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Abstract 
 

Ductile Iron is a material that is constantly evolving. Consequently, the ferrous industry 

is not only focusing on lightweighting but also on improving the impact strength and 

fracture toughness of typical ferritic-pearlitic ductile iron grades and solid solution 

strengthened ferritic ductile irons. Recently, the demand for thin-wall ductile iron and 

solid solution strengthened ferritic ductile iron grades has increased. The challenges 

behind the fabrication of these two ductile iron materials are the presence of carbides and 

the embrittlement of ferrite. In response, research has been focused on looking at 

alternative methods that can mitigate carbide formation in thin sections and counteract 

the detrimental effects of high silicon contents in the impact toughness of these materials. 

One way to reduce carbides is by increasing the silicon, but high silicon contents 

embrittle the ferrite and result in low static and dynamic mechanical properties. Cobalt in 

ductile iron is known to increase the nodule count resulting in a higher ferrite content in 

the as-cast condition, and it also hardens the ferrite via solid solution strengthening. 

Therefore, the ability of cobalt to inhibit carbide formation and its effect on the toughness 

of two different types of ductile irons was studied. Firstly, it was found that the addition 

of 4 wt.% Co reduces carbides in thin sections with a silicon level around 2.41 wt.% Si. 

Secondly, partial substitution of silicon with 2 wt.% and 3 wt% Co provided higher 

strength in a 600-10 SSFDI grade. Nonetheless, the impact strength and fracture 

toughness were not improved with cobalt additions. It was established that cobalt 

increases the ductile to brittle transition temperature. 
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1 Introduction  

1.1 Cast Iron Overview  
Cast irons are ferrous alloys known for their excellent castability, machinability, and low-

cost production. Cast iron is considered one of the oldest engineering materials that are 

continuously evolving despite the growing competition for new materials. These alloys 

are mainly composed of iron, carbon, and silicon. The carbon contents are above 2 wt.% 

C, typically around 3.6 wt.% C and silicon contents above 2 wt.% Si. Carbon is present 

either as graphite (pure carbon-stable) or cementite (Fe3C-metastable). Besides that, 

elements such as manganese, copper, nickel, aluminum, molybdenum are added in small 

quantities to modify the metallic matrix, and therefore the mechanical properties. Figure 

1.1 shows the metastable iron-iron carbide phase diagram, where the cast iron section has 

been highlighted with the use of annotations. 

 
Figure 1.1 Iron-Iron carbide phase diagram showing the range of cast irons [1]. 
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Cast iron is classified based on its graphite shape. In cast iron, the stable form of carbon 

precipitates as graphite, which are weak and soft particles with different shapes 

embedded in a metallic matrix. Table 1.1, provides the carbon and silicon ranges of the 

different types of cast irons, as well as the eutectic product (stable or metastable) and the 

graphite shapes.  

 

Table 1.1 Cast iron compositions (wt.%) and microstructures [2] 
Type of Iron C Si Eutectic Product 

(Graphite vs 
Fe3C) 

Graphite Shape 

Grey Iron 2.5-4.0 1.0-3.0 Graphite Platelets 
Ductile Iron 3.0-4-0 1.8-2.8 Graphite Spheres 

Malleable Iron 2.0-2.6 1.1-1.6 Fe3C Popcorn 
White Iron 1.8-3.6 0.5-1.9 Fe3C  

Compacted Iron 3.0-4.0 1.8-2.8 Graphite Rods 
 

It is important to highlight that the graphite shapes will also provide different mechanical 

properties, this is another reason why cast irons have a wide variety of applications. The 

three types of cast irons that are most used nowadays are grey, compacted, and ductile 

iron (Figure 1.2). 

 
Figure 1.2 Micrographs of typical cast iron types: (a) grey iron, (b) compacted iron, and 

(c) ductile iron [3]. 
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As previously mentioned, the graphite shape plays an important role in the tensile 

properties of cast irons. Ductile iron consists of graphite spheroids that are dispersed in a 

matrix of ferrite, pearlite, or both, providing the highest tensile strength. The round shape 

of the graphite nodules is also beneficial to mitigate crack nucleation/stress 

concentrations acting like crack arrestors. Meanwhile, grey iron results in the lowest 

tensile strength since the graphite flakes are sharper, which results in high local stresses 

at the graphite tips. Lastly, compacted graphite iron results in intermediate strengths 

because the vermicular graphite tips are blunted [4]–[6]. Figure 1.3 shows the beforehand 

discussed influence of graphite shape on the tensile behavior.   

 
Figure 1.3 Influence of graphite morphology on the stress-strain curve of several cast 

irons [7]. 

 

1.2 Brief background of Ductile Iron    
Ductile iron or nodular cast iron (also known as spheroidal graphite iron in Europe) was 

born in 1943 when Keith Dwight Millis added magnesium (as a copper-magnesium alloy) 

to the ladle, which resulted in graphite spheres [8]. Later in 1948, Henton Morrogh from 

the British Cast Iron Research Association (BCIRA) announced the successful production 

of ductile iron with cerium additions [9].  
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Chemical composition is one of the main factors that play a significant role in the final 

microstructure of ductile iron. The solidification of this material can follow two different 

paths: (a) stable transformation of austenite to a mixture of ferrite and graphite or (b) 

metastable transformation of austenite to pearlite. Besides that, adding silicon to ductile 

iron introduces a three-phase region (ferrite + austenite + graphite or ferrite + cementite + 

austenite). An example of the effect of silicon on the Fe-C phase diagram is shown in 

Figure 1.4. 

 
Figure 1.4 Thermo-Calc Fe – C – 2.5 wt.% Si metastable phase diagram. 

 

When thinking about the solidification of ductile iron and its resulting microstructure, the 

main elements that influence the composition of the melt are carbon and silicon. Thus, 

the term carbon equivalent (CE) has been adopted where the most used relationship is 

given by:  

 𝐶𝐶𝐶𝐶 = % 𝐶𝐶 + 
1
3

 % 𝑆𝑆𝑆𝑆 (1) 

 

Three-phase 
field 
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Depending on the above relationship, ductile iron can be classified as eutectic (CE= 4.3), 

hypoeutectic (CE < 4.3), or hypereutectic (CE > 4.3). The combined effects of these two 

elements may be described using the Henderson diagram shown in Figure 1.5. This 

diagram provides some guidelines for metallurgists in terms of knowing the best range of 

CE for ductile iron production. Basically, this diagram gives the CE values necessary to 

avoid carbides, shrinkage, and graphite flotation, which are detrimental to the mechanical 

properties of ductile iron [10]–[12]. It is important to point out from this diagram the 

negative effect of high silicon contents, which results in high impact transition 

temperatures. 

 
Figure 1.5 Typical range for carbon and silicon contents for ductile irons [7]. 

 

Ductile iron is not a single material, but rather it is considered a family of materials since 

it offers a wide variety of properties that are obtained through microstructure control. 

This control of the microstructure depends mainly on molten metal processing, chemical 

composition, cooling rate, and heat treatment. Figure 1.6 displays the most common 

ductile iron types with their respective names and tensile strengths. These grades have in 

common the spherical graphite shapes, also known as graphite nodules. Additionally, the 
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name of these grades depends on the final matrix that forms upon cooling or heat 

treatment.   

 
Figure 1.6 Microstructure and tensile strengths for various types of ductile iron [13]. 

 

1.3 Thin-Wall Ductile Iron  
The transportation industry accounts for 14% of global greenhouse gas (GHG) emissions 

[14]. The international energy agency (IEA) suggests that global transport emissions 

should be reduced by more than 34% of current levels by 2050 to reduce global warming 

[15]. Due to this, there is a high interest in the automotive industry to reduce the weight 

of the vehicles to contribute to a lower percentage of CO2 emissions and meet the 

established fuel economy standards. Reducing the weight of a vehicle by 10% in mass 

leads to a 2-4% enhancement in fuel economy and a corresponding reduction in GHG 

emissions [16].  

 

Ductile iron is strong, tough, and cost-effective, but is usually not considered a 

lightweight material. Consequently, the ferrous industry has invested in the optimization 

and development of thin-wall ductile iron (TWDI) castings with sections below 5 mm. 

The greatest challenge in the production of TWDI castings that most of the industry faces 

is the presence of carbides due to the high cooling rates. The best TWDI manufacturing 

techniques (using high purity charge materials and inoculating at several stages of the 

melting process) have been studied for years, where the main objective is obtaining 
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carbide-free castings. As observed in the Henderson diagram (Figure 1.5), one of the 

most common ways to mitigate carbide formation is to increase the silicon content. This 

happens because silicon is a strong graphitizing element that increases the ΔT between 

the stable and metastable eutectics, promoting graphite nucleation and growth [10], [17]. 

Nonetheless, one of the drawbacks of high silicon contents is a reduction in the impact 

toughness.  As observed in Figure 1.7, increasing the silicon content results in an increase 

of the Ductile to Brittle Transition Temperature (DBTT) and a reduction in the upper 

shelf impact energy. The addition of 2 wt.% Si to a bainitic steel has been found to 

suppress dislocation cross-slip resulting in cleavage fracture and a high DBTT. 

Emphasizing that this material experiences a ductile behavior at 100°C because, at high 

temperatures, thermal activation increases dislocation mobility, which means that cross-

slip of screw dislocations is allowed [18].   

 

 
Figure 1.7 Influence of silicon content DBTT of ferritic ductile iron [19].  

 

DBTT Upper 
shelf 
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1.4 Solid Solution Strengthened Ferritic Ductile Irons  
Solid Solution Strengthened Ferritic Ductile Iron (SSFDI) emerged from the need to find 

a material that had a good combination of strength and elongation, which was not 

possible with the traditional ferritic-pearlitic ductile iron grades (first generation of the 

ductile iron family). The first attempt of increasing the strength of ductile iron using high 

silicon contents goes all the way back to the late 1950s. White et al. found that additions 

of 4 wt.% and 5 wt.% Si to ductile iron resulted in high tensile strength and Brinell 

hardness [20]. Nonetheless, it was not until 2012 when three SSFDI grades were added to 

the European standard DIN EN 1563. The silicon values of these second-generation 

grades and their tensile properties are given in Table 1.2. 

 

Table 1.2 Silicon content and tensile properties for wall thicknesses below 30 mm in 
SSFDI grades [21] 

SSFDI 
GRADE 

Si 
(wt.%) 

Tensile 
Strength, 

MPa 

0.2% Proof 
Strength, 

MPa 

Elongation 
(%) 

EN-GJS-450-18 3.20 450 350 18 
EN-GJS-500-14 3.80 500 400 14 
EN-GJS-600-10 4.30 600 470 10 

 

As previously mentioned, silicon is a graphitizing element that promotes ferrite. Silicon is 

also an efficient element for hardening ferrite via solid solution strengthening. The high 

silicon content in these second-generation grades results in a fully ferritic matrix with a 

unique combination of high strength and high elongation in the as-cast condition. 

Previous studies have found that when silicon content is above 4.3 wt.% Si, the tensile 

strength and elongation decrease due to embrittlement of the ferrite [22], [23], but the use 

of these SSFDI grades is still limited due to the damaging effect of high silicon on the 

impact toughness discussed in the previous section. 
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1.5 Motivation and Research Objectives  
The motivation of this research arises from the idea of manufacturing carbide-free TWDI 

castings with an alloying element that stabilizes ferrite, resulting in an as-cast ferritic 

matrix with low silicon contents. Thus, evaluating the potential of this element in 

improving the impact strength of this material. Due to the detrimental effect that high 

silicon contents have on the impact properties of SSFDI grades, the quest for an element 

that assists in the partial substitution of silicon is of great interest. The main objective is 

not sacrificing the high strength and elongation of these grades and improving the impact 

and fracture toughness properties.  

 

The objectives of this research work are as follows: 

• To evaluate the effect of cobalt on the microstructure and tensile properties of thin 

wall ductile iron castings.  

• To investigate the possibility of lowering the silicon content in a 600-10 SSFDI 

grade by partial substitution of the silicon with cobalt as an alternative 

strengthening element to improve the impact properties while maintaining high 

strength and elongation.   

• To perform a full assessment of the impact strength and fracture toughness of 

ductile iron with low and high silicon contents alloyed with cobalt.  

1.6 Hypotheses  
Two hypotheses were developed for this research project:  

1. If cobalt is added to TWDI, then carbides will be reduced because cobalt 

enhances the carbon diffusion rate, which increases the nodule count decreasing 

the internodular spacing between the graphite nodules and reducing the diffusion 

path of carbon, resulting in more ferrite.  

2. If silicon content is lowered in SSFDI, then cobalt can partially substitute for 

silicon without sacrificing the static properties because cobalt hardens the ferrite. 
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2 Literature Review  

2.1 Production of TWDI 
The manufacturing of TWDI castings requires careful attention to the entire molten metal 

processing conditions, which makes it very complex. For this reason, there is an 

enormous amount of literature that focuses on different melting methods to fabricate 

TWDI castings. To produce TWDI castings without defects such as micro-shrinkage, 

graphite alignment, or carbides it is necessary to consider three main things: 

1. Chemical composition and type of metallic charge.  

2. Inoculation of the molten metal (pre-conditioning, inoculation, and post-

inoculation of the melt).  

3. High cooling rates of thin sections.  

The most common practices found by different researchers to mitigate carbide formation 

in thin sections include the use of several inoculation steps that increase the number of 

nuclei sites for graphite during solidification, which results in higher nodule counts that 

favor the formation of ferrite. Javaid et al. showed that several inoculation steps were 

more effective in producing high nodule counts, which led to an increase in the ferrite 

content in 3 and 12 mm sections [24]. Plates ranging from 1.5 to 7 mm thick produced 

with one inoculation step resulted in higher carbide contents, which highlights the 

importance of having a highly inoculated molten metal [25]. 

 

Loper describes the factors that influence the development of high nodule counts, which 

are carbon equivalent (CE), section thickness, magnesium treatment, post-inoculation, 

variation in time, and temperature cycle. Even though high CE values are required to 

increase the nodule count, this can result in graphite flotation. Long holding times should 

be avoided because they result in magnesium and inoculant fading effects [26], [27]. For 

a 2 mm section, carbides disappeared with a CE above 4.80 and a nodule count of around 

3000 nodules/mm2. Having high nodule counts in thin sections assists with carbide 

reduction due to a decrease in the diffusion path of carbon to the graphite nodules [28]. 
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However, high nodule counts are known to decrease the upper shelf energy when 

changing the nodule count from 220 to 1700 nodules/mm2 [29]. So, depending on the 

final application of the casting, this must be considered.  

 

A key to avoid carbides is having a high nodule count, which as described by Loper, can 

be achieved by modifying the CE and the amount of inoculant added to the melting 

procedure. Mampaey and Xu used a nucleation model to determine the minimum nodule 

count and silicon content needed to avoid carbides in a 3 mm section, which was 

experimentally validated. A nodule count above 3000/mm2 with a 2.5 wt.% Si is needed 

to avoid carbides [30]. Additionally, Labrecque and Gagné produced a 3 mm thick 

section without carbides and a nodule count of around 1400 nodules/mm2. This was 

possible due to post-inoculation steps that increased the nucleation potential of the metal. 

This section was produced with a CE of 4.79% (3.78 wt.% C and 3.05 wt.% Si) using a 

metallic charge composed of 80 wt.% high purity iron and 15 wt.% steel added to the 

furnace [31]. The type of metallic charge plays a significant role in the achievement of 

carbide-free castings because most of the carbide forming elements are introduced in the 

steel scarp used to produce ductile iron. For this reason, most of the research done at the 

beginning used a high purity metallic charge, but the cost of these types of charges makes 

it an unreasonable method for industry use. So, the quest for cost-effective melting 

practices to further manufacture this type of castings is continually under development. 

 

Another factor that needs to be considered is the high cooling rates, which will have a 

direct impact on the as-cast structure along with the mechanical properties. A carbide-

free 3 mm section was produced with the use of insulating sand that assisted in providing 

a slower cooling rate [32]. Javid et al. observed how different molding materials alter the 

high cooling rates, which are directly related to the carbide formation. Chemically 

bonded and shell molds resulting in the most effective binder systems to eliminate 

carbides in 1 and 1.5 mm sections [33]. Górny and Tyrala found that the cooling rate in 

TWDI castings ranges from 80-15°C/s when changing the wall thickness from 2 to 5 mm. 

These high cooling rates were accompanied by low ferrite contents [34]. Thin castings 



 

12 

result in more pearlite due to the high cooling rates, which do not allow carbon diffusion 

to the nodules both before and during the eutectoid transformation [35].   

Based on the above literature, it can be stated that the main causes of carbide 

formation in TWDI castings are as follows: 

1. High cooling rates 

2. Low CE values and/or silicon content 

3. Insufficient inoculation  

4. Long holding times in the furnace (burning of the nuclei sites available) 

5. Magnesium contents above 0.040 wt.% exert a powerful tendency to 

promote carbide formation in thin sections.  

2.2 Alloying elements  
The mechanical properties of ductile iron can be determined based on the ratio of ferrite 

and pearlite in the matrix, and the alloying elements play a significant role in this final 

ratio. Ductile iron can solidify as stable with the phases austenite (γ) and graphite (G) or 

as metastable with the phases austenite (γ) and carbide (Fe3C). The temperature 

difference between stable and metastable eutectics (ΔT) for Fe-C alloys is normally 

around 4°C [2]. As observed in Figure 2.1, some elements increase or decrease the ΔT 

between the stable and metastable eutectics, which changes the solidification conditions 

promoting different types of matrix. If the temperature during solidification drops below 

the metastable temperature, the solidification will change from stable to metastable. An 

addition of 2 wt.% Si increases the ΔT by 30°C [2], emphasizing why silicon is 

commonly added to ductile iron to avoid carbide formation. 
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Figure 2.1 Influence on different alloying elements on the stable and metastable eutectic 

temperature [36].  

 

The effects of the commonly added alloying elements and those elements that come from 

the production and/or metallic charge in ductile iron are outlined below: 

2.2.1 Copper  

Copper is an austenite stabilizer that promotes pearlite formation, which most of the time 

is added to increase the tensile and yield strength as well as hardness. This increase in as-

cast strength and hardness is caused by pearlite refinement, but Cu decreases ductility, 

impact resistance, and increases the DBTT [10], [37]–[43]. 

2.2.2 Nickel  

Nickel is also an austenite stabilizer, but it weakly promotes pearlite. Yet, if an as-cast 

ferritic matrix is desired, then Ni should be avoided. Nickel is normally added to provide 

hardenability and for low-temperature applications where silicon content is low (1.5 wt.% 

Si) to provide strength. It increases the ΔT between stable and metastable eutectics 

reducing carbides [10], [37], [39], [40], [42]–[45].  
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2.2.3 Manganese  

Manganese is an austenite stabilizer but is five times more effective in promoting pearlite 

than nickel. It significantly increases the as-cast tensile properties and is used to provide 

hardenability. The Mn content should be controlled in thick sections because it segregates 

to form intercellular carbides [10], [37]–[41].  

2.2.4 Molybdenum  

Molybdenum lowers the stable and metastable eutectic temperatures, but it is a ferrite 

stabilizer because it increases the eutectoid temperature. In annealed ferritic ductile iron 

grades, it increases the yield strength and hardness by solid solution hardening of ferrite. 

Despite this, molybdenum is considered a mild carbide forming element that results in 

intercellular carbides in thick sections. Contents of 0.5% can result in grain boundary 

carbides, which is enhanced in the presence of other carbide forming elements such as Cr, 

Mn, and V [10], [37], [39], [40], [42], [43], [46].   

2.2.5 Chromium  

Chromium is an extremely potent carbide forming element. This element is normally an 

impurity in the metallic charge used to produce ductile iron, so it is important to control 

the charge materials. Tolerance of this harmful element varies with the type of ductile 

iron being fabricated [10], [37], [39].  

2.2.6 Vanadium  

Vanadium is another carbide promoting element, which also comes from the metallic 

charge (normally from the steel scrap). Contents above 0.02% result in a large amount of 

carbides, which results from a reduction between stable and metastable eutectics as 

observed in Figure 2.1 [10], [37], [39].  

2.2.7 Titanium  

Titanium normally comes from the pig iron and steel (used for the metallic charge). It is 

known that thin sections can tolerate up to 0.07%, but thick sections show a detrimental 
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effect at 0.02%. This element hinders spheroidal graphite growth and causes vermicular 

graphite formation [10], [37], [39]. 

2.2.8 Aluminum 

Aluminum comes mostly from inoculants used and promotes vermicular graphite but to a 

lesser extent than Ti. This element is known to cause hydrogen pinhole defects [10], [37], 

[39].  

2.2.9 Phosphorus  

The segregation of phosphorus produces a brittle phosphide (steadite) network, which 

results in lower ductility and toughness. An increase in DBTT was found at 0.8% P. 

However, phosphorus increases the yield strength and hardness due to the stabilization 

and refinement of pearlite [10], [37], [47].  

2.2.10 Magnesium  

Magnesium is added in the treatment of ductile iron, which results in spherical graphite 

nodules. Depending on the sulfur content, the magnesium content to produce spheroidal 

graphite structures can vary from 0.02 to 0.06%. If the final magnesium in solution is 

above 0.06% there is a tendency to form carbides but in thin sections Mg should be kept 

below 0.040% [7], [10], [37], [39], [48].   

2.2.11 Tin  

Tin is a pearlite promoter with ten times the effectiveness of copper. Tin accumulates 

around the graphite nodules acting as a barrier for carbon diffusion, which inhibits ferrite 

formation. A content above 0.1% thickens and embrittles the layer around the graphite 

nodule, which becomes detrimental to ductility [10], [37], [39], [49]. 

2.2.12 Antimony  

Antimony is another section-size-sensitive element that tends to segregate to the 

intercellular regions forming mesh-type flake graphite. Its content is limited to a 
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maximum of 0.04% in thick sections. Antimony is a strong pearlite promoter and should 

be avoided if a fully ferritic matrix is desired [10], [37], [49]. 

2.2.13 Cobalt  

The first studies that examined the role of cobalt as an alloying element were carried out 

on steels. A summary of these findings is provided below: 

• In 1942, Smoluchowski, who worked at GE Research laboratory, which was a 

well-respected place to perform physical metallurgy, found by the Grube method 

that and addition of around 4% Co doubles the diffusion rate of C in γ-Fe [50]. 

The above supports the idea that if cobalt is increasing the diffusion of carbon, 

there will be more carbon out of solution, and then there will not be as much 

carbon left for pearlite formation. 

 

• Brown and Hawkes studied the effect of alloying elements on carbide stability. 

They postulated that graphitizing elements such as cobalt and nickel in solution 

expand the iron lattice and reduce cementite stability. On the other hand, 

chromium contracts the iron lattice stabilizing cementite [51].  

 

• Appleton investigated the kinetics of graphitization in Fe-C and Fe-Co-C alloys 

using dilatometric and microscopic techniques. He found that cobalt increases the 

graphite growth rate [52].  

 

• Solov’ev and Kuragin evaluated the influence of cobalt on the graphitizing effect 

in Fe-C-X alloys. They discovered that cobalt increased the activity and mobility 

of carbon atoms promoting graphite growth [53].  

 

• Srinivas, Malakondaiah, and Rama Rao found that Fe-Co alloys (0.5 wt.% 

and 5 wt.% Co) resulted in lower yield strength but no effect on the tensile 

strength compared to the base material unalloyed ARMCO Iron. In contrast 
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to molybdenum, nickel, and silicon, cobalt significantly increased the 

fracture toughness (JIC) [54]. 

• Cobalt restricts dislocation cross-slip in maraging steels, which increases 

the DBTT [55], [56]. 

2.2.13.1 Effect in traditional ferritic-pearlitic grades 

The research conducted on first-generation irons alloyed with cobalt is outlined below: 

• Thury, Hummer, and Nechtelberger were the first ones to add cobalt to ductile 

iron in 1967. They observed an increase in the ferrite content with 2% Co, but the 

tensile and yield strength did not increase substantially, and a small drop in 

elongation was found. A decrease in the notched impact strength with cobalt 

additions at room temperature, -20, and -40°C was detected [57]. 

 

• Modl investigated cobalt additions from 0 to 15 wt.% Co and observed that the 

yield strength and hardness increased steadily with the addition of cobalt up to 15 

wt.% Co. However, elongation decreased sharply above 6 wt.% Co. Cobalt 

additions resulted in smaller nodule sizes [58].  

 
• The study by Shen, Harris, and Noble studied ductile irons containing 0.07 wt.% 

and 0.34 wt.% Co. They found an improvement in the graphite shape with cobalt 

additions, along with an increase in the nodule size and a decrease in the nodule 

count [59].  

 

• Yazdani, Bayati, and Elliot investigated the influence of two cobalt concentrations 

(0.20 wt.% and 0.40 wt.% Co) in the austempering reaction in austempered 

ductile iron (ADI). They observed that cobalt accelerates the stage I reaction, 

reducing the time needed for austempering enabling the heat treatment of heavy 

sections [60].  
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• Chen-Hsun Hsu, Chen, and Hu found an increase in mechanical properties such as 

tensile strength, yield strength, impact strength, and impact toughness with the 

addition of 4 wt.% Co. No increase in the percent nodularity was observed, but 

the nodule count was increased substantially [61].  

 

• Duwe and Tonn studied the effect of cobalt additions to increase strength and 

impact toughness at low temperatures. However, they did not find any 

improvement in the impact toughness with cobalt additions in the range of 0 wt.% 

to 3 wt.% Co at low silicon contents (1.6 wt.% to 2 wt.% Si) [62].  

2.2.13.2 Effect in SSFDI grades  

The effect of cobalt in these second-generation ductile iron grades have lately been 

investigated, and the highlights of the findings are as follows: 

• Okunnu was the first to alloy a 600-10 SSFDI grade with 2 and 4 wt.% Co. With 

increasing cobalt, he found an increase in the percent nodularity and nodule count, 

with a decrease in nodule size leading to an increase in tensile strength, yield 

strength, elongation, and hardness [63].  

 

• Weiβß, Brachmann, Bührig-Polaczek, and Fischer observed an improvement in 

the percent nodularity of two SSFDI grades (500-14 and 600-10) with 2 and 4 

wt.% Co, but cobalt did not significantly increase the nodule count [64], [65].  

 

• Fischer, Brachmann, Bührig-Polaczek, and Weiβß found a meaningful increase in 

tensile strength for 500-14 and 600-10 SSFDI grades with 2 and 4 wt.% Co 

additions, but only a small increase in the yield strength. For the 600-10 SSFDI 

grade, elongation decreased 22% with 2 wt.% Co and 50% with 4 wt.% Co [66].  

 

• González-Martínez, Sertucha, and Lacaze recently determined that high silicon 

and high cobalt contents lead to the embrittlement of ferrite decreasing the 
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ductility of these grades. They attributed this reduction in tensile properties to the 

presence of ordered phases [67]. 

2.3 SSFDI Advantages and Limitations  

2.3.1 Graphite Morphology  

The negative effect of high silicon contents in SSFDI grades is graphite degeneration. 

González-Martínez et al. found that as silicon was increased, the amount of degenerated 

graphite and tendency to form chunky graphite was greater [68]. Similarly, Bauer et al. 

mentioned that as silicon is increased, the chunky graphite area fraction grows. And 

above 4 wt.% Si chunky graphite is observed even for thin sections [69]. 

 

As mentioned in Chapter 1, graphite morphology exerts a great influence on the 

mechanical properties of ductile iron. However, C. Hartung reported that the detrimental 

effect of the graphite shape is on elongation, while tensile and yield strength remain 

unaffected [70].  

 

There are some considerations given in the EN 1563 Annex A [21] about the graphite 

morphology in these ductile iron grades:  

1. High levels of silicon deteriorate the graphite morphology, so some vermicular 

graphite might be present in the final casting.  

2. These SSFDI grades are less sensitive to low percent nodularity compared to the 

common ferritic-pearlitic grades. Therefore, SSFDI grades can tolerate down to 

50% nodularity before seeing a drop in the mechanical properties, mainly due to 

silicon strengthening in the matrix.  

