment settling. These flocculants attach to many small particles like a glue and agglomerate to larger diameter particles which settle much faster. The flocculant bridges across ma...
	Figure 2-5: Flocculation of Ultrafine Red Mud Particles. A) Red mud slurry suspension without flocculant B) Red Mud slurry suspension with the aid of flocculants
	The structures of each of these molecules can be seen in Figure 2-6. The starches amylose and amylopectin are used less frequently today because they have a limited charge density and a small molecular weight for an effective flocculant (Ballentine et...
	Traditionally, starch had been the primary flocculant in thickening operations of red mud, but the industry has moved to using acrylamide and polyacrylate polymers as a means to settle red mud. The reasons for this are the lower dosages required for p...
	Figure 2-6: Chemical structures of flocculants used to clarify Bayer process liquor and thicken red mud. (A) polyacrylamide (B) Polyacrylate (C) Amylose starch (D) Amylopectin starch
	2.3.2.2 Dry Stacking Slurry
	Dry stacking the red mud slurry involves thickening to between 45-55% solids and depositing it in thin layers in drying cells between 300 mm and 500 mm thick. At this moisture, the slurry is still pumpable and needs to evenly coat the drying cell. The...
	2.3.2.3 Dry Stacking Cake
	With the use of filtration alongside thickening, red mud can be thickened to up to 60% solids. Red mud of this moisture content no longer acts as a flowable fluid but as a wet solid. The red mud behaves non-thixotropically at this moisture content bec...


	2.4 Neutralization techniques of red mud
	The high alkalinity of red mud is the most significant factor contributing to its classification as a hazardous waste. The typical range of pH for red mud discharged from an alumina plant is between 11 and 13 due to residual strong bases and partially...
	2.4.1 Seawater neutralization
	As stated previously, red mud has a high pH once it exits the process to the disposal area. Much research has gone into methods to reduce the risk of red mud waste to the environment and the human population centers around it. One such method is to mi...
	The neutralized red mud exhibits a tendency to settle its fine particles more quickly than general red mud waste. Regular red mud waste contains high sodium concentrations, which can become bound to aluminosilicate and aluminum oxide minerals which ca...
	Many are concerned that neutralizing red mud with seawater will contaminate the water with alkaline ions and concentrated toxic elements. McConchie et al. (1996) found that the seawater discharge from red mud contained concentrations that are very com...
	In the process developed by Queensland Alumina Limited (QAL), the mud from the last washer underflow is pumped to the residual disposal area using seawater (Cristol and Greenhalgh, 2018). The mud is allowed to mix with the excess of sea water in an ag...
	The precipitates from the neutralization process and the red mud are separated using the clarifier. Clarifier underflow consists of neutralized red mud and the overflow consists of magnesium deficient sea water is fed to decant pond to recover any sol...
	Figure 2-7: Process Flow diagram of Seawater Neutralization at QAL
	This process offers several advantages such as low cost of seawater addition, good quality of decanted water meeting regulatory expectations, low risk of ground water contamination due to seepage from the dam and low risk to employees due to non-hazar...

	2.4.2 Carbon dioxide neutralization
	Carbon dioxide is a byproduct of industry which majorly contributes to environmental pollution. Carbon dioxide that is released into the air is an unutilized source of material that can be used in other material processes. Research has gone into findi...
	Carbon dioxide reacts in red mud primarily with its most prevalent alkaline component, Tri-calcium aluminate (TCA). Dissolution of TCA is what liberates the alkalinity in red mud by exposing OH anions. The following reactions show the interaction betw...
	The pH of red mud is known to rise again after the CO2 gas has been added. The pH of red mud continues to change over large periods of time after the addition of CO2. Rivera’s work on CO2 neutralization before acid leaching for metal recovery was able...
	Archambo et al. (2020) neutralized red mud with CO2 in 1-hour cycles at a gas flow rate of 10 ml/min; the pH of the red mud was reduced down to as low as 7. The experimental setup is described in Figure 2-8. 1 Kg of Red mud was placed in an open 2000 ...
	Figure 2-8: Process flow diagram for red mud pH neutralization using CO2 gas
	Nearly as soon as the CO2 stream was shut off from the experimental cell, the pH began to rise again as seen in Figure 2-9. Experiments were also done to determine a final pH for neutralized red mud, the red mud was neutralized for 1 hour and then the...
	Figure 2-9: Red mud neutralized with CO2. pH recorded over a period of 15 hours.
	Figure 2-10: Red mud neutralized with CO2. pH recorded over a period of 7 days
	Over a longer period of 7 weeks, Rai et al. (2013) reduced the pH of red mud to around 7 and allowed the pH to rebound for a week and then neutralized it again. For 7 neutralization cycles, it was observed that the pH would always rise to 9-9.5 over t...
	In order to determine which size fraction of red mud was most effective at sequestering carbon dioxide, neutralizing experiments of red mud were performed on three different average size fractions of 5 microns, 30 microns, and 50 microns (Yadav et al,...
	The Kwinana refinery in Australia conducted pilots scale experiments and eventually was able to implement a full-scale CO2 neutralization of red mud. They were able to initially achieve pH of 8.5 while under pressure, but over time once the red mud wa...
	A far more likely scenario is one where CO2 neutralization is used as a pretreatment for the extraction of minerals from red mud where the red mud is processed soon after neutralization and the pH rebound does not occur. Important chemical phases are ...
	Table 2-9: X-Ray Diffraction of red mud that has been neutralized with CO2
	After a neutralization cycle, from the table, an XRD of red mud showed an increase in calcium carbonate content by 2%. Calcium carbonate, or limestone is a material used in iron and steelmaking as a flux material in order to enhance separation of impu...
	CO2 has proven to be effective in removing a portion of the alkalinity of red mud. Experimental work must still be done to discover a method for CO2 to completely and permanently remove the alkaline solids from red mud. This method of neutralization d...


