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Figure 9. The Computational Structure for Deterministic LCA as per Heijungs and Suh, 

(2002) 

3.2.1 Perturbation of Parameter Uncertainty 

Heijungs and Suh (2002) used a perturbation in the input inventory data to represent 
variability in input data and propagated the variability using Taylor’s first order 
approximation method. Similar to the deterministic LCA methodology presented in Figure 
9, the matrices A, B, and f are formulated to represent the LCA. Second moments such as 
the standard deviation, or the Coefficient of Variation (CV) are then multiplied with the 
deterministic matrices to propagate parameter uncertainty and communicate the variance 
in output emissions. The results presented in this dissertation use CV for the propagation 
of uncertainty where CV is the ratio of the standard deviation to the mean (Morgan and 
Henrion, 2007). The technology matrix and the intervention matrix are both multiplied by 
the CV to calculate their respective variances. This is presented in Eq.1 and Eq.2. 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉 𝑨𝑨 = (𝐶𝐶𝑉𝑉 ∗ 𝑨𝑨) 2                              –Eq.1 

           𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉 𝑩𝑩 = (𝐶𝐶𝑉𝑉 ∗ 𝑩𝑩) 2                              –Eq.2 

All the flows in the technology matrix are multiplied with the scaling vector (s) to reflect 
the actual contributions towards reference flow. The scaling vector (s) and another 
mathematically coined term intensity matrix (λ) by Heijungs and Suh, (2002) are used to 
compute the partial derivatives for both the technology matrix (dg/dA) and the intervention 
matrix (dg/dB). These terms and their role in computing the partial derivatives are 
presented in Eq.3 to Eq. 6. 

𝒔𝒔 = 𝑨𝑨 −𝟏𝟏 ∗ 𝒇𝒇                           –Eq.3 

𝝀𝝀 = 𝑩𝑩 ∗ 𝑨𝑨 −𝟏𝟏                  --Eq.4 

𝑑𝑑𝒈𝒈/𝑑𝑑𝑨𝑨 = −𝝀𝝀 ∗ 𝒔𝒔                          –Eq.5 





27 

assessing the data quality of background data at any given time. In addition, the guideline 
covers a broad range of topics to assess both foreground and background data with the 
same level of rigor. For example, within the criteria “Reliability of the data”, question “b” 
and “c” are relevant to assess both the foreground as well as the background data and “d” 
is relevant for foreground data currently.  

Pragmatic desired data qualities are defined (indicated in blue) for each category and 
limitations to reach this desired data quality are assessed for different background data 
categories. For example, the desired data quality for the question “Is the inventory checked 
for mass/energy balance, recalculation etc.?” is the second criteria “Verified data based on 
a calculation or non-verified data based on measurements – give a score of 2”. This means 
that a background data category with a data quality assessment score of 1 or 2 will meet 
the desired data quality for question on mass/energy balance and anything above the score 
of 2 will be identified as a limitation at this time. The long term goal of this assessment is 
to encourage background data providers to have a data quality assessment score of 1 for all 
the categories 

This pavement-specific pedigree approach is developed as a part of the Federal Highway 
Administration (FHWA) funded “Roadmap for Background Data” under contract # 
DTFH6117D00005  awarded to Engineering  & Software Consultants, Inc. (ESCINC)  and 
hosted by the Michigan Tech Transportation Institute under a subcontract from ESCINC. 
The pavement specific pedigree matrix is illustrated for selected public background 
datasets from the LCA Commons collaboration server in the “Background Data Quality 
Assessment Results” section. The data quality assessment may be carried out at the flow 
level and the process level as illustrated below: 

3.2.2.1 Flow Level 

Flow level assessment enables evaluation of metadata associated with both product flows 
and elementary flows such as name, unit, CAS number and molecular formula.   