2.3.2 Mechanical Properties  

One of the main advantages of high silicon irons is that compared to the ferritic-pearlitic 

grades, they exhibit a more uniform hardness due to the single-phase matrix. Björkegren 
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et al. found improved machinability on these grades reduced machining cost by 10% 

[71], [72].  

 

SSFDI grades exhibit increased tensile strength, yield strength, and hardness with silicon 

additions up to 4.3 wt.%, after which mechanical properties decline. Sets and Glavas 

found that when silicon content rises to 5 wt.%, elongation was no longer 

measurable[22], [23]. Moreover, de la Torre et al. discovered that the optimum 

mechanical properties for high silicon alloys were at 3 wt.% Si. Above this silicon level, 

there was a continuous drop in the percent elongation and a continual decrease in impact 

energy [73].  

 

Hammersberg et al. found that the tensile and yield strength increased linearly up to 5.3 

wt.% Si while the elongation decreased gradually, resulting in zero elongation at the 5.3 

wt.% Si value [74]. González-Martínez et al. observed similar behavior with a maximum 

tensile and yield strength around 5.2 wt.% Si. The hardness kept increasing with silicon 

additions up to 9.12 wt.% Si [75].  

 

Regardless of the different maximum silicon contents found by the previous researchers, 

all of them attribute the decreases in static and dynamic mechanical properties to the 

formation of ordered phases associated with silicon. As silicon increases above 5.2 wt.%, 

the A2 phase (disordered solid solution phase) transforms into the ordered B2 phase 

(Figure 2.2). Silicon contents beyond 11 wt.% lead to the D03 phase. The B2 and D03 

ordered phases are brittle and are detrimental to the strength, ductility and impact 

toughness of high silicon alloys [76]–[78].  
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Figure 2.2 The Fe-Si system showing the formation of B2 and D03 ordered phases with 

increasing silicon [76]. 
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3 Experimental Procedure  

3.1 Effect of Cobalt in Thin Wall Ductile Iron  

3.1.1 Target Chemistry Selection and Furnace/Ladle Additions  

The objective was to produce carbide-free thin-wall ductile iron castings with lower 

silicon content. The target chemical composition of all heats was held constant, and only 

the cobalt level was varied (Table 3.1). 

 

Table 3.1 Target chemical composition (wt.%) 
Element C Si aCE Mg Mn Cu P S bCo 

wt.% 3.73 2.50 4.56 <0.04 <0.25 <0.08 0.025 0.01 - 
aThe equation used for this calculation was CE = wt.% C + 1/3 wt.% Si 

bThe cobalt levels used were 0, 1, 2, 3, and 4 wt.% Co (5 heats total) 
 

 

Ductile iron is extremely sensitive to trace elements, so close control of the charge 

materials is necessary. The metallic charge for all heats consisted of 25 wt.% pig iron, 55 

wt.% ductile iron returns, and 20 wt.% steel punchings, with additions of Desulco® 

(recarburizer) and 75 wt.% FeSi (Table 3.2).  
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Table 3.2 Chemical composition for furnace charge materials (wt.%) 
Element 
(wt.%) 

Pig 
Iron 

aDI 
Returns 

Steel 
punchings 

Desulco® 75% FeSi 

C 4.38 3.70 0.09 99.7 0.005 
Si 0.62 2.50 0.08 - 76.55 
P 0.041 0.031 0.008 - 0.007 
S 0.027 0.004 - 0.030 - 

Mn 0.03 0.29 0.39 - 0.13 
Cu 0.0005 0.12 0.024 - - 
Ni 0.003 0.022 0.013 - - 
Cr 0.004 0.17 - - - 
Al - 0.02 - - 0.38 
Ca - - - - 0.06 

aThe chemical composition for the ductile iron returns varied depending on the available returns for remelting 

 

After the base metal is melted in the furnace, the Mg treatment is performed in a tundish 

ladle with a pocket that contains the nodulizer and conditioner, covered with steel. 

Inolate-40 is used for metal stream inoculation while tapping from the furnace to the 

ladle. The chemical composition of the ladle materials (Table 3.3) was considered in 

calculated the final alloy composition.  

 

Table 3.3 Chemical composition of the ladle additions (wt.%) 
Element 
(wt.%) 

6 wt.% 
MgFeSi 

Cover 
Steel 

TopSeed® Inolate-40 

C - 0.18 0.094 - 
Si 45.66 0.15 49.04 72.54 

Mg 6.06 - - - 
Al 0.93 - 1.04 0.062 
Ca 0.98 - 0.99 1.24 

aRE 1.00 - - 0.60 
Bi - - - 0.98 
Ba - - 1.03 - 
P - 0.008 - - 
S - 0.013 - - 

Mn - 0.47 - - 
Cu - 0.024 - - 
Ni - 0.013 - - 

aRE: rare earths 
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3.1.2 Mold Preparation  

Two types of molds were made using chemically bonded sand. The first mold consisted 

of six rectangular plates with thicknesses of 2, 2.5, 3, 3.5, 4, and 6 mm (Figure 3.1). Each 

sand mold weighed a total of 66 pounds, and 12 molds were poured per heat for 60 molds 

total. All the molds were clamped in sets of four and placed on the pouring line. 

 

 
(a) 

 
(b) 

Figure 3.1 (a) CAD model illustration with dimensions (mm) [79], and (b) a finished 
chemically bonded mold. 
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The second mold contained three ASTM A536 [80] ½ inch Y-blocks (Figure 3.2). Each 

sand mold weighs 34 pounds, and 11 molds were poured per heat for a total of 55 molds. 

 

 
(a) 

 
(b) 

Figure 3.2 (a) CAD model picture showing the 3 Y-block patterns [81], and (b) a finished 
Y-block mold. 

 

The molds were made using the air set molding method with silica sand mixed with 

ALPHASET® 9010 resin and catalyst using a Tinker Omega NexGen2™ mixing system 

(Figure 3.3). The total addition of sand was 1.25% by weight with 30% catalyst and 70% 

resin.  
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Figure 3.3 Tinker Omega NexGen2™ mixing system used to produce the chemically 

bonded sand molds. 

 

3.1.3 Melting and Pouring Procedure  

All heats were produced in the Michigan Technological Foundry using a 300-pound 

coreless induction furnace (Figure 3.4). The furnace is first loaded with the metallic 

charge (pig iron, ductile iron returns, and steel punchings) plus Desulco® recarburizer and 

75 wt.% FeSi. The furnace was heated to 1450°C, and then 1x1 inch cobalt chunks were 

added to the melt. The chemical composition of the cobalt used for all the heats is given 

in Table 3.4.  

 

Table 3.4 Chemical composition of cobalt (wt.%) 
Element C Cu Ni Fe Co 

wt.% 0.002 0.003 0.01 0.0004 99.98 
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(a) (b) 
Figure 3.4 (a) 300-pound furnace used for all heats, with (b) the charge loaded. 

 

The base iron composition is checked with a thermal analysis cup that contains sulfur to 

obtain the carbon, silicon, and carbon equivalent values using MeltLab thermal analysis 

software. Also, a copper mold is used to chill-cast a coin sample that is used to analyze 

the chemistry using a Bruker Q4 Tasman Advanced Charged Coupled Device (CCD) 

based Optical Emission Spectrometer (OES) instrument. If the chemical composition 

needs to be adjusted, further additions are made. 

 

Once the base iron chemistry is adequate, preconditioning of the melt is performed by 

adding 75 wt.% FeSi five minutes before tapping. Then the furnace is ramped to a 

temperature of 1510°C. The Mg-treatment is added to the preheated 300-pound tundish 

ladle (Figure 3.5), and the furnace is tapped into the ladle, with Inolate-40 inoculant 

added to the metal stream.  
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Figure 3.5 The 300-pound tundish ladle used for all the treatments. 

 

Once the Mg-reaction complete, the filling of the molds on the pouring line begins. First, 

a scrap mold is poured, and then a thermal analysis cup that contains sulfur plus tellurium 

is poured, followed by two-coin samples to measure the final chemistry. Figure 3.6 

displays the pouring of the two mold types, and a total of 23 molds per heat were poured 

(Figure 3.7)  

 

All the base and final chemical compositions were analyzed using a Bruker Q4 Tasman 

Advanced CCD based OES instrument. Then the samples were sent out to Neenah 

Foundry to perform combustion analysis (Leco) and confirmed the OES results.  
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(a) 

 
(b) 

Figure 3.6 Pouring of (a) rectangular plates, and (b) ½ inch Y-block. 



 

30 

 
Figure 3.7 Photograph after pouring a total of 23 molds. 

3.1.4 Shake-out of the Molds  

After pouring, all the molds were left overnight to cool. After shakeout, the castings were 

sandblasted to remove any remaining sand (Figure 3.8). 

  

(a) (b) 
Figure 3.8 (a) Rectangular plates, and (b) ½ inch Y-blocks after sandblasting. 

(11) ½ inch 
Y-block 
molds 

(12) Rectangular 
plate molds 
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3.1.5 Microstructure Evaluation  

3.1.5.1 Rectangular Plates  

3.1.5.1.1 Location of Metallographic Samples  

The gating system was removed using an angle grinder cut-off tool. All the rectangular 

plates were cut using a TR100 INOX LAPMASTER abrasive cutter with a Hudson 

aluminum oxide rubber bond 14" diameter abrasive cut-off wheel model CF14200 

(Figure 3.9) to obtain the cross-section of each plate for metallography (Figure 3.10).  

 

 
Figure 3.9 TR100 INOX LAPMASTER abrasive cutter used to cut the cross-sections for 

metallography of the rectangular plates. 

 
The cross-sections were mounted using a US Composites 635 thin epoxy resin system 

with a 3:1 ratio medium epoxy hardener. A Leco AP-300 9-sample auto polisher was 

used for grinding (Figure 3.11) with the settings in Table 3.5. For polishing, a 12-inch 

Kempad non-woven polishing cloth was used with a 1 µm polycrystalline diamond paste 

followed by a Hudcloth PC5 synthetic short nap with a 0.05 µm alumina suspension. A 

total of 30 samples were examined.   
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Figure 3.10 Location of the cross-section samples used for metallography. 

 

 
Figure 3.11 Leco AP-300 machine used for the metallographic preparation of the 

rectangular plates. 
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Table 3.5 Metallographic procedure used with the Leco AP-300 machine  
Grit # Pressure (psi) Time (sec) RPM 

120 50 Until Flat 300 
180 50 120 300 
300 50 120 300 
600 40 120 250 
800 30 120 260 
1200 25 120 240 

1µm diamond 15 120 150 
0.05µm Al2O3 Manual 60 150 

 

3.1.5.1.2 Graphite Analysis  

Unetched samples were analyzed at 100x to examine the percent nodularity and the 

nodule count (N/mm2). ImageJ was used to perform the analysis using a macro file 

created at Michigan Tech (Appendix C). This macro file considers a minimum shape 

factor of 0.6 per ASTM E2567 [82]. Moreover, this built-in file provides the form and 

size of graphite per ISO 945-1 [83]. For these samples, all the particles above 5 µm were 

considered. The results are the average of 10 fields per sample.  

3.1.5.1.3 Ferrite and Pearlite Analysis  

A 2% Nital etchant was prepared using 98 ml of ethanol and 2 ml of nitric acid. The 

samples were etched by immersion for 15 to 20 seconds to yield a visibly cloudy surface. 

Images were taken at 100x to conduct the analysis. The macro file created in ImageJ was 

used to obtain the ferrite and pearlite percentages. A total of 10 fields per sample were 

analyzed.  

3.1.5.1.4  Carbide Analysis  

For carbide percentage determination, a 10% ammonium persulfate etchant was made 

with 1gram of ammonium persulfate (ACROS ORGANICS 98%, extra pure) dissolved in 

10 milliliters of distilled water. The samples were etched by immersion for 2 to 4 

minutes. The ImageJ macro file was used, and the carbides were outlined by hand in 

every micrograph. A total of 10 images per sample were taken. 
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3.1.5.2 ASTM ½ inch Y-blocks  

3.1.5.2.1 Location of Metallographic Samples  

The first and last Y-blocks poured were assessed to ensure good quality ductile iron in all 

the Y-blocks for subsequent machining of mechanical test specimens. All the Y-blocks 

were sectioned using a Baileigh band saw (Figure 3.12).  

 

 
Figure 3.12 Band saw used to cut the ½ inch Y-blocks. 
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The 1-inch A (bottom) and B bars were obtained, with the middle cross-section of the A 

bar used for metallographic analysis (Figure 3.13). 

 

 
Figure 3.13 A and B bars showing the middle cross-section used for metallography per 

Y-block. 

 
 
All the cross-section samples were ground and polished manually per Table 3.6. For 

polishing, an 8-inch dense Pan B non-woven cloth with a 1 µm polycrystalline diamond 

paste and a Hudson synthetic short nap with a 0.05 µm alumina suspension was 

employed. A total of 10 samples were analyzed. 

 

Table 3.6 Metallographic procedure used manually for the ½ inch Y-blocks 
Grit # Time (sec) RPM 

120 Until Flat 300 
240 120 300 
320 120 300 
400 120 250 
600 120 250 
800 120 200 
1200  150 

1µm diamond 120 150 
0.05µm Al2O3 60 150 
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3.1.5.2.2 Graphite Analysis  

ImageJ, with the built-in macro file developed at Michigan Tech, was used to analyze the 

percent nodularity and nodule count. A total of 10 images per heat at 100x were taken. 

The minimum particle size for these samples was set to 6 µm.  

 

3.1.5.2.3 Ferrite and Pearlite Analysis  

All samples were etched with 2% Nital by immersion for around 20 seconds. 

Micrographs were taken at 100x to perform ferrite and pearlite percentages using ImageJ. 

The results are the average of 10 fields per sample.  

 

3.1.6 Tensile Properties Evaluation   

3.1.6.1 Rectangular Plates  

3.1.6.1.1 Location of Flat Tensile Samples  

Two subsize tensile samples were machined per rectangular plate (Figure 3.14). A total 

of 240 samples were made with dimensions per ASTM E8 [84] (Figure 3.15).  
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Figure 3.14 Two machined subsize flat tensile samples placed on top of the pattern for 

the rectangular plates. 

 

 
 

Figure 3.15 Dimensions (mm) of the flat subsize tensile samples per ASTM E8 [84]. 
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3.1.6.1.2 Loading and Testing  

Uniaxial tensile tests were performed using an Instron 4206 machine with a 10,000-

pound FUTEK universal pancake load cell and an Epsilon 1-inch extensometer (Figure 

3.16). All the flat subsize tensile samples were pulled at a test rate of 2.54 mm/min. The 

results are the average of 8 samples per section thickness. 

 

 
(a) 

 
(b) 

Figure 3.16 Instron 4206 machine setup (a) overall and close up (b). 

 

3.1.6.2 ASTM ½ inch Y-blocks  

3.1.6.2.1 Location of Round Tensile Samples  

Two subsize round tensile samples were machined per ½ inch Y-block (Figure 3.17). A 

total of 60 samples were made according to ASTM E8 [84], with the dimensions given in 

Figure 3.18.  
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Figure 3.17 Location of the subsize round tensile bars in the ½ inch Y-blocks. 

  

 

 
 

Figure 3.18 Subsize round tensile bar drawing per ASTM E8 [84], dimensions are in 
inches. 
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3.1.6.2.2 Loading and Testing  

An Instron 4206 machine with an Epsilon 1-inch gauge extensometer and a 10,000-pound 

FUTEK load cell (Figure 3.19) was used to perform tensile testing. A total of 12 subsize 

round tensile samples per heat were tested.   

 

 
Figure 3.19 Instron 4206 machine setup for subsize round tensile samples. 

 

3.1.7 Macrohardness Evaluation  

3.1.7.1 Rectangular Plates 

3.1.7.1.1 Location of Hardness Indentations  

The Brinell hardness was measured using the middle section of each rectangular plate 

after grinding through the casting skin. A total of seven indentations per sample were 

made.  
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3.1.7.2 ASTM ½ inch Y-blocks  

3.1.7.2.1 Location of Hardness Indentations  

The cross-section of the ½ inch Y-blocks was used to measure the Brinell hardness. The 

results are the average of six indentations.   

3.1.7.3 Brinell Hardness Testing  

A portable Dyna hardness tester with a 5 mm diameter tungsten carbide ball indenter was 

used to perform Brinell hardness on the rectangular plates and the ½ inch Y-blocks 

(Figure 3.20). All the samples were held under a 750 kg load for 15 seconds. The 

indentations were measured using a Brinell Optical Scanning System (B.O.S.S). This 

system includes a high-resolution video scanning head and imaging software that allows 

quick and accurate readings of indentations. 

 

 
Figure 3.20 Dyna hardness tester and B.O.S.S used in measuring Brinell hardness. 
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3.1.8 Microhardness Evaluation  

The first and last ½ inch Y-block cross-sections that were etched with 2% Nital were 

used to measure the microhardness of the ferrite phase. Vickers hardness test was applied 

using a LECO M-400-G1 Vickers tester (Figure 3.21) with a 100-gram load and a dwell 

time of 10 seconds. A total of ten indentations per sample was performed. 

 

 
Figure 3.21 LECO M-400-G1 Vickers hardness microhardness tester. 

 

3.1.9 Impact Energy Evaluation  

Charpy impact testing was performed per ASTM E23 [85] using an MTS Exceed® E22 

machine at the University of Saint Thomas in Minneapolis, Minnesota (Figure 3.22). The 

maximum impact energy of this machine is 450J, with an impact speed of 5.24 m/s.  
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Four different temperatures were tested: 22.6, 0, -20, and -40°C. Unnotched and v-

notched samples were machined out from the ½ inch Y-blocks (Figure 3.23 and Figure 

3.34). The reported values at each temperature are the average of 9 tests, resulting in a 

total of 360 samples. The DBTT was defined by determining the temperature at half of 

the upper shelf energy per ISO 148-1 Annex D [86].  

 

 
Figure 3.22 MTS Exceed® E22 impact test machine. 
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Figure 3.23 Location of unnotched and v-notched samples in the ½ inch Y-blocks. 

 

 
(a)  

 
(b)  

Figure 3.24 Dimensions (mm) used for (a) unnotched, and (b) v-notched samples per 
ASTM E23 [85]. 
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3.1.10 Fracture Toughness Evaluation  

3.1.10.1 Location of Fracture Toughness Samples  

Fracture toughness tests were executed per ASTM E1820 [87], applying the J-integral 

method using compact tension (C(T)) samples. Five samples were machined per ½ inch 

Y-block (Figure 3.25). A total of 100 samples were made with the dimensions given in 

Figure 3.26.   

 

 
Figure 3.25 Location of the C(T) samples in the ½ inch Y-blocks. 
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Figure 3.26 Dimensions (mm) used for the C(T) samples per ASTM E1820 Annex 3 [87]. 

 

3.1.10.2 Fatigue Pre-cracking of C(T) Samples 

According to ASTM E1820 [87], the first step is to pre-crack in fatigue all the samples. 

Fatigue pre-cracking was performed using an MTS 312.21 floor standing fatigue frame 

with two MTS 647 hydraulic wedge grips (Figure 3.27). Tests are performed under force 

control using the MTS Flex Test (Series 793) Controller Software-Station Manager 

Application, with a sinusoidal load applied at a frequency of 8 Hz.  
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Figure 3.27 Fatigue frame configuration used to pre-crack the C(T) samples from ½ inch 

Y-blocks. 

 

3.1.10.3 Loading and Testing  

The second step is loading and testing. The test at room temperature (22.6°C) was 

performed in an Instron 4206 machine (Figure 3.28). A 10,000-pound FUTEK load cell 

and an epsilon model 3541 crack opening displacement (COD) gauge were used. Figure 

3.29 shows a close-up view of a C(T) sample mounted in the Instron machine and with 

the COD gauge before starting the test. 
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Figure 3.28 Instron 4206 machine used for the C(T) testing at room temperature. 
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Figure 3.29 Close-up view of a C(T) sample mounted before testing. 

 
The low-temperature tests (0, -20, and -40°C) were performed using an Instron 4210 

machine frame with a mounted portable LAB-TEMP™ LBO-Series medium-range 

furnace (Figure 3.30), which has a wide temperature working range from -185°C to 

425°C. Liquid N2 was used in the cryogenic cooling system, and an Omega USB 

thermocouple was attached to the C(T) sample to monitor the temperature. An example 

of the assembly used at -20 is shown in Figure 3.31. 

 
Figure 3.30 Portable LAB-TEMP™ furnace used for the low temperature testing. 
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Figure 3.31 Assembly inside the cooling chamber at -20°C. 

 

3.1.10.4 Data Analysis  

The final step is to analyze the data according to the Normalization Data Reduction 

technique supplied in Annex 15 of ASTM E1820 [87]. This technique is used to obtain a 

J-R curve from the force-displacement data. The initial and final crack size measurements 

should be taken from the fracture surface of the samples. A Wild Heerbrugg stereoscope 

with a PixeLink camera (Figure 3.32) was used to take pictures of the broken samples. 
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The PixeLink capture software was used to acquire the images, and ImageJ was used to 

measure the crack lengths. The normalization data reduction analysis was carried out 

using open-source, automated software developed by Oak Ridge National Laboratory 

[88] with the provided step-by-step procedure [89].  

 

 
Figure 3.32 Wild Heerbrugg stereoscope used for analysis of the broken C(T) samples. 
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3.1.11 Microscopic Fracture Surface Examination  

The effect of cobalt on the fracture behavior was analyzed using a Philips/FEI XL30 

Environmental Scanning Electron Microscope (ESEM) (Figure 3.33). Images of the 

samples were taken using secondary electrons (SE), as these are good at showing 

morphology and topography.  

 

 
Figure 3.33 Philips/FEI XL30 ESEM used for the fracture surface analysis. 

 

3.1.11.1 Fracture Surface Analysis of Flat Tensile Samples  

The 2 and 6 mm broken samples from all heats, were coated with a Cressington 208HR 

high-resolution sputter coater (Figure 3.34) by applying a 10 nm thick layer of Pt/Pd. 

Then images were taken at a magnification of 500X and 1200X. 
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Figure 3.34 Cressington 208HR high-resolution sputter coater used to coat all the 

samples for fracture surface evaluation. 

 

3.1.11.2 Fracture Surface Analysis of Charpy Samples  

The v-notched and unnotched samples at 0°C of all heats were examined after coating 

with a 10 nm thick layer of Pt-Pd using the Cressington 208HR coater (Figure 3.34). For 

these samples, images were taken at 350X and 1000X.  

3.1.11.3 Fracture Surface Analysis of C(T) Samples 

The broken C(T) samples tested at room temperature were coated with a 15 nm layer of 

Pt-Pd using the Cressington 208HR. Only the base ductile iron, 3 wt.%, and 4 wt.% Co 

samples were analyzed. A total of four images were taken at a magnification of 350X and 

1000X. 



 

54 

3.1.12  Segregation Analysis   

As-polished samples were carbon-coated using a Denton DV-502A sputter coater (Figure 

3.35) to examine the distribution of cobalt in the matrix between the graphite nodules. 

Energy Dispersive X-Ray Spectroscopy (EDS) was performed on the Philips/FEI XL30 

ESEM (Figure 3.33). Quantitative EDS analysis was conducted using AZtec software. 

The operating conditions used for this analysis were an accelerating voltage of 15 kV and 

a beam size of 1 µm. The 3 wt.% Co and 4 wt.% Co samples were analyzed. A total of 

three scans per sample were conducted showing similar behavior.  

 

 
Figure 3.35 Denton DV-502A sputter coater used to carbon-coat the samples for EDS 

analysis. 
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3.2 Effect of Cobalt in Solid Solution Strengthened Ferritic 
Ductile Iron 

3.2.1 Target Chemistry Selection and Furnace/Ladle Additions 

For this project, the EN-GJS-600-10 grade was fabricated with a lower silicon content. A 

total of four heats were carried out, and the aimed base chemical composition is given in 

Table 3.7. Three different cobalt additions were established (2 wt.%, 3 wt.%, and 4 wt.% 

Co). 

 

Table 3.7 Aimed base chemical composition (wt.%) 
Element C Si aCE Mg Mn Cu P bCo 

wt.% 3.0 <4.3 4.43 <0.06 <0.25 <0.10 0.025 - 
aThe equation used for this calculation was CE = wt.% C + 1/3 wt.% Si 

bThe base SSFDI heat did not include cobalt  
 

A constant metallic charge for all heats was used to reduce the variation in chemical 

composition. The metallic charge consisted of 23 wt.% pig iron, 58 wt.% ductile iron 

returns, and 15 wt.% steel punchings, with additions of 1x1 inch cobalt chunks, 

Desulco® recarburizer, and 75 wt.% FeSi (Table 3.8).  
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Table 3.8 Chemical composition of the materials used to fabricate the heats (wt.%) 
Element 
(wt.%) 

Pig 
Iron 

aDI 
Returns 

Steel 
punchings 

Cobalt 
1x1 inch 

Desulco® 75 wt.% 
FeSi 

C 4.35 3.61 0.08 0.002 99.7 0.005 
Si 0.12 2.66 0.22 - - 76.55 
P 0.039 0.021 0.008 - - 0.007 
S 0.013 0.007 0.005 - 0.030 - 

Mn 0.030 0.23 0.38 - - 0.13 
Cu 0.016 0.07 - 0.003 - - 
Ni 0.053 0.02 - 0.01 - - 
Cr 0.036 0.03 - - - - 
Al 0.003 0.015 - - - 0.38 
Ti 0.037 0.01 - -   
V 0.044 0.011 - -   
Ce - 0.0019 - -   
La - 0.003 - -   
Nb - 0.002 - -   
Sn - 0.006 - -   
Co - - - 99.98   
Fe - - - 0.0004   
Ca - - - - - 0.06 

aThe chemical composition for the ductile iron returns varied depending on the available returns for remelting 
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The chemistry of all the materials used in the 300-pound tundish ladle is shown in Table 

3.9. Again, Inolate-40 was used as an inoculant.  

 

Table 3.9 Chemical composition of the materials used in the ladle (wt.%) 
Element 
(wt.%) 

Elkem 
LAMET 

4619 

Cover 
Steel 

TopSeed® Inolate-40 

C - 0.08 0.094 - 
Si 45.59 0.22 49.04 72.54 

Mg 4.89 - - - 
Al 0.91 - 1.04 0.062 
Ca 1.083 - 0.99 1.24 
La 0.58    

aRE - - - 0.60 
Bi - - - 0.98 
Ba - - 1.03 - 
P - 0.008 - - 
S - 0.005 - - 

Mn - 0.38 - - 
Cu - - - - 
Ni - - - - 

aRE: rare earths 
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3.2.2 Mold Preparation  

For this project, 1-inch ASTM A536 [80] Y-blocks were prepared using chemically 

bonded sand with a Tinker Omega NexGen2™ mixing system (Figure 3.3). The mold 

used had a set of three Y-block patterns in it. Figure 3.36, shows several stacked molds 

made before casting. Each sand mold weighs 92 pounds, and six molds per heat were 

made, resulting in a total of 24 molds. 

 

 
Figure 3.36 Chemically bonded 1-inch Y-block sand mold. 

 

3.2.3 Melting and Pouring Procedure  

The heats were fabricated using the 300-pound coreless induction furnace shown in 

Figure 3.4 at Michigan Tech. After weighing all the materials needed to produce these 

heats, the furnace is loaded with ductile iron returns, pig iron, 1x1 inch cobalt chunks, 

steel punchings, Desulco® recarburizer, and 75 wt.% FeSi. The furnace is heated to 
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1420°C, and when everything is melted the base iron composition is taken. If the 

chemistry is not within specification, the necessary adjustments are made. Figure 3.37 

shows how the furnace charge materials look before and after being melted.  

 

 
(a) (b) 

Figure 3.37 Furnace charge (a) before, and (b) after meltdown. 

 
Once the base iron chemistry is within the target, 75 wt.% FeSi is added to the furnace to 

precondition the melt five minutes before tapping. Then, the tundish ladle is positioned 

near the furnace (Figure 3.38) to start tapping at 1500°C. Inoculation of the melt is done 

by adding the Inolate-40 to the stream of the metal while tapping from the furnace to the 

ladle (Figure 3.39). 
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Figure 3.38 Tapping of the furnace to the tundish ladle. 