	2.5 Utilizing red mud waste as a valuable material
	2.5.1 Iron recovery
	Because of the typically high weight percent of iron in red mud, many researchers have sought to extract this value from the waste using a variety of methods. Removing iron from red mud effectively reduces the total amount of red mud that is being dis...
	Direct reduction of hematite present in red mud has been studied intensely. The direct reduction of iron ores reduces the iron oxides but does not separate it from gangue material. The product of an iron direct reduction process can be used as a feed ...
	Using self-reducing pellets composed of red mud and varying amounts of crushed coal, iron bearing red mud was reduced and then subjected to a low intensity magnetic separation (Sadangi et al, 2018). It was found that the reduced red mud can be upgrade...
	Sodium salt additions have been shown to improve the separation of iron from red mud when reduced and then separated magnetically. The salt acts as a catalyst which allows reduced iron crystals in the red mud to grow to larger sizes, which improves ef...
	Bhoi et al. (2017) investigated direct reduction of red mud using hydrogen plasma. Dried red mud pellets were reduced with hydrogen plasmas at temperatures between 300 and 800 C. The hydrogen plasma reduces the hematite and magnetite to metallic iron,...
	Yiran et al. (2014) sought to improve the grade of high-grade red mud by using high gradient magnetic separation (HGMS). If iron rich red mud could be upgraded to iron ore pellet grade, then the red mud would be able to be charged into the blast furna...
	Another method for removal of iron from red mud is the generation of pig iron nuggets. This method begins with rolling self-reducing pellets containing a reducing agent such as coal or coke within them and firing them at high temperatures above 1400 ℃...
	1. Use of iron reducing reagents other than coking coal (Anameric and Kawatra, 2008).
	2. Lower grade feedstocks like red mud can be used (Srivastava and Kawatra, 2009).
	3. Iron can be produced on a smaller scale (Anameric and Kawatra, 2008).
	Figure 2-11 shows the basics on how the process works to reduce and separate iron from red mud. The nugget process differs from blast furnace iron production because the melting iron is achieved through carburization, which decreases the melting tempe...
	Figure 2-11: The red mud iron nugget process iron separation diagram. (A) The mixed pellet of red mud and a reducing carbon material is heated. (B) the reduced iron begins to sink to the bottom of the pellet. (C) An iron nugget forms separate from the...
	Iron nuggets have also been generated using powdered wood as the reducing agent. Red mud is rolled into pellets with additives of powdered wood, bentonite, and dolomite flux and then dried in an oven to remove moisture. The pellets are placed into cru...
	Figure 2-12: Process flow diagram for the red mud iron nugget process (Archambo and Kawatra, 2020)
	Iron recovery over 80% was achieved with the iron purity of the nuggets reaching 90% Fe (Archambo and Kawatra, 2020). Iron nuggets were formed over a range of residence times from 30 minutes to 120 minutes with similar iron purities above 90% iron. Mi...
	Table 2-10: X-Ray Fluorescence (XRF) of red mud iron nuggets chemical composition (Archambo and Kawatra, 2020).
	Figure 2-13: Red mud iron nugget process with powdered wood reducing agent. Total weight recovery of iron with changing residence time. (Archambo and Kawatra, 2020)
	Using anthracite coal, iron nuggets were produced in a furnace at 1500 ℃ yielding pig iron with an Fe purity of 96.52% (Guo et al, 2013). Pig iron nuggets have also been generated using thermal plasma technology (Jayasankar et al, 2012). Optimum iron ...
	In North America, iron ore is beneficiated using deslime thickening or selective flocculation. A flocculating reagent attaches selectively to iron ore and generates flocs with a larger particle size in a mineral suspension. These larger particles sett...
	Due to the difficulty in dewatering red mud by filtering or thickening for pyrometallurgical extraction, hydrometallurgy seems to be a promising route for iron recovery. There have been a multitude of leaching studies for the extraction of iron from r...
	Oxalic acid has been selected to leach iron for a number of studies. One such study leached iron from HCl washed red mud using oxalic acid. The leach ratio of iron for this experiment was reported to be 94.15% and the oxalic acid was regenerated so th...
	Figure 2-14: Process flow diagram for iron leaching via oxalic acid (Yang, 2015)
	Yang et al (2016) improved upon the process for iron leaching with oxalic acid by adjusting the pH with calcium carbonate to selectively dissolve the iron more efficiently.
	In summary, iron found in red mud can be reliably extracted using a variety of pyrometallurgical and hydrometallurgical processes. Recovering iron from red mud can reduce the total amount of disposed red mud by up to 55% by weight depending on the ini...