3.2.2.1.1 Reliability of the data 

Reliability is assessed at the flow level and indicates the methods used to generate the data 
and verification/validation of these methods. In order to point at the specifics of the data 
collection methods and their validation, pavement-specific pedigree matrix details four 
questions within the reliability criterion and the data quality assessment needs to be carried 
as follows: 

a) Is the inventory data checked for mass/ energy balance, recalculation etc.? 
i) Verified data based on measurements – give a score of 1 
ii) Verified data based on a calculation or non-verified data based on 

measurements – give a score of 2 
iii) Non-verified data based on a calculation – give a score of 3 
iv) Documented estimate – give a score of 4 
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v) Undocumented estimate – give a score of 5 

 
b) What is the status quo for the ownership and continuous support of data? 

i) Hosts and Owns – give a score of 1 
ii) Owns but does not host – give a score of 2 
iii) Hosts but does not owns – give a score of 3 
iv) Hosts and owns partially – give a score of 4 
v) Does not host or own – give a score of 5 

 
c) Is the data regularly updated? 

i) Regular updates – give a score of 1 
ii) Less frequent updates – give a score of 2 
iii) No updates – give a score of 3 

 
d) Is the data of deterministic nature or are there statistically established confidence 

intervals stated for the data? 
i) Confidence Intervals developed considering parameter, scenario and model 

uncertainty based on directly measured or calculated data – give a score of 1 
ii) Confidence Intervals developed considering either of parameter, scenario and 

model uncertainty based on assumed probability distribution – give a score of 
2 

iii) Deterministic value provided – give a score of 3 

3.2.2.1.2 Data Collection Methods 

Data collection methods are assessed at the flow level and they reflect the robustness of 
the sampling methods used (i.e. sample size) and the data collection period. In order to 
point at the specifics of the data collection methods, the pavement-specific pedigree matrix 
lists two questions within the data collection methods criterion and the data quality 
assessment needs to be carried as follows: 

a) How representative is the data of the market? 
i) Representative data from >80% of the relevant market, over an adequate period 

– give a score of 1 
ii) Representative data from 60-79% of the relevant market, over an adequate 

period OR representative data from >80% of the relevant market, over a shorter 
period – give a score of 2 

iii) Representative data from 40-59% of the relevant market, over an adequate 
period OR representative data from 60-79% of the relevant market, over a 
shorter period – give a score of 3 



29 

iv) Representative data from <40% of the relevant market, over an adequate period 
OR representative data from 40-59% of the relevant market, over a shorter 
period – give a score of 4 

v) Unknown OR data from a small number of sites and from shorter periods – give 
a score of 5 

 
b) How compatible is the life-cycle inventory data with TRACI 2.1 impact assessment 

method from LCA Commons? 
i) Life-cycle inventory data is enough to calculate all the 9 mid-point indicators 

as per TRACI 2.1 impact assessment method – give a score of 1 
ii) Life-cycle inventory data is enough to calculate only 6 out of 9 mid-point 

indicators as per TRACI 2.1 impact assessment method – give a score of 2 
iii) Life-cycle inventory data is enough to calculate only 3 out of 9 mid-point 

indicators as per TRACI 2.1 impact assessment method – give a score of 3 
iv) Life-cycle inventory data is not compatible with TRACI 2.1 impact assessment 

method from LCA Commons – give a score of 4 

3.2.2.1.3 Time Period of Data 

Time period is assessed at the flow level and is used for either assessing the age difference 
between the temporal DQG and the age of the data or just the actual age of the data. In 
order to point the specifics of time period, the pavement-specific pedigree matrix lists three 
questions within the time period criterion and the data quality assessment needs to be 
carried as follows: 

a) Does the data capture seasonal variations? 
i. All three (fall, spring and summer) seasons are covered – give a score of 1 

ii. Only two out of three seasons are covered – give a score of 2 
iii. Only one season is covered – give a score of 3 
iv. Not Specified – give a score of 4 

 
b) How well is the time period the data correlated with the data quality objective? 

