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Abstract 
Littoral zones support growth of submerged aquatic vegetation, creating productive areas 
that provide food and habitat for fish, amphibians, macroinvertebrates, and other parts of 
the food web. Understanding macrophyte dynamics requires the identification of 
submerged aquatic vegetation (SAV) taxa, which can be possible if taxa of interest are 
spectrally distinct with data collected at appropriate scales. Eurasian watermilfoil, 
Myriophyllum spicatum or EWM, is a non-native SAV species that forms thick, often 
monotypic beds that reduce benthic species richness, restrict recreation, reduce property 
values, clog water intakes, and lower dissolved oxygen concentrations. Remote sensing 
of SAV species has to address the presence of lake color constituents that reduce lake 
clarity, making identification of species of interest more challenging. To address this 
challenge, I first investigated how to collect spectral data of SAV from boatside and 
drone platforms to determine the number and types of bands needed to identify EWM. 
Hyperspectral numbers of bands such as 65 10-nm wide bands between 350 and 1000nm 
reliably identified EWM, while use of a modified normalized difference vegetation 
(NDVI) index provided significant differences among SAV vs. other dominant aquatic 
vegetation groups. We demonstrated this for classifications at five sites over three years 
in the littoral areas of the Les Cheneaux Islands in northwestern Lake Huron, Michigan, 
USA, with 78.7% average producer’s accuracy and 76.7% average user’s accuracy, 
higher than most previous efforts at remote sensing of SAV. Finally, we applied these 
mapping capabilities to two areas in the Les Cheneaux Islands and one area in the 
Keweenaw Peninsula in Michigan’s northwestern Upper Peninsula that received 
treatments to reduce EWM. One site underwent mechanical harvesting, a second had a 
native fungus applied as a method of biological control, and a third site had diver-assisted 
suction harvesting completed. Classifications before and after treatment showed that it 
was possible to quantify the reductions of 63-89% in EWM extent due to these efforts. 
These results help demonstrate that UAS-enabled multispectral sensing can produce 
useful quantitative data on the presence and extent of SAV taxa of interest, providing a 
tool for monitoring treatment effects and improving understanding of aquatic ecology. 
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1 Introduction 
Remote sensing data can address important ecological and limnological questions 
regarding the roles of landscape variables affecting nearshore lake dynamics and improve 
spatial characterization of critical lake littoral zones. Satellite remote sensing covers large 
areas with relatively high temporal frequency, but most commonly at scales of many tens 
to hundreds of meters per pixel for readily available imagery. The type of satellite 
imagery used for whole-lake analysis is particularly poorly matched for examining the 
extent of invasive aquatic plant species in lake littoral zones.  In contrast, traditional field 
methods provide detailed data, but typically at limited spatial scales with intermittent 
temporal frequency. Data at intermediate scales have not always been easy to obtain or 
analyze, yet, ecological understanding must be improved by integrating information at an 
intermediate scale between the “top down” approach of satellite imagery and the “bottom 
up” approach of field observations (e.g., Fausch et al. 2002, Figure 1.1). Considering the 
impacts of analysis at different scales is a foundation of landscape ecology; for example, 
data necessary for key insights are not accessible when scales too large or small are used 
for analysis (Turner et al., 1989). A key theme for the research presented in this 
dissertation is understanding how biological and limnological processes can be further 
elucidated through appropriate scales of remote sensing analysis to fill key knowledge 
gaps in how aquatic invasive plants respond to management efforts. I focus here on 
intermediate scale analyses to provide ecologically-relevant results of aquatic plant 
identification, extent, and change.  To advance this understanding, I describe in the 
following three chapters how spatially-explicit analysis of unmanned aerial system (UAS, 
also UAV for “vehicle”, or “drone”) enabled sensing advanced ecological understanding 
of the presence and control of Eurasian watermilfoil (Myriophyllum spicatum L., or 
EWM) at study locations in two littoral zones in the Upper Peninsula (U.P.) of Michigan, 
USA. 
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Figure 1.1: Integration of data at intermediate scales enables greater understanding of 
ecological issues, as shown in Fausch et al., 2002 for discussing fish habitat ecology. 

Eurasian watermilfoil is an invasive aquatic plant, first documented in the U.S. in 
Washington, D.C. in 1942 (Couch & Nelson, 1985) and in the Great Lakes basin in 1952 
(Mills et al., 1994). It can crowd out native plants (Madsen et al., 1991), and interfere 
with recreational activities such as boating, fishing, and swimming (Madsen, 2005). It 
can reduce diversity and abundance of native aquatic plants, reduce dissolved oxygen 
(DO) levels under its canopy, increase nutrient recycling from sediments, reduce 
macroinvertebrate abundance and density, and change predator/prey equilibria for fish 
communities (Madsen, 2005). It hybridizes with native milfoil species such as Northern 
watermilfoil (Myriophyllum sibiricum), impacting the extent of native milfoil and 
providing a highly plastic growth form (Moody & Les, 2007; Roley & Newman, 2006). 
Recent reports from Michigan’s U.P. have indicated that it has become more widespread 
in the region’s coastal embayments (Leguizamon 2017), including nuisance levels in the 
Portage Lake area of the Keweenaw Peninsula and the Les Cheneaux Islands of the 
eastern U.P.  
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By focusing on high-resolution remote sensing enabled by small UAS platforms and 
UAS-deployable sensors, the science of developing a scale of analysis between existing 
satellite and field methods can be advanced. In the research describe here, I develop an 
ecological perspective on remote sensing data sets (Kennedy et al., 2014), and 
demonstrate advantages of the increasing usefulness of UAS to ecologists because they 
can provide greater temporal and spatial resolution than have generally been available, 
while making a new generation of sensors easier to deploy (Allan et al., 2015; Kennedy 
et al., 2014). I investigate what spectral information is needed to differentiate EWM from 
other aquatic taxa and features. Understanding what sensors deployable via small UAS 
can provide this spectral information formed a logical next step in this research process. I 
focus on evaluating and demonstrating use of UAS platforms and sensors that would be 
able to be deployed on a practical basis by ecologists, lake managers, and others 
interested in where submerged aquatic vegetation (SAV) taxa occur and how they may 
change over time. 

In Chapter 2, I describe how spectral profile data collected at three different spatial scales 
enabled the evaluation of whether EWM could be differentiated from other SAV. 
Spectral data were collected for SAV removed from the water, from the side of a boat, 
and from a UAS. EWM was spectrally different when using 651 1-nm wide and 65 10-
nm wide spectral bands, but using only six to eight bands did not result in reliable 
differentiation. However, a modified normalized difference vegetation index (mNDVI) 
using a red-edge to red light ratio was significantly different among vegetation groups, 
providing a potential sensing method to identify EWM from other SAV in the field. 
Spectral profile data collected via UAS had the lowest reflectance versus the out-of-water 
and boatside data, but could still be used to understand EWM and other SAV species’ 
spectral differences. A custom-developed lightweight portable radiometer provided a 
practical platform for collecting spectral profile data that help provide the necessary 
foundation to understanding if multispectral imaging could be used for identification of 
an invasive SAV species or taxa of interest. 

Using satellite imagery for terrestrial invasive plant identification and mapping has 
become common (Bradley & Mustard, 2006; Lass et al., 2009) but less so for submerged 
aquatic plants, likely due to the unique issues of attenuation of light signals by water that 
makes image analysis more challenging than for terrestrial plants. Detection of SAV is 
affected by water column inherent optical properties (IOPs) including dissolved and 
suspended materials, and apparent optical properties (AOPs) affected by external factors 
such as weather and sun angle (Bolch et al. 2020).  

In Chapter 3, I describe how using object-based image analysis of multispectral UAS-
collected imagery matched with detailed field data produced an overall mapping accuracy 
of 76.7% with EWM producer’s accuracy of 78.7% and user’s accuracy 77.6%, higher 
than previous efforts to map SAV with high-resolution remote sensing. Two sensors were 
deployed via UAS to collect the imagery needed for classification: a multispectral 
Tetracam imaging system whose six bands can be tuned to narrow wavelengths of 
interest, and a low-cost four-band system sensitive to visible light and one wide near 
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infrared band. Accounting for differences in water characteristics such as extinction 
coefficients were investigated, but using different scale parameters based on grouping 
sites into clearer vs. darker waters did not improve mapping accuracy. 

Significant resources are being spent on EWM control in the U.S., often with only short-
term relief (Pimentel 2005 put annual control costs at $400 million).  In Chapter 4, I 
describe how I used the methods developed and demonstrated in Chapters 2 and 3 to 
enable the quantitative documentation of changes in EWM extent with 63% to 89% 
reduction after three different types of treatment intended to reduce EWM presence.  

These three chapters followed a theme of understanding if there was a signal of EWM 
that was detectable using remote sensing data, developing methods to use that signal of 
EWM presence to map species coverage with multispectral UAS-collected imagery, and 
then applying that signal to document the effects of EWM treatment. These analysis 
methods, including enhancements with hyperspectral data, could be applied to other 
species and communities of aquatic vegetation that possess spectrally-distinct signatures 
to increase ecological understanding of dynamic littoral zones. 
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2 Multiscale collection and analysis of submerged 
aquatic vegetation spectral profiles for Eurasian 
watermilfoil detection 

2.1 Abstract 

The ability to differentiate a non-native aquatic plant, Myriophyllum spicatum (Eurasian 
watermilfoil or EWM), from other submerged aquatic vegetation (SAV) using spectral 
data collected at multiple scales was investigated as a precursor to mapping of EWM. 
Spectral data were collected using spectroradiometers for SAV taken out of the water, 
from the side of a boat directly over areas of SAV and from a lightweight portable 
radiometer system flown from an unmanned aerial system (UAS). EWM was spectrally 
different from other SAV when using 651 spectral bands collected in ultraviolet to near-
infrared range of 350 to 1000 nm but does not provide a practical system for EWM 
mapping because this exceeds the capabilities of available airborne hyperspectral imaging 
systems. Using only six spectral bands corresponding to an available multispectral 
camera or eight wetlands-centric bands did not reliably differentiate EWM from other 
SAV and assemblages. However, a modified version of the normalized difference 
vegetation index (mNDVI), using a ratio of red-edge to red light, was significantly 
different among dominant vegetation groups. Also, averaging the full range of spectral to 
65 10-nm wide bands, similar to available hyperspectral imaging systems, provided the 
ability to identify EWM separately from other SAV. The UAS-collected spectral data had 
the lowest remote sensing reflectance versus the out-of-water and boatside data, 
emphasizing the need to collect optimized data. The spectral data collected for this study 
support that with relatively clear and calm water, hyperspectral data, and mNDVI, it is 
likely that UAS- based imaging can help with mapping and monitoring of EWM.  