	2.5.2 Titanium recovery
	Available in smaller weight percent’s than iron in red mud, titanium is another metal that has potential for extraction. This is because titanium is a more expensive metal with a more difficult production process. Titanium rich ores also occur far les...
	Tests to recover titanium with sulfuric acid have shown that 64% of the titanium can be recovered along with amounts of iron and aluminum, a low solid to liquid ratio showed increased titanium recovery while lowering aluminum and iron recovery (Agatzi...
	The solids were then roasted with sodium carbonate to form water soluble minerals from the remaining aluminum and silica following reactions 2-30 and 2-31 (Kasliwal and Sai, 1999). An increase in enrichment of titanium after the roasting step was dete...
	A study conducted by (Huang et al, 2016) sought to purify leached titanium from dissolved iron using a precipitate flotation method outlined in Figure 2-15.  A majority of iron is removed from red mud using a deslime- thickening process, then the tail...
	Figure 2-15: Simplified flow diagram for enriching titanium in red mud using precipitation flotation (Huang et al., 2016).
	In order for titanium to become a viable byproduct from Bayer red mud, the most promising processes are those that also produce iron through leaching. The development of processes that can separate iron and titanium from the leach solution will be the...

	2.5.3 Rare Earth element/Scandium/Gallium recovery
	The group of elements on the periodic table from atomic numbers 57 to 71 are considered as the rare earth elements. Scandium and yttrium are typically included in this category as well due to similarities in their chemical properties (Balaram, 2019). ...
	Red mud is a promising source for critical rare earth elements. It is also worth mentioning that the compositions of rare earths in different red mud samples can vary widely, some elements may be most prevalent in one sample while not appearing in ano...
	The predominant methods for rare earth extraction have been in ion exchange methods, extraction with organic solvents, and precipitation of low soluble compounds (Akcil et al, 2018). Most rare earth elements exhibit very similar chemical properties, w...
	Table 2-11: Rare earth extraction percent from red mud utilizing different reagents, temperatures, and residence times.
	Leaching REE’s from red mud using ionic liquids has also been studied. An ionic liquid is an ionic material that is typically a liquid at room temperature and it is made up entirely of ions. These ionic liquid solutions can dissolve rare earth oxides ...
	Biosorption routes have also been investigated in depth, different projects have reported the extraction of Lanthanum, Neodymium, Cerium, Erbium, Europium, Samarium, Praseodymium, and Dysprosium (Das and Das, 2013). The mechanism that allows biosorpti...
	Research has recently put a heavy focus of extraction of scandium specifically from red mud. Scandium is one of the most expensive rare earth elements with a price of 3,487 USD/Kg in 2020 (Mineral Prices, 2020). One route for scandium recovery is synt...
	Another valued element that has potential to be removed from red mud sources is gallium, which tends to occur in red mud at similar quantities to that of scandium. Liu et al. (2018) found that the red mud from the Chalco aluminum plant in Shandong, Ch...
	Samples from the Turkish red mud plant Seydişehir were used in a gallium extraction experiment by alkaline leaching with lime followed by TCA precipitation and carbonation; the concentrate solution contained 3200 ppm gallium (Abdulvaliyev et al, 2015)...
	In summary, red mud contains a large amount of rare earth elements which have been concentrated from bauxite ore during the Bayer process. Utilization of red mud as means of rare earth element production can simultaneously reduce the amount of red mud...

	2.5.4 Catalysis
	One area that red mud is seeing a sharp increase in utilization research is that of catalysis. This field has a wide range of applicability for the case of red mud. Red mud has been used as a catalyst for tests to remove organics from wastewater. With...
	Catalysis in oil and gas industries is a field that is growing in prominence. With increasing regulations on flue gas compositions that can be discharged to the environment, many research projects have investigated cost effective methods to remove haz...
	Red mud has also seen use as a catalyst in production of fuels. Contamination with sulfur components in fuel is very undesirable for the final product and they must be removed. One project used red mud as a catalyst with hydrogen peroxide and acetic a...
	These processes are very interesting and novel uses for red mud which cover a series of different research fields. The overall utilization of the total amount of stored red mud via these methods will be low compared to other means of utilization. For ...