i. Less than 3 years of difference – give a score of 1 
ii. Less than 6 years of difference – give a score of 2 

iii. Less than 10 years of difference – give a score of 3 
iv. Less than 15 years of difference – give a score of 4 
v. Age of data unknown or more than 15 years – give a score of 5 

 
c) How old is the data at the time of data quality assessment? 

i. Less than 3 years old – give a score of 1 
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by the National Asphalt Pavement Association (NAPA). It uses a declared unit of 1 U.S 
short ton of asphalt mixture and the system boundary is from cradle to gate, with the gate 
being defined as the point at which the asphalt mixture is transferred from the silo at an 
asphalt plant (i.e. by using the life-cycle stages A1, A2 and A3 specified in EN 
15804:2012). Foreground data for Mukherjee, (2016) was collected from 40 asphalt plants 
across North America and the NREL U.S. LCI database was used for background data. 
Mukherjee, (2016) quantified the potential environmental impacts for a limited number of 
plants. This dissertation furthers this analysis by quantifying the potential impacts at 
different Petroleum Administrative Defense District (PADD) region granularity. The 
asphalt plant data from Mukherjee, (2016) is grouped at the PADD region granularity i.e. 
mean, standard deviation for foreground data of energy, electricity are calculated at PADD 
region granularity. The United States has been divided into five PADD regions as shown 
in Figure 11 to assess the Environmental Impact Assessment’s (EIA’s) regional petroleum 
product supplies.  

 

Figure 10. PADD Region Division (Source: EIA) 

The consideration of PADD region granularity for the purpose of this dissertation is also 
influenced by the fact that the source of crude oil differs for different PADD regions and 
hence, the background data flow for asphalt binder will also be different. At this time, this 
level of granularity is not available for asphalt binder flow, however, in future, the LCIMs 
can facilitate the inclusion of asphalt binder production at the PADD region granularity. 

The aleatory uncertainty is propagated using both the analytical approach developed by 
Heijungs and Suh, (2002) in a technology agnostic manner and through Monte Carlo 
Simulation in OpenLCA. A normal distribution is assumed for propagating the uncertainty 
using Monte Carlo Simulation and the corresponding mean and standard deviations are 
calculated. For propagating the uncertainty using the method detailed by Heijungs and Suh, 
(2002), a square technology matrix is developed through different methods specified by 
Heijungs and Suh, (2002) e.g., adding hollow processes through zeroes in case of 
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insufficient upstream data. The employment of methods mentioned in Heijungs and Suh, 
(2002) is data-specific and needs to be decided by the LCA practitioner based on the 
upstream data available for an LCA study. Output product flows in a process are assigned 
a positive value and input product flows in a process are assigned a negative value while 
forming the technology matrix. Table 1 presents the product flows required to produce 
virgin asphalt mixtures (foreground data) based on Mukherjee, (2016). The other three 
mixtures contain additional product flows for RAP and RAS. 

Table 1. Product Flows 

Aggregate-US 

Bitumen, in refinery-US 

Diesel combusted in industrial boiler-US 

Diesel combusted in industrial equipment-US 

Electricity, at the grid, US GREET 2012-US 

Natural Gas combusted in industrial boiler-US 

Transport, combination truck, diesel powered-US 

Transport, train, diesel powered, US 

These foreground product flows are produced from background processes and the 
technology matrix consists of all these processes. However, in the absence of background 
data for processes, methods such as hollow processes mentioned in the above paragraph 
are used to formulate a square technology matrix. This constituted a 31*31 technology 
matrix for a conventional asphalt mixture with 0% RAP and 32*32 matrices for mixtures 
containing 20% RAP and 35% RAP and 33*33 matrices for mixtures containing 15% RAP 
and 3% RAS.  The intervention matrix consisted of kg of carbon-di-oxide (CO2) equivalent 
obtained by characterizing and summing CO2, methane (CH4), and nitrous oxides (NO2) 
emitted. The final demand vector consisted of units of asphalt mixture produced i.e., one 
short ton of asphalt mixture is considered as the reference flow that is same as the declared 
unit defined in Mukherjee, (2016) and zeroes in all other places.  