2.2 Introduction 

Aquatic vegetation provides a key refuge and growth habitat for a variety of plant and 
animal species in the shallow littoral regions on the edges of waterbodies (Jeppesen et al. 
2012, Rozas and Odum 1988), supporting more species per unit of primary production 
than open water (limnetic) zones (Vadeboncoeur et al. 2011). In a study of 14 of the 
world’s largest lakes, Vadeboncoeur et al.  (2011) found that more than 93% of fish 
species were found in the littoral zones and 72% of species were restricted to this area. 
Aquatic vegetation is a key factor controlling the structure and function of littoral zones, 
cycling nutrients, fixing carbon via photosynthesis, providing habitat for periphyton 
colonization and facilitating carbon and nutrient cycling by other primary producers 
(Carpenter and Lodge 1986, Marcarelli and Wurstbaugh 2009). Aquatic vegetation is a 
source of both food and habitat for macroinvertebrates, fishes, and amphibians that are 
part of the food web (Ziegler et al. 2015). Finally, littoral zones are highly influenced by 
anthropogenic activity yet are poorly studied compared to limnetic zones. There are many 
aquatic invasive plant species (Trebitz and Taylor 2007), whose ecological and 
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management impacts have resulted in control and treatment efforts in need of monitoring 
(Ailstock et al. 2001, Kettenring and Adams 2011, Nelson and Shearer 2005, Tucker 
2017, Wagner et al. 2007). Invasive aquatic plants can interfere with recreation, affect 
property values, impact subsistence fisheries harvests, increase nutrient loading, and 
deplete dissolved oxygen (Lake Superior Work Group 2014). For example, non-native 
Myriophyllum spicatum (Eurasian watermilfoil or “EWM”) forms thick, submerged 
monotypic beds that typically reduce the richness, diversity, and distributions of benthic 
invertebrates and fishes in littoral zones (Buchan and Padilla 2000). Challenges to the 
study of aquatic vegetation include relative difficulty of site access compared to 
terrestrial systems and attenuation of light in water, especially for freshwater systems. 

Aquatic vegetation in littoral zones includes both species that emerge above the water 
surface (emergent aquatic vegetation) and those submerged below the surface (hereafter 
submerged aquatic vegetation, or SAV), which presents different opportunities and 
challenges for remote sensing. Mapping emergent vegetation with satellite imagery is 
relatively well established, in part because it does not require addressing issues related to 
light attenuation in water, absorption of infrared light by water, and turbidity (Adam et al. 
2010, Ozesmi and Bauer 2002, Silva et al. 2008). Satellite imagery has been used 
successfully to map wetlands with predominantly emergent vegetation, including coastal 
tidal marshes, northern peatlands, inland freshwater marshes, and the Prairie Pothole 
region in the US and Canada (Ozesmi and Bauer 2002, Bourgeau-Chavez et al. 2015). 

Previous work has indicated that the mapping of SAV can be possible using satellite 
imagery under certain conditions. Initial work such as Ackleson and Klemas (1987) 
showed feasibility for mapping a species of SAV using Landsat satellite imagery, noting 
the masking impact of optically deep water. Recent work by Brooks et al. (2015) has 
shown that SAV can be mapped over large areas of the coastal regions of the Laurentian 
Great Lakes using moderate-resolution satellite imagery such as Landsat, where there is 
sufficient optical depth due to relatively clear water and where SAV could be 
summarized in to a single class type dominated by the native alga Cladophora glomerata 
(Shuchman et al. 2013a). Ozesmi and Bauer (2002) and Silva et al. (2008) have also 
shown that Landsat-type imagery is useful for large-scale SAV mapping at moderate 
resolution, particularly for areas of relatively clear water with limited light attenuation 
and low wind conditions during satellite overpass. Finer spatial resolution commercial 
satellite imagery such as QuickBird and WorldView data with a 1.0- to 2.4-m 
multispectral pixel size can also be used to discriminate between submerged and 
emergent or floating aquatic vegetation with limitations based on water conditions and 
acquisition costs (Ashraf et al. 2010, Midwood and Chow-Fraser 2010, Dogan et al. 
2009, Wolter et al. 2005). Fritz et al. (2017) have shown that 5-m resolution RapidEye 
imagery can effectively map four different SAV species. Dierssen et al. (2015) showed 
that airborne hyperspectral imagery can be effective in identifying areas of seagrass and 
Sargassum macroalgae. 

The use of unmanned aerial system (UAS) is a relatively new area of research that can 
provide a source of mid-to-fine scale data (Flynn and Chapra 2014) that may provide 
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better resolution and detection of SAV at appropriate scales for studying lake littoral 
zones. UAS can be deployed selectively during optimal weather conditions (low winds, 
more sunlight, optimal sun angles) and collect high resolution imagery that may help with 
differentiation of species of interest (Hodgson et al. 2013, Zeng et al. 2017). The 
capabilities of UAS have been increasing in recent years, gaining the attention of 
ecologists as useful tools for meeting environmental data needs, including mapping 
(Flynn and Chapra 2014, Anderson and Gaston 2013, Marcaccio et al. 2015). 

Understanding ecologically relevant patterns of macrophyte dynamics requires 
identification of individual SAV species that grow in mixed assemblages, which is 
possible if SAV species appear spectrally distinct when using scale-appropriate remote 
sensing. One tool for understanding whether plant species are spectrally distinct is field 
spectroradiometers, developed for applications such as identifying geological features 
and vegetation types (Penuelas et al. 1993, Van der Meer et al. 2012). However, they 
have not been commonly used for spectral profiling of SAV (Williams et al. 2003). Some 
work has shown the capability to resolve distinct spectral signatures for aquatic plants 
using spectroradiometers in controlled growth environments, such as tanks of water 
(Everitt et al. 2011, Cho et al. 2008). Underwood et al. (2006) and Williams et al. (2003) 
demonstrated capabilities to classify invasive SAV using airborne hyperspectral imagery. 
Whether similar classification would be possible using multispectral imagery at scales in 
between the field sampling scale and satellite scale has not yet been answered. Meeting 
the challenge of this intermediate-scale sensing is likely to require higher spatial 
resolution data than is available from satellite imagery, further supporting the utility of 
UAS for studying SAV in lake littoral zones. 

EWM provides a test case to evaluate whether UAS-based spectrometry and 
multispectral imagery can be used to map SAV at scales relevant to management. In this 
study, we developed methods to rapidly create spectral profiles of aquatic plants of 
interest due to their invasion and management implications in our study region of the 
upper Laurentian Great Lakes. These methods would be used to understand how spectral 
data for an invasive species of interest, EWM, could be reliably collected and analyzed 
and how they compared between boat-based and UAS-based imaging. We designed the 
study to address two central study questions: 

1. Can spectral profiles of EWM be differentiated from those of other SAV species 
using spectroradiometer data and multispectral imagery collected in the upper 
Great Lakes? 

2. Do EWM spectral profiles collected at three different sampling scales exhibit 
similar spectral signatures for our upper Great Lakes study areas? 

The three data collection scales were individual SAV samples measured out of the water 
(sample footprint diameter ∼5 cm), SAV in the water measured from a boat (∼50 cm), 
and SAV in the water measured from a UAS platform (∼5 m). If spectral signatures for 
SAV species appear  distinct in one  or  more  of  these  three levels  of  spectral profiling 
[out-of-water (OOW), boat side, and aerial UAS], then UAS-based high-resolution multi- 
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spectral and hyperspectral sensing could become a practical tool for monitoring invasive 
SAV such as EWM. 

2.3 Sensing Design 

To address the study questions, we deployed and developed a set of remote sensing data 
collection tools that included spectroradiometers, natural color and multispectral cameras, 
and UAS to collect data at the three scales described above. The goal was to achieve 
species-level identification using spectroradiometers as a prerequisite for imaging SAV 
species of interest with multispectral cameras. This would enable mapping and 
monitoring of EWM versus non-EWM SAV species, with natural color digital cameras 
helping to identify and describe study areas along with providing a basemap for the 
multispectral results. We used an ASD Fieldspec 3 (Malvern Panalytical, Malvern, UK) 
for most OOW and boatside data collections using the software RS3. The ASD FieldSpec 
series of spectroradiometers have frequently been used for collecting spectral profiles of 
wetland vegetation species (Adam and Mutanga 2009, Artigas and Yang 2006) including 
SAV (Yuan and Zhang 2008). For recent aquatic remote sensing research, colleagues at 
the Michigan Tech Research Institute (MTRI) developed a lightweight portable 
radiometer (LPR) system to enable spectroscopy at a lower cost and lighter weight than 
traditional handheld systems, such as the ASD FieldSpec 3 (Sawtell et al. 2019). The 
LPR is compact and light enough to be flown onboard an UAS able to lift at least 1 kg 
and is housed in a plastic box that can be attached to a typical UAS payload platform. 
Initial field data in 2015 were collected using the first version of the LPR system, which 
integrated a global positioning system (GPS) receiver, a Raspberry Pi microcomputer for 
remote WiFi control of the system, a lithium ion battery, a skyward-facing Ocean Optics 
STS-VIS-RAD model spectrometer (a STS-VIS spectrometer with a range of 350 to 800 
nm and a directly attached cosine corrector) to measure downwelling irradiance, two 
nadir-facing Ocean Optics spectrometers (one STS-UV/ultraviolet and one STS-
NIR/near-infrared) with a combined spectral range of 190 to 1100 nm, and a five 
megapixel (mp) Raspberry Pi camera for identification of the ground footprint captured 
by the nadir-facing spectrometers. The Ocean Optics STS sensors have been used by 
other authors for measuring water color (Zeng et al. 2017) and SAV reflectance (Yang et 
al. 2010). In 2016, field data were collected using LPR version 2, which replaced the UV 
and NIR nadir-pointing sensors with a single STS-VIS spectrometer with a range of 350 
to 800 nm and a more compact data output format with improved metadata. In 2017, a 
third version of the LPR was used with similar sensors that covered through 1000 nm. All 
STS series Ocean Optics spectrometers have a spectral resolution of ∼1.5 nm (FWHM) 
and a signal-to-noise ratio of greater than 1500:1. The integration time for a single 
measurement ranges from 10 μs to 10 s, making it possible to collect several spectra per 
UAS flight. The LPR and ASD FieldSpec were used as equivalent devices with 
calibration, as described in section 2.4, except that the LPR could be mounted on a UAS 
platform for obtaining airborne spectral data. Recent work has shown that spectra 
collected with the LPR compared well to ASD data (Becker et al. 2019), with linear 
relationships with R2 = 0.941 to 0.992 between ASD and LPR-derived spectra over the 
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same locations. To enable the collection of boatside spectra that would be comparable to 
the UAS-based spectra, these were both collected at nadir to provide a similarly shaped 
circular footprint. We recognize that there are potential specular reflection issues with 
these nadir-collected spectra; however, previous studies have collected nadir spectra for 
shallow-water mapping (Kearney et al. 2009, Legleiter et al. 2009).  

