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Abstract 

The heterogeneous nature of today’s evolving health databases requires new techniques and 
approaches to process these data and extract clinically useful information. This relevant 
information obtained can be used to improve the response rate of cardiac resynchronization 
therapy (CRT) in patients with heart failure. Hierarchical clustering (HC) which is an 
unsupervised ML technique may uncover clusters within the bulk of data of patient population 
which is useful for strategies towards precision and personalized medicine. This study aims to 
investigate how HC can be used to automatically group a bulk of clinically acquired CRT data 
into clusters and subgroups that could confer clinically relevant information. About 165 patient 
data were used in the study and the analysis resulted in 4 different phenogroups with varying 
response rates. Some features were statistically significant when compared within the subgroups. 
Lastly, the study concludes that HC can be used to integrate and analyze different kinds of 
clinical data to aid in the identification of HF patient subgroups that are likely to respond to 
CRT.  
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1. INTRODUCTION  

Personalized medicine as a clinical model separates people into different groups. This 
classification aids doctors and researchers to predict and tailor accurate, efficient and highly 
effective treatments and prevention strategies to certain groups of patients with particular 
ailment. As opposed to using generalized treatments for all groups of people with certain 
diseases with little consideration to the differences in patients. Heart failure (HF) is a disease 
known to have differing signs and symptoms in a variety of patient groups with some treatments 
having little to no success. Cardiac resynchronization therapy (CRT) for HF patients is a therapy 
where individualized treatments for every unique patient could help overcome the limitations of 
traditional HF treatments.  

     1.1     Cardiac Resynchronization Therapy 

CRT is a standard clinical treatment for a group of end-stage HF patients where a device sends 
little electrical charges to both lower chambers of the heart to help them beat together in a 
synchronized pattern which improves the heart’s ability to pump blood and oxygen to the body 
[1]. The CRT procedure involves implanting a device the size of a pocket size watch just below 
the collar done. CRT is considered for HF patients who have explored correcting their heart 
condition through medication therapies without success. Although, CRT is suitable for HF 
patients who have moderate to severe symptoms with irregular heartbeat. It is not suitable for 
patients with diastolic heart failure, mild HF symptoms or patients whose left and right heart 
chambers beat synchronously.  

1.1.1.    Cardiac Resynchronization Therapy Devices 

CRT devices help the heart beat more efficiently and help to monitor HF condition so that the 
physician can provide the right treatment. A CRT device has two main components which are the 
pulse generator and the thin insulated wires called leads which deliver a small amount of 
electrical energy to the heart to help restore the normal timing of the heart. The two types of 
CRT devices are the cardiac resynchronization therapy pacemaker (CRT-P) or biventricular 
marker and the same device with a built-in implantable cardioverter defibrillator called cardiac 
resynchronization therapy defibrillator (CRT-D) [1]. 

According to [2], CRT enhances outcome in patients with heart failure but also has substantial 
nonresponse rates. Several studies have shown improved CRT response prediction that includes 
varying criteria such as the Left Bundle Branch Block (LBBB), Left Ventricle (LV) activation 
time, intrinsicoid deflection onset as well as the frequency content and area of the Q wave, R 
wave and S wave (QRS). QRS shows the electrical impulse as it spreads through the ventricles 
and indicates ventricular depolarization.  
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Figure 1: An implanted CRT-P system [1] 

 

Figure 2: An implanted CRT-D system [1] 
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     1.1.3     Cardiac Resynchronization Therapy Indications  

The guidelines from the American Heart Association/American College of Cardiology 
Foundation (AHA/ACCF) for the management of HF which was published in 2013 were 
harmonized with the AHA/ACCF/Heart Rhythm Society (HRS) 2012 and referred to as the 
updated ACC/AHA/HRS guidelines [3]. The criteria for CRT implantation are New York Heart 
Association (NYHA) functional class II and III with sinus rhythm, Left ventricular Ejection 
Fraction (LVEF) < 35%, QRS width > 150 ms or 120 to 150 ms with Ventricular Electrical 
Dyssynchrony (ED) by LBBB. Although about 30% of patients do not respond to CRT due to 
common variables such as low LVEF, sinus rhythm, LBBB pattern, QRS duration >150ms on 
electrocardiogram (ECG) and the New York Heart Association (NYHA) class II, III, and 
ambulatory IV symptoms. This study also includes not only the Electrical Dyssynchrony (ED) 
data, which would be QRS enlargement (> 150 ms) and LBBB but also the presence of 
Mechanical Desynchronization (MD).  