The deterministic LCA outcomes for the four alternative asphalt mixtures calculated at the 
data granularity of PADD regions is presented in Table 2. The results of the deterministic 
LCA based on the methodology described in Figure 9 showed that GWP decreases with 
the increase in the amount of virgin binder replaced and this is in accordance with the 
previous literature.  

Table 2. Deterministic LCA Outcomes 

Asphalt Mixture GWP (Kg of CO2 eq.) 
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PADD1 PADD2 PADD3 PADD4 PADD5 

Virgin Mixture 44.37 42.80 53.52 40.78 44.68 

Mixture with 15% RAP and 3% RAS 42.58 41.00 51.73 38.99 42.89 

Mixture with 20% RAP 42.34 40.78 51.50 38.76 42.66 

Mixture with 35% RAP 40.79 39.23 49.95 37.21 41.11 

The next step is to explore the extent of the reduction of GWP and assess its sensitivity to 
aleatory uncertainties within product flows such as electricity and energy. Natural gas is 
found to be the most significant contributor to GWP among energy supplies and hence is 
the parameter considered for energy. The variance is determined by multiplying the point 
estimates for these input product flows with CV.  

The research presented in the dissertation used a square matrix for CV as opposed to a 
single value for CV as mentioned in Groen and Heijungs, (2016), to facilitate the 
incorporation of uncertainty for each individual foreground product flows. The amounts of 
aggregate, RAP or asphalt binder in a given asphalt mixture are specific to the mix-design 
being used and their values are deterministic by design. However, natural gas and 
electricity flows vary from plant to plant. As per Mukherjee, (2016) the value for electricity 
and natural gas flows vary based on the geographical location of an asphalt plant and can 
be sensitive to diurnal variations in temperature and humidity. Data collected from 40 
asphalt plants across North America were grouped as per PADD region granularity and 
data is analyzed to establish 95% confidence intervals for these specific input parameters. 
This research first evaluates the variance in g (kg of GHG emissions) by multiplying the 
point estimates for both natural gas and electricity flows with CV as explained in the 
Methodology section (Eq.1 to Eq.8) and later characterizes them as variance in GWP.  

The results of aleatory uncertainty analysis are presented as equivalence intervals that can 
support LCA decision-making during material procurement. In the context of this 
dissertation, equivalence intervals are defined as the range within which the environmental 
impact from different alternatives may be considered the same due to inherent uncertainty 
within the data. When the difference between two competing LCA outcomes falls within 
the interval, the difference can be attributed possibly to input aleatory uncertainty rather 
than any substantial difference in environmental impact. As in this analysis, the underlying 
aleatory uncertainty may be resulting from diurnal variations in weather as well as due to 
geographical and climate-related variation. Specifically, for the purpose of illustration, the 
equivalence interval refers to the range of GWP for which the savings in the GWP because 
of higher RAP, RAS use may be discounted due to the variation in electricity and energy 
consumption. Mathematically, the equivalence interval refers to overlapping ranges of 
GWP for the different options when different levels of CV are accounted for. Hence, all 
the values of GWP within the equivalence interval for a CV in electricity or natural gas can 
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be treated as equivalent for decision-making purposes during material procurement. The 
equivalence intervals calculated using both analytical approach by Heijungs and Suh, 
(2002) and Monte Carlo Simulations at PADD region granularity for alternative asphalt 
mixtures is presented in Figure 12 through Figure 31. The respective CV and interpretation 
of equivalence intervals are presented with each figure. 
  



