
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2020

HIGH-PERFORMANCE SPECTRAL METHODS FOR COMPUTER-HIGH-PERFORMANCE SPECTRAL METHODS FOR COMPUTER-

AIDED DESIGN OF INTEGRATED CIRCUITS AIDED DESIGN OF INTEGRATED CIRCUITS

Zhiqiang Zhao
Michigan Technological University, qzzhao@mtu.edu

Copyright 2020 Zhiqiang Zhao

Recommended Citation Recommended Citation
Zhao, Zhiqiang, "HIGH-PERFORMANCE SPECTRAL METHODS FOR COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS", Open Access Dissertation, Michigan Technological University, 2020.
https://doi.org/10.37099/mtu.dc.etdr/1138

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Other Computer Engineering Commons, and the VLSI and Circuits, Embedded and Hardware
Systems Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1138
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1138&utm_medium=PDF&utm_campaign=PDFCoverPages

HIGH-PERFORMANCE SPECTRAL METHODS FOR COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS

By

Zhiqiang Zhao

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2020

© 2020 Zhiqiang Zhao

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Engineering.

Department of Electrical and Computer Engineering

Dissertation Co-advisor: Dr. Zhuo Feng

Dissertation Co-advisor: Dr. Glen E. Archer

Committee Member: Dr. Jiguang Sun

Committee Member: Dr. Chee-Wooi Ten

Committee Member: Dr. Benjamin W. Ong

Committee Member: Dr. Saeid Nooshabadi

Department Chair: Dr. Glen E. Archer

Dedication

To my family, teachers and friends

who didn’t hesitate to support my work at every stage - without which I would neither

be who I am nor would this work be what it is today.

Contents

List of Figures . xiii

List of Tables . xvii

Preface . xix

Acknowledgments . xxi

Abstract . xxiii

1 Introduction . 1

1.1 E↵ective-Resistance Preserving Spectral Reduction of Graphs . . . 2

1.2 SAMG: Sparsified Graph-Theoretic Algebraic Multigrid for Solving

Large Symmetric Diagonally Dominant (SDD) Matrices 4

1.3 A Spectral Approach to Scalable Vectorless Power Grid and Thermal

Integrity Verification . 6

1.4 Overview of Chapters . 12

1.5 Preliminaries . 13

1.5.1 Laplacian Matrices of graphs 13

vii

1.5.2 Spectral Sparsification of Graphs 14

2 E↵ective-Resistance Preserving Spectral Reduction of Graphs . 19

2.1 Background . 19

2.2 Spectral Reduction of Graphs . 21

2.2.1 Overview . 21

2.2.2 Phase (A): Spectrum-Preserving Node Reduction 23

2.2.2.1 Spectral node a�nity metric. 23

2.2.2.2 Spectral similarity between nodes. 24

2.2.2.3 Limitations when dealing with dense graphs. 25

2.2.3 Phase (B): Spectral Graph Sparsification and Scaling 26

2.2.3.1 Copping with high graph densities. 26

2.2.3.2 Spectral approximation with spanning tree sub-

graphs. 27

2.2.3.3 Towards better approximation with o↵-tree edges. . 28

2.2.3.4 Subgraph scaling via constrained optimization. . . 32

2.2.4 Phase (C): E↵ective-Resistance Preserving Post Scaling . . . 37

2.2.5 Algorithm Complexity of The Proposed Spectral Graph Reduc-

tion Approach . 38

2.2.6 Solution Refinement by Graph Filters 40

2.2.6.1 Graph Signal Processing and Spectral Sparsifica-

tion/Reduction . 40

viii

2.2.6.2 Solution Error due to Spectral Sparsification 41

2.2.6.3 Solution Refinement by Smoothing 43

2.3 Spectral Reduction for Multilevel Graph Partitioning and Data Visu-

alization . 44

2.3.1 Multilevel Laplacian Eigensolver for Scalable Spectral Graph

Partitioning . 44

2.3.2 Multilevel t-SNE Algorithm for Scalable Data Visualization 48

2.4 Experimental Results . 50

2.4.1 Results of Spectrum Preservation on Spectrally Reduced

Graphs . 50

2.4.2 Results of E↵ective-Resistance Preservation on Spectrally Re-

duced Graphs . 54

2.4.3 Results of Scalable Spectral Graph Clustering (Partitioning) 56

2.4.4 Results of Hypergraph Partitioning 63

2.4.5 Results of Scalable Data Visualization 67

3 SAMG: Sparsified Graph-Theoretic Algebraic Multigrid for Solv-

ing Large Symmetric Diagonally Dominant (SDD) Matrices . . 71

3.1 Background . 71

3.2 Sparsified Algebraic Multigrid . 73

3.2.1 Overview of Our Method . 73

3.2.2 Sparsified Algebraic Multigrid (SAMG) 75

ix

3.2.2.1 Graph Density Check 76

3.2.2.2 Graph Sparsification and Spectral Similarity Control 77

3.2.2.3 Coarser Level Generation 80

3.3 Experimental Results . 81

4 A Spectral Approach to Scalable Vectorless Power Grid and Ther-

mal Integrity Verification . 85

4.1 Background . 85

4.1.1 On-chip Thermal Modeling and Analysis 85

4.1.2 Vectorless Power Grid and Thermal Integrity Verification . . 87

4.1.3 Vectorless Thermal Verification Challenges 89

4.1.4 Graph Signal Processing and Spectral Sparsification 91

4.2 A Spectral Approach to Vectorless Power Grid and Thermal Integrity

Verification . 92

4.2.1 Multilevel Verification Framework 92

4.2.2 Spectral Sparsification and Scaling of 3D Thermal Grids . . 94

4.2.3 Spectral Solution Refinement. 98

4.2.4 Example: A Two-level Verification Framework 100

4.3 Experimental Results . 104

4.3.1 Experimental Setup . 104

4.3.2 Experimental Results for Power Grid Verification 106

4.3.2.1 Result of Solution Quality 106

x

4.3.2.2 Result of Runtime E�ciency 107

4.3.2.3 Tradeo↵ Analysis Between Accuracy and E�ciency 110

4.3.3 Experimental Results for Thermal Verification 112

4.3.3.1 Iterative Edge Scaling and Solution Refinement . . 112

4.3.3.2 Result of Verification Quality 113

4.3.3.3 Comprehensive Results 115

5 Conclusion . 119

5.1 Future Work . 121

References . 123

A Supplementary Materials . 141

A.1 Spectral Graph Partitioning . 141

A.1.1 Ratio cut and normalized cut for 2-way partitioning 145

A.1.2 Ratio cut and normalized cut for k-way partitioning 148

A.2 t-Distributed Stochastic Neighbor Embedding 150

B Copyright Permission . 155

xi

List of Figures

1.1 A resistor network (conductance value of each element is shown) and

its graph Laplacian matrix. 13

1.2 Two spectrally similar graphs G and P. 15

1.3 A spanning tree and its ultra-sparsifier subgraph. 16

2.1 The proposed spectral reduction framework. 21

2.2 Multilevel Laplacian eigensolver for spectral graph partitioning. . . 45

2.3 Multilevel t-SNE algorithm. 48

2.4 Spectral drawings of the “fe ocean” graph and its reduced graph (24X

node reduction and 58X edge reduction). 51

2.5 The first 10 normalized eigenvalues of the “fe tooth” graph under dif-

ferent node reduction ratios. 51

2.6 Average relative errors of e↵ective resistance under di↵erent graph re-

duction ratios for the “fe tooth” graph. 55

2.7 Runtime scalability of proposed spectral graph reduction method. . 56

2.8 Normalized cut (partitioning quality) for spectral partitioning with the

original graphs and reduced graphs. 59

xiii

2.9 Execution time for graph partitioning when using the original graphs

and spectrally reduced graphs. 59

2.10 Profiling of time spent in spectral partitioning on “auto” graph [17]. 61

2.11 Partitioning qualities (normalized cut) under di↵erent reduction ratio

for the “coPapersCiteseer” graph [17]. 61

2.12 Runtime for multi-way spectral partitioning under di↵erent reduction

ratio for the “coPapersCiteseer” graph [17]. 62

2.13 Runtime for graph partitioning with di↵erent clusters (partitions) for

the “coAuthorsCiteseer” graph [17]. 62

2.14 Normalized cut for graph partitioning with di↵erent clusters (parti-

tions) for the “coAuthorsCiteseer” graph [17]. 63

2.15 Correlations (XUSPS and XMNIST for px
tsne

; YUSPS and YMNIST for

pytsne) between 2D embedding vectors computed by t-SNE and the sub-

space formed by the first few eigenvectors of the Laplacian matrices

computed using USPS and MNIST data sets. 68

2.16 t-SNE visualization with original USPS data set and the reduced data

set. 68

2.17 t-SNE visualization with original MNIST data set and data sets under

di↵erent reduction ratios. 69

3.1 Comparison of the setup phases between LAMG[64] and SAMG (this

work). 74

xiv

3.2 Flowchart for the SAMG solver setup phase. 75

3.3 Graph sparsification during the SAMG solver setup phase. 78

3.4 Spectral graph sparsification with graph scaling. 79

3.5 Runtime scalability with increasing number of nonzero elements. . 82

3.6 Comparison of average graph densities of coarse level problems for

G2 circuit matrix. 83

3.7 Comparison of average graph densities of coarse level problems for

MNIST21. 84

4.1 Thermal modeling of the chip package 86

(a) Chip package with the heat sink 86

(b) 3D modeling of the die . 86

4.2 Multilevel vectorless power grid and thermal integrity verification. 92

4.3 Iterative edge scaling for sparsified thermal grids. 95

4.4 Relative error of vectorless verification w/ sparsified grid. 106

4.5 Sensitivity computation time for the original and sparsified grids. . 107

4.6 Runtime scalability of the proposed method. 110

4.7 Result of the tradeo↵ analysis using the proposed method. 111

4.8 Relative Error Distributions. 112

4.9 Worst-case temperature distributions of processor A 114

(a) Thermal distribution by method (a) 114

(b) Thermal distribution by method (b) 114

xv

(c) Thermal distribution by method (c) 114

4.10 Worst-case temperature distributions of processor B 115

(a) Thermal distribution by method (a) 115

(b) Thermal distribution by method (b) 115

(c) Thermal distribution by method (c) 115

4.11 Total runtime speedups of Multilevel w/ Sparsification method com-

paring to the other two methods. 116

4.12 Verification time with various problem sizes. 117

(a) LP solve time with the number of non-zero in matrices 117

(b) Total verification time with the number of non-zeros in matrices 117

xvi

List of Tables

2.1 Symbols and their denotations in this work 22

2.2 Mean relative errors for the first 10 and 40 eigenvalues. 52

2.3 Edge number for reduced graphs using di↵erent reduction methods. 52

2.4 Results of E↵ective-Resistance Preserving Spectral Graph Reduc-

tion. 54

2.5 Spectral Graph Reduction Results on Sample Graphs. 57

2.6 Results of Graph Partitioning. 58

2.7 Benchmarks of Spectral Hypergraph Partitioning. 64

2.8 Performance of Spectral Hypergraph Partitioning on Original Graphs

G. 65

2.9 Performance of Spectral Hypergraph Partitioning on Reduced Graphs

S. 66

3.1 Experimental result of LAMG and SAMG. 82

4.1 Statistics of two microprocessor designs 105

4.2 Specifications of the power grid test cases and thermal test cases. . 105

xvii

4.3 Results of the proposed vectorless power grid integrity verification

method. 108

4.4 Runtime results of the proposed method. 109

4.5 Results of the proposed multilevel vectorless thermal integrity verifica-

tion method (two-level scheme is used). 114

4.6 Runtime results of the proposed method. 116

xviii

Preface

This dissertation presents my research work during my PhD study in Computer En-

gineering at Michigan Technological University, which includes previously published

papers in Chapter 2 , Chapter 3 and Chapter 4. All the research works presented

here were conducted under the supervision of my advisor Dr. Zhuo Feng.

Chapter 2 contains two papers. One paper was published in Proceedings of the 56th

Annual Design Automation Conference (DAC), and the second paper will be pub-

lished in 14th ACM International Conference on Web Searching and Data Mining

(WSDM). As the first author of two papers, with the guidance of my advisor, I com-

pleted the algorithm design, implementation, and analysis. Papers were completed by

my advisor and I. Ying Zhang, as the second author of the second paper, participated

in the second paper’s manuscript writing.

Chapter 3 contains one paper published in 2017 IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD). As the first author of the paper, with

the guidance of my advisor, I completed the algorithm design, implementation, and

analysis. Yongyu Wang, as the second author of the paper, provided me with the

Laplacian matrices of MNIST data set. The paper was completed by my advisor and

I.

xix

Chapter 4 contains two papers which were published in Proceedings of the 54th

Annual Design Automation Conference (DAC) and 2020 Design, Automation & Test

in Europe Conference. As the first author of two papers, with the guidance of my

advisor, I completed the algorithm design, implementation, and analysis. The two

papers were completed by my advisor and I.

xx

Acknowledgments

First of all, I want to give my sincere thanks to my advisor Professor Zhuo Feng,

who gave me the full support and guidance throughout my whole PhD studies. He

introduced me to the research topics presented in this dissertation. His insight and

knowledge has inspired me to sharpen my thinking and elevate my work to a higher

level. He has never hesitated to help me on the various of ideas of the research and

cares for the growth towards my academic goal.

Next, I would like to thank my co-advisor Professor Glen E. Archer who has been

always supportive of my career goals and worked actively to provide me with the

opportunities of learning and teaching. It is the training from him that I learned

the skills and attitude for both teaching and researching. I am also thankful for his

guidance and support for the preparation of my final defense.

Then, I would like to thank all my committee members: Professor Jiguang Sun, Pro-

fessor Chee-Wooi Ten, Professor Benjamin W. Ong and Professor Saeid Nooshabadi.

Thanks for their support and expert advice during my proposal and dissertation pro-

cess. I am really grateful for all the inspirations and suggestions regarding to the

researches from them.

My appreciation also extends to my friends and classmates for their friendship and

xxi

support during my whole PhD period. Dr. Xueqian Zhao and Dr. Lengfei Han, who

were senior students during my first two years, were always willing to share their

valuable experiences on researches with me and helped me a lot on understanding

of the related researches, and I am also thankful that they shared their codes with

me. Dr. Caoyang Jiang was always willing and enthusiastic to assist in any way he

could. And I am grateful for his guidance during my study of programming languages.

Collaboration with Dr. Zhaoxiang Jin was a very pleasant experience and I appreciate

his patience and inspirations during our collaboration.

Finally, I want to give my full thanks to my family. It is their support and love that

motivated me to pursue my dreams and goals, and it is their strength I can rely on

when I was frustrated. I want to thank my wife for her full support and encourage-

ments during my PhD study. Her confidence and optimistic attitudes always influence

me to think positively, and her sharp insights also inspire me a lot in my life.

xxii

Abstract

Recent research shows that by leveraging the key spectral properties of eigenvalues

and eigenvectors of graph Laplacians, more e�cient algorithms can be developed for

tackling many graph-related computing tasks. In this dissertation, spectral meth-

ods are utilized for achieving faster algorithms in the applications of very-large-scale

integration (VLSI) computer-aided design (CAD).

First, a scalable algorithmic framework is proposed for e↵ective-resistance preserving

spectral reduction of large undirected graphs. The proposed method allows comput-

ing much smaller graphs while preserving the key spectral (structural) properties of

the original graph. Our framework is built upon the following three key components:

a spectrum-preserving node aggregation and reduction scheme, a spectral graph spar-

sification framework with iterative edge weight scaling, as well as e↵ective-resistance

preserving post-scaling and iterative solution refinement schemes. We show that

the resultant spectrally-reduced graphs can robustly preserve the first few nontrivial

eigenvalues and eigenvectors of the original graph Laplacian and thus allow for devel-

oping highly-scalable spectral graph partitioning and circuit simulation algorithms.

Based on the framework of the spectral graph reduction, a Sparsified graph-theoretic

Algebraic Multigrid (SAMG) is proposed for solving large Symmetric Diagonally

xxiii

Dominant (SDD) matrices. The proposed SAMG framework allows e�cient con-

struction of nearly-linear sized graph Laplacians for coarse-level problems while main-

taining good spectral approximation during the AMG setup phase by leveraging a

scalable spectral graph sparsification engine. Our experimental results show that the

proposed method can o↵er more scalable performance than existing graph-theoretic

AMG solvers for solving large SDD matrices in integrated circuit (IC) simulations,

3D-IC thermal analysis, image processing, finite element analysis as well as data

mining and machine learning applications.

Finally, the spectral methods are applied to power grid and thermal integrity verifi-

cation applications. This dissertation introduces a vectorless power grid and thermal

integrity verification framework that allows computing worst-case voltage drop or

thermal profiles across the entire chip under a set of local and global workload (power

density) constraints. To address the computational challenges introduced by the large

3D mesh-structured thermal grids, we apply the spectral graph reduction approach for

highly-scalable vectorless thermal (or power grids) verification of large chip designs.

The e↵ectiveness and e�ciency of our approach have been demonstrated through

extensive experiments.

xxiv

Chapter 1

Introduction

Recent research shows that by leveraging the key spectral properties of the graph

Laplacians, like eigenvalues and eigenvectors, more e�cient algorithms can be devel-

oped for tackling many graph-related computing tasks [97]. For example, spectral

methods can potentially lead to much faster algorithms for solving sparse matrices

[53, 116], numerical optimization [12], data mining [78, 103], graph analytics [39, 49],

machine learning [18, 19], as well as very-large-scale integration (VLSI) computer-

aided design (CAD) [27, 28, 110, 112, 113, 116]. To this end, spectral sparsification of

graphs has been extensively studied in the past decade [5, 56, 93, 94, 111] to generate

almost-linear-sized 1 subgraphs or sparsifiers that can robustly preserve the spectrum

1The number of vertices (nodes) is similar to the number of edges.

1

of the original graph Laplacian. The sparsified graphs retain the same set of ver-

tices but much fewer edges, which can be regarded as ultra-sparse graph proxies and

have been leveraged for developing a series of nearly-linear-time numerical and graph

algorithms [11, 32, 92, 93, 109]. Another way of simplifying graphs is to directly

reduce the size of the graphs, which is widely used in many areas, including graph

partitioning [43], machine learning [18] and multigrid solvers [51, 64]. However, most

of the graph coarsening techniques cannot guarantee the preservation of the spectral

properties on the reduced graphs, and much remains to be understood about the

e↵ect of the graph coarsening on the spectrum of a general graph.

1.1 E↵ective-Resistance Preserving Spectral Re-

duction of Graphs

In this work, we introduce a scalable algorithmic framework for spectral reduction of

graphs for dramatically reducing the size (both nodes and edges) of undirected graphs

while preserving the key spectral (structural) properties of the original graph [114,

117, 118]. The spectrally-reduced graphs will immediately lead to the development of

much faster numerical and graph-related algorithms. For example, spectrally-reduced

social (data) networks may allow for more e�ciently modeling, mining, and analysis

of large social (data) networks, spectrally-reduced neural networks allow for more

2

scalable model training and processing in emerging machine learning tasks, spectrally-

reduced circuit networks may lead to more e�cient simulation, optimization and

verification of large integrated circuit (IC) systems, etc.

Our approach consists of three key phases: 1) a scalable spectrum-preserving

node aggregation (reduction) phase, 2) a spectral graph sparsification phase with

iterative subgraph scaling, and 3) an e↵ective-resistance preserving post-scaling

phase. To achieve truly scalable (nearly-linear time) performance for spectral graph

reduction, we leverage recent similarity-aware spectral graph sparsification method

[28], graph-theoretic algebraic multigrid (AMG) Laplacian solver [64, 116] and a

novel constrained stochastic gradient descent (SGD) optimization approach. The

major contribution of this work is summarized as follows:

(1) To well-preserve the key spectral properties of the original graph in the reduced

graph, a nearly-linear time spectrum-preserving node aggregation (reduction) scheme

is proposed for robustly constructing reduced graphs that have much less number of

nodes.

(2) A scalable framework for spectral graph sparsification and iterative subgraph

scaling is introduced for assuring sparsity of the reduced graphs by leveraging a novel

constrained SGD optimization approach.

(3) We introduce a simple yet e↵ective procedure for refining solutions, such as the

Laplacian eigenvectors, computed with spectrally-reduced graphs, which immediately

allows using much smaller graphs in many numerical and graph algorithms while

3

achieving superior solution quality.

(4) In addition, multilevel frameworks that allow us to leverage spectrally-reduced

graphs for much faster spectral graph partitioning as well as t-distributed Stochastic

Neighbor Embedding (t-SNE) of large data sets are proposed.

(5) We have obtained very promising experiment results for a variety of graph

problems: the spectrally-reduced graphs allow us to achieve up to 1100X speedup

for spectral graph partitioning and up to 60X speedup for t-SNE visualization of

large data sets.

1.2 SAMG: Sparsified Graph-Theoretic Algebraic

Multigrid for Solving Large Symmetric Diag-

onally Dominant (SDD) Matrices

Laplacian matrices of graphs arise in many numerical computational applications and

graph algorithms, such as solving Symmetric Diagonally Dominant (SDD) matrices

of resistive networks and elliptic partial di↵erential equations discretized on unstruc-

tured grids [51, 89, 92, 94], spectral graph partitioning and data clustering problems

[92], semi-supervised learning (SSL) [119], as well as interior-point problems for max-

imum flow of undirected graphs [11].

4

To leverage graph Laplacian matrices for developing more scalable yet reliable SDD

matrix solvers, a series of graph-theoretic Algebraic Multigrid (AMG) algorithms have

been proposed, such as the Combinatorial Multigrid (CMG) solver [52] and the Lean

Algebraic Multigrid (LAMG) solver [64]. One common feature of these multigrid

algorithms is that they construct the coarse-level problems by taking advantage of

one or more properties of the graph Laplacian matrices. For instance, in the CMG

solver, coarse-level nodes are formed by partitioning the graph defined by the Lapla-

cian matrix into high conductance clusters [52], whereas the LAMG solver applies

node elimination and node aggregation to form the coarse level problems [64]. Al-

though such graph-theoretic AMG algorithms can significantly improve the e�ciency

and scalability for solving large SDD matrix problems over traditional direct and it-

erative methods, the graph based AMG operations can be potentially hindered by

the dramatically increased graph densities at coarse levels. For example, one key

step in the LAMG algorithm is to eliminate low-degree nodes to form a significantly

smaller coarse level problem (usually 4X node reduction over the finer level), which

usually leads to a dramatically increased number of elements at the coarse level if

there are too many high-degree nodes; a similar step in CMG is to cluster the graph

into well-connected parts to form the coarse-level nodes, which may not be possible if

the graph itself is already very dense, such as the k-nearest neighbor graphs (k-NNGs)

that have been heavily studied in data mining and machine learning communities.

To address the challenges in existing graph-theoretic AMG algorithms for solving large

5

SDD matrices, we propose a Sparsified graph-theoretic Algebraic Multigrid (SAMG)

algorithm [116], by introducing a spectral graph sparsification procedure during the

SAMG setup phase for creating coarse level problems. We show that by leveraging

a recent spectral-perturbation based graph sparsification method [27], ultra sparse

coarse level problems (graphs) can be reliably constructed without loss of spectral

similarity with the original coarse problems (graphs). In other words, coarse level

problems created with the proposed SAMG framework are always ultra sparse yet

spectrally similar to the original problem, leading to highly e�cient yet robust AMG

algorithms for solving large SDD matrices. Our results show that the proposed SAMG

framework is able to further improve the scalability of existing graph-theoretic AMG

methods that are already very e�cient.

1.3 A Spectral Approach to Scalable Vectorless

Power Grid and Thermal Integrity Verification

Aggressive VLSI technology scaling has led to dramatically increased power densities

as well as significantly elevated temperature on-chip, which imposes ever-increasing

challenges in designing integrated circuit (IC) systems [76]. For example, the power

distribution network of an IC design must be verified throughout the design process

6

to ensure the supply voltage fluctuations are within certain thresholds. However,

the increased chip power dissipation and reduced supply voltages result in a massive

amount of the current drawn from the power supply, which is further distributed over

the much larger power grids, making power grid verification increasingly challenging

and critical for robust chip designs. The increased temperatures will result in: (1)

larger power grid IR drops and interconnect RC delays due to the increased intercon-

nect resistivity; (2) higher leakage power influenced by the exponential increasing of

sub-threshold current; (3) slower devices because of the degraded carrier mobility; (4)

shorter device life and poor package reliability by the potentially existence of local

hot spots as well as unevenly temperature distribution across the die. To achieve the

desired level of chip reliability and functionality, compute-intensive full-chip thermal

analysis and verification are indispensable, which typically involves estimating ther-

mal profiles under various kinds of workloads and power budget: at the circuit level,

estimating temperature variations and peak temperature across the chip are essential

for accurate timing and power analysis of digital designs [76], whereas evaluating peak

temperature and temperature gradients for critical circuit modules become increas-

ingly important for reducing mismatches and improving the performance of analog

and mixed-signal circuits [62]; at a system level, thermal modeling and analysis can be

leveraged to guide dynamic voltage and frequency scaling (DVFS) for reducing ther-

mal violations, achieving desired temperature levels and thereby reducing workload

runtimes [13].

7

Traditional vector-based power grid and thermal integrity verification rely on running

numerous circuit simulations using over-pessimistic power distributions to locate the

vector, which results in the worst-case voltage drop or thermal profile. In this case, It

requires the underlying workloads or power densities to be known in advance [38, 60,

88], which may not always be practical. For example, at the early chip design phase, it

is usually impossible to obtain accurate estimation of underlying power densities since

accurate modeling for workloads may not be necessarily available at the early design

phase. As a result, traditional power grid and thermal analysis methods may not

always provide useful guidance for verifying and improving the design reliability and

performance that can be significantly impacted by extreme (worst-case) chip power

and thermal profiles, such as worst-case temperature or thermal gradients across the

chip.

Due to the above limitation, vectorless integrity verification methods have been con-

sidered as alternatives, which have already been widely studied for power grid veri-

fications. It uses the optimization approaches to find the worst-case scenarios under

specific workloads constraints. A series of vectorless power grid verification techniques

has been investigated in the past decade [15, 25, 26, 33, 34, 50, 70, 81, 105]. Recent

research has made significant progress in reducing the power grid verification costs

by using novel sparse approximate inverse (SPAI) technique [33], e�cient dual algo-

rithm [105], and node elimination [34]. Despite these significant improvements, the

overall power grid verification cost is still extremely high, especially for large-scale

8

verification tasks.