1.2.  Machine Learning 

The current trend in data analysis is towards technical approaches such as Machine Learning 
(ML) and even more powerful techniques like deep learning which uses neural networks to solve 
complex problems. However, deep learning requires a large set of data and this volume of data is 
often lacking in clinical medicine to aid better clinical predictions [4]. ML is a part of artificial 
intelligence that gives computer systems the ability to learn automatically with little to no human 
intervention and it adjusts its actions accordingly without being explicitly programmed. Machine 
learning improves the analysis of large quantities of data and is being used in a variety of 
applications like predictive analytics, email filtering and computer vision. Awan et al [5] 
discussed the application of machine learning methods in diagnosis, classification, readmissions 
and medication adherence in patients with heart failure. Also, ML techniques have been applied 
to identify distinct phenogroups in HF patients with preserved ejection fraction (HFpEF) as well 
as several diseases [6,7]. Thus, machine learning approaches may be used to improve CRT 
response prediction in patients with heart failure. 

Supervised ML is a kind of ML that learns from the analysis of a known training dataset and then  
uses the learned labels to predict future events or analysis. While supervised ML provides targets 
for any new input after sufficient training, it requires massive dataset to train on, interpretation of 
result varies and it is susceptible to errors. In contrast, unsupervised ML requires no training or 
labelling as it explores the unlabelled data and can draw inferences from datasets to describe 
hidden structures [4]. Unsupervised ML groups or clusters patients together based on multiple 
characteristics in the dataset, which could be clinical, demographic, or measured. The grouping 
of similar patients together in varying groups or dimensions, then makes it possible to analyse 
the similarities in the groups of patients and relate them to clinical outcomes or therapeutic 
responses. 
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1.2.1.  Hierarchical Clustering 
 

Hierarchical clustering (HC) works by grouping data objects into a tree of clusters and HC can 
be further divided into agglomerative and divisive which simply refers to the hierarchical 
decomposition being formed bottom-up or top-down respectively. HC technique is a good way to 
reveal anatomical subgroups from clinical data as they do not need any prior information about 
the population of study. Also, HC does not require conditioning of an expected number of 
subgroups in contrast to K-means clustering that involves specifying a required number of 
subgroups. Some studies have applied HC techniques to 3D patient shape data and the outcome 
depends hugely on the clustering distance metrics and linkage option of choice [8].  
 
Furthermore, HC results are graphically depicted in a tree-like structural diagram called a 
dendrogram that shows how similar objects are grouped together, while dissimilar objects are 
grouped on different branches of the tree. However, assessment of the similarity or dissimilarity 
and clustering results of objects is dependent on the similarity or distance metric chosen where 
low inter-object distance connotes high similarity. Also, the linkage function is another huge 
determinant on how objects are linked together to form a subgroup. Choosing the appropriate 
distance or linkage combination is necessary to achieve meaningful results.  
 
      1.3    Aim and Significance of Study 
 
An area where clustering of patient groups could improve the selection of patients and accurately 
predict their clinical outcome is in CRT for HF patients. This is due to the fact that despite clear 
criteria for which patients should undergo CRT, a significant percentage of patients do not 
respond to this treatment option [9]. This study hypothesized that new approaches based on 
unsupervised ML techniques which incorporates demographic, clinical and Echocardiographic 
(ECG) and SPECT MPI data including both electrical and mechanical dyssynchrony may be 
used to better depict how ML can be utilized to phenogroup HF patients in correlation to their 
characteristics and predict clinical response.  
 