 

 
Figure 3.39 Metal stream inoculation using Inolate-40 enclosed in red. 
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The pouring of the 1-inch Y-block molds starts once the Mg-reaction in the tundish ladle 

is over. The thermal analysis and spectrometer sample for the final chemistry are taken 

after pouring one mold.  An extra spectrometer sample is conducted at the end to ensure 

that the magnesium is above 0.040 wt.%. Figure 3.40 shows the pouring of one mold, and 

the final pouring line is observed in Figure 3.41.  

 

 
Figure 3.40 Pouring of one ASTM A536 1-inch Y-block mold. 

 

 
Figure 3.41 Arrangement of the molds after pouring.  



 

62 

The final chemical compositions were performed by Lehigh Testing Laboratories Inc., 

using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Then, 

samples were sent out to Aarrowcast, Inc., to execute combustion analysis (Leco). 

3.2.4 Shake-out of the Molds 

The molds were left overnight, and wire brushing was used to remove the excess of sand 

(Figure 3.42). A total of 18 Y-blocks per heat were made, resulting in 72 castings.  

 

 
Figure 3.42 Set of three 1-inch Y-blocks after shaking out one mold. 

 

3.2.5 Microstructure Evaluation  

3.2.5.1 Location of Metallographic Sample  

The bottom inch of the Y-blocks was sectioned with the Baileigh band saw shown in 

Figure 3.12. The middle cross-section of the first and last Y-blocks poured was used to 

perform the metallographic analysis (Figure 3.43). 
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Figure 3.43 Location of the metallographic sample in the 1-inch Y-blocks. 

 

The cross-section samples were ground and polished manually using a Leco Spectrum 

System® 1000 polisher/grinder 8-inch machine. The metallographic procedure used was 

the same as the one provided in Table 3.6 for the ½ inch Y-blocks. A total of 8 samples 

were analyzed. 

3.2.5.2 Graphite Analysis  

A total of five images were taken at 100x to perform percent nodularity and nodule count 

with ImageJ following ASTM E2567 [82] and ISO 945-1 [83].  

3.2.5.3 Ferrite and Pearlite Analysis  

The cross-section samples were etched with 2% Nital. The built-in macro file described 

earlier was used to analyze the percentages of ferrite and pearlite. The results provided 

are the average of five fields.  
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3.2.6 Tensile Properties Evaluation  

3.2.6.1 Location of Round Tensile Samples 

The round tensile samples were obtained by sectioning the bottom inch of the Y-blocks 

with a Peerless LHM-280 metal horizontal hacksaw (Figure 3.44). Figure 3.45 shows the 

location of the round bars that were machined out of the 1-inch Y-blocks. The 

dimensions are per ASTM E8 [84] (Figure 3.46), and the results are the average of six 

samples per heat. 

 

 
Figure 3.44 Hacksaw used to cut the 1-inch Y-blocks. 
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Figure 3.45 Location of the bottom inch section removed from the Y-block to machine 

the tensile bars. 

 

 
 

Figure 3.46 Dimensions (mm) of the round tensile bar per ASTM E8 [84]. 
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3.2.6.2 Loading and Testing  

The tensile test was performed per ASTM E8 [84] at Waupaca Foundry by Kassia 

Prystalski. A Tinius Olsen tensile testing machine was used (Figure 3.47) with a 

crosshead displacement speed of 2 mm/min and a 2-inch gauge length extensometer.  

 

 
Figure 3.47 Tinius Olsen tensile testing machine used for the round tensile samples of the 

1-inch Y-blocks. 

 

3.2.7 Macrohardness Evaluation  

The bottom inch of the Y-blocks was ground until the casting skin was removed. Brinell 

hardness was performed using the portable Dyna tester shown in Figure 3.20. A 3000 kg 

load with a 10 mm ball indenter and a dwell time of 15 seconds was applied. The results 

are the average of nine readings (Figure 3.48). 
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Figure 3.48 Brinell hardness test of the bottom inch of the Y-blocks. 

 

3.2.8 Microhardness Evaluation 

The 2% Nital etched cross-section of the 1-inch Y-blocks were used to perform Vickers 

hardness using the LECO M-400-G1 hardness tester shown in Figure 3.21 applying a 

100-gram load with a 10 second dwell time. The results are the average of ten 

indentations per sample.  

3.2.9 Impact Energy Evaluation  

Impact testing was performed per ASTM E23 [85] by Dr. Welt Travis using the MTS 

Exceed® E22 machine shown in Figure 3.22 at the University of Saint Thomas. Figure 

3.49 shows the location of the unnotched Charpy samples that were machined from the 

bottom inch of the Y-blocks. The dimensions for the unnotched samples are given in 

Figure 3.24a. Four temperatures were tested: 22.6, 50, 100, and 150°C. For the high-

temperature testing, a Gilson forced-air convection oven was used (Figure 3.50). The 

oven was calibrated using a thermocouple and a spot check of a sample at each 

temperature till the temperature of interest was reached. The reported values at each 

temperature are the average of 3 tests, resulting in 12 samples per heat.  
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Figure 3.49 Location of unnotched Charpy samples in the 1-inch Y-block. 

 

 
Figure 3.50 Oven for high-temperature impact testing.  
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3.2.10 Fracture Toughness Evaluation  

3.2.10.1 Location of Fracture Toughness Samples  

Fracture toughness testing was carried out according to ASTM E1820 [87], applying the 

J-integral method. Three C(T) samples were machined out from the 1-inch Y-blocks 

(Figure 3.51). The dimensions of the C(T) samples are shown in Figure 3.52. 

 

 
Figure 3.51 Location of the C(T) samples in the 1-inch Y-blocks. 
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Figure 3.52 Dimensions (mm) used for the C(T) samples from the 1-inch Y-blocks per 

ASTM E1820 Annex 3 [87]. 
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3.2.10.2 Fatigue Pre-cracking of C(T) Samples 

Fatigue pre-cracking per ASTM E1820 [87] was conducted under force control with a 

sinusoidal loading waveform and a frequency of 10 Hz. The C(T) samples are carefully 

loaded and aligned in an MTS 312.21 floor standing fatigue frame (Figure 3.53).  

 

 

 
Figure 3.53 Fatigue frame configuration used to pre-crack the C(T) samples from 1-inch 

Y-blocks. 
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3.2.10.3 Loading and Testing  

The testing was performed at 22.6, 50, 100, and 150°C using an Instron 4210 machine. 

For the high-temperature tests, a portable Lab-Temp™ LBO-Series medium-range furnace 

was assembled into the Intron 4210 frame. A thermocouple was placed on each sample to 

monitor the temperature, and testing was started once the targeted temperature was 

attained. A 10,000-pound FUTEK load cell and an epsilon model 3541 COD gauge were 

employed. Figure 3.54, shows the setup of the machine and a magnified view of the 

sample before executing the test.  

 

 
Figure 3.54 Assembly for the fracture toughness test of C(T) samples from the 1-inch Y-

blocks.  
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3.2.10.4 Data Analysis  

After all the testing was completed, the C(T) samples that displayed a ductile fracture 

were examined using the Wild Heerbrugg stereoscope (Figure 3.32). Images were taken 

via PixeLink software to measure the initial and final crack size per ASTM E1820 [87] 

using ImageJ.  Finally, the normalization data reduction analysis was conducted using the 

open-source software developed by Oak Ridge National Laboratory [88].  

3.2.11 Microscopic Fracture Surface Examination 

3.2.11.1 Fracture Surface Analysis of C(T) Samples 

The base SSF, 3 wt.%, and 4 wt.% Co fractured samples tested at 150°C were analyzed 

using the Philips/FEI XL30 ESEM (Figure 3.33). The samples were coated with a 15 nm 

layer of Pt-Pd using the Cressington 208HR high-resolution sputter coater (Figure 3.34), 

and four SE images per sample at a magnification of 350X and 1000X were taken. 

3.2.12 Segregation Analysis   

The 3 wt.% and 4 wt.% Co as-polished samples were carbon-coated using the Denton 

DV-502A sputter coater (Figure 3.35) to perform EDS and analyze the segregation 

profile of cobalt in the ferritic matrix of high silicon ductile iron. An accelerating voltage 

of 15 kV and a beam size of 1 µm was used for this analysis. A total of three scans per 

sample were conducted showing similar behavior. 
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4 Results  

4.1 Effect of Cobalt in Thin Wall Ductile Iron 

4.1.1 Chemical Composition  

The measured chemical compositions are close to the targets (Table 4.1), with the carbon 

and silicon varying slightly. The Leco carbon and sulfur agree well with the OES results. 

The Mg levels are all < 0.040. Cobalt values were on target, while the manganese and 

copper contents were kept as low as possible.  

 
Table 4.1 Final chemical composition for thin castings (wt.%) 

Element Target Base 
DI 

1 wt.% 
Co 

2 wt.% 
Co 

3 wt.% 
Co73 

4 wt.% 
Co 

Leco C  3.76 3.74 3.73 3.68 3.75 
C  3.73 3.72 3.64 3.71 3.74 3.79 
Si 2.50 2.58 2.45 2.40 2.57 2.41 

aCE 4.56 4.61 4.55 4.52 4.53 4.55 
Mg  <0.040 0.032 0.035 0.039 0.037 0.038 
Mn <0.25 0.21 0.20 0.22 0.25 0.24 
Cu <0.08 0.08 0.06 0.07 0.08 0.07 
P 0.025 0.02 0.02 0.02 0.02 0.02 
S 0.01 0.02 0.02 0.02 0.02 0.02 

Leco S  0.01 0.01 0.01 0.01 0.01 
bCo  - 1.03 2.06 3.00 4.08 

aThe equation used for this calculation was CE = wt.% C + 1/3 wt.% Si 
bThe established cobalt targets were 1 wt.%, 2 wt.%, 3 wt.%, and 4 wt.% Co 

 

4.1.2 Microstructure Evaluation  

4.1.2.1 Metallography of Rectangular Plates  

4.1.2.1.1 Graphite Analysis  

Figure 4.1 shows the unetched micrographs of the 3 mm section at 200x. In general, as 

the cobalt addition increases, the nodule size decreases, and the nodule count increases. 
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(a) Base DI 

 
(b) 1 wt.% Co 

 
(c) 2 wt.% Co 

 
(d) 3 wt.% Co 

 
(e) 4 wt.% Co 

Figure 4.1 Unetched micrographs of the 3 mm section at 200x [79]. 

 

The nodularity for all sections was above 90%, with no statistically significant effect of 

cobalt as a function of section thickness. An increase in nodule count was observed at 4 

wt.% Co, and as expected the nodule count decreased as thickness increased (Figure 4.2). 

The increase in nodule count with 4 wt.% Co is observed for all thicknesses (Figure 4.3). 
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Figure 4.2 Main effects plot for the effect of cobalt and thickness in nodule count. 

 

 
Figure 4.3 Interaction plot between cobalt and thickness in nodule count [79]. 
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4.1.2.1.2 Ferrite, Pearlite, and Carbide Analysis 

The 3 mm sections etched with 2% Nital are shown in Figure 4.4, with all etched 

micrographs for the other thicknesses provided in Appendix A. Carbides were found for 

the base ductile iron, 1 wt.% Co, and 2 wt.% Co heats, but the 3 wt.% and 4 wt.% Co 

heats had no carbides and an increase in ferrite percentage. 

 

(a) Base DI (b) 1 wt.% Co 

(c) 2 wt.% Co (d) 3 wt.% Co 

(e) 4 wt.% Co 
Figure 4.4 Etched micrographs from the 3 mm section at 200x [79]. 
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From Figure 4.5, all thicknesses from the base ductile iron heat (no Co) showed 

carbides along the entire cross-section. Compared to the base ductile iron heat, 

there was an increase in the carbide percentage for the 1 wt.% and 2 wt.% Co 

heats at the 2, 2.5, and 3 mm sections, with an increase in ferrite content for the 4, 

and 6 mm thicknesses. Increasing the thickness slows the cooling rate and 

decreases the nodule count. The larger distance between the nodules increases the 

diffusion distance between carbon sinks resulting in higher pearlite fractions. 

Since cobalt increases the nodule count, it leads to shorter diffusion paths and 

more ferrite. and less carbides for all thicknesses with 3 wt.% and 4 wt.% Co. The 

carbides in these two heats are located at the edges of the cross-section. 

 

  

  
Figure 4.5 Ferrite, pearlite, and carbide percentages for all section thicknesses [79]. 
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4.1.2.2 ASTM ½ inch Y-blocks  

4.1.2.2.1 Graphite Analysis  

The unetched micrographs at 50x of the first and last Y-blocks poured show that adding 

cobalt results in an increase in nodule count and a decrease in the nodule size (Figure 

4.6).   

FIRST LAST 
(a) Base DI 

FIRST LAST 
(b) 1 wt.% Co 

FIRST LAST 
(c) 2 wt.% Co 
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FIRST LAST 
(d) 3 wt.% Co 

FIRST LAST 
(e) 4 wt.% Co 

Figure 4.6 Unetched micrographs at 50x of the first and last ½ inch Y-blocks poured [81]. 

 

For the first Y-blocks poured, there was not a substantial difference in nodularity among 

all the heats (Figure 4.7). A decrease in nodularity with time is observed when comparing 

the first and last Y-blocks poured likely due to Mg fade (Figure 4.7). The nodule count 

increased considerably with the addition of 4 wt.% Co in comparison with the other heats 

(Figure 4.8). As the nodule count increases the percent nodularity increases, consistent 

with the present study at 4 wt.% Co [90]. As Co is increased, the average nodule diameter 

is consistently reduced, while longer pouring times lead to increased nodule size (Figure 

4.9).  
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Figure 4.7 Percent nodularity of the first and last ½ inch Y-blocks poured. Error bars are 

95% standard error of the mean [81].  

 

 
Figure 4.8 Nodule count of the first and last ½ inch Y-blocks poured. Error bars are 95% 

standard error of the mean [81]. 
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Figure 4.9 Nodule diameter of the first and last ½ inch Y-blocks poured. Error bars are 

95% standard error of the mean [81]. 

 

4.1.2.2.2 Ferrite and Pearlite Analysis  

Compared to the base ductile iron heat, the 4 wt.% Co heat showed an increase in ferrite 

percentage for the first and last Y-blocks poured (Figure 4.10). 
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FIRST 

 
LAST 

(b) 1 wt.% Co 

 
FIRST LAST 

(c) 2 wt.% Co 

 
FIRST 

 
LAST 

(d) 3 wt.% Co 
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FIRST 

 
LAST 

(e) 4 wt.% Co 
Figure 4.10 Nital etched micrographs at 50x of the first and last ½ inch Y-blocks poured 

[81]. 

 

An increase in ferrite and a decrease in pearlite is observed for the first Y-blocks poured 

with cobalt additions (Figure 4.11).  For the last Y-blocks poured, the 1 wt.%, and 3 wt.% 

Co additions showed a significant reduction in ferrite percentage. With longer pouring 

times, nodule count decreases resulting in more pearlite [34]. Although the 3 wt.% Co 

heat had a lower nodule count, the first Y-block poured displayed a ferrite percentage 

akin to the other heats. 
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(b) 

Figure 4.11 (a) Ferrite and (b) pearlite percentages of the first and last ½ inch Y-blocks 
poured. Error bars are 95% standard error of the mean [81]. 

 

4.1.3 Tensile Properties Evaluation  

4.1.3.1 Rectangular Plates  

Factorial plots were created in Minitab® to evaluate the effect of cobalt and thickness on 

the tensile strength, the yield strength, and the percent elongation of all heats. From the 

main effects plot (Figure 4.12), a slight increase in tensile strength with Co above 2 wt.% 

is observed, but this is not statistically significant. There was no clear trend found for the 

tensile strength in the interaction plot, although thinner sections were generally stronger 

(Figure 4.13). 
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Figure 4.12 Main effects plot for the effect of cobalt and thickness on tensile strength 

[79]. 

 

 
Figure 4.13 Interaction plot between cobalt and thickness on tensile strength [79]. 

 

The addition of 4 wt.% Co resulted in a decrease of the yield strength as observed in the 

main effects plot (Figure 4.14). A drop in yield strength for all thicknesses with 4 wt.% 

Co is confirmed in the interaction plot (Figure 4.15).  
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Figure 4.14 Main effects plot for the effect of cobalt and thickness on yield strength [79]. 

 

 
Figure 4.15 Interaction plot between cobalt and thickness on yield strength [79]. 

 

The percent elongation started to increase with additions above 2 wt.% Co (Figure 4.16). 

Also, a considerable rise in the percent elongation with 4 wt.% Co is observed in Figure 

4.17. This improvement in elongation is mainly due to an increase in the ferrite 

percentage. These results agree with what Javaid et al. found. High ferrite contents lead 

to lower strength and high elongation in 3 and 12 mm sections [24]. 



 

88 

 
Figure 4.16 Main effects plot for the effect of cobalt and thickness on elongation [79]. 

 

 
Figure 4.17 Interaction plot between cobalt and thickness on elongation [79]. 

 

4.1.3.2 ASTM ½ inch Y-blocks  

In Figure 4.18, a small increase in the tensile strength is observed with 3 wt.% Co, which 

is mainly a result of the lower nodule count of this heat which leads to a higher pearlite 

content. This observation is in line with what Doubrava et al. found, in which high 

pouring temperatures result in low nodule counts that contribute to an increase in pearlite 

[90]. In contrast, a drop in the tensile strength is observed for the 4 wt.% Co heat, which 

could potentially be attributed to the higher ferrite percentage. However, if the 3 wt.% Co 
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heat is excluded from the graph (Figure 4.19) there is really no decrease in the tensile 

strength with cobalt additions. The broad scatter of the base ductile iron and 1 wt.% Co 

heat could be due to a large variation in the ferrite and pearlite ratios, which seems to get 

smaller with the addition above 2 wt.% Co due to a higher ferrite percentage that leads to 

a more uniform matrix. Salzbrenner also observed a large dispersion in the tensile 

strength with a series of ductile iron heats with silicon contents ranging from 0.66 wt.% 

to 2.29 wt.% Si [91]. 

 

 
Figure 4.18 Effect of cobalt on the tensile strength of the ½ inch Y-blocks [81]. 

 

 
Figure 4.19 Tensile strength of the ½ inch Y-blocks without the 3 wt.% Co heat. 
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Figure 4.20 shows an increase in the yield strength with cobalt additions. However, this 

increment in the yield strength is only significant with 4 wt.% Co. These results are 

consistent with Mold’s research, which found a constant increase in the yield strength 

with cobalt contents up to 15 wt.% Co [58]. Furthermore, if the 3 wt.% Co heat is 

removed from the data set in the same way that was excluded for the tensile strength data 

due to the long holding time in the furnace, which resulted in lower nodule count, the 

increase in yield strength is still observed (Figure 4.21). 

 

 
Figure 4.20 Effect of cobalt on the yield strength of ½ inch Y-blocks [81]. 

 

 

 
Figure 4.21 Yield strength of the ½ inch Y-blocks without the 3 wt.% Co heat.  
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As previously mentioned, high nodule counts lead to greater ferrite contents, which cause 

an increase in the percent elongation. However, there was no significant change in 

percent elongation with cobalt additions (Figure 4.22). By removing the 3 wt.% Co heat 

in Figure 4.23, a slight increase in the percent elongation is observed, yet still not 

statistically significant. 

 

 
Figure 4.22 Effect of cobalt on the percent elongation of ½ inch Y-blocks [81]. 

 

 

 
Figure 4.23 Elongation of the ½ inch Y-blocks without the 3 wt.% Co heat. 
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4.1.4 Macrohardness Evaluation 

4.1.4.1 Rectangular Plates  

Throughout Brinell testing, 2 mm sections with 1 wt.%, 2 wt.%, and 3 wt.% Co samples 

cracked because of high carbide contents. The scatter in the data observed for the base 

ductile iron and 1 wt.% Co heats could be attributed to the variation in the microstructure, 

especially with respect to carbide content (Figure 4.24.). The data variation begins to 

decrease above 3 wt.% Co and this might be due to a more homogenous matrix of more 

ductile microconstituents. The 3 wt.% and 4 wt.% Co sections have a higher ferrite 

percentage compared to the other heats resulting in lower hardness values. 

 

 
Figure 4.24 Effect of cobalt additions on the Brinell hardness of the rectangular plates. 

Error bars are 95% Std error of the mean [79].  

 

4.1.4.2 ASTM ½ inch Y-blocks  

The 2 wt.% and 4 wt.% Co heats showed less variation in the Brinell hardness values 

compared to the other heats (Figure 4.25). These could potentially be attributed to a more 

homogeneous matrix. As has been reported by Gonzaga et al., a rise in hardness is 
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observed with increasing pearlite percentage [41], [92]. From the metallographic 

analysis, the base ductile iron, 1 wt.% Co, and 3 wt.% Co heats displayed similar pearlite 

contents for the first and last Y-blocks poured. However, the 4 wt.% Co heat had a high 

ferrite content leading to a significant increase in hardness. Microhardness testing in the 

next section will help evaluate the hardness of the microconstituents. 

 

 
Figure 4.25 Effect of cobalt on the Brinell hardness of the ½ inch Y-blocks. Error bars 

are 95% Std error of the mean. 

 

4.1.5 Microhardness Evaluation  

A significant increase in the ferrite hardness is observed with cobalt additions for the first 

and last Y-blocks poured (Figure 4.26). This hardening of ferrite by cobalt in solution is 

in agreement with what Modl found in his microhardness measurements [58].  
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Figure 4.26 Effect of cobalt on the ferrite hardness of the ½ inch Y-blocks. Error bars are 

95% Std error of the mean [81]. 

 

4.1.6 Impact Energy Evaluation  

4.1.6.1 V-notched samples  

All heats showed a decrease in the absorbed energies with decreasing the temperature. 

The DBTT for the base ductile iron heat is about -35°C and is shifted to -30°C with 4 

wt.% Co (Figure 4.27). Compared to the cobalt bearing alloys, the base ductile iron heat 

displayed higher impact energy values over the entire range of temperatures. 

Furthermore, the 3 wt.% and 4 wt.% Co heats resulted in the lowest absorbed energies. 

The absorbed energies from this test are in the range of 2.62 to 14.53 joules. Cobalt 

additions increase the DBTT and do not increase the impact energy for the v-notched 

samples. 
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Figure 4.27 Charpy V-notched impact energy of the ½ inch Y-blocks. Error bars are 95% 

Std error of the mean. 

 

4.1.6.2 Unnotched samples  

In Figure 4.28, the absorbed energy for all compositions drops with lowering the 

temperature. The 2 wt.% Co heat had the highest impact energy among all the heats over 

the entire temperature range. The 4 wt.% Co heat was next highest, but the impact energy 

decreased at -40°C. Also, the 3 wt.% Co heat had the lowest absorbed energies over the 

entire temperature range, and the impact energy values of the base ductile iron heat are 

among the heats that resulted in the highest and lowest values. The absorbed energies for 

this samples were in a range of 60 to 133 joules.  



 

96 

 
Figure 4.28 Charpy unnotched impact energy of the ½ inch Y-blocks. Error bars are 95% 

Std error of the mean. 

 

4.1.7 Fracture Toughness Evaluation  

Over the temperature range of 0 to -40°C, the base ductile iron and 1 wt.% Co heats 

exhibited the highest fracture toughness values. Then, the 3 wt.% Co and 4 wt.% Co 

heats presented similar values from 0 to -40°C. By increasing cobalt, the steep drop in 

fracture toughness is shifted to the right when compared to the base ductile iron heat. 

Also, the values of the 2 wt.% Co heat are among the heats that resulted in the highest 

and lowest fracture toughness values (Figure 4.29).    

 



 

97 

 
Figure 4.29 Fracture toughness of the ½ inch Y-blocks. 

 

4.1.8 Microscopic Fracture Surface Examination 

4.1.8.1 Fracture Surface Analysis of Flat Tensile Samples  

4.1.8.1.1 Two-mm Thick Samples 

The fracture surfaces of the 2 mm tensile samples are shown in Figure 4.30. Brittle 

fracture by cleavage is observed for the base ductile iron sample, with few graphite 

nodules present (Figure 4.30a). The 1 wt.% Co heat exhibited a quasi-cleavage fracture, 

which is a unique fracture type that displays both cleavage and plastic deformation 

features. At a higher magnification, small cleavage steps and river patterns are observed 

(Figure 4.30b). This same type of fracture was found for the 2 wt.%, 3 wt.%, and 4 wt.% 

Co heats. In Figure 4.30c at high magnification, the cleavage facets merge into areas with 

dimple rupture, resulting in tear ridges. A microcrack is seen at the matrix-nodule 
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interface for the 3 wt.% Co heat (Figure 4.30d). Some areas of the 4 wt.% Co heat 

showed microporosity, as well as a combination of cleavage steps and plastic 

deformation near the graphite nodules (Figure 4.30e). From these fracture surfaces, it is 

clear that cobalt additions increase the nodule density when compared to the base ductile 

iron heat, and the fracture mechanism changes from cleavage to quasi-cleavage. 

 

  
(a) Base DI 

  
(b) 1 wt.% Co 
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(c) 2 wt.% Co 

  
(d) 3 wt.% Co 

  
(e) 4 wt.% Co 

Figure 4.30 Fracture surface SEM images of the 2 mm flat tensile sample [79]. 

 

4.1.8.1.2 Six-mm Thick Samples 

The SEM micrographs of the 6 mm flat tensile samples are shown in Figure 4.31. Quasi-

cleavage fracture is observed for the base ductile iron heat, and some slight deformation 
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with almost no stretching around the nodules is noted. The 1 wt.% and 2 wt.% Co heats 

show the same type of fracture as the base ductile iron heat. In Figure 4.31b, microvoids 

are seen around the dimples at high magnification. The 3 wt.% Co and 4 wt.% Co heats 

displayed ductile fracture. At higher magnifications, plastic deformation zones and 

microvoids are observed for the 3 wt.% Co heat (Figure 4.31d). Once again, an increase 

in nodule count was observed with higher cobalt. The size of the dimples varies with the 

size of the graphite nodules. For this section thickness, the fracture mechanism changed 

from quasi-cleavage to ductile with increasing cobalt additions.  

 

  
(a) Base DI 

  
(b) 1 wt.% Co 
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(c) 2 wt.% Co 

  
(d) 3 wt.% Co 

  
(e) 4 wt.% Co 

Figure 4.31 Fracture surface SEM images of the 6 mm flat tensile sample [79]. 
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4.1.8.2 Fracture Surface Analysis of Charpy Samples  

4.1.8.2.1 V-notched Charpy Samples 

The base ductile iron sample exhibited a brittle fracture by cleavage with river patterns 

observed at higher magnifications on the cleavage facets (Figure 4.32a). The 1 wt.% Co 

heat had ductile fracture (Figure 4.32b). In Figure 4.32c, ductile fracture is observed with 

a small cleavage area for the 2 wt.% Co heat. The 3 wt.% Co heat exhibited ductile 

fracture with some cracks breaking into the surface (Figure 4.32d). In Figure 4.32e, the 4 

wt.% Co heat displayed a similar fracture surface as the 2 wt.% Co heat, showing areas of 

ductile and brittle fracture. All the samples had broken or partially disintegrated graphite 

nodules leaving residual graphite in the cavities. The fracture mechanism for these 

samples changed from brittle to ductile with cobalt additions. However, as mentioned 

earlier, the 2 wt.% and 4 wt.% Co had some areas with cleavage facets.  

 

  
(a) Base DI 

  
(b) 1 wt.% Co 
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(c) 2 wt.% Co 

  
(d) 3 wt.% Co 

  
(e) 4 wt.% Co 

Figure 4.32 Fracture surface SEM images of V-notched Charpy samples. 