To significantly improve the verification e�ciency, scalable multilevel vectorless

verification methods based on geometric multigrid (GMG) operations and PDE-

constrained optimization framework have been proposed [25, 26, 58] to tackle large

scale flip-chip power grid integrity verification problems. However, such methods usu-

ally require the underlying power grid designs to have relatively regular structures so

that GMG operations can be performed e↵ectively, which can become a major lim-

itation when applied to nanoscale PDN designs where regular power grid structures

are rare to find.

Motivated by the existing GMG-based multilevel vectorless verification methods, [113]

introduces a more general multilevel power grid verification framework that leverages

the recent graph-theoretic algebraic multigrid (AMG) algorithmic framework [64] as

well as a hierarchy of almost linear-sized power grid sparsifiers, making it scalable to

very large scale power grids without considering the geometric information.

Although vectorless thermal integrity verification tasks are similar to existing power

grid integrity verification problems, the computational challenges can be dramatically

di↵erent: in thermal verification problems, 3D mesh-structured thermal grids are

involved, whereas for power grid verification tasks 2D meshes are usually considered.

Existing vectorless verification methods need to set up linear programs (LPs) for

finding the worst-case vectors that will lead to the extreme thermal profiles, which

9

requires computing thermal sensitivities with respect to each power source. However,

the 3D meshes in thermal grid verification tasks are much more challenging to tackle

than the 2D meshes in power grid verification [105, 107] due to the super-linear

complexities of existing vectorless verification methods. Hence, the majority of the

thermal analysis approaches rely on the vector-based simulations [38, 60]. Recently,

[115] proposed the first vectorless thermal verification algorithm, which can be easily

scaled to very large scale thermal grid designs.

Motivated by the existing vectorless integrity verification problems [25, 33, 105, 107,

113, 115], we propose the first general vectorless integrity verification framework which

can be applied to both power and thermal grids to provide the scalable solutions for

estimating the maximum voltage drop or the nearly-worst-case thermal profiles under

various complex power density or workload uncertainties and constraints. It leverages

a recent graph-theoretic algebraic multigrid (AMG) algorithmic framework [64] as well

as a hierarchy of almost linear-sized sparsifiers. The proposed vectorless verification

approach gains insights from prior multilevel PDE-constrained optimization methods

[58], circuit adjoint sensitivity analysis, spectral graph theory [94] and emerging graph

signal processing research [87]. The original multilevel optimization method assumes

that once given a hierarchy of model problems ordered from the finest to the coarsest

levels. The optimization solution can be incrementally improved on coarser to coarsest

level problems, while the coarser level optimization solution can e↵ectively facilitate

finding the optimal solution for the original problem.

10

To address the computational challenges in vectorless thermal integrity verification,

we propose to aggressively simplify the 3D thermal grids during vectorless verification

while assuring the approximation accuracy via spectral graph sparsification and iter-

ative edge weight scaling. To this end, motivated by recent graph signal processing

research [87], we propose a mathematically rigorous method to match full-chip tem-

perature distributions that can be understood as the “low-frequency” graph signals on

thermal grids obtained after applying a “low-pass” graph filter on the original input

power sources. Our thermal grid simplification task will aim to minimize the number

of edges in the sparsified thermal grid that can still precisely preserve slowly-varying,

“low-frequency” temperature distribution across the entire thermal grid. Such sim-

plified thermal grids will allow finding worst-case thermal profiles in a highly e�cient

way without losing accuracy. The proposed vectorless thermal integrity verification

method is highly scalable and thus can be adopted in either the early chip design

phase or final chip verification phase. The main contribution of this work is briefly

summarized as follows:

(1) We propose a general framework for vectorless power grid and thermal integrity

verification that allows estimating nearly-worst-case scenarios under various kinds of

complex workload or power density uncertainties and constraints.

(2) To make the proposed method scalable to large problems, we introduce a mul-

tilevel vectorless verification framework that is significantly accelerated by a novel

power and thermal grid simplification method motivated by emerging spectral graph

11

sparsification and graph signal processing research.

(3) We demonstrate extensive experimental results on both power and thermal grids

designs with various problem sizes and power density (workload) constraints, as well

as the flexible tradeo↵s between the verification cost and solution quality enabled by

the proposed vectorless verification method.

1.4 Overview of Chapters

This dissertation includes five chapters. Chapter 1 describes three major problems

and our contributions. Chapter 2 proposed a scalable spectral graph reduction frame-

work which can well preserve the spectral properties (i.e. e↵ective resistances) on the

reduced graphs. The framework can be well applied to various applications, like

graph partitioning and data visualizations. Chapter 3 introduces a sparsified al-

gebraic multigrid solver for solving large symmetric diagonally dominant Laplacian

matrices. Chapter 4 introduces the framework for vectorless power grid and thermal

integrity verification that allows estimating nearly-worst-case scenarios under various

kinds of complex workloads or power density uncertainties and constraints. Chapter

5 presents the conclusions of this dissertation and discusses the possible future works

to be explored.

12

3.5 1.5 2
1.5 4 2 0.5

2 3 1
0.5 1 3 1.5

2 1.5 3.5

� �ª º
« »� � �« »
« »� �
« »� � �« »
« »� �¬ ¼

1 2

4

3

5

1.5
2

2

1.5
1

0.5

Figure 1.1: A resistor network (conductance value of each element is
shown) and its graph Laplacian matrix.

1.5 Preliminaries

1.5.1 Laplacian Matrices of graphs

Consider an undirected graph G = (V,EG, wG) with V denoting the set of vertices, EG

denoting the set of undirected edges, and wG denoting the associated edge weights.

We define DG to be a diagonal matrix with DG(i, i) being equal to the (weighted)

degree of node i, and AG and LG to be the adjacency and Laplacian matrices of

undirected graph G as follows, respectively:

AG(i, j) =

8
>>><

>>>:

wG(i, j) if (i, j) 2 EG

0 otherwise

(1.1)

13

Graph Laplacians can be constructed by using LG = DG �AG and will satisfy the

following conditions: 1. Each column and row sum will be equal to zero; 2. All o↵-

diagonal elements are non-positive; 3. The graph Laplacian is a symmetric diagonally

dominant (SDD) matrix, which can be considered as an admittance matrix of a

resistive circuit network [89], as is shown in Figure 1.1

1.5.2 Spectral Sparsification of Graphs

To further push the limit of spectral methods for handling big (data) graphs, spectral

graph theory has been extensively studied by mathematics and theoretical computer

science (TCS) researchers in the past decade [5, 14, 47, 48, 56, 78, 93, 94]. Recent

spectral graph sparsification research allows constructing nearly-linear-sized subgraphs

that can well-preserve the spectral (structural) properties of the original graph, such

as the first few eigenvalues and eigenvectors of the graph Laplacian. The related

results have lead to the development of a variety of nearly-linear time numerical

and graph algorithms for solving large sparse matrices, graph-based semi-supervised

learning (SSL), computing the stationary distributions of Markov chains and person-

alized PageRank vectors, spectral graph partitioning, data clustering, max-flow of

undirected graphs, etc [11, 14, 32, 48, 51, 89, 91, 92, 93, 94].

14

�

6SHFWUDO�*UDSK�6LPLODULW\

/DSODFLDQ�TXDGUDWLF�IRUPV�FDQ�WHOO�LI�WZR�JUDSKV�DUH�VLPLODU�

7 7
* 3[/ [[/ [|

 �

|

,I�IRU�DQ\�UHDO�YHFWRU�[�

UDSKV��DQG�3�DUH������VSHFWUDOO\�VLPLODU�LI�IRU�DOO�[��V
^: 26^
V

d ^: 2-^dV ^
: 26^

6SHFWUDO�
6LPLODULW\�

Figure 1.2: Two spectrally similar graphs G and P.

Spectral graph sparsification aims to find a spectrally-similar subgraph (sparsi-

fier) P = (V,EP , wP) that has the same set of vertices of the original graph

G = (V,EG, wG), but much fewer edges, as shown in Figure 1.2. There are two

types of sparsification methods: the cut sparsification methods preserve the cut value

through random sampling of edges [6], whereas spectral sparsification methods pre-

serve the graph spectral (structural) properties, such as distances between vertices,

cuts in the graph, as well as the stationary distributions of Markov chains [14, 94].

Therefore, spectral graph sparsification is a much stronger notion than cut sparsifica-

tion. We say G and its subgraph P are ��spectrally similar if the following condition

holds for all real vectors x 2 RV :

x>LPx

�
 x>LGx  �x>LPx, (1.2)

where LG and LP denote the Laplacian matrices of graph G and P , respectively.

Define the relative condition number as (LG,LP) = �max/�min, where �max and �min

15

�

*HQHUDOL]HG�(LJHQYDOXHV�RI�6SDQQLQJ�7UHH�3UHFRQGLWLRQHUV

� 7UHH�SUHFRQGLWLRQHUV�KDYH�ZHOO�VHSDUDWHG�ODUJH�HLJHQYDOXHV

� �VW
�
3 *� �VW

�
3 *� �VW 3 *

N

�O�O�ONO

� �V W
�

3 *

«

� ,W�LV�SRVVLEOH�WR�GUDPDWLFDOO\�UHGXFH��������������E\�DGGLQJ�RII�WUHH�HGJHV
����

N 26
�2-� �

>�@�'�$��6SLHOPDQ���$OJRULWKPV��JUDSK�WKHRU\��DQG�OLQHDU�HTXDWLRQV�LQ�/DSODFLDQ�PDWULFHV��,&0¶��

/RZ�6WUHWFK�6SDQQLQJ�7UHH

6SDQQLQJ�WUHH�HGJH 2II�WUHH�HGJH

6SHFWUDO�6SDUVLILHU

Figure 1.3: A spanning tree and its ultra-sparsifier subgraph.

are the largest and smallest nonzero eigenvalues of

LGu = �LPu, (1.3)

where u is the generalized eigenvector of LG. It can be further shown that

(LG,LP)  �2, which indicates that a smaller relative condition number or �2

corresponds to a higher spectral similarity.

For complete graphs, Ramanujan graphs are the best spectral sparsifiers, whereas for

general graphs the Twice-Ramanujan sparsifiers are the best but will need O(mn3)

time for constructing sparsifiers, where m = |E| and n = |V | [5]. For general graphs,

the state-of-the-art nearly-linear time spectral sparsification methods rely on extract-

ing Low-Stretch Spanning Trees (LSSTs) that have been key to the development

of nearly-linear time algorithms for solving SDD matrices [27, 48, 51, 89, 90, 92],

which typically involve the following steps: 1) extracting a low-stretch spanning tree

from the original graph to form the backbone of the graph sparsifier; 2) recovering

16

“spectrally critical” o↵-tree edge to the spanning tree to form an ultra-sparse graph

sparsifier, as shown in Figure 1.3. To this end, an e↵ective-resistance based edge

sampling scheme and spectral perturbation based edge selection scheme have been

proposed for recovering these o↵-tree edges [27, 90], which leads to the development of

much faster SDD matrix solvers [116] and spectral graph partitioning algorithm [28].

Although both methods have a worst-case nearly-linear time complexity, the spectral

perturbation based approach is considered more practically e�cient for dealing with

general large networks.

17

Chapter 2

E↵ective-Resistance Preserving

Spectral Reduction of Graphs

2.1 Background

There are two major ways to simplify a graph: graph sparsification aims to reduce the

number of edges, while graph coarsening reduces the number of graph nodes. Graph

sparsification and coarsening have been widely used in the applications of graph

clustering and partitioning [20, 43, 84, 102], as well as data (graph) visualization

[35, 45, 101]

Di↵erent graph sparsification techniques have been proposed. Graph spanners [24, 77]

19

were proposed to preserve the pair distances between nodes. Bencztir and Kargert

[6, 7] then introduced the cut sparsifier, which can preserve cut values between the

original graph and the sparsified graph. Later, Spielman and Teng [94] proposed

the spectral sparsifier for preserving the key eigenvalues and eigenvectors, which is a

stronger notation than the cut sparsifier. Since then, more spectral related sparsifi-

cation methods are proposed, like the spectral preservation of pseudoinverse for the

graph Laplacian by Li [59].

Compared to the solid theoretical work on the graph sparsification, graph coarsening

is harder to understand due to the lack of mature theoretical frameworks. A variety of

spectral coarsening schemes have been proposed, but the majority of the algorithms

are based on heuristics. [23] proposed the Kron reduction of the graph based on

the Schur complement. Purohit et al. [80] introduced the CoarseNet that is able to

coarsen while preserving the largest eigenvalue of its adjacency matrix, such that the

di↵usion characteristics of the original graph can be kept. Loukas and Vandergheynst

[66, 67] proposed a theoretical framework that proves the spectral preservation of the

original graph after coarsening based on the concept of the restricted spectral similar-

ity. Recently, Bravo-Hermsdor↵ and Gunderson [36] proposed a unified framework of

graph sparsification and coarsening which aims to preserve the Laplacian pseudoin-

verse on the reduced graph.

20

2.2 Spectral Reduction of Graphs

2.2.1 Overview

Graph Density?

B. Spectral Graph
Sparsification & Scaling

Spectrally Reduced Graph

Spectral Graph Reduction

Reduced
Graph

Original Graph

A. Spectrum-Preserving
Node Reduction

B. Spectral Graph
Sparsification & Scaling

A. Spectrum-Preserving
Node Reduction

Low High

C. Effective-Resistance
Preserving Post Scaling

Original
Graph

Sparsified
Reduced Graph

A.

B & C

Figure 2.1: The proposed spectral reduction framework.

In the following, assume that G = (V,EG, wG) is a weighted, undirected, and

connected graph, P = (V,EP , wP) is the spectrally sparsified graph of G, R =

(VR, ER, wR) is the reduced graph of G without sparsification, and S = (VR, ES, wS)

is the sparsified reduced graph of G. The Laplacian matrices of the corresponding

graphs have been shown in Table 2.1 that also includes the fine-to-coarse (G-to-R)

21

Table 2.1
Symbols and their denotations in this work

Symbol Denotation Symbol Denotation
G = (V,EG, wG) The Original Graph LG Lap. of G
P = (V,EP , wP) Spectrally-Spar. G LP Lap. of P
R = (VR, ER, wR) Reduced G w/o spar. LR Lap. of R
S = (VR, ES, wS) Reduced G w/ spar. LS Lap. of S
HR

G 2 RVR⇥V G-to-R mapping HG
R 2 RV⇥VR R-to-G mapping

graph mapping matrix denoted by HR
G as well as the coarse-to-fine (R-to-G) graph

mapping matrix denoted by HG
R.

This work introduces a spectral graph reduction framework (as shown in Figure 2.1)

that allows computing much smaller yet spectrally-similar graph S such that the

following condition holds for all real vectors x 2 RV:

xR
>LSxR

�
 x>LGx  �xR

>LSxR, xR = HR
Gx. (2.1)

An overview of the proposed method for spectral reduction of large graphs is de-

scribed as follows. Our approach for spectral reduction of undirected graphs includes

the following two phases: Phase (A) will determine the fine-to-coarse graph map-

ping operator using spectral node proximity measurement computed based on alge-

braic distance [10], and reduce the original graph into a much smaller graph using

the fine-to-coarse graph mapping operator; Phase (B) will extract spectrally-similar

sparsifiers of the original (reduced) graph and scale up edge weights in the sparsified

22

graphs to better match the key spectral (structural) properties, such as the eigenval-

ues/eigenvectors of graph Laplacians. Phase (C) will globally scale up the sparsified

(reduced) graph for matching the original Laplacian eigenvalues and e↵ective resis-

tances between nodes. Since the spectral node proximity metric based on algebraic

distance cannot be directly applied to dense graphs [10], our approach will first exam-

ine the average node degrees in the original graph: if the original graph is relatively

sparse (|EG| < 40|V |), Phases (A) to (C) will be performed in sequence as shown

in Figure 2.1; otherwise, if the original graph is too dense (|EG| > 40|V |), Phase

(B) for spectral graph sparsification and edge scaling will be performed first, which

is followed by Phase (A) and Phase (C).

2.2.2 Phase (A): Spectrum-Preserving Node Reduction

2.2.2.1 Spectral node a�nity metric.

To generate the reduced graph based on the original graph, a spectrum-preserving

node aggregation scheme is applied based on spectral node a�nity ap,q defined as

follows for neighboring nodes p and q [10, 64]:

ap,q =
k(Xp,:,Xq,:)k2

(Xp,:,Xp,:)(Xq,:,Xq,:)
, (Xp,:,Xq,:) = ⌃K

k=1(x
(k)
p · x(k)

q) (2.2)

23

whereX = (x(1), . . . ,x(K)) includesK test vectors computed by applying a few Gauss-

Seidel (GS) relaxations for solving the linear system of equations LGx(i) = 0 for

i = 1, ..., K with K random vectors that are orthogonal to the all-one vector 1 or

equivalently satisfying 1>x(i) = 0. Let x̃(i) denote the approximation of the true so-

lution x(i) after applying several GS relaxations to LGx(i) = 0. Due to the smoothing

property of GS relaxation, the latest error can be expressed as e(i)s = x(i) � x̃(i), which

will only contain the smooth (low-frequency) modes of the initial error, while the os-

cillatory (high-frequency) modes of the initial error will be e↵ectively eliminated [8].

Based on the K smoothed vectors in X, it is possible to embed each node into a K-

dimensional space such that node p and node q are considered spectrally-close enough

to each other if their low-dimensional embedding vectors xp 2 RK and xq 2 RK are

highly correlated. Spectrally-similar nodes p and q can be then aggregated together

for node reduction purpose.

2.2.2.2 Spectral similarity between nodes.

It has been shown that the node a�nity metric ap,q can usually e↵ectively reflect the

distance or strength of connection between nodes p and q in a graph [64]: a larger

ap,q value indicates a stronger spectral similarity (correlation) between nodes p and

q. Consequently, the nodes with large a�nity should be aggregated together to form

the nodes in the reduced graph. Once node aggregation schemes are determined, the

24

graph mapping operators (HR
G and HG

R) can be obtained and leveraged for construct-

ing spectrally-reduced graphs. For example, the reduced Laplacian can be computed

by LR = HR
GLGHG

R, which uniquely defines the reduced graph.

We emphasize that the node aggregation (reduction) scheme based on the above

spectral node a�nity calculations will have a (linear) complexity of O(|EG|) and thus

allow preserving the spectral (global or structural) properties of the original graph

in the reduced graph in a highly e�cient and e↵ective way: the smooth components

in the first few Laplacian eigenvectors can be well-preserved after node aggregation,

which is key to preserving the first few (bottom) eigenvalues and eigenvectors of the

original graph Laplacian in the reduced graphs [68].

2.2.2.3 Limitations when dealing with dense graphs.

The above node reduction scheme based on the algebraic distance metric may not

be reliable when applied to dense graph problems. Since each node in the dense

graph will typically connect to many other nodes, running a few GS relaxations will

result in many nodes seemingly close to each other and can lead to rather poor node

aggregation results. For example, an extreme case is to directly apply the above node

aggregation scheme to a complete graph where each node has |V |�1 edges connecting

to the rest of the nodes: since applying GS relaxations will immediately assign the

25

same values to all nodes, no meaningful clusters of nodes can be identified. As shown

in our experiment results, it is not possible to use the above node a�nity metric

for aggregating nodes for the “appu” graph [17] that has high average node degrees

(|EG|/|V | ⇡ 90).

To this end, we propose to perform a spectral sparsification and scaling procedure

(Phase (B)) before applying the node aggregation (reduction) phase. Such a scheme

will allow extracting ultra-sparse yet spectrally-similar subgraphs and subsequently

aggregate nodes into clusters using the above node a�nity metric. As a result, the

spectral graph reduction flow proposed in this work can be reliably applied to handle

both sparse and dense graphs, as shown in Figure 2.1.

2.2.3 Phase (B): Spectral Graph Sparsification and Scaling

2.2.3.1 Copping with high graph densities.

The proposed spectral node aggregation scheme in Section 2.2.2 will enable us to

reliably construct smaller graphs that have fewer vertices. However, the aggregated

nodes may potentially result in much denser graphs (with significantly higher node

degrees), which may incur even greater computational and memory cost for graph

operations. For example, emerging multi-way spectral graph partitioning (clustering)

26

algorithms [55, 78] are required to compute multiple Laplacian eigenvectors, which

can still be very costly for dense graphs since the e�ciency of modern eigensolvers or

eigendecomposition methods strongly depend on the matrix sparsity [57, 83, 106].

To address the challenging issues caused by relatively dense graphs, we propose the

following highly e↵ective yet scalable algorithms in Phase (B): the nearly-linear

time spectral graph sparsification and subgraph scaling schemes for handling dense

graphs G. Note that when Phase (B) is applied for a sparse input graph, the same

procedures can be applied to the reduced graph R (with potentially higher density) for

computing S after the node aggregation scheme or the fine-to-coarse graph mapping

operator is determined.

2.2.3.2 Spectral approximation with spanning tree subgraphs.

Denote the total stretch of the spanning-tree subgraph P with respect to the original

graph G to be stP (G), which can be calculated by the following formular:

stP (G) =
P

e2G\P |ce| (2.3)

where ce is the unique cycle in T [{e}. Spielman showed that L+
P
LG has at most

k generalized eigenvalues greater than stP (G)/k [95]. It has been shown that every

graph has a low-stretch spanning tree (LSST) with bounded total stretch [95], which

27

leads to:

(LG,LP)  Tr(L+
P
LG) = stP (G)  (m log n log log n), (2.4)

where m = |EG|, n = |V |, and Tr(L+
P
LG) is the trace of L+

P
LG. Such a result

motivates to construct an ultra-sparse yet spectrally-similar subgraphs by recovering

only a small portion of important o↵-tree edges to the spanning tree. For example,

a recent spectral perturbation framework [27, 28] allows constructing the �-similar

spectral sparsifiers with O(m log n log log n/�2) o↵-tree edges in nearly-linear time.

2.2.3.3 Towards better approximation with o↵-tree edges.

To reduce the spectral distortion between the original graph and the spanning tree, a

spectral o↵-tree edge embedding scheme and edge filtering method with approximate

generalized eigenvectors have been proposed in [27, 28], which is based on following

spectral perturbation analysis:

LG(ui + �ui) = (�i + ��i)(LP + �LP)(ui + �ui), (2.5)

where a perturbation �LP is applied to LP , which results in perturbations in general-

ized eigenvalues �i + ��i and eigenvectors ui + �ui for i = 1, . . . , n, respectively. The

28

first-order perturbation analysis [27] leads to:

� ��i

�i

= u>
i
�LPui, (2.6)

which indicates that the reduction of �i is proportional to the Laplacian quadratic

form of �LP with the generalized eigenvector ui. Therefore, if the dominant eigenvec-

tor un is applied, the largest generalized eigenvalue �n can be significantly reduced by

properly choosing �LP that includes the set of o↵-tree edges and their weights. Once

the largest generalized eigenvalue becomes su�ciently small, the distortion between

subgraph P and the original graph G will be greatly reduced.

An alternative view of such a spectral embedding scheme is to consider the following

Courant-Fischer theorem for generalized eigenvalue problems:

�n = max
|x| 6=0

x>1=0

x>LGx

x>LPx
⇡ max

|x| 6=0

x(p)2{0,1}

x>LGx

x>LPx
= max

|@G(Q)|
|@P (Q)| , (2.7)

where 1 is the all-one vector, the node set Q is defined as

Q
def
= {p 2 V : x(p) = 1} , (2.8)

and the boundary of Q in G is defined as

@G(Q)
def
= {(p, q) 2 EG : p 2 Q, q /2 Q} , (2.9)

29

which will lead to

x>LGx = |@G(Q)|,

x>LPx = |@P (Q)|.
(2.10)

According to (2.7), �max = �n will reflect the largest mismatch of the boundary (cut)

size between G and P , since finding the dominant generalized eigenvector is similar

to finding the node set Q such that |@G(Q)|
|@P (Q)| or the mismatch of boundary (cut) size

between the original graph G and subgraph P is maximized. Once Q or @P (Q) can be

identified by spectral graph embedding using dominant generalized eigenvectors, the

edges in @G(Q) can be selected and recovered to P to reduce the maximum mismatch

or �n.

Denote ep 2 RV to be the elementary unit vector with only the p-th element being

1 and others being 0, and we denote ep,q = ep � eq. Then by including the o↵-tree

edges, the generalized eigenvalue perturbation can be expressed as follows:

� ��i

�i

= u>
i
�LP,maxui =

X

(p,q)2EG\EP

wG(p, q)
�
eT
p,q
ui

�2
, (2.11)

where �LP,max = LG � LP , and wG(p, q) denotes the weight of edge (p, q) in the

original graph. The spectral criticality cp,q of each o↵-tree edge (p, q) is defined as:

cp,q = wG(p, q)
�
eT
p,q
un

�2
. (2.12)

30

If we consider the undirected graph G to be a resistor network, and un to be the

voltage vector for that resistor network, cp,q can be regarded as the edge Joule heat

(power dissipation). Consequently, the most spectrally critical o↵-tree edges from

@G(Q) can be identified and recovered into LSST for spectral graph topology spar-

sification by (2.12), which allows improving spectral approximation in the subgraph

by dramatically reducing the �n. In practice, approximate generalized eigenvec-

tors computed through a small number of generalized power iterations will su�ce

for low-dimensional spectral o↵-tree edge embedding, which can be realized as follows:

(1) Compute an approximate eigenvector ht by applying t-step generalized power

iterations on an initial vector h0 =
nP

i=1
↵iui:

ht =
�
L+

P
LG

�t
h0 =

nX

i=1

�iuiu
T

i

!t
nX

i=1

↵iui =
nX

i=1

↵i�
t

i
ui; (2.13)

(2) Compute the quadratic form for o↵-tree edges with ht:

� ��i
�i
⇡ ht

>�LP,maxht =
nP

i=1
(↵i�t

i
)2(�i � 1)

=
P

(p,q)2EG\EP

wG(p, q)
�
eT
p,q
ht

�2
=

P
(p,q)2EG\EP

c̃p,q,

(2.14)

where c̃p,q denotes the approximate spectral criticality of each o↵-tree edge (p, q).

