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Abstract 

A reliable multi-component surrogate fuel model needs to be able to represent both 

physical properties and chemical kinetics of a real fuel. However, enhancing the fidelity 

of a model with detailed description of physical and chemical behavior of all fuel 

components found in real fuels is limited by the prohibitive computational load to 

calculate the combustion chemistry of the fuel. Hence, it is desirable to achieve 

computational efficiency by reducing the number of chemical surrogates at the minimum 

expense of prediction accuracy. The objective of this work is to develop a model that can 

simulate the oxidation of multi-component fuels by representing the ignition 

characteristics of physical surrogate components with fewer chemical surrogates and 

achieve both computational efficiency and prediction accuracy. The main advantage of 

the model, called the Reactivity-Adjustment (ReAd) combustion model, is to accurately 

predict the reactivity of the physical surrogate components that the reaction mechanisms 

of which are not included in the reaction kinetics model employed in the simulation. The 

reactivity variation of local mixtures with different compositions is modeled by adjusting 

the reaction rate constants of selected control-reactions in the reaction mechanism of the 

representative chemical surrogates. An initial version of the model has been developed 

employing a single chemical surrogate to represent the combustion of diesel fuel which is 

modeled as multiple surrogate components to capture the physical properties of the real 

fuel. The model was extended to consider two more chemical surrogate components to 

represent the ignition characteristics of other chemical families than n-alkanes. This 

enabled to avoid the excessive adjustment of reaction rate constants that were necessary 

when a single chemical surrogate is used to represent the oxidation kinetics of entire 

multi-component fuels. The model was extensively tested for simulating oxidation 

processes of many fuels with a variety of fuel reactivity and in various combustion 

regimes. The results demonstrated that excellent accuracy of the ignition/combustion 

prediction was achieved while ensuring computational efficiency.
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1 Introduction 

Advanced combustion concepts such as PCCI, GCI, RCCI, etc., have shown promising 

results in terms of thermal efficiency and pollutant reduction in internal combustion (IC) 

engines [1-3]. In numerical simulations of those advanced combustion engines, more 

realistic fuel models are required for accurate prediction of the time and location of 

ignition, which is critical to improve the control strategy of those engines. 

In addition, the use of renewable and alternative fuels in conventional IC engines, which 

shows noticeable environmental and economic benefits, further emphasizes the impact of 

chemical composition of fuels on combustion and pollutant emissions, and thus more 

realistic fuel models are required to help understand the combustion characteristics of the 

fuel and reduce pollutant emissions[4].   

Table 1-1shows the major chemical classes in typical transportation fuels. The contents 

of chemical classes can vary depending on crude oil composition, refinery process, and 

even the season when the fuel is produced. Chemical composition can determine all 

subsequent chemical and physical properties of the fuel. The carbon numbers of the 

components range approximately from 4 to 12, 7 to 18, and 10 to 20 for petroleum-

derived gasoline, jet, and diesel fuels, respectively [5].     

Typically, transportation fuels consist of up to hundreds of hydrocarbon species, which 

makes it too costly or impractical to consider all the components that exist in the real fuel 

into numerical simulation. Therefore, the surrogate fuel models have been developed to 

better understand the real fuel characteristics. 

A surrogate fuel is defined as a fuel composed of a small number of pure compounds 

whose behavior matches certain characteristics of a target fuel which contains many 

compounds. A physical surrogate (PS) is used to mimic the relevant physical 

characteristics of the target fuel like density, volatility parameters, viscosity, surface 

tension, and diffusion coefficients. Relevant chemical characteristics of the fuel such as 

ignition behavior, molecular structure, flame speed, and soot propensity are modeled with 

a chemical surrogate (CS) model [6]. 

For simplicity, fuels have been represented as a single surrogate component for a long 

time.  For instance, n-heptane is used as the CS fuel of diesel fuel due to its comparable 

cetane number and heavier hydrocarbons such as dodecane or tetradecane are used as the 

PS components for diesel fuel [7]. While single surrogate diesel fuel models can provide 

useful insight, they cannot accurately predict the complex behavior of the vaporization of 

actual diesel fuel sprays, and thus more deliberate fuel models are required for more 

accurate ignition and emission predictions.  
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Table 1-1: The contents of major chemical classes found in typical transport fuels in U.S. 

market 

 Diesel fuel [8] Gasoline fuel [8]  Jet fuel [5] 

normal and iso-alkanes 

[%] 
25-50 35-80 32-65 

cycloalkanes [%] 24-40 2-10 20-47 

aromatics [%] 15-40 10-44 13-19 

Others (Incl. olefins) 

[%] 
--- 1-18 2-3 

1.1 Diesel fuel 

In conventional IC engines, diesel fuel ignites in the non-premixed combustion mode 

where the representation of the physical properties and the ignitability of the target fuel 

are key factors in prediction performance. A 2-component surrogate, n-decane and 1-

methylnaphthalene (1-MN), was formulated as part of Integrated Diesel European Action 

(IDEA) program to facilitate the comparison between experimental application and 

numerical simulations. The IDEA fuel has CN, density and C/H ratio similar to European 

#2 diesel [9].  

Myong et al. [10] measured the liquid penetration of evaporating diesel sprays employing 

a 3-component surrogate diesel (iso-octane, n-dodecane and n-hexadecane) to represent 

the evaporation characteristics of a target diesel fuel at the low, mid and high boiling 

points. 

Burger at al. [11] compared the entire evaporation characteristic of several surrogate fuels 

with standard diesel fuels. They measured the distillation curve of four sets of surrogate 

models from 4-component to 9-component models and compared it with the one from the 

standard fuels. Among the surrogate models, the one with the lowest number of 

components (the 4 components surrogate) shows the most dissimilarity to the target 

diesel fuel with respect to volatility characteristics. They concluded that the number of 

components in surrogates affects how closely their volatility profiles resemble the real 

fuel.   

Ra et al. [12] studied the vaporization of 6-component surrogate fuel spray in the engine 

operating conditions. They found that multi-component surrogate fuel models directly 

affect the vaporization rate and ignition location. They demonstrated that lighter 

components are more prevalent in the upstream gases of fuel spray, while heavy 

components are more prevalent downstream. 
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Mati et al.[13] used a 5-component mixture to study the oxidation kinetics of synthetic 

diesel fuel in a jet-stirred reactor. Their surrogate model represents one component in 

each of the normal, iso and cyclo-alkanes, one alkyl-benzene and one aromatic 

hydrocarbon to match the amount of various chemical classes in the target fuel.    

1.2 Gasoline and jet fuels  

In conventional IC engines, gasoline fuel burns in the premixed combustion mode where 

accurate representation of anti-knock tendency of a real gasoline is the key modeling 

factor. The mixture of iso-octane and n-heptane can represent a wide range of anti-knock 

tendency of fuels. However, the limitation of n-heptane and iso-octane blends in 

explaining the difference between research octane number (RON) and motor octane 

number (MON) leads to more complex CS models.  

Gauthier et al.[14] used the mixture of iso-octane, toluene, and n-heptane as surrogate for 

gasoline.  They showed that the surrogate model can reproduce the ignition delay times 

(IDTs) of the real fuel under various temperature, pressure, equivalence ratio and EGR 

ratio condition, except for rich mixtures at high pressures. Andrae et al.[15] numerically 

studied a 5-component gasoline surrogate including iso-octane, n-heptane, toluene, di-

isobutylene and ethanol to model a more realistic gasoline fuel that can predict the non-

linear blending behavior of the MON.    

The advantage of direct injection of the fuel in volumetric efficiency increase and 

possible heat-loss reduction has prompted the direct injection fueling of gasoline. Then 

similar to diesel fuel, the role of thermophysical properties that affect the mixing of fuel 

and air becomes more important in direct-injection fueling as it mentioned previously for 

diesel surrogates. Rajput et al. [16] showed that gasoline can be burnt in a mixing-

controlled or chemically-controlled combustion mode in a 6-stroke engine. 

n-Decane has been used as a single surrogate fuel for jet fuel for in chemical kinetic 

studies since it the average carbon number and the flame structure of jet fuels are similar 

to those of n-decane [17]. The limitation of a single component in soot emission 

prediction led to more complex fuel model. Honnet et al. [18] investigated the ignition 

and soot characteristic of a 2-component jet fuel surrogate model. They used the mixture 

of n-decane 80% and 1,2,4-trimethylbenze 20% by weight as the surrogate of kerosene. 

Cooke et al. [19]employed a six-component jet fuel surrogate including iso-octane, 

methylcyclohexane, m-xylene, n-dodecane, tetralin and n-tetradecane in counterflow 

diffusion flame to study the extinction limits and temperature profile of the flame.       

1.3 Combustion models of multi-component fuels 

While the importance of multi-component fuel models in high fidelity simulation of 

reactive flows is clear, the application of multi-component fuels in the multi-dimensional 

simulation of IC engines is mainly limited by the size and availability of the chemical 



4 

reaction mechanism of the selected CS components. For instance, significant research 

work is devoted to increasing the understanding of oxidation mechanism of n-heptane 

from early 1970 until today. The recent oxidation kinetic mechanism of n-heptane 

published by Zhang et al. [20] consists of 1268 species and 5336 reactions which is 

computationally too expensive to be used directly in multi-dimensional simulation of IC 

engines. Different methods like mechanism reduction techniques [21, 22], and numerical 

methods [23] for faster chemical kinetics calculations along with models that represent 

the oxidation kinetics of larger components based on smaller components are used to let 

us more accurately predict the combustion process in the multi-dimensional simulations 

of IC engines.  

Krishnasamy et al. [24] represent the fuels’ physical and chemical properties with two 

different sets of surrogate components. They validated the surrogate fuel behavior by 

comparing the hydrogen-to-carbon (H/C) ratio, cetane index, distillation profile, specific 

gravity, and lower heating value of their model with experimental data. However, they 

suggested different CS components to describe the combustion of the fuel. A CS 

component is used to represent the chemistry of a group of species of the same chemical 

class and, in this way, fewer CS components are employed than PS components. The 

model is called the group chemistry representation (GCR) [25]. The simplest GCR 

approach use a single PS component to represent the chemistry of multi-component fuels. 

For instance, n-heptane can be selected as the CS component for diesel fuel. The 

chemical kinetic mechanism of n-heptane then be used to model the oxidation kinetics of 

diesel fuel, while its physical behavior is modeled by using a multi-component model. It 

is clear that a single component GCR approach is substantially beneficial in terms of 

computational efficiency at the expense of accuracy.  

Ra and Reitz [26] later extended and improved the multi-component reaction chemistry 

model to develop the physical surrogate group chemistry (PSGCR) model. In the model, 

each PS component of a surrogate model has its own chemical reaction mechanism in the 

form of either detailed reaction pathways or a combination of generic and detailed 

reaction pathways, and thus the PS components don’t need to be grouped into CS 

components.  The consistency between the PS and CS components in the PSGCR model 

warrants minimal error in multi-component fuel combustion simulations. However, with 

an increased number of surrogate components in various chemical classes, the overall 

reaction mechanisms become larger and its application to engine combustion CFD 

becomes costlier. 

It is desirable to have an alternative method to compensate for the reduced accuracy of 

the GCR approach while maintaining its computational efficiency. In the present study, a 

method of on-the-fly reactivity adjustment (ReAd) of the chemical reaction mechanism is 

presented. In this model, the combustion of PS components is represented by the reaction 

mechanisms of fewer chemical surrogates, which enables use of smaller reaction 

mechanisms, and thus save overall computation time. The different reactivity of local 

mixtures with different compositions is modeled by adjusting the reaction rate constants 

of selected reactions and re-distribution of the consumption of the individual components 
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based on their relative reactivity. The main advantage of the model is to accurately 

predict the reactivity of PS components that do not have their reaction kinetics 

mechanisms available or it is computationally expensive to include it in the chemical 

kinetics calculation.  
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2 Physical surrogate determination method 

Desirably, surrogate fuels have both the same physical and chemical properties as the 

target fuel. However, it is more likely that either physical or chemical aspects of target 

fuel properties is more emphasized so that modeling one aspect of the properties is 

approached first with the other aspect modeled as complementary.  