4.1.8.2.2 Unnotched Charpy Samples 

The base ductile iron heat exhibited a quasi-cleavage fracture. Cleavage facets merging 

into the dimples were observed at low and high magnifications (Figure 4.33a). In Figure 

4.33b, the 1 wt.% Co heat showed quasi-cleavage fracture, and at low magnifications, a 

mixture of cleavage facets and dimple rupture is observed. The 2 wt.% Co heat displayed 
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a significant portion of ductile fracture with a small area of cleavage facets (Figure 

4.33c). The 3 wt.% and 4 wt.% Co heats exhibited some areas with a quasi-cleavage 

fracture, but the fracture surface is dominated by cleavage fracture. In Figure 4.33d, 

microcracks emanating from the graphite nodules are observed for the 3 wt.% Co heat, 

and the 4 wt.% Co heat showed several cracks that are seen at low and high 

magnifications (Figure 4.33e). For these samples, the fracture mode changes from a 

quasi-cleavage fracture to ductile fracture with 2 wt.% Co. However, the fracture mode 

for the other heats was a mixture of quasi-cleavage and cleavage fracture. 

 

  
(a) Base DI 

  
(b) 1 wt.% Co 



 

105 

  
(c) 2 wt.% Co 

  
(d) 3 wt.% Co 

  
(e) 4 wt.% Co 

Figure 4.33 Fracture surface SEM images of Unnotched Charpy samples. 
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4.1.8.3 Fracture Surface Analysis of C(T) samples  

4.1.8.3.1 C(T) Samples at Room Temperature   

The broken surfaces of the C(T) samples have two different zones that are distinguishable 

with the naked eye. Figure 4.34 shows a macrofractograph of the C(T) sample, where the 

two zones that are examined are labeled: Zone 1 fatigue crack propagation area, and Zone 

2 final fracture area. 

 

 
Figure 4.34 Stereoscopic fractography of a broken C(T) sample showing the two 

analyzed zones. 

 
The SEM micrographs of the base ductile iron heat are shown in Figure 4.35. Zone 1 

exhibited transgranular fracture with some cleavage facets. Also, small cracks emerging 

from the nodules are seen at low magnifications (marked by white arrows in Figure 

4.35a). At high magnification, fatigue striations are rarely observed. In contrast, zone 2 

displayed ductile fracture, in which microvoids around the dimples are seen at low and 

high magnifications (Figure 4.35b). 
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(a) Zone 1 

  
(b) Zone 2 

Figure 4.35 Fracture surface SEM images of the base ductile iron heat C(T) sample. 

 

For the 3 wt.% Co heat, zone 1 displays the same type of fracture as the base ductile iron 

heat. At high magnification, the fatigue striations are clearly observed (white arrow in 

Figure 4.36a). At least for this area, not as many small cracks emanating around the 

graphite nodules were observed compared to the base ductile iron heat. However, a tiny 

crack was identified at high magnification and is marked by a red arrow in Figure 4.36a. 

On the other hand, zone 2 showed a typical ductile fracture (Figure 4.36b). 
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(a) Zone 1 

  
(b) Zone 2 

Figure 4.36 Fracture surface SEM images of the 3 wt.% Co heat C(T) sample. 

 

In Figure 4.37a, the 4 wt.% Co heat showed several cracks around the nodules along the 

nodule-matrix interface at low magnification (white arrows). Also, this sample exhibited 

numerous irregular shaped inclusions (yellow arrows). After performing EDS, the results 

showed that the inclusions were mainly oxide inclusions of Mg, Si, Ca, Al, and Fe. At 

high magnification, fatigue striations marks are observed (white arrow). Zone 2 displays 

a predominant ductile fracture, but some areas show quasi-cleavage fracture. Cracks in 

the matrix and some inclusions are visible at low magnifications (Figure 4.37b). 
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(a) Zone 1 

  
(b) Zone 2 

Figure 4.37 Fracture surface SEM images of the 4 wt.% Co heat C(T) sample. 

 

4.1.9 Segregation Analysis 

Figure 4.38a shows the EDS measurements of the 3 wt.% Co heat. A total of 8 points 

were measured to map the segregation profile of silicon and cobalt. Looking at these two 

elements, it seems that cobalt is segregating similarly to silicon, as cobalt and silicon are 

relatively higher near the graphite nodules. The segregation of silicon has been widely 

studied, and this element is known to have negative segregation, which means that the 

highest concentration is near the graphite nodules [93]–[100].  

 

On the other hand, the 4 wt.% Co heat showed an unexpected increase in silicon and 

cobalt located in point 6 and point 7, perhaps due to a subsurface nodule (Figure 4.38b).  

However, if these two odd points are excluded from the plot, a more typical trend for 
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cobalt and silicon segregation is observed (Figure 4.39). From Figure 4.39, the highest 

silicon concentration is found near the graphite nodules (point 1 and point 9). 

Additionally, the maximum cobalt content is in points 2 and 8, which are in the ferrite 

matrix. This behavior of cobalt is contrary to what Yazdani et al. observed, in which 

cobalt segregates opposite to silicon, (positive segregation) [60].  

  

(a) 3 wt.% Co 

 

 
(b) 4 wt.% Co 

Figure 4.38 EDS measurements for the (a) 3 wt.% Co, and (b) 4 wt.% Co heats. 
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Figure 4.39 Modified EDS measurements for the 4 wt.% Co heat (points 6 and 7 were 

excluded). 
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4.2 Effect of Cobalt in Solid Solution Strengthened Ferritic 
Ductile Iron 

4.2.1 Chemical Composition  

The final chemical composition is close to the target (Table 4.2), with the four heats 

having very consistent C and Si and the cobalt values close to the target. 

 

Table 4.2 Final chemical composition for high silicon grades (wt.%) 
Element Target Base SSF 2 wt.% Co 3 wt.% Co 4 wt.% Co 
C (Leco) 3.0 3.10 3.05 3.04 3.06 

Si <4.3 4.13 4.14 4.12 4.14 
aCE 4.43 4.48 4.43 4.41 4.44 
Mg  <0.06 0.05 0.06 0.06 0.06 
Mn <0.25 0.19 0.19 0.18 0.19 
Cu <0.10 0.04 0.05 0.06 0.06 
P 0.025 0.03 0.02 0.02 0.02 

bCo  - 1.94 2.86 3.82 
aThe equation used for this calculation was CE = wt.% C + 1/3 wt.% Si 

bThe established cobalt targets were 2 wt.%, 3 wt.%, and 4 wt.% Co 
 

4.2.2 Microstructure Evaluation  

4.2.2.1 Graphite Analysis  

The unetched micrographs from the first and last Y-blocks poured are shown in Figure 

4.40. A reduction in the nodule size is observed with cobalt additions, while some 

degenerate graphite is observed in all the heats. 
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FIRST 

 
LAST 

(d) 4 wt.% Co 
Figure 4.40 Unetched micrographs at 100x of the first and last 1-inch Y-blocks poured. 

 
For the first Y-blocks poured, the 4 wt.% Co heat displayed the highest nodularity. The 

nodularity did not vary much in the last Y-blocks poured.  Alloying SSF with cobalt 

produced no statistically significant improvements in the graphite shape. However, this 

finding does not support previous studies that found an increase in the percent nodularity 

for a 600-10 SSFDI grade alloyed with 2 wt.% and 4 wt.% Co [63], [64]. Although the 

results do not show an effect with cobalt additions, the percent nodularity for all heats 

was above 80% (Figure 4.41). 

 

 
Figure 4.41 Percent nodularity of the first and last 1-inch Y-blocks poured. Error bars are 

95% Std error of the mean. 
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The 3 wt.% Co heat in the first Y-blocks poured showed the highest nodule count, but 

this is thought to be random variation (Figure 4.42). Over time the nodule count is 

expected to decrease, and this was observed in all the last Y-blocks poured. No 

substantial increase in the nodule count was found with cobalt additions, which is 

consistent with Weiβß et al., in which alloying high silicon ductile iron with cobalt 

showed no statistically significant effect [64].  In contrast, Okunnu reported an increase 

in the nodule count with 2 wt.% and 4 wt.% Co in the 600-10 grade [63]. Moreover, 

González-Martínez et al. found a slight increase in the nodule count of high silicon alloys 

only with 4 wt.% Co [67].  

 

 
Figure 4.42 Nodule count of the first and last 1-inch Y-blocks poured. Error bars are 95% 

Std error of the mean. 

 

A consistent reduction in the nodule diameter with increasing cobalt was observed for 

both the first and last Y-blocks poured (Figure 4.43). This finding is in agreement with 

previous work that report a decrease in the nodule size with cobalt additions [58], [63], 

[81]. 
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Figure 4.43 Nodule diameter of the first and last 1-inch Y-blocks poured. Error bars are 

95% Std error of the mean. 

 

4.2.2.2 Ferrite and Pearlite Analysis  

The etched micrographs of the first and last Y-blocks poured are shown in Figure 4.44. 

The base SSF and 2 wt.% Co heats exhibited a negligible amount of pearlite (< 2%), 

while a fully ferritic matrix was obtained for the 3 wt.% and 4 wt.% Co heats. Some 

chunky graphite (CHG) and degenerated graphite (Type V) were observed in the first and 

last Y-blocks poured for all heats, but it was more pronounced in the cobalt-bearing 

heats. These results support previous findings from González-Martínez that cobalt 

increases the risk of CHG formation [67].  
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FIRST 

 
LAST 

(d) 4 wt.% Co 
Figure 4.44 Nital etched micrographs at 100x of the first and last 1-inch Y-blocks poured. 

 

4.2.3 Tensile Properties Evaluation  

A steady increase in the tensile strength is observed with cobalt addition (Figure 4.42). 

Okunnu and Fischer et. Al reported an improvement in the tensile strength by alloying 

the 600-10 SSF grade with 2 wt.% and 4 wt.% Co [63], [66]. However, González-

Martínez found a drop in tensile strength above 4.4 wt.% to 4.5 wt.% Si for alloys 

containing 1.4 wt.% and 4 wt.% Co, but claimed that the maximum tensile strength was 

reached when alloying with cobalt at 4.3 wt.% to 4.4 wt.% Si [67], similar to the Si levels 

in this work. 
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Figure 4.45 Effect of cobalt on the tensile strength of 1-inch Y-blocks. Error bars are 

95% Std error of the mean. 

 

An increase in the yield strength is observed up to 3 wt.% Co (Figure 4.46). Then, the 

yield strength plateaus or decreases with the addition of 4 wt.% cobalt. This last finding 

is in conflict with previous studies that found an increase in yield strength with 4 wt.% 

Co [63], [66]. However, Fischer reported that additions of 2 wt.% and 4 wt.% Co to a 

600-10 SSFDI heat (4.3 wt.% Si) has a relatively small effect on the yield strength [66]. 
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Figure 4.46 Effect of cobalt on the yield strength of 1-inch Y-blocks. Error bars are 95% 

Std error of the mean. 

 

The percent elongation increases slightly with cobalt additions (Figure 4.47) in agreement 

with Okunnu's who observed an increase in elongation with 2 wt.% and 4 wt.% Co 

additions to a 600-10 SSF grade [63]. On the other hand, Fischer et al. found that for a 

high silicon iron (4.3 wt.% Si), the elongation is reduced by 22 and 50%, with 2 wt.% and 

4 wt.% Co, respectively [66]. González-Martínez et al. reported a drop in percent 

elongation above 4.3 wt.% Si for alloys with 1.4 wt.% and 4 wt.% Co [67]. 
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Figure 4.47 Effect of cobalt on the percent elongation of 1-inch Y-blocks. Error bars are 

95% Std error of the mean. 

 

4.2.4 Macrohardness Evaluation  

An improvement in the Brinell hardness is observed with cobalt additions (Figure 4.48). 

However, the hardness increases substantially between additions of 2 and 3 wt.% Co. 

High silicon ductile iron grades are known to have small variations in hardness values 

due to a more homogenous matrix, and this was observed for all heats. This increase in 

hardness is related to the strengthening effect of cobalt in ferrite. This finding is 

consistent with that of González-Martínez, who reported an increase in Brinell hardness 

for a series of high silicon alloys (from 3.99 wt.% to 5.95 wt.% Si) with low (1.31-1.44 

wt.% Co), and high (3.90-4.4wt.% Co) cobalt contents [67].  
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Figure 4.48 Effect of cobalt on the Brinell hardness of the 1-inch Y-blocks. Error bars are 

95% Std error of the mean. 

 

4.2.5 Microhardness Evaluation 

SSF ductile irons display more consistent hardnesses as the matrix consists of only 

ferrite. Direct measurement of the ferrite microhardness confirms that cobalt additions 

increase the ferrite hardness (Figure 4.49). These results reflect those of Okunnu, who 

found an increase in the Vickers hardness for two 600-10 SSF grades alloyed with 2 wt.% 

and 4 wt.% Co [63]. Other researchers have found increasing hardness with increasing 

cobalt in ductile irons with lower silicon contents [58], [81]. 
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Figure 4.49 Effect of cobalt on the ferrite microhardness of the 1-inch Y-blocks. Error 

bars are 95% Std error of the mean. 

 

4.2.6 Impact Energy Evaluation  

All heats exhibited different DBTTs (Figure 4.50). The baseline SSF without Co had a 

DBTT of 30°C, while the 2 wt.% Co was around 48°C, and the 3 and 4 wt% Co alloys 

were 105 and 111°C, respectively. The Base SSF heat had the highest absorbed impact 

energies over the entire temperature range. The 3 wt.% and 4 wt.% Co heats showed the 

lowest energy values at room temperature and 50°C compared to the other heats. It is 

clear that cobalt increases the ductile to brittle transition temperature and reduces overall 

toughness in high silicon ductile iron grades. 
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Figure 4.50 Charpy unnotched impact energy for the 1-inch Y-blocks. Error bars are 95% 

Std error of the mean. 

 

4.2.7 Fracture Toughness Evaluation  

At room temperature, all four heats were brittle. An SSF baseline C(T) sample tested at 

room temperature exhibits brittle fracture with no signs of plastic deformation (Figure 

4.51). As the temperature was increased ductile behavior was observed for the base SSF 

heat with the 150°C testing having ductile fracture (Figure 4.52).  
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Figure 4.51 Base SSF C(T) sample after fracture toughness test at room temperature. 

 

 
Figure 4.52 Base SSF C(T) sample after fracture toughness test at 150°C. 

Brittle fracture, without 
any plastic deformation 

Ductile fracture, showing 
plastic deformation 
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In Figure 4.53, the base SSF heat exhibited the highest fracture toughness values and was 

ductile for all the temperatures above 50°C. The 2 wt.% Co heat was ductile above 100°C 

but showed more scatter in the data. The 3 wt.% and 4 wt.% Co heats behaved in a 

ductile mode only at 150°C. The 3 wt.% Co heat had the lowest fracture toughness 

among all the heats, which could potentially be attributed to the irregular crack shape this 

heat developed, as marked by red arrows in Figure 4.54. The other heats showed a more 

uniform crack front. It is evident that concentrations above 2 wt.% Co in high silicon 

ductile iron grades result in lower fracture toughness values. 

 

 
Figure 4.53 Fracture toughness of the 1-inch Y-blocks. Error bars are 95% Std error of 

the mean. 
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Figure 4.54 Fracture surfaces of the C(T) samples at 150°C for all heats. 

  

Base SSF 2 wt.% Co 

3 wt.% Co 4 wt.% Co 

Irregular crack 
front 
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4.2.8 Microscopic Fracture Surface Examination 

4.2.8.1 Fracture Surface Analysis of C(T) samples  

4.2.8.1.1 C(T) Samples at 150°C   

Two well-defined zones are clearly visible with the naked eye from the resulting parts of 

a C(T) sample (Figure 4.55a). These two zones were analyzed to evaluate the 

predominating fracture mechanism. Figure 4.55b shows stereoscopic fractography of 

Zone 1 and part of Zone 2. 

 

 
(a) 

 
(b) 

Figure 4.55 (a) Fracture surface of C(T) sample highlighting important zones and (b) 
magnified stereoscopic photo of zone 1 and 2. 

Zone 1: fatigue 
crack propagation 

Zone 2: final 
fracture area Direction of 

crack 
propagation 

Initial notch 

Zone 1 

Zone 2 
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The SEM micrographs of the base SSF heat (Figure 4.56) have a Zone 1 that exhibits 

transgranular fracture with some cleavage facets and fatigue striations and some clusters 

of degenerate graphite. At low and high magnification graphite debonding as well as 

deformation of the nodular cavities is observed (yellow arrows). Small cracks originating 

at a nodule and traveling along the graphite-matrix interface are observed at low 

magnification (white arrows in Figure 4.56a). In contrast, zone 2 displayed ductile 

fracture, where the internodular ferrite matrix had some sharp boundaries or lips that are 

typical of ferrite given its ability to deform to a greater extent before the onset of fracture. 

Additionally, some deformation markings on the dimple walls, which are characteristic of 

metals that undergo considerable plastic deformation are observed (marked by yellow 

arrows in Figure 4.56b). 

 

  
(a) Zone 1 

  
(b) Zone 2 

Figure 4.56 Fracture surface SEM images of the base SSF heat C(T) sample. 
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Zone 1 of the 3 wt.% Co heat, revealed a predominantly transgranular fracture with a 

cleavage-like facet surface. Also, areas with degenerate graphite and a small crack are 

observed at low magnification (white arrows in Figure 4.57a). Zone 2 exhibited dimple 

rupture (Figure 4.57b), and some mild markings on the dimple walls are seen at high 

magnifications (yellow arrows).  

 

  
(a) Zone 1 

  
(b) Zone 2 

Figure 4.57 Fracture surface SEM images of the 3 wt.% Co heat C(T) sample. 

 
In Figure 4.58a, the 4 wt.% Co heat exhibited brittle fracture by transgranular cleavage. 

At low and high magnifications, some partial graphite debonding (yellow arrow) and a 

small area of degenerated graphite were observed (white arrows). Conversely, Zone 2 

displays ductile fracture, where some nodule cavities had an oval shape indicating 
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deformation (marked by white arrows in Figure 4.58b). Well-defined markings on the 

dimple walls were observed at high magnifications (yellow arrows). 

 

  
(a) Zone 1 

  
(b) Zone 2 

Figure 4.58 Fracture surface SEM images of the 4 wt.% Co heat C(T) sample. 

 
From all the analyzed fracture surfaces, it is clear that Zone 1 becomes flatter with some 

step-like features with higher cobalt addition. Compared to the base SSF heat, a higher 

dimple density is observed in Zone 2 for the 3 wt.% and 4 wt.% Co. However, these three 

heats exhibited areas with degenerated graphite shapes.   
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4.2.9 Segregation Analysis 

Figure 4.59a shows the EDS measurements for the 3 wt.% Co heat. Although the silicon 

and cobalt contents are slightly different, it appears that they are segregating similarly. 

Additionally, point 5 exhibits the highest values for silicon and cobalt, which is in the 

middle of the two graphite nodules perhaps due to another graphite nodule’s presence just 

below the polished surface. Despite this point, silicon and cobalt contents are high near 

the graphite nodules.  

 

The 4 wt.% Co heat displayed the more common negative segregation of silicon, and the 

cobalt segregated in the same way with higher levels near the graphite nodules. At the 

beginning (point 1 through point 3) the cobalt remains flat before decreasing sharply. 
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(b) 4 wt.% Co 

Figure 4.59 EDS measurements for the (a) 3 wt.% Co, and (b) 4 wt.% Co high silicon 
heats. 
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5 Discussion  

5.1 Effect of Cobalt in Thin Wall Ductile Iron 

5.1.1 Influence of Cobalt in the Microstructure  

5.1.1.1 Rectangular Plates  

The influence that section thickness has on the nodule count and the resulting type of 

matrix (ferrite/pearlite ratios) is well documented. In general, as the section thickness 

increases, the nodule count decreases, which results in lower ferrite contents. This 

reduction in ferrite content is associated with an increase in the diffusion path length of 

carbon atoms to graphite nodules, which results in more pearlite [34], [90], [101]–[103].  

Therefore, to evaluate the influence of cobalt in the microstructure of the rectangular 

plates an ANOVA General Linear Model (GLM) was performed using Minitab Statistical 

Software® and the results are given in Appendix B (B1.1-B1.4). The different cobalt 

levels and the thicknesses were set as a factor, and the nodule count, ferrite, pearlite, and 

carbide percentages were set as the responses. Figure 4.2 shows the main effects plot 

from this GLM, and the nodule count increase is statistically significant with the addition 

of 4 wt.% Co. Also, the decrease in nodule count with increasing the section thickness is 

observed too, which agrees with the previously mentioned literature. Furthermore, the 

interaction model (Co level * Thickness (mm)) displayed in Figure 4.3, shows an 

increase in nodule count for all thicknesses with 4 wt.% Co.  

 

Figure 5.1 shows the factorial plots (main effects and interaction plots) corresponding to 

ferrite, pearlite, and carbide percentages from the performed GLM. From Figure 5.1a, the 

increase in ferrite content is statistically significant above 3 wt.% Co. This connects to 

the fact that cobalt is enhancing the nodule count and reducing the interparticle spacing, 

which decreases the diffusion path of carbon atoms and produces more ferrite.  This 

increase in ferrite comes along with a decrease in pearlite and carbide percentages 

(Figure 5.1b, and 5.1c).  
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Ferrite percent is lower in the 2, 2.5, and 3 mm sections due to the high cooling rates, 

which are in the order of 80-15 °C/s when changing the wall thickness from 2 to 5 mm 

according to Górny and Tyrala [34]. High cooling rates in thin sections will result in a 

greater tendency for carbide and pearlite formation, which was also observed in Figure 

5.1c for the 2, and 2.5 mm sections. 
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(a) Ferrite Percentage 

  
(b) Pearlite Percentage 

  
(c) Carbide Percentage 

Figure 5.1 Factorial Plots from Minitab® analyzing the (a) ferrite, (b) pearlite, and (c) 
carbide percentages of the rectangular plates [79]. 
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5.1.1.2 ASTM ½ inch Y-blocks  

An ANOVA GLM was performed (Appendix B Section B.1.5-B.1.9) with the different 

cobalt levels and the pouring positions (first and last Y-blocks poured) as factors, and the 

nodularity, nodule count, nodule size, ferrite, and pearlite percentages as responses.  

 

The percent nodularity significantly increases with the addition of 4 wt.% Co (Figure 

5.2a). In terms of pouring position, it is expected that with time the percent nodularity 

decreases due to magnesium fade. This was observed in the main effects plot. The 

interaction term (Co Level * Position) was not statistically significant, and over time the 

percent nodularity was not drastically reduced, as seen in the interaction plot.  

 

The nodule count was substantially increased with the addition of 4 wt.% Co (Figure 

5.2b). The positive correlation between nodularity and nodule count reported by 

Doubrava et al. [90] was observed with 4 wt.% Co. Regarding pouring position, the 

nodule count decreases with time, which is related to sustaining inoculation in the melt. 

Inoculation is the procedure used to increase the nuclei sites for graphite nucleation [104] 

and over time, fading of the inoculant occurs [105].   

 

Surprisingly, a considerable drop in the nodule count and percent nodularity of 

the 3 wt.% Co heat was observed. This finding was due to an unexpectedly long 

holding time of the melt in the induction furnace. As a result, the carbon fades 

through oxidation, decreasing its content in the melt and reducing the nuclei sites 

available for graphite precipitation, which consequently lowers the nodule count. 

The decrease in carbon content was confirmed from the chemical composition 

analysis, as this heat had carbon concentration of 3.68 wt.%, which is below the 

average of 3.75 wt.% C. The above findings are consistent with prior studies 

[106]–[108] where they have noted the detrimental effects of long holding times 

of the base iron in the induction furnace, resulting in lower nodule counts and 

nodularity because the nucleation has been limited.  
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As observed in Figure 5.2c, the nodule diameter decreases with cobalt additions. 

However, the reduction in the nodule size is significant only with 4 wt.% Co. 

With pouring time, the nodule size is expected to grow, and this was observed in 

the main effects plot (position) and interaction plot. 

 

One theory of why it was thought that the nucleation process would be better with 

cobalt was that the liquidus temperature would decrease with cobalt additions, 

therefore enabling the formation of more graphite nuclei. However, after running 

a Thermo-Calc calculation, the opposite was found (Table 5.1). 

 

Table 5.1 Liquidus and solidus temperature of the base DI and 4 wt.% Co heats 
Heat Liquidus 

Temperature 
(°C) 

Solidus 
Temperature 

(°C) 

ΔT 

Base DI 1488 1440 48 
4 wt.% Co 1520 1451 69 

 

With the above, another potential hypothesis arises in the quest for explaining the 

mechanism behind why cobalt is increasing the nodule count in ductile iron. If the liquid 

is kept longer and the diffusion of carbon is much faster in the liquid this might be 

helpful from the solidus perspective. If the range of liquid expands (meaning higher 

liquidus and lower solidus), then there will be more time available for liquid diffusion. 

However, this needs further study and is beyond the scope of this research.  
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(a) Nodularity 

  
(b) Nodule count 

  
(c) Nodule diameter  

Figure 5.2 Factorial plots from Minitab® analyzing the graphite features (a) percent 
nodularity, (b) nodule count, and (c) nodule diameter of the first and last ½ inch Y-blocks 

poured [81].  
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As mentioned above, the addition of 4 wt.% Co increased the nodule count, which 

reduces the interparticle spacing between the graphite nodules, allowing the carbon atoms 

to diffuse to the graphite nodules more easily resulting in more ferrite [109], [110]. The 

significant increase in ferrite percentage upon cobalt addition, except for the 3 wt.% Co 

heat, is observed in Figure 5.3. Additionally, it is important to highlight that the 

microstructure for the 2 wt.% and 4 wt.% Co heats were less sensitive to fade related to 

pouring time as depicted in the interaction plot. 

 

Consistent with the ferrite increases, the pearlite decreases with cobalt additions, with the 

exception of the 3 wt.% Co heat (Figure 5.3b). With respect to pouring time, an increase 

in pearlite content is observed for the last Y-blocks poured. This is associated with a 

decrease in the nodule count, which increases the distance between the nodules resulting 

in a greater pearlite content. Pearlite is known to vary more in castings with low nodule 

counts [109], [111]. This pearlite sensitivity at low nodule counts was observed for the 

base ductile iron, 1 wt.% and 3 wt.% Co heats.   

  

As discussed previously, due to the unplanned long holding time of the furnace, the 3 

wt.% Co heat showed a decrease in the nodule count, which resulted in more pearlite, but 

not as high as the base ductile iron heat.  
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(a) Ferrite percentage  

  
(b) Pearlite percentage 

Figure 5.3 Factorial plots from Minitab® analyzing the (a) ferrite, and (b) pearlite 
percentages of the first and last ½ inch Y-blocks poured [81]. 

 

5.1.2 Influence of Cobalt in the Tensile Behavior   

5.1.2.1 Rectangular Plates  

An ANOVA GLM was performed for the tensile behavior of the rectangular (Appendix 

B Section B.1.10-B.1.12), and all the factorial plots were provided in Chapter 4 (Figures 

4.12-4.17). Recall that the cobalt level and section thicknesses were factors and the 

mechanical properties (tensile strength, yield strength, and elongation) were responses.  

 

The yield strength significantly decreased while the percent elongation decreased with 4 

wt.% Co, which is correlated to rising ferrite content. It is well known that an increase in 
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ferrite fraction results in a reduction in the tensile and yield strengths, accompanied by 

enhanced elongation [92], [110], [112]. Furthermore, when carbides are present in 

samples tested under tension, cracks will start in carbide-rich regions of the matrix with a 

brittle cleavage mode. In addition, these cracks start at low-stress values and rapidly link 

with cracks in other carbide regions resulting in elongations below 2% [113]. These low 

elongation values were observed primarily in those with high carbide contents. 

 

5.1.2.2 ASTM ½ inch Y-blocks 

A one-way ANOVA was used to determine the effect of cobalt on the mechanical 

properties. The statistical analysis for this run is provided in Appendix B (Sections 

B.1.13-B.1.15). The cobalt content was the factor, and the mechanical properties were the 

responses.  