It should be noted that using k vectors computed by (2.13) will enable to embed

31

each node into a k-dimensional generalized eigenspace, which can facilitate edge

filtering from @G(Q) to avoid recovering similar edges into P . In this work, we choose

t = 2, which already leads to consistently good results for a large variety of graph

problems. To achieve more e↵ective edge filtering for similarity-aware spectral graph

sparsification, an incremental graph densification procedure [28] will be adopted in

this work. During each graph densification iteration, a small portion of “filtered” o↵-

tree edges will be added to the latest spectral sparsifier, while the spectral similarity

is estimated to determine if more o↵-tree edges are needed.

2.2.3.4 Subgraph scaling via constrained optimization.

To aggressively limit the number of edges in the subgraph P while still achieving a

high quality approximation of the original graph G, we propose an e�cient spectral

scaling scheme for scaling up edge weights in the subgraph P to further reduce the

largest mismatch or �n. The dominant eigenvalue perturbation ��n can be expressed

in terms of edge weight perturbations as follows:

� ��n

�n

= u>
n
�LPun =

X

(p,q)2EP

�wP (p, q)
�
e>
p,q
un

�2
, (2.15)

32

which directly gives the sensitivity of �n with respect to each edge weight wP (p, q) in

graph P :

��n

�wP (p, q)
= ��n

�
e>
p,q
un

�2 ⇡ ��n

�
e>
p,q
ht

�2
. (2.16)

The (approximate) sensitivity expressed in (2.16) can be leveraged for finding a proper

edge weight scaling factor for each edge in P such that �n will be reduced. Since scal-

ing up edge weights in P will result in the monotonic decrease of both �n and �1,

it is likely that �1 will decrease at a faster rate than �n, which leads to a degraded

spectral similarity between G and P . To avoid such a degradation in spectral ap-

proximation quality, we propose the following methods for estimating the extreme

generalized eigenvalues �n and �1, which allows us to more properly scale-up edge

weights in P .

The largest eigenvalues of L+
P
LG are well separated from each other [95]; hence, we can

accurately calculate the largest eigenvalue (�n) by performing only a small number

of generalized power iterations with an initial random vector. Since the generalized

power iterations can converge at a geometric rate governed by �n�1/�n, the error of

the estimated largest generalized eigenvalue will drop to |�n�1/�n|ke0 after k iterations

for an initial error e0. As a result, only a few (five to ten) iterations will be su�cient

to compute a good estimation of �n for well-separated largest eigenvalues that lead to

small �n�1/�n. To gain scalable runtime performance, we will leverage recent graph-

theoretic algebraic multigrid (AMG) algorithms for solving the sparsified Laplacian

33

matrix LP [64, 116].

Since the smallest eigenvalues of L+
P
LG are crowded together, using (shifted) inverse

power iterations may not be e�cient due to the slow convergence caused by relatively

poor separation of smallest eigenvalues. To more e�ciently estimate the smallest

generalized eigenvalue, we leverage the Courant-Fischer theorem for approximately

computing the smallest generalized eigenvalues:

�1 = �min = min
|x| 6=0

x>1=0

x>LGx

x>LPx
, (2.17)

which indicates that the key to locating the smallest generalized eigenvalues is to find

a vector x that minimizes the ratio between the quadratic forms of the original and

sparsified Laplacians. In our method, we will require every element in x to only take

a value 1 or 0 for each node in both G and P for minimizing the following ratio, which

will lead to a good estimation for �1:

�1 ⇡ min
|x| 6=0

x(p)2{0,1}

x>LGx

x>LPx
= min

|x| 6=0

x(p)2{0,1}

P
x(p) 6=x(q),(p,q)2EG

wG(p, q)

P
x(p) 6=x(q),(p,q)2EP

wP (p, q)
, (2.18)

To this end, we initialize all nodes with the same value of 0 and only select a single

node p to be assigned with a value of 1, which leads to:

�1 ⇡ min
p2V

dG(p)

dP (p)
, (2.19)

34

where dG and dP are the diagonal vectors of LG and LP satisfying dG(p) = LG(p, p)

and dP (p) = LP (p, p). (2.19) indicates that �1 can be well approximated in linear

time by finding the node with minimum weighted degree ratio of G and P .

Based on the above scalable methods for estimating the extreme eigenvalues �1 and �n

of L+
P
LG, as well as the weight sensitivity in (2.16), the following constrained nonlinear

optimization framework for scaling up edge weights in P has been proposed.

minimize: �n(wP)

s. t.:

(a) LGui = �iLPui, i = 1, ..., n;

(b) �
max

= �
n
� �

n�1... � �1 = �
min

;

(c) �(f)
1 � �(0)

1 ��1 .

(2.20)

In the above formulation, �(0)
1 and �(f)

1 represent the smallest nonzero eigenvalue

before and after subgraph scaling, respectively. ��1 represents the upper bound of

reduction factor in �(0)
1 after edge scaling. (2.20) aims to minimize �n by scaling up

subgraph edge weights while limiting the decrease in �1.

A constrained SGD algorithm with momentum [96] has been proposed for iteratively

35

Algorithm 1 Edge Scaling via Constrained SGD Iterations

Input: LG, LP , dG, dP , �
(0)
1 , �(0)n , ��1 , ↵, ⌘max, ✏, and Kmax

Output: L̃P with scaled edge weights

1: Initialize: k = 1, ⌘(1) = ⌘max, ��1 =
�
��1

� 1
Kmax ;

2: For each subgraph edge (p, q) 2 EP , initialize �w
(1)
P

(p, q) = 0;

3: while
⇣
��

(k)
n

�
(k)
n

� ✏
⌘
^ (k  Kmax) do

4: Compute approximate eigenvector h(k)
t

by (2.13);
5: for each edge (p, q) 2 EP do

6: s
(k)
p,q := ��(k)n

⇣
e>p,qh

(k)
t

⌘2
by (2.16);

7: �w
(k+1)
P

(p, q) := ↵�w
(k)
P

(p, q)� ⌘(k)s(k)p,q ;

8: �(p) := dG(p)

dP (p)+�w
(k+1)
P (p,q)

;

9: �(q) := dG(q)

dP (q)+�w
(k+1)
P (p,q)

;

10: if min (�(p),�(q))  �(k)1 ��1 then

11: �wp :=
dG(p)

�
(k)
1 ��1

� dP (p);

12: �wq :=
dG(q)

�
(k)
1 ��1

� dP (q);

13: �w
(k+1)
P

(p, q) := min (�wp,�wq);
14: end if
15: wP (p, q) := wP (p, q) +�w

(k+1)
P

(p, q);

16: dP (p) := dP (p) +�w
(k+1)
P

(p, q);

17: dP (q) := dP (q) +�w
(k+1)
P

(p, q);
18: end for
19: ⌘

(k+1) := �
(k)
n

�
(0)
n
⌘max;

20: k := k + 1;

21: Update �(k)1 & �
(k)
n by (2.19);

22: ��(k)n := �
(k�1)
n � �(k)n ;

23: end while
24: Return the sparsified graph.

scaling up edge weights, as shown in Algorithm 1. The algorithm inputs include: the

graph Laplacians LG and LP , vectors dG and dP for storing diagonal elements in

Laplacians, the initial largest and smallest generalized eigenvalues �(0)
n and �(0)

1 , the

upper bound reduction factor ��1 for �1, the coe�cient ↵ for combining the previous

and the latest updates during each SGD iteration with momentum, the maximum step

36

size ⌘max for update, as well as the SGD convergence control parameters ✏ and Kmax.

Lines 1-2 initialize parameters for the following SGD iterations. Line 3 monitors

the convergence condition for SGD iterations. Lines 6-7 compute the weight update

in SGD using the latest sensitivity and the previous update (momentum). Lines

8-17 check the impact on �1 due to weight update: if �1 decreases significantly, an

upper bound for weight update is applied; otherwise, directly apply the weight update

computed in the previous steps.

2.2.4 Phase (C): E↵ective-Resistance Preserving Post Scal-

ing

The last phase of our approach for spectral reduction of graphs is to globally scale up

edge weights in the sparsified reduced graph to further improve the spectral approx-

imation quality. Consider the following analysis for undirected graphs. Denote the

non-decreasing eigenvalues and the corresponding unit-length, mutually-orthogonal

eigenvectors of LG by ⇣1 � · · · > ⇣n = 0, and !1, · · · ,!n, respectively. Then the

following spectral decompositions of LG and L+
G
always hold:

LG =
n�1X

i=1

⇣i!i!
>
i
, L+

G
=

n�1X

j=1

1

⇣j
!j!

>
j
, (2.21)

37

which leads to the following e↵ective resistance between nodes p and q in G:

RG

e
(p, q) = eT

pq
L+

G
epq =

n�1X

i=1

1

⇣i

�
eT
pq
!i

�2
. (2.22)

(2.22) shows a close connection between the e↵ective resistance metric and the first

few Laplacian eigenvalues and eigenvectors. If we consider the graph as a resistor

network with each conductance value corresponding to each edge weight, RG

e
(p, q)

can be regarded as the power dissipation of the resistor network when a unit current

is flowing into node p and out from node q. By replacing the current vector epq

with a random vector b? 2 Rn orthogonal to the all-one vector, it can be shown

that matching the energy dissipated in the reduced graph and the original graph will

immediately lead to improved approximation of the first few Laplacian eigenvalues

and eigenvectors associated with the reduced graph.

It should be noted that the above scheme requires solving the original and reduced

Laplacians once for finding the scaling factor, which can be achieved in almost-linear

time leveraging graph-theoretic Laplacian solvers [64, 116].

2.2.5 Algorithm Complexity of The Proposed Spectral

Graph Reduction Approach

38

Algorithm 2 Algorithm Flow for Spectral Graph Reduction
Input: Original graph Laplacian LG, user-defined reduction ratio , graph density
threshold �max

1: Calculate graph density by � = |EG|
|V | ;

2: if � < �max then
3: Do node reduction (Phase A) on graph G to get graph R;
4: Apply spectral sparsification and edge scaling vis SGD (Phase B) on graph R to get

graph S;
5: else
6: Apply spectral sparsification and edge scaling vis SGD (Phase B) on graph G to get

graph P ;
7: Do node reduction (Phase A) on graph P to get graph S;
8: end if
9: Performance post edge scaling scheme.
10: Return graph S and LS .

The complete algorithm flow for the proposed spectral graph reduction approach

has been shown in Algorithm 2. The algorithm complexity of Phase (A) for

the spectrum-preserving node reduction procedure is O(|EP |) for dense graphs and

O(|EG|) for sparse graphs, the complexity of Phase (B) for spectral graph sparsifi-

cation and edge scaling by SGD iterations is O(|EG| log (|V |)) for dense graphs and

O(|ES| log (|VR|)) for sparse graphs. Therefore, the worse-case algorithm complexity

of the proposed spectral graph reduction method is O(|EG| log (|V |)). while the com-

plexity of Phase (C) for post scaling is O(|EG|) when the recent graph-theoretic

AMG solvers are leveraged [64, 116] for solving the original Laplacian matrix LG.

Therefore, the worse-case algorithm complexity of the proposed spectral graph re-

duction method is O(|EG| log (|V |)).

39

2.2.6 Solution Refinement by Graph Filters

2.2.6.1 Graph Signal Processing and Spectral Sparsification/Reduction

To e�ciently analyze signals on undirected graphs, graph signal processing techniques

have been extensively studied in recent years [87]. There are analogies between tradi-

tional signal processing or classical Fourier analysis and graph signal processing [87]:

(1) The signals at di↵erent time points in classical Fourier analysis correspond to

the signals at di↵erent nodes in an undirected graph; (2) The more slowly oscillating

functions in time domain correspond to the graph Laplacian eigenvectors associated

with lower eigenvalues or the more slowly varying (smoother) components across the

graph. The spectrally sparsified/reduced graphs can be regarded as “low-pass” fil-

tered graphs, which have retained as few as possible edges/nodes for preserving the

slowly-varying or “low-frequency” signals on the original graphs. Consequently, spec-

trally sparsified/reduced graphs will be able to preserve the eigenvectors associated

with low eigenvalues more accurately than high eigenvalues.

40

2.2.6.2 Solution Error due to Spectral Sparsification

Denote the non-decreasing eigenvalues and the corresponding unit-length, mutually-

orthogonal eigenvectors of LG by 0 = ⇣1 < ⇣2  · · ·  ⇣n, and !1, · · · ,!n, respectively.

Similarly denote the eigenvalues and eigenvectors of LP by 0 = ⇣̃1 < ⇣̃2  · · ·  ⇣̃n and

!̃1, · · · , !̃n, respectively. It should be noted that both !1 and !̃1 are the normalized

all-one vector 1/
p
n. Then the following spectral decompositions of LG and LP will

hold:

LG =
nX

i=1

⇣i!i!
>
i ,LP =

nX

i=1

⇣̃i!̃i!̃
>
i . (2.23)

We assume that the k smallest eigenvalues and their eigenvectors of LG have been

pretty well-preserved in LP , while the remaining n � k eigenvalues and eigenvectors

are not. Consequently the following approximate spectral decompositions of LP will

hold:

LP ⇡
kX

i=1

⇣i!i!
>
i
+

nX

i=k+1

⇣̃i!̃i!̃
>
i . (2.24)

In the following, we show that using spectrally-sparsified graphs for solving sparse

matrix problems will only result in solution errors that can be expressed with eigenvec-

tors associated with large eigenvalues, while the error analysis for spectrally-reduced

graphs will be quite similar and omitted in this work. Consider the following SDD

41

matrix solution problem:

(LG + �I)x = b?, (2.25)

where b? 2 Rn is a random right-hand-side (RHS) vector orthogonal to the all-one

vector 1, � is a small positive real value added to graph Laplacian for modeling

boundary conditions, and I 2 Rn⇥n is an identity matrix that can be written as

follows:

I =
nX

i=1

!i!
>
i ⇡

kX

i=1

!i!
>
i
+

nX

i=k+1

!̃i!̃
>
i , (2.26)

we can rewrite LG + �I as follows:

LG + �I =
nP

i=1
(⇣i + �)!i!>

i . (2.27)

Consequently, x can be written as:

x =
nX

i=1

!i!>
i b

?

⇣i + �
. (2.28)

Let x̃ denote the approximate solution obtained with LP :

x̃ ⇡
nX

i=k+1

!̃i!̃>
i b

?

⇣̃i + �
+

kX

i=1

!i!>
i b

?

⇣i + �
, (2.29)

42

which allows us to express the error vector e as:

e = x� x̃ ⇡
nX

i=k+1

✓
!i!>

i b
?

⇣i + �
� !̃i!̃>

i b
?

⇣̃i + �

◆
. (2.30)

(2.30) indicates that when using the sparsified graph Laplacian for solving the SDD

matrix, the solution error can be expressed as a linear combination of eigenvectors

corresponding to large Laplacian eigenvalues. Therefore, the error due to the sparsi-

fied graph Laplacian will be a combination of high frequency signals on graphs, which

thus can be e�ciently filtered out using “low-pass” graph signal filters [87].

2.2.6.3 Solution Refinement by Smoothing

Weighted-Jacobi or Gauss-Seidel methods, which have been widely adopted in mod-

ern iterative methods for solving large sparse matrices [83], such as the smoothing

(relaxation) function in multigrid algorithms [64], can be applied for filtering out such

high-frequency error signals on graphs. This work adopts a weighted-Jacobi iteration

scheme for filtering eigenvectors on the graph, see Algorithm 3. The algorithm inputs

include the original Laplacian matrix LG that has been decomposed into a diagonal

matrix DG and an adjacency matrix AG, the approximate solution vectors obtained

using sparsified Laplacian LP , as well as the weight # and iteration number Niter for

signal filtering.

43

Algorithm 3 Solution Refinement Algorithm
Input: LG = DG �AG, x̃1,..., x̃k, #, Niter;

1: For each of the approximate solution vectors x̃1,..., x̃k, do
2: for i = 1 to Niter do
3: x̃(i+1) = (1� #)x̃(i) + #D�1

G
AGx̃(i)

4: end for
5: Return the solution vectors x̃1,..., x̃k.

2.3 Spectral Reduction for Multilevel Graph Par-

titioning and Data Visualization

In this section, multilevel frameworks that leverages spectrally-reduced graphs for

accelerated spectral graph partitioning as well as accelerated t-distributed Stochastic

Neighbor Embedding (t-SNE) of large data sets are introduced. A more in-depth

discussion of spectral partitioning and data clustering can be found in the Appendix.

2.3.1 Multilevel Laplacian Eigensolver for Scalable Spectral

Graph Partitioning

The k-way spectral graph partitioning (clustering) algorithm is described in Algo-

rithm 4 [85, 100]; the Laplacian eigensolver (line 2) is usually the computational bot-

tleneck when working with large graphs. Here, we proposed a multilevel Laplacian

44

Eigensolver

Eigenvector Mapping

Eigenvector Smoothing

No

Yes

Multilevel Eigensolver

Vector Orthogonalization

Finest Level?

Final K Eigenvectors

Spectrally Reduced Graph

Original
Graph

Reduced
Graph

Sparsified
Reduced Graph

A

B

Figure 2.2: Multilevel Laplacian eigensolver for spectral graph partitioning.

Algorithm 4 K-Way Spectral Graph Partitioning
Input: Laplacian matrix LG = DG �AG, number of partitions k ;

1: Let BG = I(ratio cut) or BG = DG (normalized cut);
2: Compute the first k eigenvectors u1, · · · ,uk of eigenproblem LGui = �iBGui for i =

1, · · · , k;
3: Form the matrix U 2 IRnxk with vectors u1, · · · ,uk as columns;
4: Cluster the k-dimensional points defined by the rows of U with k-means algorithm;
5: Return partition S1, · · · , Sk;

eigensolver for more e�ciently solving eigenvalue problems by leveraging spectrally-

reduced graphs. Note that only the first few nontrivial eigenvectors of the original

graph Laplacian are needed for spectral partitioning (clustering).

The algorithm flow of the proposed multilevel eigensolver is shown in Figure 2.2.

Instead of directly computing the first k eigenvectors of the generalized eigenvalue

45

problem LGui = �iBGui, we will first reduce the original graph G into a much smaller

graph S with the multilevel graph reduction scheme such that the eigenvectors of the

reduced graph can be e�ciently calculated. Next, we will map the eigenvectors of

the reduced graph Laplacian onto a finer level using the graph mapping operators

(as shown Table 2.1) determined during node aggregation procedure (Phase A). To

further improve the approximation quality of these eigenvectors, we apply an eigen-

vector refinement (smoothing) procedure similar to Algorithm 3. The eigenvector

mapping and smoothing procedures are recursively applied until the finest-level graph

is reached. Finally, all eigenvectors for the finest-level graph will be orthonormalized

using the Gram-Schmidt process.

The proposed eigenvector smoothing process essentially finds an approximate solution

to the following equations for i = 1, · · · , k:

(L�

G � �⌥
i
B�

G)u
�

i = 0, (2.31)

where L�

G = D�

G �A�

G is the Laplacian on level � after graph reduction, where � = 1

represents the finest level. We use ⌥ for denoting the coarsest (bottom) level, where

L⌥
G
= LS; B�

G = I will be used for ratio cut and B�

G = D�

G for normalized cut (see

Section A.1 in the Appendix for more details); �⌥
i

is the eigenvalue of following

generalized eigenproblem:

46

L⌥
G
u⌥
i
= �⌥

i
B⌥

G
u⌥
i

(2.32)

Algorithm 5 Multilevel Laplacian Eigensolver

Input: L1
G
, · · · ,L⌥

G
, H1

2, · · · ,H
⌥�1
⌥ , k;

1: Initialize: j := ⌥, B�

G := I for ratio cut or B�

G := D�

G for normalized cut, where � =
1, · · · ,⌥ ;

2: Compute the first k eigenpairs (�⌥1 ,u
⌥
1), · · · , (�⌥k ,u⌥

k
) of the eigenvalue problem

L⌥
G
u⌥
i
= �

⌥
i
B⌥

G
u⌥
i
for i = 1, · · · k;

3: Form the matrix U⌥ with vectors u⌥
1 , · · · ,u⌥

k
as its columns;

4: while j > 1 do
5: Map Uj from level j to level j � 1 by Uj�1 = Hj�1

j
Uj ;

6: for i = 1 to k do
7: y := Uj�1[: , i], which is the i-th column of Uj�1;
8: Filter vector y by performing a few weighted-Jacobi iterations to (Lj�1

G
�

�
⌥
i
Bj�1

G
)y = 0 ;

9: Update Uj�1[: , i] with the smoothed vector y ;
10: end for
11: j := j � 1;
12: end while
13: Perform orthonormalization to columns of U1;
14: Return U = U1.

The detailed algorithm for multilevel Laplacian eigensolver is shown in Algorithm 5.

The inputs of the algorithm include the Laplacian matrix of each hierarchical level

L�

G
= D�

G
�A�

G
, where � = 1, · · · ,⌥; mapping operator H��1

�
from level � to level

� � 1 ; and the number of eigenvectors k. Spectral partitioning or clustering can be

performed using the eigenvectors computed by Algorithm 5 in a subsequent k-means

clustering step.

47

2.3.2 Multilevel t-SNE Algorithm for Scalable Data Visual-

ization

Spectral Graph Reduction Data Visualization

Data Points Mapping

Spectrum-Preserving
Node Reduction

Spectral Graph
Sparsification

݇-nearest Neighbor
Graph of Data Points

Spectrally Reduced Graph

t-SNE

Original Data Set

Reduced Data Set

Embedded Data Set

Figure 2.3: Multilevel t-SNE algorithm.

Visualization of high-dimensional data is a fundamental problem in data analysis and

is used in many applications, such as medical sciences, physics, and economy. In

recent years, the t-Distributed Stochastic Neighbor Embedding (t-SNE) has become

an e↵ective visualization tool with the capability to perform dimensionality reduction

in such a way that the similar data points in high-dimensional space are embedded

onto nearby locations in low-dimensional space of two or three dimensions with high

probability. However, t-SNE may su↵er from very high computational cost for vi-

sualizing large real-world data sets due to the superlinear computational complexity

O(N2) [69, 99], where N is the number of data points in the data set.

48

Recent research shows that there is a clear connection between spectral graph par-

titioning (data clustering) and t-SNE [63]: the low-dimensional embedding obtained

with t-SNE is closed related to the first few eigenvectors of the corresponding graph

Laplacian that encodes the manifold of the original high-dimensional data points.

This motivates us to leverage the spectrally-reduced graphs for computing similar

t-SNE embedding results by proposing a multilevel t-SNE algorithm, as described in

Algorithm 6 and shown in Figure 2.3.

The main idea of our multilevel t-SNE algorithm is to aggregate the data points that

are closely related to each other on the manifold into much smaller sets, such that

visualizing the reduced data set using t-SNE will be much faster and produce similar

embedding results. To this end, we start by constructing a nearest-neighbor (NN)

graph, such as the k-NN graph, for the original high-dimensional data points. Then

a spectrally-reduced (NN) graph is computed using the proposed spectral reduction

algorithm. Note that for k-NN graphs, the graph sparsification and scaling procedure

(Phase B) will be performed before the spectral node aggregation step (Phase A).

Algorithm 6 Multilevel Data Visualization with t-SNE
Input: Original data set F, number of neighbors k ;

1: Generate k-nearest neighbor (k-NN) graph G based on the data set F ;
2: Generate the spectrally-reduced graph S;
3: Form the mapping operators such that LS = HR

G
LGHG

R
;

4: Form a reduced data set FR by FR = HR

G
F;

5: Embed data points with t-SNE on the reduced data set FR ;
6: Return embedded data points for visualization.

49

2.4 Experimental Results

In this section, extensive experiments have been conducted to evaluate the proposed

spectral graph reduction and its applications to spectral partitioning, hypergraph

partitioning and data visualization with various types of graphs from the DIMACS10

graph collection[3, 4] and hypergraphs from ISPD98 circuit partitioning benchmark

suite [1]. The graphs span various applications, such as finite-element analysis prob-

lems (“fe tooth”, “fe rotor”) [17], numerical simulation graphs (“wing nodal”), clus-

tering graphs (“uk”) and social network graphs (“coAuthorsDBLP” and “coPaper-

sCiterseer”) [17], etc. All experiments were conducted on a single CPU core of a

computing platform running 64-bit RHEL 6.0 with 2.67GHz 12-core CPU and 48GB

DRAM memory.

2.4.1 Results of Spectrum Preservation on Spectrally Re-

duced Graphs

Figure 2.4 shows the spectral drawings [49] of the fe ocean graph and its reduced

graph computed by the proposed spectral graph reduction algorithm using the first

two bottom eigenvectors, where the node and edge reduction ratio are 24X and 58X,

respectively. We observe that the spectral drawings of two graphs are highly similar to

50

Original Graph Spectrally Reduced Graph

Figure 2.4: Spectral drawings of the “fe ocean” graph and its reduced
graph (24X node reduction and 58X edge reduction).

Eigenvalue

N
or

m
al

ize
d

Sm
al

le
st

 E
ig

en
va

lu
e

Figure 2.5: The first 10 normalized eigenvalues of the “fe tooth” graph
under di↵erent node reduction ratios.

each other, which indicates well-preserved spectral properties (Laplacian eigenvectors)

in the reduced graph. Figure 2.5 shows the first few normalized eigenvalues of the

original and reduced graph Laplacians, indicating clearly that the smallest eigenvalues

of the original Laplacian and the reduced Laplacian match to each other even for very

large reduction ratios.

51

Table 2.2
Mean relative errors for the first 10 and 40 eigenvalues.

Graph r
k=10 k=40

loca. (ed) loca. (ng) heav. Kron ours loca. (ed) loca. (ng) heav. Kron ours
airfoil 70% 1.05 0.93 4.74 1.99 0.46 0.88 0.84 2.27 2.08 0.48
yeast 70% 3.50 0.41 3.39 1.87 0.31 2.18 0.45 2.50 1.95 0.32
bunny 70% 0.08 0.32 0.13 1.81 0.16 0.10 0.30 0.13 1.19 0.33

minnesota 70% 4.58 1.87 9.30 1.95 0.34 2.11 1.61 4.16 2.09 0.32

Table 2.3
Edge number for reduced graphs using di↵erent reduction methods.