In the present study, the approach is that physical properties are modeled with more 

emphasis considering the following criteria  

● The surrogate fuel captures the evaporation characteristic of the target fuel 

through a distillation curve comparison. 

● The surrogate compositions are substituted with ones that have similar 

evaporation characteristic to also capture average cetane number and hydrocarbon 

contents of the target fuel. 

● The chemical class contents of the surrogate fuel are in a close agreement with the 

measured data of the real fuel. 

Thus, the chemistry representation of the fuel, which will be discussed later in this paper, 

is inherently bounded by the selection of the PS components.  

2.1 Physical surrogate representation examples 

The method used to determine the distillation profile and physical properties in multi-

component surrogate fuel is based on the discrete multi-component (DMC) model and the 

details of the model are provided in [12] . Two surrogate fuels -one for ultra-low sulfur 

diesel (ULSD) and another for U.S. pump gasoline fuel- are provided to illustrate 

appropriate models with the above-mentioned criteria.    

Four chemical classes of hydrocarbons are considered in the model, including saturates, 

aromatic, olefins, and oxygenates. Table 2-1 shows the model composition of the 19-

component surrogate diesel along with the names and boiling temperatures of the 

surrogate components and Figure 2-1-(a) shows the comparison of the distillation profiles 

between the measurement and the model prediction.  

The model can capture the volatility characteristic of the target fuel well as it is shown in 

Figure 2-1-(a). (With a maximum error of 4.6% at the start of distillation).  The saturated 

chemical content of the target diesel fuel is modeled using straight chain, iso, and 

cycloalkanes; in more detail, 35%, 36.2% and 5.8% of the total fuel’s mass are modeled 

with the straight chain, iso, and cycloalkanes, respectively. The aromatics content 

modeled using both monocyclic and polycyclic aromatic hydrocarbons (18% monocyclic 

and 4.4% polycyclic aromatics) and olefin content is represented by 1-octene. As it is 

shown in the table in Figure 2-1, the chemical contents of surrogate fuel are in excellent 
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agreement with the measured data with the maximum error of 0.7% for aromatic 

hydrocarbons. The model over-predicts the hydrogen contents by 6.8% while the carbon 

contents are under-predicted by 1%. In the model, iso-cetane (iC16H34) represents the 

largest portion, which is attributed to the component’s low volatility and reactivity 

(cetane number). Adjusting the portions of cetane and iso-cetane allows an effective way 

to alter the reactivity of the surrogate model while maintaining similar physical properties 

and distillation curves.  
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Table 2-1: 19-component ULSD surrogate model 

Fuel component T-boiling [ ͦ K] Mass fraction  

Methyl-cyclohexane 

(MCH) 

374.0 0.044 

1-Octene 394.4 0.018 

Tetramethylhexane 432.9 0.069 

n-Decane  446.9 0.034 

m-Cymene 447.7 0.019 

cis-Decalin 459.5 0.005 

n-Hexylbenzene  475.8 0.014 

n-Pentylbenzene 478.2 0.034 

Tetralin  481.1 0.017 

n-Dodecane 489.0 0.049 

Naphthalene 490.4 0.006 

n-Tridecane 507.9 0.031 

iso-Cetane 518.9 0.210 

n-tetradecane 526.0 0.078 

Cetane 559.3 0.174 

n-Octadecane 588.8 0.076 

Anthracene 612.5 0.009 

Eicosane 616.6 0.058 

Heneicosane 629.2 0.054 
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Figure 2-1: Comparison of distillation profile, and fuel contents between the 19-

component surrogate model in Table 2-1 and ultra-low sulfur diesel (ULSD) 

A 13-component surrogate fuel model as shown in Table 2-2 is proposed for pump 

gasoline fuel with (RON+MON)/2 of 89.35 and 0% ethanol blend. Note that ethanol is a 

polar component and can change the evaporation characteristics of the fuel significantly. 

The vaporization model with consideration of non-ideal mixture effects is discussed in 

[27]. Readers can refer to [28] for a gasoline surrogate with a 10% ethanol blend. The 

experimental measurements for this fuel are provided by the Alternative Fuels Engine 

Lab at Michigan Tech. University. The composition, mass fraction and the corresponding 

boiling temperature of the 13-component surrogate gasoline is shown in Table 2-2.  The 

model can capture the volatility characteristic of the tested fuel well as it is shown in 

Figure 2-2.  

The chemical contents of the surrogate fuel are compared with the measured data in the 

table of Figure 2-2.  The saturated chemical contents of the tested fuel are modeled using 

the straight chain, iso, and cycloalkanes; in more detail, 38%, 36.5%, and 1.0% of the 

total fuel’s mass is modeled with straight chain, iso and cyclo-alkanes, respectively. The 

olefins are represented by 1-octene and 1-pentene and the aromatics content are 

represented by monocyclic aromatic hydrocarbons. The largest error in the chemical 

content between the measured and the model is 14.8% from the olefins content yet the 

total olefins zone is 5.2% of the tested fuel.  
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Table 2-2: 13-component gasoline fuel surrogate model 

Fuel component T boiling [  ͦ K] Mass fraction  

Butane 272.3 0.080 

iso-Pentane 300.6 0.080 

1-pentene 302.7 0.005 

iso-Hexane 333.0 0.040 

n-Hexane 341.5 0.125 

n-Heptane 371.1 0.175 

iso-Octane 372.0 0.110 

Methylcyclohexane 373.4 0.010 

Toluene 383.4 0.115 

1-Octane 393.2 0.050 

iso-Propylbenzene 425.1 0.020 

iso-Decane 433.0 0.135 

Tetralin 481.1 0.055 
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Figure 2-2: Comparison of  distillation profile and fuel contents between the 13-

component surrogate model in Table 2-2 and pump gasoline 89 fuel 
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3 Computational tools 

Numerical simulations are performed using an in-house computational fluid dynamics 

(CFD) code that is based on KIVA-3V r2, and coupled with various advanced physical 

sub-models to account for multi-component fuels properties, spray physics, turbulent 

mixing, and detailed chemistry calculations [29].  

A hybrid primary spray break-up model that is computationally efficient as well as 

comprehensive enough to account for the effects of aerodynamics, liquid properties and 

nozzle flows was employed. In this model, the injected fuel “blobs” are tracked by a 

Lagrangian method while the break-up of each blob is calculated from considerations of 

jet stability from Kelvin-Helmholtz (KH) instability theory. For the secondary and further 

break-up processes, a Kelvin Helmholtz (KH) – Rayleigh Taylor (RT) hybrid model was 

used [30]. 

A droplet collision model based on the stochastic particle method was used, in which the 

collision frequency is used to calculate the probability that a drop in one parcel will 

undergo a collision with a drop in another parcel, assuming all drops in each parcel 

behave in the same manner. The probability of coalescence is determined considering the 

Weber number that includes the effects of density and surface tension of the liquid 

droplets [29] . 

Droplet deformation in terms of its distortion from sphericity is modeled using a forced, 

damped harmonic oscillator model, where the surface tension and viscosity of the droplet 

are the major properties used in the restoring force and damping terms, respectively [31]. 

Distortions of the droplets affect the momentum exchange between the droplets and the 

ambient gas, and subsequently the drop velocities (or relative velocity between the drop 

and the gas) that are the governing parameters in the breakup and evaporation processes. 

The droplet vaporization model considers the evaporation of spray droplets using the 

Discrete Multi-Component (DMC) approach under temperatures ranging from flash-

boiling conditions to normal evaporation. The improved model accounts for variable 

internal droplet temperatures and considers an unsteady internal heat flux with internal 

circulation, and a model for the determination of the droplet surface temperature. The 

model uses an effective heat transfer coefficient model for the heat flux from the 

surrounding gas to the droplet surface. The effective heat transfer coefficient calculated 

in the model is also used to determine the amount of fuel to be treated as vapor when the 

drop surface temperature reaches the critical temperature while the drop interior is still in 

the sub-critical condition. The model has been well tested for evaporation of sprays as 

well as single drops at various pressure and temperature conditions including flash-

boiling. 

For the turbulence calculation, the RNG k-ε model [32] was used . In the two-phase 

transport equations, droplets are treated as point sources and the physical dimension of 

the droplets is not resolved on the gas-phase computational grid.  Therefore, it is assumed 
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that the vaporized fuel in a computational cell where droplets exist mixes completely 

with the gaseous mixture within the cell. Thus, stratification of gaseous species within a 

single cell is not resolved. The fuel species mass fraction and gas temperature in the drop-

containing cells is used as the boundary conditions for the mass and energy balance 

equations to be solved in the present vaporization model. The physical models employed 

in the present study have been extensively validated for diesel spray injections.  

In this study, the chemistry solver was integrated into the CFD code. The role of 

chemistry solver is to find 
𝑑𝑌𝑘

𝑑𝑡
  based on the provided reaction mechanism, where 𝑌𝑘  is 

the mass fraction of species 𝑘. In the current CFD code, the gas-phase solution procedure 

is based on a finite volume method called the arbitrary Lagrangian-Eulerian (ALE) 

method. In ALE method each cycle (i.e., each time step) is divided into a Lagrangian 

phase and rezone phase. In the Lagrangian phase the cell vertices move with the fluid 

velocity and there is no convection cross cell boundaries. In the rezone phase, the flow 

field is frozen, and the vertices are moved to the user-specified positions. It is reasonable 

to assume each computational cell is like a closed volume reactor for chemistry 

calculation in each cycle before rezone phase. 

For a reaction mechanism that has𝑛𝑟 of reactions and 𝑛𝑠 of species, the rate of change of 

mass fraction in a constant volume reactor that density (ρ) is constant is given by  

 
𝑑𝑌𝑘

𝑑𝑡
=  

𝑊𝑘𝜔𝑘

𝜌
 3-1 

which leads to 𝑛𝑠 equations for the aforementioned reaction mechanism. Note that 𝜔𝑘  

which is called the production rate is a function of temperature and the above ODEs 

(Eq.3-1) need a closure equation for rate of change temperature (
𝑑𝑇

𝑑𝑡
).  This equation is 

provided based on energy equation for an adiabatic constant-volume reactor.  

In the current CFD code, the chemical kinetics calculation is done with parallel CPU 

computing in message passing interface (MPI) environment. The necessary information 

like pressure, density, initial temperature, CFD timestep (as chemistry integration time 

for ODE), etc., are passed to the chemistry solver and in turn species mass fraction are 

calculated by the chemistry solved and passed to the CFD code.   

It should be noted that in chemical kinetics problems as production and consumption of 

species are substantially different, the above ODEs led to a stiff ODE system.  While 

there are different options for stiff ODE systems in the code, all the CFD results in this 

work are obtained based on the SpeedCHEM solver [33] with the LSODE solver. Note 

that as temperature-dependent functions like the rate of reaction, K(T), in SpeedCHEM 

solver are tabulated. Therefore, the adjustment of reaction rate constants that is required 

in the current model and discussed in Chapter.4 need to alter the rate of reactions, not the 

pre-exponential coefficient.         
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The IDTs calculation for homogenous mixtures are performed using CHEMKIN PRO 

[34] in order to save computation time since it was confirmed that the results obtained by 

the in-house CFD code are almost identical to those of CHEMKIN calculation. Note that 

the simulated IDTs in this work are defined as the time lapsed to increase the mixture 

temperature by 400K from the initial temperature [35]. 
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4 Model formulation (Chemical kinetics representation) 

In the present model, the combustion kinetics of PS components is represented by the 

reaction mechanisms of fewer CS components. These CS components are referred to as 

base-CS components and the consumption of the PS components at each time step is 

modeled using the reaction mechanism of base-CS components. The reaction rate 

constants of selected reactions are adjusted to capture the total consumption of PS 

components that are grouped together and assigned to a base-CS in each time step. This 

method is referred as on-the-fly reactivity adjustment and described in Section.4.2. The 

share of each PS component in the total consumption is also modeled based on the 

relative reactivity of PS components and considered when the grouped PS components 

are re-distributed back to individual PS component. This model will be described in 

Section.4.3.    