We used two multispectral camera systems in this study. We selected the Micro-MCA-6 
six-channel multispectral camera manufactured by Tetracam (Chatsworth, California) for 
its ability to cover the 400 to 1000 nm (visible to near-infrared) spectral range, 
availability of different spectral filters within that range, and light weight (<1 kg with 
battery). Each image channel has its own 1.3 mp camera. The system was available for 
three 1-week data collection periods in 2016 and 2017. Standard Tetracam MCA-6 bands 
are 490 nm (blue), 550 nm (toward the upper range of green), 680 nm (red), 720 nm (red 
edge), 800 nm (in the near-infrared (NIR) range of ∼750 to 1000 nm), and 900 nm (also 
in the NIR). However, NIR wavelengths have limited penetration into water due to rapid 
light attenuation (i.e., strong absorption) (Malthus and George 1997), and maximum 
penetration into water occurs at around the green wavelength of 530 nm (Mishra 2005, 
Allouis et al. 2010). Therefore, for the 2016 and 2017 data collections, the Tetracam 
manufacturer was able to change the wavelengths for two bands to better meet our study 
objectives of differentiating and mapping species of SAV. New selected wavelengths 
were 530 nm (near maximum light penetration) and 600 nm (orange) because preliminary 
2015 spectral data had shown promising separation of some plant species at around 600 
nm. For 2016 and 2017, this made the available wavelengths 490 nm (blue), 530 nm 
(green 1), 550 nm (green 2), 600 nm (orange), 680 nm (red), and 720 nm (red edge). 

As a low-cost multispectral backup, we developed a dual camera system, referred to as 
the VISNIR system, for the 2017 summer field season that included a Canon point-and-
shoot 16 mp camera for natural color (RGB) data collection and a second Canon point-
and-shoot camera modified to be sensitive only to the near-infrared range of ∼830 to 
1100 nm. We deployed this dual system at the same time to collect visible plus near-
infrared images, either on the UAS as described below or pole-mounted for high-
resolution four-band imaging at a height of ∼3 m. 

We deployed a variety of UAS for the study, all of which met the US Federal Aviation 
Administration (FAA) definition of a small UAS (under 25 kg) and were flown by 
experienced UAS pilots. The largest system was a hexacopter (six rotors) system 
manufactured by Bergen RC Helicopters of Vandalia, Michigan. It had several important 
parameters, including being controllable remotely, capable of at least 15 min of flight 
time, having on-board position data from a GPS, a return to home default capability if the 
connection is lost, ability to fly a payload of up to 5 kg, a tiltable sensor platform, and a 
reasonable cost (US $4,800). It was capable of deploying the LPR as well as digital 
cameras up to the size of a Nikon full-frame camera and the multispectral cameras 
described above. The Bergen hexacopter’s tiltable sensor platform enabled the LPR to 
face forward for takeoff but then be pointed nadir for spectral data collection. The Bergen 
hexacopter has frequently been used by the MTRI study team members as a reliable 



11 

system for deploying a variety of airborne sensor systems (Dobson et al. 2014). Upon 
initial testing, it was determined that for aquatic applications, the minimum flying height 
at which the downwash from the Bergen hexacopter does not disturb the water surface to 
a degree that interferes with spectra and imagery was 10 m. Therefore, the minimum 
flying altitude of ∼10 m was used for collecting spectral data, and a height of ∼25 m was 
used for natural color image collection. Smaller DJI Phantom 2 Vision, Phantom 3 
Advanced, and Mavic Pro quadcopter UAS were also used to provide rapid, lower 
resolution imagery of project areas. 

Smaller UAS used in this project had their own integrated RGB camera systems with 12 
mp. These were intended to provide sufficient detail to identify sites that might have 
EWM, to potentially map changes in overall SAV density, and most importantly, to 
provide orthophoto mosaic basemaps of the study areas. The 5 mp camera onboard the 
LPR during UAS flights fulfilled a similar purpose. For higher resolution RGB imaging 
of study sites, our previous experience has shown that a Nikon D800 series DSLR camera 
can provide detailed digital images of ground features at flying heights of 10 to 30 m, 
(Dobson et al. 2014) so we deployed this system whenever possible to document study 
sites. 

 
Figure 2.1. Location of data collections in the Upper Peninsula of Michigan, including 
the Keweenaw Waterway in the Keweenaw Peninsula and the Les Cheneaux Islands 
area in northwest Lake Huron. 
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2.4 Experiments and Validation 

2.4.1 Data Collection Areas 

Study data characterizing the spectral profiles of vegetation from individual species to 
assemblages were collected at multiple sites in the Les Cheneaux Islands region of 
northwest Lake Huron (Figs. 2.1 and 2.2). EWM in Michigan and in other Midwestern 
states has been shown to mostly be hybrids of M. spicatum × Myriophyllum sibiricum 
(native Northern watermilfoil) and that where the hybrid was found, M. sibiricum was 
rare (Moody and Les 2007). We anticipated that most EWM in the Les Cheneaux Islands 
would be the hybrid form based on this and more recent studies (Zallek 2018). In 2015, 
data were collected at three sites located in the Keweenaw Waterway near Houghton, 
Michigan (Figs. 2.1 and 2.2), primarily to developed methods, such as the initial OOW 
data collection. 

2.4.2 Scales of Spectral Data Collection and Processing Methods 

To answer the study questions about EWM detection and spectral profile similarity, a 
diverse set of field spectra for EWM and other species and bottom types were needed. 
Table 2.1 lists all the sites, dates, number of averaged spectra by site, and scale of 
spectral data collections from 2015 to 2017. Species measured at each site on each date 
varied due to natural seasonal and interannual variability in the SAV assemblages 
growing at these sites at the time they were sampled, with several species occurring 
multiple times in the data collections, helping provide comparability among sites and data 
collection campaigns. 

We recorded spectral data at three sampling levels: 

1. Plant-level spectra of a single species of aquatic vegetation retrieved out of the 
water and sensed immediately after removal to prevent spectral decay with either 
the ASD FieldSpec 3 or the LPR system [Figs. 2.3(a) and 2.3(b)]. The 
spectrometer optic, with a 25 deg FOV for either system, was held ∼10 cm above 
the plant surface for a sample footprint diameter of ∼5 cm. Plant samples were 
large enough to occupy the entire footprint of the spectrometer at this distance, 
and the plant was piled in multiple layers and measured against a matte black tarp 
to minimize the spectral contribution of the back- ground from any remaining 
small gaps between leaves. Visser et al. (2013) and Vahtmäe and Kutser (2013) 
used very similar approaches of piling layers of aquatic vegetation on a black 
painted canvas and a black plastic bag, respectively, to obtain spectra without 
water column influences. These data represented the OOW scale and were 
intended to provide the strongest signal of plant spectra. 

2. Spectral measurements were made from the side of the boat, with the sensor head 
mounted on an extension pole at least 1 m in length. The pole mount both allowed 
the operator to hold the sensor away from boat shadows and reflections and safely 
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held the sensor at nadir. The spectra were also collected on the sunlit side of the 
boat to minimize effects of light reflection from the boat or the boat shadow. 
Either spectrometer was used as available, with the optic held ∼1 m above the 
water surface immediately above a patch of vegetation for a spectra footprint 
radius at the water surface of ∼45 cm [Fig. 2.3(c)]. Spectral measurements were 
taken while keeping the boat stationary and visually confirming minimal 
disturbance of the water by the boat. Any measurements affected by disturbances 
such as accidental changes in sensor position or viewing geometry were noted and 
later removed from the dataset. Measurement locations were selected based on 
visual observation of the distribution of homogeneous patches of SAV species 
dominated by one to a few species. These data represented the “boatside” scale 
and would be similar to the traditional scale of vegetation sampling, such as rake 
tosses and twists (Johnson and Newman 2011). The spectra footprint radius could 
also represent a scale similar to aerial imagery collected via UAS. 