 

The addition of cobalt has no statistically significant effect on tensile strength and 

elongation given the variation within each Co level (Table 5.2). However, the yield 

strength significantly increased with 4 wt.% Co.  Although it was previously mentioned 

that high ferrite contents result in a decrease of the yield strength, this was not true for 

these ½ inch Y-blocks, demonstrating the solid solution strengthening effect of cobalt in 

ferrite, consistent with the increase in the ferrite hardness. Factorial plots depicting the 

substantial increase in ferrite microhardness with cobalt additions support this conclusion 

(Figure 5.4 with the ANOVA GLM is given in Appendix B Section B.1.16). 

 

Table 5.2 One-Way ANOVA results for the mechanical properties, significant p-value 
marked in red 

Mechanical Property DF Adj SS Adj MS F-Value P-Value 
Tensile Strength (MPa) 4 1695 423.8 1.25 0.304 
Yield Strength (MPa) 4 2995 748.8 4.46 0.004 

Elongation (%) 4 18.86 4.716 1.67 0.172 
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Figure 5.4 Factorial plots from Minitab® on the effect of cobalt on the ferrite 

microhardness of the ½ inch Y-blocks [81]. 

 

5.1.3 Influence of Cobalt in the Impact and Fracture Toughness Properties  

5.1.3.1 V-notched and Unnotched Samples  

An ANOVA GLM (Appendix B Section B.1.17 to B.1.18) was performed with cobalt 

level and temperature as factors, and the absorbed energies of v-notched and unnotched 

samples as responses.  

 

A gradual reduction in the absorbed energy is observed with cobalt additions for the v-

notched samples (Figure 5.5a), while the impact energy declined above 2 wt.% Co for the 

unnotched samples (Figure 5.5b). As expected, the absorbed energy drops with 

decreasing the temperature, but it seems more gradual in the unnotched case implying 

significant notch sensitivity.   
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(a) V-notched samples 

  
(b) Unnotched samples 

Figure 5.5 Factorial plots from Minitab® analyzing the (a) v-notched and (b) unnotched 
impact energies of the ½ inch Y-blocks. 

 

Cracks initiate at regions of high stress concentration, and a geometric notch is used to 

assess stress concentration effects. The presence of a notch in ductile iron will always 

result in low impact values. Wallin explains that compared to steel, cast iron exhibits 

lower impact energies in v-notched samples. V-notches are basically large cracks, and 

since graphite nodules fail at small strains, this leads to multiple microcracks in front of 

the notch. The microcrack region overwhelms the notch acuity, making the notch 

effectively sharper than its effect in steel [114].  
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5.1.3.2 Fracture toughness  

The ANOVA GLM performed for the fracture toughness test is given in Appendix B 

(Section B.1.19). The cobalt level and the temperature were factors, and the fracture 

toughness was the response. From Figure 5.6, a decrease in fracture toughness is 

observed with cobalt additions, as well as lower temperatures as expected.  

 

  
Figure 5.6 Factorial plots from Minitab® analyzing the fracture toughness of the ½ inch 

Y-blocks.  

 

Factors that influence the impact and fracture toughness results are associated with the 

chemical composition (mainly silicon, carbon, phosphorus, and manganese), 

microstructural features (such as graphite morphology, nodule count, and type of matrix), 

strain rate, and temperature. When analyzing these results, several of the above factors 

might be interacting at the same time and contributing to the fracture behavior, which 

provides additional complexity.  

 

Before discussing some of the most important factors that are affecting the results, it is 

necessary to describe the general crack initiation and propagation mechanism that has 

been widely studied by several researchers in ductile irons [115]–[120]. This mechanism 

involves the following:  

1. Graphite nodule decohesion  

2. Microcracking originating from the graphite nodules  
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3. Link-up of microcracks  

4. And crack propagation by connecting graphite nodules 

 

In terms of chemical composition, one of the most influential elements is silicon as 

discussed in Chapter 1 and 2. The main mechanism for silicon reducing the impact 

properties and the percent elongation is due to its negative segregation, in which the 

silicon concentration is higher around the graphite nodules. This embrittles the interface 

between the matrix and the graphite nodules, which is where cracks are initiated [93]–

[97], [99]. Figure 5.7 shows the silicon segregation profile from work by Kanno [96] in a 

high silicon ductile iron grade which displays negative Si segregation. Their 

measurements are in agreement with those for the 4 wt.% Co SSFDI heat presented in 

Figure 4.59. The important thing to notice about this is that cobalt is segregating similarly 

to silicon, which would weaken even more the boundary between graphite nodules and 

the ferrite matrix, leading to lower fracture toughness. 

 

  
Figure 5.7 Silicon distribution showing the negative segregation between two graphite 

nodules [96]. 
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Cracks will always propagate at the graphite-matrix interface, which highlights the 

weakness of the bond between the graphite nodules and the matrix. Hence, nodule count 

is another important factor in the final fracture toughness value. Several studies have 

indicated that high nodule counts (smaller internodular spacing) result in a lower upper 

shelf fracture toughness and a lower DBTT [19], [29], [121]–[123]. Therefore, the 

interparticle spacing (λ) was calculated using Askeland´s equation [109], and Table 5.3 

shows the results for the two heats that resulted in the highest and lowest fracture 

toughness values (base ductile iron and 4 wt.% Co). As the nodule count was 

significantly increased with the addition of 4 wt.% Co, the spacing was decreased making 

it easier it will be to achieve crack link-up and void coalescence leading to lower fracture 

toughness. 

Table 5.3 Graphite interparticle spacing (λ) [81] 
Heat Nodule count 

(N/mm2) 
Average graphite 

radius (mm) 
Interparticle 
Spacing (µm) 

Base DI 187 0.014 46 
4 wt.% Co 240 0.0125 38 

 

Figure 5.8 displays the impact of high nodule count on the fracture toughness, and looking 

at Figure 4.29, the 4 wt.% Co heat shows a comparable behavior to the Code B heat, which 

has a similar nodule count.   

 
Figure 5.8 Effect of nodule count on the fracture toughness of ferritic ductile iron [19]. 
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The solidification time for the ½ inch Y-blocks was calculated using Inspire Cast (Figure 

5.9) to determine the diffusion length of the base ductile iron and 4 wt.% Co heats using 

the following equation:  

 𝑥𝑥 = √𝐷𝐷𝐷𝐷 (2) 
Where:  

x = diffusion length (cm) 

D = diffusion coefficient (D X 107 cm2/s) 

t = solidification time (seconds)  

 

 
Figure 5.9 Solidification times calculated with Inspire Cast for the ½ inch Y-blocks.  

 

The solidification time for the ½ inch Y-blocks is 134 seconds. After calculating the 

diffusion distances (Table 5.4) it seems that the interparticle spacing of the base ductile 

iron and 4 wt.% Co heats (Table 5.3) are so much higher than the actual diffusion length.  

 
Table 5.4 Diffusion length for the ½ inch Y-blocks 

Heat aDiffusion Coefficient 
(D x 107 cm2/s) 

Solidification 
time (s) 

Diffusion length, 
x (µm) 

Base DI 3.15 134 0.06 
4 wt.% Co 6.4 134 0.09 

aThe diffusion coefficients were taken from Smoluchowski research work [50] 
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5.2 Effect of Cobalt in Solid Solution Strengthened Ferritic 
Ductile Iron   

5.2.1 Influence of Cobalt in the Microstructure  

The only significant microstructural influence observed with cobalt additions was a 

decrease in nodule diameter, especially at 4 wt.% Co. Figure 5.10 shows the factorial 

plots that were obtained after performing an ANOVA GLM model (Appendix B Section 

B.2.1). Even though an increase in the percent nodularity and nodule count with cobalt 

additions has been reported previously [63]–[65], these trends were observed but they 

were not statistically significant due to within-sample variability. 

 

  
Figure 5.10 Factorial plots from Minitab® on the effect of cobalt in the nodule diameter of 

the SSFDI heats. 

 

5.2.2 Influence of Cobalt in the Tensile Behavior  

A one-way ANOVA showed that the tensile strength increased significantly with cobalt 

additions (Appendix B Section B.2.2). The model summary gives an R-squared adjusted 

term of 99.07%, which is statistically significant (p=0.00). Even though the yield strength 

plateaued for the 4 wt.% Co heat, cobalt additions are statistically significant for yield 

strength but with a slightly lower R-squared adjusted term of 95.71 (Appendix B Section 

B.2.3). This increase in tensile and yield strength is mainly due to the solid solution 

hardening effect that cobalt has on the ferrite, as was confirmed by the Vickers hardness 

measurements (Figure 5.4). The one-way ANOVA models for Brinell and Vickers also 
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show high correlation with increasing cobalt level (Appendix B Section B.2.4 to B.2.5). 

No statistically significant effects were found for the percent elongation with cobalt 

additions.  

 

The cause for the decrease in the yield strength with 4 wt.% Co (Figure 4.46) was not 

possible to determine. However, if the 3 wt.% Co heat is removed from the data set and 

only the 2 wt.% and 4 wt.% Co heat are considered, the increase in tensile and yield 

strength agree with Okunnu and Fischer et al. [63], [66] (Figure 5.11). The increase in 

yield strength is only significant when compared to the base SSF heat, and the percent 

elongation is not substantially increased. Nonetheless, González-Martinez et al. [67] 

reported one alloy that has a similar chemical composition to the 4 wt.% Co heat (4.14 

wt.% Si and 3.82 wt.% Co), which resulted in mechanical properties similar to the ones 

observed for this heat. Hence, this data set could potentially mean that the maximum 

static properties have been reached with 3 wt.% Co. 
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(a) Tensile Strength  (b) Yield Strength 

 
(c) Elongation 

Figure 5.11 Tensile properties without the 3 wt.% Co heat. 
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5.2.3 Influence of Cobalt in the Impact Properties  

Reducing the silicon content, from 4.3 wt% Si declared in DIN EN 1563 [21] for the 

production of the 600-10 SSFDI grade to 4.13 wt.% Si was not enough to counteract the 

negative effect of high silicon contents on toughness properties. Consequently, the base 

SSF heat resulted in brittle fracture even at room temperature.  

Additionally, as observed in Figure 5.12, the impact toughness was progressively reduced 

with cobalt additions. These results confirm that although cobalt increased the static 

properties, it does not improve the toughness. The ANOVA GLM model results are 

provided in Appendix B (Section B.2.6), where the cobalt content and temperature were 

factors, and the impact toughness was the response. 

 

  
Figure 5.12 Factorial plots from Minitab® analyzing the impact toughness of the SSFDI 

heats.  

 

As mentioned in Chapter 2, graphite morphology in SSFDI grades can have a detrimental 

effect on the impact properties. From the metallographic results shown in Chapter 4, the 

presence of degenerate graphite shapes (Type V per ASTM A247 [124]) was detected, so 

this was quantified with Olympus Stream Essentials software. All the cobalt bearing 

alloys resulted in higher levels of degenerate graphite (Table 5.5). This finding was also 

reported by González-Martínez et al. who observed that cobalt deteriorates the graphite 

shape and increases the tendency to CHG formation [67]. Early crack initiation can start 
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from degenerated graphite nodules, given the notch effect on graphite nodules in ductile 

iron, which results in lower fracture toughness [125], [126].   

 

Table 5.5 Degenerated graphite content in the SSFDI heats (%) 

Heat  Type V (%) 
Base SSF 4.8 
2 wt.% Co 8.7 
3 wt.% Co  8.1 
4 wt.% Co  7.7 

 
 
Another factor that can influence this outcome is that cobalt is known to increase 

chemical ordering in Fe-Co alloys [127]. A study of Fe-Si-Co alloys has shown that in 

addition to the B2 and D03 ordered phases that were discussed in Chapter 2, a two-phase 

region (B2+D03) exists between these phases, which cobalt shifting the transition 

between disordered (A2-phase) to ordered (B2-phase) to lower silicon values [128]. This 

behavior was observed by González-Martínez et al., who found that the maximum tensile 

strength for cobalt-bearing alloys was around 4.3-4.4 wt.% Si versus 5.2 wt.% Si for 

alloys without cobalt, attributing the brittleness of these alloys to the presence of ordered 

phases [67]. For this reason, x-ray diffraction (XRD) was performed on the 4 wt.% Co 

sample to look for the presence of ordered phases. However, no superlattice peaks were 

observed. A possible explanation for this result might be that this characterization 

technique was unable to detect the low-intensity superlattice peaks. Transmission 

Electron Microscopy (TEM) or synchrotron XRD techniques may be better tools to 

identify these phases.  Weiß et al., observed B2-superstructures by TEM in ductile iron 

samples with 3.95 wt.% Si [129], which could indicate that the deterioration of the 

dynamic properties of the present heats is enhanced by the presences of ordered phases. 
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6 Concluding Remarks 
The structured and complete experimental work presented here provides the first 

investigation on alloying ductile iron with cobalt to reduce carbide formation in thin 

sections, and the production of carbide-free thin-wall ductile iron castings was possible 

with 4 wt.% Co. Cobalt increases the nodule count, which reduces the interparticle 

spacing between the graphite nodules, reducing the carbon diffusion path length, and 

enabling the formation of more ferrite. It is recommended to explore the effect of 4 wt.% 

Co to castings with complex geometries (thin and thick sections) and evaluate the 

potential of cobalt in producing a casting without graphite flotation and carbides using a 

single CE value. 

 

The strengthening effect that cobalt has on ferrite was confirmed not only for ductile 

irons with low silicon but also for high silicon ductile iron grades. Additionally, cobalt 

can be used to partially replace silicon while maintaining the tensile properties necessary 

to meet the 600-10 SSFDI grade. However, there is a greater detrimental effect on the 

impact properties when cobalt is present, which might limit its application. The insights 

gained from this study will be of assistance to ductile iron producers in terms of knowing 

the effects upon cobalt additions in the mechanical properties. 

 

Another important contribution of this research is the measurement of impact and fracture 

toughness data over a wide range of compositions and temperatures for two types of 

ductile iron grades (TWDI and SSFDI). The negative effect of high silicon in SSFDI 

grades was confirmed with the fracture toughness testing, and the brittleness of these 

grades was observed at room temperature and above. A deeper understanding of the 

effect of cobalt on the impact and fracture toughness behavior was developed. Cobalt 

increases the ductile to brittle transition temperature, and when silicon and cobalt are 

together, the negative effects on impact properties are magnified.  
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A Metallography of As-cast Thin Wall Ductile Iron 
A.1 Etched Micrographs  
A.1.1 2 mm section at 200x 

  
(a) Base DI (b) 1 wt.% Co 

  
(c) 2 wt.% Co (d) 3 wt.% Co 

 
(e) 4 wt.% Co 
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A.1.2 2.5 mm section at 200x 

  
(a) Base DI (b) 1 wt.% Co 

  
(c) 2 wt.% Co (d) 3 wt.% Co 

 
(e) 4 wt.% Co 
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A.1.3 3 mm section at 200x  

  
(a) Base DI (b) 1 wt.% Co 

  
(c) 2 wt.% Co (d) 3 wt.% Co 

 
(e) 4 wt.% Co 
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A.1.4 3.5 mm section at 200x  

  
(a) Base DI (b) 1 wt.% Co 

  
(c) 2 wt.% Co (d) 3 wt.% Co 

 
(e) 4 wt.% Co 
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A.1.5 4 mm section at 200x  

  
(a) Base DI (b) 1 wt.% Co 

  
(c) 2 wt.% Co (d) 3 wt.% Co 

 
(e) 4 wt.% Co 
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A.1.6 6 mm section at 200x  

  
(a) Base DI (b) 1 wt.% Co 

  
(c) 2 wt.% Co (d) 3 wt.% Co 

 
(e) 4 wt.% Co 
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B Minitab® Statistical Software Results 
B.1 Effect of Cobalt in Thin Wall Ductile Iron 
B.1.1 General Linear Model: Nodule Count versus Co Level, Thickness 

(mm) 
Method 

Factor coding 
 

(-1, 0, +1) 

Factor Information 
Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Thickness (mm) 
 

Fixed 6 2.0, 2.5, 3.0, 3.5, 4.0, 6.0 

Analysis of Variance 
Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 2236201 559050 84.37 0.000 
  Thickness (mm) 5 9574685 1914937 288.98 0.000 
  Co Level*Thickness (mm) 20 1952255 97613 14.73 0.000 
Error 270 1789167 6627     
Total 299 15552307      

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
81.4036 88.50% 87.26% 85.80% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 939.66 4.70 199.93 0.000  
Co Level      
  0 -6.03 9.40 -0.64 0.522 1.60 
  1 -95.88 9.40 -10.20 0.000 1.60 
  2 -3.08 9.40 -0.33 0.744 1.60 
  3 -53.63 9.40 -5.71 0.000 1.60 
  4 158.61 9.40 16.87 0.000 * 
Thickness (mm)      
  2.0 326.8 10.5 31.10 0.000 1.67 
  2.5 67.8 10.5 6.45 0.000 1.67 
  3.0 29.9 10.5 2.85 0.005 1.67 
  3.5 -144.2 10.5 -13.72 0.000 1.67 
  4.0 -42.5 10.5 -4.04 0.000 1.67 
  6.0 -237.9 10.5 -22.63 0.000 * 
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Co Level*Thickness (mm)           
  0 2.0 99.8 21.0 4.75 0.000 2.67 
  0 2.5 -57.7 21.0 -2.75 0.006 2.67 
  0 3.0 37.9 21.0 1.81 0.072 2.67 
  0 3.5 40.4 21.0 1.92 0.056 2.67 
  0 4.0 -80.2 21.0 -3.82 0.000 2.67 
  0 6.0 -40.2 21.0 -1.91 0.057 * 
  1 2.0 -190.3 21.0 -9.06 0.000 2.67 
  1 2.5 29.6 21.0 1.41 0.160 2.67 
  1 3.0 13.0 21.0 0.62 0.537 2.67 
  1 3.5 7.8 21.0 0.37 0.710 2.67 
  1 4.0 73.6 21.0 3.50 0.001 2.67 
  1 6.0 66.3 21.0 3.15 0.002 * 
  2 2.0 61.7 21.0 2.93 0.004 2.67 
  2 2.5 -170.6 21.0 -8.12 0.000 2.67 
  2 3.0 -4.7 21.0 -0.22 0.823 2.67 
  2 3.5 51.2 21.0 2.44 0.015 2.67 
  2 4.0 12.9 21.0 0.61 0.539 2.67 
  2 6.0 49.5 21.0 2.35 0.019 * 
  3 2.0 -85.1 21.0 -4.05 0.000 2.67 
  3 2.5 144.2 21.0 6.86 0.000 2.67 
  3 3.0 64.6 21.0 3.08 0.002 2.67 
  3 3.5 -37.4 21.0 -1.78 0.076 2.67 
  3 4.0 -86.8 21.0 -4.13 0.000 2.67 
  3 6.0 0.5 21.0 0.03 0.980 * 
  4 2.0 113.9 21.0 5.42 0.000 * 
  4 2.5 54.5 21.0 2.59 0.010 * 
  4 3.0 -110.9 21.0 -5.28 0.000 * 
  4 3.5 -62.0 21.0 -2.95 0.003 * 
  4 4.0 80.5 21.0 3.83 0.000 * 
  4 6.0 -76.1 21.0 -3.62 0.000 * 

 
Regression Equation 

Nodule 
Count 

= 939.66 - 6.03 Co Level_0 
- 95.88 Co Level_1 - 3.08 Co Level_2 
- 53.63 Co Level_3 + 158.61 Co Level_4 
+ 326.8 Thickness (mm)_2.0 
+ 67.8 Thickness (mm)_2.5 
+ 29.9 Thickness (mm)_3.0 
- 144.2 Thickness (mm)_3.5 
- 42.5 Thickness (mm)_4.0 
- 237.9 Thickness (mm)_6.0 
+ 99.8 Co Level*Thickness (mm)_0 2.0 
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- 57.7 Co Level*Thickness (mm)_0 2.5 
+ 37.9 Co Level*Thickness (mm)_0 3.0 
+ 40.4 Co Level*Thickness (mm)_0 3.5 
- 80.2 Co Level*Thickness (mm)_0 4.0 
- 40.2 Co Level*Thickness (mm)_0 6.0 
- 190.3 Co Level*Thickness (mm)_1 2.0 
+ 29.6 Co Level*Thickness (mm)_1 2.5 
+ 13.0 Co Level*Thickness (mm)_1 3.0 
+ 7.8 Co Level*Thickness (mm)_1 3.5 
+ 73.6 Co Level*Thickness (mm)_1 4.0 
+ 66.3 Co Level*Thickness (mm)_1 6.0 
+ 61.7 Co Level*Thickness (mm)_2 2.0 
- 170.6 Co Level*Thickness (mm)_2 2.5 
- 4.7 Co Level*Thickness (mm)_2 3.0 
+ 51.2 Co Level*Thickness (mm)_2 3.5 
+ 12.9 Co Level*Thickness (mm)_2 4.0 
+ 49.5 Co Level*Thickness (mm)_2 6.0 
- 85.1 Co Level*Thickness (mm)_3 2.0 
+ 144.2 Co Level*Thickness (mm)_3 2.5 
+ 64.6 Co Level*Thickness (mm)_3 3.0 
- 37.4 Co Level*Thickness (mm)_3 3.5 
- 86.8 Co Level*Thickness (mm)_3 4.0 
+ 0.5 Co Level*Thickness (mm)_3 6.0 
+ 113.9 Co Level*Thickness (mm)_4 2.0 
+ 54.5 Co Level*Thickness (mm)_4 2.5 
- 110.9 Co Level*Thickness (mm)_4 3.0 
- 62.0 Co Level*Thickness (mm)_4 3.5 
+ 80.5 Co Level*Thickness (mm)_4 4.0 
- 76.1 Co Level*Thickness (mm)_4 6.0 

 
Fits and Diagnostics for Unusual Observations 

Obs Nodule Count Fit Resid Std Resid  
7 1516.0 1360.3 155.7 2.02 R 
31 1220.0 829.8 390.2 5.05 R 
41 1112.0 810.9 301.1 3.90 R 
51 823.0 655.6 167.4 2.17 R 
72 1122.0 941.2 180.8 2.34 R 
90 722.0 886.7 -164.7 -2.13 R 
111 853.0 672.2 180.8 2.34 R 
R Large residual  
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B.1.2 General Linear Model: Ferrite versus Co Level, Thickness (mm)  
Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Thickness (mm) Fixed 6 2.0, 2.5, 3.0, 3.5, 4.0, 6.0 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 32404 8100.90 158.01 0.000 
  Thickness (mm) 5 20259 4051.77 79.03 0.000 
  Co Level*Thickness (mm) 20 4109 205.46 4.01 0.000 
Error 270 13842 51.27     
Total 299 70614      

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
7.16015 80.40% 78.29% 75.80% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 30.130 0.413 72.88 0.000  
Co Level      
  0 -9.147 0.827 -11.06 0.000 1.60 
  1 -8.080 0.827 -9.77 0.000 1.60 
  2 -6.797 0.827 -8.22 0.000 1.60 
  3 6.703 0.827 8.11 0.000 1.60 
  4 17.320 0.827 20.95 0.000 * 
Thickness (mm)      
  2.0 -12.090 0.924 -13.08 0.000 1.67 
  2.5 -8.450 0.924 -9.14 0.000 1.67 
  3.0 -1.390 0.924 -1.50 0.134 1.67 
  3.5 6.290 0.924 6.80 0.000 1.67 
  4.0 4.370 0.924 4.73 0.000 1.67 
  6.0 11.270 0.924 12.19 0.000 * 
Co Level*Thickness (mm)      
  0 2.0 3.61 1.85 1.95 0.052 2.67 
  0 2.5 1.17 1.85 0.63 0.529 2.67 
  0 3.0 -0.79 1.85 -0.43 0.668 2.67 
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  0 3.5 2.23 1.85 1.20 0.229 2.67 
  0 4.0 0.15 1.85 0.08 0.937 2.67 
  0 6.0 -6.35 1.85 -3.44 0.001 * 
  1 2.0 -1.26 1.85 -0.68 0.496 2.67 
  1 2.5 -7.30 1.85 -3.95 0.000 2.67 
  1 3.0 2.34 1.85 1.27 0.207 2.67 
  1 3.5 2.46 1.85 1.33 0.184 2.67 
  1 4.0 3.58 1.85 1.94 0.054 2.67 
  1 6.0 0.18 1.85 0.10 0.923 * 
  2 2.0 -4.94 1.85 -2.67 0.008 2.67 
  2 2.5 -4.18 1.85 -2.26 0.024 2.67 
  2 3.0 -1.24 1.85 -0.67 0.502 2.67 
  2 3.5 1.38 1.85 0.74 0.457 2.67 
  2 4.0 3.50 1.85 1.89 0.060 2.67 
  2 6.0 5.50 1.85 2.97 0.003 * 
  3 2.0 0.56 1.85 0.30 0.764 2.67 
  3 2.5 0.12 1.85 0.06 0.950 2.67 
  3 3.0 -0.84 1.85 -0.46 0.649 2.67 
  3 3.5 -0.82 1.85 -0.45 0.656 2.67 
  3 4.0 -0.90 1.85 -0.49 0.626 2.67 
  3 6.0 1.90 1.85 1.03 0.306 * 
  4 2.0 2.04 1.85 1.10 0.271 * 
  4 2.5 10.20 1.85 5.52 0.000 * 
  4 3.0 0.54 1.85 0.29 0.770 * 
  4 3.5 -5.24 1.85 -2.83 0.005 * 
  4 4.0 -6.32 1.85 -3.42 0.001 * 
  4 6.0 -1.22 1.85 -0.66 0.510 * 

 
Regression Equation 

Ferrite = 30.130 - 9.147 Co Level_0 
- 8.080 Co Level_1 - 6.797 Co Level_2 
+ 6.703 Co Level_3 
+ 17.320 Co Level_4 
- 12.090 Thickness (mm)_2.0 
- 8.450 Thickness (mm)_2.5 
- 1.390 Thickness (mm)_3.0 
+ 6.290 Thickness (mm)_3.5 
+ 4.370 Thickness (mm)_4.0 
+ 11.270 Thickness (mm)_6.0 
+ 3.61 Co Level*Thickness (mm)_0 2.0 
+ 1.17 Co Level*Thickness (mm)_0 2.5 
- 0.79 Co Level*Thickness (mm)_0 3.0 
+ 2.23 Co Level*Thickness (mm)_0 3.5 
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+ 0.15 Co Level*Thickness (mm)_0 4.0 
- 6.35 Co Level*Thickness (mm)_0 6.0 
- 1.26 Co Level*Thickness (mm)_1 2.0 
- 7.30 Co Level*Thickness (mm)_1 2.5 
+ 2.34 Co Level*Thickness (mm)_1 3.0 
+ 2.46 Co Level*Thickness (mm)_1 3.5 
+ 3.58 Co Level*Thickness (mm)_1 4.0 
+ 0.18 Co Level*Thickness (mm)_1 6.0 
- 4.94 Co Level*Thickness (mm)_2 2.0 
- 4.18 Co Level*Thickness (mm)_2 2.5 
- 1.24 Co Level*Thickness (mm)_2 3.0 
+ 1.38 Co Level*Thickness (mm)_2 3.5 
+ 3.50 Co Level*Thickness (mm)_2 4.0 
+ 5.50 Co Level*Thickness (mm)_2 6.0 
+ 0.56 Co Level*Thickness (mm)_3 2.0 
+ 0.12 Co Level*Thickness (mm)_3 2.5 
- 0.84 Co Level*Thickness (mm)_3 3.0 
- 0.82 Co Level*Thickness (mm)_3 3.5 
- 0.90 Co Level*Thickness (mm)_3 4.0 
+ 1.90 Co Level*Thickness (mm)_3 6.0 
+ 2.04 Co Level*Thickness (mm)_4 2.0 
+ 10.20 Co Level*Thickness (mm)_4 2.5 
+ 0.54 Co Level*Thickness (mm)_4 3.0 
- 5.24 Co Level*Thickness (mm)_4 3.5 
- 6.32 Co Level*Thickness (mm)_4 4.0 
- 1.22 Co Level*Thickness (mm)_4 6.0 