It is desirable to keep the number of base-CS components as small as possible in order to 

reduce the size of the chemical reaction mechanism. In the first attempt [36], n-heptane 

was selected as a single base-CS component and combustion of a multi-component diesel 

fuel is represented by the chemistry of the base CS. However, capturing the low-

temperature (T<850) combustion of the multi-component fuel accurately requires 

excessive tuning of reaction rate constants of multiple reactions. This is because the 

multi-component target fuel contains fuel components in other chemical classes than n-

alkanes, which have substantially different oxidation characteristics from those of n-

alkanes. Hence, the model was extended to include two more base-CS components, iso-

octane and toluene, in order to avoid tuning of reaction rate constants. The addition of 

these base-CS components enables to accurately take into account the effect of highly 

branched alkanes and low reactivity aromatic hydrocarbons in low-temperature 

combustion.    

4.1 Mixture relative reactivity index  

It is known that the IDTs of fuel is inversely proportional to the reactivity of the fuel. Ra 

and Reitz [26] developed an index of reactivity, called relative reactivity index (RRI), 

that is calculated from the IDT using a simple formulation as 

 𝑅𝑅𝐼 =
𝑎

𝜏𝑐

+ 𝑏 (4-1) 

where τc is the characteristic IDT in milliseconds for a reference initial conditions of a 

stoichiometric mixture at 40 bar and 850 K in a constant volume chamber, and a and b 

are two model constants for the chemical class of the fuel. They showed that the RRI 

correlates linearly with the cetane number of the fuel, i.e., RRI ≅ CN. For example, the 

calculated RRI of straight-chain alkanes are very similar to their cetane numbers [37] 

over the fuel’s carbon number variation between 3 and 20, as shown in Figure 4-1.      
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Figure 4-1: Comparison of relative reactivity index and cetane number for n-alkanes 

fuels 

The RRI of a local mixture, RRIm, is defined as the mass-average of the individual fuel 

components contained in the mixture, and obtained as, 

 𝑅𝑅𝐼𝑚 = ∑ 𝑌𝑖𝑅𝑅𝐼𝑖  
(4-2) 

where Yi and RRIi are mass fractions and RRI of species i, respectively. For the extended 

model that considers multiple CS components, the equation is modified to consider 

grouping of PS components to 

 

𝑅𝑅𝐼𝑚,𝑗 = ∑ 𝑌𝑖,𝑗𝑅𝑅𝐼𝑖

𝑁𝑗

𝑖=1

 (4-3) 

where RRIm,j is the average RRI of the jth CS group in the mixture, Nj and Yi,j are the 

number of components considered and the mass fraction of component i in the jth CS 

group, respectively. The RRIm,j is used to improve the prediction of consumption rate of 

grouped fuels. The methods on how RRIm,j is used before and after chemical kinetic 

calculation to improve the prediction accuracy is explained in Section.4.2 and 4.3.    

4.2 On-the-fly reactivity adjustment (ReAd) model   

In general, it is expected that high reactivity fuels are consumed faster than lower 

reactivity fuels. When the number of CS components is less than that that of PS 

component, CS components represent a group of PS components- typically according to 

the PS components’ chemical classes- assuming that the characteristics of oxidation 

processes are modeled by the chemical kinetics of the CS component. Without 
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considering the difference in the reactivity of the individual components in the group, the 

consumption rate of a CS component is regarded to be equal to the average consumption 

rate of the group. As mentioned above, in the present model, the reaction rate constants of 

selected reactions are adjusted based on local reactivity to capture the consumption rate 

of grouped fuels. 

The correlations for reactivity adjustment were built from the IDTs of reference fuels 

which have their reaction kinetics mechanisms and CNs. Note that the reference fuels in 

this study are based on database by Ra and Reitz [26] which has  56 fuels in 7 chemical 

classes. The reactivity adjustment of the base-CS components is achieved by changing 

reaction rate constants of selected reactions, called ‘control reactions’, in the reaction 

mechanism. For each reference fuel, the reaction rate constants of the control reactions 

are adjusted to match the IDTs predicted by the reference fuel’s own reaction mechanism 

under the reference conditions. Detailed procedure is described below.       

Step1: Perform ignition delay sensitivity analysis to determine control reactions of the 

base-CS components. The pre-exponential factor of a reaction is varied and its sensitivity 

on ignition delay times is calculated. 

Step 2: Find the amount of adjustment of the pre-exponential factors of the control 

reactions to match the ignition delay times of the target reference fuel under reference 

conditions. The reference conditions are defined as range of initial temperature of 700 K 

to 1300 K for a stochiometric mixture at initial pressure of 40 bar. 

Step 3: Build correlations for adjustment amount of pre-exponential factors of control 

reactions as a function of RRI of the reference fuels.   

Step 4: Repeat Steps 1-3 for different equivalence ratio and pressure in order to 

incorporate the different impact of those parameters on the reference fuels in the 

correlations.  

 The reaction kinetics of the reference fuels are based on the work by Ra et. al. [25, 26]. 

The reaction mechanisms have been extensively validated against experimental data such 

as shock tube tests, rapid compression machine, HCCI engine, and CVCC spray 

combustion experiments available in the literature. In Section.4.4, detailed procedure to 

apply the above-mentioned steps to a base-CS component, n-heptane, to represent the 

reactivity of n-alkanes reference fuels are provided.    

4.3 Reactivity-based re-distribution of fuel components 

Global one-step reaction equation for the combustion of a stoichiometric non-oxygenated 

hydrocarbon fuel/air can be written as: 
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𝑁𝑠𝑡𝐶𝑥𝐻𝑦 + 𝑁𝑠𝑡(𝑥 +
𝑦

4
)(𝑂2 + 3.76 𝑁2) 

→ 𝑁𝑠𝑡𝑥𝐶𝑂2 + 𝑁𝑠𝑡

𝑦

2
𝐻2𝑂 + 𝑁𝑠𝑡(𝑥 +

𝑦

4
)(3.76)𝑁2 

(4-4) 

where Nst is the number of moles of fuel in the stoichiometric mixture. The consumption 

rate of fuel can be approximated using a characteristic time, τc, as 

 
𝑑𝑁𝑓

𝑑𝑡
~ 

𝑁𝑠𝑡

𝜏𝑐
 (4-5) 

Taking the IDT as the characteristic time and using fuel mole fraction, xst, for Nst, Eq. 

(4-5) becomes 

 
𝑑𝑁𝑓

𝑑𝑡
≅

∆𝑁𝑓

∆𝑡
= 𝑘 

𝑥𝑠𝑡

𝑡𝑖𝑔

 (4-6) 

where k is a proportionality constant to make the equation. Therefore, the mass 

consumption of fuel is obtained as 

 
∆𝑚𝑓

∆𝑡
= 𝑀𝑊𝑓𝑘 

𝑥𝑠𝑡

𝑡𝑖𝑔

  (4-7) 

For a multi-component fuel, the same equation can be applied, i.e., 

 

∆𝑚𝑖

∆𝑡
= 𝑀𝑊𝑖𝑘 

𝑥𝑠𝑡,𝑖

𝑡𝑖𝑔,𝑖
 

Or 

∆𝑚𝑖 = 𝑀𝑊𝑖𝑘 
𝑥𝑠𝑡,𝑖

𝑡𝑖𝑔,𝑖

∆𝑡 

(4-8) 

And the total consumption of fuel, ∆𝑚𝑇, is obtained from the sum of the consumption of 

the individual components. 

 

∆𝑚𝑇 = ∑ ∆𝑚𝑖 = 𝑘∆𝑡 ∑ 𝑀𝑊𝑖  
𝑥𝑠𝑡,𝑖

𝑡𝑖𝑔,𝑖
 

Or 

𝑘∆𝑡 =
1

∑ 𝑀𝑊𝑖  
𝑥𝑠𝑡,𝑖

𝑡𝑖𝑔,𝑖

∆𝑚𝑇 

(4-9) 
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Inserting k∆t of Eq. (4-9)into Eq. (4-8), the consumption of individual component is 

obtained as 

 ∆𝑚𝑖 =

𝑀𝑊𝑖  
𝑥𝑠𝑡,𝑖

𝑡𝑖𝑔,𝑖

∑ 𝑀𝑊𝑖  
𝑥𝑠𝑡,𝑖

𝑡𝑖𝑔,𝑖

∆𝑚𝑇 (4-10) 

Note that ∆𝑚𝑇 is calculated using the reaction mechanism of a base-CS component and 

the reactivity of a local mixture, RRIm,j .Then the consumption fractions of individual 

components obtained from Eq. (4-10) are used to update the amount of grouped PS 

components. This model is referred as the re-distribution model in the present work.   

4.3.1 Prediction of the reaction rate of local mixture 

For a local mixture that is assumed to be well-mixed, the average reactivity RRIm,j is 

calculated for each base-CS component. The total consumption ∆𝑚𝑇  is calculated using 

the reaction mechanism of the base-CS component with reactivity adjustment as 

explained in Section.4.2. Then the consumption of individual PS components, Δmi, are 

calculated using Eq. (4-10). This process is repeated at every time-step. Note that the 

value of k is unknown in Eq. (4-7), although the re-distribution of individual components 

can be obtained using Eq. (4-10) regardless of the constant k as long as it is assumed k is 

the same for all grouped-fuel components. However, the k can be estimated from the fuel 

consumption rates of the previous time steps. It is reasonable to assume that the fuel 

consumption rates of adjacent time steps change gradually and slowly if the time steps 

are small enough. Rearranging Eq. (4-9) for k gives 

 𝑘 = (
∆𝑚𝑇

∆𝑡
) / (𝑀𝑊𝑓  

𝑥𝑠𝑡

𝑡𝑖𝑔
) (4-11) 

The values k of the previous two time-steps and their difference can be used to estimate 

the k of the current time step to predict the consumption rates of fuel components even 

before chemical kinetics calculations. This predicted reaction rates can be employed to 

improve the estimation of the RRIm,j that contains intermediate species, too. 

4.4 Base-CS component for n-alkanes 

In this section, the 4 aforementioned steps (see Section.4.2) for the reactivity adjustment 

(ReAd) model is explained in detail for a base-CS component for n-alkanes. n-Heptane is 

selected as the base-CS component due to its reactivity comparable to diesel fuels, 

availability of comprehensive reaction mechanisms and extensive studies on its auto-

ignition process. n-Heptane is a straight-chain alkane (n-alkane) and its ITDs shows a 

negative temperature coefficient (NTC) region (typically T< 1000 K) at IC engine 

relevant operation pressures (20bar < P < 40bar) [38-40]. The reaction kinetics 
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mechanisms for the base-CS components employed in the present work are available in 

Ref .[41], and are explained briefly here.  

The reaction kinetics mechanisms of base-CS components used in the present study are 

reduced mechanisms. The comprehensive mechanism of n-heptane from the Lawrence 

Livermore National Laboratory (LLNL) [42] was used to generate a reduced mechanism. 

Isomer lumping along with pathway reduction are applied in the reduction process. The 

major reaction pathways in the comprehensive mechanism were retained in the reduced 

mechanism based on their rank of importance.  