3. Nadir spectra from the LPR system mounted on a UAS flying directly above a 
vegetation patch of known composition [Figs. 2.3(d)–2.3(f)]. When mounted on 
the UAS, the LPR’s irradiance sensor was fixed to a rod on top of the system in 
the zenith direction so that there would be no shadowing. The UAS-based spectra 
were collected ∼10 to 15 m above the water surface for a footprint radius at the 
water surface of 4.5 to 6.5 m. These data represented the “LPR UAS” scale, 
referred to as just “UAS” in Table 2.1 and hereafter as the LPR that was the only 
radiometer that could flown in the UAS, and these data covered the largest area 
for spectral data collection. 
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Figure 2 . 2. Detailed locations of data collection sites for spectral and UAS data 
within the Les Cheneaux Islands and the Keweenaw Waterway. 
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Table 2.1.  Collection sites listing types of spectral data collected by time period and data collection scale. The number of averaged 
spectral profiles collected per site is included in parentheses 

Collection 
 

Region June 2015 July 2016 August 2016 June 2017 July 2017 August 2017 
Pike Bay Portage Waterway OOW (4)  UAS (5)    
Torch Bay Portage Waterway OOW (4)      
Breeze-swept Les Cheneaux Islands     Boatside (3), 

UAS (3) 
Boatside (3), 
OOW (12) 

Cedar Les Cheneaux Islands      OOW (6) 
Court Dock Les Cheneaux Islands  UAS (2)     
Court East Les Cheneaux Islands  Boatside (1), 

UAS (1) 
Boatside (1), 
UAS (1) 

Boatside (3), 
UAS (3) 

Boatside (2) Boatside (3), 
OOW (6) 

Court West Les Cheneaux Islands     Boatside (1) OOW (6) 
Chappell Les Cheneaux Islands    Boatside (2)  Boatside (3), 

OOW (6) 
FDS Les Cheneaux Islands  Boatside (5), 

UAS (4) 
Boatside (4), UAS Boatside (5), 

UAS (4) 
Boatside (3), 
UAS (2) 

OOW (6) 

Hessel Marina Les Cheneaux Islands     Boatside (1), 
UAS (1) 

Boatside (3), 
OOW (6) 

Howells Dock Les Cheneaux Islands   Boatside (4), 
UAS (1) 

OOW (10), 
Boatside (4), 
UAS (3) 

 Boatside (3), 
OOW (6) 

Neil Les Cheneaux Islands    Boatside (4), 
UAS (3) 

Boatside (2), 
UAS (2) 

Boatside (2), 
OOW (6) 

Note: Scale and method of spectral data collection: OOW, out-of-water; Boatside, from side of boat; UAS, Unmanned aerial 
system with the lightweight portable radiometer. 
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Figure 2.3. Images demonstrating field data collection methods. (a) Single-species plants 
on a black tarp about to have their spectral profile recorded for OOW scale data. From left 
to right: Chara sp. (stonewort), Potamogeton richardsonii (clasping-leaf pondweed), and 
EWM. (b) Collection of OOW scale data using the LPR spectroradiometer during the 
August 2017 data collection. (c) Collection of spectral profile data at the boatside scale 
using the LPR spectroradiometer held vertically over an area of predominantly EWM. (d) 
Aerial photo from 2015 at a site in Keweenaw Waterway showing visible SAV, emergent 
vegetation, shoreline vegetation, and the Michigan Tech research vessel used for launch 
and recovery of the DJI Phantom 2 UAS. (e) Aerial photo taken from the Bergen 
hexacopter with the LPR’s five mp camera, with EWM visible near the water’s surface 
at a boat slip in the Hessel Marina site in the Les Cheneaux Islands study area. (f) The 
LPR mounted underneath the Bergen hexacopter UAS, about to collect spectral data over 
an area of EWM. 
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The boat-based sampling was designed to test and demonstrate the strength of the 
spectral signature that could be expected to be available for UAS-based spectral profiling 
and imaging. This is a scale similar to the resolution of UAS-based multispectral 
imagery. If a strong vegetation spectral signature could be identified directly from the 
vegetation and from just above the water, then there would be a reasonable chance this 
could be captured with a UASbased spectrometer and with a multispectral imaging 
camera that captures relevant spectral wavelengths. 

Analysis of the UAS-based spectra was designed to help understand whether vegetation 
types can be differentiated when a larger area is being assessed than the OOW or boatside 
scale data. With integration over the larger spectral footprint captured from the UAS 
platform, plant assemblages tended to include more than one SAV species. To address 
this issue, the sampling sites were summarized based on the two most dominant species if 
they made up at least 20% of the cover based on the visual estimate. For example, a site 
that had a visual estimate of 50% EWM and 30% Elodea was summarized as an 
“EWM_ELODEA” spectral profile. 

Visual estimates of plant species densities by percent were made by an experienced 
aquatic vegetation expert for areas where spectral data were being recorded, and species 
identities were confirmed by rake toss after spectral data collection was complete. These 
estimates were collected to document the dominant vegetation species that would be 
captured by the boatside and UAS-based spectral data collection. Specifically, for EWM 
plots, the average area covered by vegetation was 85.2% (σ =14.3%, n = 25), the average 
for other SAV (SAV_OTHER) was 84.4% (σ = 15.0%, n =14), for non-identifiable low 
vegetation (LOWVEG), the average was 77.8% (σ = 38.5%, n = 4), the deepwater 
average (DEEPWATER) was 0.0% (σ = 0.0%, n = 3), and the bare average (BARE) was 
33.1% (σ = 17.2%, n = 16). 

All spectra were calibrated to remote sensing reflectance (Rrs), a unitless value defined as 
the ratio of water-leaving radiance to the total downwelling irradiance just above water. 
The ASD spectra were calibrated using a Spectralon panel of a known reflectance and the 
LPR spectra using a skyward-facing irradiance sensor (mounted on the UAS for airborne 
spectral data collections). The field spectra collected with the ASD FieldSpec 3 and the 
LPR spectroradiometers were examined for data quality. Ten spectra were collected per 
target when using the ASD. Because it operates less rapidly, five spectra were collected 
per target when using the LPR to minimize the risk of the sensing platform drifting away 
from the target location. Outliers among spectra collected for the same target, indicating 
an effect of glint or other problems, were discarded. A calibration based on the 
differences between ASD and LPR spectra collected simultaneously for a Spectralon 
panel illuminated by a highly stable lamp was applied to the radiance and irradiance 
values from the LPR spectrometers to make them comparable to ASD spectra, as used 
and described by Sawtell et al. 2019. This calibration was repeated at least once per field 
season to account for possible instrument drift over time. Rrs was calculated for ASD data 
using ViewSpec Pro software (Malvern Panalytical) and for LPR data as follows: 
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 𝑅𝑅𝑟𝑟𝑟𝑟0+  =  𝐿𝐿𝑤𝑤
0+(𝜆𝜆,𝜃𝜃𝑑𝑑)

𝐸𝐸𝑑𝑑
0+(𝜆𝜆)

  (1) 

= Water-leaving radiance just above the water surface / Downwelling Irradiance 

Spectral profiles corresponding to the same sampling run at a particular location and 
target were averaged. 

2.4.3 Statistical Analysis Methods 

To analyze whether spectral profiles were significantly different from each other for 
different species or assemblages, the averaged profiles were treated as distributions and 
analyzed using the nonparametric two-sample Kolmogorov–Smirnov (K-S) test (Sokal 
and Rohlf 1995) in R (versions 3.4.0 to 3.4.3; R Core Team 2017) with the ks.test 
command. The two sample K-S test provides the ability to find out if two random 
variables share an identical distribution or if they come from different distributions 
(Hassani and Silva 2015, Brooks and Merenlender 2001).  

The K-S test analysis focused on the spectral reflectance data for the OOW species-level 
samples, collected in 2017 and 2015 using the ASD FieldSpec3 spectroradiometer 
because the differences among species should be strongest in this dataset. A sample of 
the 2016 boatside data was also analyzed for all bands. To understand whether small 
variations in spectral responses captured by using all spectral bands were potentially 
causing the application of the K-S test to not recognize when the profiles were very 
similar, band averaging was applied to reduce the dataset. These would also simulate the 
results of using imaging systems with fewer bands that could be practical to deploy, such 
as hyperspectral and multispectral sensors. Three levels of averaging were analyzed: 

1. The same six bands as the Tetracam multispectral camera. These represented 
averaging of 10 one-nm-wide bands (i.e., 490 nm is an average of the reflectance 
values of 485 to 495 nm, etc.). Although such average reflectances may not 
measure the “true” reflectances that the Tetracam would measure, they provide a 
good approximation for the reflectance in the Tetracam wave bands, as Tetracam 
spectral response functions were not available to us. If the Tetracam-like 
reflectance values for the various SAV species in the spectroradiometer datasets 
looked significantly different, this would bolster the case that multispectral 
imaging could reliably differentiate EWM from other aquatic vegetation. 

2. The eight spectral bands that contain most of the spectral information needed to 
map coastal wetlands in the Great Lakes including SAV, according to Becker et 
al. (Becker et al. 2005, Becker et al. 2007), which were rounded to the nearest nm: 
515 nm (green), 560 nm (green), 686 nm (red), and 732 nm (red edge), plus the 
near-infrared bands of 812, 824, 836, and 940 nm. The 2015 and 2017 OOW data 
were averaged to 10-nm bands centered around each of these, which will hereafter 
be referred to as “Becker bands.” These bands were tested to see if they provided 
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sufficient spectral information for species differentiation of SAV in our study 
area. 

3. To test the effect of the number of bands on the separability of spectral signatures, 
the 651 individual spectral bands were averaged into 65 10-nm-wide bands; 
Everitt et al. (2011) used 10-nm wide bands for their tank-based spectral analysis 
of SAV. The 10-nm-wide bands covered the individual bands from 350 to 1000 
nm (350–359 nm, 360–369 nm, etc; 1000 nm was not included to make the 65 
bands evenly sized). Testing 65 bands was also more representative of 
hyperspectral imaging systems that could be deployed than using all 651 bands. 
The June 2017 OOW dataset was used for this test as it had more SAV vegetation 
types for evaluating EWM detection versus other species. 

To test for the capability of indices and ratios to help differentiate SAV species when 
combined with reduced datasets, the following indices were calculated as described 
below: 

• Red edge/blue ratio (RE/BLUE, i.e., 720 nm/490 nm) 
• The modified normalized difference vegetation index (mNDVI) 
• The modified normalized difference aquatic vegetation index (mNDAVI) 
• The modified water-adjusted vegetation index (mWAVI). 