 
Fits and Diagnostics for Unusual Observations 

Obs Ferrite Fit Resid Std Resid  
49 41.00 25.50 15.50 2.28 R 
81 5.00 23.00 -18.00 -2.65 R 
91 3.00 30.80 -27.80 -4.09 R 
101 9.00 30.00 -21.00 -3.09 R 
102 16.00 30.00 -14.00 -2.06 R 
141 0.00 20.70 -20.70 -3.05 R 
151 15.00 31.00 -16.00 -2.36 R 
181 2.00 25.30 -23.30 -3.43 R 
191 3.00 28.50 -25.50 -3.75 R 
201 11.00 34.60 -23.60 -3.47 R 
251 35.00 49.20 -14.20 -2.09 R 
261 32.00 46.60 -14.60 -2.15 R 

R Large residual 
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B.1.3 General Linear Model: Pearlite versus Co Level, Thickness (mm) 
Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Thickness (mm) Fixed 6 2.0, 2.5, 3.0, 3.5, 4.0, 6.0 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 8132 2032.98 49.48 0.000 
  Thickness (mm) 5 2948 589.62 14.35 0.000 
  Co Level*Thickness (mm) 20 5360 268.00 6.52 0.000 
Error 270 11095 41.09   
Total 299 27535    

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
6.41021 59.71% 55.38% 50.26% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 60.910 0.370 164.58 0.000  
Co Level      
  0 6.140 0.740 8.30 0.000 1.60 
  1 -0.493 0.740 -0.67 0.506 1.60 
  2 3.840 0.740 5.19 0.000 1.60 
  3 -0.393 0.740 -0.53 0.596 1.60 
  4 -9.093 0.740 -12.29 0.000 * 
Thickness (mm)      
  2.0 1.970 0.828 2.38 0.018 1.67 
  2.5 -1.030 0.828 -1.24 0.214 1.67 
  3.0 4.330 0.828 5.23 0.000 1.67 
  3.5 -1.090 0.828 -1.32 0.189 1.67 
  4.0 1.470 0.828 1.78 0.077 1.67 
  6.0 -5.650 0.828 -6.83 0.000 * 
Co Level*Thickness (mm)      
  0 2.0 -0.12 1.66 -0.07 0.942 2.67 
  0 2.5 -8.42 1.66 -5.09 0.000 2.67 
  0 3.0 4.22 1.66 2.55 0.011 2.67 



 

178 

  0 3.5 -1.76 1.66 -1.06 0.289 2.67 
  0 4.0 -0.72 1.66 -0.44 0.664 2.67 
  0 6.0 6.80 1.66 4.11 0.000 * 
  1 2.0 -8.49 1.66 -5.13 0.000 2.67 
  1 2.5 -2.99 1.66 -1.80 0.072 2.67 
  1 3.0 0.95 1.66 0.58 0.565 2.67 
  1 3.5 3.67 1.66 2.22 0.027 2.67 
  1 4.0 2.61 1.66 1.58 0.116 2.67 
  1 6.0 4.23 1.66 2.56 0.011 * 
  2 2.0 -4.62 1.66 -2.79 0.006 2.67 
  2 2.5 4.68 1.66 2.83 0.005 2.67 
  2 3.0 -0.48 1.66 -0.29 0.772 2.67 
  2 3.5 1.84 1.66 1.11 0.267 2.67 
  2 4.0 0.68 1.66 0.41 0.682 2.67 
  2 6.0 -2.10 1.66 -1.27 0.206 * 
  3 2.0 6.11 1.66 3.69 0.000 2.67 
  3 2.5 7.31 1.66 4.42 0.000 2.67 
  3 3.0 -0.85 1.66 -0.51 0.609 2.67 
  3 3.5 -3.93 1.66 -2.37 0.018 2.67 
  3 4.0 -3.29 1.66 -1.99 0.048 2.67 
  3 6.0 -5.37 1.66 -3.24 0.001 * 
  4 2.0 7.11 1.66 4.30 0.000 * 
  4 2.5 -0.59 1.66 -0.35 0.723 * 
  4 3.0 -3.85 1.66 -2.32 0.021 * 
  4 3.5 0.17 1.66 0.10 0.917 * 
  4 4.0 0.71 1.66 0.43 0.667 * 
  4 6.0 -3.57 1.66 -2.15 0.032 * 

 
Regression Equation 

Pearlite = 60.910 + 6.140 Co Level_0 
- 0.493 Co Level_1 + 3.840 Co Level_2 
- 0.393 Co Level_3 
- 9.093 Co Level_4 
+ 1.970 Thickness (mm)_2.0 
- 1.030 Thickness (mm)_2.5 
+ 4.330 Thickness (mm)_3.0 
- 1.090 Thickness (mm)_3.5 
+ 1.470 Thickness (mm)_4.0 
- 5.650 Thickness (mm)_6.0 
- 0.12 Co Level*Thickness (mm)_0 2.0 
- 8.42 Co Level*Thickness (mm)_0 2.5 
+ 4.22 Co Level*Thickness (mm)_0 3.0 
- 1.76 Co Level*Thickness (mm)_0 3.5 
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- 0.72 Co Level*Thickness (mm)_0 4.0 
+ 6.80 Co Level*Thickness (mm)_0 6.0 
- 8.49 Co Level*Thickness (mm)_1 2.0 
- 2.99 Co Level*Thickness (mm)_1 2.5 
+ 0.95 Co Level*Thickness (mm)_1 3.0 
+ 3.67 Co Level*Thickness (mm)_1 3.5 
+ 2.61 Co Level*Thickness (mm)_1 4.0 
+ 4.23 Co Level*Thickness (mm)_1 6.0 
- 4.62 Co Level*Thickness (mm)_2 2.0 
+ 4.68 Co Level*Thickness (mm)_2 2.5 
- 0.48 Co Level*Thickness (mm)_2 3.0 
+ 1.84 Co Level*Thickness (mm)_2 3.5 
+ 0.68 Co Level*Thickness (mm)_2 4.0 
- 2.10 Co Level*Thickness (mm)_2 6.0 
+ 6.11 Co Level*Thickness (mm)_3 2.0 
+ 7.31 Co Level*Thickness (mm)_3 2.5 
- 0.85 Co Level*Thickness (mm)_3 3.0 
- 3.93 Co Level*Thickness (mm)_3 3.5 
- 3.29 Co Level*Thickness (mm)_3 4.0 
- 5.37 Co Level*Thickness (mm)_3 6.0 
+ 7.11 Co Level*Thickness (mm)_4 2.0 
- 0.59 Co Level*Thickness (mm)_4 2.5 
- 3.85 Co Level*Thickness (mm)_4 3.0 
+ 0.17 Co Level*Thickness (mm)_4 3.5 
+ 0.71 Co Level*Thickness (mm)_4 4.0 
- 3.57 Co Level*Thickness (mm)_4 6.0 

 
Fits and Diagnostics for Unusual Observations 

Obs Pearlite Fit Resid Std Resid  
1 32.00 68.90 -36.90 -6.07 R 
2 51.00 68.90 -17.90 -2.94 R 
6 84.00 68.90 15.10 2.48 R 
9 83.00 68.90 14.10 2.32 R 
10 85.00 68.90 16.10 2.65 R 
11 29.00 57.60 -28.60 -4.70 R 
21 60.00 75.60 -15.60 -2.57 R 
61 30.00 53.90 -23.90 -3.93 R 
71 30.00 56.40 -26.40 -4.34 R 
121 47.00 62.10 -15.10 -2.48 R 
122 48.00 62.10 -14.10 -2.32 R 

R Large residual 
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B.1.4 General Linear Model: Carbides versus Co Level, Thickness (mm) 
Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Thickness (mm) Fixed 6 2.0, 2.5, 3.0, 3.5, 4.0, 6.0 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 11893 2973.31 37.59 0.000 
  Thickness (mm) 5 14662 2932.34 37.07 0.000 
  Co Level*Thickness (mm) 20 9543 477.15 6.03 0.000 
Error 270 21359 79.11   
Total 299 57457    

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
8.89426 62.83% 58.83% 54.11% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 8.997 0.514 17.52 0.000  
Co Level      
  0 2.94 1.03 2.86 0.005 1.60 
  1 8.65 1.03 8.43 0.000 1.60 
  2 2.87 1.03 2.79 0.006 1.60 
  3 -6.25 1.03 -6.08 0.000 1.60 
  4 -8.21 1.03 -8.00 0.000 * 
Thickness (mm)      
  2.0 10.10 1.15 8.80 0.000 1.67 
  2.5 9.48 1.15 8.26 0.000 1.67 
  3.0 -2.96 1.15 -2.57 0.011 1.67 
  3.5 -5.20 1.15 -4.53 0.000 1.67 
  4.0 -5.96 1.15 -5.19 0.000 1.67 
  6.0 -5.48 1.15 -4.77 0.000 * 
Co Level*Thickness (mm)      
  0 2.0 -3.44 2.30 -1.50 0.136 2.67 
  0 2.5 7.28 2.30 3.17 0.002 2.67 
  0 3.0 -3.38 2.30 -1.47 0.143 2.67 
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  0 3.5 -0.44 2.30 -0.19 0.849 2.67 
  0 4.0 0.72 2.30 0.31 0.753 2.67 
  0 6.0 -0.76 2.30 -0.33 0.742 * 
  1 2.0 9.75 2.30 4.24 0.000 2.67 
  1 2.5 10.47 2.30 4.56 0.000 2.67 
  1 3.0 -3.39 2.30 -1.48 0.141 2.67 
  1 3.5 -6.25 2.30 -2.72 0.007 2.67 
  1 4.0 -6.19 2.30 -2.70 0.007 2.67 
  1 6.0 -4.37 2.30 -1.90 0.058 * 
  2 2.0 9.63 2.30 4.19 0.000 2.67 
  2 2.5 -0.55 2.30 -0.24 0.811 2.67 
  2 3.0 1.69 2.30 0.74 0.462 2.67 
  2 3.5 -3.17 2.30 -1.38 0.169 2.67 
  2 4.0 -4.41 2.30 -1.92 0.056 2.67 
  2 6.0 -3.19 2.30 -1.39 0.166 * 
  3 2.0 -6.75 2.30 -2.94 0.004 2.67 
  3 2.5 -7.53 2.30 -3.28 0.001 2.67 
  3 3.0 1.61 2.30 0.70 0.485 2.67 
  3 3.5 4.85 2.30 2.11 0.036 2.67 
  3 4.0 4.21 2.30 1.83 0.068 2.67 
  3 6.0 3.63 2.30 1.58 0.115 * 
  4 2.0 -9.19 2.30 -4.00 0.000 * 
  4 2.5 -9.67 2.30 -4.21 0.000 * 
  4 3.0 3.47 2.30 1.51 0.132 * 
  4 3.5 5.01 2.30 2.18 0.030 * 
  4 4.0 5.67 2.30 2.47 0.014 * 
  4 6.0 4.69 2.30 2.04 0.042 * 

 
Regression Equation 

Carbides = 8.997 + 2.94 Co Level_0 
+ 8.65 Co Level_1 + 2.87 Co Level_2 
- 6.25 Co Level_3 
- 8.21 Co Level_4 
+ 10.10 Thickness (mm)_2.0 
+ 9.48 Thickness (mm)_2.5 
- 2.96 Thickness (mm)_3.0 
- 5.20 Thickness (mm)_3.5 
- 5.96 Thickness (mm)_4.0 
- 5.48 Thickness (mm)_6.0 
- 3.44 Co Level*Thickness (mm)_0 2.0 
+ 7.28 Co Level*Thickness (mm)_0 2.5 
- 3.38 Co Level*Thickness (mm)_0 3.0 
- 0.44 Co Level*Thickness (mm)_0 3.5 
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+ 0.72 Co Level*Thickness (mm)_0 4.0 
- 0.76 Co Level*Thickness (mm)_0 6.0 
+ 9.75 Co Level*Thickness (mm)_1 2.0 
+ 10.47 Co Level*Thickness (mm)_1 2.5 
- 3.39 Co Level*Thickness (mm)_1 3.0 
- 6.25 Co Level*Thickness (mm)_1 3.5 
- 6.19 Co Level*Thickness (mm)_1 4.0 
- 4.37 Co Level*Thickness (mm)_1 6.0 
+ 9.63 Co Level*Thickness (mm)_2 2.0 
- 0.55 Co Level*Thickness (mm)_2 2.5 
+ 1.69 Co Level*Thickness (mm)_2 3.0 
- 3.17 Co Level*Thickness (mm)_2 3.5 
- 4.41 Co Level*Thickness (mm)_2 4.0 
- 3.19 Co Level*Thickness (mm)_2 6.0 
- 6.75 Co Level*Thickness (mm)_3 2.0 
- 7.53 Co Level*Thickness (mm)_3 2.5 
+ 1.61 Co Level*Thickness (mm)_3 3.0 
+ 4.85 Co Level*Thickness (mm)_3 3.5 
+ 4.21 Co Level*Thickness (mm)_3 4.0 
+ 3.63 Co Level*Thickness (mm)_3 6.0 
- 9.19 Co Level*Thickness (mm)_4 2.0 
- 9.67 Co Level*Thickness (mm)_4 2.5 
+ 3.47 Co Level*Thickness (mm)_4 3.0 
+ 5.01 Co Level*Thickness (mm)_4 3.5 
+ 5.67 Co Level*Thickness (mm)_4 4.0 
+ 4.69 Co Level*Thickness (mm)_4 6.0 

 
Fits and Diagnostics for Unusual Observations 

Obs Carbides Fit Resid Std Resid  
1 57.00 18.60 38.40 4.55 R 
2 41.00 18.60 22.40 2.65 R 
9 0.00 18.60 -18.60 -2.20 R 
10 0.00 18.60 -18.60 -2.20 R 
11 63.00 28.70 34.30 4.07 R 
21 29.00 5.60 23.40 2.77 R 
61 70.00 37.50 32.50 3.85 R 
71 70.00 37.60 32.40 3.84 R 
81 35.00 11.30 23.70 2.81 R 
82 30.00 11.30 18.70 2.22 R 
91 34.00 6.20 27.80 3.29 R 
101 25.00 5.50 19.50 2.31 R 

R Large residual 
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B.1.5 General Linear Model: Nodularity (%) versus Co Level, Position 
Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Position Fixed 2 First, Last 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 230.66 57.67 5.12 0.001 
  Position 1 54.76 54.76 4.86 0.030 
  Co Level*Position 4 76.14 19.04 1.69 0.159 
Error 90 1014.00 11.27 

  

Total 99 1375.56 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
3.35659 26.28% 18.91% 8.99% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 94.620 0.336 281.89 0.000 

 

Co Level 
     

  0 -0.520 0.671 -0.77 0.441 1.60 
  1 1.130 0.671 1.68 0.096 1.60 
  2 0.630 0.671 0.94 0.351 1.60 
  3 -2.720 0.671 -4.05 0.000 1.60 
  4 1.480 0.671 2.20 0.030 * 
Position 

     

  First  0.740 0.336 2.20 0.030 1.00 
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  Last -0.740 0.336 -2.20 0.030 * 
Co Level*Position 

     

  0 First  0.260 0.671 0.39 0.699 1.60 
  0 Last -0.260 0.671 -0.39 0.699 * 
  1 First  -0.390 0.671 -0.58 0.563 1.60 
  1 Last 0.390 0.671 0.58 0.563 * 
  2 First  -1.390 0.671 -2.07 0.041 1.60 
  2 Last 1.390 0.671 2.07 0.041 * 
  3 First  1.260 0.671 1.88 0.064 1.60 
  3 Last -1.260 0.671 -1.88 0.064 * 
  4 First  0.260 0.671 0.39 0.699 * 
  4 Last -0.260 0.671 -0.39 0.699 * 

 
Regression Equation 

Nodularity 
(%) 

= 94.620 - 0.520 Co Level_0 + 1.130 Co Level_1 
+ 0.630 Co Level_2 
- 2.720 Co Level_3 + 1.480 Co Level_4 + 0.740 Position_First 
- 0.740 Position_Last + 0.260 Co Level*Position_0 First 
- 0.260 Co Level*Position_0 Last - 0.390 Co Level*Position_1 
First 
+ 0.390 Co Level*Position_1 Last - 1.390 Co Level*Position_2 
First 
+ 1.390 Co Level*Position_2 Last + 1.260 Co Level*Position_3 
First 
- 1.260 Co Level*Position_3 Last + 0.260 Co Level*Position_4 
First 
- 0.260 Co Level*Position_4 Last 

 
Fits and Diagnostics for Unusual Observations 

Obs 
Nodularity 

(%) Fit Resid 
Std 

Resid  
11 100.00 93.10 6.90 2.17 R 
16 83.00 93.10 -10.10 -3.17 R 
77 79.00 89.90 -10.90 -3.42 R 
80 98.00 89.90 8.10 2.54 R 

R Large residual  
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B.1.6 General Linear Model: Nodule Count (N/mm2) versus Co Level, 
Position 

Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Position Fixed 2 First, Last 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 64428 16107.0 25.70 0.000 
  Position 1 14762 14762.2 23.56 0.000 
  Co Level*Position 4 3706 926.6 1.48 0.215 
Error 90 56403 626.7 

  

Total 99 139299 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
25.0339 59.51% 55.46% 50.01% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 221.03 2.50 88.29 0.000 

 

Co Level 
     

  0 -14.83 5.01 -2.96 0.004 1.60 
  1 10.42 5.01 2.08 0.040 1.60 
  2 3.47 5.01 0.69 0.490 1.60 
  3 -37.48 5.01 -7.49 0.000 1.60 
  4 38.42 5.01 7.67 0.000 * 
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Position 
  First  12.15 2.50 4.85 0.000 1.00 
  Last -12.15 2.50 -4.85 0.000 * 
Co Level*Position 

     

  0 First  6.65 5.01 1.33 0.187 1.60 
  0 Last -6.65 5.01 -1.33 0.187 * 
  1 First  -1.20 5.01 -0.24 0.811 1.60 
  1 Last 1.20 5.01 0.24 0.811 * 
  2 First  -4.35 5.01 -0.87 0.387 1.60 
  2 Last 4.35 5.01 0.87 0.387 * 
  3 First  -8.30 5.01 -1.66 0.101 1.60 
  3 Last 8.30 5.01 1.66 0.101 * 
  4 First  7.20 5.01 1.44 0.154 * 
  4 Last -7.20 5.01 -1.44 0.154 * 

 
Regression Equation 

Nodule Count 
(N/mm2) 

= 221.03 - 14.83 Co Level_0 + 10.42 Co Level_1 
+ 3.47 Co Level_2 
- 37.48 Co Level_3 + 38.42 Co Level_4 
+ 12.15 Position_First 
- 12.15 Position_Last + 6.65 Co Level*Position_0 First 
- 6.65 Co Level*Position_0 Last 
- 1.20 Co Level*Position_1 First 
+ 1.20 Co Level*Position_1 Last 
- 4.35 Co Level*Position_2 First 
+ 4.35 Co Level*Position_2 Last 
- 8.30 Co Level*Position_3 First 
+ 8.30 Co Level*Position_3 Last 
+ 7.20 Co Level*Position_4 First 
- 7.20 Co Level*Position_4 Last 

 
Fits and Diagnostics for Unusual Observations 

Obs 

Nodule 
Count 

(N/mm2) Fit Resid Std Resid  
2 276.00 225.00 51.00 2.15 R 
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5 276.00 225.00 51.00 2.15 R 
9 166.00 225.00 -59.00 -2.48 R 
15 250.00 187.40 62.60 2.64 R 

R Large residual 
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B.1.7 General Linear Model: Nodule Diameter (µm) versus Co Level, 
Position 

Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Position Fixed 2 First, Last 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 62.633 15.658 9.03 0.000 
  Position 1 179.555 179.555 103.50 0.000 
  Co Level*Position 4 9.348 2.337 1.35 0.259 
Error 90 156.140 1.735 

  

Total 99 407.675 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
1.31715 61.70% 57.87% 52.72% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 25.023 0.132 189.98 0.000 

 

Co Level 
     

  0 1.137 0.263 4.32 0.000 1.60 
  1 -0.058 0.263 -0.22 0.827 1.60 
  2 0.212 0.263 0.81 0.422 1.60 
  3 0.045 0.263 0.17 0.865 1.60 
  4 -1.337 0.263 -5.08 0.000 * 
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Position 
  First  -1.340 0.132 -10.17 0.000 1.00 
  Last 1.340 0.132 10.17 0.000 * 
Co Level*Position 

     

  0 First  -0.140 0.263 -0.53 0.596 1.60 
  0 Last 0.140 0.263 0.53 0.596 * 
  1 First  -0.119 0.263 -0.45 0.654 1.60 
  1 Last 0.119 0.263 0.45 0.654 * 
  2 First  0.047 0.263 0.18 0.858 1.60 
  2 Last -0.047 0.263 -0.18 0.858 * 
  3 First  0.558 0.263 2.12 0.037 1.60 
  3 Last -0.558 0.263 -2.12 0.037 * 
  4 First  -0.346 0.263 -1.31 0.192 * 
  4 Last 0.346 0.263 1.31 0.192 * 

 
Regression Equation 

Nodule Diameter 
(µm) 

= 25.023 + 1.137 Co Level_0 - 0.058 Co Level_1 
+ 0.212 Co Level_2 
+ 0.045 Co Level_3 - 1.337 Co Level_4 
- 1.340 Position_First 
+ 1.340 Position_Last - 0.140 Co Level*Position_0 First 
+ 0.140 Co Level*Position_0 Last 
- 0.119 Co Level*Position_1 First 
+ 0.119 Co Level*Position_1 Last 
+ 0.047 Co Level*Position_2 First 
- 0.047 Co Level*Position_2 Last 
+ 0.558 Co Level*Position_3 First 
- 0.558 Co Level*Position_3 Last 
- 0.346 Co Level*Position_4 First 
+ 0.346 Co Level*Position_4 Last 

 
Fits and Diagnostics for Unusual Observations 

Obs 

Nodule 
Diameter 

(µm) Fit Resid Std Resid  
11 31.842 27.641 4.201 3.36 R 
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18 23.852 27.641 -3.789 -3.03 R 
33 23.549 26.424 -2.875 -2.30 R 
36 29.871 26.424 3.447 2.76 R 
59 29.215 26.529 2.686 2.15 R 

R Large residual 
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B.1.8 General Linear Model: Ferrite (%) versus Co Level, Position  
Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Position Fixed 2 First, Last 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 3461.9 865.47 57.33 0.000 
  Position 1 1971.4 1971.36 130.59 0.000 
  Co Level*Position 4 544.1 136.03 9.01 0.000 
Error 90 1358.6 15.10 

  

Total 99 7336.0 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
3.88530 81.48% 79.63% 77.14% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 81.400 0.389 209.51 0.000 

 

Co Level 
     

  0 -9.400 0.777 -12.10 0.000 1.60 
  1 -2.150 0.777 -2.77 0.007 1.60 
  2 5.850 0.777 7.53 0.000 1.60 
  3 -1.000 0.777 -1.29 0.201 1.60 
  4 6.700 0.777 8.62 0.000 * 
 
 

     



 

192 

Position 
  First  4.440 0.389 11.43 0.000 1.00 
  Last -4.440 0.389 -11.43 0.000 * 
Co Level*Position 

     

  0 First  2.460 0.777 3.17 0.002 1.60 
  0 Last -2.460 0.777 -3.17 0.002 * 
  1 First  0.810 0.777 1.04 0.300 1.60 
  1 Last -0.810 0.777 -1.04 0.300 * 
  2 First  -2.990 0.777 -3.85 0.000 1.60 
  2 Last 2.990 0.777 3.85 0.000 * 
  3 First  2.260 0.777 2.91 0.005 1.60 
  3 Last -2.260 0.777 -2.91 0.005 * 
  4 First  -2.540 0.777 -3.27 0.002 * 
  4 Last 2.540 0.777 3.27 0.002 * 

 
Regression Equation 

Ferrite (%) = 81.400 - 9.400 Co Level_0 - 2.150 Co Level_1 + 5.850 Co Level_2 
- 1.000 Co Level_3 + 6.700 Co Level_4 + 4.440 Position_First 
- 4.440 Position_Last + 2.460 Co Level*Position_0 First 
- 2.460 Co Level*Position_0 Last + 0.810 Co Level*Position_1 First 
- 0.810 Co Level*Position_1 Last - 2.990 Co Level*Position_2 First 
+ 2.990 Co Level*Position_2 Last + 2.260 Co Level*Position_3 First 
- 2.260 Co Level*Position_3 Last - 2.540 Co Level*Position_4 First 
+ 2.540 Co Level*Position_4 Last 

 
Fits and Diagnostics for Unusual Observations 

Obs 
Ferrite 

(%) Fit Resid 
Std 

Resid  
1 90.00 78.90 11.10 3.01 R 
97 94.00 86.20 7.80 2.12 R 

R Large residual 
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B.1.9 General Linear Model: Pearlite (%) versus Co Level, Position  
Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Position Fixed 2 First, Last 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 3461.9 865.48 57.33 0.000 
  Position 1 1971.4 1971.36 130.59 0.000 
  Co Level*Position 4 544.1 136.03 9.01 0.000 
Error 90 1358.6 15.10 

  

Total 99 7336.0 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
3.88530 81.48% 79.63% 77.14% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 18.600 0.389 47.87 0.000 

 

Co Level 
     

  0 9.400 0.777 12.10 0.000 1.60 
  1 2.150 0.777 2.77 0.007 1.60 
  2 -5.850 0.777 -7.53 0.000 1.60 
  3 1.000 0.777 1.29 0.201 1.60 
  4 -6.700 0.777 -8.62 0.000 * 
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Position 
  First  -4.440 0.389 -11.43 0.000 1.00 
  Last 4.440 0.389 11.43 0.000 * 
Co Level*Position 

     

  0 First  -2.460 0.777 -3.17 0.002 1.60 
  0 Last 2.460 0.777 3.17 0.002 * 
  1 First  -0.810 0.777 -1.04 0.300 1.60 
  1 Last 0.810 0.777 1.04 0.300 * 
  2 First  2.990 0.777 3.85 0.000 1.60 
  2 Last -2.990 0.777 -3.85 0.000 * 
  3 First  -2.260 0.777 -2.91 0.005 1.60 
  3 Last 2.260 0.777 2.91 0.005 * 
  4 First  2.540 0.777 3.27 0.002 * 
  4 Last -2.540 0.777 -3.27 0.002 * 

 
Regression Equation 

Pearlite (%) = 18.600 + 9.400 Co Level_0 + 2.150 Co Level_1 - 5.850 Co Level_2 
+ 1.000 Co Level_3 - 6.700 Co Level_4 - 4.440 Position_First 
+ 4.440 Position_Last - 2.460 Co Level*Position_0 First 
+ 2.460 Co Level*Position_0 Last - 0.810 Co Level*Position_1 First 
+ 0.810 Co Level*Position_1 Last + 2.990 Co Level*Position_2 First 
- 2.990 Co Level*Position_2 Last - 2.260 Co Level*Position_3 First 
+ 2.260 Co Level*Position_3 Last + 2.540 Co Level*Position_4 First 
- 2.540 Co Level*Position_4 Last 

 
Fits and Diagnostics for Unusual Observations 

Obs 
Pearlite 

(%) Fit Resid Std Resid  
1 10.00 21.10 -11.10 -3.01 R 
97 6.00 13.80 -7.80 -2.12 R 

R Large residual 
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B.1.10 General Linear Model: Tensile Strength (MPa) versus Co Level, 
Thickness (mm) 

Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Thickness (mm) Fixed 6 2.0, 2.5, 3.0, 3.5, 4.0, 6.0 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 12719 3180 1.98 0.100 
  Thickness (mm) 5 247730 49546 30.81 0.000 
  Co Level*Thickness (mm) 20 121946 6097 3.79 0.000 
Error 170 273384 1608 

  

Total 199 653203 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
40.1016 58.15% 51.01% 40.37% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 698.57 3.04 229.49 0.000 

 