The n-alkanes with a carbon number of 4 to 20 were selected as the reference fuels for 

the n-heptane-based ReAd model. Note that n-alkanes lighter than n-butane (C4H10) are 

excluded from the reference fuels as their ignition characteristic are noticeably different 

from the larger n-alkanes, especially at low temperatures. However their reaction kinetics 

mechanisms are available as sub-mechanisms of n-heptane mechanism. The simulated 

IDTs of C4 to C18 n-alkanes are shown in Figure 4-2. All the reference fuels show the 

NTC behavior at around 850K, which is in good agreement with detailed kinetics 

studies[43, 44]. Meanwhile, it is well-understood that the reactivity of n-alkanes increases 

with increasing carbon number.   

 

Figure 4-2: comparison of simulated IDTs of n-alkanes/air mixture based on the 

reference chemical reaction mechanism used in this study 
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4.4.1 Selection of control reactions of n-heptane mechanism 

The pre-exponential factors of selected reactions (control reactions) of the n-heptane 

reaction mechanism are adjusted such that the IDTs at the RRI reference conditions 

(T=850 K, P=40 bar, ϕ= 1) match those of reference fuels with a known RRI. 

The choice of the control reactions was made though the IDT curve sensitivity analysis 

[25]. The reactions with the highest ranks in sensitivity at low to intermediate 

temperatures including the NTC region are selected as the control reactions. The four 

control reactions selected for the current mechanism of n-heptane are: 

 𝑛𝐶7𝐻16 + 𝐻𝑂2  ↔  𝐶7𝐻15−2 + 𝐻2𝑂2 (C-1) 

 𝐶7𝐻15𝑂2  ↔  𝐶7𝐻14𝑂𝑂𝐻 (C-2) 

 𝐶7𝐻14𝑂𝑂𝐻 +  𝑂2   ↔  𝑂2𝐶7𝐻14𝑂𝑂𝐻 (C-3) 

 𝑛𝐶7𝐻16 + 𝑂2 ↔  𝐶7𝐻15−2 + 𝐻𝑂2 (C-4) 

 The variation of the IDT curves of the above reactions is shown in Figure 4-3. In the 

figure, 𝐴𝑐−1 × 10 indicates that the pre-exponential factor of the control reaction C-1 is 

multiplied by 10. Control reaction C-1, which is a hydrogen abstraction reaction by the 

hydroperoxyl radical, affects IDTs at both high and intermediate temperatures, while 

reaction C-2, which is an isomerization reaction, mainly affects IDTs at low and 

intermediate temperatures. The control reaction C-3, which is the second peroxidation 

reaction in the degenerate branching process, mainly affects IDTs at intermediate 

temperatures. 

A combination of adjustment of C-2 and C-3 control reactions enables to capture the 

reactivity of n-alkanes with higher reactivity than n-heptane (RRInC7H16 ≈ CN = 52.5). For 

example, to capture the reactivity of n-octane (RRInC8H18 ≈ CN = 64.5), the pre-

exponential factors of reactions C-2 and C-3 are increased to shorten the IDTs, matching 

those obtained from the reaction mechanism of n-octane as well as n-octane RRI. (refer 

to Eq. (1)) In order to match the IDTs of reference fuels at high temperatures, C-1 control 

reaction is adjusted together with C-2 control reaction. The extent of adjustment of the 

pre-exponential factor of the control reactions is formulated as correlations with respect 

to the reactivity (RRI) of the local fuel/air mixtures. To improve the accuracy of the 

correlations, the application ranges of the correlations were divided into three reactivity 

ranges; i) reactivity higher than cetane, ii) reactivity between cetane and n-heptane, and 

iii) reactivity lower than n-heptane. For each range, the number of control reactions and 

their adjustment correlations were developed. 
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Figure 4-3: Sensitivity of ignition delay curve of n-heptane mechanism (a) reaction 

nC7H16+HO2=C7H15-2+H2O2, (b) reaction C7H15O2=C7H14OOH, (c) reaction 

C7H14OOH+O2=O2C7H14OOH, (d) reaction nC7H16+O2=C7H15-2+HO2 

 The correlations of adjustment factor, Sf, of the control reactions for the different 

reactivity ranges are shown in Table 4-1. The adjustment factors obtained from the 

correlations are multiplied to the existing pre-exponential factors of the control reactions. 
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Table 4-1: Correlation of adjustment factor, Sf, for control reactions C-1, C-2, C-3 and C-

4 

Mixture 

reactivity  

 Adjustment factor   

Higher than  

n-heptane 

𝑆𝑓,𝐻(𝐶 − 2) =  𝑎21𝑅𝑅𝐼𝑚,1
3 + 𝑏21𝑅𝑅𝐼𝑚,1

2 + 𝑐21𝑅𝑅𝐼𝑚,1

+ 𝑑21 

𝑎21 =  1.927E-4 

𝑏21 =   6.280E-2       

𝑐21 =  -6.384 

𝑑21 =  209.9 

(4-12) 

𝑆𝑓,𝐻(𝐶 − 3) =  𝑎31𝑅𝑅𝐼𝑚,1
3 + 𝑏31𝑅𝑅𝐼𝑚,1

2 + 𝑐31𝑅𝑅𝐼𝑚,1 +

𝑑31  

𝑎31 =  3.015E-5 

𝑏31 = -8.270E-3 

𝑐31 =  7.746E-1       

𝑑31 =  -23.0 

(4-13) 

Higher than 

cetane 

𝑆𝑓,𝐻(𝐶 − 2) = 0.037𝑅𝑅𝐼𝑚,1 + 0.981 (4-14) 

𝑆𝑓,𝐻(𝐶 − 3) = 0.007𝑅𝑅𝐼𝑚,1 + 1.880 (4-15) 

𝑆𝑓,𝐻(𝐶 − 4) = 0.347𝑅𝑅𝐼𝑚,1 − 25.0 (4-16) 

Lower than n-

heptane 
𝑆𝑓,𝐿(𝐶 − 1) = 𝑎11𝑅𝑅𝐼𝑚,1

3 + 𝑏11𝑅𝑅𝐼𝑚,1
2 + 𝑐11𝑅𝑅𝐼𝑚,1 + 𝑑11  

𝑎11 = -2.981E-4 

𝑏11 =  4.030E-2     

𝑐11 = -1.851 

𝑑11 =  30.352 

(4-17) 
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𝑆𝑓,𝐿(𝐶 − 2) =  𝑓21𝑅𝑅𝐼𝑚,1
3 + 𝑔21𝑅𝑅𝐼𝑚,1

2 + 𝑘21𝑅𝑅𝐼𝑚,1

+ 𝑚21 

𝑓21   = -6.66E-4 

𝑔21  = -8.59E-2 

𝑘21  = -3.769 

𝑚21 = 58.66 

(4-18) 

4.4.2 Effect of equivalence ratio on reactivity adjustment     

The present ReAd model takes into account the effect of mixture equivalence ratio in the 

formulation of the reactivity adjustment. Figure 4-4 shows the performance of the ReAd 

model applied to simulate n-butane reactivity with and without considering the effect of 

equivalence ratio in reactivity adjustment correlations. The simulations were performed 

for lean, stoichiometric, and rich mixtures of n-butane in a constant volume reactor and 

an initial pressure of 40 bar. The IDTs obtained using the chemical reaction mechanism 

of  reference fuels are plotted for comparison as well. It is seen that the ReAd model 

performs well for the stoichiometric mixture without considering the mixture equivalence 

effect. However, the performance of the model in the cases of lean and rich mixtures is 

not as good as the stoichiometric mixture cases, as shown in Figure 4-4-(a),(b). The 

ReAd model under-predicts the IDTs at low temperatures (700-850K) for the lean 

mixtures. On the contrary, it over-predicts the IDTs of rich mixtures. Similar behavior is 

observed for lower reactivity fuels than n-heptane, such as n-pentane and n-hexane. 
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Figure 4-4: Comparison of simulated IDTs of n-butane for a (a) rich (b) lean (c) 

stoichiometric in a CV reactor. Solid-black lines –the reference fuels mechanism, 

dash-red lines –the ReAd model without considering the effect of equivalence ratio, 

and solid-blue lines –with considering the effect of equivalence ratio 

To formulate the effect of equivalve ratio in the adjustment correlations, the IDTs of neat 

low-reactive fuels like n-hexane and n-heptane with equivalence ratios of 0.5, 0.75, 1.0, 

1.5, 2.0, and 2.5 were calculated. Using them as the reference values, further adjustment 

of 𝑆𝑓 of the control reactions was made to reduce the error within the tolerance for all 

equivalence ratio conditions tested. It was found that the change of the control reaction 

C-2 only would be enough to meet the error tolerance without adjusting the other control 

reactions. The adjustment is expressed as a multiplication factor in a form of third order 

polynomial function by normalizing the adjustment with those for the stoichiometric 

mixtures. Eq. (4-19) shows the multiplication factor for the equivalence ratio effect that is 

applied to C-2 control reaction. 

 𝑆𝑓,𝐿(𝐶 − 2) = 𝑆𝑓,𝐿(𝐶 − 2)𝑇𝑎𝑏𝑙𝑒 2. (−𝑎1  𝛷3  + 𝑎2 𝛷2 − 𝑎3 𝛷 + 𝑎4) (4-19) 
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where the  𝑆𝑓,𝐿(𝐶 − 2)𝑇𝑎𝑏𝑙𝑒 2 is the value of the 𝑆𝑓,𝐿(𝐶 − 2)  presented in Table 4-1, and 

a1 a2, a3 and a4 are the coefficients of the equivalence ratio adjustment, which are 

obtained from RRI of the local mixture using the equations shown in Table 4-2.   

 

Table 4-2: The correlation for a1, a2, a3, and a4 coefficients that are used in Eq.(4-19) 

𝑎1 =  0.0003 𝑅𝑅𝐼𝑚,1   +  0.2421 (20) 

𝑎2 = -0.0022 𝑅𝑅𝐼𝑚,1 + 1.3891 (21) 

𝑎3 = -0.0168 𝑅𝑅𝐼𝑚,1 + 2.9059 (22) 

𝑎4 = -0.0168 𝑅𝑅𝐼𝑚,1 + 2.9059 (23) 
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5 Extension of the model using more base-CS 
components   

The IDT curves of 19-component surrogate diesel are shown along with n-heptane in 

Figure 5-1 for mixtures of three different equivalence ratios at an initial pressure of 40 

bar. The mole-averaged CN of 19-component surrogate fuel (CN~ 56.9) is comparable to 

that of the n-heptane (CN=52.5). It is seen that the IDTs of the multi-component fuel at 

low-temperatures (T<850K) are much shorter than those of n-heptane. This characteristic 

difference of the two fuels in low temperature reactivity is attributed to the effects of 

combined oxidation of components in multiple chemical classes including aromatics and 

branched-alkanes. By choosing more control reactions of a single-CS mechanism, this 

discrepancy at low temperatures can be alleviated for a certain target multi-component 

fuel [36]. However, the limitation of this approach is that the number of additional 

control reactions as well as their adjustment factors vary not only for different multi-

component fuels, but also at different mixture equivalence ratios (see Figure 5-1-(b)). 

This problem can be addressed by employing more base-CS components to represent the 

characteristics of reactivity variation of different chemical classes.  

 

Figure 5-1: Comparison of simulated IDTs of n-heptane and the 19-component 

ULSD (Table 2-1 ) for a (a) stoichiometric, and (b) lean and rich mixtures in a CV 

reactor with an initial pressure of 40 bar 

Along with normal alkanes, iso-alkanes are major contents of diesel and gasoline fuels 

available in North America [9, 45].  Since these two chemical classes have substantially 

different reactivity from n-alkanes, it is desirable to model the iso-alkanes with a different 

base-CS component in order to improve the accuracy of the ReAd model.       

One characteristic of iso-alkane oxidation kinetics is that, compared to n-alkanes, it is 

difficult to represent all isomers’ ignition characteristics using a single CS-component 

kinetics based on a single index (e.g. octane/cetane numbers), especially at low 
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temperatures. It is because, although their indices are similar, the NTC behavior can 

substantially vary depending on their chemical structures. In the following section, the 

extension to the ReAd model to model iso-alkanes with an additional base-CS component 

and how iso-alkanes are classified is explained.       