NDVI, NDAVI, and WAVI were previously developed for terrestrial (NDVI) or aquatic 
uses (NDAVI and WAVI) but were included because of the possibility that sufficient 
light penetration might enable them to be useful for mapping SAV near the water’s 
surface. 

The red edge/blue (RE/BLUE) ratio was selected from among several tested ratios [red 
edge to red (720:680 nm), red edge to orange (720:600 nm), red edge to green 2 (720:550 
nm), and red edge to green 1 (720:530 nm)] based on it having the largest standard 
deviation for the dominant vegetation types in the June 2017 OOW data and therefore 
providing the greatest potential for it to differentiate SAV types. 

NDVI is a long-used indicator of green biomass, with larger values indicating more green 
biomass being present (Rouse et al. 1974, Tucker et al. 2005). Here, the 720-nm red edge 
band was used in place of the NIR band for analysis, as it was the longest wavelength 
collected with the Tetracam system that was used for SAV mapping. Thus, the modified 
NDVI has the following formula, where ρ is the wavelength: 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)
(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)

 (2) 

Previous work has found red-edge reflectance to be useful for identifying wetland 
vegetation types due to its sensitivity to biomass (Adam et al. 2010, Ouyang et al. 2013). 
The nearby red edge wavelength of 715 nm has also been shown to have a strong 
relationship with leaf area index (LAI) for SAV (Yang et al. 2010).  
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As NDVI was developed as an index for terrestrial biomass analysis, two related aquatic 
indices reviewed and used by Villa et al. (2014) that might help with SAV mapping were 
also modified for application here: the NDAVI and WAVI. NDAVI uses a blue band 
instead of a red band in the NDVI formula. Again, we used the 720-nm red edge band in 
place of an NIR band, yielding the following formula: 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅
𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅

  (3) 

WAVI also uses a blue band instead of red but also includes a correction factor (L) to 
adjust for the effect of the background signal. We adopted a value of 0.5 for L based on 
Villa’s description of this as a reasonable value for reducing background influence. The 
formula for mWAVI is as follows: 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = (1 + 𝐿𝐿) 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅
𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅+𝐵𝐵

  (4) 

We compared spectral characteristics among plots with differing SAV cover using 
analysis of variance (ANOVA) using the larger set of boatside data, which totaled 62 
spectral data profiles, covering data collections in mid-July 2016, late August 2016, late 
June 2017, mid-July 2017, and late August 2017. A dominant vegetation type was 
selected for each of the 62 spectral profiles based on density at each location, resulting in 
12 vegetation types. These vegetation types were summarized by dominant vegetation 
type to help differentiate EWM from other spectral patterns with the month of data 
collection included. The values of the six Tetracam bands (490, 530, 550, 600, 680, and 
720 nm), the RE/BLUE ratio, and the three indices (mNDVI, mNDAVI, and mWAVI) 
were compared between plots with different dominant plant covers. 

To determine whether EWM was generally different from any other sampled SAV type, 
the other SAV dominant vegetation types were grouped into an “other SAV” class. These 
dominant vegetation groups were tested with study dates using two-way ANOVA, with 
plots nested within study areas as a random factor. The classes considered were: 
DOMVEG_GRP, which included the spectral vegetation profiles grouped in to one 
representing EWM, the one for all other SAV vegetation types (SAV_OTHER), one for 
areas of short vegetation at the lake bottom that was not identifiable by species 
(LOWVEG), areas of deepwater (DEEPWATER), or bare bottom types such as sand or 
rock (BARE) categories. All two-way ANOVA analyses were conducted using PROC 
MIXED in SAS version 9.4 (SAS Institute, Inc., Cary, North Carolina), and significance 
was considered at p = 0.05. The six Tetracam band wavelengths (averaged from 10-nm 
wide) were log-transformed to meet assumptions of normal residual distribution and 
constant variance (Oehlert 2010); all other variables except mWAVI did not require 
transformation to meet these ANOVA assumptions. mWAVI included negative values 
and was log-transformed after adding a small value to make them positive. The 
interaction between DOMVEG_GRP and month (DOMVEG_GRP*MONTH) was 
included in the ANOVA analysis. 
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To evaluate the impact of the three different scales of collecting spectral data, EWM 
spectral profiles were compared from the June 2017 data collection when OOW, 
boatside, and LPR UAS data were collected at the same sites on the same day. A single-
factor ANOVA was applied to each band, ratio, and index to evaluate if any of the means 
were significantly different. Input values were transformed in the same way as the 
multiyear boatside ANOVA. If the ANOVA indicated that at least one group mean was 
different at the p = 0.05 level based on spectral data collection method, then Tukey’s 
honestly significant difference (TukeyHSD) test and the Tukey–Kruskal test were applied 
to see which group mean pairings were different (UAS versus BOATSIDE, OOW versus 
BOATSIDE, and OOW versus UAS). The TukeyHSD, also known as the Tukey-Kramer 
method, is for performing multiple pairwise comparisons between all group means 
(Whitlock and Schluter 2015). While it can be used when sample sizes are different for 
groups being tested, this makes it conservative (i.e., harder to reject the null hypothesis of 
no difference in group means) (Whitlock and Schluter 2015). To account for this, the 
Tukey–Kruskal procedure was used, which performs a version of TukeyHSD procedure 
that works for unequal sample sizes (Higgins 2004). These tests were performed in R. 

2.5 Results and Discussions 

2.5.1 Out-of-Water Spectral Data Results 

To first address the question of whether different SAV species appear spectrally different, 
we compared OOW spectral profiles. For 2015 to 2017, we collected a total of 78 OOW 
spectral profiles after averaging. The June 2015 OOW spectral data, collected at the Pike 
Bay study area, included one sample each of Nymphaea odorata (white water-lily), 
Vallisneria americana (eel grass), Potamogeton richardsonii (clasping-leaf pondweed), 
Nuphar advena (spatterdock), Certophyllum demersum (coontail), Sparganium fluctuans 
(floating bur-reed), Elodea canadensis (common waterweed), and EWM. The OOW 
spectral reflectance data for June 2017 were collected at the Howells Dock study area in 
the Les Cheneaux Islands and included profiles for two EWM samples, and one each of 
Potamogeton robbinsii (fern-leaf pondweed or Robbins’ pondweed), Potamogeton 
richardsonii (clasping-leaf pondweed), Chara spp. (muskgrass), M. sibiricum (northern 
watermilfoil), Potamogeton praelongus (white-stemmed pondweed), and Potamogeton 
gramineus (variable-leaf pondweed), plus a matte black background tarp for reference. 

Figures 2.4(a) and 2.4(b) show examples of OOW spectral data from 350 to 1000 nm 
collected with the ASD Fieldspec 3. Applying the K-S test to these datasets, the EWM 
OOW sample from 2015 was significantly different than all other vegetation types when 
using all 651 spectral bands at the p < 0.001 level. Similarly, both 2017 EWM spectral 
samples [EWM1 and EWM2 in Fig. 2.4(b)] were also significantly different than all 
other vegetation types and each other, at the p < 0.001 level. 

For the June 2015 dataset resampled to the Tetracam bands [Fig. 2.5(a)], the EWM 
sample was significantly different (p < 0.05) from the spatterdock and floating bur-reed 
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spectral samples but not the white water-lily, eel grass, clasping-leaf pondweed, coontail, 
or Elodea samples. Using the Becker bands [Fig. 2.5(b)], the EWM sample was not 
significantly different than any of the other species at the p < 0.05 level. In Figs. 2.5(a) 
and 2.5(c), the 720 nm (red edge) band provides the greatest variation in spectral 
response. In Figs. 2.5(b) and 2.5(d), all of the Becker NIR bands (732, 812, 824, 836, and 
940 nm) show relatively clear separation of sampled species. Using the June 2017 OOW 
spectral data resampled to the Tetracam bands [Fig. 2.5(c)], the two EWM samples only 
differed significantly from the black reference tarp using the K-S test (p = 0.05). They 
were not significantly different from the curly-leaf pondweed, fern-leaf pondweed, 
clasping-leaf pondweed, Chara spp., native northern watermilfoil, white-stemmed 
pondweed, and variable-leaf pondweed spectral samples. There appear to be some 
groupings at 530 and 550 nm (the two green bands), with the white-stemmed pondweed, 
clasping-leaf pond- weed, variable-leaf pondweed, and Chara spectral samples grouping 
together at higher green values, whereas the two EWM samples (EWM1 and EWM2), 
curly-leaf pondweed, northern watermilfoil, and fern-leaf pondweed spectral samples 
group together at lower green reflectance values. Similar to the 2015 data, there is a 
greater differentiation among species with the 720 nm (red edge) band [Fig. 2.5(c)]. The 
same June 2017 OOW dataset resampled to the eight Becker wetlands bands [Fig. 2.5(d)] 
also did not result in significant differences when comparing the two EWM samples to 
the other vegetation types using the K-S test. The same groupings occur as in the 
Tetracam bands, with white-stemmed pondweed, clasping-leaf pondweed, variable-leaf 
pondweed, and Chara having higher 560 nm (green) reflectance values, and curly-leaf, 
both EWM samples, northern watermilfoil, and fern-leaf having lower 560 nm values. 
There is a greater separation between values at the Becker red edge bands (centered at 
732 nm rather than the Tetracam’s 720-nm red edge wavelength). 
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Figure 2.4. OOW spectral data: (a) Spectral profiles of eight OOW aquatic plant species 
from June 2015, showing ultraviolet to near-infrared (350 to 1000 nm) wavelengths 
for all 651 bands. (b) Spectral profiles for nine aquatic plant species, plus a reference tarp, 
from June 2017, showing all 651 one-nm wide bands. 
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Figure 2.5. Resampled spectral reflectance values for Tetracam and Becker bands: (a) 
Resampled to approximate the Tetracam bands for the eight OOW species samples 
collected in 2015, (b) resampled to the Becker bands for the 2015 OOW data, (c) 
spectral reflectance values for the Tetracam wavelengths for the nine OOW species 
collected in June 2017, and (d) spectral reflectance values for the Becker wetland bands 
for the nine OOW species collected in June 2017. 
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Using 65 bands and the June 2017 OOW, ASD-collected dataset yielded the K-S results 
shown in Table 2.2. 