Supervised ML mainly trains a model on a labelled dataset where the input data is split into 
training and test dataset and the algorithm learns to predict the output from the input data. Thus, 
unsupervised ML is used for this study instead of supervised ML because our aim is to identify 
hidden patterns or underlying grouping structure in our data in order to better predict HF patients' 
subgroups that are likely to respond to CRT. We utilized data from ten centres in 8 countries 
with NYHA functional class II, III and IV with sinus rhythm, LVEF < 35%, QRS width > 150 
ms or 120 to 150 ms with Ventricular Electrical Dyssynchrony (ED) by Left Bundle Branch 
Block (LBBB) to determine if HC as an unsupervised ML technique could help discover 
unknown patterns in the data and to identify the patient subgroups that are more likely to respond 
to CRT.  
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2. RELATED WORK 
 
Several studies have tried to find parameters or factors that could significantly improve CRT 
efficacy. The use of SPECT images to assess LV latest activation was shown in [10] to improve 
the rate of placing LV on target and ultimately produced a positive improvement in CRT 
response. Other studies have used machine learning approaches to predict mortality in patients 
with coronary artery disease. Cikel et al [4] researched the use of ML to accurately phenogroup 
selected CRT patients to determine trends that can result in improved CRT response. The study 
used unsupervised learning methods to help in the identification of patients likely to respond to 
the therapy by integrating clinical features with echocardiographic data on myocardial infarction 
and left ventricular volume changes that were measured over an entire cardiac cycle.  
 
The results from the study showed that full unsupervised ML techniques can provide a clinically 
relevant classification of a heterogeneous group of HF patients which can aid the identification 
of patient subgroups most likely to respond to particular therapies. However, the paper reiterated 
that the feasibility of the proposed model for phenogrouping HF patients and in clinical decision 
making should be assessed in a prospective controlled trial. Additionally, Matthew et al [9] also 
used machine learning-based unsupervised clustering analysis to identify clinically distinct 
phenotypic subgroups in a highly dimensional mixed-data group of individuals with heart failure 
with preserved ejection fraction (HFpEF).This study was able to identify phenogroups of HFpEF 
patients with distinct clinical characteristics and lasting outcomes. 
 

3. METHODS 
 

      3.1     Study Design and Patient Population 
The population used for this study has been previously used by a prospective, multicenter, non-
randomized trial: ‘Value of intraventricular synchronism assessment by gated-SPECT 
myocardial perfusion imaging in the management of heart failure patients submitted to cardiac 
resynchronization therapy’ (IAEA VISION-CRT) [11]. In brief, the VISION-CRT trial involves 
subjects from ten centers in 8 countries (Brazil, Chile, Colombia, Cuba, India, Mexico, Pakistan, 
and Spain). The main investigators of the respective countries recorded all the clinical, CRT and 
follow-up information in individual forms for each patient. The data from the Myocardial 
Perfusion Imaging by Gated Single Photon Emission Computed Tomography (gSPECT MPI) 
were recorded too. The overall data was collected by the central management center in the IAEA 
headquarters in Vienna. The subjects underwent a detailed clinical and gated SPECT MPI 
evaluation before recruitment to the study and all patients provided written informed consent. 
 
The criteria for patient inclusion were: symptomatic HF patients over 18 years old with NYHA 
functional class II, III or ambulatory IV with HF for at least three months before enrollment; LV 
ejection fraction ≤ 35% from ischemic or non-ischemic causes, measured according to the usual 
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procedure at the participating center for inclusion, although LVEFs used for analysis came from 
nuclear core lab; sinus rhythm with LBBB configuration defined as a wide QRS duration ≥ 
120ms. The Exclusion criteria were:  pregnancy or breast-feeding; arrhythmias that prevented the 
gated acquisition; right bundle branch block; a major coexisting illness affecting survival less 
than one year; acute coronary syndromes, coronary artery bypass grafting, or percutaneous 
coronary intervention in the last 3 months before enrollment and within 6 months of CRT 
implantation. The patients were classified as ‘responders’ to CRT if they had an increase of 
LVEF > 5% or a decrease in End Systolic Volume (ESV) < -15% as measured by gated SPECT 
MPI at follow up. Others were classified as non-responders. 