5.1 Base-CS component for iso-Alkanes 

iso-Alkanes can be classified into lightly branched (≤2 methyl branches) and highly 

branched (>2 methyl branches) in order to better represent their low-temperature ignition 

characteristic. The simplest branched alkanes are 2-methyl alkanes. According to Sarathy 

et al. [43], the role of the methyl branch in 2-methyl alkanes is more pronounced in 

smaller alkanes and reactivity does not change noticeably between the normal and 2-

methyl alkane isomer when the carbon chain reaches a critical length. Hence, it is more 

important to compare the reactivity of the normal and 2-methyl alkane isomers for C<10 

alkanes.   

Table 5-1: Mono-methylated alkanes 

Number of 

carbons 

Number of 

isomers 

Short name of the isomers 

4 1 2-methylpropane 

5 1 2-methylbutane 

6 2 2-methylpentane, 3-methylpentane 

7 2 2-methylhexane, 3-methylhexane 

8 3 2-methylheptane, 3-methylheptane, 4-methylheptane 

9 3 2-methyloctane, 3-methyloctane, 4-methyloctane 

Table 5-1 shows the number of different isomers with one methyl branch which can exist 

for alkanes with smaller than 9 carbons. The species in bold in Table 5-1 are iso-alkanes 

that have comprehensive mechanisms and measured IDTs over a wide range of 

temperatures available in the literature.   

Figure 5-2 shows the IDTs curve of normal and 2-methyl branched alkane isomers along 

with the IDTs curve of a n-alkane with one fewer carbon. Simulations were performed 

for the reference condition of Φ=1.0 and Pini=40bar. It can be seen that the IDTs of 2-

methyl alkanes are very close to those of the normal alkane with one fewer carbon. This 

ignition characteristic indicates that 2-methyl alkanes can be grouped with n-alkanes in 

the ReAd model and their reactivity can be represented by their RRIs as in the case of n-

alkanes. Additionally, other mono-methylated alkanes have similar ignition 
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characteristics in the low to intermediate temperature range including the NTC region and 

their IDTs can be well correlated to their cetane numbers [43, 46]. A similar conclusion 

for 3-methylheptane and 2-methylheptane was reported by Wang et al. [47].  

 

Figure 5-2: Simulated IDTs of 2-methylalkanes based on well-validated mechanism 

available. Simulated based on (a) ARAMCO 2.0 mechanism [48], (b) NUI Galway 

mechanism for pentane isomers [49] and n-butane from ARAMCO 2.0, (c) Mohamad 

et al.[50] and Ra and Reitz [26] mechanism 

di-Methylated alkanes are not included in the surrogate fuel database as limited 

fundamental combustion studies are available for them likely due to high fuel cost for 

large-scale combustion experiments [51]. Additionally, the recent studies on di-

methylated butane or di-methylated pentane show that the location of methyl branches 

can change the ignition characteristic in the low and intermediate temperature region 

likely due to different cyclic transition states that might not happen based on the location 

of methyl branches [52, 53].  

For highly branched alkanes, iso-alkanes with the tertiary-butyl structure are considered 

in the study since that chemical structure is seen in some popular fuel components such 

as iso-octane and iso-cetane.  
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Figure 5-3: Molecular structure of highly-branched alkanes used in this study 

Three highly branched alkanes shown in Figure 5-3 are considered in the fuel database. 

Note that the detailed reaction mechanisms of heavy alkanes are rarely available and 

experimental measurement of IDTs at low temperatures is quite challenging due to their 

low volatility (e.g., iso-cetane’s vapor pressure is 130 Pa @ 20 ͦ C). 

Interestingly, however, the highly branched alkanes such as iso-decane and iso-cetane 

tend to have similar ignition characteristics to those of iso-octane due to their similar 

molecular structures. Iso-octane was chosen as the base-CS component for the highly 

branched alkanes. Following the method used for n-heptane, three control reactions were 

selected, and their pre-exponential factors were adjusted to alter the IDT of the iso-octane 

mechanism. The selected control reactions are:  

 𝑖𝐶8𝐻18 + 𝑂𝐻 ↔  𝑖𝐶8𝐻17 + 𝐻2𝑂 (C-5) 

 𝑖𝐶8𝐻17𝑂2  ↔  𝑖𝐶8𝐻16𝑂𝑂𝐻  (C-6) 

 𝑖𝐶8𝐻18 +  𝑂2  ↔  𝑖𝐶8𝐻17 + 𝐻𝑂2 (C-7) 

The IDT curves of the control reactions are shown in Figure 5-4. C-5 and C-7 control 

reactions are hydrogen atom abstraction reactions, and C-6 control reaction is an 

isomerization reaction.  C-5 and C-6 control reactions affect the IDTs of iso-octane at 

low to intermediate temperatures (T<1000K) and C-7 control reaction affects the high-

temperature region. 
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Figure 5-4: Sensitivity of IDT curve of iso-octane mechanism (a) reaction 

iC8H18+OH=iC8H17+H2O, (b) reaction iC8H17O2=iC8H16OOH, (c) reaction 

iC8H18+O2=iC8H17+HO2 

Iso-cetane and iso-decane (2,2,5,5-tetramethylhexane) are selected as the reference fuels. 

The reported cetane numbers of iso-cetane, iso-octane and iso-decane (2,2,5,5-

tetramethylhexane) are 15.0, 13.5, and 12.0, respectively [37] that are in great agreement 

with obtained RRI of these iso-alkanes fuels while the two constants of the RRI 

correlation are a=20 and b=7 [26]. The RRI of these reference fuels based on their 

reaction mechanism is 15.0, 13.15 and 11.68, respectively.  The effect of equivalence 

ratio is also considered in the formulation of adjustment factor for highly branched 

alkanes. Similar to n-alkanes in order to improve the accuracy of the correlations it is 

divided to 2 regions of mixture reactivity. Refer to the method explained in detail in 

Section.4.4. The correlations of adjustment factors for the iso-octane mechanism are 

shown in Table 5-2.  
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Table 5-2: Correlations of adjustment factor, Sf, for the control reactions C-5, C-6, and C-

7 

Mixture 

reactivity  

Adjustment amount   

higher than  

iso-octane 

𝑆𝑓(𝐶 − 5) =  𝑎51𝑅𝑅𝐼𝑚,2 + 𝑏51 ;  𝑎51 = 5.428,      𝑏51= -62.403 (5-1) 

 𝑆𝑓(𝐶 − 6) =  𝑎61𝑅𝑅𝐼𝑚,2 + 𝑏61 ;  𝑎61 = −0.484, 𝑏61= 6.659 (5-2) 

 𝑆𝑓(𝐶 − 7) =  𝑎71𝑅𝑅𝐼𝑚,2 + 𝑏71 ;   𝑎71 = 0.034,     𝑏71= 0.604      (5-3) 

Higher 

than iso-

decane 

 𝑆𝑓(𝐶 − 5) =  𝑐51𝑅𝑅𝐼𝑚,2 + 𝑑51;    𝑐51 = 16.792,   𝑑51= -211.8 (5-4) 

 𝑆𝑓(𝐶 − 7) =  𝑐71𝑅𝑅𝐼𝑚,2 + 𝑑71;    𝑐71 = 1.327,     𝑑71= -

16.406      

(5-5) 

𝑆𝑓(𝐶 − 6) = 𝑆𝑓(𝑐 − 6). (𝑎6 𝛷−2  + 𝑏6) 

𝑎6 = 0.271,   𝑏6 = 0.729 

(5-6) 

5.2 Base-CS component for aromatic hydrocarbons 

The model is extended further to represent the chemical kinetics of aromatic 

hydrocarbons. Aromatics with the benzene-ring structure can be classified as monocyclic 

or polycyclic-also known as MAH or PAH. The MAHs that are available in the fuel 

database are alkyl aromatic hydrocarbons as they are mainly studied in combustion 

chemistry.   The PAHs available in the fuel database are 7 components including Indene, 

Tetralin, Naphthalene, Acenaphthalene, Acenaphthene, Phenanthrene, and Pyrene.  

The reactivity of alkyl aromatic hydrocarbons is substantially different from normal and 

iso-alkanes. Typically aromatics components inhabit the oxidation of more reactive 

alkane components [54], when reacting in a co-oxidation environment. Additionally, as 

mentioned above in the selection of PS components, the fidelity of the surrogate fuel 

model also depends on its agreement with the C/H ratio of the target fuel. Due to their 

high carbon to hydrogen ratio, alkyl aromatics can complement the alkanes surrogate 

models in the representation of C/H ratio of the target fuels. 

5.2.1 Method I  

Toluene as the simplest alkyl aromatics studied in many chemical kinetics studies [55-

57]. Initiation of toluene oxidation is more likely to occur from H-atom abstraction of the 
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methyl group of toluene than H-atoms bonded to the benzene ring that have high bond 

dissociation energies. It is also expected other alkyl aromatics follows the similar 

oxidation pathways. Hence toluene oxidation reactions can be used as a sub-model for 

oxidation of other heavier alkyl aromatics [56, 58]. 

Several detailed oxidation kinetics studies and experimental measurements show that, as 

the length of the alkyl chain of n-alkyl benzenes increases, the IDTs decrease and a 

similar but distinctive NTC behavior can be seen for n-alkyl benzenes with an alkyl chain 

of 4 carbons or longer [58]. On the contrary, alkylbenzenes with shorter alkyl chains than 

4 carbons show a similar low-temperature ignition characteristic to that of toluene [59].  

As it is shown in Figure 5-5 alkyl aromatic hydrocarbons in fuel database are classified to 

low-reactivity aromatics and high-reactivity aromatics to better represent their ignition 

characteristic with a fewer base-CS components.   Toluene is selected as the third base-

CS component to represent the ignition characteristic of low-reactivity aromatic 

hydrocarbons and high-reactivity aromatics that show distinctive NTC behavior are 

grouped with n-alkanes and their reactivity can be represented by their RRIs in a mixture.   