This analysis suggested that EWM1 was significantly different from six of the seven 
other SAV species, the other EWM sample (EWM2), and a black reference tarp, with 
varying levels of significance. EWM1 was not significantly different from the Clasping-
leaf pondweed. EWM2 was different from all seven vegetation species and the reference 
tarp. With both EWM samples being different than nearly all other vegetation samples, 
this supports the idea that hyperspectral sensing with a number of bands of similar to the 
65 average bands tested here may be a reliable way of identifying SAV to species, 
including invasive aquatic plants such as EWM. 

Table 2.2.  K-S test of June 2017 OOW spectral data averaged to 65 10-nm-wide bands. 
Tested 
profile Species profile p-Value D  

Tested 
profile Species profile p-Value D  

EW
M

1 
vs

 

CURLYLEAF 0.0000209 0.4 *** 

EW
M

2 
vs

 

CURLYLEAF 0.0000209 0.4 *** 

FERNLEAF 0.00746 0.3 ** FERNLEAF 0.00211 0.3 ** 

EWM2 0.03858 0.2 * EWM1 0.03858 0.2 * 

CLASPING 0.0625 0.20  CLASPING 0.0133 0.3 * 

CHARA 0.0001122 0.45 *** CHARA 0.0133 0.3 * 

NORTHERN 0.00000336 0.4 * NORTHERN 0.00000336 0.4 *** 

WHITESTEM 0.0000209 0.4 *** WHITESTEM 0.0000209 0.4 *** 

VARIABLE 0.004037 0.3 ** VARIABLE 0.00107 0.3 ** 

TARP <0.0000001 0.5 *** TARP <0.0000001 0.5 *** 

*Significant at p < 0.05.   **Significant at p < 0.01.   ***Significant at p < 0.001. 

2.5.2 Boatside Spectral Data Results 

Figure 2.6 represents boatside spectral data collected at three locations in the Les 
Cheneaux Islands study location in August 2016, a part of the 62 total spectral profiles 
collected in 2016 to 2017. The site with mostly bare rock beneath the ASD had higher 
reflectance than the vegetated areas, as would be expected. Vegetation types were either 
mostly EWM (EWM1, EWM2, EWM3, EWM4, and EWM5), a mixture of EWM and eel 
grass (EWMEELGRASS), or mostly sheathed pondweed (SHEATHEDPONDWEED1 
and SHEATHEDPONDWEED2). In all cases, the August 2016 boatside spectral profiles 
were different from all other spectral profiles at p < 0.001 when using all collected bands. 
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Figure 2.6. Spectral profiles of SAV species and combinations from 2016, collected 
boatside using the ASD, directly over patches of vegetation in the water. 

The results of the two-way ANOVA mixed model analysis of the combined 2016 to 
2017 boatside spectral dataset are shown in Table 2.3. 
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Table 2.3.  Results for the mixed model analysis for each tested wavelength, ratio, and 
index for the complete 2016 to 2017 boatside dataset with 62 spectral profiles. 

  Dependent 
variable 

 

Effect Num DF Den DF F value Pr > F  
490 nm DOMVEG_GRP 4 15.7 1.26 0.3285  

 MONTH 2 10.6 5.53 0.0227 * 
 DOMVEG_GRP*MONTH 4 9.52 1.91 0.1888  
530 nm DOMVEG_GRP 4 15.3 1.22 0.3422  

 MONTH 2 10.5 6.68 0.0135 * 
 DOMVEG_GRP*MONTH 4 9.32 1.58 0.2576  
550 nm DOMVEG_GRP 4 15.2 1.17 0.3637  

 MONTH 2 10.3 7.63 0.0093 * 
 DOMVEG_GRP*MONTH 4 9.09 1.47 0.2873  
600 nm DOMVEG_GRP 4 15.5 0.83 0.5235  

 MONTH 2 10.1 6.8 0.0135 * 
 DOMVEG_GRP*MONTH 4 8.61 1.78 0.2198  
680 nm DOMVEG_GRP 4 15.9 0.64 0.6406  

 MONTH 2 9.87 4.33 0.0446 * 
 DOMVEG_GRP*MONTH 4 8.65 2.31 0.1396  
720 nm DOMVEG_GRP 4 15.9 0.54 0.7055  

 MONTH 2 8.44 2.99 0.1044  
 DOMVEG_GRP*MONTH 4 6.96 2.86 0.1072  
RE/BLUE DOMVEG_GRP 4 18.6 1.22 0.3344  

 MONTH 2 18.2 0.07 0.9348  
 DOMVEG_GRP*MONTH 4 18.0 0.90 0.4839  
mNDVI DOMVEG_GRP 4 17.5 3.16 0.0402 * 

 MONTH 2 17.1 1.54 0.0135  
 DOMVEG_GRP*MONTH 4 17.0 2.00 0.2198  
mNDAVI DOMVEG_GRP 4 14.9 1.35 0.2961  

 MONTH 2 15.1 0.47 0.6358  
 DOMVEG_GRP*MONTH 4 14.9 0.77 0.5586  
mWAVI DOMVEG_GRP 4 23.2 0.97 0.4415  

 MONTH 2 22.7 0.42 0.6623  
 DOMVEG_GRP*MONTH 4 22.7 0.21 0.9319  

*Significant at the p ¼ 0.05 level. 

mNDVI was significantly different among dominant vegetation groups (F4;17.5 = 3.16, p 
= 0.04), with no difference among months and no significant interaction between month 
and dominant vegetation group. The RE/BLUE ratio, mNDAVI, and mWAVI did not 
have significant differences among dominant vegetation groups or months and had no 
significant interactions between month and dominant vegetation group. The log-
transformed 490-, 530-, 550-, 600-, and 680-nm variables varied significantly among 
months, but 720 nm did not, showing that there is an effect on spectral reflectance 
depending on whether data were collected in June, July, or August. 

To help verify a significant contribution of vegetation to these boatside spectra, we 
calculated the difference between red edge reflectance (709 nm) in our spectra and a 
baseline between 681 and 754 nm, analogous to the MERIS maximum chlorophyll index 
(MCI) product developed by Gower et al (Gower et al. 2008). Since our original 
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classification considered all plots with up to 50% vegetation cover to belong to the 
“BARE” class, we also added an additional class of sparse vegetation, “SPARSEVEG,” 
with vegetation percent cover of 25% to 50%. With this “mixed” class added, we found a 
distinct difference in MCI values between the EWM and SAV_OTHER classes versus 
the lower MCI values of the BARE, LOWVEG, and DEEPWATER classes. The mean 
values, with standard deviations in parentheses, are SAV OTHER = 0.0012901 (σ = 
0.0014205), EWM = 0.0012412 (σ = 0.0017040), BARE = −0.0000027 (σ = 0.0000932), 
SPARSE VEG = 0.0003125 (σ = 0.0003066), LOW VEG = −0.0000606 (σ = 
0.0001971), and DEEP WATER = −0.0001423 (σ = 0.0001133). 

2.5.3 UAS Spectral Data Results 

Figure 2.7 shows the complete spectral profiles for the June 2017 UAS data, a part of the 
41 total UAS-based spectral profiles collected in 2016 to 2017. The six Tetracam bands 
were again approximated from the profile data, and the four ratios were added for 
analysis with the K-S test. 

The June 2017 UAS-based data (Fig. 2.7 and Table 2.4) showed that the six samples 
including significant EWM cover (five with EWM being the most dominant and one 
dominated by Chara with EWM as a secondary dominant) did appear statistically 
different than some other vegetation types. For example, the “EWM_SMALL1” (EWM 
and small-leaf pondweed) sample is significantly different than one of the two Chara-
dominated spectral profiles, and the EWM_CHARA and LOWVEG2 to LOWVEG4 
profiles as well. The EWM_SMALL2, EWM_ELODEA, and CURLY_EWM profiles 
had similar results—they looked different than the two CHARA profiles, the 
EWM_CHARA, and LOWVEG2 to LOWVEG4 profiles. The EWM spectral profile 
without a secondary dominant species (EWM) was only different than the second 
(CHARA2) profile, however. All the “top” spectral data in Figure 2.7 (EWM_ELODEA 
to LOWVEG1) had to be collected on 2 days when it was 100% overcast. The “bottom” 
spectral data in Fig. 2.7 (CHARA2, LOWVEG2, CHARA1, LOWVEG3, and 
LOWVEG4) were from days when it was 40% to 60% cloud cover. There does appear to 
be an influence of sky conditions here, but with replication already a challenge, we 
preferred to maintain data whenever possible. 
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Figure 2.7. Spectral reflectance values for the UAS data collected over 13 areas with 
multiple species assemblages, sampled in June 2017. 
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Table 2.4.  K-S test of June 2017 UAS-based spectral data resampled to Tetracam 
bands plus ratios. 