3.2.    SPECT MPI evaluation 
 
Gated SPECT scans were performed about 30 minutes after injection using 20-30mCi of 99mTc-
sestamibi or tetrofosmin of 740 to 1110 MBq. The images were acquired in gamma cameras 
using 180° orbits with a complimentary 8 or 16 frames ECG-gating. The Ordered Subset 
Expectation maximization (OSEM) method with three iterations and ten subsets and filtered by a 
Butterworth filter to the power of 10 and a cut-off frequency of 0.3 cycles/mm were used to 
reconstruct the images and this was done by Emory Reconstruction Toolbox (ERToolbox; 
Atlanta, GA). The resulting reoriented short-axis images were sent to Emory Cardiac Toolbox 
(ECTb4, Atlanta, GA) for automated accessing of LV function, including LVEF, left ventricular 
end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), LV shape, 
including end-systolic eccentricity (ESE) and end-diastolic eccentricity (EDE), and LV 
mechanical dyssynchrony and includes phase standard deviation (PSD) and phase bandwidth 
(PBW) [11]. 
 
3.3.    Baseline Characteristics 
 
The complete data of clinical assessment, baseline SPECT MPI, and clinical six-month follow-
up data were obtained in only 177 patients out of the initial 199 patients that underwent CRT. 
About 11 patients among the 177 patients died before follow-up and 1 patient had an extremely 
low ESV which is an outlier caused by the low resolution of gated SPECT MPI when measuring 
a small heart.  This study finally utilized the data from 165 patients for its analysis. The 
covariates consist of a range of domains including demographics, clinical variables, laboratory 
data, SPECT MPI measurements and an electrocardiographic parameter. Overall, a total of 26 
continuous and categorical variables were used in the clustering analysis. 
 
3.4.   Characterization of phenogroups  
 
Agglomerative hierarchical clustering algorithm was used to group similar objects into clusters 
such that each observation starts in its own cluster and pairs of clusters are merged as one moves 
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up the hierarchy. The hierarchical relationship between the different set of data is shown in a 
tree-like diagram called a dendrogram. Furthermore, the distance between the data points on the 
x-axis represents the dissimilarities between the points while the height of the blocks on y-axis 
represents the distance between the clusters. Of the three most common linkage methods: single, 
complete and average linkage methods, the complete linkage method was used to merge the 
clusters in the dendrogram as it tends to find compact clusters of approximately equal diameters. 
The complete linkage method also avoids the disadvantage of the alternate single linkage method 
where clusters are forced together due to single objects being close to each other, even when 
many of the objects in each cluster may be largely distinct to each other. The number of clusters 
was chosen by drawing a horizontal line to the longest line that traverses the maximum distance 
up and down without intersecting the merging points. This was done on our dendrogram at both 
a distance 600 which gave 2 clusters and a distance of 400 which gave 4 clusters and the 
respective numbers of clusters were analyzed separately. Having done the analysis, 4 clusters 
were finally used for further analysis as it was more statistically significant.  
 
After the clusters were grouped into four, the differences in demographics, clinical variables, 
laboratory data, SPECT MPI measurements, and echocardiographic parameters were compared 
between the phenogroups. Continuous variables were summarized in means and standard 
deviations while categorical variables were summarized in numbers and percentages. The 
differences between groups were tested using a one-way ANOVA for continuous variables and a 
Chi-squared test for categorical variables. A p-value of <0.05 was considered statistically 
significant. The resulting dendrogram was internally validated by shuffling the dataset and 
reducing the number of rows and columns to create clusters and compare their differences in 
terms of clinical characteristics and the response outcome. Clustering the phenogroup into 4 
clusters was more statistically significant and the ML algorithm used for all the analysis in this 
study was done in python version 3. 
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Figure 3: Code snippets of Hierarchical Clustering 
 