38 

 
Figure 11. Sensitivity of GWP (Kg of CO2 eq.) to PADD 1 Foreground Uncertainty in 

Electricity by Analytical Method 
 

 

The equivalence interval from the analytical method for GWP at the threshold CV’s of -
0.35 and +0.35 (based on the mean and SD calculated for plants in PADD1 region) in 
electricity is presented in Figure 11. The equivalence interval is from 37.23 kg of CO2 eq. 
to 47.25 kg of CO2 eq. This implies that, despite the addition of recycled materials, the 
GWP from mixtures with 20% RAP, 35% RAP and 15% RAP and 3% RAS need to be at 
least 16.09% less than the 0% RAP mixture, for them to be considered environmentally 
sustainable due to the uncertainty in the electricity flow. 

 
  

CV=-0.35 CV=+0.35 
Deterministic 
Outcome 
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Figure 12. Sensitivity of GWP (Kg of CO2 eq.) to PADD 1 Foreground Uncertainty in 

Electricity by Monte Carlo Method 

 

The equivalence interval from the Monte Carlo method assuming a normal distribution of 
electricity data in PADD1 region is presented in Figure 12. The equivalence interval is 
from 34.90 kg of CO2 eq. to 43.37 kg of CO2 eq. This implies that, despite the addition of 
recycled materials, the GWP from mixtures with 20% RAP, 35% RAP and 15% RAP and 
3% RAS need to be at least 19.21% less than the 0% RAP mixture, for them to be 
considered environmentally sustainable due to the uncertainty in the electricity flow. 

 

 
  

Minimum Maximum Mean 
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Figure 13. Sensitivity of GWP (Kg of CO2 eq) to PADD 1 Foreground Uncertainty in 

Natural Gas by Analytical Method 

 

The equivalence interval from the analytical method for GWP at the threshold CV’s of -
0.3 and +0.3 (based on the mean and SD calculated for plants in PADD1 region) in natural 
gas is presented in Figure 13. The equivalence interval is from 36.60 kg of CO2 eq. to 48.55 
kg of CO2 eq. This implies that, despite the addition of recycled materials, the GWP from 
mixtures with 20% RAP, 35% RAP and 15% RAP and 3% RAS need to be at least 17.5% 
less than the 0% RAP mixture, for them to be considered environmentally sustainable due 
to the uncertainty in the natural gas flow. 
  

CV=-0.3 CV=+0.3 Deterministic 
Outcome 
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Figure 14. Sensitivity of GWP (Kg of CO2 eq.) to PADD 1 Foreground Uncertainty in 

Natural Gas by Monte Carlo Simulation 

 

The equivalence interval from the Monte Carlo method assuming a normal distribution of 
natural gas data in PADD1 region is presented in Figure 14. The equivalence interval is 
from 31.41 kg of CO2 eq. to 48.33 kg of CO2 eq. This implies that, despite the addition of 
recycled materials, the GWP from mixtures with 20% RAP, 35% RAP and 15% RAP and 
3% RAS need to be at least 27.34% less than the 0% RAP mixture, for them to be 
considered environmentally sustainable due to the uncertainty in the natural gas flow. 

 
  

Minimum Maximum Mean 
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Figure 15. Sensitivity of GWP (Kg of CO2 eq) to PADD 2 Foreground Uncertainty in 

Electricity by Analytical Method 

 

The equivalence interval from the analytical method for GWP at the threshold CV’s of -
0.3 and +0.3 (based on the mean and SD calculated for plants in PADD2 region) in 
electricity is presented in Figure 15. The equivalence interval is from 37.77 kg of CO2 eq. 
to 43.64 kg of CO2 eq. This implies that, despite the addition of recycled materials, the 
GWP from mixtures with 20% RAP, 35% RAP and 15% RAP and 3% RAS need to be at 
least 11.75% less than the 0% RAP mixture, for them to be considered environmentally 
sustainable due to the uncertainty in the electricity flow. 