Co Level 
     

  0 -1.48 5.72 -0.26 0.796 1.77 
  1 -16.47 6.19 -2.66 0.009 1.95 
  2 6.58 6.45 1.02 0.309 2.09 
  3 7.04 6.35 1.11 0.269 1.97 
  4 4.34 5.69 0.76 0.447 * 
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Thickness (mm) 
  2.0 -1.70 8.66 -0.20 0.844 2.59 
  2.5 -1.06 7.27 -0.15 0.884 2.21 
  3.0 69.87 6.47 10.80 0.000 1.92 
  3.5 -17.05 6.01 -2.84 0.005 1.79 
  4.0 -6.90 6.01 -1.15 0.252 1.79 
  6.0 -43.14 6.01 -7.18 0.000 * 
Co Level*Thickness (mm) 

     

  0 2.0 -55.1 16.1 -3.42 0.001 4.03 
  0 2.5 3.7 12.5 0.29 0.769 3.02 
  0 3.0 -1.9 12.1 -0.16 0.875 2.81 
  0 3.5 17.3 11.8 1.46 0.146 2.78 
  0 4.0 8.8 11.8 0.74 0.460 2.78 
  0 6.0 27.3 11.8 2.31 0.022 * 
  1 2.0 12.1 17.8 0.68 0.498 4.75 
  1 2.5 -5.8 15.6 -0.37 0.711 4.07 
  1 3.0 -15.6 12.3 -1.27 0.208 2.92 
  1 3.5 -4.1 12.1 -0.34 0.737 2.90 
  1 4.0 -17.3 12.1 -1.43 0.154 2.90 
  1 6.0 30.6 12.1 2.54 0.012 * 
  2 2.0 56.2 20.7 2.71 0.007 6.12 
  2 2.5 -69.7 13.9 -5.02 0.000 3.47 
  2 3.0 41.7 13.5 3.10 0.002 3.27 
  2 3.5 -1.6 12.2 -0.13 0.896 2.96 
  2 4.0 -21.3 12.2 -1.74 0.083 2.96 
  2 6.0 -5.4 12.2 -0.44 0.660 * 
  3 2.0 12.3 16.3 0.75 0.452 4.15 
  3 2.5 27.7 17.3 1.61 0.110 4.81 
  3 3.0 -12.5 14.2 -0.88 0.380 3.51 
  3 3.5 -20.4 12.1 -1.68 0.094 2.94 
  3 4.0 6.7 12.1 0.55 0.584 2.94 
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  3 6.0 -13.8 12.1 -1.13 0.259 * 
  4 2.0 -25.5 15.1 -1.69 0.093 * 
  4 2.5 44.0 13.0 3.40 0.001 * 
  4 3.0 -11.8 12.5 -0.94 0.349 * 
  4 3.5 8.8 11.8 0.75 0.457 * 
  4 4.0 23.1 11.8 1.96 0.052 * 
  4 6.0 -38.8 11.8 -3.28 0.001 * 

 
Regression Equation 

Tensile Strength 
(MPa) 

= 698.57 - 1.48 Co Level_0 - 16.47 Co Level_1 
+ 6.58 Co Level_2 
+ 7.04 Co Level_3 + 4.34 Co Level_4 
- 1.70 Thickness (mm)_2.0 
- 1.06 Thickness (mm)_2.5 + 69.87 Thickness (mm)_3.0 
- 17.05 Thickness (mm)_3.5 - 6.90 Thickness (mm)_4.0 
- 43.14 Thickness (mm)_6.0 
- 55.1 Co Level*Thickness (mm)_0 2.0 
+ 3.7 Co Level*Thickness (mm)_0 2.5 
- 1.9 Co Level*Thickness (mm)_0 
3.0 + 17.3 Co Level*Thickness (mm)_0 3.5 
+ 8.8 Co Level*Thickness (mm)_0 4.0 
+ 27.3 Co Level*Thickness (mm)_0 
6.0 + 12.1 Co Level*Thickness (mm)_1 2.0 
- 5.8 Co Level*Thickness (mm)_1 2.5 
- 15.6 Co Level*Thickness (mm)_1 
3.0 - 4.1 Co Level*Thickness (mm)_1 3.5 
- 17.3 Co Level*Thickness (mm)_1 4.0 
+ 30.6 Co Level*Thickness (mm)_1 6.0 
+ 56.2 Co Level*Thickness (mm)_2 2.0 
- 69.7 Co Level*Thickness (mm)_2 2.5 
+ 41.7 Co Level*Thickness (mm)_2 3.0 
- 1.6 Co Level*Thickness (mm)_2 
3.5 - 21.3 Co Level*Thickness (mm)_2 4.0 
- 5.4 Co Level*Thickness (mm)_2 6.0 
+ 12.3 Co Level*Thickness (mm)_3 
2.0 + 27.7 Co Level*Thickness (mm)_3 2.5 
- 12.5 Co Level*Thickness (mm)_3 3.0 
- 20.4 Co Level*Thickness (mm)_3 3.5 
+ 6.7 Co Level*Thickness (mm)_3 
4.0 - 13.8 Co Level*Thickness (mm)_3 6.0 
- 25.5 Co Level*Thickness (mm)_4 2.0 
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+ 44.0 Co Level*Thickness (mm)_4 2.5 
- 11.8 Co Level*Thickness (mm)_4 3.0 
+ 8.8 Co Level*Thickness (mm)_4 
3.5 + 23.1 Co Level*Thickness (mm)_4 4.0 
- 38.8 Co Level*Thickness (mm)_4 6.0 

 
Fits and Diagnostics for Unusual Observations 

Obs 

Tensile 
Strength 
(MPa) Fit Resid Std Resid   

4 720.7 640.3 80.4 2.32 R    
6 600.8 699.7 -98.9 -2.64 R    
11 608.0 699.7 -91.7 -2.44 R    
50 595.9 675.3 -79.4 -2.28 R    
54 837.3 736.4 100.9 2.69 R    
65 529.4 661.0 -131.6 -3.51 R    
89 529.7 634.4 -104.7 -2.86 R    
94 742.5 816.8 -74.3 -2.03 R    
165 854.3 745.9 108.4 2.92 R    
168 640.5 745.9 -105.4 -2.84 R    

R Large residual 
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B.1.11 General Linear Model: Yield Strength (MPa) versus Co Level, 
Thickness (mm) 

Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Thickness (mm) Fixed 6 2.0, 2.5, 3.0, 3.5, 4.0, 6.0 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 157862 39466 12.78 0.000 
  Thickness (mm) 5 1303354 260671 84.44 0.000 
  Co Level*Thickness (mm) 20 143576 7179 2.33 0.002 
Error 170 524771 3087 

  

Total 199 2113964 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
55.5598 75.18% 70.94% 63.56% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 567.04 4.22 134.45 0.000 

 

Co Level 
     

  0 10.78 7.92 1.36 0.176 1.77 
  1 13.85 8.57 1.62 0.108 1.95 
  2 18.60 8.94 2.08 0.039 2.09 
  3 13.04 8.80 1.48 0.140 1.97 
  4 -56.28 7.88 -7.14 0.000 * 
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Thickness (mm) 
  2.0 80.3 12.0 6.70 0.000 2.59 
  2.5 52.6 10.1 5.22 0.000 2.21 
  3.0 85.96 8.96 9.59 0.000 1.92 
  3.5 -41.55 8.32 -4.99 0.000 1.79 
  4.0 -33.29 8.32 -4.00 0.000 1.79 
  6.0 -144.09 8.32 -17.32 0.000 * 
Co Level*Thickness (mm) 

     

  0 2.0 -17.9 22.3 -0.80 0.423 4.03 
  0 2.5 26.4 17.3 1.52 0.130 3.02 
  0 3.0 -15.4 16.7 -0.92 0.357 2.81 
  0 3.5 12.3 16.4 0.75 0.453 2.78 
  0 4.0 -13.4 16.4 -0.82 0.414 2.78 
  0 6.0 8.1 16.4 0.49 0.622 * 
  1 2.0 31.3 24.7 1.26 0.208 4.75 
  1 2.5 -86.2 21.6 -3.99 0.000 4.07 
  1 3.0 -4.4 17.0 -0.26 0.795 2.92 
  1 3.5 26.3 16.7 1.57 0.117 2.90 
  1 4.0 14.4 16.7 0.86 0.389 2.90 
  1 6.0 18.6 16.7 1.11 0.267 * 
  2 2.0 14.3 28.7 0.50 0.620 6.12 
  2 2.5 -27.6 19.2 -1.44 0.153 3.47 
  2 3.0 51.8 18.7 2.77 0.006 3.27 
  2 3.5 -10.2 16.9 -0.60 0.549 2.96 
  2 4.0 -6.8 16.9 -0.40 0.688 2.96 
  2 6.0 -21.5 16.9 -1.27 0.206 * 
  3 2.0 17.0 22.6 0.75 0.454 4.15 
  3 2.5 53.9 23.9 2.25 0.026 4.81 
  3 3.0 -12.4 19.7 -0.63 0.529 3.51 
  3 3.5 -38.0 16.8 -2.26 0.025 2.94 
  3 4.0 18.2 16.8 1.08 0.280 2.94 
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  3 6.0 -38.7 16.8 -2.30 0.023 * 
  4 2.0 -44.6 20.9 -2.14 0.034 * 
  4 2.5 33.5 18.0 1.87 0.064 * 
  4 3.0 -19.5 17.3 -1.12 0.263 * 
  4 3.5 9.6 16.4 0.58 0.560 * 
  4 4.0 -12.4 16.4 -0.76 0.448 * 
  4 6.0 33.4 16.4 2.04 0.043 * 

 
Regression Equation 

Yield Strength 
(MPa) 

= 567.04 + 10.78 Co Level_0 + 13.85 Co Level_1 
+ 18.60 Co Level_2 
+ 13.04 Co Level_3 - 56.28 Co Level_4 
+ 80.3 Thickness (mm)_2.0 
+ 52.6 Thickness (mm)_2.5 + 85.96 Thickness (mm)_3.0 
- 41.55 Thickness (mm)_3.5 - 33.29 Thickness (mm)_4.0 
- 144.09 Thickness (mm)_6.0 
- 17.9 Co Level*Thickness (mm)_0 2.0 
+ 26.4 Co Level*Thickness (mm)_0 2.5 
- 15.4 Co Level*Thickness (mm)_0 
3.0 + 12.3 Co Level*Thickness (mm)_0 3.5 
- 13.4 Co Level*Thickness (mm)_0 4.0 
+ 8.1 Co Level*Thickness (mm)_0 
6.0 + 31.3 Co Level*Thickness (mm)_1 2.0 
- 86.2 Co Level*Thickness (mm)_1 2.5 
- 4.4 Co Level*Thickness (mm)_1 
3.0 + 26.3 Co Level*Thickness (mm)_1 3.5 
+ 14.4 Co Level*Thickness (mm)_1 4.0 
+ 18.6 Co Level*Thickness (mm)_1 
6.0 + 14.3 Co Level*Thickness (mm)_2 2.0 
- 27.6 Co Level*Thickness (mm)_2 2.5 
+ 51.8 Co Level*Thickness (mm)_2 
3.0 - 10.2 Co Level*Thickness (mm)_2 3.5 
- 6.8 Co Level*Thickness (mm)_2 4.0 
- 21.5 Co Level*Thickness (mm)_2 
6.0 + 17.0 Co Level*Thickness (mm)_3 2.0 
+ 53.9 Co Level*Thickness (mm)_3 2.5 
- 12.4 Co Level*Thickness (mm)_3 
3.0 - 38.0 Co Level*Thickness (mm)_3 3.5 
+ 18.2 Co Level*Thickness (mm)_3 4.0 
- 38.7 Co Level*Thickness (mm)_3 
6.0 - 44.6 Co Level*Thickness (mm)_4 2.0 
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+ 33.5 Co Level*Thickness (mm)_4 2.5 
- 19.5 Co Level*Thickness (mm)_4 
3.0 + 9.6 Co Level*Thickness (mm)_4 3.5 
- 12.4 Co Level*Thickness (mm)_4 4.0 
+ 33.4 Co Level*Thickness (mm)_4 
6.0 

 
Fits and Diagnostics for Unusual Observations 

Obs 

Yield 
Strength 
(MPa) Fit Resid Std Resid   

13 770.6 648.3 122.3 2.35 R    
14 452.5 648.3 -195.8 -3.77 R    
16 760.4 648.3 112.1 2.16 R    
48 341.0 547.3 -206.3 -4.29 R    
51 709.7 547.3 162.4 3.37 R    
53 554.1 662.4 -108.3 -2.08 R    
94 604.6 723.4 -118.8 -2.34 R    
96 874.4 723.4 151.0 2.98 R    
97 858.6 723.4 135.2 2.67 R    
130 535.5 653.6 -118.1 -2.38 R    
131 799.9 653.6 146.3 2.94 R    

R Large residual 
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B.1.12 General Linear Model: Elongation (%) versus Co Level, Thickness 
(mm) 

Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Thickness (mm) Fixed 6 2.0, 2.5, 3.0, 3.5, 4.0, 6.0 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 174.86 43.715 87.96 0.000 
  Thickness (mm) 5 604.29 120.858 243.17 0.000 
  Co Level*Thickness (mm) 20 95.78 4.789 9.64 0.000 
Error 170 84.49 0.497 

  

Total 199 1013.22 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
0.704989 91.66% 90.24% 88.93% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 2.0130 0.0535 37.62 0.000 

 

Co Level 
     

  0 -0.558 0.101 -5.55 0.000 1.77 
  1 -0.846 0.109 -7.78 0.000 1.95 
  2 -0.364 0.113 -3.21 0.002 2.09 
  3 -0.029 0.112 -0.26 0.794 1.97 
  4 1.797 0.100 17.98 0.000 * 
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Thickness (mm) 
  2.0 -1.374 0.152 -9.02 0.000 2.59 
  2.5 -1.312 0.128 -10.26 0.000 2.21 
  3.0 -0.947 0.114 -8.33 0.000 1.92 
  3.5 0.026 0.106 0.25 0.803 1.79 
  4.0 0.002 0.106 0.02 0.987 1.79 
  6.0 3.605 0.106 34.15 0.000 * 
Co Level*Thickness (mm) 

     

  0 2.0 0.266 0.283 0.94 0.348 4.03 
  0 2.5 0.420 0.220 1.91 0.058 3.02 
  0 3.0 0.376 0.212 1.77 0.079 2.81 
  0 3.5 0.167 0.208 0.80 0.424 2.78 
  0 4.0 -0.047 0.208 -0.22 0.823 2.78 
  0 6.0 -1.182 0.208 -5.68 0.000 * 
  1 2.0 0.708 0.314 2.26 0.025 4.75 
  1 2.5 0.642 0.274 2.34 0.020 4.07 
  1 3.0 0.412 0.216 1.90 0.059 2.92 
  1 3.5 -0.288 0.212 -1.36 0.177 2.90 
  1 4.0 -0.138 0.212 -0.65 0.516 2.90 
  1 6.0 -1.336 0.212 -6.30 0.000 * 
  2 2.0 0.371 0.364 1.02 0.310 6.12 
  2 2.5 0.164 0.244 0.67 0.503 3.47 
  2 3.0 0.014 0.237 0.06 0.952 3.27 
  2 3.5 -0.138 0.214 -0.65 0.519 2.96 
  2 4.0 -0.281 0.214 -1.31 0.192 2.96 
  2 6.0 -0.129 0.214 -0.60 0.547 * 
  3 2.0 -0.146 0.287 -0.51 0.613 4.15 
  3 2.5 -0.114 0.304 -0.38 0.707 4.81 
  3 3.0 -0.217 0.250 -0.87 0.387 3.51 
  3 3.5 -0.021 0.214 -0.10 0.923 2.94 
  3 4.0 -0.728 0.214 -3.41 0.001 2.94 
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  3 6.0 1.225 0.214 5.74 0.000 * 
  4 2.0 -1.199 0.265 -4.53 0.000 * 
  4 2.5 -1.112 0.228 -4.88 0.000 * 
  4 3.0 -0.585 0.220 -2.66 0.009 * 
  4 3.5 0.280 0.208 1.35 0.179 * 
  4 4.0 1.194 0.208 5.75 0.000 * 
  4 6.0 1.422 0.208 6.85 0.000 * 

 
Regression Equation 

Elongation 
(%) 

= 2.0130 - 0.558 Co Level_0 - 0.846 Co Level_1 - 0.364 Co Level_2 
- 0.029 Co Level_3 + 1.797 Co Level_4 - 1.374 Thickness (mm)_2.0 
- 1.312 Thickness (mm)_2.5 - 0.947 Thickness (mm)_3.0 
+ 0.026 Thickness (mm)_3.5 + 0.002 Thickness (mm)_4.0 
+ 3.605 Thickness (mm)_6.0 + 0.266 Co Level*Thickness (mm)_0 
2.0 
+ 0.420 Co Level*Thickness (mm)_0 2.5 
+ 0.376 Co Level*Thickness (mm)_0 3.0 
+ 0.167 Co Level*Thickness (mm)_0 3.5 
- 0.047 Co Level*Thickness (mm)_0 4.0 
- 1.182 Co Level*Thickness (mm)_0 6.0 
+ 0.708 Co Level*Thickness (mm)_1 2.0 
+ 0.642 Co Level*Thickness (mm)_1 2.5 
+ 0.412 Co Level*Thickness (mm)_1 3.0 
- 0.288 Co Level*Thickness (mm)_1 3.5 
- 0.138 Co Level*Thickness (mm)_1 4.0 
- 1.336 Co Level*Thickness (mm)_1 6.0 
+ 0.371 Co Level*Thickness (mm)_2 2.0 
+ 0.164 Co Level*Thickness (mm)_2 2.5 
+ 0.014 Co Level*Thickness (mm)_2 3.0 
- 0.138 Co Level*Thickness (mm)_2 3.5 
- 0.281 Co Level*Thickness (mm)_2 4.0 
- 0.129 Co Level*Thickness (mm)_2 6.0 
- 0.146 Co Level*Thickness (mm)_3 2.0 
- 0.114 Co Level*Thickness (mm)_3 2.5 
- 0.217 Co Level*Thickness (mm)_3 3.0 
- 0.021 Co Level*Thickness (mm)_3 3.5 
- 0.728 Co Level*Thickness (mm)_3 4.0 
+ 1.225 Co Level*Thickness (mm)_3 6.0 
- 1.199 Co Level*Thickness (mm)_4 2.0 
- 1.112 Co Level*Thickness (mm)_4 2.5 
- 0.585 Co Level*Thickness (mm)_4 3.0 
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+ 0.280 Co Level*Thickness (mm)_4 3.5 
+ 1.194 Co Level*Thickness (mm)_4 4.0 
+ 1.422 Co Level*Thickness (mm)_4 6.0 

 
Fits and Diagnostics for Unusual Observations 

Obs 
Elongation 

(%) Fit Resid Std Resid   
28 3.685 1.648 2.037 3.09 R    
115 2.729 5.125 -2.396 -3.63 R    
120 7.024 5.125 1.899 2.88 R    
154 8.769 6.815 1.954 2.96 R    
157 5.209 6.815 -1.606 -2.43 R    
176 4.967 2.278 2.689 4.12 R    
178 5.653 4.117 1.536 2.33 R    
189 3.010 5.006 -1.996 -3.03 R    
191 6.696 5.006 1.690 2.56 R    
193 7.117 8.838 -1.721 -2.61 R    
198 10.557 8.838 1.719 2.61 R    

R Large residual 
 
  



 

207 

B.1.13 One-Way ANOVA: Tensile Strength (MPa) versus Co Level  
Method 

Null hypothesis All means are equal 
Alternative hypothesis Not all means are equal 
Significance level α = 0.05 

Equal variances were assumed for the analysis. 
 
Factor Information 

Factor Levels Values 
Co Level 5 0, 1, 2, 3, 4 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Co Level 4 1695 423.8 1.25 0.304 
Error 50 17019 340.4 

  

Total 54 18714 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
18.4493 9.06% 1.78% 0.00% 

 
Means 

Co 
Level N Mean StDev 95% CI 

0 11 454.93 19.81 (443.75, 466.10) 
1 11 460.23 24.79 (449.05, 471.40) 
2 12 462.75 15.05 (452.05, 473.45) 
3 9 473.09 12.48 (460.74, 485.44) 
4 12 462.32 17.09 (451.62, 473.01) 

Pooled StDev = 18.4493 
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B.1.14 One-Way ANOVA: Yield Strength (MPa) versus Co Level  
Method 

Null hypothesis All means are equal 
Alternative hypothesis Not all means are equal 
Significance level α = 0.05 

Equal variances were assumed for the analysis. 
 
Factor Information 

Factor Levels Values 
Co Level 5 0, 1, 2, 3, 4 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Co Level 4 2995 748.8 4.46 0.004 
Error 50 8397 167.9 

  

Total 54 11393 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
12.9594 26.29% 20.39% 10.98% 

 
Means 

Co 
Level N Mean StDev 95% CI 

0 11 287.19 10.27 (279.34, 295.04) 
1 11 288.50 18.50 (280.65, 296.35) 
2 12 297.24 8.49 (289.72, 304.75) 
3 9 303.85 9.91 (295.17, 312.52) 
4 12 304.91 14.59 (297.40, 312.43) 

Pooled StDev = 12.9594 
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B.1.15 One-Way ANOVA: Elongation (%) versus Co Level  
Method 

Null hypothesis All means are equal 
Alternative hypothesis Not all means are equal 
Significance level α = 0.05 

Equal variances were assumed for the analysis. 
 
Factor Information 

Factor Levels Values 
Co Level 5 0, 1, 2, 3, 4 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Co Level 4 18.86 4.716 1.67 0.172 
Error 50 141.33 2.827 

  

Total 54 160.20 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
1.68127 11.77% 4.72% 0.00% 

 
Means 

Co 
Level N Mean StDev 95% CI 

0 11 17.256 1.789 (16.238, 18.275) 
1 11 16.858 1.313 (15.840, 17.876) 
2 12 18.216 2.070 (17.241, 19.191) 
3 9 16.751 1.865 (15.625, 17.876) 
4 12 17.963 1.247 (16.988, 18.938) 

Pooled StDev = 1.68127 
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B.1.16 General Linear Model: HV versus Co Level, Position  
Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Position Fixed 2 First, Last 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 5135.1 1283.79 34.50 0.000 
  Position 1 800.9 800.89 21.52 0.000 
  Co Level*Position 4 521.3 130.31 3.50 0.011 
Error 90 3348.9 37.21 

  

Total 99 9806.2 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
6.1 65.85% 62.43% 57.84% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 187.090 0.610 306.70 0.000 

 

Co Level 
     

  0 -11.94 1.22 -9.79 0.000 1.60 
  1 -1.99 1.22 -1.63 0.106 1.60 
  2 0.16 1.22 0.13 0.896 1.60 
  3 4.11 1.22 3.37 0.001 1.60 
  4 9.66 1.22 7.92 0.000 * 
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Position 
  First -2.830 0.610 -4.64 0.000 1.00 
  Last 2.830 0.610 4.64 0.000 * 
Co Level*Position 

     

  0 First -3.52 1.22 -2.89 0.005 1.60 
  0 Last 3.52 1.22 2.89 0.005 * 
  1 First 0.73 1.22 0.60 0.551 1.60 
  1 Last -0.73 1.22 -0.60 0.551 * 
  2 First 1.78 1.22 1.46 0.148 1.60 
  2 Last -1.78 1.22 -1.46 0.148 * 
  3 First -1.67 1.22 -1.37 0.174 1.60 
  3 Last 1.67 1.22 1.37 0.174 * 
  4 First 2.68 1.22 2.20 0.031 * 
  4 Last -2.68 1.22 -2.20 0.031 * 

 
Regression Equation 

HV = 187.090 - 11.94 Co Level_0 - 1.99 Co Level_1 + 0.16 Co Level_2 
+ 4.11 Co Level_3 
+ 9.66 Co Level_4 - 2.830 Position_First + 2.830 Position_Last 
- 3.52 Co Level*Position_0 First + 3.52 Co Level*Position_0 Last 
+ 0.73 Co Level*Position_1 First - 0.73 Co Level*Position_1 Last 
+ 1.78 Co Level*Position_2 First - 1.78 Co Level*Position_2 Last 
- 1.67 Co Level*Position_3 First + 1.67 Co Level*Position_3 Last 
+ 2.68 Co Level*Position_4 First - 2.68 Co Level*Position_4 Last 

 
Fits and Diagnostics for Unusual Observations 

Obs HV Fit Resid Std Resid  
19 197.00 181.50 15.50 2.68 R 
74 182.00 195.70 -13.70 -2.37 R 
91 209.00 196.90 12.10 2.09 R 

R Large residual 
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B.1.17 General Linear Model: Absorbed Energy (J) versus Co Level, 
Temperature (°C) – V-notched samples 

Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Temperature (°C) Fixed 4 -40.0, -20.0, 0.0, 22.6 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 153.85 38.461 68.21 0.000 
  Temperature (°C) 3 1666.90 555.634 985.47 0.000 
  Co Level*Temperature (°C) 12 27.57 2.297 4.07 0.000 
Error 160 90.21 0.564 

  

Total 179 1938.53 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
0.750885 95.35% 94.79% 94.11% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 9.1592 0.0560 163.65 0.000 

 

Co Level 
     

  0 1.244 0.112 11.11 0.000 1.60 
  1 0.396 0.112 3.54 0.001 1.60 
  2 0.499 0.112 4.46 0.000 1.60 
  3 -1.198 0.112 -10.70 0.000 1.60 
  4 -0.941 0.112 -8.40 0.000 * 
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Temperature (°C) 
  -40.0 -4.8311 0.0969 -49.84 0.000 1.50 
  -20.0 -0.0463 0.0969 -0.48 0.634 1.50 
  0.0 1.4884 0.0969 15.35 0.000 1.50 
  22.6 3.3890 0.0969 34.96 0.000 * 
Co Level*Temperature (°C) 

     

  0 -40.0 -0.411 0.194 -2.12 0.036 2.40 
  0 -20.0 0.148 0.194 0.76 0.446 2.40 
  0 0.0 0.577 0.194 2.97 0.003 2.40 
  0 22.6 -0.313 0.194 -1.62 0.108 * 
  1 -40.0 -0.119 0.194 -0.61 0.540 2.40 
  1 -20.0 0.387 0.194 2.00 0.047 2.40 
  1 0.0 -0.159 0.194 -0.82 0.413 2.40 
  1 22.6 -0.109 0.194 -0.56 0.574 * 
  2 -40.0 -0.303 0.194 -1.56 0.120 2.40 
  2 -20.0 -0.518 0.194 -2.67 0.008 2.40 
  2 0.0 0.767 0.194 3.95 0.000 2.40 
  2 22.6 0.055 0.194 0.28 0.777 * 
  3 -40.0 0.630 0.194 3.25 0.001 2.40 
  3 -20.0 0.039 0.194 0.20 0.841 2.40 
  3 0.0 -0.770 0.194 -3.97 0.000 2.40 
  3 22.6 0.101 0.194 0.52 0.603 * 
  4 -40.0 0.203 0.194 1.05 0.296 * 
  4 -20.0 -0.056 0.194 -0.29 0.773 * 
  4 0.0 -0.414 0.194 -2.13 0.034 * 
  4 22.6 0.266 0.194 1.37 0.171 * 

 
Regression Equation 

Absorbed Energy 
(J) 