Table 1. Baseline characteristics of the study patients by phenogroups 

S/
N 

FEATURES 
  

OVERALL 
AVERAGE 
(meanSD) 
(count(%)) 
N=165 
(98R,67NR) 
59%R 

PHENO- 
GROUP 
ONE 
  
n=42 
(21R,21NR) 
50%R 

PHENO- 
GROUP 
TWO 
  
n=81 
(55R,26NR) 
68%R 

PHENO- 
GROUP 
THREE 
  
n=16 
(10R, 
6NR) 
63%R 

PHENO- 
GROUP 
FOUR 
  
n=26 
(12R,14NR) 
46%R 

GROUP 
P-
VALUE 

1 ACEI_or_ARB 
  

136(82%) 29(69%) 72(89%)   14(88%) 21(81%) 0.049 

2 Age 60±11 61±10 61±12 58±10 58±10 0.1 

3 CAD 51(31%) 16(38%) 23(28%) 2(13%) 10(38%) 0.213 

4 Concordance 40(25%) 12(29%) 16(20%) 6(38%) 6(23%) 0.412 

5 DM 41(25%) 8(19%) 22(27%) 6(38%) 5(19%) 0.424 

6 ECG_pre_QRSd 161±25 156±23 159±24 161±28 176.6±21 0.00092 

7 Gender 
  

 
M=98(59%) 
 F=67(41%) 

M=31(74%
) 
F=11(26%) 

M=33(41%) 
F=48(59%) 

M=13(81
%) 
F=3(19%) 

M=21(81%
) 
F=5(19%) 

0.0 

8 HTN 97(59%) 29(69%) 40(49%) 11(69%) 17(65%) 0.116 

9 LBBB 165(100%) 42(100%) 81(100%) 16(100%) 26(100%) 1.0 
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10 MI 35(21%) 11(26%) 12(15%) 2(13%) 10(38%) 0.047 

11 NYHA 
 

II=46(28%) 
III=101 
(61%) 
IV=18 
(11%) 

II=12(29%) 
III=27(64%) 
IV=3(7%) 

II=28(35%) 
III=47(58%) 
IV=6(7%) 

II=3(19%) 
III=9(56%
) 
IV=4(25%
) 

II=3(12%) 
III=18(69%) 
IV=5(19%) 

0.094 

12 Race 
 I = Africa 
II = Asia 
III = Caucasian 
IV = Hispanic 
V = Indian 

I=17(10%) 
II=6(4%) 
III=23(14%) 
IV=87(53%) 
V=32(19%) 
 
  

I=6(14%) 
II=1(2%) 
III=5(12%) 
IV=24(57%) 
V=6(14%) 

I=4(5%) 
II=3(4%) 
III=14(17%) 
IV=37(46%) 
V=23(28%) 

I=2(13%) 
II=2(13%) 
III=1(6%) 
IV=8(50%
) 
V=3(19%) 

I=5(19%) 
II=0(0%) 
III=3(12%) 
IV=18(69%) 
V=0(0%) 

0.033 

13 SPECT_pre_EDE 0.5±0.2 0.5±0.1 0.6±0.2 0.5±0.2 0.5±0.2 0.17 

14 SPECT_pre_EDSI 0.8±0.1 0.8±0.1 0.8±0.1 0.9±0.1 0.9±0.1 0.13 

15 SPECT_pre_EDV 257.6±105 277.8±38 176±44 476.3±55 347.1±30 <0.001 

16 SPECT_pre_ESE 0.6±0.2 0.6±0.2 0.6±0.2 0.4±0.2 0.5±0.1 0.009 

17 SPECT_pre_ESSI 0.8±0.1 0.8±0.1 0.8±0.1 0.9±0.1 0.9±0.1 0.004 

18 SPECT_pre_ESV 192.7±96 209.2±28 117.4±37 396±62 275.2±27 <0.001 

19 SPECT_pre_LVEF 27.7±10.3 24±7.0 34.1±9.5 17.1±5.1 20.6±6.0 0.003 

20 SPECT_pre_PBW 152.4±73.8 191.7±66.3 106.5±49.7 239.9±47
.9 

178.2±64.9 0.24 

21 SPECT_pre_PSD 48.8±19.7 56.7±15.6 37.6±15.7 72.9±15.
2 

55.8±17 0.09 

22 Smoking 27(16%) 7(17%) 15(19%) 2(13%) 3(12%) 1.0 

23 SPECT_pre_50scar 25±14.4 29.2±13.6 17.8±11.5 35.1±15 31±14.3 0.827 
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24 LVEF 25±6.0 24.5±4.4 27.2±5.6 20.4±5.4 22±6.7 0.005 