 
  

CV=-0.3 CV=+0.3 
Deterministic 
Outcome 
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Figure 16. Sensitivity of GWP (Kg of CO2 eq.) to PADD 2 Foreground Uncertainty in 

Electricity by Monte Carlo Simulation 

 

The equivalence interval from the Monte Carlo method assuming a normal distribution of 
electricity data in PADD2 region is presented in Figure 16. The equivalence interval is 
from 38.02 kg of CO2 eq. to 40.40 kg of CO2 eq. This implies that, despite the addition of 
recycled materials, the GWP from mixtures with 20% RAP, 35% RAP and 15% RAP and 
3% RAS need to be at least 11.46% less than the 0% RAP mixture, for them to be 
considered environmentally sustainable due to the uncertainty in the electricity flow. 

 

 
  

Minimum Maximum Mean 
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Figure 17. Sensitivity of GWP (Kg of CO2 eq) to PADD 2 Foreground Uncertainty in 

Natural Gas by Analytical Method 

 

The equivalence interval from the analytical method for GWP at the threshold CV’s of -
0.12 and +0.12 (based on the mean and SD calculated for plants in PADD2 region) in 
natural gas is presented in Figure 17. The equivalence interval is from 39.77 kg of CO2 eq. 
to 42.25 kg of CO2 eq. This implies that, despite the addition of recycled materials, the 
GWP from mixtures with 20% RAP, 35% RAP and 15%% RAP and 3% RAS need to be 
at least 7.08% less than the 0% RAP mixture, for them to be considered environmentally 
sustainable due to the uncertainty in the natural gas flow. 

 

 
  

CV=-0.12 CV=+0.12 Deterministic 
Outcome 



45 

 
Figure 18. Sensitivity of GWP (Kg of CO2 eq.) to PADD 2 Foreground Uncertainty in 

Natural Gas by Monte Carlo Simulation 

 

The equivalence interval from the Monte Carlo method assuming a normal distribution of 
electricity data in PADD2 region is presented in Figure 18. The equivalence interval is 
from 37.63 kg of CO2 eq. to 39.48 kg of CO2 eq. This implies that, despite the addition of 
recycled materials, the GWP from mixtures with 20% RAP, 35% RAP and 15% RAP and 
3% RAS need to be at least 12.37% less than the 0% RAP mixture, for them to be 
considered environmentally sustainable due to the uncertainty in the electricity flow. 

 

 
  

Minimum Maximum Mean 
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1. Due to variation in electricity consumption using Analytical: 11.75% (Figure 
15) 

2. Due to variation in natural gas consumption using Analytical: 11.46% (Figure 
17) 

3. Due to variation in electricity consumption using Monte Carlo: 7.08% (Figure 
16) 

4. Due to variation in natural gas consumption using Monte Carlo: 12.37% 
(Figure 18) 

In order to compute the equivalence intervals using analytical method at the project level, 
the reference product flow in the final demand vector is replaced from 1 short ton to 103816 
metric tons. A similar process is carried out in OpenLCA and the equivalence intervals are 
computed using Monte Carlo simulation approach considering the foreground parameters 
specified in LCIMs for PADD2. 

 
Figure 31. Sensitivity of GWP (Kg of CO2 eq) to PADD 2 Foreground Uncertainty in 

Electricity by Analytical Method _ Scaled 

 

The equivalence interval from the analytical method for GWP at the threshold CV’s of -
0.3 and +0.3 (based on the mean and SD calculated for plants in PADD2 region) in 
electricity is presented in Figure 31. The equivalence interval is from 3.94E6 kg of CO2 eq. 

CV=-0.3 
Deterministic 
Outcome CV=+0.3 
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Figure 34. Sensitivity of GWP (Kg of CO2 eq) to PADD 2 Foreground Uncertainty in 
Natural Gas by Monte Carlo Method _ Scaled 

 

 

The equivalence interval from the Monte Carlo method assuming a normal distribution of 
electricity data in PADD2 region is presented in Figure 34. The equivalence interval is 
from 4.32E6 kg of CO2 eq. to 4.48E6 kg of CO2 eq. This implies that, despite the addition 
of recycled materials, the GWP from mixtures with 20% RAP, 35% RAP and 15% RAP 
and 3% RAS need to be at least 12.01% less than the 0% RAP mixture, for them to be 
considered environmentally sustainable due to the uncertainty in the natural gas flow. 