= 9.1592 + 1.244 Co Level_0 + 0.396 Co Level_1 
+ 0.499 Co Level_2 
- 1.198 Co Level_3 - 0.941 Co Level_4 
- 4.8311 Temperature (°C)_-40.0 
- 0.0463 Temperature (°C)_-20.0 
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+ 1.4884 Temperature (°C)_0.0 
+ 3.3890 Temperature (°C)_22.6 
- 0.411 Co Level*Temperature (°C)_0 
-40.0 + 0.148 Co Level*Temperature (°C)_0 -20.0 
+ 0.577 Co Level*Temperature (°C)_0 0.0 
- 0.313 Co Level*Temperature (°C)_0 22.6 
- 0.119 Co Level*Temperature (°C)_1 -40.0 
+ 0.387 Co Level*Temperature (°C)_1 -20.0 
- 0.159 Co Level*Temperature (°C)_1 0.0 
- 0.109 Co Level*Temperature (°C)_1 22.6 
- 0.303 Co Level*Temperature (°C)_2 -40.0 
- 0.518 Co Level*Temperature (°C)_2 -20.0 
+ 0.767 Co Level*Temperature (°C)_2 0.0 
+ 0.055 Co Level*Temperature (°C)_2 22.6 
+ 0.630 Co Level*Temperature (°C)_3 -40.0 
+ 0.039 Co Level*Temperature (°C)_3 -20.0 
- 0.770 Co Level*Temperature (°C)_3 0.0 
+ 0.101 Co Level*Temperature (°C)_3 22.6 
+ 0.203 Co Level*Temperature (°C)_4 -40.0 
- 0.056 Co Level*Temperature (°C)_4 -20.0 
- 0.414 Co Level*Temperature (°C)_4 0.0 
+ 0.266 Co Level*Temperature (°C)_4 22.6 

 
Fits and Diagnostics for Unusual Observations 

Obs 
Absorbed 

Energy (J) Fit Resid Std Resid  
42 10.194 11.874 -1.680 -2.37 R 
69 10.434 11.913 -1.479 -2.09 R 
74 7.253 8.679 -1.426 -2.01 R 
77 10.794 8.679 2.115 2.99 R 
128 6.692 8.116 -1.424 -2.01 R 
147 2.620 4.605 -1.985 -2.80 R 

R Large residual 
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B.1.18 General Linear Model: Absorbed Energy (J) versus Co Level, 
Temperature (°C) – Unnotched samples  

Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Temperature (°C) Fixed 4 -40.0, -20.0, 0.0, 22.6 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 7960 1989.98 23.56 0.000 
  Temperature (°C) 3 12252 4084.15 48.36 0.000 
  Co Level*Temperature (°C) 12 4106 342.20 4.05 0.000 
Error 160 13512 84.45 

  

Total 179 37831 
   

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
9.18978 64.28% 60.04% 54.80% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 104.254 0.685 152.20 0.000 

 

Co Level 
     

  0 0.16 1.37 0.11 0.910 1.60 
  1 3.57 1.37 2.61 0.010 1.60 
  2 8.57 1.37 6.26 0.000 1.60 
  3 -11.59 1.37 -8.46 0.000 1.60 
  4 -0.71 1.37 -0.52 0.606 * 
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Temperature (°C) 
  -40.0 -12.94 1.19 -10.91 0.000 1.50 
  -20.0 -1.28 1.19 -1.08 0.282 1.50 
  0.0 6.12 1.19 5.16 0.000 1.50 
  22.6 8.11 1.19 6.83 0.000 * 
Co Level*Temperature (°C) 

     

  0 -40.0 4.80 2.37 2.02 0.045 2.40 
  0 -20.0 -2.73 2.37 -1.15 0.252 2.40 
  0 0.0 -2.16 2.37 -0.91 0.363 2.40 
  0 22.6 0.09 2.37 0.04 0.971 * 
  1 -40.0 7.84 2.37 3.30 0.001 2.40 
  1 -20.0 2.27 2.37 0.96 0.341 2.40 
  1 0.0 -6.96 2.37 -2.93 0.004 2.40 
  1 22.6 -3.14 2.37 -1.33 0.187 * 
  2 -40.0 1.81 2.37 0.76 0.446 2.40 
  2 -20.0 0.73 2.37 0.31 0.759 2.40 
  2 0.0 2.85 2.37 1.20 0.231 2.40 
  2 22.6 -5.39 2.37 -2.27 0.024 * 
  3 -40.0 -3.00 2.37 -1.26 0.208 2.40 
  3 -20.0 -4.97 2.37 -2.09 0.038 2.40 
  3 0.0 1.67 2.37 0.70 0.483 2.40 
  3 22.6 6.30 2.37 2.65 0.009 * 
  4 -40.0 -11.45 2.37 -4.83 0.000 * 
  4 -20.0 4.70 2.37 1.98 0.049 * 
  4 0.0 4.61 2.37 1.94 0.054 * 
  4 22.6 2.15 2.37 0.91 0.366 * 

 
Regression Equation 

Absorbed Energy 
(J) 

= 104.254 + 0.16 Co Level_0 + 3.57 Co Level_1 
+ 8.57 Co Level_2 
- 11.59 Co Level_3 - 0.71 Co Level_4 
- 12.94 Temperature (°C)_-40.0 
- 1.28 Temperature (°C)_-20.0 + 6.12 Temperature (°C)_0.0 
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+ 8.11 Temperature (°C)_22.6 
+ 4.80 Co Level*Temperature (°C)_0 -40.0 
- 2.73 Co Level*Temperature (°C)_0 -20.0 
- 2.16 Co Level*Temperature (°C)_0 0.0 
+ 0.09 Co Level*Temperature (°C)_0 22.6 
+ 7.84 Co Level*Temperature (°C)_1 -40.0 
+ 2.27 Co Level*Temperature (°C)_1 -20.0 
- 6.96 Co Level*Temperature (°C)_1 0.0 
- 3.14 Co Level*Temperature (°C)_1 22.6 
+ 1.81 Co Level*Temperature (°C)_2 -40.0 
+ 0.73 Co Level*Temperature (°C)_2 -20.0 
+ 2.85 Co Level*Temperature (°C)_2 0.0 
- 5.39 Co Level*Temperature (°C)_2 22.6 
- 3.00 Co Level*Temperature (°C)_3 -40.0 
- 4.97 Co Level*Temperature (°C)_3 -20.0 
+ 1.67 Co Level*Temperature (°C)_3 0.0 
+ 6.30 Co Level*Temperature (°C)_3 22.6 
- 11.45 Co Level*Temperature (°C)_4 -40.0 
+ 4.70 Co Level*Temperature (°C)_4 -20.0 
+ 4.61 Co Level*Temperature (°C)_4 0.0 
+ 2.15 Co Level*Temperature (°C)_4 22.6 

 
Fits and Diagnostics for Unusual Observations 

Obs 
Absorbed 
Energy (J) Fit Resid Std Resid  

4 131.06 112.60 18.46 2.13 R 
26 133.16 115.54 17.62 2.03 R 
121 109.22 86.41 22.80 2.63 R 
128 88.64 106.96 -18.32 -2.11 R 
132 133.82 106.96 26.86 3.10 R 
162 120.45 101.69 18.76 2.16 R 

R Large residual 
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B.1.19 General Linear Model: KJC MPa√m versus Co Level, Temperature 
(°C) 

Method 
Factor coding (-1, 0, +1) 

 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 5 0, 1, 2, 3, 4 
Temperature Fixed 4 -40.0, -20.0, 0.0, 22.6 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 4 143.91 35.978 3.28 0.017 
  Temperature 3 293.72 97.907 8.93 0.000 
  Co Level*Temperature 12 69.94 5.829 0.53 0.886 
Error 63 690.45 10.960     
Total 82 1214.98       

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
3.31052 43.17% 26.03% 0.00% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 74.500 0.374 199.30 0.000  
Co Level      
  0 1.429 0.751 1.90 0.062 1.65 
  1 1.590 0.783 2.03 0.046 1.79 
  2 -0.461 0.699 -0.66 0.512 1.56 
  3 -0.424 0.751 -0.56 0.575 1.65 
  4 -2.135 0.751 -2.84 0.006 * 
Temperature      
  -40.0 -2.222 0.640 -3.47 0.001 1.57 
  -20.0 -1.328 0.690 -1.92 0.059 1.69 
  0.0 0.830 0.617 1.34 0.183 1.53 
  22.6 2.720 0.640 4.25 0.000 * 
Co Level*Temperature      
  0 -40.0 -0.74 1.29 -0.58 0.566 2.25 
  0 -20.0 0.75 1.31 0.57 0.571 2.51 
  0 0.0 0.58 1.21 0.48 0.631 2.26 
  0 22.6 -0.59 1.39 -0.42 0.673 * 
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  1 -40.0 -0.45 1.24 -0.36 0.718 2.37 
  1 -20.0 -0.09 1.61 -0.05 0.957 3.55 
  1 0.0 1.39 1.23 1.13 0.262 2.48 
  1 22.6 -0.85 1.31 -0.65 0.516 * 
  2 -40.0 0.55 1.26 0.44 0.664 2.45 
  2 -20.0 0.37 1.22 0.30 0.765 2.57 
  2 0.0 -0.61 1.18 -0.52 0.608 2.40 
  2 22.6 -0.31 1.19 -0.26 0.797 * 
  3 -40.0 -0.46 1.22 -0.38 0.708 2.30 
  3 -20.0 -1.34 1.41 -0.95 0.346 2.91 
  3 0.0 -0.83 1.28 -0.65 0.519 2.52 
  3 22.6 2.63 1.29 2.04 0.045 * 
  4 -40.0 1.11 1.39 0.80 0.429 * 
  4 -20.0 0.32 1.31 0.24 0.811 * 
  4 0.0 -0.54 1.28 -0.42 0.673 * 
  4 22.6 -0.88 1.22 -0.72 0.473 * 

 
Regression Equation 

KJC 
MPa√m 

= 74.500 + 1.429 Co Level_0 
+ 1.590 Co Level_1 - 0.461 Co Level_2 
- 0.424 Co Level_3 - 2.135 Co Level_4 
- 2.222 Temperature_-40.0 
- 1.328 Temperature_-20.0 
+ 0.830 Temperature_0.0 
+ 2.720 Temperature_22.6 
- 0.74 Co Level*Temperature_0 -40.0 
+ 0.75 Co Level*Temperature_0 -20.0 
+ 0.58 Co Level*Temperature_0 0.0 
- 0.59 Co Level*Temperature_0 22.6 
- 0.45 Co Level*Temperature_1 -40.0 
- 0.09 Co Level*Temperature_1 -20.0 
+ 1.39 Co Level*Temperature_1 0.0 
- 0.85 Co Level*Temperature_1 22.6 
+ 0.55 Co Level*Temperature_2 -40.0 
+ 0.37 Co Level*Temperature_2 -20.0 
- 0.61 Co Level*Temperature_2 0.0 
- 0.31 Co Level*Temperature_2 22.6 
- 0.46 Co Level*Temperature_3 -40.0 
- 1.34 Co Level*Temperature_3 -20.0 
- 0.83 Co Level*Temperature_3 0.0 
+ 2.63 Co Level*Temperature_3 22.6 
+ 1.11 Co Level*Temperature_4 -40.0 
+ 0.32 Co Level*Temperature_4 -20.0 
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- 0.54 Co Level*Temperature_4 0.0 
- 0.88 Co Level*Temperature_4 22.6 

 
Fits and Diagnostics for Unusual Observations 

Obs KJC MPa√m Fit Resid Std Resid  
6 84.37 77.96 6.41 2.24 R 
17 66.62 74.20 -7.59 -2.56 R 
23 71.15 77.34 -6.19 -2.09 R 

R Large residual 
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B.2 Effect of Cobalt in Solid Solution Strengthened Ferritic 
Ductile Iron 

B.2.1 General Linear Model: Nodule Diameter versus Co Level, Position 
Method 

Factor coding (-1, 0, +1) 
 
Factor Information 

Factor Type Levels Values 
Co 
Level 

Fixed 4 0, 2, 3, 4 

Position Fixed 2 FIRST, LAST 
 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 3 111.42 37.140 10.03 0.000 
  Position 1 121.43 121.425 32.78 0.000 
  Co 
Level*Position 

3 12.48 4.161 1.12 0.354 

Error 32 118.54 3.704   
Total 39 363.87    

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
1.92470 67.42% 60.30% 49.10% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 25.330 0.304 83.24 0.000  
Co Level      
  0 2.260 0.527 4.29 0.000 1.50 
  2 0.275 0.527 0.52 0.605 1.50 
  3 -0.097 0.527 -0.18 0.856 1.50 
  4 -2.439 0.527 -4.63 0.000 * 
Position      
  FIRST -1.742 0.304 -5.73 0.000 1.00 
  LAST 1.742 0.304 5.73 0.000 * 
Co 
Level*Position 

     

  0 FIRST 0.005 0.527 0.01 0.993 1.50 
  0 LAST -0.005 0.527 -0.01 0.993 * 
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  2 FIRST -0.109 0.527 -0.21 0.837 1.50 
  2 LAST 0.109 0.527 0.21 0.837 * 
  3 FIRST -0.732 0.527 -1.39 0.174 1.50 
  3 LAST 0.732 0.527 1.39 0.174 * 
  4 FIRST 0.837 0.527 1.59 0.122 * 
  4 LAST -0.837 0.527 -1.59 0.122 * 

 
Regression Equation 

Nodule 
Diameter 

= 25.330 + 2.260 Co Level_0 
+ 0.275 Co Level_2 
- 0.097 Co Level_3 
- 2.439 Co Level_4 
- 1.742 Position_FIRST 
+ 1.742 Position_LAST 
+ 0.005 Co Level*Position_0 FIRST 
- 0.005 Co Level*Position_0 LAST 
- 0.109 Co Level*Position_2 FIRST 
+ 0.109 Co Level*Position_2 LAST 
- 0.732 Co Level*Position_3 FIRST 
+ 0.732 Co Level*Position_3 LAST 
+ 0.837 Co Level*Position_4 FIRST 
- 0.837 Co Level*Position_4 LAST 

 
Fits and Diagnostics for Unusual Observations 

Obs 
Nodule 

Diameter Fit Resid 
Std 

Resid  
6 32.799 29.328 3.471 2.02 R 
40 20.097 23.797 -3.700 -2.15 R 

R Large residual 

  



 

223 

B.2.2 One-way ANOVA: Tensile Strength (MPa) versus Co Level 
Method 

Null hypothesis All means are equal 
Alternative hypothesis Not all means are equal 
Significance level α = 0.05 
Equal variances were assumed for the analysis. 

 
Factor Information 

Factor Levels Values 
Co Level 4 0, 2, 3, 4 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Co Level 3 15556.1 5185.37 813.51 0.000 
Error 20 127.5 6.37   
Total 23 15683.6    

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
2.52469 99.19% 99.07% 98.83% 

 
Means 

Co Level N Mean StDev 95% CI 
0 6 578.470 2.045 (576.320, 580.620) 
2 6 611.56 2.76 (609.41, 613.71) 
3 6 635.927 0.942 (633.776, 638.077) 
4 6 643.86 3.58 (641.71, 646.01) 

Pooled StDev = 2.52469 
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B.2.3 One-way ANOVA: Yield Strength (MPa) versus Co Level 
Method 

Null hypothesis All means are equal 
Alternative hypothesis Not all means are equal 
Significance level α = 0.05 
Equal variances were assumed for the analysis. 

 
Factor Information 

Factor Levels Values 
Co Level 4 0, 2, 3, 4 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Co Level 3 1996.90 665.635 172.16 0.000 
Error 20 77.33 3.866   
Total 23 2074.23    

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
1.96632 96.27% 95.71% 94.63% 

 
Means 

Co Level N Mean StDev 95% CI 
0 6 492.286 1.850 (490.611, 493.960) 
2 6 508.603 1.982 (506.929, 510.278) 
3 6 516.417 1.379 (514.743, 518.092) 
4 6 512.05 2.49 (510.38, 513.73) 

Pooled StDev = 1.96632 
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B.2.4 One-way ANOVA: Brinell Hardness (HB) versus Co Level 
Method 

Null hypothesis All means are equal 
Alternative hypothesis Not all means are equal 
Significance level α = 0.05 
Equal variances were assumed for the analysis. 

 
Factor Information 

Factor Levels Values 
Co Level 4 0, 2, 3, 4 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Co 
Level 

3 2890.97 963.657 515.86 0.000 

Error 32 59.78 1.868   
Total 35 2950.75    

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
1.36677 97.97% 97.78% 97.44% 

 
Means 

Co Level N Mean StDev 95% CI 
0 9 203.333 0.707 (202.405, 204.261) 
2 9 207.111 0.601 (206.183, 208.039) 
3 9 223.000 1.225 (222.072, 223.928) 
4 9 222.889 2.261 (221.961, 223.817) 

Pooled StDev = 1.36677 
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B.2.5 One-way ANOVA: HV versus Co Level 
Method 

Null hypothesis All means are equal 
Alternative hypothesis Not all means are equal 
Significance level α = 0.05 
Equal variances were assumed for the analysis. 

 
Factor Information 

Factor Levels Values 
Co Level 4 0, 2, 3, 4 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Co Level 3 11604.9 3868.30 395.40 0.000 
Error 36 352.2 9.78   
Total 39 11957.1    

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
3.12783 97.05% 96.81% 96.36% 

 
Means 

Co Level N Mean StDev 95% CI 
0 10 257.100 2.807 (255.094, 259.106) 
2 10 271.000 2.789 (268.994, 273.006) 
3 10 295.900 2.998 (293.894, 297.906) 
4 10 297.40 3.81 (295.39, 299.41) 
Pooled StDev = 3.12783 
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B.2.6 General Linear Model: Impact Toughness (J) versus Co Level, 
Temperature (°C) 

Method 
Factor coding (-1, 0, +1) 

 
Factor Information 

Factor Type Levels Values 
Co Level Fixed 4 0, 2, 3, 4 
Temperature Fixed 4 22.4, 50.0, 100.0, 150.0 

 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
  Co Level 3 35165 11721.8 104.54 0.000 
  Temperature 3 53902 17967.2 160.24 0.000 
  Co 
Level*Temperature 

9 18471 2052.3 18.30 0.000 

Error 32 3588 112.1   
Total 47 111126    

 
Model Summary 

S R-sq R-sq(adj) R-sq(pred) 
10.5889 96.77% 95.26% 92.74% 

 
Coefficients 

Term Coef SE Coef T-Value P-Value VIF 
Constant 66.23 1.53 43.33 0.000  
Co Level      
  0 40.93 2.65 15.46 0.000 1.50 
  2 7.25 2.65 2.74 0.010 1.50 
  3 -19.52 2.65 -7.37 0.000 1.50 
  4 -28.66 2.65 -10.83 0.000 * 
Temperature      
  22.4 -46.57 2.65 -17.59 0.000 1.50 
  50.0 -15.28 2.65 -5.77 0.000 1.50 
  100.0 21.54 2.65 8.14 0.000 1.50 
  150.0 40.31 2.65 15.23 0.000 * 
Co 
Level*Temperature 

     

  0 22.4 -12.59 4.59 -2.75 0.010 2.25 
  0 50.0 23.54 4.59 5.13 0.000 2.25 
  0 100.0 6.96 4.59 1.52 0.139 2.25 
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  0 150.0 -17.90 4.59 -3.90 0.000 * 
  2 22.4 -11.70 4.59 -2.55 0.016 2.25 
  2 50.0 9.94 4.59 2.17 0.038 2.25 
  2 100.0 31.75 4.59 6.92 0.000 2.25 
  2 150.0 -29.99 4.59 -6.54 0.000 * 
  3 22.4 7.65 4.59 1.67 0.105 2.25 
  3 50.0 -21.73 4.59 -4.74 0.000 2.25 
  3 100.0 -15.07 4.59 -3.29 0.002 2.25 
  3 150.0 29.15 4.59 6.36 0.000 * 
  4 22.4 16.64 4.59 3.63 0.001 * 
  4 50.0 -11.74 4.59 -2.56 0.015 * 
  4 100.0 -23.64 4.59 -5.16 0.000 * 
  4 150.0 18.74 4.59 4.09 0.000 * 

 
Regression Equation 

Impact 
Toughness 
(J) 

= 66.23 + 40.93 Co Level_0 
+ 7.25 Co Level_2 - 19.52 Co Level_3 
- 28.66 Co Level_4 
- 46.57 Temperature_22.4 
- 15.28 Temperature_50.0 
+ 21.54 Temperature_100.0 
+ 40.31 Temperature_150.0 
- 12.59 Co Level*Temperature_0 22.4 
+ 23.54 Co Level*Temperature_0 
50.0 + 6.96 Co Level*Temperature_0 
100.0 
- 17.90 Co Level*Temperature_0 
150.0 
- 11.70 Co Level*Temperature_2 
22.4 + 9.94 Co Level*Temperature_2 
50.0 + 31.75 Co Level*Temperature_2 
100.0 
- 29.99 Co Level*Temperature_2 
150.0 
+ 7.65 Co Level*Temperature_3 22.4 
- 21.73 Co Level*Temperature_3 50.0 
- 15.07 Co Level*Temperature_3 
100.0 
+ 29.15 Co Level*Temperature_3 
150.0 
+ 16.64 Co Level*Temperature_4 22.4 
- 11.74 Co Level*Temperature_4 50.0 
- 23.64 Co Level*Temperature_4 
100.0 
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+ 18.74 Co Level*Temperature_4 
150.0 

 
Fits and Diagnostics for Unusual Observations 

Obs 

Impact 
Toughness 

(J) Fit Resid 
Std 

Resid  
2 68.58 48.00 20.58 2.38 R 
26 154.14 135.67 18.47 2.14 R 
32 27.50 53.19 -25.69 -2.97 R 

R Large residual 
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C Macro file used for Metallography in ImageJ 
// Microstructural Analysis Tool 

// Created by Karl Warsinski, Michigan Technological University 

macro "Iron Analysis Action Tool - 
Cdd0o1265oc133o5e34odd55C00fT3510CT9510.Tb510ITe510.T0e10TT4e10eT8e10sT
de10t" { 

run("Iron Analysis"); 

} 

macro "Iron Analysis" { 

//Prompt for sample ID and types of analysis 

 title = "Unknown"; 

 types = newArray("Graphite Only", "Graphite and Ferrite/Pearlite", 
"Ferrite/Pearlite Only"); 

 Dialog.create("New Analysis"); 

 Dialog.addString("Sample ID:", title); 

 Dialog.addString("Operater Name:", title); 

 Dialog.addChoice("Phases:", types); 

 Dialog.addCheckbox("Carbides Present?", false); 

 Dialog.addCheckbox("Show graphite data?", false); 

 Dialog.addMessage("\n Carbides will be subtracted from the matrix for 
Ferrite/Pearlite analysis.") 

 Dialog.addNumber("Minimum Particle Diameter", 6, 1,4,"microns"); 

 Dialog.show(); 

 sample = Dialog.getString(); 

 user = Dialog.getString(); 

 phases = Dialog.getChoice(); 

 carbides = Dialog.getCheckbox(); 

 showData = Dialog.getCheckbox(); 
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 minDia = Dialog.getNumber(); 

 graphiteTest = "true"; 

  if (phases == "Graphite Only") { 

    graphiteTest = "true"; 

    ferriteTest = "false"; 

    } 

  else if (phases == "Graphite and Ferrite/Pearlite"){ 

      graphiteTest = "true"; 

      ferriteTest = "true";} 

  else { 

    graphiteTest = "false"; 

    ferriteTest = "true";}    

   

// ------------------------------------------------------------------------------------------ Graphite ---
v  

//Perform Graphite analysis routine if selected: 

if (graphiteTest == "true"){ 

 waitForUser("Please open/select image for Graphite analysis, then click OK."); 

 getPixelSize(unit, pixWidth, pixHeight); 

 if (unit != "microns") 

  exit("Graphite Analysis requires an image with micron scale! \n Use 
Quick Scale Set or Analyze>Set Scale to apply a calibration scale"); 

  //Set specific graphite analysis parameters 

  minSize = 0.7854*minDia^2; // Converts minimum diameter to minimum 
area, in microns^2 

  minSF = 0.6;  // Shape factor required to count as nodular, based on 
ASTM E2567 

  run("8-bit"); 

  rename(sample + "_Polished"); 
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 //Enhance image and start graphite selection 

  run("Enhance Contrast", "saturated=0.4 normalize"); 

  setThreshold(0,68,"Red"); 

  run("Threshold..."); 

  //Message window to hold macro while threshold is set 

  waitForUser("Use Threshold bar to highlight graphite in red."); 

  selectWindow("Threshold"); 

  run("Close"); 

 //Convert image and clean up particles for measurement 

  run("Make Binary", "thresholded remaining black"); 

  //run("Fill Holes"); 

  run("Analyze Particles...", "size=78.53982-Infinity circularity=0.00-1.00 
show=Nothing display clear exclude"); 

  //run("Summarize") 

  //Restore polished image 

  run("Revert"); 

 //Classify Graphite Structure 

  particles = nResults; 

  getStatistics(areaTotal); 

  fractionGraphite = ColumnSum("Area")/areaTotal*100; 

  graphiteSize = ColumnSum("Feret")/particles; 

  sphericity = ColumnSum("Round")/particles; 

  noduleCount=0; 

  areaNodular = 0; 

  for (a=0;a<nResults; a++){ 

   if (getResult("Round",a) >= 0.5){ 

   noduleCount=noduleCount+1; 

   areaNodular = areaNodular + getResult("Area",a); 
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   } 

  } 

   nodularitybyArea = 100*areaNodular/ColumnSum("Area"); 

   nodularitybyCount = 100*noduleCount/particles; 

   noduleDensity = 1000000*noduleCount/areaTotal; 

 

   //Graphite Form (ISO 945) -- Average roundness determines which 
form particles are classified as: 

   if (sphericity <= 0.167) 

    form = "I"; 

   else if (sphericity <= 0.333) 

    form = "II"; 

   else if (sphericity <= 0.5) 

    form = "III"; 

   else if (sphericity <= 0.667) 

    form = "IV"; 

   else if (sphericity <= 0.833) 

    form = "V"; 

   else 

    form = "VI"; 

 

   //Graphite Size Classification (ISO 945) 

   if (graphiteSize > 1000) 

    sizeClass = 1; 

   else if (graphiteSize >= 500) 

    sizeClass = 2; 

   else if (graphiteSize >= 250) 

    sizeClass = 3; 
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   else if (graphiteSize >= 120) 

    sizeClass = 4; 

   else if (graphiteSize >= 60) 

    sizeClass = 5; 

   else if (graphiteSize >= 30) 

    sizeClass = 6; 

   else if (graphiteSize >= 15) 

    sizeClass = 7; 

   else 

    sizeClass = 8; 

 

   //print("Form:" + form); 

   //print("Size:" + sizeClass); 

 

   IJ.renameResults("GraphiteData");} 

   

else {fractionGraphite = 0;} 

 //Analyze matrix microstructure, if selected: 

 if (ferriteTest=="true"){ 

  path = File.openDialog("Select Etched Image"); 

  open(path); // open the file 

  rename(sample+"_Etched"); 

  //----------------------------------------------------------------------------------------
-- Carbide Measurement ---v   

  //Select Carbides if necessary 

  if (carbides==true){ 

     setTool(3); 
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     msg="Draw Outline Around Each Carbide Grain \n 
\nHold down shift key to make multiple outlines"; 

     waitForUser(msg); 

     run("Create Mask"); 

     rename("Carbide"); 

     run("Measure"); 

     fractionCarbide = getResult("%Area"); 

    

    

  print("Carbides: " + fractionCarbide +"%"); 

  } 

  //----------------------------------------------------------------------------------------
--Matrix Analysis---v 

  selectImage(sample+"_Etched"); 

  run("Select None"); 

  //Enhances Image and prompts user to identify ferrite particles 

   run("8-bit"); 

   run("Enhance Contrast", "saturated=0.4 normalize"); 

   setThreshold(180,255,"Red"); 

   run("Threshold..."); 

  //Message window to hold macro while threshold is set 

   waitForUser("Please adjust threshold to highlight Ferrite in red, 
then click OK. \n If carbides have been selected, they will be automatically subtracted."); 

   selectWindow("Threshold"); 

   run("Close"); 

  //Convert and clean up particles for measurement 

   run("Create Mask"); 

   rename("Ferrite"); 
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   run("Fill Holes"); 

  //run("Invert") 

  //Removes carbides, if a carbide image has been created. 

   if(isOpen("Carbide")==true) 

    imageCalculator("subtract", "Ferrite", "Carbide"); 

   selectImage("Ferrite"); 

   run("Measure"); 

   fractionFerrite = getResult("%Area",nResults-1); 

   run("Close"); 

   //run("Revert") 

} 
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