Graph loca. (ed) loca. (ng) heav. Kron ours
airfoil 3126 3246 3322 589487 1049
yeast 713 779 603 60806 390
bunny 8897 11059 8838 280875 981

minnesota 1264 1259 603 3675 732

We also compared the performance of our proposed method with the following state-

of-the-art graph coarsening methods:

(1) local variation based graph coarsening method [66, 67]. Based on the concept

of restricted spectral approximation, two possible graph contraction methods

were proposed: edge-based contraction (noted as loca. (ed) in the tables) and

neighborhood-based contraction (noted as loca. (ng) in the tables).

(2) heavy edge matching based graph coarsening method (noted as heav. in the

tables), which is widely used for graph partitioning [42] and more recently in graph

embedding [61].

52

(3) Kron reduction method [86]. The benefit of this method is that it can preserve

the important spectral properties; however, the densities of reduced graphs will be

dramatically increased.

To measure the performance of di↵erent spectral coarsening methods, the mean rel-

ative eigenvalue errors between original graphs and reduced graphs are reported in

Table 2.2, where five methods are tested, including local variation with edge and

neighborhood contraction, heavy edge contraction, Kron reduction, as well as our

proposed coarsening method; r represents the reduction ratio, which can be calcu-

lated by 1 � |VS|/|V |; |V | and |VS| are the number of node for the original graph

and the reduced graph, respectively. Given the first k eigenvalues ⇣i and ⇣̃i of the

original graph and the reduced graph, the mean relative error can be calculated by

1
k

P
k

i=1
|⇣i�⇣̃i|

⇣i
[65]. Four di↵erent graphs including airfoil (|V | = 4000, |EG| = 11490)

[79], yeast (|V | = 1458, |EG| = 1948) [40], bunny (|V | = 2503, |EG| = 65490) [98] and

Minnesota (|V | = 2642, |EG| = 3304) are tested in the experiment. We can observe

that the spectrum can be better preserved on the reduced graphs using our proposed

graph coarsening algorithm compared to other methods. Table 2.3 shows the number

of the edges for the reduced graphs when using the di↵erent reduction methods. We

can observe that our method can achieve better graph sparsity when comparing to

other methods.

53

Table 2.4
Results of E↵ective-Resistance Preserving Spectral Graph Reduction.

Original Graph (G) Reduced Graph w/o Sparsification (R) Reduced Graph w/ Sparsification (S) Total time

Test Cases |V | |EG| |VR|
⇣

|V |
|VR|

⌘
|ER|

⇣
|EG|
|ER|

⌘
ErR(%) Tr(s) |VR|

⇣
|V |
|VR|

⌘
|ES|

⇣
|EG|
|ES |

⌘
ErS(%) Ts(s) Ttot(s)

fe rotor 1.0E5 6.6E5 3.4E3 (29X) 2.6E4 (25X) 2.7% 1.26s 3.4E3 (29X) 6.9E3 (95X) 2.4% 3.54s 4.80s
fe ocean 1.4E5 4.1E5 6.1E3 (24X) 3.2E4 (13X) 7.7% 1.02s 6.1E3 (24X) 7.0E3 (58X) 6.0% 3.65s 4.67s

parabolic fem 5.3E5 1.6E6 1.1E4 (46X) 3.4E4 (47X) 7.9% 3.94s 1.1E4 (46X) 1.2E4 (128X) 7.8% 13.59s 17.53s
2D mesh 4.0E4 8.0E4 4.3E3 (9X) 1.2E4 (7X) 8.3% 0.26s 4.3E3 (9X) 4.7E3 (17X) 7.2% 1.59s 1.85s

3D thermal 4.8E5 1.4E6 7.9E3 (61X) 5.4E4 (26X) 5.2% 3.17s 7.9E3 (61X) 8.7E3 (163X) 4.4% 11.18s 13.35s
3D laplacian 1.0E6 3.0E6 8.1E3 (124X) 5.5E4 (54X) 5.0% 7.38s 8.1E3 (124X) 8.9E3 (334X) 4.3% 18.66s 26.04s
Gmat thu1 5.0E6 8.2E6 9.7E4 (51X) 2.9E5 (29X) 9.2% 26.52s 9.7E4 (51X) 1.1E5 (78X) 6.2% 214.75s 241.27s

Gmat airfoil 4.2E3 1.2E4 8.3E2 (5X) 2.3E3 (5X) 7.8% 0.07s 8.3E2 (5X) 9.6E2 (13X) 6.3% 0.08s 0.15s
ecology 1.0E6 2.0E6 1.1E5 (9X) 2.9E5 (7X) 9.4% 6.05s 1.1E5 (9X) 1.2E5 (17X) 6.8% 28.89s 34.94s
appu⇤ 1.4E4 9.2E5 1.3E2 (107X) 7.0E3 (131X) 0.1% 9.53s 1.3E2 (107X) 1.3E2 (7, 019X) 0.1% 0.03s 9.56s

vsp msc⇤ 2.2E4 1.2E6 2.2E2 (100X) 4.4E3 (280X) 5.6% 11.16s 2.2E2 (100X) 2.3E2 (5, 427X) 4.8% 0.03s 11.19s
auto 4.5E5 3.3E6 2.9E3 (153X) 2.1E4 (157X) 4.2% 5.71s 2.9E3 (153X) 3.1E3 (1, 079X) 4.2% 11.71s 17.41s

coAuthorsDBLP 3.0E5 9.7E5 1.3E3 (233X) 5.5E4 (18X) 3.3% 2.36s 1.3E3 (233X) 1.6E3 (603X) 3.2% 10.05s 12.41s
coPapersDBLP 5.4E5 1.5E7 1.6E3 (347X) 9.9E4 (154X) 4.6% 12.70s 1.6E3 (347X) 1.6E3 (9, 336X) 4.6% 21.25s 33.95s
coPapersCiteseer 4.3E5 1.6E7 5.3E2 (816X) 2.1E4 (748X) 4.0% 10.07s 5.3E2 (816X) 5.6E2 (28, 843X) 3.6% 16.69s 26.76s

2.4.2 Results of E↵ective-Resistance Preservation on Spec-

trally Reduced Graphs

Table 2.4 shows graph reduction results on di↵erent graphs using the proposed

method, where e↵ective resistances errors are reported. ErR (ErS) denotes the aver-

age relative errors of e↵ective resistances between graph R (S) and graph G; Tr, Ts

and Ttot denote the spectral reduction time, spectral graph sparsification with edge

scaling time, and total reduction runtime, respectively. The relative errors of e↵ec-

tive resistance values are computed by averaging the relative errors of the e↵ective

resistances computed for 100 randomly selected node pairs.

Compared to other test cases that correspond to sparse graphs, the graphs “appu⇤”

and “vsp msc⇤” have much higher densities and thus been processed as dense graphs.

We want to emphasize that directly applying the prior algebraic-distance-based node

54

2.40% 2.40% 2.60%
2.90%

3.60%

4.80%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

5X 66X30X 146X2X 13X

Reduction Ratio

Relative Error

Figure 2.6: Average relative errors of e↵ective resistance under di↵erent
graph reduction ratios for the “fe tooth” graph.

aggregation scheme [10] for node reduction may not always produce acceptable results

for dense graphs. For example, the node aggregation algorithm failed to generate the

reduced graph for “appu⇤” due to its high graph density. On the other hand, there will

be no issue when Phase (B) for spectral graph sparsification and scaling is applied

before the node aggregation phase. For all test cases, it is observed that the e↵ective

resistances computed with the original graphs can be well approximated by using the

spectrally reduced graphs (R) and sparsified reduced graphs (S).

The average relative errors of 100 randomly computed e↵ective resistances have been

shown in Figure 2.6 with di↵erent spectral graph reduction ratios for the “fe tooth”

graph. We observe that the e↵ective resistance accuracy will drop slightly when higher

reduction ratios are used.

Figure 2.7 shows the total spectral graph reduction time with di↵erent problem sizes

55

-10
0
10
20
30
40
50
60

4.4E4

3.6E5
1.3E5

3.3E6
3.8E6

4.0E6

5.3E6

9.2E6

1.2E7

2.0E7

Ru
nt
im

e(
S)

log)|ீܧ| ܸ)

Figure 2.7: Runtime scalability of proposed spectral graph reduction
method.

(|EG| log(|V |)) for various graphs, where |EG| (|V |) denotes the number of edges

(nodes) of the original graphs, respectively. As observed, the total spectral reduction

runtime increases nearly-linearly with the problem size, indicating highly scalable

performance of the proposed method (O (|EG| log(|V |))).

2.4.3 Results of Scalable Spectral Graph Clustering (Parti-

tioning)

We evaluated the performance of the proposed spectral graph partitioning algorithm

on a varieties of graphs from the DIMACS10 graph collection. We choose to partition

all the graphs into 30 partitions. The built-in eigs and kmeans MATLAB functions

are used for solving the eigenvalue problem and node clustering tasks, respectively.

56

Table 2.5
Spectral Graph Reduction Results on Sample Graphs.

Test cases Original Graph (G) Spectrally Reduced Graph (S)

Index Graph Application |V | |EG| |VS|
⇣

|V |
|VS |

⌘
|ES|

⇣
|EG|
|ES |

⌘
Treduction

1 fe rotor Finite Element 1.0E5 6.6E5 1.4E3 (71X) 3.7E3 (180X) 1.30s
2 fe tooth Finite Element 7.8E4 4.5E5 1.3E3 (61X) 2.8E3 (162X) 0.94s
3 auto Numerical simulation 4.5E5 3.3E6 1.5E4 (30X) 2.0E4 (167X) 14.81s
4 wing nodal Numerical simulation 1.1E4 7.5E4 1.8E2 (61X) 3.8E2 (197X) 0.21s
5 luxembourg osm Street Network 1.1E5 1.2E5 2.6E3 (44X) 3.2E3 (38X) 0.86s
6 mi2010 US Census 3.3E5 7.9E5 1.3E4 (26X) 1.6E4 (49X) 2.94s
7 uk Clustering 4.8E3 6.8E3 1.2E2 (40X) 1.3E2 (51X) 0.22s
8 smallworld Clustering 1.0E5 5.0E5 8.2E3 (12X) 2.1E4 (24X) 32.20s
9 vsp barth5 1Kse Star Mixtures 3.2E4 1.0E5 5.6E2 (57X) 8.3E2 (122X) 0.46s
10 vsp befref fxm Star Mixtures 1.4E4 9.8E4 2.8E2 (49X) 8.1E3 (12X) 0.24s
11 vsp bump2 e18 Star Mixtures 5.6E4 3.0E5 3.9E3 (14X) 1.3E5 (2.3X) 0.91s
12 vsp p0291 seymourl Star Mixtures 1.0E4 5.4E4 2.0E3 (5X) 5.1E3 (11X) 0.67s
13 vsp model1 crew1 Star Mixtures 4.5E4 1.9E5 2.1E3 (21X) 4.6E3 (41X) 0.70s
14 vsp vibrobox scagr7 Star Mixtures 7.7E4 4.4E5 3.3E3 (23X) 9.4E3 (47X) 2.65s
15 vsp bcsstk30 500sep Star Mixtures 5.8E4 2.0E6 1.7E3 (34X) 3.1E3 (654X) 2.26s
16 coAuthorsDBLP Citations 3.0E5 9.8E5 2.7E4 (11X) 3.8E4 (26X) 30.71s
17 coAuthorsCiteseer Citations 2.2E5 8.1E5 2.0E4 (11X) 2.5E4 (33X) 8.20s
18 citationCiteseer Citations 2.6E5 1.1E6 2.0E4 (13X) 4.1E4 (27X) 32.32s
19 coPapersDBLP Citations 5.4E5 1.5E7 4.1E4 (13X) 7.3E4 (210X) 52.83s
20 coPapersCiteseer⇤ Citations 4.3E5 1.6E7 1.3E4 (32X) 1.7E4 (950X) 16.41s
21 appu⇤ Random Graph 1.4E4 9.2E5 2.8E3 (5X) 6.7E5 (1.4X) 25.53s

The normalized cut (see Appendix A.1) is used to measure the quality of partitions.

Even though the ratio cut and normalized cut are similar, they are trying to solve

slightly di↵erent optimization problems, and one might be preferable over the other

depending on the application. Two partitioning algorithms have been tested, includ-

ing spectral partitioning with original graphs (no reduction) and spectral partitioning

with graph reduction.

Table 2.5 shows spectral graph reduction results on di↵erent kinds of graphs using

the proposed method, where Treduction denotes the spectral graph reduction time.

Compared to other test cases that correspond to sparse graphs, the graph densities

of “coPapersCiteseer⇤” and “appu⇤” are much higher and thus have been processed

as dense graphs. We want to further emphasize that directly applying the prior

57

Table 2.6
Results of Graph Partitioning.

Test cases Original Graph (G) Spectrally Reduced Graph (S)
Index Graph ✓ Teigs T ✓ Teigs Tsmooth T
1 fe rotor 1.51 20.2s 22.8s 1.50 0.2s 2.9s 5.4s
2 fe tooth 1.77 14.6s 16.6s 1.68 0.2s 1.8s 4.0s
3 auto 1.10 479.7s 495.8s 1.08 0.6s 12.3s 29.0s
4 wing nodal 4.88 2.3s 3.3s 4.71 0.1s 0.4s 1.5s
5 luxembourg osm 0.07 3.5s 6.3s 0.07 0.2s 0.9s 3.8s
6 mi2010 0.43 14.5s 21.6s 0.41 0.4s 3.7s 10.2s
7 uk 1.03 0.2s 0.6s 1.05 0.1s 0.1s 0.6s
8 smallworld 7.02 16, 137.9s 16, 144.5s 7.05 9.2s 2.8s 14.1s
9 vsp barth5 1Kse 3.12 14.4s 16.6s 2.72 0.2s 0.5s 2.7s
10 vsp befref fxm 13.59 3.4s 4.7s 12.83 0.1s 0.4s 1.8s
11 vsp bump2 e18 14.60 123.0s 124.7s 13.55 1.7s 1.4s 5.4s
12 vsp p0291 seymourl 8.09 2.2s 2.9s 7.88 0.4s 0.2s 1.3s
13 vsp model1 crew1 11.38 11.5s 13.9s 10.48 0.7s 0.8s 4.9s
14 vsp vibrobox scagr7 6.92 73.8s 75.8s 6.85 0.6s 2.3s 4.8s
15 vsp bcsstk30 500sep † † † 2.09 0.2s 24.0s 25.7s
16 coAuthorsDBLP 0.92 245.3s 250.8s 0.49 15.7s 4.2s 26.5s
17 coAuthorsCiteseer 0.67 77.0s 81.3s 0.41 5.4s 3.2s 13.3s
18 citationCiteseer 0.48 2, 005.2s 2, 027.7s 0.52 12.9s 4.9s 24.8s
19 coPapersDBLP NA NA NA 0.14 17.4s 43.1s 61.6s
20 coPapersCiteseer NA NA NA 0.06 0.87s 44.0s 51.6s
21 appu* 22.47 178.9s 179.9s 23.80 7.3s 3.4s 11.7s

algebraic-distance-based node aggregation scheme [10] will not produce acceptable

results. For example, the node aggregation algorithm failed to generate the reduced

graph for “appu⇤” due to very high graph density. On the other hand, there will be

no issue for dense graphs if we apply step B for spectral graph sparsification and

scaling before the node aggregation step.

The performance of partitioning is evaluated based on the normalized cut and total

execution time. Detailed results have been shown in Table 2.6, where ✓ is the nor-

malized cut, Teigs is the execution time for solving the eigenvalue problem, Tsmooth

denotes eigenvector refinement (smoothing) time, T denotes the total runtime for

58

Normalized cut for two graph partitioning algorithms

5 10 15 20Test case index
0

5

10

15

N
or

m
al

iz
ed

 c
ut

G

S

Figure 2.8: Normalized cut (partitioning quality) for spectral partitioning
with the original graphs and reduced graphs.

0 5 10 15 20 25
Test case index

10-1

100

101

102

103

104

105

R
un

tim
e

(s
ec

on
ds

)

Runtime for two graph partitioning algorithms

TG
TS

Figure 2.9: Execution time for graph partitioning when using the original
graphs and spectrally reduced graphs.

spectral graph partitioning, † represents the failure of solving eigenvalue problems

due to the singularity of the Laplacian matrix, and “NA” denotes the failure of solv-

ing eigenvalue problems due to the limited memory resources. To better compare

59

the performance of the two algorithms, we plot the clustering quality (normalized

cut) when using spectral clustering with the original graph and the reduced graph in

Figure 2.8, where smaller value of normalized cut represents better clustering quality.

Meanwhile, the total execution times required by two graph clustering algorithms

have also been shown in Figure 2.9, where TG and TS are the total partitioning time

when using the original graph and the reduced graph. From the table and figures, we

can observe that the overall quality of generated clusters by spectral clustering using

the original graph and the coarsened graph is similar to each other, but the cost when

using coarsened graph is much lower than using the original graph, especially for large

graphs. For example, we achieve over 1100X runtime speedup on the ”smallworld”

graph. For larger graphs, such as the “coPapersCiteseer” graphs, spectral clustering

without reduction will fail due to the extremely high computation (memory) cost.

From the table we can also conclude that most of the runtime is due to the eigensolver

if the original graph is used, while the k-means and smoothing time will be domi-

nant when using the spectrally-reduced graph. However, the smoothing procedure is

inherently highly parallel making it possible to further improve the e�ciency of the

proposed spectral clustering and to develop high-quality parallel spectral clustering

algorithms.

Figure 2.10 shows the profiling of time required in spectral partitioning of the “auto”

graph. It indicates that most of the runtime is due to the eigensolver if the original

60

(a) Spectral partitioning w/ G

eigs kmeans others

Spectral Partitioning w/ S

eigs kmeans smooth others

Figure 2.10: Profiling of time spent in spectral partitioning on “auto”
graph [17].

graph is used, while the k-means and smoothing time will be dominant when using

the spectrally-reduced graph. However, the smoothing procedure is inherently highly

parallel making it possible to further improve the e�ciency of the proposed spectral

partitioning and to develop high-quality parallel spectral partitioning algorithms.

0 5 10 15 20 25 30 35
Node reduction ratio

0

0.02

0.04

0.06

0.08

0.1

N
or

m
al

iz
ed

 c
ut

S

Figure 2.11: Partitioning qualities (normalized cut) under di↵erent reduc-
tion ratio for the “coPapersCiteseer” graph [17].

We also evaluated the performance of the proposed spectral partitioning method using

di↵erent reduction ratios, as shown in Figure 2.11 and Figure 2.12. We observe that

61

0 5 10 15 20 25 30
Node reduction ratio

0

50

100

150

ru
nt

im
e

(s
ec

on
ds

)

Treduction
Teigs
T

Figure 2.12: Runtime for multi-way spectral partitioning under di↵erent
reduction ratio for the “coPapersCiteseer” graph [17].

higher graph reduction ratios immediately result in lower cost for graph reduction as

well as spectral partitioning while still maintaining high partitioning quality. This

indicates very promising performance in e�ciency and reliability achieved by the

proposed algorithm.

Figure 2.13: Runtime for graph partitioning with di↵erent clusters (parti-
tions) for the “coAuthorsCiteseer” graph [17].

62

Figure 2.14: Normalized cut for graph partitioning with di↵erent clusters
(partitions) for the “coAuthorsCiteseer” graph [17].

Finally, we evaluate the performance of two partitioning algorithms using di↵erent

numbers of partitions. As shown in Figure 2.13 and Figure 2.14, the reduced graph

has 11⇥ fewer nodes and 26⇥ fewer edges compare to the original graph. With the

increasing number of partitions, we observed that the spectral partitioning method

using the spectrally-reduced graph is much faster with consistently higher partitioning

qualities.

2.4.4 Results of Hypergraph Partitioning

One approach to spectral hypergraph partitioning is to construct an undirected graph

from the hypergraph and then apply spectral graph partitioning algorithms to the

generated graph [41]. Existing methods for constructing an undirected graph from

63

Table 2.7
Benchmarks of Spectral Hypergraph Partitioning.

Hypergraph (Hy) Original Graph (G) Spectrally Reduced Graph (S)

Benchmarks |V | |EH | |V | |EG| |VS |
⇣

|V |
|VS |

⌘
|ES |

⇣
|EG|
|ES |

⌘
Tr(s)

ibm01 1.3E4 1.4E4 1.3E4 1.1E5 1.0E3 (13X) 1.7E3 (63X) 0.39s
ibm02 2.0E4 2.0E4 2.0E4 3.4E5 1.6E3 (12X) 3.6E3 (97X) 0.98s
ibm03 2.3E4 2.7E4 2.3E4 2.1E5 4.6E3 (5X) 6.0E3 (35X) 0.95s
ibm04 2.7E4 3.2E4 2.7E4 2.2E5 5.4E3 (5X) 5.5E3 (40X) 1.17s
ibm05 2.9E4 2.8E4 2.9E4 3.5E5 5.6E3 (5X) 1.7E4 (21X) 5.54s
ibm06 3.2E4 3.5E4 3.2E4 3.2E5 2.6E3 (12X) 6.3E3 (51X) 2.18s
ibm07 4.6E4 4.8E4 4.6E4 3.7E5 3.7E3 (13X) 5.4E3 (69X) 1.49s
ibm08 5.1E4 5.1E4 5.1E4 7.3E5 4.8E3 (11X) 1.4E4 (53X) 3.48s
ibm09 5.3E4 6.1E4 5.3E4 4.8E5 4.6E3 (13X) 1.3E4 (38X) 2.68s
ibm10 6.9E4 7.5E4 6.9E4 7.1E5 5.9E3 (12X) 9.0E3 (79X) 2.66s
ibm11 7.1E4 8.1E4 7.1E4 5.1E5 5.7E3 (12X) 1.3E4 (39X) 3.68s
ibm12 7.1E4 7.7E4 7.1E4 7.5E5 1.5E4 (5X) 1.8E4 (41X) 4.09s
ibm13 8.4E4 1.0E5 8.4E4 7.4E5 7.8E3 (11X) 1.0E4 (76X) 3.04s
ibm14 1.5E5 1.5E5 1.5E5 1.1E6 1.1E4 (14X) 1.3E4 (83X) 4.41s
ibm15 1.6E5 1.9E5 1.6E5 1.8E6 1.4E4 (11X) 1.8E4 (99X) 4.53s
ibm16 1.8E5 1.9E5 1.8E5 1.9E6 1.5E4 (12X) 1.9E4 (101X) 6.91s
ibm17 1.9E5 1.9E5 1.9E5 2.2E6 1.6E4 (11X) 2.4E4 (95X) 19.71s
ibm18 2.1E5 2.0E5 2.1E5 2.2E6 1.9E4 (11X) 2.1E4 (107X) 8.54s

a hypergraph are based on clique or star expansions [41, 44]. In this work, the

clique expansion method is adopted by replacing each hyperedge with a complete

subgraph for all vertices in that hyperedge. However, the size of the generated graph

(both nodes and edges) can be greatly increased, which will introduce a very high cost

when computing eigenvectors for spectral partitioning. To achieve good e�ciency, the

multilevel Laplacian eigensolver described in Algorithm 5 can be utilized to accelerate

eigenvalue problems by leveraging spectrally-reduced graphs without loss of solution

quality.

The performance of spectral hypergraph partitioning is evaluated on 18 hypergraphs

from ISPD98 circuit partitioning benchmark suite [1], where only unit cell-areas are

64

Table 2.8
Performance of Spectral Hypergraph Partitioning on Original Graphs G.

Partitioning w/ Graph (G)
ibm 8-way 16-way 32-way

Cut (SD) T
G

e
Cut (SD) T

G

e
Cut (SD) T

G

e

01 800 (1633) 1.35s 943 (1949) 1.43s 1461 (3057) 1.94s
02 1096 (2302) 4.44s 2039 (4244) 5.70s 3163 (6695) 8.27s
03 1532 (3089) 6.29s 2710 (5542) 7.26s 4419 (9166) 11.53s
04 1995 (4108) 5.40s 3127 (6614) 7.43s 4727 (9942) 10.58s
05 3100 (6263) 25.69s 4472 (9208) 53.86s 5289 (10865) 63.12s
06 2390 (4960) 12.10s 3367 (7193) 15.90 4507 (9611) 20.88s
07 1724 (3508) 13.71s 3785 (7666) 18.72s 6713 (13968) 23.36s
08 3343 (6815) 32.35s 4750 (9848) 33.69s 6318 (13117) 47.05s
09 2257 (4569) 11.56s 4508 (9234) 13.35s 5370 (11217) 21.47s
10 3043 (6126) 32.33 4468 (9002) 44.01s 5954 (12291) 58.78s
11 3305 (6674) 18.38s 4629 (9514) 22.13s 7169 (14875) 31.87s
12 2575 (5162) 69.74s 4538 (9201) 99.08s 7052 (14446) 103.11s
13 1438 (2957) 20.87s 3742 (7841) 25.69s 6470 (13448) 36.35s
14 5140 (10376) 83.64s 8504 (17341) 96.19s 12905 (26541) 161.56s
15 3696 (7435) 121.86s 8416 (17183) 144.45s 14598 (30426) 207.70s
16 6301 (12751) 172.66s 9250 (18810) 255.15s 14439 (29858) 363.61s
17 7710 (15710) 551.31s 10724 (21915) 643.25s 14367 (29459) 763.69s
18 3902 (7858) 184.27s 6181 (12447) 208.02s 8313 (16894) 211.84s

considered for the experiment. As shown in Table 2.7, all hypergraphs are converted

to corresponding graphs G using clique representation, and the weight of each edge in

the clique equals to 1/(|e|� 1), where |e| is the number of vertices in the hyperedge;

|V | is the number of nodes in the hypergraph; |VS| is the number of nodes after graph

reduction; |EH |, |EG| and |ES| are the number of edges in hypergraphs, converted

original graphs and the reduced graphs, respectively; V

VS
and EG

ES
represent the node

reduction ratio as well as the edge reduction ratio for spectral graph reduction; Tr is

the time for graph reduction.

k-way spectral partitioning is performed on both generated graph G and the

65

Table 2.9
Performance of Spectral Hypergraph Partitioning on Reduced Graphs S.