The specific insights from evaluation of the equivalence intervals at a project level are: 

1. The numerical value of equivalence intervals is context-specific and needs to 
be evaluated based on change in the value of reference product flow. For 
example, the equivalence interval for one short ton and 103816 short tons due 
to the same variation in electricity consumption are 11.75% and 15.08% 
respectively from the analytical approach.  

2. The percentage decrease in GWP to fall beyond the equivalence intervals may 
seem miniscule for one short ton of asphalt mixtures with 20% RAP, 35% RAP 
and 15% RAP and 3% RAS. However, this percentage decrease amounts to be 

Minimum Mean Maximum 
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significant when considering the amount of asphalt mixtures required at a 
project level. For example, the equivalence interval for 103816 short tons of 
asphalt mixture due to variation in electricity is 15.08% (presented in Figure 
31). This means that GWP from mixtures with 20% RAP, 35% RAP and 15% 
RAP and 3% RAS need to be at least 6.99E5 Kg of CO2 eq. (numerical value 
indicating 15.08%) less than the virgin mixture to be considered 
environmentally sustainable due to variation in electricity.  

Hence, the use of recycled materials may be considered environmentally sustainable only 
when the percent decrease in GWP falls beyond the equivalence interval and not just by 
the notion that they replace virgin materials. The use of recycled materials without 
accounting for the variation in foreground parameters such as electricity and energy may 
lead to erroneous decision-making. 

4.3 Applicability of Equivalence Intervals 
The contribution of this dissertation is the method for developing equivalence intervals, an 
illustration of what data is necessary to implement it, and how it can be used in pavement 
design decision-making. The development of equivalence intervals discussed in this 
dissertation will enable the appropriate selection of mixtures when considering trade-offs 
between different aspects of sustainability such as environmental impacts, performance 
and cost of a product.  

Mukherjee, (2016) collected the foreground data from 40 plants (approximately 2% of the 
total asphalt mixture plants in the United States) and reported 95% confidence interval 
values for electricity and energy. Based on this study, this dissertation characterized the 
aleatory uncertainty due to diurnal variations in electricity and natural gas consumption for 
asphalt mixture production. Next, this aleatory uncertainty was propagated for four asphalt 
mixtures containing varying amounts of RAP and RAS. While this illustrates the approach 
to develop equivalence intervals, the intervals developed themselves have limited 
applicability because aleatory uncertainty from 40 plants is not adequately representative 
of the variability in electricity and natural gas across different regions of the United States. 
The applicability of equivalence intervals is relevant only after similar analyses is 
conducted on a statistically significant sample of plants and mixtures. Hence, the 
equivalence intervals communicated in this dissertation should not be generalized i.e., 
the sample results should not be construed to imply that the use of RAP is not beneficial 
environmentally in an asphalt mixture, but rather that if the underlying uncertainty is 
not characterized correctly, there could be a miscommunication about the benefits of 
using recycled materials in the product. 

In future, the method of developing equivalence interval can be employed after developing 
95% confidence interval values using statistically significant plant-specific and mixture-
specific foreground data, collected for different asphalt mixtures. This concept is 
graphically represented in Figure 35. 
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Figure 35. Application of Equivalence Intervals 

 