	2.5.5 Construction/Ceramics
	Red mud has been considered as a bulk construction material over the years. The bulk utilization of red mud in long-term construction would eliminate the majority of storage costs and environmental hazards. Research is currently ongoing on how to effe...
	Understanding the effects of different parameters on the strength of red mud for a building material are important. These were investigated in mixtures of red mud and lime, it was found that important parameters to consider are lime content, porosity,...
	Red mud has a similar particle size distribution to clays used to make insulation bricks. Red mud can be mixed with sawdust to form similar bricks comparable to standard insulation bricks, with the best results occurring around a 7.5% saw dust content...
	Due to the presence of minerals in red mud such as Fe2O3, Al2O3, and silica, red mud has potential to be an ingredient in the production of cement (Liu et al, 2011). One study blended fly ash with red mud for a cement additive in order to reduce the ...
	Cement production could be an excellent method for bulk utilization of red mud. Lui et al. (2011) showed that the fine particle size of red mud helps to demonstrate a normal consistency in cements with strong mechanical properties. Lui et al. (2011) n...
	The high content of largely inert components in red mud, such as quartz and hematite, give credibility to the idea that red mud can be used as a feed source of material for the ceramics industry. Heating tests to determine the properties of red mud at...
	Work has been done to enhance the properties of red mud itself as a ceramic material, specifically using geopolymer technology. It was shown that when using red mud as the aluminosilicate precursor by submerging the mud alkaline activating solutions w...
	Dimas et al. (2009) found that geopolymers formed using red mud as the precursor, had high compressive strength at 20.5 MPa, 1.28% cold water absorption, and 0 cm3/cm2 per day water permeability. Others studies have been done to determine an ideal wei...
	Use of red mud as material for construction can utilize a large amount of red mud with little modification to the dry product. Demand for cement and other construction materials is high and if red mud can be implemented at a high weight percent, the r...

	2.5.6 Using red mud to remediate soil and water
	Red mud has been seen as a material that is detrimental to wildlife and a serious harm to the environment. Some research has gone into actually using red mud to improve the conditions of solid by removing dangerous heavy metal ions. This is possible b...
	Red mud can be effective at removing dangerous ions from other contaminated sources which is great for cleaning water sources and soils. The issue here is that the red mud that has been used now contains a higher concentration of dangerous metal ions ...


	2.6 Conclusions
	Red mud continues to be a serious issue in regards to the aluminum industry and the state of the environment impacted by mining operations. The variation in composition for red muds around the world creates a difficult problem for a unified method of ...
	The properties of red mud from the Bayer process make the material very difficult to dispose of and where it is disposed, a large amount of land area is consumed with the potential of soil contamination from caustic levels, toxic, and radioactive elem...
	The removal of alkalinity from red mud is one of high importance. Methods of pH reduction of red mud have been successful using simple reagents. Carbon dioxide neutralization provides an option for greenhouse gas sequestration in an industry that prod...
	Processes that seek to remove iron from red mud can potentially decrease the amount of red mud by 50% by weight. Direct reduction, acid leach, and direct smelting processes have shown that reliable iron grades can be produced from red mud with the add...
	Rare earth elements have been found in concentrated quantities in red mud. During a time when finding a source of production for these vital minerals is critical, red mud seeks to become a promising feed stock for secondary production of rare earth me...
	The large amount of laboratory studies shows that there is value in this process waste in the form of low to mid-grade iron ores, titanium ores, rare earths, and residual aluminum. This gives us another reason to look at red mud as a valued feedstock ...
	The large stockpile of red mud that has been building since the Bayer processes inception desperately requires utilization options. With the increasing demand for alumina in the world, the amount of red mud being produced every year is growing exponen...
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	3 Optimization studies for red mud neutralization with carbon dioxide
	3.1 Abstract
	Red mud is a caustic aluminum byproduct that must be neutralized in order to process and recover valuable iron. Typically, red mud has a pH of 13 or higher, making it dangerous to handle and for the environment. Carbon dioxide is a greenhouse gas and ...

	3.2 Introduction
	The alumina industry has grown considerably over the last few decades, using the Bayer process to produce valuable alumina from bauxite ore. The problem that grows yearly in the alumina industry is the generation and management of its processing waste...
	Figure 3-1: Simplified process flow diagram for the Bayer process.

	3.3 Experimental
	3.3.1 Materials
	The red mud that was used in the following experiments was acquired from an alumina plant located in Louisiana, USA. The plant processes bauxite ore that is mined in Jamaica. The original solids content of the mud sample was found to be near 60% and t...
	Figure 3-2: Particle Size distribution for the red mud sample used for neutralization experiments
	Table 3-1: Chemical distribution of red mud

	3.3.2 Methods
	The neutralization setup for red mud with CO2 can be visualized in Figure 3-3. Red mud charges of 800 grams were placed in a 2-liter beaker and distilled water was added at a 1:1 ratio so that the red mud could be mixed until it became homogeneous. Th...
	Figure 3-3: Experimental setup for red mud neutralization using CO2 as a neutralizing agent


	3.4 Results and Discussion
	Figure 3-4: Neutralization of red mud with CO2. Flow rate of 1 liter per minute for 1 hour.
	Table 3-2: Chemical phase composition of CO2 neutralized red mud
	Figure 3-5: CO2 neutralized red mud pH rebound. Neutralization was done with a CO2 flow rate of 1 liter per minute. The neutralization cycle lasted for 1 hour and then the gas was turned off. pH of the slurry was measured daily.
	Figure 3-6: Long term effect of pH rebound on the neutralization of red mud with CO2. Recorded red mud pH up to 24 weeks after initial neutralization at a flow rate of 1 liter per minute.
	3.4.1 Effect of CO2 Flow Rate on pH neutralization
	Figure 3-7: Red mud neutralization with CO2 with flow rates of 0.5, 1, and 5 liters per minute
	Table 3-3: Amount of CO2 required in red mud neutralization with varying flow rates
	Figure 3-8: pH rebound of CO2 neutralized red mud at varied flow rates. pH was recorded daily after neutralization for 14 days.