Partitioning w/ Reduced Graph (S)
ibm 8-way 16-way 32-way

Cut (SD) T
S

e

⇣
T

G
e

TS
e

⌘
Cut (SD) T

S

e

⇣
T

G
e

TS
e

⌘
Cut (SD) T

S

e

⇣
T

G
e

TS
e

⌘

01 637 (1295) 0.08s(17X) 914(1915) 0.11s(13X) 1471 (3130) 0.18s(11X)
02 1034 (2204) 0.08s(56X) 2173 (4654) 0.17s(34X) 3415 (7426) 0.25s(33X)
03 1549 (3124) 0.18s(35X) 2729 (5627) 0.23s(32X) 4483 (9520) 0.33s(35X)
04 2012 (4093) 0.11s(49X) 3256 (6840) 0.18s(41X) 4869 (10387) 0.27s(39X)
05 3144 (6417) 1.17s(22X) 4680 (9946) 1.65s(33X) 5606 (11237) 2.30s(27X)
06 1742 (3587) 0.17s(71X) 3460 (7264) 0.35s(45X) 4545 (9851) 0.51s(41X)
07 1643 (3404) 0.14s(98X) 3925 (8069) 0.23s(81X) 6373 (13495) 0.29s(81X)
08 3291 (6747) 0.51s(63X) 4916 (10126) 0.75s(45X) 6041 (12825) 1.02s(46X)
09 2164 (4379) 0.25s(46X) 3241 (6740) 0.42s(32X) 4467 (9163) 0.71s(30X)
10 3104 (6275) 0.20s(162X) 4847 (9794) 0.31s(142X) 6324 (13014) 0.42s(140X)
11 3220 (6504) 0.40s(46X) 4972 (10070) 0.58s(38X) 7396 (15671) 0.78s(41X)
12 2323 (4658) 0.42s(166X) 4622 (9395) 0.56s(1774X) 6890 (14140) 1.15s(90X)
13 1561 (3156) 0.18s(116X) 3849 (7912) 0.25s(103X) 6934 (14759) 0.40s(91X)
14 3726 (7475) 0.24s(349X) 7975 (16115) 0.39s(247X) 11779 (24282) 0.52s(311X)
15 3727 (7506) 0.33s(369X) 7431 (14926) 0.47s(307X) 12738 (26387) 0.85s(244X)
16 6279 (12646) 0.39s(443X) 10090 (20543) 0.66s(387X) 14894 (30695) 0.91s(400X)
17 7874 (15970) 0.92s(599X) 10141 (20716) 1.17s(550X) 16172 (33366) 1.74s(439X)
18 3252 (6529) 0.35s(526X) 5947 (12012) 0.38s(547X) 8128 (16610) 0.55s(385X)

spectrally-reduced graph S. Hyperedge cut and sum of external degrees (SOED)

of all hyperedges that span multiple partitions are calculated to evaluate the parti-

tioning quality. The overall performance of hypergraph partitioning with 8-, 16- and

32-way partitions are shown in Table 2.8 and Table 2.9 for using the original graph

G and the reduced graph S , where “Cut” and “SD” denote the hyperedge cut and

SOED metric, respectively; TG

e
and T S

e
denote the eigendecomposition time required

by G and S, respectively. Comparing to the hypergraph partitioning using graph G,

results show that partitioning with spectrally reduced graphs can produce comparable

partitioning qualities with dramatically reduced cost.

66

2.4.5 Results of Scalable Data Visualization

We first demonstrate the connection between the t-SNE embedding solution and

the first few unnormalized Laplacian eigenvectors of the k-NN graph formed using

the original data set. To quantitatively estimate their correlations, we increase the

number of Laplacian eigenvectors for representing the embedding vectors x 2 Rn and

y 2 Rn that store the locations of n data points in 2D space obtained by running

t-SNE, and compute the correlation factors px
tsne

= ||UU>x||2
||x||2 and pytsne = ||UU>y||2

||y||2 ,

where U 2 Rn⇥r is the matrix with the first r Laplacian eigenvectors (of the original

k-NN graph) as its column vectors. If px
tsne

or pytsne is close to 1, it indicates a

strong correlation (significant overlap) between the eigenspace formed by the first few

Laplacian eigenvectors and the t-SNE embedding vectors. Figure 2.15 shows strong

correlations between the low-dimensional embedding vectors generated by t-SNE and

the first few (e.g., r = 20) eigenvectors of the Laplacian matrices corresponding to the

k-NN graphs constructed using the USPS and MNIST data sets 1. It is also interesting

to observe that the t-SNE embedding vectors are more closely related to the 10-th

eigenvector, since the inclusion of such an eigenvector leads to significantly improved

correlation factors px
tsne

and pytsne. This is actually very reasonable considering the

ground-truth number of clusters for the USPS and MNIST data sets is 10.

1USPS includes 9, 298 images of USPS handwritten digits with 256 attributes; MNIST is a data
set from Yann LeCun’s website http://yann.lecun.com/exdb/mnist/, which includes 70, 000 images
of handwritten digits with each of them represented by 784 attributes.

67

0 5 10 15 20 25
Number of eigenvectors

0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n

(p
ts

ne
)

XUSPS

YUSPS

XMNIST

YMNIST

Figure 2.15: Correlations (XUSPS and XMNIST for p
x
tsne; YUSPS and

YMNIST for py
tsne

) between 2D embedding vectors computed by t-SNE and
the subspace formed by the first few eigenvectors of the Laplacian matrices
computed using USPS and MNIST data sets.

We also demonstrate the t-SNE visualization results obtained by leveraging spectrally-

reduced NN graphs in Figures 2.16 and 2.17. Our results show very clear cluster

boundaries after spectral graph reduction, which retain the ones obtained from the

original data sets, indicating very high-quality embedding results as well as signifi-

cantly improved runtime performance.

�
�
�
�
�
�
�
�
�
�

8636�GDWD�VHW
1R�UHGXFWLRQ� W�61(����V

�
�
�
�
�
�
�
�
�
�

W�61(����V���;�VSHHGXS�
�;�UHGXFWLRQ�

Figure 2.16: t-SNE visualization with original USPS data set and the
reduced data set.

68

t-SNE: : 1902s t-SNE: : 228s (8X speedups)

4X reductionNo reduction

MNIST data set

9X reduction 22X reduction

t-SNE: 86s (22X speedups) t-SNE: 28s (68X speedups)

Figure 2.17: t-SNE visualization with original MNIST data set and data
sets under di↵erent reduction ratios.

69

Chapter 3

SAMG: Sparsified Graph-Theoretic

Algebraic Multigrid for Solving

Large Symmetric Diagonally

Dominant (SDD) Matrices

3.1 Background

Algebraic Multigrid (AMG) [82] solvers have been developed for solving large sparse

matrices based on multigrid principles. Compared to geometric multigrid (GMG)

71

solvers that rely on the geometric information of underlying problems, AMG solvers

build hierarchical coarse level problems using the graph information extracted from

input matrices. A good AMG solver should be not only fast and scalable but also

reliable and robust for di↵erent kinds of input matrices. The Combinatorial Multigrid

solver (CMG) [52] and Lean Algebraic Multigrid solver (LAMG) [64] are state-of-the-

art graph-theoretic AMG solvers that exploit spectral properties of graph Laplacian

matrices to achieve high e�ciency and robustness.

CMG is a highly-e�cient graph-theoretic AMG solver for computer vision and image

processing applications. CMG forms coarse level graphs by a graph decomposition

procedure similar to the construction of a quotient graph [52]. However, the coarse

level problems (graphs) obtained by CMG can be dense and may lead to dramati-

cally increased computational cost. For example, during the CMG setup phase, we

observed that for some relatively dense input SDD matrices, the graph densities of

coarse level problems would grow very fast, which can significantly impact the CMG

solver speed as well as e�ciency for parallel computing (due to the high communica-

tion cost).

Another well known graph-theoretic AMG solver is the LAMG solver [64] whose

setup phase contains two main steps: 1) low-degree node elimination and 2) node

aggregation based on node proximity (algebraic distance). It also integrates a lean

piecewise-constant interpolation step and an energy correction scheme to improve the

72

overall convergence. It is shown that the LAMG solver can achieve O(m) time and

storage e�ciency during the setup phase and requires O(m log(1/✏)) operations for

achieving an accuracy level ✏ during the iterative solution phase. Although LAMG

is usually slower than the CMG solver for sparse matrices obtained from computer

vision and image processing applications, it is usually more reliable and applicable

to a broader range of applications [64]. However, the LAMG solver may run into a

similar issue as the CMG solver according to our observations: high graph densities

of coarse level problems may introduce rapidly increasing computational cost, which

can significantly impact its e�ciency.

3.2 Sparsified Algebraic Multigrid

3.2.1 Overview of Our Method

The proposed SAMG solver in this work is built upon the framework of the prior

LAMG solver [64]. During the SAMG setup phase, we introduce a graph sparsification

procedure based on a recent spectral perturbation based spectral graph sparsification

approach [27] to e↵ectively control the graph density while still assuring su�cient

approximation quality. To more clearly illustrate the technical contribution of this

work, a comparison with the LAMG solver for the setup phase is shown in Figure

73

Coarse graph
generation

Level: L
Density: 6.5

Level: L+1
Density: 7.8

Level: L+2
Density: 8.8

Coarse graph
generation

Spectral
Sparsification

Level: L
Density: 6.5

Level: L
Density: 3.4

Level: L+1
Density: 5.9

Level: L+2
Density: 6.6

Coarse graph
generation

Coarse graph
generation

LAMG

SAMG

Figure 3.1: Comparison of the setup phases between LAMG[64] and SAMG
(this work).

3.1. To set up a coarser level (l + 1) graph from an existing coarse level (l) graph in

SAMG, we perform the following steps:

(1) Check the convergence rate at the current level (l) by performing a few Gauss-

Seidel (GS) relaxations: if the residual drops slowly, another coarser level (l + 1)

problem will be needed.

(2) Perform a spectral graph sparsification step if the graph density of the coarse level

(l) problem is too high.

(3) Generate a coarser (level l+1) problem by performing node elimination and node

aggregation using graph-theoretic AMG operations proposed in [64].

Although the spectral sparsification engine can preserve long-range e↵ects in the

74

Convergence
Check

End

Graph
Density Check

Coarser Level
Generation

High

Slow

Fast

Low

Level (l)

Level (l+1)

Graph
Sparsification

Step1:

Step2:

Step3:

Figure 3.2: Flowchart for the SAMG solver setup phase.

graph (e.g., distance or e↵ective resistance between nodes), it should not be used very

frequently when setting up the AMG coarse level problems to assure fast converge of

the AMG solver.

3.2.2 Sparsified Algebraic Multigrid (SAMG)

The complete SAMG setup flow is depicted in Figure 3.2, which includes the fol-

lowing key steps: (1) Convergence Check, (2.1) Graph Density Check, (2.2) Graph

Sparsification, and (3) Coarser Level Generation. It should be noted that steps (1)

and (3) are similar to the procedures in the prior LAMG algorithmic framework [64],

while steps (2.1) and (2.2) are newly proposed in this work. We will describe above

key steps in details in the following subsections.

75

3.2.2.1 Graph Density Check

Given a graph Laplacian matrix LGl
at level l, we will first check its graph density.

A graph sparsification step will be necessary if the graph density is too high. To this

end, the graph size and density of each coarse level problem are considered as the

key parameters for determining if a spectral graph sparsification procedure is needed

according to the following observations: (a) to control coarse level graph densities for

all hierarchical levels, it is more e↵ective to sparsify finer level problems with larger

sizes than sparsifying coarser level problems with smaller sizes; in other words, the

spectral sparsification step should be done as early as possible for e↵ectively reduc-

ing coarse level problem densities. (b) The spectral graph sparsification step should

be performed only when the coarse level problems become increasingly denser since

such a sparsification procedure will inevitably introduce approximation errors (spec-

tral dissimilarities) that can be quantitatively measured using the relative condition

number.

To e�ciently identify the most suitable coarse level problem for graph sparsification,

we will consider the changing rate of nonzero elements in the graph Laplacian, as

well as the graph densities (the number of edges divided by the number of nodes)

across di↵erent coarse level problems. Let nnzl and agdl denote the number of edges

and the graph density for the coarse level graph Gl at level l, respectively. Then the

76

changing rate of edge numbers can be evaluated by:

!l =
nnzl
nnzl�1

, (3.1)

where !l reflects the changing rate of edge numbers from level l�1 to level l. Similarly,

the changing rate of graph density can be computed by:

✓l =
agdl
agdl�1

. (3.2)

A greater value of ✓l indicates the coarser problems are getting increasingly denser in a

much faster way. Consequently, if either !l or ✓l is large enough, a graph sparsification

procedure at the coarse level will be necessary. By defining thresholds !th and ✓th,

the graph sparsification procedure will be performed at level l once !l > !th and

✓l > ✓th. For the same problem, setting a larger !th or ✓th value will potentially allow

the spectral sparsification step to be applied at a coarser level. For the proposed

SAMG scheme, we observed that the optimal performance can be achieved by setting

!th = 0.48 ⇠ 0.53 and ✓th = 1.35 ⇠ 1.5, respectively.

3.2.2.2 Graph Sparsification and Spectral Similarity Control

Once a coarse level problem is selected for sparsification, a graph sparsification pro-

cedure will be launched, which includes spectral similarity checking, spectral graph

77

Graph
Sparsification

Spectral
Similarity Check

Spectral
Sparsification Graph Scaling

Input

Similar

Not Similar

Output

Input Output

Figure 3.3: Graph sparsification during the SAMG solver setup phase.

sparsification and graph Laplacian scaling steps as illustrated in Figure 3.3.

Since each spectral graph sparsification process will introduce a “spectral gap” be-

tween the original problem and the sparsified problem, the graph sparsification pro-

cedure should not be performed very frequently to ensure fast convergence of the

multigrid solver. Therefore, it is necessary to check if the existing “spectral gap”

(introduced by all prior sparsification steps) still allows performing another spectral

graph sparsification to the current coarse level problem during the SAMG setup phase.

To this end, the relative condition numbers during the previous spectral sparsifica-

tion steps will be used for estimating the “spectral gap” (�l) at level l, which can

be estimated by multiplying all the previous relative condition numbers. Denoting

relative condition number of the sparsified graph at level s by (LGs , LPs), the total

“spectral gap” can be computed as follows:

�l =
Y

s<l

(LGs , LPs), (3.3)

78

Original graph Sparsified graph Graph with edge scaling

Graph node

Original graph edge

Sparsified graph edge

Scaled Sparsified graph edge

Figure 3.4: Spectral graph sparsification with graph scaling.

where LGs and LPs denote the graph Laplacian matrices of the original coarse level

graph Gs and the sparsified coarse level graph Ps, respectively. Define �th to be the

threshold for the “spectral gap”, then the SAMG setup phase will only allow graph

sparsification steps if �l < �th; otherwise, spectral sparsification will not be applied

for the following coarser levels, since a too large “spectral gap” may result in degraded

convergence of the SAMG solver.

Since the sparsified graph only includes a small portion of the edges of the original

coarse level graph, the total conductance of sparsified graph (sum of edge weights) is

always smaller than the original graph. To compensate for the accuracy loss due to

the spectral graph sparsification process, we introduce a graph scaling procedure as

illustrated in the Figure 3.4 to improve the approximation quality of the sparsified

graph, which scales up all the edges in the sparsified graph so that they can better

79

approximate the original graph. The edge scaling factor ↵l for level l is computed by:

↵l =

P
(p,q)2Gl

wp,q

P
(p,q)2Pl

w̃p,q

, (3.4)

where wp,q and w̃p,q denote the weight of edge (p, q) 2 Gl and edge (p, q) 2 Pl in the

original and sparsified coarse level graphs, respectively.

3.2.2.3 Coarser Level Generation

To generate the next coarser level problem based on the current graph, a node aggre-

gation scheme is applied based on a node a�nity metric cuv that can be defined as

follows for neighboring nodes u and v[64]:

cuv =
k(Xu, Xv)k2

(Xu, Xu)(Xv, Xv)
, (Xu, Xv) = ⌃K

k=1(x
(k)
u

· x(k)
v
) (3.5)

where X = (x(1) . . . x(K)) denotes K test vectors that are computed through applying

a few GS relaxations to the linear system equation LGl
x = 0 with di↵erent initial

random vectors. The node a�nity cuv can e↵ectively reflect the distance or strength

of connection between nodes u and v: a larger cuv value indicates a stronger connection

between nodes u and v [64]. Consequently, nodes with large a�nity values can be

aggregated together to form the nodes on the coarser level graph.

80

3.3 Experimental Results

In this section, extensive experiments have been conducted to evaluate the proposed

SAMG solver for di↵erent types of SDD matrices. Some of the test cases are from the

SuiteSparse Matrix Collection [17], including matrices arising from IC simulations,

thermal problems, finite-element analysis problems, etc. Additionally, the SDD ma-

trices of 3D mesh grids obtained from 3D-IC thermal analysis (3D-IC X) and image

processing (Laplacian3D) are also included. We also examine the Laplacian matrices

obtained from k-nearest neighbor (kNN) graphs that have been heavily studied in

data mining and machine learning communities. The well known MNIST data set of

handwritten digits that consist of 60, 000 images for training and 10, 000 images for

testing procedures are analyzed using kNN graphs, where k = 9, 18, 21 are used for

setting up Laplacian matrices with di↵erent graph densities.

All experiments are performed using a single CPU core of a computing platform

running 64-bit RHEL 6.0 with 2.67GHz 12-core CPU and 48GB DRAM memory.

The SAMG setup time for multigrid hierarchy construction is similar to the original

LAMG solver [64], since the cost for spectral sparsification of coarse level problems

can be negligible.

The results of the LAMG and SAMG solvers are reported in Table 3.1. The systems

81

Table 3.1
Experimental result of LAMG and SAMG.

Test Case |V | NNZ TS(IS) TL(IL) (TL/TS)
G2 circuit 1.5E5 7.3E5 1.8s(5) 3.1s(6) 1.72X
G3 circuit 1.6E6 7.7E6 15.6s(5) 19.7s(6) 1.26X
ecology2 1.0E6 5.0E6 5.5s(4) 8.0s(4) 1.45X
thermal2 1.2E6 8.6E6 6.6s(2) 12.0s(3) 1.82X

parabolic fem 5.3E5 3.7E6 11.8s(10) 19.8s(10) 1.68X
3D-IC 1 2.5E5 1.7E6 1.2s(4) 3.0s(5) 2.36X
3D-IC 2 5E5 3.5E6 2.3s(5) 3.9s(6) 1.69X
3D-IC 3 1E6 6.9E6 4.2s(4) 8.8s(5) 2.10X

Laplacian3D 1E6 5.0E6 4.8s(3) 7.1s(3) 1.47X
MNIST9 7.1E4 1.3E6 0.15s(1) 0.2s(1) 1.33X
MNIST18 7.1E4 2.6E6 0.18s(1) 0.46s(1) 2.55X
MNIST21 7.1E4 3.0E6 0.21s(1) 0.26s(1) 1.23X

Number of non-zero elements in matirx �106
1 2 3 4 5 6 7 8 9

ru
nt

im
e(

s)

0

2

4

6

8

10

12
Runtime scalability with the number of non-zero elements

SAMG
LAMG

Figure 3.5: Runtime scalability with increasing number of nonzero ele-
ments.

Ax = b are solved for a randomly generated right-hand-side (RHS) vector b. Both

LAMG and SAMG solvers are configured to achieve the same accuracy level ||Ax �

b|| < 10�4||b||. “|V |” represents the number of the nodes, “NNZ” denotes the number

of nonzero elements in the original matrix, while “TL” and “TS” denote the total

82

6.52

7.64

8.85
9.33

9.79
10.3810.7310.7310.3310.47

9.58 9.71
8.85

6.52

7.64

3.33

5.87
6.75

7.61 7.74 7.42 7.55
7.1

6.61

0

2

4

6

8

10

12

l=1 l=2 l=3 l=4 l=5 l=6 l=7 l=8 l=9 l=10 l=11 l=12 l=13

DE
N

SI
TY

HIEREARCHY LEVEL OF G2_CIRCUIT
w/o spectral sparsification w/ spectral sparsification

Do sparsification on level 3

Figure 3.6: Comparison of average graph densities of coarse level problems
for G2 circuit matrix.

solution time for LAMG and SAMG, respectively. IL and IS denote the number of

multigrid iterations for LAMG and SAMG for converging to the required accuracy

level, and TL/TS is the runtime speedup of SAMG over LAMG.

From Table 3.1, we can see that the proposed SAMG solver is substantially faster

than the prior LAMG solver. The iteration numbers of SAMG and LAMG are almost

the same, which indicates that the spectral sparsification steps have not influenced

the convergence behavior significantly. Figure 4.12 shows the runtime scalability

with respect to the nonzero elements in di↵erent matrices for LAMG and SAMG.

Obviously, the runtime is almost linear with the number of nonzero elements. Figure

3.6, and Figure 3.7 show the graph densities of di↵erent coarse level problems when

running the SAMG and LAMG solvers: it is observed that the graph densities of the

83

44.39

72.8
80.92

73.25
65.05

39.51

22.11

44.39

72.8

4.23
9.4

14.53
18.85

0

10

20

30

40

50

60

70

80

90

l=1 l=2 l=3 l=4 l=5 l=6 l=7

DE
N

SI
TY

HIERARCHY LEVEL OF MNIST21
w/o spectral sparsification w/ spectral sparsification

Do sparsification on level 3

Figure 3.7: Comparison of average graph densities of coarse level problems
for MNIST21.

sparsified coarse level problems in SAMG are much lower than the ones in LAMG.

84

Chapter 4

A Spectral Approach to Scalable

Vectorless Power Grid and

Thermal Integrity Verification

4.1 Background

4.1.1 On-chip Thermal Modeling and Analysis

A diagram of an integrated chip (IC) in a C4 package is shown in Figure 4.1 (a),

showing two major heat transfer paths: one is through the heat sink to the ambient

85

Heat Sink

PCB

Die
Ceramic Substrate

Heat Spreader InterfaceHeat
Transfer

(a) Chip package with the heat sink

Board Temperature

Heat Sink Temperature

(b) 3D modeling of the die

Figure 4.1: Thermal modeling of the chip package

surroundings, and the other is from the chip package to the board. The equivalent

thermal circuit of the die is usually modeled as a 3D mesh grid with thermal con-

ductance computed according to the materials as well as a discretization scheme, as

shown in Figure 4.1 (b). The heat di↵usion in an IC is modeled by the following PDE

equation [60]:

⇢cp
@T (~r, t)

@t
= r(k(~r, t)rT (~r, t)) + p(~r, t), (4.1)

subject to the boundary condition:

k(~r, T)
@T (~r, t)

@nj

+ hjT (~r, t) = fj(~r, t), (4.2)

where ⇢ is the material density (kg/m3), cp is the specific heat [J/(kg · �C)], T is the

temperature (�C), ~r is the location in the 3D space, k is the thermal conductivity

of the material [W/m2 · �C], p(~r, t) is the power density of heat sources (W/m3), nj

is the outward direction normal to the boundary surface j, hj is the heat transfer

86

coe�cient [W/(m2 · �C)], and fj is an arbitrary function at the surface j.

An emerging trend is increased functionality on smaller chip areas. The increased

power density will lead to an increased temperature gradient, significantly impacting

on-chip performance. For example, high operating temperatures will usually lead to

the increased leakage power, degraded transistor performance and increased intercon-

nect resistivity. To ensure adequate functionality of the chip including chip timing,

signal integrity and power leakage, thermal analysis is necessary and increasingly

critical for designing modern integrated circuits (ICs).

4.1.2 Vectorless Power Grid and Thermal Integrity Verifica-

tion

The steady-state analysis of an n-node thermal grid (or power grid) can be formulated

into a system of linear equations using nodal analysis [25, 33]:

T x = b. (4.3)

For a power grid, T is a conductance matrix representing all the interconnected

resistors in the grid, x is n ⇥ 1 node voltage vector, and b is the right-hand side

current vector. For thermal analysis and verification, T is the thermal conductance

87

matrix of the 3D thermal grid, b is the right-hand-side (RHS) vector modeling the

underlying workload (power density) distribution, and x is the unknown temperature

vector to be computed.

Traditional vectorless power grid voltage or current integrity verification aims to iden-

tify the maximum voltage drops or current densities under linear current constraints

[26, 33], where current constraints are introduced to capture current loading varia-

tions and correlations in a given chip design. Thermal integrity verification seeks to

identify the maximum temperature or temperature gradients across the chip given

uncertain workloads or power source configurations, similar to prior vectorless power

grid integrity verification problems. There are both local and global constraints in

a typical vectorless verification problem: local constraints for setting the lower and

upper bounds of the power density for each source and global constraints for setting

the lower and upper bounds for blocks of sources.

The proposed vectorless integrity verification tasks compute the maximum voltage

drop given any power grid designs or worse-case temperatures across the chip given

any thermal grids by solving the following linear program (LP) for each individual

88

node i:

maximize : xi = e>
i
T�1 b, for i = 1, . . . , n

subject to the following constraints on power densities:

Local Constraints : bL  b  bU ,

Global Constraints : BL  M b  BU ,

(4.4)

where n is the number of nodes in the power gird or 3D thermal grid, ei is an ele-

mentary unit vector with i� th entry equal one and the remaining entries equalling

zeros. Since the conductance matrix T is an M -matrix, the T�1 only contains non-

negative sensitivity values. The bL (BL) and bU (BU) represent the lower bounds and

upper bounds of individual power sources (blocks), while M is an m⇥ n matrix that

only contains 0s and 1s for defining m global (block) constraints. After finding the

worst-case vector bwst through the above optimization procedure, we can simply com-

pute the maximum voltage drop or worst-case temperature distribution xwst using

xwst = T�1bwst.

4.1.3 Vectorless Thermal Verification Challenges

The adjoint temperature sensitivity with respect to each power source will be needed

for setting up the LP problems in (4.4) for vectorless thermal verification. For ex-

ample, the adjoint sensitivity vector s for computing node temperature ti considering

all power sources in b can be calculated by solving the linear system of equations

89

T s = ei. Once the matrix factorization for T is computed, adjoint thermal sensi-

tivity vectors for individual node temperatures can be e�ciently obtained by reusing

the matrix factors.