Tested  
profile Species profile p-Value D 

Tested  
profile Species profile p-Value D 

EW
M

_ 
SM

A
LL

1 
vs

 
EWM_SMALL1 
 
EWM_ELODEA 

NA 
 
0.1678 

NA 
 
0.5 

EW
M

_ 
EL

O
D

EA
 v

s 

EWM_SMALL1 
 
EWM_ELODEA 

0.1678 
 
NA 

0.5 
 
NA 

EWM_SMALL2 0.1678 0.5 EWM_SMALL2 0.7869 0.3 
ELODEA_MIXED 0.4175 0.4 ELODEA_MIXED 0.4175 0.4 
LOWVEG1 0.4175 0.4 LOWVEG1 0.4175 0.4 
CURLY_EWM 0.4175 0.4 CURLY_EWM 0.9945 0.2 
EWM 0.4175 0.4 EWM 0.4175 0.4 
CHARA1 0.01234 0.7 * CHARA1 0.0002165 0.9 ** 
CHARA2 0.1678 0.5 CHARA2 0.01234 0.7 * 
EWM_CHARA 0.01234 0.7 * EWM_CHARA 0.0002165 0.9 ** 
LOWVEG2 0.002017 0.8 *** LOWVEG2 0.0002165 0.9 ** 
LOWVEG3 0.01234 0.7* LOWVEG3 0.0002165 0.9 ** 
LOWVEG4 0.01234 0.7 * LOWVEG4 0.0002165 0.9 ** 

EW
M

_ 
SM

A
LL

2 
vs

 

EWM_SMALL1 
 
EWM_ELODEA 

0.1678 
 
0.7869 

0.5 
 
0.3 

C
U

R
LY

_ 
EW

M
 v

s 

EWM_SMALL1 
 
EWM_ELODEA 

0.4175 
 
0.9945 

0.4 
 
0.2 

EWM_SMALL2  NA EWM_SMALL2 0.4175 0.4 
ELODEA_MIXED 0.05245 0.6 ELODEA_MIXED 0.7869 0.3 
LOWVEG1 0.05245 0.6 LOWVEG1 0.7869 0.3 
CURLY_EWM 0.4175 0.4 CURLY_EWM  NA 
EWM 0.05245 0.6 EWM 0.7869 0.3 
CHARA1 0.0002165 ** CHARA1 0.002057 0.8 *** 
CHARA2 0.002057 0.8 *** CHARA2 0.002057 0.8 *** 
EWM_CHARA 0.0002165 0.9 ** EWM_CHARA 0.002057 0.8 *** 
LOWVEG2 0.0002165 0.9 ** LOWVEG2 0.002057 0.8 *** 
LOWVEG3 0.0002165 0.9 ** LOWVEG3 0.002057 0.8 *** 
LOWVEG4 0.0002165 0.9 ** LOWVEG4 0.002057 0.8 *** 

EW
M

 v
s 

EWM_SMALL1 
 
EWM_ELODEA 

0.4175 
 
0.4175 

0.4 
 
0.4 

EW
M

_ 
C

H
A

R
A

 v
s 

EWM_SMALL1 
 
EWM_ELODEA 

0.01234 
 
0.0002165 

0.7 * 
 
0.9 ** 

EWM_SMALL2 0.05245 0.6 EWM_SMALL2 0.0002165 0.9 ** 
ELODEA_MIXED 0.9945 0.2 ELODEA_MIXED 0.05245 0.6 
LOWVEG1 0.9945 0.2 LOWVEG1 0.05245 0.6 
CURLY_EWM 0.7869 0.3 CURLY_EWM 0.002057 0.8 *** 
EWM  NA EWM 0.05245 0.6 
CHARA1 0.05245 0.6 CHARA1 0.9945 0.2 
CHARA2 0.002057 0.8*** CHARA2 0.7869 0.3 
EWM_CHARA 0.05245 0.6 EWM_CHARA NA NA 
LOWVEG2 0.05245 0.6 LOWVEG2 0.9945 0.2 
LOWVEG3 0.05245 0.6 LOWVEG3 0.9945 0.2 
LOWVEG4 0.05245 0.6 LOWVEG4 0.9945 0.2 

Note: NA, not applicable (same profile). 
*Significant at p < 0.05.   **Significant at p < 0.01.   ***Significant at p < 0.001. 

We hypothesized that the July 2017 spectral data might show a more distinct pattern for 
EWM, because the vegetation would be more fully developed (taller, denser) a month 
later than the relatively early in the growing season June 2017 data. Also, the June 
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samples were collected during overcast days, whereas most of the July samples were 
collected on sunny days. However, as shown in Table 2.5, areas with significant amounts 
of EWM only looked different than one of the OPEN areas, and then only for three of the 
four EWM-dominated areas. 

2.5.4 Comparison of Spectral Profile Results across Scale-Based 
Collection Methods 

In the June 2017 data collection, all three methods of spectral data collection were 
deployed. This enabled comparison of the EWM spectral data (shown in Table 2.6) at 
three different scales, using the single-factor ANOVA, TukeyHSD, and Tukey–Kramer 
methods, as previously described. Figure 2.8 shows the spectral profiles for the six 
tetracam bands, and the ratios/indices used across analyses. 

In Fig. 2.8(a), there is a clear difference between the relatively low reflectance values for 
EWM seen in the OOW spectra and the higher values for the boatside and UAS spectra. 
Table 2.6 shows the UAS reflectance for the six Tetracam bands average 13.3% of the 
boatside reflectance and 27.4% of the OOW values. For the ratio and indices, UAS 
values average 38.6% of the boatside values and 12.0% of the OOW values. The boatside 
reflectance values are generally greater than the OOW values (an average of 202.2% for 
the six Tetracam bands) but are lower (32.7% average) for the ratio and indices. 

Table 2.7 shows the results of comparing EWM spectral reflectance values for the three 
spectral data collection methods. For all of the Tetracam wavelengths and the RE/BLUE 
ratio, the means of the groups were not equal (see ANOVA results for p-values in bold). 
Since the null hypothesis of equal group means could not be rejected for the mNDVI, 
mNDAVI, and mWAVI indices, it was not appropriate to apply the post-hoc TukeyHSD 
or Tukey–Kruskal procedures to these data. Using the TukeyHSD procedure, the UAS 
versus boatside group means were consistently different for the 490- to 720-nm Tetracam 
wavelengths but not for the RE/BLUE ratio. OOW versus UAS group means were 
sometimes different for the 530-, 550-, 600-, and 720-nm wave- lengths, and the 
RE/BLUE ratio but not for 490- or 680-nm wavelengths. OOW versus boatside group 
means were only different for the RE/BLUE ratio in the TukeyHSD results. The UAS 
versus boatside results were similar for the Tukey–Kruskal results with 490- to 680-nm 
group means being different but not for 720 nm. None of the OOW versus boatside and 
OOW versus UAS group means were different using Tukey–Kruskal. 
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Table 2.5.  K-S test of July 2017 UAS-based spectral data resampled to  
Tetracam bands plus ratios. 

Tested 
profile Species profile p-Value D 

Tested 
profile Species profile p-Value D 

O
PE
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EW
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1 
vs

 
OPEN_EWM1 
 
EWM 

NA 
 
0.4175 

NA 
 
0.4 

EW
M

 v
s 

OPEN_EWM1 
 
EWM 

0.4175 
 
NA 

0.4 
 
NA 

CHARA 0.4175 0.4 CHARA 0.4175 0.4 
ELODEA_EWM 0.9945 0.2 ELODEA_EWM 0.4175 0.4 
ELODEA_ FLATSTEM 0.9945 0.2 ELODEA_ FLATSTEM 0.4175 0.4 
OPEN1 0.05245 0.6 OPEN1 0.1678 0.5 
OPEN_EWM2 0.4175 0.4 OPEN_EWM2 0.4175 0.4 
OPEN2 0.4175 0.4 OPEN2 0.002017 0.8 ** 

EL
O

D
EA

_ 
EW

M
 v

s 

OPEN_EWM1 
 
EWM 

0.9945 
 
0.4175 

0.2 
 
0.4 

O
PE

N
_ 

EW
M

2 
vs

 

OPEN_EWM1 
 
EWM 

0.4175 
 
0.4175 

0.4 
 
0.4 

CHARA 0.4175 0.4 CHARA 0.1678 0.5 
ELODEA_EWM NA NA ELODEA_EWM 0.1678 0.5 
ELODEA_ FLATSTEM 0.4175 0.3 ELODEA_ FLATSTEM 0.1678 0.5 
OPEN1 0.05245 0.6 OPEN1 0.05245 0.6 
OPEN_EWM2 0.1678 0.5 OPEN_EWM2 NA NA 
OPEN2 0.002057 0.8 ** OPEN2 0.002057 0.8 ** 

Note: NA, not applicable (same profile).*Significant at p < 0.05.   **Significant at p <  
0.01.   ***Significant at p < 0.001. 

2.5.5 Discussion of Spectral Profile Results and Analysis 

For all tested datasets, using all available 1-nm bands resulted in spectral profiles being 
different (for example, for the OOW data in Fig. 2.4 and boatside data in Fig. 2.6). 
However, deploying an imaging system for mapping in the field that would use over 600 
bands is not yet practical. By contrast, using only the Tetracam or Becker bands rarely 
resulted in EWM being distinguished reliably from other vegetation (Fig. 2.5). One of the 
UAS datasets, from June 2017, did show that using the Tetracam bands plus the 
RE/BLUE, mNDVI, mNDAVI, and mWAVI indices could differentiate EWM in 6 of 12 
vegetation type comparisons (Table 2.4). 

This could not be repeated in a similar dataset from a month later (Table 2.5). An analysis 
of 65 bands (the 651 bands from a June 2017 OOW dataset averaged to 10-nm wide) did 
show reliable separability of EWM from eight other vegetation spectral profiles including 
seven different species (Table 2.2). With hyperspectral imaging systems capable of 40 to 
80 bands reaching costs of US $25,000 to $40,000, this level of band imaging may be 
more practical for deployment in EWM mapping and monitoring efforts. 

For distinguishing EWM from other vegetation, the ANOVA mixed model analysis 
showed that the mNDVI ratio is important (Table 2.3) but that individual Tetracam bands 
or the RE/BLUE ratio and aquatic-specific mNDAVI and mWAVI indices were not 
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helpful. As noted, NDVI was originally developed as a method of identifying areas of 
relatively lower or higher green biomass for terrestrial systems in satellite imagery using 
NIR and red bands. It appears that the spectral profiling is picking up different amounts 
of biomass even for submerged aquatic vegetation, where light penetration in the red-
edge to NIR range is limited relative to visible light bands. With mNDVI proving 
important to EWM detection, we compared the values of the available 720-nm red-edge 
band to the infrared band of 780 nm for all the boatside data collections. The 
relationships between 720 and 780 nm are nearly linear, with all showing a strong R2 

value, especially for August 2016 (R2 = 0.8681), June 2017 (R2 = 0.9979), July 2017 (R2 = 
0.9548), and August 2017 (R2 = 0.9832). Only July 2016 falls below 0.85, which a value 
of R2 = 0.7450. Based on these results, 720 nm appears to be a reasonable substitute for 
780 nm for NDVI-type calculations. 