 

Figure 5-5: Classification of alkyl aromatic hydrocarbons in fuel database to low-

reactivity aromatics –red left group, and high-reactivity aromatics –blue right group 

Following the method used for the first base-CS component and explained in Section.4.4, 

a control reaction was selected and its pre-exponential factor was adjusted to alter the 

IDTs of the toluene mechanism. The selected control reaction is: 

 𝐵𝑒𝑛𝑧𝑦𝑙 + 𝑂2 ↔ 𝐶6𝐻5 + 𝐶𝐻2𝑂 + 𝑂      (C-8) 

The Control reaction C-8 affects IDTs at both low and high temperatures (See Figure 

5-6). m-Xylene, cumene (isopropyl-benzene) and m-cymene are selected as the reference 

fuels to calculate the amount of the adjustment in the ReAd model based on toluene as 

the base-CS component. The two constants of the RRI correlation are selected as a=25 

and b=0 for low-reactivity aromatics [26]. 
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Figure 5-6: Sensitivity of IDT curve of toluene mechanism on reaction C-8,  

𝐵𝑒𝑛𝑧𝑦𝑙 + 𝑂2 ↔ 𝐶6𝐻5 + 𝐶𝐻2𝑂 + 𝑂 

 

The correlation of adjustment factors for the toluene mechanism is shown in Eq.(5-7): 

 𝑆𝑓(𝐶 − 8) =  𝑎81𝑅𝑅𝐼𝑚,3 + 𝑏81;   𝑎81 = 0.651, 𝑏81 = −0.855 (5-7) 

 

5.2.2 Method II 

Another effective approach instead of adjustment of pre-exponential factor of toluene 

mechanism to capture the reactivity of similar low-reactivity aromatics is generic-

reaction method suggested by Ra and Reitz [26]. The advantage of this method for low-

reactivity aromatics including PAHs is that it can model the ignition characteristic of 

those components by adding a few species and reactions to the reduced mechanism of the 

base-CS component.  For example, the ignition characteristic of n-propylbenzene can be 

modeled by adding 1 more species and 21 generic reaction steps to the reduced 

mechanism of toluene. The generic reaction steps that can be used for n-alkylbenzenes is 

shown in Table 5-3 as an example.  The time-saving advantage of applying the reactivity 

adjustment of the toluene mechanism to model the ignition characteristic of aromatics is 

not remarkable compared to addition of the generic reaction steps and the latter method is 

used in this work for aromatic hydrocarbons.  
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Table 5-3: Generic reaction steps used to model the oxidation kinetics of n-Alkylbenzene 

n-Alkylbenzene + H     = Toluene/Benzene + 𝑅 ̇ (of alkenes) 

n-Alkylbenzene + H     = Benzyl/Phenyl + Olefin(s) + H2 

n-Alkylbenzene + OH  = Toluene/Benzene + 𝑅 ̇ (of alkenes) + CH2O 

n-Alkylbenzene + OH  = Benzyl/Phenyl + Olefin(s) + H2O 

n-Alkylbenzene + HO2 = Toluene/Benzene + 𝑅 ̇ (of alkenes) + HCO + OH 

n-Alkylbenzene + HO2 = Benzyl/Phenyl + Olefin(s)  

n-Alkylbenzene + O    = Toluene/Benzene + 𝑅 ̇ (of alkenes) + HCO  

n-Alkylbenzene + O    = Benzyl/Phenyl + Olefin(s)  

n-Alkylbenzene + O2   = Toluene/Benzene + 𝑅 ̇ (of alkenes) + HCO +O 

n-Alkylbenzene + O2   = Benzyl/Phenyl + Olefin(s)  

n-Alkylbenzene           =  Phenyl + 𝑅 ̇ (of alkenes)  
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6 Validation of adjustment factor correlations 

As mentioned in Section.4, the IDTs of the reference fuels in a constant volume reactor 

are used to formulate the adjustment factor correlations in Table 4-1, Table 5-2 and 

Eq.(5-7). It is important to back-test the performance of the ReAd model based on the 

correlations for constant volume simulation the reference fuels. The IDT curves predicted 

by the present ReAd model for the reference fuels of n-alkanes, iso-alkanes and aromatics 

families were compared with those obtained using their own reaction kinetics 

mechanisms [26] in Figure 6-1, Figure 6-2 and Figure 6-3, respectively. 

Figure 6-1 shows the results of IDTs of stoichiometric fuel/air mixtures for an initial 

pressure of 40 bar and initial temperatures of 700 -1300 K at a constant volume 

simulation. It can be seen that the IDTs of these reference fuels from n-alkanes are well 

captured by the reactivity adjustment formula obtained from Table 4-1 for n-heptane 

reaction mechanism. For example, the results shown with the ReAd label for n-dodecane 

in Figure 6-1-(d) use Eq.(4-12) and Eq.(4-13) to obtain the reactivity adjustment amount, 

while Eq.(4-17) and Eq.(4-18) were used for n-pentane simulation. This back-testing 

method validates the performance of the correlation shown in Table 4-1. 

Additionally, the following formula is suggested to calculate the error of predicted IDT at 

temperature T between the ReAd model- that use the adjustment factor correlation- and 

PSGCR method-that use the reference fuels’ their own reaction mechanism.  

 

 𝐸𝑟𝑟𝑜𝑟𝑇 = |
log (𝜏𝑅𝑒𝐴𝑑

𝑇 ) − log (𝜏𝑃𝑆𝐺𝐶𝑅 
𝑇 )

𝑙𝑜𝑔𝜏𝐶𝑆
700 | (6-1) 

In above equation,  𝜏𝑅𝑒𝐴𝑑
𝑇  and 𝜏𝑃𝑆𝐺𝐶𝑅 

𝑇  are the IDT in millisecond (ms)  at initial 

temperature, T, using the ReAd model and the PSGCR method, respectively. The  𝜏𝐶𝑆
700 in 

the denominator of Eq.(6-1) is IDT of selected CS for the ReAd model at initial 

temperature of 700K. The mean error is measured based on the average of the errors 

calculated from Eq.(6-1) in temperature range of 700K to 1300K with increment of 50K.   

To find the optimum amount that the control reactions should be altered to have the 

lowest mean error, a method similar to the gradient optimization method [60] to find a 

minimum of a function is used.  

Initially, the adjustment factor, 𝑆𝑓, of the control reactions are slightly (+/- 0.5) changed 

and the average error is calculated in two neighboring points. If the average error is the 

smaller in either of the neighboring points, the corresponding 𝑆𝑓   to the smaller error is 

chosen as the new 𝑆𝑓  . This process is continued until to reach a point that the average 

error in both directions (i.e., 𝑆𝑓  +/-0.5) is larger than the previous value. Then, the search 

will continue with a smaller (+/- 0.1) change in 𝑆𝑓  until to find another minimal average 

error. 
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Figure 6-1: Comparison of simulated IDTs obtained by the ReAd model and based on 

the reduced mechanism for (a) n-pentane, (b)n-hexane, (c)n-decane, (d)n-dodecane, 

(e) n-tetradecane, (f) n-cetane, (g) n-octadecane, (i) n-icosane 
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Figure 6-2 shows the results of IDTs of the reference fuels from iso-alkane family. It is 

shown that the IDTs of these reference fuels are well captured by reactivity adjustment 

formula obtained from Table 5-2 for iso-octane reaction mechanism.    

 

Figure 6-2: Comparison of simulated IDTs obtained by the ReAd model and based on 

the reduced mechanism for the reference fuels in iso-alkanes family (a) iso-octane 

(trimethylpentane), (b) iso-octane 

The results of IDTs of the reference fuels from aromatics family are shown in Figure 6-3. 

As explained in Section.5.2, the IDTs of these reference fuels is obtained by reactivity 

adjustment formula in Eq.(5-7). Note that simulations are performed for stoichiometric 

fuel/air mixtures at a constant volume reactor. Again, these back-testing simulations 

validates the formula shown in Eq.(5-7).  
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Figure 6-3: Comparison of simulated IDTs obtained by the ReAd model and based on 

the reduced mechanism of reference fuels for (a) m-cymene, (b) iso-propylbenzene 

(cumene), (c) m-xylene 
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7 Results and discussion  

Using the developed model, various multi-component fuel models are tested in various 

combustion modes, and their results are presented in this section. The performance of the 

ReAd model is compared with that of the PSGCR model and GCR model in term of the 

prediction accuracy and computational time. Note that in the PSGCR model, the number 

of CS components is the same as the number of PS component, and thus the oxidation 

kinetics of PS components is described by their own chemical reaction mechanisms. This 

indicates that the best accuracy of the ReAd model is achieved when the ReAd model 

simulation results capture those predicted by the PSGCR model results. It should also be 

noted that, in the following simulations, both the GCR and ReAd models use the same set 

of CS components and chemical reaction mechanisms and thus the comparison between 

the two models demonstrates the role of the ReAd model in improvement of prediction 

accuracy.    

7.1 Ignition of homogeneous mixtures in a constant volume 
reactor 

Ignition of a two-component fuel was simulated to demonstrate the performance of the 

re-distribution scheme of the ReAd model. A blend (50/50 by mass) of n-heptane and n-

decane was tested for an initial pressure of 40 bar and an initial temperature of 850 K and 

the profiles of temperatures and fuel component mass fractions are shown in Figure 7-1. 

Three models are compared in the figure; i) the PSGCR approach, ii) the GCR approach, 

and iii) the ReAd model. Note that both components are assigned to n-heptane (the CS 

component) kinetics in both the GCR and the ReAd models, but the reactivity of the n-

heptane mechanism is adjusted to represent the average reactivity of the blend fuel and 

the re-distribution scheme is activated in the ReAd model. 

The GCR method assumes no reactivity difference of the grouped fuel components. 

Therefore, the predicted IDTs by the GCR method is shown to be longer than those 

predicted by the PSGCR model, as can be seen from the main ignition timings (second 

temperature jump in the temperature profiles) in Figure 7-1. It is also seen that both the 

cool flame and the main ignition timings are in good agreement with those by the ReAd 

model although the main IDT is slightly over-predicted. This confirms that the average 

reactivity of the mixture is correctly captured by the ReAd model.    

The profiles of the two components’ mass are identical in the GCR method, since their 

initial composition of 50%/50% mass in the mixture would not change because no 

distinction of component reactivity is considered in distributing the updated amounts of 

the chemical surrogate component (n-heptane) after chemistry calculation back to the two 

physical surrogate components (n-decane and n-heptane). On the contrary, the mass 

profiles predicted by the PSGCR method reveal that the consumption (oxidation) rate of 

the higher-reactive component (n-decane) is greater than that of the lower reactivity 

component (n-heptane). 
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Fuel components’ consumption profiles could be well captured by the redistribution 

feature of the ReAd model, although the consumption rate of the lower-reactivity fuel 

was slightly under-predicted compared to that by the PSGCR method. The under-

prediction is attributed to the fact that the ReAd model cannot take into account the effect 

of reaction interaction between the components (the co-oxidation effect), while it is 

modelled by the PSGCR method. 

7.2 HCCI engine combustion 

The present model was also validated against experiments of homogeneous charge 

compression ignition combustion in a light-duty diesel engine with a compression ratio of 

10.5 [61]. The fuel considered in the simulation is FACE#1. The FACE#1 is a fuel from a 

set of research fuels designed and developed in a joint project between the US 

Department of Energy and Coordinating Research Council [61]. The surrogate 

compositions proposed by Krishnasamy et al. [62] is used in the simulation. The PS and 

CS components and their compositions for the PSGCR, GCR and ReAd models are 

shown in Table 7-1. The 11-component surrogate model matches the fuel distillation 

profile as well as the specific gravity, lower heating value, hydrogen-to-carbon (H/C) 

ratio, and CN of FACE#1 [62].  As it is mentioned in Section.1.3, in the PSGCR the PS 

components don’t need to be grouped into chemical surrogate components because each 

PS component has its own CS component with reaction kinetics described in the 

mechanism. However, in GCR and ReAd method, cyclo-alkanes, high-reactivity 

aromatics and n-alkanes are grouped and assigned to n-heptane. iso-Alkanes are grouped 

into iso-octane and low-reactivity aromatics are grouped and assigned to toluene as can 

be seen in Table 7-1. Note that naphthalene and tetralin are assigned to toluene for 

 

Figure 7-1: Mass and temperature variation of 2-component fuel (Sp1 is n-decane 

and Sp2 is n-heptane). Simulated in a CV reactor with an initial pressure and 

temperature of 40 bar and 850K, respectively. 
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kinetics calculation due to similar low-reactivity characteristic even though they are not 

used as reference fuels in formulation of Eq.(5-7).   