25 Echo_pre_EDV 192±36.8 193.3±17 180.7±33 195.3±10 224.4±30 0.0002 

26 Echo_pre_ESV 149±37.9 155.3±21.6 132.3±30.8 157±18.3 187.7±53.5 0.00006 

 
 
4.   RESULTS 
 
Of the 165 patient data used in this unsupervised learning study, there was a 59% response rate 
where 98 participants responded to CRT and 67 patients had no response. The race population 
was 53% hispanics, 19% indians, 14% caucasian, 10% african and 4% asians. The baseline 
characteristics of the study population are shown in Table 1. For all the patients, the age was 60 
± 11 years, and 98 (59.4%) patients were male. Fifty-one (30.9%) patients had a previous history 
of CAD while 97 (58.8%) had Hypertension (HTN). About 27(16%) are smokers while 41 
(24.8%) had diabetes mellitus (DM). Although the study data has NYHA class II, III and IV, 
NYHA class III was predominant in the data with a rate of 61%. Myocardial infarction was not 
prevalent among the participants as it was present in only about 21%. 
 
There were no statistically significant differences in age and the NYHA class distributions across 
phenogroups. Participants in phenogroup 1 had the lowest mean of ECG_pre_QRSd and a high 
number and rate of HTN as compared with the other groups. Phenogroup 2 had the highest 
burden of DM and the most significant response rate in females. It is also the group with the 
highest response rate and the least rate of hypertensive patients. While phenogroup 3 had the 
least burden of CAD and MI and the highest rate of DM. Phenogroup 4 had the least responders 
to CRT, the highest rate of NYHA class III patients, and the largest ECG_pre_QRSd mean as 
compared with the other groups. While phenogroup 1 and 4 had the same intermediate rates of 
both CAD at 38% and DM at 19%, phenogroup 1 and 3 had the same intermediate burden of 
HTN at 69%. 
 
Among SPECT MPI parameters, phenogroup 1 participants had an intermediate high mean 
values for LVEF, SPECT_pre_LVEF, SPECT_pre_PSD and SPECT_pre_PBW as compared 
with the other phenogroups.While phenogroup 2 had the least mean values for 
SPECT_pre_EDV, SPECT_pre_ESV and SPECT_pre_50scar but has the highest mean and 
standard deviation of SPECT_pre_LVEF when compared with the other groups. Phenogroup 3 
had the highest means for SPECT_pre_PBW, SPECT_pre_PSD and SPECT_pre_50scar values. 
The highest mean and standard deviation of SPECT_pre_ESV values are found in this group as 
well. Finally, the highest mean and standard deviation of Echo_pre_ESV and Echo_pre_EDV 
were in phenogroup 4.  
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Figure 4:  Hierarchical Clustering Dendrogram 
 
 
Table 2: Dissimilarity between phenogroups  

S/N Phenogroup 1 Phenogroup 2 Phenogroup 3 Phenogroup 4 

 - Least mean of 
ECG_pre_QRSd  
 
- Intermediate high 
values for LVEF, 
SPECT_pre_LVE
F 
SPECT_pre_PSD, 
SPECT_pre_PBW 
 
 

- Highest responder group 
 

- High proportion of patients 
with Diabetes Mellitus 
 
- Most significant response 
rate from females 

 
- Least rate of hypertensive 
patients 

 
- Has the highest mean and 
a wider range of 
SPECT_pre_LVEF 

 
- Least mean of 
SPECT_pre_EDV and 
SPECT_pre_ESV values 

 
- Least mean and standard 
deviation of 

- Has the highest 
mean and a wider 
range of 
SPECT_pre_EDV 
values 
 
- Has lowest rate of 
NYHA class III patients 
 
- Has the highest 
mean and a wider 
range of 
SPECT_pre_ESV 
values 
 
- Has the highest 
mean of 
SPECT_pre_PSD and 
SPECT_pre_50scar 
values 

 