However, factorization of the thermal matrix obtained from 3D mesh-structured

grids can be much more costly than factorizing the conductance matrices for power

grid vectorless verification tasks [107, 113], due to the much faster-growing compu-

tational complexity of existing direct solution methods, such as LU and Cholesky

decomposition methods [16]. For example, our results show that factorizing a matrix

with one million rows (columns) using the state-of-the-art Cholesky solver [16] may

take over 30 minutes and consume 18GB memory.

Further, since the adjoint sensitivity vector is needed for solving the following LP

problem:

maximize : ti =
X

si bi, (4.5)

very high computational complexity will be expected when a large number of uncer-

tain power sources (variables) are involved.

90

4.1.4 Graph Signal Processing and Spectral Sparsification

There is an analogy between traditional signal processing (classical Fourier analysis)

and graph signal processing [87]: 1) The signals at di↵erent time points in classical

Fourier analysis correspond to the signals at di↵erent nodes in an undirected graph;

2) The more slowly oscillating functions in time domain correspond to the graph

Laplacian eigenvectors associated with lower eigenvalues or the more slowly varying

(smoother) components across the graph. The recent spectral graph sparsification

process [27, 28] aims to maintain as few as possible edges for preserving the slowly-

varying or “low-frequency” signals of the original graphs, which therefore can be

regarded as a “low-pass” graph filter. As a result, spectrally-sparsified graphs will

be able to preserve the eigenvectors associated with low eigenvalues more accurately

than high eigenvalues.

To aggressively simplify the 3D thermal grids and thereby addressing the computa-

tional challenges in vectorless integrity verification without sacrificing the approxi-

mation accuracy, emerging graph signal processing and spectral graph sparsification

research can be leveraged [28, 87]. Since full-chip temperature distributions can be

considered as the ”low-frequency” graph signals on thermal grids obtained after ap-

plying a ”low-pass” graph filter on the original input power sources, the spectrally-

sparsified thermal grids will well-preserve the temperature distributions.

91

Multilevel Vectorless Power Grid & Thermal Verification

Yes

No

END

Global Verification

Solution Mapping

Solution Refinement

No

Yes

Finest Level?

Final Verification Solution

Coarsest Power (Thermal) Grid

Input Power (Thermal) Grid

Reduced Grid

Small Enough?

Iterative Edge Scaling
(Thermal Grid Only)

Spectral Sparsification Node or Region
for Verification

Local Region for
Verification

Global Region
for VerificationGlobal Verification

Local Verification

Local Verification

Multilevel Sparsifier Construction

Node Aggregation

Figure 4.2: Multilevel vectorless power grid and thermal integrity verifica-
tion.

4.2 A Spectral Approach to Vectorless Power Grid

and Thermal Integrity Verification

4.2.1 Multilevel Verification Framework

In this work, we propose a multilevel vectorless verification framework shown in Figure

4.2. Our approach is based on the latest graph-theoretic algebraic multigrid (AMG)

research [64, 116] for generating coarse-level (sparsified) grids according to the original

power (thermal) grid problem, as well as the recent multilevel vectorless power grid

92

integrity verification framework [25, 113]. The proposed framework includes two

phases: (a) a setup phase for creating multilevel power (thermal) grids and their

sparsified grids and (b) a multilevel vectorless verification phase for identifying worst-

case voltage drop or thermal scenarios.

Phase (a) includes the following key steps:

1. Perform spectral sparsification for the original power (thermal) grid to reduce

network complexity without changing the grid size.

2. For thermal grids, do iterative edge weight scaling scheme to update the spar-

sified grid.

3. Apply nodal aggregation on the sparsified grid to recursively generate hierar-

chical grid sparsifiers.

4. Define AMG-like restriction (prolongation) operators for constraints (solution)

mapping operations at di↵erent level based on the nodal elimination and aggre-

gation schemes obtained at the previous step,

5. Factorize the grid sparsifiers at each level for adjoint sensitivity computations.

Phase (b) includes the following key steps for vectorless verification of a specific node

or grid region:

93

1. Compute adjoint sensitivities using the matrix factors at each level.

2. Identify a critical global region on the coarsest level and local critical regions

on finer levels.

3. Set up LPs at the coarsest level to obtain the initial solution vector.

4. Recursively map solution vectors to the next finer level and improving the so-

lution accuracy by performing local solution refinements at each level until

reaching the finest level.

4.2.2 Spectral Sparsification and Scaling of 3D Thermal

Grids

To substantially reduce the cost for the matrix factorization and LP solution phases,

we exploit a perturbation-based spectral graph sparsification engine [27, 28] to spar-

sify the topology of the original 3D thermal grid. The spectral sparsification step

can e↵ectively control the thermal grid densities while maintaining good spectral ap-

proximation that is critical for accurate vectorless verification tasks: the sparsified

thermal grids have tree-like structures that will immediately reduce the matrix fac-

torization time while preserving the e↵ective thermal resistances between nodes. It

is noted that preserving e↵ective resistance is equivalent to preserving the adjoint

sensitivities to be applied for setting up LPs. Therefore, the adjoint sensitivity for

94

Scaled thermal grid ܶSparsified thermal grid 𝑃Original thermal grid 𝐺

Figure 4.3: Iterative edge scaling for sparsified thermal grids.

each LP task can be computed in a more e�cient way without sacrificing the final

solution quality (e.g., worst-case vector). Additionally, the sparsified thermal grids

will have many low-degree nodes that can be potentially merged together to further

reduce the number of variables in LPs, reducing the cost for solving LPs in vectorless

verification tasks.

To further improve the approximation quality of the sparsified thermal grid, we in-

troduce an iterative edge weight scaling scheme to gradually scale up the edge weight

in the sparsified thermal grid, which has been shown in Figure 4.3. This scheme will

compensate for the thermal conductance loss due to the missing edges by matching

the ”low-frequency” behaviors of the original thermal grids, which is motivated by

recent graph signal processing techniques [87].

Denote 0 = �1  �2  · · ·  �n the n eigenvalues of the Laplacian matrix LG for

a connected graph G with the corresponding eigenvectors denoted by u1, u2, · · · , un.

The spectral decomposition of the Laplacian matrix of graph G can be expressed as

95

Algorithm 7 Algorithm for Iterative Edge Weight Scaling
Input: The error tolerance ✏, the number of partitions k, the original graph G and the
initial spectrally-sparsified graph P(0).
Output: The spectrally-sparsified graph P with scaled edge weights.

1: Generate a random vector b that is orthogonal to the all-one vector.
2: Partition the original graph G into k blocks P1,P2, · · · ,Pk using multilevel graph

partitioning method [54].
3: Construct matrices TG = LG + gminI and TP(0) = LP(0) + gminI by adding a small

value gmin similar to the ambient thermal conductance to each diagonal entry of LG

and LP(0) for graph signal filtering purpose.

4: Solve TG x = b and TP(0) ex = b and compute err = kx�exk
kxk .

5: while err > ✏ do
6: for partition Pi, i = 1, ...,k, do
7: calculate yi =

P
t2Pi

x[t] , eyi =
P
t2Pi

ex[t], and ↵i = eyi
yi

for all nodes;

8: end for
9: for all edges (p,q) 2 Es do
10: if p,q 2 Pi, scale up wp,q by a factor of ↵i;
11: if p 2 Pi and q 2 Pj , scale up wp,q by a factor of (↵i + ↵j)/2;
12: end for
13: Update P̃, LP̃ and TP̃ with the latest edge weights;

14: Solve TP̃ ex = b and update the mismatch err = kx�exk
kxk ;

15: end while
16: Return the latest spectrally-sparsified graph P.

follows:

LG =
nX

i=1

�i ui u
>
i
. (4.6)

Adding a small grounded thermal conductance gmin to each node in graph G or

equivalently a small element gmin to each diagonal element in LG leads to:

TG = LG + gminI =
nX

i=1

(gmin + �i) ui u
>
i
, (4.7)

where the identify matrix I =
nP

i=1
ui u>

i
. When expressing a random vector b using

96

Laplacian eigenvectors, we have:

b =
nX

i=1

�iu
>
i
. (4.8)

Solving TGx = b is equivalent to computing x = T�1
G

b, which can be further expressed

as:

x = (LG + gminI)
�1b =

nX

i=1

(gmin + �i) ui u
>
i

!�1

b

=
nX

i=1

ui u>
i
b

gmin + �i

=
1

gmin

nX

i=1

�iui

1 + r �i

(4.9)

where r = 1/gmin. (4.9) indicates that when using a small gmin, the eigenvectors asso-

ciated with small eigenvalues or only ”low-frequency” components in b will remain in

x; on the other hand, a relatively large gmin (r ⇡ 0) will allow more higher frequencies

to be included in x and thus lead to x ⇡ b.

Based on the above analysis, we can consider T�1
G

as a “low-pass” filter that filters

graph signals b. By properly choosing gmin, it is possible to filter out the graph signal’s

“high-frequency” (highly-oscillating) components and only keep “low-frequency” com-

ponents in x. Since chip temperature distributions mainly contain “slowly-varying”

“low-frequency”) components due to relative small ambient thermal conductance val-

ues, it is thus possible to exploit emerging spectral sparsification techniques [27, 28, 29]

to retain a small number of edges in the sparsified thermal grids while still preserving

97

accurate thermal profiles, since spectrally-sparsified graphs can well-preserve “low-

frequency” graph signals. Based on the above intuition, Algorithm 7 is proposed for

scaling up edge weights in the sparsified thermal grid by matching the “low-frequency”

responses filtered by the original thermal grids.

4.2.3 Spectral Solution Refinement.

We define 0 = �̃1  �̃2  · · ·  �̃n to be the eigenvalues of LP for sparsified graph P

with the corresponding eigenvectors ũ1, ũ2, · · · , ũn, such that the spectral decompo-

sition of LP with eigenvalues and eigenvectors can be expressed as

LP =
nX

i=1

�̃i ũi ũ
>
1 . (4.10)

Assume that the k smallest eigenvalues and corresponding eigenvectors of LG can be

well preserved in LP , while the remaining higher eigenvalues and eigenvectors are not.

Then the spectral decomposition of LP can be approximately written as:

LP ⇡
kX

i=1

�i ui u
>
i
+

nX

k+1

�̃i ũi ũ
>
i
. (4.11)

98

Based on (4.9), the solution from the original grid can be expressed as:

x = (LG + gminI)
�1b =

nX

i=1

ui u>
i
b

gmin + �i

(4.12)

where identify matrix I can be written as follows:

I =
nX

i=1

ui u
>
i
⇡

kX

i=1

ui u
>
i
+

nX

i=k+1

ũi ũ
>
i

(4.13)

Similarly, the solution x̃ obtained with LP can be written as:

x̃ = (LP + gminI)
�1b =

nX

i=1

ũi ũ>
i
b

gmin + �̃i

⇡
kX

i=1

ui u>
i
b

gmin + �i

+
nX

i=k+1

ũi ũ>
i
b

gmin + �̃i

(4.14)

Based on (4.12) and (4.14), the solution error due to spectral sparsification and scaling

becomes:

�x = x� x̃ ⇡
nX

i=k+1

✓
ui u>

i
b

gmin + �i

� ũi ũ>
i
b

gmin + �̃i

◆
, (4.15)

indicating that the solution error using spectrally-sparsified graphs can be expressed

as a linear combination of eigenvectors corresponding to large Laplacian eigenvalues.

In other words, the error is a linear combination of high frequency signals on graphs,

which can be e�ciently filtered out by using ”low-pass” graph signal filters [87]. To

further improve the solution obtained on sparsified thermal grids, weighted Jacobi

99

iterative method is used, which has been described in Algorithm 8. The inputs to our

algorithm include the original thermal conductance matrix To that can be decomposed

into a diagonal matrix Do and the remainder matrix Ro, the solution vectors x̃1,...,

x̃k obtained by solving (4.14) using the sparsified thermal conductance matrix Ts, the

RHS vectors b1,..., bk as well as the weight factor � and iteration number Nmax for

signal filtering.

Algorithm 8 Solution Refinement Algorithm
Input: To = Do+Ro, x̃1,..., x̃k, b1,..., bk, �, Nmax;

1: for j = 1 to k do
2: for i = 1 to Nmax do
3: x̃

(i+1)
j

= (1� �)x̃(i)
j

+ �D�1
o (bj �Rox̃

(i)
j
)

4: end for
5: end for
6: Return the smoothed solution vectors x̃1,..., x̃k.

4.2.4 Example: A Two-level Verification Framework

In these examples, we describe a two-level vectorless verification approach; multilevel

schemes can be constructed in a similar way.

Two-level local and global constraints mapping. Local power constraints can be

directly mapped from fine level h to coarse level H using AMG’s restriction operator

100

RH

h
obtained as follows:

Upper bound : bU
H

= RH

h
bU
h
,

Lower bound : bL
H

= RH

h
bL
h
,

where bU
H
, bL

H
, bU

h
and bL

h
denote the upper bound and lower bound of power sources

for coarse and fine grids, respectively. The global constraints mapping can be defined

in a similar manner by choosing the global constraints on the coarse grid to be the

sum of each block’s lower and upper bounds on the fine grid.

Two-level Solution mapping and refinement. To reduce the verification cost on

the coarse level, the global critical region Cglb, a set of nodes, will be identified based

on the adjoint sensitivity threshold [25]. Specifically, given a sensitivity threshold ✏th,

we will only include the power sources that have adjoint sensitivity values greater

than ✏th into Cglb when setting up the LPs:

maximize : twst =
X

8 bi 2Cglb

si bi (4.16)

subject to local and global constraints:

bL  b  bU , BL  M b  BU . (4.17)

101

The solution bH
wst

will be further mapped back to the fine level using the AMG pro-

longation operator Rh

H
by ebh

wst
= Rh

H
bH
wst

. To control the error introduced during

the mapping process, a local solution refinement procedure at the fine level will be

applied to incrementally improve the solution quality on the fine grid. Specifically,

we set up a new LP for a much smaller local critical region.

Algorithm flow and complexity. The multilevel vectorless integrity verification

algorithm is described in Algorithm 9. The key steps for each level grid consists of:

(1) Scale up the sensitivity threshold ✏loc = � ✏glb with the scaling factor � > 1 to

obtain a much smaller local critical region Cloc.

(2) Set up a new LP problem for the local critical region Cloc to obtain the solution

vector b
h

wst
.

(3) Update solution for Cloc with b
h

wst
; Reuse the interpolated solution ebh

wst
for the

sources that belong to Cglb but not Cloc.

The complexity for setting up multilevel problems is O(m), where m denotes the

number of resistors in the chip model. The complexity for input grid spectral spar-

sification and edge scaling is O(m log n) with n denoting the number of nodes in the

grid, which is nearly linear. The cost for solving LPs will depend on the algorithm to

be adopted as well as the sizes of critical regions for setting up the LPs, which can be

well controlled by taking advantage of the proposed multilevel verification framework.

It should be noted that by leveraging the proposed solution refinement procedure, only

102

ultra-sparse (tree-like) spectral sparsifiers of the original grids are needed for vector-

less verification, which can significantly improve the overall algorithm scalability, as

shown in our experiment results in Section 4.3.

Algorithm 9 Multilevel Vectorless Integrity Verification

Input: original thermal or power grid, user-defined local and global power constraints bU,
bL and M, initial normalized sensitivity threshold ✏th, and sensitivity scaling factor � > 1
Output: worst-case voltage drop of the power grid or thermal profile of the original
thermal grid.

1: Extract spectrally sparsified grid for the original input grid.
2: For thermal grids, update sparsified grid using iterative edge weight scaling method

(Algorithm 7).
3: Multilevel coarse grid construction:

(a) Construct all hierarchy levels from finest to coarsest level;
(b) Get local and global power constraints bU, bL and M for each level using AMG
mapping operators.

4: Factorize each coarse-level grid for adjoint sensitivity calculation.
5: Perform global verification at the coarsest level K:

(a) Find global critical region CK
glb for a given sensitivity threshold ✏K, and set up LP

to get worst case vector bK
wst

6: Perform solution mapping and refinement on finer to finest levels:
7: k K
8: while k > 1 do
9: Interpolate solution vector to finer level by: b̃k�1

wst = Rk�1
k bk

wst

10: Set sensitivity threshold ✏k�1 = �✏k and identify Ck�1
loc .

11: Setup a new LP for Ck�1
loc to obtain solution vector b̄k�1

wst .

12: Combine the latest LP and interpolated solutions to form bk�1
wst .

13: k k� 1
14: end while
15: Calculate the worst-case voltage drop or hermal distribution using the worst-case power

source vector.

103

4.3 Experimental Results

In this section, we present the experiment results of the proposed vectorless power grid

verification method on di↵erent power grid designs and thermal verification method

for two microprocessor designs [60]. The proposed multilevel vectorless integrity

verification method has been implemented in MATLAB and C++. The LP problems

are solved by the state-of-the-art LP solver [74], and all experiment results have been

obtained using a single CPU core of a computing platform running 64-bit RHEL 6.0

with 2.67GHz 12-core CPU and 48GB DRAM memory.

4.3.1 Experimental Setup

The test cases used for power grid verification include industrial power gird designs

with di↵erent sizes up to 9 million nodes [71, 108]. The design details of the two

microprocessors used for generating the thermal grids are shown in Table 4.1. The

heat conductance paths are modeled using equivalent heat transfer coe�cients.

The specifications of the power grid and thermal test cases are shown in Table 4.2,

whereN.# and P.# denote the numbers of grid nodes and power sources, respectively.

L.# represents the number of levels generated when using the multilevel verification

104

Table 4.1
Statistics of two microprocessor designs

Design Processor A Processor B
Power Consumption (W) 28 50
Die Area (mm2) 195 302
Num. of Metal Layers 4 6
Num. of Material Layers 11 15
Equivalent Heat Transfer 3.3 (heat sink) 3.3 (heat sink)
Coe�cients (103W/m2K) 2.0 (package) 2.0 (package)

Table 4.2
Specifications of the power grid test cases and thermal test cases.

Power Grid Specs. Thermal Grid Specs.
CKT N.# P.# L.# CKT N.# P.# L.#
ibmpg3 0.85M 90K 2 T1 25K 2.5K 2
ibmpg4 1.0M 100K 2 T2 0.1M 10K 2
ibmpg6 1.7M 170K 2 T3 0.2M 10K 2
ibmpg7 1.5M 150K 2 T4 0.4M 40K 2
thupg1 5.0M 500K 3 T5 0.9M 90K 2
thupg2 9.0M 900K 3 T6 1.6M 0.16M 2

- - - - T7 2.0M 0.20M 2

methods. When setting up the experiments, three methods for vectorless power grid

and thermal integrity verification are applied, including a single level (direct) method,

multilevel method without sparsification, and the proposed multilevel method with

sparsification.

105

Relative Error(%)
0 1% 2% 3% 4% 5% 6% 7%

N
od

e
N

um
be

r

0

50

100

150

200
Relative Error of Maximum Voltage Drop

Between Original and Sparsified Power Grid

Figure 4.4: Relative error of vectorless verification w/ sparsified grid.

4.3.2 Experimental Results for Power Grid Verification

4.3.2.1 Result of Solution Quality

As we mentioned in the previous sections, the spectral graph sparsification method can

well-preserve the e↵ective resistances of the original power grid, which will guarantee

a good solution quality during vectorless verifications. Figure 4.4 shows that the

relative errors for the vectorless verifications with the sparsified power grids (single

level) are realtively low.

106

Figure 4.5: Sensitivity computation time for the original and sparsified
grids.

4.3.2.2 Result of Runtime E�ciency

Adjoint sensitivity calculation for vectorless power grid verification requires matrix

factorization and a linear solver using the matrix factors. For example, consider a

power grid conductance matrix G. To find the voltage sensitivity at a specific node

107

Table 4.3
Results of the proposed vectorless power grid integrity verification method.

CKT
Single Level Multilevel w/o Sparsification Multilevel w/ Sparsification

T o

chol
T o

sol
T o

lp
Tm

chol
Tm

sol
Tm

lp
Err(%) T s

chol
T s

sol
T s

lp
Err(%) 

ibmpg3 17.4s 1.39s 1.79s 37.12s 0.87s 0.21s 2.34% 1.40s 0.029s 0.11s 2.58% 27
ibmpg4 22.4s 1.57s 2.10s 48.04s 1.16s 0.35s 3.42% 3.72s 0.06s 0.08s 2.26% 39
ibmpg6 16.3s 2.84s 3.19s 30.30s 0.67s 0.45s 1.23% 5.41s 0.10s 0.20s 2.27% 24
ibmpg7 30.3s 2.44s 3.15s 66.50s 1.57s 0.32s 3.98% 4.86s 0.08s 0.15s 1.00% 36
thupg1 92.2s 9.20s 11.43s 433.54s 5.06s 27.15s 1.00% 11.09s 0.21s 10.03s 1.00% 42
thupg2 963.2s 43.16s 282.30s 2527.46s 398.05s 45.10s 1.00% 47.23s 0.46s 17.93s 1.00% 41

i with respect to all current sources, the right-hand-side (RHS) vector is set to be

b = [0, . . . , 1 . . . , 0, . . . , 0] with only the i-th entry being 1 and other entries being

0. By solving the linear system of equations based on matrix factors, the solution x

can be obtained and used as the sensitivity vector for setting up the following LPs.

The matrix factors only need to be computed once for each level and will be reused

many times during the vectorless verification process. Since the conductance matrix

of a sparsified power grid can be factorized and solved in almost linear time, adjoint

sensitivity computations using sparsified grids can be much more e�cient than the

original grid problem. As shown in Figure 4.5, the runtime results of sensitivity

calculation for the original and sparsified power grids are summarised, where tchol

denotes the runtime for Cholesky matrix factorization, tresolve denotes the runtime

for linear equation solving. It shows dramatic speedups in sensitivity calculations

with the proposed spectral graph sparsification procedure.

Comprehensive verification results using di↵erent approaches are shown in Table 4.3,

with speedup numbers shown in Table 4.4. “Single Level”, “Multilevel w/o Sparsi-

fication”, and “Multilevel w/ Sparsification” denote the verification methods using

108

Table 4.4
Runtime results of the proposed method.

CKT
Sp. Over Single Level Sp. Over Original Multilevel
T

o
chol

T
s
chol

T
o
sol

T
s
sol

T
o
lp

T
s
lp

T
m
chol

T
s
chol

T
m
sol

T
s
sol

T
m
lp

T
s
lp

ibmpg3 12.4X 47.8X 16.3X 26.5X 30X 2.0X
ibmpg4 6.0X 26.2X 26.3X 12.9X 19.3X 4.4X
ibmpg6 3.0X 28.4X 16.0X 5.6X 6.7X 2.3X
ibmpg7 6.2X 30.5X 21.0X 13.7X 19.6X 2.1X
thupg1 8.3X 43.8X 1.1X 40.0X 24.1X 2.7X
thupg2 20.4X 93.8X 15.7X 53.7X 865X 2.5X

a single level (direct), multilevel method w/o and w/ sparsification methods, re-

spectively; T ⇤
chol

, T ⇤
sol

and T ⇤
lp
denote the runtime for Cholesky factorization, adjoint

sensitivity calculation using matrix factors and total LP solve including all levels,

respectively; Err denotes the relative error of maximum voltage drop compared to a

single level method and  denotes the relative condition number.

For all test cases, it is observed that matrix factorization and sensitivity calcula-

tion using the “Multilevel w/ Sparsification” method are the fastest among all three

methods, while “Multilevel w/o Sparsification” is always the slowest due to the fast-

growing matrix densities at coarse levels. The LP solution time Tlp with “Multilevel

w/ Sparsification” is also the smallest since the number of variables and constraints in

vectorless verification can be more significantly reduced on the sparsified grids than

the original grid.

It is observed that solving LPs using the proposed method is over 2X faster than

using the “Multilevel w/o Sparsification” method, and over 20X faster than using the

109

Power Grid Size(K)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
u

n
tim

e
(s

e
co

n
d

s)

0

0.2

0.4

0.6

sensitivity solve time

Power Grid Size(K)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
u

n
tim

e
 (

se
co

n
d

s)

0

5

10

15

20

LP solve time(T
lp

)

Total time

Figure 4.6: Runtime scalability of the proposed method.

“Single Level” method, showing that the proposed method can play a very important

role in reducing overall computational cost during vectorless verifications, especially

for large power grid designs. Figure 4.6 shows the nearly-linear runtime scalability of

the proposed method, where both the LP solve time and adjoint sensitivity calculation

time have been demonstrated.

4.3.2.3 Tradeo↵ Analysis Between Accuracy and E�ciency

Figure 4.7 shows how vectorless verification solution quality (error) and the LP run-

time will change with di↵erent relative condition numbers (). As observed in our

110

Condition Number

0 50 100 150 200 250 300 350 400

R
e

la
tiv

e
 E

rr
o

r
(%

)

0

10

20

30

Relative Error

Condition Number

0 50 100 150 200 250 300 350 400

R
u

n
tim

e
 (

se
co

n
d

s)

0.05

0.1

0.15

0.2

LP solve time(T
lp

)

Figure 4.7: Result of the tradeo↵ analysis using the proposed method.

experimental results, the relative errors grow rather slowly with increasing condition

numbers ( < 200), while the LP solution time can be dramatically reduced. It

can be shown that a larger condition number leads to a sparser power grid sparsifier

with less number of current variables after node and constraint aggregations at coarse

levels, thus faster verification procedure with worse approximations, which allows to

flexibly explore the tradeo↵s between the vectorless verification runtime and solution

quality.

111

Figure 4.8: Relative Error Distributions.

4.3.3 Experimental Results for Thermal Verification

4.3.3.1 Iterative Edge Scaling and Solution Refinement

To demonstrate the e↵ectiveness of the proposed edge scaling and solution refinement

schemes, four solution (temperature) vectors are calculated for a 3D thermal grid and

its spectral sparsifiers: (a) the true solution vector obtained using the original ther-

mal grid, (b) the approximate solution vector computed using the sparsifier without

edge scaling, (c) the approximate solution vector obtained using the sparsifier with

edge scaling, (d) as well as the refined (smoothed) solution vector using the sparsifier

with edge scaling. Meanwhile, we plot histogram distributions of relative errors of

112

the solution vectors (b)-(d) by comparing them against the true solution vector (a),

as shown in Figure 4.8. We can see that the solution errors between the sparsifiers

and the original graph can be significantly reduced by leveraging the proposed itera-

tive edge scaling scheme and further mitigated by the proposed solution refinement

procedure.