	3.4.2 Effect of Neutralization time on red mud pH
	Figure 3-9: Red mud pH after being neutralized with CO2 for 6 hours. Flow rate of CO2 was held constant at 1 LPM. pH was recorded daily for 14 days.

	3.4.3 Effect of CO2 neutralization on red mud zeta potential
	Figure 3-10: Visual explanation of the electric double layer. The zeta potential is the electric potential measured at the shear plane.
	Figure 3-11: Zeta potential vs pH of red mud before and after neutralization with CO2.


	3.5 Conclusions

	4 Utilization of Bauxite Residue: Recovering Iron Values Using the Iron Nugget Process1F
	4.1 Abstract
	Red mud waste from aluminum processing was utilized as a material for extraction of iron. Red mud contains a high amount of iron, comparable to feedstock to North American iron mines, and extracting this iron value is paramount. The iron nugget proces...

	4.2 Introduction
	Bauxite residue (red mud) is an aluminum processing waste that contains valuable minerals and can be exploited as a feedstock. Red mud is an environmental problem for industry due to its high pH, small particle size, and high disposal costs. Bauxite R...
	The Bayer Process treats bauxite ore to produces alumina. Red mud is a byproduct created as a result of the process. Following the digestion of bauxite in sodium hydroxide (NaOH), the green liquor containing dissolved aluminates is removed so that it ...
	Removing the environmental hazard of red mud is beneficial for those who work with the material and those who live near the reservoirs. Red mud storage reservoirs can collapse and cause serious damage to the surrounding area. In 2010, a red mud dam co...
	Bulk utilization of red mud has been expanded into many different research areas. Most prominently, red mud can be used as a component to make cement, with various mixtures including lime, bauxite, and gypsum (Liu, 2011). Mixing red mud with other com...
	1. It reduces the hazard of red mud and makes it a more valuable feedstock.
	2. It provides a sink for carbon emissions to reduce greenhouse gases.
	3. Improve the quality of used process water
	4. Reduce the risk of groundwater contamination
	Red mud has a chemical composition that varies widely and very often contains valuable minerals. These mineral compositions change because the ore bodies at each location are different. Table 4-1 shows red mud compositions throughout the world. As can...
	Table 4-1: Red mud compositions from various plants and laboratories around the world. Elemental compositions determined by XRF. Redrawn from (Grafe, 2011) and (Sutar, 2014)
	Extracting value of red mud is critical to reducing the amount of waste produced. Red mud could serve as an iron feedstock comparable to the iron ore feed stocks for Midwestern mining facilities. Determining how to economically extract this iron value...
	The primary method for making steel has always been the blast furnace. This method uses iron ore pellets, coke, and flux to make metallic pig iron. This process has its drawbacks and limitations (Zervas, 1996):
	To effectively compete with the blast furnace, a process would have to be one which can operate on a small scale and effectively handle iron feed stocks with widely varying grades. A large flaw that the blast furnace has is that it can only be done ec...
	The process that can achieve these goals, both reduction and separation, is the iron nugget process (Anameric, 2006). The nugget process works in a single step to reduce iron oxides to metallic iron and separate them from the gangue minerals at furnac...
	The iron nugget process can handle very low-grade ores with little to no beneficiation, impurities are all removed in a single step.  The iron nugget process is therefore ideal for handling red mud, which is essentially impossible to process via the b...

	4.3 Experimental
	4.3.1 Materials
	At Michigan Technological University, a sample of red mud was obtained for the valorization project. This sample ore was mined in Jamaica and processed in an alumina facility in Louisiana. The ore was sampled at a low solids content of about 50% perce...
	Particle size analysis was completed with a laboratory MicroTrac SRA 9200 laser diffraction. Figure 4-1 shows the results for the particle size distribution. The sample had a D80 of 10 µm. This is a typical result for size of red mud.
	Figure 4-1: Particle size distribution of the Jamaican red mud sample
	Elemental compositions were found using X-Ray Fluorescence as shown in Table 4-2. From the table, iron, aluminum, and silicon are the most prevalent elements with the rest being minor contributors. This technique is unable to detect elements lighter t...
	Table 4-2: XRF elemental compositions of Jamaican red mud
	The mineral composition of the red mud samples was determined using X-ray diffraction (XRD). The compositions were found using a Scintag XDS 2000 powder diffractometer. Figure 4-2 shows the raw diffraction data. From the phase composition breakdown in...
	Figure 4-2: Raw X-Ray diffraction pattern for the bauxite residue sample (major components labeled)
	Table 4-3: Phase composition of red mud by weight percent
	In literature, it has been noted that rare earth elements are often contained in high concentrations in red mud residue (Borra, 2015). The presence of rare earths should be investigated in bauxite because most of the REEs are discharged from the Bayer...
	Table 4-4: Concentration of rare earth elements (REE) including Sc in the Jamaican red mud sample
	Previous work (Anameric, 2006) with the iron nugget project showed that metallic iron could be produced using iron ore feed stock pellets with a coal reducing agent. In this study, the iron ore feed stock was substituted with the iron bearing red mud....