Table 7-1: 11-component Surrogate FACE#1 model 

11-Component  

FACE#1 PS Model  

Mass 

fraction 

PSGCR,  

CS model 

ReAd & 

GCR 

CS model 

n-dodecane, n-C12H26 (nA) 0.162 n-C12H26 n-heptane, 

nC7H16 n-octadecane, n-C18H38(nA) 0.101 n-C18H38 

2,2,3,3-tetramethylhexane, 

iC10H22 (iA) 

0.260 iC10H22 iso-octane, 

iC8H18 

iso-cetane, iC16H34 (iA) 0.100 iC16H34 

cyclohexane, C6H12 (cA) 0.030 C6H12 n-heptane, 

nC7H16 decalin, C10H18 (cA) 0.120 C10H18 

tetralin, C10H12 (mAH ) 0.008 C10H12 

toluene naphthalene, C10H8 (pAH) 0.015 C10H8 

m-cymene, C10H14 (mAH) 0.152 C10H14 

n-pentylbenzene, C11H16 (mAH) 0.042 C11H16 n-heptane, 

nC7H16 n-heptylbenzene, C13H20 (mAH) 0.010 C13H20 

 nA: normal-alkanes |  iA: iso-Alkanes |    cA: cyclo-alkanes 

 mAH: monocyclic Aromatic Hydrocarbons  

 pAH: polycyclic Aromatic Hydrocarbons 

The engine specification and operating conditions used in the simulation are listed in 

Table 7-2, and more details can be found in [62]. The boundary conditions of the engine 

were estimated based on the engine load and the relevant measured data available in the 

literature [63]. The trapped residual gases were estimated based on the in-cylinder gas 

pressure and estimated temperature at the exhaust valve closure (EVC) timing. The 

internal residual gases were added to the fresh fuel/air to specify the mixture composition 

at intake valve closure (IVC).  
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Table 7-2: engine specification and operating condition used in the HCCI engine 

combustion simulation 

Bore x Stroke [mm x mm] 97.0 x 70.0 

Compression ratio  10.5 

Inlet Valve closing [ᵒ ATDC] -142 

Exhaust Valve opening [ᵒ ATDC] 139 

Engine Speed [rev/min] 1800 

Fuel rate [g/min] 6.27 

Equivalence ratio 0.31 

Intake manifold Pressure [bar] 0.98 

Intake manifold Temperature [ ᵒK] 513 

 

To reduce computation time, a 2-D sector grid with a total of 1415 cells at the bottom-

dead-center (BDC) was used. The crevice volume was resolved as an elongated top land 

region connected to a trapezoidal region to represent the crevice groove volume.  The 

crevice volume was optimally adjusted to match the effective compression ratio of the 

engine. Figure 7-2 shows the computational grid at the BDC.  

  



44 

 

Figure 7-2: Computational grid used in the HCCI engine combustion simulation at 

BDC 

Figure 7-3-(a) shows a comparison of the pressure and heat release rate profiles between 

predictions by the PSGCR method and the experimental data. The results by the PSGCR 

model are used as the reference to compare with the results by the present ReAd model. 

The predictions are in good agreement with the measured data, although the predicted 

peak pressure is slightly higher than the measured values. It is seen in Figure 7-3-b that 

the pressure and heat release rate profiles predicted by the ReAd model are in good 

agreement with those of the PSGCR model, which indicates the ReAd model successfully 

predict the reactivity of the real multi-component fuel. The difference between the 

predictions by the ReAd model and the PSGCR model indicates the difference between 

the reactivity of the blend of fuels based on the chemical reaction mechanism and that of 

the model. On the contrary, the GCR model under-predict the reactivity of the mixture so 

that ignition is substantially retarded. This is expected because no reactivity adjustment is 

made in the GCR model in spite of the difference of average CN between the PS 

composition (CN=38.3) and that of the CS composition for the GCR model (CN=31.8).  
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Figure 7-3: Comparison of (a) measured and predicted in-cylinder pressure and heat 

release rate (HRR), (b) predicted pressure and HRR profiles based 3 different 

combustion models. 

 

The comparison of computation times with the three models is shown in Figure 7-4. The 

computation times are for simulations from IVC to exhaust valve closure (EVO) 

employing the Intel® Xeon X5650 processor. The same mechanism (143 species and 594 

reactions) was used for both ReAd and GCR simulations. Note that the reaction 

mechanism of 3 CS components (n-heptane, iso-octane and toluene) has 132 species and 

594 reactions. 11 PS components of FACE#1 are added as nominal species in reaction 

mechanism, but they are not involved in the reaction mechanism. They are added because 

their thermodynamic properties such as specific heat, standard state enthalpy and 

entropies are obtained based on an input file (therm.dat) that is used in pre-processing of 

the chemistry solver. It can be seen that the ReAd model can save 79% of computation 

time compared to the PSGCR method that employs a larger mechanism (253 species and 

1102 reactions). The simulations with ReAd model and GCR model are also show 

comparable computational time as both use the same reaction mechanism. However, the 

total computational time is slightly different (~1.49 min) due to the difference in total 

chemical kinetics, local reactivity (RRIm,j), and adjustment factor calculations.       
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Figure 7-4: Total computation times for the HCCI engine simulation with different 

combustion models. 

7.3 RCCI engine combustion simulation 

The performance of the model is also validated against an RCCI engine experiment. The 

engine modeled is a 4-cylinder 1.9L Volkswagen diesel engine that is equipped with a 

turbocharged direct injection (DI) system and a EGR control system [64]. The 

specification of the engine is listed in Table 7-3. 

The direct-injected fuel was delivered through a common rail system to Bosch CRDI 

injectors which were mounted on the center of the cylinders head. The injector has 6 

nozzles with a diameter of 0.165 mm and a spray-included angle of 144 degrees. The 

intake manifold of the original engine was modified to allow port fuel injection (PFI) for 

the dual-fuel RCCI operation.  
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Table 7-3: Specification of the 1.9L engine used in the RCCI engine simulation 

Bore (mm) 79.5 

Stroke (mm) 95.5 

Connecting Rod Length (mm) 14.4 

Intake Valve Timing ( ͦ ATDC) Open -354 

Close -169 

Exhaust Valve Timing ( ͦ ATDC) Open 162 

Close 351 

7.3.1 Simulated operating condition 

In the RCCI operation mode, methane with a minimum purity of 99.5% is injected at 

4bar into the intake port when the intake valve is open. Ultra-Low Sulfur Diesel (ULSD) 

as the high reactive fuel is injected directly into the cylinder through the high-pressure 

common rail system at a constant pressure of 400 bar. The delay between the injection 

pulse command and the actual start of injection was 0.432 ms for an injection pressure of 

400 bar and chamber pressures of 26~38 bar. Detailed engine operating conditions for 

model validation are given in Table 7-4. 
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Table 7-4: Operating conditions of the RCCI engine combustion. 

 RCCI-Case1 

Engine load (bar) 4  

Engine Speed (rev/min) 1300 

Natural gas flow rate (g/s) 0.5 

Air flow rate (kg/h) 60.736 

Diesel flow rate (g/s) 0.071 

1st pulse split ratio (%) 100-single 

Injection timing (ᵒBTDC) 20 

Injection duration (ms)  0.32 

Injection pressure (bar) 400 

EGR (%) 0 

 

7.3.2 Numerical modeling 

7.3.2.1 Computational grid of 1.9L VW engine 

A full 360ᵒ engine mesh was generated since the cylinder bowl is off-centered from the 

cylinder axis. The average cell dimensions at the top-dead-center (TDC) were 1.85 and 

1.2 mm in the radial and vertical directions, respectively. As it can be seen in Figure 7-5-

(a) that the mesh is finer in the center region of the bowl to better resolve the sprays from 

the injector aligned to the axis of the bowl. The computational grid was generated with 

ICEM CFD software [65]. The crevice volume was resolved as an elongated top land 

region, which was adjusted to match the effective compression ratio of the engine.  
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Figure 7-5: Computational grid for the 1.9L engine at TDC. (a) side mid-plane view, 

(b) top plane view 

7.3.2.2 Fuel model  

The high reactive fuel in the RCCI operation is ULSD. The 19-component diesel model 

shown in Table 2-1 is used for the PS components. 

For simulations with the ReAd and GCR models, the PS components in the chemical 

classes of n-alkanes, cyclo-alkanes, high-reactivity aromatics and olefins are assigned to 

n-heptane and the branched alkanes are assigned to iso-octane. The low-reactivity 

aromatic hydrocarbons are grouped and assigned to toluene. The chemistry of the low 

reactive fuel, methane, is modelled using the CH4 oxidation kinetics mechanism, which is 

a common sub-mechanism in the parent mechanisms.    

7.3.2.3 Evaluation of the mechanism for RCCI engine simulation   

Figure 7-6-(a) shows the IDTs of neat stoichiometric methane/air mixtures at an initial 

pressure of 40 bar. The experimental data of shock-tube test by Huang et al. [66] are 

shown with the prediction results. It is seen that the predicted IDTs are in good-

agreement with the measured shock-tube data.  

The IDTs for temperatures lower than 900K are predicted to be longer than 10ms which 

is equivalent to 90-degree CA in an IC engine operates at and engine speed of 1500 

rev/min. These long IDTs are beyond the residence time available for combustion of 

methane in conventional IC engines. Hence ignition is driven by the combustion of a 

high-reactive fuel directly injected into the combustion chamber.   
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Figure 7-6-(b) shows the predicted IDTs of stoichiometric mixtures of 19-component 

ULSD surrogate and methane blends along with neat diesel and methane cases. The IDTs 

of the 80/20 methane/diesel blend are significantly reduced from those of neat 

methane/air mixtures and with further increase of diesel portion to 50%, the IDTs are 

predicted to decrease to ~1 ms for mixture temperatures of compression gases (800 < T < 

1000) in typical diesel engines. This reduced IDT is short enough to drive the ignition of 

the local fuel/air mixtures while they stay at high temperatures near TDC. 

 

Figure 7-6: Comparison of IDTs of stoichiometric fuel-air mixtures. (a) neat methane; 

symbols- experimental data by Huang et al.[66],line- model prediction using Ra and 

Reitz. [26] mechanism, (b) 50% and 80% blends by mass of methane/ULSD surrogate, 

neat methane and neat ULSD. 

7.3.3 Simulation Setup and Results  

The operating conditions listed in Table 7-4 were simulated. The computations were 

performed from IVC to EVO. Homogenous methane/air mixture with internal residual 

gases of 5% by mass was assumed at IVC. The wall temperature boundary conditions 

were estimated to be 490, 520 and 450 K for the head, piston and linear of the engine, 

respectively, based on engine load and the relevant measured data in the literature. As is 

shown in Figure 7-7-(a), the motoring pressure profile is well captured by using the 

boundary conditions. The predicted ignition timing and the pressure rise by the 

combustion of methane are seen to be in good agreement with the measured data, 

although the peak pressure and AHRR are slightly over-predicted.  
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Figure 7-7: Comparison of (a) measured and predicted profiles of pressure and 

apparent heat release rate, (b) predicted maximum, minimum and average in-cylinder 

temperature based on the PSGCR model, (c) predicted pressure and heat release rate 

profiles based on different models 

       

It is seen in Figure 7-7-(a) that noticeable heat release starts about -8oATDC, which is 

after the end of the injection. It means that the high reactivity fuel- ULSD- mixes with the 

low reactivity fuel-methane- enough to form mixtures with optimal reactivity before the 

main ignition. Figure 7-7-(b) shows the profiles of the minimum, maximum, and mean 

in-cylinder gas temperatures. Due to diesel injection and subsequent vaporization, the 

local mixture temperatures drop after SOI, which is reflected in the minimum 

temperature profile. The sudden rise of the maximum local temperature profile around -

8oATDC indicates that ignition occurs. (The right prediction of local mixture reactivity in 

this temperature window is the key factor in the prediction of the ignition process and as 

the result pressure and heat release rate profile. Meanwhile, it is important to predict the 

right local mixing to be able to predict the local mixture reactivity. In current operating 

condition simulated here the local mixture with equivalence ratio of around 0.7 and 
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temperature of around 950K is the ignition-driving mixture). Note that, in the tested 

RCCI case, although the injection of diesel is very minimal (1.64mg) for a short time, the 

penetration of diesel fuel is long enough to form ignition-driving mixtures at the bottom 

of the bowl.   