4.3.3.2 Result of Verification Quality

As we mentioned in the previous sections, the spectral graph sparsification method

can well-preserve the low frequency components of the original thermal grid solutions,

which will allow achieving high-quality solutions for vectorless verification tasks. Fig-

ures 4.9 and 4.10 show the worst-case thermal distributions of processors A and B

using (a) the direct method, (b) the multilevel vectorless verification method w/o

sparsification, and (c) the multilevel vectorless verification method w/ spectral spar-

sification, respectively. As observed, the three worst-case thermal distributions are

very close to each other, indicating that rather accurate vectorless verification results

can be obtained using spectrally-sparsified thermal grids.

113

N
od

e
In

de
x

Node Index

(a) Thermal distribution by method (a)

N
od

e
In

de
x

Node Index

(b) Thermal distribution by method (b)

N
od

e
In

de
x

Node Index

(c) Thermal distribution by method (c)

Figure 4.9: Worst-case temperature distributions of processor A

Table 4.5
Results of the proposed multilevel vectorless thermal integrity verification

method (two-level scheme is used).

CKT
(a) Single Level (b) Multilevel w/o Sparsification (c) Multilevel w/ Sparsification

T o

chol
T o

sol
T o

lp
Tm

chol
Tm

sol
Tm

lp
Err(%) T s

chol
T s

sol
T s

lp
Err(%) 

T1 0.94s 2.30s 2.71s 1.24s 3.21s 3.12s 1.0% 0.03s 0.13s 2.02s 5.0% 2, 073
T2 5.89s 14.79s 10.36s 8.12s 20.48s 5.80s 2.1% 0.29s 0.72s 6.81s 3.8% 2, 400
T3 24.26s 55.20s 20.08s 33.91s 86.07s 25.90s 4.0% 1.13s 2.90s 4.33s 4.0% 1, 435
T4 38.03s 99.91s 60.56s 50.91s 131.97s 24.15s 2.0% 4.61s 10.46s 14.48s 5.0% 2, 193
T5 110.17s 262.53s 159.83s 148.11s 335.97s 21.43s 1.0% 20.09s 43.50s 9.36s 2.0% 2, 469
T6 1.18Ks 33.60Ks 0.87Ks 1.25Ks 33.99Ks 0.79Ks 1.0% 51.70s 167.00s 133.83s 1.0% 2, 141
T7 1.32Ks 32.27Ks 1.76Ks 1.42Ks 28.91Ks 1.70Ks 1.0% 65.23s 187.36s 181.76s 2.0% 3, 073

114

N
od

e
In

de
x

Node Index

(a) Thermal distribution by method (a)

N
od

e
In

de
x

Node Index

(b) Thermal distribution by method (b)

N
od

e
In

de
x

Node Index

(c) Thermal distribution by method (c)

Figure 4.10: Worst-case temperature distributions of processor B

4.3.3.3 Comprehensive Results

Vectorless thermal integrity verification results using di↵erent methods are shown in

Table 4.5. Except for T ⇤
chol

, all other computational runtime are obtained by summing

up the runtimes for verifying 100 randomly chosen nodes.

115

Table 4.6
Runtime results of the proposed method.

CKT
Sp. Over Single Level Sp. Over Original Multilevel
T

o
chol

T
s
chol

T
o
sol

T
s
sol

T
o
lp

T
s
lp

T
m
chol

T
s
chol

T
m
sol

T
s
sol

T
m
lp

T
s
lp

T1 31X 18X 1.4X 41X 25X 1.6X
T2 20X 20X 1.6X 28X 28X 0.85X
T3 22X 19X 4.6X 30X 30X 6.0X
T4 9X 10X 4X 11X 13X 1.7X
T5 6X 6X 18X 8X 8X 2.3X
T6 23X 201X 6.5X 24X 204X 5.9X
T7 20X 172X 9.7X 22X 154X 9.1X

1 2 3 4 5 6 7
Testcase index

1

20

40

60

80

100

120

To
ta

l r
un

tim
e

sp
ee

du
ps

Ttot
o /Ttot

s

Ttot
m /Ttot

s

Figure 4.11: Total runtime speedups of Multilevel w/ Sparsification
method comparing to the other two methods.

Table 4.6 shows the runtime speedups for Cholesky factorization, adjoint sensitivity

calculation, and solving LP when comparing the proposed multilevel method with

the other two methods, while Figure 4.11 shows the total runtime speedups of the

proposed method compared to the other two methods. It is observed that both the

matrix factorization and adjoint sensitivity calculation procedures in the “Multilevel

w/ Sparsification” method are consistently much faster than the other two methods,

116

especially for larger test cases. And the total runtime speedups can be up to 100X for

the larger thermal grids when using the proposed method. While the “Multilevel w/o

Sparsification” is the slowest method due to the fast growing matrix densities at coarse

levels. The overall LP solution time Tlp for the “Multilevel w/ Sparsification” method

is also the smallest, indicating that the proposed method can e↵ectively reduce the

number of decision variables in LP and thus result in much lower computational cost

in vectorless thermal verification tasks.

0 2 4 6 8 10 12 14
Number of non-zeros in the matrices

106

0

50

100

150

200

R
un

tim
e(

s)

Tlp
s

(a) LP solve time with the number of non-zero in matrices

0 2 4 6 8 10 12 14
Number of non-zeros in the matrices 106

0

100

200

300

400

500

R
un

tim
e(

s)

Ttot
s

(b) Total verification time with the number of non-zeros in matrices

Figure 4.12: Verification time with various problem sizes.

Meanwhile, the proposed method scales very comfortably with even very large 3D

thermal grids, since both the LP solve time and total verification time increase almost

117

linearly with the 3D thermal grid sizes, as shown in Figure 4.12.

118

Chapter 5

Conclusion

This dissertation has presented algorithms and frameworks to tackle graph-related

computing tasks by utilizing spectral methods. Three high-performance spectral

methods for computer-aided design of integrated circuits are discussed in the dis-

sertation:

1. We propose a scalable algorithmic framework for spectral reduction of large undi-

rected graphs. The proposed method allows computing with much smaller graphs

while preserving the key spectrum of the original graph. To achieve truly scal-

able performance (nearly-linear complexity) for spectral graph reduction, we leverage

the recent similarity-aware spectral sparsification method, graph-theoretic algebraic

119

multigrid (AMG) Laplacian solver, and a novel constrained stochastic gradient de-

scent (SGD) optimization approach in our spectral graph reduction algorithm.

We show that the resulting spectrally-reduced graphs can robustly preserve the first

few nontrivial eigenvalues and eigenvectors of the original graph Laplacian. Besides,

the spectral graph reduction method has been leveraged to develop much faster al-

gorithms for multilevel spectral graph partitioning as well as t-distributed Stochastic

Neighbor Embedding (t-SNE) of large data sets. We conducted extensive experiments

using a variety of large graphs and data sets and obtained very promising results. For

instance, we are able to reduce the “coPapersCiteseer” graph with 430K nodes and

16 million edges to a much smaller graph with only 13K (32X fewer) nodes and 17K

(950X fewer) edges in about 16 seconds; the spectrally-reduced graphs also allow us to

achieve up to 1100X speedup for spectral graph partitioning and up to 60X speedup

for t-SNE visualization of large data sets. [18]

2. We introduce a Sparsified Algebraic Multigrid (SAMG) framework such that the

scalability of recent graph-theoretic Algebraic Multigrid (AMG) solvers can be im-

proved. We leverage a nearly-linear time spectral-perturbation based graph sparsi-

fication algorithm to aggressively sparsify the AMG coarse level problems without

impacting the overall convergence of the solver. As a result, the coarse level problems

generated by the proposed SAMG solver are always much sparser than the original

problems without sacrificing spectral approximation quality, leading to scalable yet

120

robust AMG algorithms for solving large SDD matrices. Extensive experimental re-

sults show the proposed SAMG solver can significantly outperform the prior LAMG

solver for a variety of large SDD matrix problems encountered in IC simulations,

3D-IC thermal analysis, image processing, and finite element analysis, as well as data

mining and machine learning tasks.

3. We present a highly-scalable multilevel vectorless power grid and thermal integrity

verification framework for computing chip worst-case voltage drop and thermal pro-

files without knowing the exact distribution of underlying power sources or workloads.

Recent theoretical results in spectral graph sparsification and graph signal processing

techniques enable us to develop much faster and more scalable vectorless thermal

integrity verification algorithms while achieving flexible tradeo↵s between computing

e�ciency and solution quality. Extensive experiment results for various chip designs

have been demonstrated, indicating that the proposed scalable vectorless verification

method can always e�ciently obtain highly-accurate results for large chip designs.

5.1 Future Work

There are several research directions can be considered for the further extension of

this dissertation:

121

1. The graph reduction framework can be further extended to the application of the

circuit simulation. Even though the circuit networks contain nonlinear components,

this framework can still be applied to linearized parts extracted from the circuit

network, potentially reducing the complexity of the circuit simulation.

2. The SAMG solver can be potentially benefited by the proposed SGD edge scaling

scheme. In the proposed SAMG algorithm, all edges are scaled up by the same scaling

factor after spectral sparsification. However, the SGD edge scaling scheme achieves

better sparsifier quality with a minimum number of edges, thus can be applied for

better improving the graph approximation quality in SAMG solver.

3. In chapter 4, only static status (DC) is considered for power grid and thermal

integrity verification. However, the framework of the verification can also apply to

integrated circuits for transient simulations.

122

References

[1] C. J. Alpert. The ispd98 circuit benchmark suite. In Proceedings of the 1998

international symposium on Physical design, pages 80–85. ACM, 1998.

[2] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding.

In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics,

2007.

[3] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner.

Benchmarking for graph clustering and partitioning. In Encyclopedia of Social

Network Analysis and Mining, pages 73–82. Springer, 2014.

[4] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. Graph partitioning

and graph clustering. In 10th DIMACS Implementation Challenge Workshop,

2012.

123

[5] J. Batson, D. Spielman, and N. Srivastava. Twice-Ramanujan Sparsifiers. SIAM

Journal on Computing, 41(6):1704–1721, 2012.

[6] A. A. Benczúr and D. R. Karger. Approximating st minimum cuts in õ (n 2)

time. In Proceedings of the twenty-eighth annual ACM symposium on Theory

of computing (STOC), pages 47–55. ACM, 1996.

[7] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for cuts

and flows in capacitated graphs. SIAM Journal on Computing, 44(2):290–319,

2015.

[8] W. L. Briggs, S. F. McCormick, et al. A multigrid tutorial, volume 72. Siam,

2000.

[9] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances

in graph partitioning. In Algorithm Engineering, pages 117–158. Springer, 2016.

[10] J. Chen and I. Safro. Algebraic distance on graphs. SIAM Journal on Scientific

Computing, 33(6):3468–3490, 2011.

[11] P. Christiano, J. Kelner, A. Madry, D. Spielman, and S. Teng. Electrical flows,

laplacian systems, and faster approximation of maximum flow in undirected

graphs. In Proc. ACM STOC, pages 273–282, 2011.

[12] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng. Elec-

trical flows, laplacian systems, and faster approximation of maximum flow in

124

undirected graphs. In Proceedings of the forty-third annual ACM symposium

on Theory of computing, pages 273–282, 2011.

[13] R. Cochran and S. Reda. Consistent runtime thermal prediction and control

through workload phase detection. In Proceedings of the 47th Design Automa-

tion Conference, pages 62–67. ACM, 2010.

[14] M. B. Cohen, J. Kelner, J. Peebles, R. Peng, A. B. Rao, A. Sidford, and

A. Vladu. Almost-linear-time algorithms for markov chains and new spectral

primitives for directed graphs. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, pages 410–419. ACM, 2017.

[15] D. Kouroussis and I. Ferzli and F. Najm. Incremental partitioning-based vec-

torless power grid verification. In Proc. IEEE/ACM ICCAD, pages 358–364,

2005.

[16] T. Davis. CHOLMOD: sparse supernodal Cholesky fac-

torization and update/downdate. [Online]. Available:

http://www.cise.ufl.edu/research/sparse/cholmod/, 2008.

[17] T. Davis and Y. Hu. The university of florida sparse matrix collection. ACM

Trans. on Math. Soft. (TOMS), 38(1):1, 2011.

[18] M. De↵errard, X. Bresson, and P. Vandergheynst. Convolutional neural net-

works on graphs with fast localized spectral filtering. In Advances in neural

information processing systems, pages 3844–3852, 2016.

125

[19] C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng. Graphzoom: A multi-level

spectral approach for accurate and scalable graph embedding. In International

Conference on Learning Representations, 2020.

[20] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors

a multilevel approach. IEEE transactions on pattern analysis and machine

intelligence, 29(11):1944–1957, 2007.

[21] W. Donath and A. Ho↵man. Algorithms for partitioning of graphs and computer

logic based on eigenvectors of connections matrices. IBM Technical Disclosure

Bulletin, 15, 1972.

[22] W. E. Donath and A. J. Ho↵man. Lower bounds for the partitioning of graphs.

In Selected Papers Of Alan J Ho↵man: With Commentary, pages 437–442.

World Scientific, 2003.

[23] F. Dorfler and F. Bullo. Kron reduction of graphs with applications to electri-

cal networks. IEEE Transactions on Circuits and Systems I: Regular Papers,

60(1):150–163, 2012.

[24] M. Elkin and D. Peleg. Approximating k-spanner problems for k¿ 2. Theoretical

Computer Science, 337(1-3):249–277, 2005.

[25] Z. Feng. Scalable multilevel vectorless power grid voltage integrity verification.

IEEE Trans. on VLSI Systems, 21(8):1526–1539, August 2013.

126

[26] Z. Feng. Scalable Vectorless Power Grid Current Integrity Verification. In Proc.

of IEEE/ACM DAC, pages 86:1–86:8, 2013.

[27] Z. Feng. Spectral graph sparsification in nearly-linear time leveraging e�cient

spectral perturbation analysis. In Design Automation Conference (DAC), 2016

53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[28] Z. Feng. Similarity-aware spectral sparsification by edge filtering. In Design

Automation Conference (DAC), 2018 55nd ACM/EDAC/IEEE. IEEE, 2018.

[29] Z. Feng. Grass: Graph spectral sparsification leveraging scalable spectral per-

turbation analysis. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2020.

[30] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical jour-

nal, 23(2):298–305, 1973.

[31] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and

its application to graph theory. Czechoslovak Mathematical Journal, 25(4):619–

633, 1975.

[32] W. Fung, R. Hariharan, N. Harvey, and D. Panigrahi. A general framework for

graph sparsification. In Proc. ACM STOC, pages 71–80, 2011.

[33] N. Ghani and F. Najm. Fast Vectorless Power Grid Verification Using an Ap-

proximate Inverse Technique. In Proc. IEEE/ACM DAC, pages 184–189, 2009.

127

[34] A. Goyal and F. N. Najm. E�cient rc power grid verification using node elim-

ination. In Proc. of IEEE/ACM DATE, pages 257–260, 2011.

[35] D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. In

International symposium on graph drawing, pages 183–196. Springer, 2000.

[36] G. B. Hermsdor↵ and L. Gunderson. A unifying framework for spectrum-

preserving graph sparsification and coarsening. In Advances in Neural Infor-

mation Processing Systems, pages 7736–7747, 2019.

[37] R. A. Horn, R. A. Horn, and C. R. Johnson. Matrix analysis. Cambridge

university press, 1990.

[38] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and

M. R. Stan. Hotspot: A compact thermal modeling methodology for early-

stage vlsi design. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 14(5):501–513, 2006.

[39] M. Imre, J. Tao, Y. Wang, Z. Zhao, Z. Feng, and C. Wang. Spectrum-preserving

sparsification for visualization of big graphs. Computers & Graphics, 87:89–102,

2020.

[40] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality

in protein networks. Nature, 411(6833):41, 2001.

128

[41] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph

partitioning: applications in vlsi domain. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 7(1):69–79, 1999.

[42] G. Karypis and V. Kumar. Metis–unstructured graph partitioning and sparse

matrix ordering system, version 2.0. 1995.

[43] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-

tioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,

1998.

[44] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI

design, 11(3):285–300, 2000.

[45] S. Kaski and J. Peltonen. Dimensionality reduction for data visualization [ap-

plications corner]. IEEE signal processing magazine, 28(2):100–104, 2011.

[46] B. W. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning

graphs. The Bell system technical journal, 49(2):291–307, 1970.

[47] P. Kolev and K. Mehlhorn. A note on spectral clustering. arXiv preprint

arXiv:1509.09188, 2015.

[48] A. Kolla, Y. Makarychev, A. Saberi, and S. Teng. Subgraph sparsification and

nearly optimal ultrasparsifiers. In Proc. ACM STOC, pages 57–66, 2010.

129

[49] Y. Koren. On spectral graph drawing. In International Computing and Com-

binatorics Conference, pages 496–508. Springer, 2003.

[50] D. Kouroussis and F. Najm. A static pattern-independent technique for power

grid voltage integrity verification. In Proc. IEEE/ACM DAC, pages 99–104,

2003.

[51] I. Koutis, G. Miller, and R. Peng. Approaching Optimality for Solving SDD

Linear Systems. In Proc. IEEE FOCS, pages 235–244, 2010.

[52] I. Koutis, G. Miller, and D. Tolliver. Combinatorial preconditioners and multi-

level solvers for problems in computer vision and image processing. Computer

Vision and Image Understanding, 115(12):1638–1646, 2011.

[53] I. Koutis, G. L. Miller, and R. Peng. Approaching optimality for solving sdd

linear systems. SIAM Journal on Computing, 43(1):337–354, 2014.

[54] D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey, and

G. Karypis. Improving graph partitioning for modern graphs and architectures.

In Proceedings of the 5th Workshop on Irregular Applications: Architectures

and Algorithms, page 14. ACM, 2015.

[55] J. R. Lee, S. O. Gharan, and L. Trevisan. Multiway spectral partitioning and

higher-order cheeger inequalities. Journal of the ACM (JACM), 61(6):37, 2014.

130

[56] Y. T. Lee and H. Sun. An SDP-based Algorithm for Linear-sized Spectral

Sparsification. In Proceedings of the 49th Annual ACM SIGACT Symposium

on Theory of Computing, STOC 2017, pages 678–687, New York, NY, USA,

2017. ACM.

[57] R. Lehoucq, D. Sorensen, and C. Yang. Arpack users’ guide: Solution of large

scale eigenvalue problems with implicitly restarted arnoldi methods. Software

Environ. Tools, 6, 1997.

[58] R. Lewis and S. Nash. Model problems for the multigrid optimization of systems

governed by di↵erential equations. SIAM J. Sci. Comput., 26(6):1811–1837,

2005.

[59] H. Li and A. Schild. Spectral subspace sparsification. In 2018 IEEE 59th

Annual Symposium on Foundations of Computer Science (FOCS), pages 385–

396. IEEE, 2018.

[60] P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra. Ic thermal simulation

and modeling via e�cient multigrid-based approaches. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 25(9):1763–1776,

2006.

[61] J. Liang, S. Gurukar, and S. Parthasarathy. Mile: A multi-level framework for

scalable graph embedding. arXiv preprint arXiv:1802.09612, 2018.

131

[62] M. P.-H. Lin, H. Zhang, M. D. Wong, and Y.-W. Chang. Thermal-driven analog

placement considering device matching. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 30(3):325–336, 2011.

[63] G. C. Linderman and S. Steinerberger. Clustering with t-sne, provably. arXiv

preprint arXiv:1706.02582, 2017.

[64] O. Livne and A. Brandt. Lean algebraic multigrid (LAMG): Fast graph Lapla-

cian linear solver. SIAM Journal on Scientific Computing, 34(4):B499–B522,

2012.

[65] A. Loukas. Graph reduction with spectral and cut guarantees. arXiv preprint

arXiv:1808.10650, 2018.

[66] A. Loukas. Graph reduction with spectral and cut guarantees. Journal of

Machine Learning Research, 20(116):1–42, 2019.

[67] A. Loukas and P. Vandergheynst. Spectrally approximating large graphs with

smaller graphs. In International Conference on Machine Learning, pages 3237–

3246, 2018.

[68] A. Loukas and P. Vandergheynst. Spectrally approximating large graphs with

smaller graphs. In Proceedings of the 35th International Conference on Machine

Learning (ICML), pages 3237–3246, 2018.

132

[69] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine

learning research, 9(Nov):2579–2605, 2008.

[70] F. Najm. Overview of vectorless/early power grid verification. In Proc. of

IEEE/ACM ICCAD, pages 670–677, 2012.

[71] S. R. Nassif. IBM power grid benchmarks. [Online]. Available:

http://dropzone.tamu.edu/ pli/PGBench/, 2008.

[72] M. Naumov and T. Moon. Parallel spectral graph partitioning. Technical report,

NVIDIA Technical Report, NVR-2016-001, 2016.

[73] M. E. Newman. Community detection and graph partitioning. EPL (Euro-

physics Letters), 103(2):28003, 2013.

[74] G. Optimization. Gurobi optimizer [online]. available: www. gurobi. com, 2016.

[75] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kos-

sida, J. Aerts, R. Schneider, and P. G. Bagos. Using graph theory to analyze

biological networks. BioData mining, 4(1):10, 2011.

[76] M. Pedram and S. Nazarian. Thermal modeling, analysis, and management in

vlsi circuits: Principles and methods. Proceedings of the IEEE, 94(8):1487–1501,

2006.

[77] D. Peleg and A. A. Schä↵er. Graph spanners. Journal of graph theory, 13(1):99–

116, 1989.

133

[78] R. Peng, H. Sun, and L. Zanetti. Partitioning well-clustered graphs: Spectral

clustering works! In Conference on Learning Theory, pages 1423–1455, 2015.

[79] R. Preis and R. Diekmann. Party-a software library for graph partitioning.

Advances in Computational Mechanics with Parallel and Distributed Processing,

pages 63–71, 1997.

[80] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian. Fast

influence-based coarsening for large networks. In Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 1296–1305, 2014.

[81] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Early-stage power grid analysis for

uncertain working modes. IEEE Trans. on Computer-Aided Design, 24(5):676–

682, 2005.

[82] J. Ruge and K. Stüben. Algebraic multigrid. Multigrid methods, 3(13):73–130,

1987.

[83] Y. Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

[84] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph sparsification for

scalable clustering. In Proceedings of the 2011 ACM International Conference

on Management of data (SIGMOD), pages 721–732. ACM, 2011.

134

[85] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-

tions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[86] D. I. Shuman, M. J. Faraji, and P. Vandergheynst. A multiscale pyramid trans-

form for graph signals. IEEE Transactions on Signal Processing, 64(8):2119–

2134, 2015.

[87] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst.

The emerging field of signal processing on graphs: Extending high-dimensional

data analysis to networks and other irregular domains. IEEE Signal Processing

Magazine, 30(3):83–98, 2013.

[88] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and

D. Tarjan. Temperature-aware microarchitecture: Modeling and implemen-

tation. ACM Transactions on Architecture and Code Optimization (TACO),

1(1):94–125, 2004.

[89] D. Spielman. Algorithms, graph theory, and linear equations in Laplacian ma-

trices. In Proceedings of the International Congress of Mathematicians (ICM),

volume 4, pages 2698–2722, 2010.

[90] D. Spielman and N. Srivastava. Graph sparsification by e↵ective resistances. In

Proc. ACM STOC, pages 563–568, 2008.

[91] D. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning,

135

graph sparsification, and solving linear systems. In Proc. ACM STOC, pages

81–90, 2004.

[92] D. Spielman and S. Teng. Nearly linear time algorithms for preconditioning

and solving symmetric, diagonally dominant linear systems. SIAM Journal on

Matrix Analysis and Applications, 35(3):835–885, 2014.

[93] D. A. Spielman and N. Srivastava. Graph sparsification by e↵ective resistances.

SIAM Journal on Computing, 40(6):1913–1926, 2011.

[94] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM Journal

on Computing, 40(4):981–1025, 2011.

[95] D. A. Spielman and J. Woo. A note on preconditioning by low-stretch spanning

trees. arXiv preprint arXiv:0903.2816, 2009.

[96] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of ini-

tialization and momentum in deep learning. In International conference on

machine learning, pages 1139–1147, 2013.

[97] S.-H. Teng. Scalable algorithms for data and network analysis. Foundations

and Trends® in Theoretical Computer Science, 12(1–2):1–274, 2016.

[98] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Pro-

ceedings of the 21st annual conference on Computer graphics and interactive

techniques, pages 311–318. ACM, 1994.

136

[99] L. Van Der Maaten. Accelerating t-sne using tree-based algorithms. The Journal

of Machine Learning Research, 15(1):3221–3245, 2014.

[100] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[101] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In Inter-

national Symposium on Graph Drawing, pages 171–182. Springer, 2000.

[102] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a billion-node graph.

In 2014 IEEE 30th International Conference on Data Engineering, pages 568–

579. IEEE, 2014.

[103] Y. Wang, Z. Zhao, and Z. Feng. Graspel: Graph spectral learning at scale.

arXiv preprint arXiv:1911.10373, 2019.

[104] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical designs.

IEEE Transactions on computer-aided design, 10(7):911–921, 1991.

[105] X. Xiong and J. Wang. An E�cient Dual Algorithm for Vectorless Power Grid

Verification under Linear Current Constraints. In Proc. IEEE/ACM DAC,

pages 837–842, 2010.

[106] F. Xue. Numerical solution of eigenvalue problems with spectral transformations.

PhD thesis, University of Maryland, College Park, 2009.

137

[107] J. Yang, Y. Cai, Q. Zhou, and W. Zhao. A selected inversion approach for

locality driven vectorless power grid verification. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 23(11):2617–2628, 2015.

[108] J. Yang and Z. Li. THU power grid benchmarks. [Online]. Available:

http://tiger.cs.tsinghua.edu.cn/PGBench/.

[109] Y. Zhang, Z. Zhao, and Z. Feng. Towards scalable spectral sparsification of

directed graphs. In 2019 IEEE International Conference on Embedded Software

and Systems (ICESS), pages 1–2. IEEE, 2019.

[110] Y. Zhang, Z. Zhao, and Z. Feng. SF-GRASS: Solver-Free Graph Spectral Sparsi-

fication. In Proceedings of ACM/IEEE International Conference on Computer-

Aided Design, 2020.