	4.3.2 Methods
	4.3.2.1 Sample Preparation
	A sample of red mud was dried in a drying oven at 105 ℃ to remove all moisture so that it could be pelletized. A process flow diagram for the nugget furnace experiments is show in Figure 4-3. The following samples were added together and mixed in a mi...
	Powdered wood with moisture: 10% by weight
	Dry Red Mud: 81.84% by weight
	Dolomite: 7.5 % by weight
	Bentonite Clay: 0.66% by weight
	The red mud and wood were mixed with 7.5% dolomite flux to help encourage slag separation and with 0.66% bentonite for stronger pellet strength. The mixed material was then fed into a pelletizing drum where pellets formed to a diameter of 3 mesh and w...
	Figure 4-3: Process flow diagram for the red mud iron nugget experiments
	4.3.2.2 Iron Content Analysis
	Iron content of each sample was determined using ultraviolet spectroscopy. Iron nuggets and slags were digested in 20 mL of concentrated 12M hydrochloric acid (HCl) and diluted in distilled water. The iron nuggets were diluted to 1000 mL and the slags...


	4.4 Results and Discussion
	Red mud pellets placed into a preheated 1475 ℃ begin to react with the mixed carbon source immediately after being placed in the pre-heated furnace. The powdered wood decomposes and form gases that will react with iron oxides. The reactions for the th...
	The mechanism that reduces iron oxides is complex and occurs in multiple steps. The reduction of hematite to metallic iron can be thought of as a multistep reaction or several single step reactions. Hematite reduces to magnetite, then magnetite to wus...
	At furnace temperatures exceeding 1200 ℃, the slag in the pellet’s melts. Important slag forming reactions are shown below with Equations 4-11 through 4-15 (Anameric, 2006). After the reduction reactions occur, the liquidus temperature of the metal de...
	A total mass balance for this process is shown with Equation 4-16. F, C, T, and G represents the feed, concentrate, tailings, and gases respectively. An iron balance is represented in Equation 4-17 where lower-case letters signify weight percent.
	Iron nuggets generated from this method fall into three categories, which are dependent on residence time (Anameric, 2006):
	4.4.1 Residence Time Variation
	Iron nuggets were produced from dry red mud/powdered wood pellets in the laboratory at Michigan Tech at varying residence times. Red mud pellets were placed fired in the furnace at 1475 ℃ for 30, 45, 60, 90 and 120 minutes. Table 4-5 shows the element...
	Figure 4-4: Photographs of iron nugget process using red mud. Products were fired at a furnace temperature of 1475 ℃ with a 120-minute residence time. A) Iron nugget B) Fusible slag
	Table 4-5: X-Ray Fluorescence (XRF) of red mud iron nuggets chemical composition.
	Table 4-6: Red mud iron nugget iron recovery. Fired in a furnace heated to 1475 ℃.
	Figure 4-5: Weight recovery of iron from the red mud using the iron nugget process for varying residence times. Error bars represent 95% confidence intervals.
	For low residence times under 30 minutes, slag separation was unable to occur. This is due to the iron and the slag not both being completely in the liquid phase, the separation occurs because of density differences between the two fluids. The overall...
	The iron nuggets produced via the nugget process have an iron content higher than 90%. Most tests showed comparable results with blast furnace pig iron in regards to iron content. Generally, when pig iron is produced it has a purity of over 90% iron (...
	Overall recovery of iron in the nugget process was also studied, as shown in Table 4 for varying furnace residence times. Recovery varies from 55 to 80%, but in general as residence time increases the recovery of iron increases.

	4.4.2 Carbon Content Variation
	The amount of reducing material in the feed pellets is an important parameter to consider in the nugget process for red mud. Powdered wood contains much less total weight percent carbon than coal and coke which is also used in self reducing pellets. T...
	Figure 4-6: Iron recovery from the nugget process with changing powdered wood content by total weight percent. Error bars represent 95% confidence intervals.

	4.4.3 Flux Content Variation
	In the nugget process, the separation is completed between the liquid phases of iron and slag mainly on differences in density and viscosity. Flux additions to the slag decrease the liquidus temperature at which all of the slag becomes a liquid an in ...
	Experiments altered the amount of dolomite flux in the feed pellets by total weight percent. 0, 1, 2.5, 5, 7.5, and 10 total weight percent were fired in the furnace and recovery was calculated. Residence time, temperature, and reducing content were h...
	High amounts of flux over 7.5% saw a steep decrease in iron recovery, this could be due to the composition of the slag becoming too saturated with Mg and Ca. The liquidus temperature of the slag begins to rise again at this point of flux addition and ...
	Figure 4-7: Iron recovery from the nugget process with changing dolomite flux by total weight percent. Error bars represent 95% confidence intervals.