- Has least 
responders to CRT 
 
- Has longest QRS 
duration 
 
- Has highest rate 
of NYHA class III 
patients 
 
- Has a high 
SPECT_pre_50sc
ar mean and the 
highest standard 
deviation 
 
- Has the highest 
mean of 
Echo_pre_EDV 
values 
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SPECT_pre_50scar values 
  
 

- Has the highest 
mean and 
standard deviation 
of Echo_pre_ESV 
values 
 

 

5. DISCUSSION 

Heart failure is a disease characterized by multiple syndromes and its response to therapies is 
based on a couple of factors such as biomarkers, clinical data as well as imaging parameters. 
Conventional techniques to predict outcomes within HF subgroups rely on isolated parameters 
such as QRS morphology, presence or absence of specific comorbidities, HF cause, cardiac 
structure and function amongst others. Thus, while the use of echocardiographic analysis tools to 
assess cardiac structure and function can establish subgroups of HF patients at higher risk for 
negative outcomes [12], echocardiographic data contains a lot of information representing 
several time points in a cardiac cycle but this is replaced by single measurements in standard 
quantitative data analysis which does not take into account the complex events of the entire 
cardiac cycle.  

In this study, hierarchical clustering as a form of unsupervised ML has been shown to aid the 
integration of demographic data, clinical data, laboratory data and SPECT MPI parameters to 
group patients with certain diseases such as HF. The research demonstrates the value of 
combining different sets of descriptors to find patients that are more likely to respond to CRT as 
compared to the results gotten from independent analysis of clinical parameters only. The results 
from the study proves that unsupervised ML approaches can be used to combine standard clinical 
parameters, ECG data and imaging parameters to provide a clinically interpretable and 
meaningful classification of the heterogenous phenotypes of HF patients and the likelihood of 
patients in certain subgroups to respond to specific treatment therapies.  

While studies such as Chung et al [13] tried to find a single echocardiographic measure of 
dyssynchrony to improve the selection of HF patients for CRT beyond the current guidelines 
without success. This study combines heterogeneous data in an unsupervised manner to 
ultimately find groups of patients with similar characteristics towards CRT response. The 
unsupervised ML method used allows the natural clustering of patients and results in the 
identification of patient subgroups in relation to their CRT response. Specifically, Phenogroups 2 
and 3 had a higher rate of response at 68% and 63% respectively over the overall rate at 59%. 
Phenogroups 1 and 4 had the least response rate at 50% and 46% respectively. About 14 
parameters were statistically significant when compared within the 4 phenogroups. 
SPECT_pre_PSD, Echo_pre_ESV, Echo_pre_EDV, LVEF, SPECT_pre_PBW, MI, 
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SPECT_pre_LVEF, SPECT_pre_ESV, SPECT_pre_ESSI, SPECT_pre_ESE, SPECT_pre_EDV, 
ECG_pre_QRSd, gender and ACEI_or_ARB.  

Some limitation of this study includes the small size used as well as the fact that HC does not 
work well with missing data. Though, the race parameter was significant in this study, this 
cannot be ascertained as the data was majorly from North America, South America and Asia. 
This means the data may be skewed towards a certain race over others and this is another 
limitation of this study. Furthermore, the results gotten from this study need to be externally 
validated. For future directions, further analysis using other unsupervised techniques such as 
principal component analysis may be able to ascertain the result or to help uncover other relevant 
clinical information. Another future work is the use of supervised classification to validate the 
result gotten in this study. 

6. CONCLUSION 

This study concludes that unsupervised ML approaches such as HC can be used to integrate and 
analyze ECG data, imaging parameters and clinical data to aid in the identification of HF patients 
subgroups that are likely to respond to CRT. The results show that HC can provide a clinically 
relevant classification of a heterogeneous cohort of HF patients which can serve as a data-driven 
basis to identify patient phenogroups likely to respond to specific therapies. However, the 
feasibility of this HC approach for patient phenogrouping in HF and its contribution to clinical 
decision making needs to be evaluated with a large dataset, externally validated and used in a 
prospective controlled trial.  
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