4.4 Epistemic Uncertainty 

The margins of error within quantified potential environmental impacts is not only a 
function of aleatory uncertainty within  the foreground data but may also be caused by 
using different background data. This section discusses the range of potential 
environmental impacts as an artifact of background data selection using LCIMs. The 
development of a comprehensive pavement LCA information model is a long-term goal 
and must include stakeholder involvement in appropriate identification of all parameters.   
At this time the scope of this effort is being limited to the cradle-to-gate asphalt mixtures 
to address the immediate needs for creating consistent LCA for EPD generation for 
pavement material LCAs. Specifically, the illustration highlights the usefulness of LCIMs 
in setting up product systems for different background data sets and identifying the impact 
of inconsistent use of background data. An information model for a cradle-to-gate LCA for 
an asphalt mixture reflects:  

i. All the processes and flows in the asphalt mixture system boundary and their 
relationships as defined by the process and lineage ontologies,  

ii. The background data sets for upstream processes such as electricity, fossil fuels and 
transportation, and  

iii. Parameters characterizing foreground data such as energy, aggregate and asphalt 
binder consumption during the asphalt production process. 

LCIMs are illustrated to check the sensitivity of Global Warming Potential (GWP) (a mid-
point indicator computed using TRACI impact assessment method) to background data 
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Figure 37. Sensitivity to Economic Allocation Factors 

The purpose of assessing the uncertainty due to economic allocation coefficients is to 
highlight the margin of error in quantified potential environmental impacts. This 
uncertainty presses the need to allocate the impacts due to crude oil refining based on actual 
physical relationships than highly sensitive parameter such as economy. It is because of 
this reason that the economic allocation is the least preferred method as per the ISO 
Standard’s hierarchy for allocation. Recently, different scenarios of physical allocations 
have been proposed in the LCA study on asphalt binders conducted by Asphalt Institute 
(Asphalt Institute, 2019), however this is not the focus of this dissertation. 
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Process Review 
a) The process has no documented review – score of 5 

Process Completeness 
a) Process completeness not scored – score of 5 

 
Including meta-data on life cycle inventory review, time period for updating the data can 
aid towards achieving the desired data quality for residual fuel oil used in industrial boiler, 
industrial equipment and transportation. In addition, the life cycle inventory needs to be 
updated or at least the reason for using more than 15 year old data should be stated in the 
meta-data. There is also a need to improve the regional granularity of life cycle inventory 
data. These limitations may be overcome with the availability of life cycle inventory data 
for residual fuel oil used in industrial boiler, industrial equipment and transportation from 
Argonne National Laboratory (based on GREET model) and NETL on the LCA Commons 
collaboration server in the future. 

6.1.8 Coal 

Following technologies are relevant for the entity “Coal” 
• Anthracite coal, combusted in industrial boiler (Source: 

https://www.lcacommons.gov/lcacollaboration/National_Renewable_Energy_Lab
oratory/USLCI/dataset/PROCESS/27e8fce4-a5c1-37af-84b9-763582a5ca3e) 

• Bituminous coal, combusted in industrial boiler (Source: 
https://www.lcacommons.gov/lcacollaboration/National_Renewable_Energy_Lab
oratory/USLCI/dataset/PROCESS/26465530-69ff-3c68-834f-c67ccb6ee1b2) 

• Lignite coal, combusted in industrial boiler (Source: 
https://www.lcacommons.gov/lcacollaboration/National_Renewable_Energy_Lab
oratory/USLCI/dataset/PROCESS/1b0f75b8-e749-3eb2-8727-de6a22f60646) 

Currently, Coal from the USLCI’s NREL is available on the LCA Commons collaboration 
server. Hence, the data quality assessment was conducted only for these. The data quality 
assessment for the use of anthracite coal, bituminous coal and lignite coal in industrial 
boiler hosted by USLCI’s NREL are as follows: 

Reliability of the data 
a) Undocumented Estimate – score of 5 
b) Hosts but does not owns – score of 3 
c) No updates – score of 3 
d) Deterministic value provided – score of 3 

Data Collection Methods 
a) Unknown OR data from a small number of sites and from shorter periods – score 

of 5 
b) Life-cycle inventory data is enough to calculate all the 9 mid-point indicators as per 

TRACI 2.1 impact assessment method – score of 1 
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C  Copyright documentation 
The image used in Figure 10 has been taken from the following open source link : 
https://www.eia.gov/todayinenergy/detail.php?id=4890 