Simulation results by the three combustion models are compared in Figure 7-7-(c). A 

significant difference in predicted ignition timings is observed between the GCR model 

and the other two models. The ignition timing by the GCR model was substantially 

retarded, while the ReAd model shows a reasonable agreement with that of the PSGCR 

model. The reason for the retarded ignition timing of the GCR model is that all n-alkane 

components in the ULSD surrogate model are more reactive than n-heptane. In addition, 

iso-cetane (heptamethylnonane) and iso-decane (tetramethyl-hexane) show slightly 

higher reactivity than iso-octane at low to intermediate temperatures (T<1000K). Note 

that the n-alkanes are grouped and assigned to n-heptane and branched alkanes are 

grouped and assigned to iso-octane in both the GCR and ReAd model. Figure 7-8 shows 

the equivalence ratio and temperature distributions in the cylinder at -5.5 ͦATDC, which is 

right after the main ignition. 

Since the same PS model is used, the non-reacting fuel distributions are expected to be 

almost identical for all three cases before the earliest ignition timing of the three cases. 

Even after ignition, the equivalence ratio of the mixture is uniform and equal to 0.5 over 

the entire cylinder before diesel injection. However, the fuel distributions start differing 

due to different combustion behavior. The temperature and equivalence ratio distributions 

predicted by the ReAd model are similar to those by the PSGCR model, which confirms 

that the reactivity and fuel consumption of local mixtures are well captured by the ReAd 

model.  

The predicted ignition location (region at the bottom of the bowl enclosed by the 

T=1200K contour) is similar between the ReAd model and the PSGCR model. However, 

the predicted area of high-temperature region is smaller in the ReAd model. The local 

high-temperature region (T>1200 K) is not seen in the case of GCR model, as shown in 

Figure 7-8-(a).  
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Figure 7-8: Comparison of predicted in-cylinder distribution of (a) temperature, (b) 

equivalence ratio in mid-plane view. Iso-contours of (a) temperature and (b) 

equivalence ratio are also plotted. The distributions are at -5 ᵒATDC. 

7.4 Spray Combustion simulation in a Constant Volume 
Combustion Chamber 

When a multi-component spray is injected into a constant volume combustion chamber 

(CVCC), both thermal conditions and composition of local mixtures vary spatially and 

temporally. The ReAd model was applied to simulate spray combustion in a CVCC with 

FACE#3 as the injected fuel.  

The simulated operating conditions were set to those of the engine combustion network 

(ECN) Spray-A [67], except for the fuel model.  The 12-component surrogate FACE#3 

suggested by Krishnasamy et al.[62] was used in the spray combustion simulations. The 

start of simulation is at the start of the injection and the simulation is terminated at the 

end of injection (5.5 ms after SOI). To reduce computation time, a 2-D grid that resolve 
1

360
 degree of the chamber is used -similar to the CVCC case in Ref.[36] . 

 The PS composition of the FACE#3 is listed in Table 7-5. Two different sets of CS 

models for GCR and ReAd models are tested. In the surrogate model with 3 components, 

n-heptane, iso-octane, and toluene are selected as the CS components and in another 

surrogate model n-heptane is selected as the single CS component. In both the GCR and 

the ReAd model, the assignment of PS components to the CS components are similar as 

shown in Table 7-5.  Note that the PSGCR the PS components don’t need to be grouped 

into chemical surrogate components because each PS component has its own CS 

component with reaction kinetics described in the mechanism. 
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Table 7-5: 12-component FACE#3 surrogate model 

12-Component  

FACE#3 PS Model 

Mass 

fraction 

ReAd & GCR CS 

model 

ReAd & GCR 

CS model 

3 CS components 1 CS component 

cetane, C16H34 (nA) 0.080 
n-heptane 

n-heptane 

n-octadecane, C18H38(nA) 0.040 

tetramethylhexane, iC10H22 (iA) 0.095 
iso-octane 

iso-cetane, iC16H34 (iA) 0.100 

cyclohexane, C6H12 (cA) 0.050 
n-heptane 

decalin, C10H18 (cA) 0.200 

m-xylene, C8H10 (mAH ) 0.020 

toluene 
tetralin, C10H12  (mAH) 0.075 

naphthalene, C10H8 (pAH ) 0.058 

m-cymene, C10H14 (mAH) 0.180 

n-pentylbenzene, C11H16 (mAH) 0.052 
n-heptane 

n-heptylbenzene, C13H20 (mAH)  0.050 

 nA: normal-alkanes |  iA: iso-Alkanes |  cA: cyclo-alkanes |  

 mAH: monocyclic Aromatic Hydrocarbons      

 pAH: polycyclic Aromatic Hydrocarbons 

Figure 7-9-(a) shows a comparison of the profiles of the local maximum gas temperature 

in the combustion chamber predicted by the models. The IDTs correspond to the points at 

which the local temperature rises rapidly. It can be seen that the ignition timings of both 

CS models predicted by the ReAd model are in good agreement with that of the PSGCR 

method. On the contrary the GCR model predicts substantially early and retarded ignition 

with the 1 and 3 CS component models, respectively.  The GCR model with the 1 CS 

component represents the combustion kinetics of all components as n-heptane that has 
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CN of ~52, which over-predicts the reactivity of FACE#3 fuel (CN=27.9). However, the 

GCR model with the 3 CS components under-predicts the reactivity of the target fuel 

since the mole-averaged CN of the 3-CS component model is lower (CN=27.0) than that 

of the target fuel. Note that the average CN of the CS composition does not reflect the 

performance of the ReAd model as is in the GCR model, since both the reactivity of local 

mixtures and the reactivity difference of individual PS components grouped into a CS 

component are taken into account by the model. 

Figure 7-9-(b) shows the comparison of total computation times among the models. All 

simulations were performed using the same machine equipped with the Intel® Xeon 

X5650 processor. For the simulations with 3 CS components a reaction mechanism with 

144 species and 594 reactions was employed while a reaction mechanism with 93 species 

and 345 reactions was used for the single CS simulations. Note that similar to the HCCI 

case, 3CS reaction mechanism has 132 species and 1CS reaction mechanism has 81 

species and 12 PS components of FACE#3 are added as nominal species to both reaction 

mechanisms that are not involved in reactions (See Section.7.2  for more details). 

As expected, the ReAd model with 3 CS components saves 37% of computation time 

compared to the PSGCR method that employs a larger mechanism (254 species and 1119 

reactions). Note that this saving can be more significant when computation load increases 

as the number of computational-grid increases with more complex 3-D engine 

geometries. Interestingly, the simulation with the single CS ReAd models takes slightly 

less time compared to the simulation with the single CS GCR models. Detailed CPU time 

analysis of computational time illustrates that the CFD time-step gets smaller after the 

start of ignition, which makes the flow filed calculation costlier and as the result the total 

computation time of the simulation with the GCR model higher. The reason why the CFD 

time-step gets smaller is that pressure around the local igniting cell starts to increase 

rapidly after ignition as the result the CFD code decreases the time-step, 𝛥𝑡. (See Figure 

7-10).  

Although the single CS ReAd model can predict the ignition timings reasonably well, it is 

seen in Figure 7-9-(b) that the 3-CS ReAd model better captures the ignition timing of the 

PSGCR method. However, the ReAd model with single CS save around 20% of 

computation time compared the ReAd model with 3 CS components yet due to the 

limitation of single CS mentioned in Section.5. it is recommended to use the 3 CS 

component model at the expense of more computation time. 
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Figure 7-10: Comparison of pressure and CFD time-step for the CVCC spray 

combustion simulation between (a) GCR(1CS) model, (b) ReAd (1CS) model 

Figure 7-12 till Figure 7-15 show the distributions of the unburned hydrocarbon (UHC) 

mass fraction and gas temperature from the start of ignition till the end of simulation for 

all of the CCCV spray cases. It can be seen that the location of ignition is influenced by 

the timing of ignition, and the temperature distributions predicted by both ReAd models 

look very similar to those by the PSGCR model. That is why the right prediction of 

ignition timing is so important in spray combustion simulations. 

 
Figure 7-9: The predicted (a) maximum temperature based on different models in spray 

combustion simulation with FACE#3, (b) total computation times for the spray 

combustion simulation with different combustion models 
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The earlier ignition predicted by the 1CS GCR model is identified by the high 

temperature island at the ignition location near the tip of the spray (see Figure 7-11). On 

the contrary, the 3CS GCR model that predicts later ignition timing shows the ignition 

location near the bottom of the chamber ( see Figure 7-15). The total area of high 

temperature region (T>1300) at the end of the simulation (T=5.5ms) that can indicate the 

total heat release is also substantially different in the simulations that did not predict right 

ignition timing.   

Additionally, since the same multi-component spray models were used in the all cases, it 

is expected that the UHC is almost identical before no significant reactions took place. It 

is shown that the UHC islands at the end of the simulation is similar among the 1CS 

ReAd, the 3CS ReAd and PSGCR models while those are completely different for the 

simulations with the 1CS GCR and the 3CS GCR models.     

  

 

 
Figure 7-11: Distribution of gas temperatures and unburned hydrocarbon mass fraction 

(UHC) in the CCCV simulation with 1CS GCR model 
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Figure 7-12: Distribution of gas temperatures and unburned hydrocarbon mass fraction 

(UHC) in the CCCV simulation with 1CS ReAd model 

 

 
Figure 7-13: Distribution of gas temperatures and unburned hydrocarbon mass fraction 

(UHC) in the CCCV simulation with 1CS ReAd model 
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Figure 7-15: Distribution of gas temperatures and unburned hydrocarbon mass fraction 

(UHC) in the CCCV simulation with 3CS GCR model 

 
Figure 7-14:  Distribution of gas temperatures and unburned hydrocarbon mass fraction 

(UHC) in the CCCV simulation with PSGCR model 
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8 Summary and Conclusions  

A combustion model to simulate the oxidation of multi-component fuels has been 

developed. The model is called reactivity adjustment (ReAd). The goal of the model is to 

represent the ignition characteristics of multiple physical surrogates with fewer chemical 

surrogates and achieve both computational efficiency and prediction accuracy. Starting 

with a single CS component (n-heptane) approach to represent the reactivity of n-alkanes 

fuels by adjusting the reaction rate constants of several characteristics reactions the CS 

component, the model was extended by adding two more chemical surrogate components 

to represent the ignition characteristics of fuel components in other chemical classes than 

n-alkanes. This enabled to avoid the excessive adjustment of reaction rate constants that 

is required when using a single chemical surrogate only. 

The model was extensively tested for various fuels with a wide range of reactivity and in 

various combustion regimes including HCCI, RCCI and conventional diesel combustion. 

Compared to the group chemistry representation (GCR) approach, the present model 

demonstrates remarkable improvement of the ignition/combustion prediction for a 11-

component FACE#1 fuel in HCCI combustion, a 19-component ULSD in RCCI 

combustion, and a 12-component FACE#3 in CVCC spray combustion. The performance 

of the present model also shows noticeable computation time benefit compared to the 

detailed chemistry calculation for the entire individual PS components. The HCCI 

simulations showed computation time saving by 79% and the CVCC spray simulations 

showed 37% saving.  
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9 Suggestions and Recommendations  

Further improvement of the presented combustion model can be addressed in future 

studies and some suggestions to pursue that goal are provided in this section.  

The relative reactivity index (RRI) of a mixture that is defined in Eq. (4-2) is a linear 

function of the RRI of the components. In future studies, the non-linear behavior of fuel 

blending on mixture reactivity can be investigated.  

The steps to make the 𝑆𝑓correlation for a base-CS like Table 4-2 can be automated in 

future studies. Specifically, the selection of the control reactions, and the minimization of 

the error defined in Eq. (6-1) can be automated in future studies. Note that the significant 

part of the development time is spent in making high-fidelity correlations.      

While it is desirable to achieve computational efficiency by reducing the number of CS at 

the minimum expense of prediction accuracy, addition of a base-CS from oxygenates 

chemical class is important in future studies if the existence of oxygenates components in 

the surrogate model is recommended. Grouping of oxygenates components to non-

oxygenates hydrocarbons for chemical kinetic calculation can lead to remarkable error in 

the final results.    
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