[111] Y. Zhang, Z. Zhao, and Z. Feng. A unified approach to scalable spectral spar-

sification of directed graphs. arXiv preprint arXiv:1812.04165, 2020.

[112] X. Zhao, Z. Feng, and C. Zhuo. An e�cient spectral graph sparsification ap-

proach to scalable reduction of large flip-chip power grids. In 2014 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 218–223.

IEEE, 2014.

[113] Z. Zhao and Z. Feng. A spectral graph sparsification approach to scalable

vectorless power grid integrity verification. In Proceedings of the 54th Annual

Design Automation Conference 2017, page 68. ACM, 2017.

138

[114] Z. Zhao and Z. Feng. E↵ective-resistance preserving spectral reduction of

graphs. In Proceedings of the 56th Annual Design Automation Conference 2019,

pages 1–6, 2019.

[115] Z. Zhao and Z. Feng. A spectral approach to scalable vectorless thermal integrity

verification. In 2020 Design, Automation & Test in Europe. IEEE, 2020.

[116] Z. Zhao, Y. Wang, and Z. Feng. SAMG: Sparsified graph theoretic algebraic

multigrid for solving large symmetric diagonally dominant (SDD) matrices. In

Proceedings of ACM/IEEE International Conference on Computer-Aided De-

sign, pages 601–606, 2017.

[117] Z. Zhao, Y. Wang, and Z. Feng. Nearly-linear time spectral graph reduc-

tion for scalable graph partitioning and data visualization. arXiv preprint

arXiv:1812.08942, 2018.

[118] Z. Zhao, Y. Zhang, and Z. Feng. Towards scalable spectral embedding and data

visualization via spectral coarsening. In 14th ACM International Conference on

Web Searching and Data Mining (WSDM) (to be appear), 2021.

[119] X. Zhu, Z. Ghahramani, and J. La↵erty. Semi-supervised learning using gaus-

sian fields and harmonic functions. In Proc. of ICML, volume 3, pages 912–919,

2003.

139

Appendix A

Supplementary Materials

A.1 Spectral Graph Partitioning

Graph partitioning is one of the fundamental algorithmic operations, which can be

applied to many fields [9], such as parallel processing, community detection in social

networks [73], biological networks analysis [75], VLSI computer-aided design [42],

etc. The graph partitioning aims to partition the vertices or edges of a graph into a

number of disjoint sets without introducing too many connections between the sets.

A variety of graph partitioning algorithms has been proposed, from local heuristics

like Kernighan-Lin [46] to global methods such as spectral partitioning [9, 31] and

multilevel partitioning [43]. Spectral partitioning, which was first noted in [21, 22,

141

30, 31], has become one of the most important methods for graph partitioning.

Consider a weighted graph G = (V,EG, wG) with vertex (node) set V = {v1, · · · , vn}

denoting n vertices in the graph, edge set EG representing weighted edges in the graph

and wG denoting a weight function that assigns positive weight to all edges, that is

wG(p, q) > 0 if there is an edge connecting node vp and node vq, which can also be

represented by (p, q) 2 EG. Given a subset of vertices S ⇢ V and its complement

set S̄ = V \S, the boundary between set S and set S̄ is defined as a set of edges

B(S, S̄) ⇢ EG such that one node of each edge is in set S and the other node is in

set S̄:

B(S) = {(p, q) : p 2 S ^ q 2 S̄}. (A.1)

The cut between S and S̄ can be defined as follows:

C(S, S̄) =
X

(p,q)2B(S)

wG(p, q) = vol(B(S)). (A.2)

The simplest idea of graph partitioning is to find a partition of the graph so that

di↵erent partition sets are weakly connected (meaning the edges between di↵erent

sets have low weights) while the interior of each set is strongly connected. The aim of

graph partitioning is to find the set S such that C(S, S̄) can be minimized. However,

in practice the solution of this min-cut problem is usually unacceptable due to the

highly unbalanced partitioning results. For example, the resulted set S may only have

one individual vertex while S̄ includes rest of the graph. Therefore, we also want the

142

partitions to be reasonably balanced. To realize the minimum balanced cut of graph

partitioning, two objective functions have been introduced: ratio cut ⇢(S) [104] and

normalized cut ✓(S) [85], which have been defined as follows:

⇢(S) = min
S

|V |C(S, S̄)

|S||S̄|
= min

S

✓
C(S, S̄)

|S| +
C(S, S̄)

|S̄|

◆
(A.3)

✓(S) = min
S

vol(V)C(S, S̄)

vol(S)vol(S̄)
= min

S

✓
C(S, S̄)

vol(S)
+

C(S, S̄)

vol(S̄)

◆
(A.4)

where

|S| := the number of vertices in set S (A.5)

vol(S) =
X

p2S^(p,q)2EG

wG(p, q). (A.6)

Note that number of vertices (sum of edge weights) is used to measure the size of

set S for ratio cut ⇢(S) (normalized cut ✓(S)). In other words, the ratio cut ⇢(S)

metric aims to balance the number of vertices for each set, while the normalized cut

✓(S) metric aims to balance number of edges in each set. The ratio cut in (A.3) and

normalized cut in (A.4) can be generalized as follows for k-way partitioning problems

143

[72, 100]:

⇢(S1, · · · , Sk) = min
S1,··· ,Sk

kX

i=1

C(Si, S̄i)

|Si|
(A.7)

✓(S1, · · · , Sk) = min
S1,··· ,Sk

kX

i=1

C(Si, S̄i)

vol(Si)
, (A.8)

while the edge cut of k partitions becomes

C(S1, · · · , Sk) =
kX

i=1

C(Si, S̄i). (A.9)

Since the optimization problems of (A.7) and (A.8) are NP-hard, spectral partitioning

methods have been proposed for solving the relaxed optimization problems. It can be

shown that the solution of the relaxed optimization problem (A.7) is the matrix of U

with first k eigenvectors of the graph Laplacian as its columns vectors, whereas the

solution to the relaxed optimization problem (A.8) is the matrix of U with the first

k eigenvectors of the normalized graph Laplacian [85]. Detailed proof can be found

in Section A.1.1 and Section A.1.2.

Since we want to partition V into k sets based on the indicator matrix U 2 IRnxk, one

straightforward way is to treat each row of the matrix U as a point in a k dimensional

space and use clustering algorithms, like k-means [2] to identify the k partitions.

144

A.1.1 Ratio cut and normalized cut for 2-way partitioning

Given the graph G(V,EG, wG), the graph Laplacian LG is defined as follows:

LG(i, j) =

8
>>>>>>>>><

>>>>>>>>>:

�wG(i, j) if (i, j) 2 EG

P
(i,t)2EG

wG(i, t) if (i = j)

0 if otherwise.

(A.10)

LG can also be represented as

LG = DG �AG, (A.11)

where AG is the adjacency matrix of the graph and DG is the diagonal matrix with

each i-th diagonal element being the sum of all elements in that row of AG. To relate

the ratio cut objective function with the unnormalized graph Laplacian, we first define

the vector z = (z1, z2, · · · , zn)T 2 IRn with entries noted as follows [72, 100]:

zi =

8
>>><

>>>:

p
(|S̄|/|S|) if vi 2 S

�
p
(|S|/|S̄|) if vi 2 S̄

(A.12)

145

Then we have

zTLGz =
1

2

nX

p,q=1

wG(p, q)(zp � zq)
2

= C(S, S̄)

✓
|S|+ |S̄|

|S| +
|S|+ |S̄|

|S̄|

◆

= |V | · |V |C(S, S̄)

|S||S̄|
= |V |⇢(S)

Given the all-one vector 1, the following can be observed:

zT1 =
nX

i=1

zi =
X

i2S

s
|S̄|
|S| �

X

i2S̄

s
|S|
|S̄|

= 0, (A.13)

zTz =
nX

i=1

z2
i
=
X

i2S

|S̄|
|S| +

X

i2S̄

|S|
|S̄|

= n = |V |, (A.14)

which will lead to:

⇢(S) =
zTLGz

zTz
. (A.15)

Since the values of zi are restricted to the two particular values, this optimization

problem is NP-hard. Spectral partitioning relaxes the constraints and allows z to

take any real values.

According to the Courant-Fischer theorem [37], the solution to the relaxed op-

timization problem is the eigenvector of LG associated with the smallest non-zero

eigenvalue. Once the solution vector z is computed, a partition can be obtained by

146

converting the real-valued vector z to a discrete vector containing only 0 and 1 as the

indicators for partitioning purpose. For example, one simple way is to use the sign of

the vector z to partition the graph so that vi 2 S if zi > 0, otherwise vi 2 S̄. Similar

analysis can be performed for normalized cut by setting the vector z to be:

zi =

8
>>><

>>>:

p
(vol(S̄)/vol(S)) if vi 2 S

�
p

(vol(S)/vol(S̄)) if vi 2 S̄

(A.16)

which leads to:

zTLGz = vol(V)✓(S) (A.17)

(DGz)
T1 = 0 (A.18)

zTDGz = vol(V) (A.19)

By relaxing the vector z to take arbitrary real values, we can show that the solution to

this relaxed optimization problem is the eigenvector associated to the second smallest

eigenvalue to the generalized eigenvalue problem of

LGu = �DGu. (A.20)

147

A.1.2 Ratio cut and normalized cut for k-way partitioning

We follow a similar discussion based on previous analysis when relaxing the ratio cut

and normalized cut minimizations, generalizing to k partitions. Given a partition of

V into k sets, we define k indicator vectors mj = (m1,j, · · · ,mn,j)T with j = 1, · · · , k

such that

mi,j =

8
>>><

>>>:

1/
p
|Sj| if vi 2 Sj

0 otherwise

(A.21)

where i = 1, · · · , n; j = 1, · · · , k.

The indicator matrix U can be defined with the k vectors so that U = [m1, · · · ,mk].

Note that columns in U are orthogonal to each other, that is UTU = I. We also note

that

mT
j LGmj = (UTLGU)jj =

C(Sj, S̄j)

|Sj|
(A.22)

By substituting (A.22) to (A.7) we can get

148

⇢(S1, · · · , Sk) =
kX

j=1

mT
j LGmj =

kX

j=1

(UTLGU)jj = Tr(UTLGU) (A.23)

Where Tr(·) is the trace of a matrix. By relaxing the entries of indicator matrix U

to be arbitrary real values, the optimization problem in (A.7) becomes

⇢(S) = min
U2IRnxk

Tr(UTLGU) subject to: UTU = I.

According to the Courant-Fischer theorem, the solution to this optimization prob-

lem is the matrix of U with first k eigenvectors of LG as its columns.

Similarly, we can choose the entries of indicator matrix U as follows:

mi,j =

8
>>><

>>>:

1/
p
vol(Sj) if vi 2 Sj

0 otherwise .

(A.24)

We observe that UTDGU = I, and mT
j LGmj = C(Sj, S̄j)/vol(Sj). By relaxing U to

take arbitrary real values, we can reformulate the optimization problem in (A.8) as

✓(S) = min
U2IRnxk

Tr(UTLGU) subject to: UTDGU = I.

149

According to the Courant-Fischer theorem, the solution to this optimization prob-

lem is the matrix of U with first k generalized eigenvectors of LGu = �DGu as its

columns [85].

A.2 t-Distributed Stochastic Neighbor Embed-

ding

t-Distributed Stochastic Neighbor Embedding (t-SNE) [69, 99] is a nonlinear dimen-

sionality reduction method designed for visualizing data. The goal of t-SNE is to learn

a mapping from the high-dimensional space to a low-dimensional space with desired

number of dimensionality in such a way that similar data points are mapped to nearby

locations and dissimilar data points are mapped to distant locations. To accomplish

this, t-SNE converts the Euclidean distances between data points in high-dimensional

space into conditional probability as follows:

Pj|i =
exp(�kxi�xjk2

2�i
2)

P
k 6=i

exp(�kxi�xkk2
2�i

2)
, Pi|i = 0, (A.25)

where �i denotes the variance of the Gaussian distribution that is centered at xi.

The joint probability is defined by symmetrizing a pair of conditional probabilities as

150

follows:

Pij =
Pj|i + Pi|j

2N
, (A.26)

t-SNE uses this joint probability to measure the similarity between two data points

xi and xj in high-dimensional space. Denoting the corresponding points in low-

dimensional space by yi and yj, respectively, then the similarity between them is

measured by the following joint probability using the Cauchy kernel:

qij =
(1 + kyi � yjk2)�1

P
k 6=l

(1 + kyk � ylk2)�1
, qii = 0. (A.27)

t-SNE uses Kullback-Leibler (KL) divergence to measure the faithfulness of the em-

bedding. The cost function is defined as the sum of KL divergence over all pairs of

data points in the data set:

C = KL(P k Q) =
X

i 6=j

pij log
pij
qij

. (A.28)

The embedding points in low-dimensional space {y1, ..., yN } are determined by min-

imizing the KL cost function. Typically, starting with a random initialization, the

cost function is minimized using gradient descent method with the following gradient:

@C

@yi
= 4

X

i 6=j

(pij � qij)qijZ(yi � yj), (A.29)

151

where the constant normalization term Z is given by:

Z =
X

k 6=l

(1 + kyk � ylk2)�1. (A.30)

It should be noted that as the size of data set grows, the convergence rate will usually

slow down [69, 99]. Computing gradients is very time-consuming, since it is an N-

body problem that has a complexity of O(N2). By splitting the gradient into two

parts, we have:

@C

@yi
= 4

P
i 6=j

pijqijZ(yi � yj)� 4
P
i 6=j

q2
ij
Z(yi � yj)

= 4Fattr,i � 4Frep,i,

(A.31)

where Fattr,i denotes the sum of attractive force acting on data point i and the Frep,i

denotes the sum of repulsive force acting on data point i. Both forces are due to the

rest of the data points. The position of each data point after embedding is determined

by the net force acting on it.

In recent years, due to the prevalence of high-dimensional data, the t-SNE algorithm

has become the most e↵ective visualization tool due to its capability of performing

dimensionality reduction in such a way that similar data points in high-dimensional

space are embedded to nearby locations in the low-dimensional space of two or three

dimensions with high probability. However, t-SNE is limited in its applicability to

large real-world data sets due to the high computational complexity. In practice, the

152

standard t-SNE can not even apply to data sets with more than 10, 000 data points

[69]. Thus, there is a pressing need to develop acceleration techniques for the t-SNE

algorithm that can be adapted to visualize large-scale data sets. In the past decade,

substantial e↵ort has been made to reduce the computational cost of t-SNE. For

example, tree-based algorithms have been proposed to accelerate the computation

of the gradient in t-SNE [99], which, however, has no theoretical guarantee of the

solution quality.

153

Appendix B

Copyright Permission

155

ACM Copyright and Audio/Video Release

Title of the Work: Effective-Resistance Preserving Spectral Reduction of Graphs

Author/Presenter(s): Zhiqiang Zhao;Zhuo Feng
Type of material:Full Paper

Publication and/or Conference Name: DAC '19: The 56th Annual Design Automation Conference 2019
Proceedings

I. Copyright Transfer, Reserved Rights and Permitted Uses

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental files integral to the Work which are submitted with it for
review and publication such as an extended proof, a PowerPoint outline, or appendices that may exceed a
printed page limit, (including without limitation, the right to publish the Work in whole or in part in any
and all forms of media, now or hereafter known) is hereby transferred to the ACM (for Government work,
to the extent transferable) effective as of the date of this agreement, on the understanding that the Work
has been accepted for publication by ACM.

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner, including all
other proprietary rights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner shall have
the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the Author,
including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's institutional
repository, (3) any repository legally mandated by an agency funding the research on which the Work is
based, and (4) any non-commercial repository or aggregation that does not duplicate ACM tables of
contents, i.e., whose patterns of links do not substantially duplicate an ACM-copyrighted volume or issue.
Non-commercial repositories are here understood as repositories owned by non-profit organizations that
do not charge a fee for accessing deposited articles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in the ACM Digital
Library on (1) the Author's home page or (2) the Owner's institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of the Work as submitted to
ACM ("Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's employees,
if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work. (x) If your paper is withdrawn before it is
published in the ACM Digital Library, the rights revert back to the author(s).

https://doi.org/10.1145/3316781.3317809

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be registered and
become active shortly after publication in the ACM Digital Library. Once you have your camera ready copy
ready, please send your source files and PDF to your event contact for processing.

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner (or authorized
agent of the copyright owner(s)), with the exception of third party materials detailed in section III below. I
have obtained permission for any third-party material included in the Work.

B. Declaration for Government Work. I am an employee of the National Government of my country
and my Government claims rights to this work, or it is not copyrightable (Government work is classified
as Public Domain in U.S. only)

II. Permission For Conference Recording and Distribution
* Your Audio/Video Release is conditional upon you agreeing to the terms set out below.

I hereby grant permission for ACM to include my name, likeness, presentation and comments in any and
all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or transcribe and reproduce my presentation as part
of the ACM Digital Library, and to distribute the same for sale in complete or partial form as part of an
ACM product on CD-ROM, DVD, webcast, USB device, streaming video or any other media format now
or hereafter known.

I understand that my presentation will not be sold separately as a stand-alone product without my direct
consent. Accordingly, I give ACM the right to use my image, voice, pronouncements, likeness, and my
name, and any biographical material submitted by me, in connection with the Conference and/or
Publication, whether used in excerpts or in full, for distribution described above and for any associated
advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes No

III. Auxiliary Material

Do you have any Auxiliary Materials? Yes No

IV. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials contain the work of
third-party individuals or organizations (including copyrighted music or movie excerpts or anything not
owned by me), I understand that it is my responsibility to secure any necessary permissions and/or
licenses for print and/or digital publication, and cite or attach them below.

We/I have not used third-party material.
We/I have used third-party materials and have necessary permissions.

V. Artistic Images
If your paper includes images that were created for any purpose other than this paper and to which you or
your employer claim copyright, you must complete Part V and be sure to include a notice of copyright

with each such image in the paper.
We/I do not have any artistic images.
We/I have any artistic images.

VI. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the rights included in this
license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions for use of
third-party materials consistent in scope and duration with the rights granted to ACM have been
obtained, copies of such permissions have been provided to ACM, and the Work as submitted to ACM
clearly and accurately indicates the credit to the proprietors of any such third-party materials
(including any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed servers, and
Owner covenants to use best efforts to place ACM DOI pointers on any such prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other software
routines or hardware components designed to permit unauthorized access or to disable, erase or
otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any applicable
copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

Funding Agents

1. National Science Foundation award number(s): 1618364,1350206

DATE: 03/08/2019 sent to qzzhao@mtu.edu at 14:03:15

11/10/2020 Rightslink� b\ Cop\right Clearance Center

https://s100.cop\right.com/AppDispatchServlet#formTop 1/1

Home Help Email Support Sign in Create Account

j 2020 Copyright - All Rights Reserved ^ Copyright Clearance Center, ánc. ^ Privacy statement ^ Terms and Conditions

RighWsLink

SAMG: SRaTUiÕed gTaRh-VheQTeVic aNgebTaic OWNVigTid fQT UQNXiPg NaTge
U[OOeVTic diagQPaNN[dQOiPaPV (SDD) OaVTiceU
CQPfeTePce PTQceediPgU:
2017 áEEE/ACM ánternational Conference on Computer-Aided Design (áCCAD)

AWVhQT: Zhiqiang Zhao; Yongyu Wang; Zhuo Feng

PWbNiUheT: áEEE

DaVe: 13-16 Nov. 2017

Copyright j 2017, áEEE

TheUiU / DiUUeTVaViQP ReWUe

The áEEE dQeU PQV TeSWiTe iPdiXidWaNU YQTMiPg QP a VheUiU VQ QbVaiP a fQTOaN TeWUe NicePUe, hQYeXeT, [QW Oa[
RTiPV QWV VhiU UVaVeOePV VQ be WUed aU a ReTOiUUiQP gTaPV:

Requirements to be followed when using any portion (e.g., Õgure, graph, table, or textual material) of an áEEE
copyrighted paper in a thesis:

1) án the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the áEEE copyright line j 2011 áEEE.
2) án the case of illustrations or tabular material, we require that the copyright line j [Year of original publication]
áEEE appear prominently with each reprinted Õgure and/or table.
3) áf a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire áEEE copyrighted paper in a thesis:

1) The following áEEE copyright/ credit notice should be placed prominently in the references: j [year of original
publication] áEEE. Reprinted, with permission, from [author names, paper title, áEEE publication title, and month/year
of publication]
2) Only the accepted version of an áEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) án placing the thesis on the author's university website, please display the following message in a prominent place
on the website: án reference to áEEE copyrighted material which is used with permission in this thesis, the áEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. ánternal or personal use
of this material is permitted. áf interested in reprinting/republishing áEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

áf applicable, University MicroÕlms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WáNDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

ACM Copyright and Audio/Video Release

Title of the Work: A Spectral Graph Sparsification Approach to Scalable Vectorless Power Grid Integrity
Verification

Author/Presenter(s): Zhiqiang Zhao;Zhuo Feng
Type of material:Full Paper

Publication and/or Conference Name: DAC '17: The 54th Annual Design Automation Conference 2017
Proceedings

I. Copyright Transfer, Reserved Rights and Permitted Uses

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental fi les integral to the Work which are
submitted with i t for review and publication such as an extended proof, a PowerPoint outline,
or appendices that may exceed a printed page limit, (including without l imitation, the right
to publish the Work in whole or in part in any and all forms of media, now or hereafter
known) is hereby transferred to the ACM (for Government work, to the extent transferable)
effective as of the date of this agreement, on the understanding that the Work has been
accepted for publication by ACM.

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner,
including al l other proprietary r ights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner
shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the
Author, including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's
institutional repository, (3) any repository legally mandated by an agency funding the
research on which the Work is based, and (4) any non-commercial repository or aggregation
that does not duplicate ACM tables of contents, i .e. , whose patterns of l inks do not
substantially duplicate an ACM-copyrighted volume or issue. Non-commercial repositories
are here understood as reposi tor ies owned by non-profi t organizat ions that do not charge a
fee for accessing deposited art icles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author - Ize r" link enabling free downloads of the Version of Record in the ACM
Digital Library on (1) the Author's home page or (2) the Owner's institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of the Work as
submitted to ACM (" Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's
employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal
Use;

 Are any of the co-authors, employees or contractors of a National Government? Yes N o

II. PERMISSION FOR CONFERENCE TAPING AND DISTRIBUTION

Audio/Video Release
* Your Audio/Video Release is conditional upon you agreeing to the terms set out below.

I hereby grant permission for ACM to include my name, l ikeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB device,
streaming video or any other media format now or hereafter known.

I understand that my presentat ion wil l not be sold separately as a s tand-alone product
without my direct consent. Accordingly, I give ACM the right to use my image, voice,
pronouncements, l ikeness, and my name, and any biographical material submitted by me,
in connection with the Conference and/or Publication, whether used in excerpts or in full ,
for distribution described above and for any associated advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

III. Auxiliary Material

Do you have any Auxiliary Materials? Yes No

IV. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials contain the
work of third-party individuals or organizations (including copyrighted music or movie
excerpts or anything not owned by me), I understand that i t is my responsibil i ty to secure
any necessary permissions and/or l icenses for print and/or digi tal publicat ion, and ci te or
at tach them below.

We/I have not used third-party material .
We/I have used third-party materials and have necessary permissions.

V. Artistic Images
If your paper includes images that were created for any purpose other than this paper and to
which you or your employer claim copyright, you must complete Part V and be sure to
include a notice of copyright with each such image in the paper.

We/I do not have any artistic images.
We/I have any artistic images.

VI. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the r ights

(b) The undersigned is authorized to enter into this Agreement and grant the r ights
included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions
for use of third-party materials consistent in scope and durat ion with the r ights granted
to ACM have been obtained, copies of such permissions have been provided to ACM, and
the Work as submitted to ACM clearly and accurately indicates the credit to the
proprietors of any such third-party materials (including any applicable copyright notice),
or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed
servers, and Owner covenants to use best efforts to place ACM DOI pointers on any such
prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other
sof tware rout ines or hardware components designed to permit unauthorized access or to
disable, erase or otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any
applicable copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

Funding Agents

1. Division of Computing and Communication Foundations award number(s): 1618364

DATE: 0 3 / 1 7 / 2 0 1 7 sent to qzzhao@mtu.edu at 16:03:13

11/10/2020 Rightslink� b\ Cop\right Clearance Center

https://s100.cop\right.com/AppDispatchServlet#formTop 1/1

Home Help Email Support Sign in Create Account

j 2020 Copyright - All Rights Reserved | Copyright Clearance Center, ánc. | Privacy statement | Terms and Conditions

RighWsLink

A SRecVTal ARRTQach VQ Scalable VecVQTleUU TheTmal ánVegTiV[
VeTiÕcaViQn
CQnfeTence PTQceedingU:
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)

AWVhQT: Zhiqiang Zhao; Zhuo Feng

PWbliUheT: áEEE

DaVe: 9-13 March 2020

Copyright j 2020, áEEE

TheUiU / DiUUeTVaViQn ReWUe

The áEEE dQeU nQV TeSWiTe indiXidWalU YQTking Qn a VheUiU VQ QbVain a fQTmal TeWUe licenUe, hQYeXeT, [QW ma[
RTinV QWV VhiU UVaVemenV VQ be WUed aU a ReTmiUUiQn gTanV:

Requirements to be followed when using any portion (e.g., Õgure, graph, table, or textual material) of an áEEE
copyrighted paper in a thesis:

1) án the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the áEEE copyright line j 2011 áEEE.
2) án the case of illustrations or tabular material, we require that the copyright line j [Year of original publication]
áEEE appear prominently with each reprinted Õgure and/or table.
3) áf a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire áEEE copyrighted paper in a thesis:

1) The following áEEE copyright/ credit notice should be placed prominently in the references: j [year of original
publication] áEEE. Reprinted, with permission, from [author names, paper title, áEEE publication title, and month/year
of publication]
2) Only the accepted version of an áEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) án placing the thesis on the author's university website, please display the following message in a prominent place
on the website: án reference to áEEE copyrighted material which is used with permission in this thesis, the áEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. ánternal or personal use
of this material is permitted. áf interested in reprinting/republishing áEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

áf applicable, University MicroÕlms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WáNDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

	HIGH-PERFORMANCE SPECTRAL METHODS FOR COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS
	Recommended Citation

	qzzhao_dissertation.pdf