	4.4.4 Slag Analysis
	The slag obtained from the box furnace after physically separation from the iron nugget body was analyzed by x-ray fluorescence and x-ray diffraction. Table 4-7 displays the elemental analysis of the nugget slag. Iron is still present in the sample bu...
	Table 4-7: XRF elemental composition of red mud nugget slags
	Figure 4-8: Raw X-Ray diffraction pattern for slags produced with the red mud iron nugget process (major peaks labeled)
	Table 4-8: Chemical component distribution in red mud iron nugget slags. Pellets fired at 1475 ℃ for a residence time of 60 minutes
	In the blast furnace, the goal is to remove all impurities through the slag body. Slag compositions vary depending on several variables including the ore body and furnace conditions. Iron content of blast furnace slags has been investigated on many oc...
	The iron nugget process generates a large amount of slag due to the comparatively low iron grade of red mud as the feed material. It is important to note that the slag generated has existing industrial applications. The nugget process slag has the pot...


	4.5 Conclusions
	Hematite and Goethite were found to be present in red mud at an iron grade of 22%, similar to taconite feedstocks in North America. It was found that rare earth elements are present in this red mud sample at concentrations of less than 1 ppm and so no...
	Iron nuggets were produced experimentally from red mud using the 1-step iron nugget process. Iron nuggets exceeding 90% iron content, comparable with blast furnace pig iron, were formed at residence times exceeding 30 minutes. The iron recovery was fo...
	This method is promising due to its ability to work with very low-grade iron ore sources, as opposed to the blast furnace which requires concentrated iron ore pellets to be effective. The nugget process can also be done on a small scale while the blas...


	5 Effects of various flux material additions on red mud iron nugget quality
	5.1 Abstract
	Iron nuggets can be generated from red mud, a process waste discarded from the alumina making Bayer process. Red mud is a hazardous waste that threatens the aluminum and mining industry. Forming iron nuggets from red mud reduces the overall waste and ...

	5.2 Introduction
	Red mud contains a high amount of iron that can range from 20%-60% (Paramguru et al, 2004). Currently, the industry treats red mud slurries as a waste material with little inherent value. In reality, red mud is a mixture of concentrated valuable miner...
	One novel method for removing iron from red mud is the iron nugget process. Unlike the blast furnace, the nugget process reduces and separates metallic iron from the gangue in a single step and can be used on much smaller scales (Anameric and Kawatra,...
	Archambo and Kawatra (2020b) showed that a flux addition is required in order to produce iron nuggets from red mud. The flux that was used was a dolomite flux. An analysis of different available flux materials, the properties they exhibit, and their i...

	5.3 Materials and Methods
	Red mud slurry was received from a Louisiana alumina plant for experimental work. A flow diagram for the experimental process can be seen in Figure 5-1.
	Figure 5-1: Process flow diagram for red mud iron nugget preparation with varied flux materials
	The red mud was dried in an oven and rolled into pellets. The red mud was mixed with powdered wood and bentonite clay. Four flux materials were tested in this study and they were added individually to pellet batches and then rolled into large pellets ...
	Pellets were placed into graphite crucibles with a bed of anthracite coal to prevent sticking and went into a preheated box furnace at 1475 degrees Celsius for a residence time of 30 minutes. The iron nuggets were physically separated from the slag an...

	5.4 Results and Discussion
	Iron nuggets can be produced from red mud by first reducing the iron oxides present with a reducing material. Previous research has shown that iron nuggets can be reduced with coal or powdered wood (Anameric and Kawatra, 2006) (Archambo and Kawatra, 2...
	Iron oxide reduction to metallic iron is shown in Equations (5-7) through (5-10) (Chen, 2017).
	While iron is being reduced, the impurities in the pellet are forming the slag layer. Anameric and Kawatra  (2006) outlined some of the important slag forming equations as can be seen in Equations (5-11) through  (5-16). In the case of red mud nugget ...
	5.4.1 Flux material effect on slag viscosity
	The viscosity of the slag is an important factor that determines how well the iron can separate from the slag. In order to produce an iron nugget with the lowest iron bearing slag, the slag viscosity must also be very low. In the nugget process, the m...
	Figure 5-2: Effect of different fluxes for iron nuggets produced with red mud. Theoretical data simulated using FASTSAGE software and chemical phase compositions determined by X-Ray Diffraction

	5.4.2 X-Ray Diffraction Analysis
	X-Ray diffraction was used to analysis the chemical phases that were produced during the iron nugget process for each separate case of flux additions. Figure 5-3 shows the chemical phases that appeared in the slag containing magnesium carbonate flux. ...
	Figure 5-3: X-Ray Diffraction pattern for iron nugget slag with 7.5% MgCO3 added to the pellet as a flux material
	The chemical phases for calcium carbonate fluxed slag can be seen in Figure 5-4. The most notable peaks formed with calcium flux are those of sodium aluminum silicate and nepheline. The calcium from the flux has been sequestered in the slag in the for...
	Figure 5-4: X-Ray Diffraction pattern for iron nugget slag with 7.5% CaCO3 added to the pellet as a flux material
	The chemical phases for sodium carbonate fluxed slag can be seen in Figure 5-5. The addition of sodium carbonate created a much more intense peak for the chemical phase for sodium aluminum silicate with other smaller contributions by quartz, magnetite...
	Figure 5-5: X-Ray Diffraction pattern for iron nugget slag with 7.5% Na2CO3 added to the pellet as a flux material
	The chemical phases for borate fluxed slag can be seen in Figure 5-6. The diffraction pattern for the borate slag is only able to identify peaks that are associated with silica. X-Ray diffraction is often unable to accurately determine the phase compo...
	Figure 5-6: X-Ray Diffraction pattern for iron nugget slag with 7.5% B4O7 added to the pellet as a flux material

	5.4.3 Grade and Recovery of iron
	The experimental results for adding different fluxes to the red mud pellets can be seen in Figures 5-7 and 5-8. Iron grade in the nuggets was the greatest using the sodium carbonate flux, followed by calcium carbonate, magnesium carbonate, and borate ...
	In regards to iron recovery, magnesium and calcium carbonate performed well. Each achieved a recovery above 80%, with magnesium carbonate slightly outperforming calcium. In the case of magnesium oxide flux, when in a molten slag it can release oxygen ...
	Figure 5-7: Effect of different flux materials on the iron grade of iron nuggets produced from red mud.
	Figure 5-8: Effect of different flux materials on the recovery of iron in iron nuggets generated from red mud.
	Along with the recovery of iron as a product, the resulting slag is the new waste material that has been reduced in mass compared to the original red mud. Table 5-1 shows the percent of waste removed by weight using the iron nugget process. The most e...
	Table 5-1: Waste reduction weight percent of red mud using the iron nugget process

	5.4.4 Cost of flux reagents
	The effectiveness of each flux must also be paired with its availability and pricing when considering which choice is most economic for an industrial process. Table 5-2 shows the pricing data for each of the studied flux materials. In this case, the m...
	Table 5-2: Industrial bulk price data for fluxing reagents used in the nugget process


	5.5 Conclusions
	Flux addition plays a significant role in the iron nugget process for red mud. Fired pellets that contained no flux did not form separate molten iron and slag layers. The flux material impacts the viscosity of the slag and the lower the viscosity the ...


	6 Using CO2 Neutralized Red mud to Generate Iron Nuggets
	6.1 Abstract
	Alumina plant waste, or red mud is a problem due to the large amount of waste generated and the hazardous properties it exhibits. Much research has gone into studying the material for its better waste disposal and processing of valuable minerals. Rese...

	6.2 Introduction
	Mineral processing waste management has and continues to be a challenge across the mining industry. The handling of such wastes is an environmental, logistical, and economic problem which is always seeking to be improved upon. In the case of alumina p...
	Red mud is a dangerous waste product for many different reasons, so its correct disposal is paramount. The bauxite ore used in alumina processing is subjected to high temperature dissolution in sodium hydroxide. After this step, the undissolved solids...
	The viewpoint of seeing red mud as purely as waste product is incorrect. Red mud is composed of a multitude of minerals that can be further processed for profit. Major chemical phase ranges for red mud around the world can be seen in Table 6-1. The va...
	Table 6-1: Composition ranges of major minerals in red mud wastes (Archambo and Kawatra, 2020).
	Removal of the iron value from red mud provides a number of benefits. With red mud that constitutes more than 50% iron, the removal of iron reduces that amount of waste disposed by 50%. Reduction of mineral processing waste by such a large margin woul...
	Research has shown that iron can be removed from red mud by various methods. Iron in red mud can be reduced directly at temperatures above 500 Celsius in the presence of a reducing atmosphere of CO, N2, and CO2 (Gotsu et al, 2018). Another study was c...
	The iron nugget process is one that can effectively reduce iron oxides, melt the metallic iron, and separate the iron from the slag in a single step (Anameric and Kawatra, 2006). The iron that is produced via this method can be compared to the quality...
	Table 6-2: Apparent densities of various forms of iron compared to iron nuggets produced at Michigan Technological University.
	Another pathway for improving recovery of iron in the red mud iron nuggets comes from the addition of CO2 to the red mud slurry. Previous research has shown that red mud can be neutralized to a moderate pH with the addition of CO2. One experiment empl...
	If flux can be generated naturally by adding CO2, another waste product that is generated on a large scale at nearly every industrial plant, that puts the iron nugget process in a great position to capitalize. The addition of CO2 can potentially elimi...

	6.3 Materials and Methods
	Red mud was provided for experimental work from an alumina plant in Louisiana. The iron nuggets were produced following the process flow diagram shown in Figure 6-1.
	Figure 6-1: Process flow diagram for iron nugget production from neutralized red mud.
	Red mud was placed in a 2000 mL beaker with a 1:1 ratio of distilled water and mixed until homogeneous. Carbon dioxide gas was bubbled into the beaker using a gas dispersion tube at a flow rate of 1 liter per minute for 1 hour. Once the pH was brought...
	Pellets were prepared for high temperature firing. The pellets were composed of 10% powdered wood and 0.66% bentonite clay. The sample was mixed thoroughly and rolled into pellets by hand. The pellets were dried overnight and weighed on the day of fir...
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