A comparison of EWM spectral profiles across the OOW, boatside, and UAS scales of 
data collection showed significantly lower Rrs values for the UAS method versus the 
OOW and boatside methods (Table 2.6). The lower values for the UAS are probably 
caused by the greater distance to the spectroradiometer sensor (10 to 15 m from the UAS) 
compared to the OOW and boatside data, where the sensor is very close (one m or less) to 
the vegetation being sampled. This could mean that it is harder to identify species when 
10 to 15 m in the air versus sensing from boatside scales. Maximizing the amount of 
information reaching an UAS-based imaging sensor by collecting on sunny days, near 
solar noon, and with relatively calm waters should help minimize the impact of this more 
distant method of vegetation profiling. These methods can help take advantage of the 
ability of UAS to cover larger areas than boat-based sampling in a relatively short amount 
of time. 

The comparison of EWM spectra across the three data collection methods indicated that 
the spectral results are different for the Tetracam bands and the RE/BLUE ratio but not 
for the mNDVI, mNDAVI, and mWAVI indices (Table 2.7). For the Tetracam 
wavelengths, the average values are different for most wavelengths versus the OOW and 
boatside scale. The OOW and boatside data appear to be similar for EWM samples across 
scales. With the mNDVI, mNDAVI, and mWAVI indices not being significantly 
different, this suggests that these values may be scale independent and more appropriate 
for EWM identification than relying on spectral bands alone. Tying these results together 
with the boatside ANOVA mixed model results, mNDVI again appears important for 
reliable EWM identification. 
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Table 2.6.  Input data used for analysis of EWM spectral data collected at the OOW, boatside, and UAS scales, with 
comparison of averages by collection method. 

Species Scale and site  490 530 550 600 680 720 RE_BLUE NDVI NDAVI WAVI 
EWM_SMALL1 UAS - COURTEAST (1)  0.00210 0.00241 0.00254 0.00265 0.00218 0.00448 2.1322 0.34510 0.36147 0.00705 
EWM_ELODEA UAS - COURTEAST (2)  0.00279 0.00327 0.00348 0.00356 0.00296 0.00645 2.3123 0.37060 0.39619 0.01078 
EWM_SMALL2 UAS - COURTEAST (3)  0.00336 0.00361 0.00372 0.00378 0.00349 0.00467 1.3903 0.14552 0.16327 0.00387 
EWM UAS - FDS  0.00329 0.00360 0.00371 0.00350 0.00326 0.00321 0.9762 −0.00715 −0.01204 −0.00023 
EWM_CHARA UAS - NEIL  0.00182 0.00231 0.00254 0.00179 0.00084 0.00037 0.2048 −0.38486 −0.65999 −0.00432 
 Average  0.00267 0.00304 0.00320 0.00306 0.00254 0.00384 1.4032 0.09384 0.04978 0.00343 
EWM BOATSIDE - COURTEAST 

 
 0.03561 0.04086 0.04295 0.04780 0.03887 0.09122 2.5614 0.40239 0.43842 0.13306 

EWM BOATSIDE - COURTEAST 
( ) 

 0.01053 0.01173 0.01233 0.01349 0.01132 0.02148 2.0397 0.30993 0.34205 0.03087 
EWM BOATSIDE - COURTEAST 

( ) 
 0.00672 0.00784 0.00830 0.00899 0.00731 0.01817 2.7053 0.42591 0.46024 0.03273 

EWM BOATSIDE - FDS  0.01586 0.01714 0.01773 0.01662 0.01482 0.01376 0.8673 −0.03710 −0.07104 −0.00596 
EWM BOATSIDE - NEIL  0.02843 0.03009 0.03096 0.02862 0.02548 0.02384 0.8385 −0.03327 −0.08783 −0.01247 
 Average  0.01943 0.02153 0.02245 0.02310 0.01956 0.03369 1.8025 0.21357 0.21637 0.03565 
EWM1 OOW - COURTEAST  0.00774 0.01048 0.01144 0.01368 0.00994 0.04062 5.2456 0.60682 0.67978 0.08992 
EWM2 OOW - HOWELLSDOCK  0.00597 0.00833 0.00918 0.01166 0.00790 0.04181 7.0015 0.68229 0.75005 0.09814 
 Average  0.00686 0.00941 0.01031 0.01267 0.00892 0.04121 6.1236 0.64456 0.71491 0.09403 
Comparison 
(average) 

490 530 550 600 680 720 RE_BLUE mNDVI mNDAVI mWAVI 
Average 

all 

Average 
6 

Tetracam 
 

Average RE_BLUE, 
mNDVI, mNDAVI, 

mWAVI 
UAS average 
versus 

  

13.7% 14.1% 14.2% 13.2% 13.0% 11.4% 77.8% 43.9% 23.0% 9.6% 23.4% 13.3% 38.6% 

UAS average 
versus OOW 

39.0% 32.3% 31.0% 24.1% 28.5% 9.3% 22.9% 14.6% 7.0% 3.6% 21.2% 27.4% 12.0% 

BOATSIDE 
versus OOW 

283.4% 228.9% 217.8% 182.3% 219.4% 81.8% 29.4% 33.1% 30.3% 37.9% 134.4% 02.2% 32.7% 
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Table 2.7.  Results of the ANOVA, Tukey HSD, and Tukey-Kruskal procedures to test for differences between group means by 
wavelength, index, and ratio. 

ANOVA results 
Band 490 nm 530 nm 550 nm 600 nm 680 nm 720 nm RE_BLUE NDVI NDAVI WAVI 
p-value 0.0009 0.0007 0.0006 0.0005 0.0016 0.0050 0.0005 0.0847 0.1180 0.1130 
F statistic F2,9=16.98 F2,9=18.22 F2,9=18.72 F2,9=19.82 F2,9=14.33 F2,9=10.12 F2,9=19.96 F2,9=3.289 F2,9=2.742 F2,9=2.805 
 *** *** *** *** ** ** ***    
  

Tukey HSD results 
Comparison p-adjusted          
LPR UAV vs. 
BOATSIDE 0.0007 0.0005 0.0005 0.0004 0.0013 0.0092 0.7808 NA NA NA 
OOW vs. 
BOATSIDE 0.1464 0.2707 0.3076 0.5607 0.4531 0.8180 0.0009 NA NA NA 
OOW vs. LPR UAS 0.1051 0.0440 0.0350 0.0146 0.0538 0.0153 0.0005 NA NA NA 
   

Tukey-Kruskal method results 
Comparison Reject Ho?          
LPR UAV vs. 
BOATSIDE Yes Yes Yes Yes Yes No No NA NA NA 
OOW vs. 
BOATSIDE No No No No No No No NA NA NA 
OOW vs. LPR UAS No No No No No No No NA NA NA 

Note: Bold = significant at adjusted p-value = 0.05. NA = Not applicable since ANOVA Ho not rejected 
* = significant at p = 0.05  
** = significant at p = 0.01  
*** = significant at p = 0.001 
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Figure 2.8.  Comparison of spectral profiles for June 2017 across three methods of 
sampling: (a) for the six tetracam bands and (b) for the ratio and indices. 

2.5.6 Research Directions 

Related research is underway to use the methods and results described here to develop an 
EWM mapping algorithm and apply it for mapping EWM extent for nearshore locations 
in the Laurentian Great Lakes region. The EWM algorithm combined with the UAS-
based platform is intended to provide a monitoring tool for evaluating the effectiveness of 
EWM treatment methods (such as herbicide spraying, mechanical harvesting, and 
biocontrol) and for investigating areas at risk of invasion or reoccurrence. 
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To move this research direction forward, a preliminary proof-of-concept example of 
mapping EWM from a UAS-collected image was completed, pending development of the 
spectrally-based EWM-specific algorithm. As noted above, with the UAS flights, 5 mp 
images were taken over the area, where the OceanOptics spectral data were being 
recorded to help record the footprint of the LPR sensor. Figure 2.9 shows one of those 
images analyzed using Trimble eCognition object- based image classification software 
(Trimble Inc., Sunnyvale, California), where EWM formed the dominant visible SAV. 
Images were location tagged using global position system data with height recorded, and 
based on the known sensor size, we could, therefore, appropriately scale the images in 
ESRI Desktop ArcGIS software, version 10.5.1. Using the visible RGB imagery data 
from the LPR system’s digital photos, it was possible to differentiate the image into 
water, shallower submerged EWM (dark green), deeper areas of SAV that were most 
likely EWM (grey) and water (blue), with some small surface floating non-EWM 
vegetation also identified. These results show promise for extending them to a larger 
mapping effort covering the Les Cheneaux Islands and similar areas, at least for where 
EWM is spectrally different than surrounding cover types. 

Another research direction is accounting for the impact of water characteristics on the 
identification of EWM versus other SAV species. As part of the larger project study, data 
on light conditions and water characteristics have been collected on the same days as the 
spectral profile data, generally within 2 h of the spectral collections. For mapping SAV, it 
is likely to be important to consider the impacts of the attenuating and backscattering 
features of water that reduce the strength of the plant species’ spectral signature versus 
standard terrestrial spectrometry. Nearshore “case 2” waters can be complex, with 
chlorophyll, color dissolved organic matter, and suspended minerals dominating the 
water color constituents (Morel and Prieur 1977, Shuchman et al. 2013b). These can 
cause significant attenuation of the remote sensing signal from underwater features. 
Understanding how water chemistry and light characteristics are affecting the vegetation 
signal reaching the remote sensors is an important consideration for SAV mapping 
research and will be addressed in the related research. 
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Figure 2.9. UAS-collected RGB image of predominantly EWM using an eCognition 
object-based classification into four class types. Area in red (at bottom) is enlarged in 
the top two images. Field images at the top left demonstrate that the EWM being 
mapped is submergent. 

2.6 Conclusion 

Detailed, multiscale spectral data provided the ability to understand whether and how 
EWM can be spectrally distinguished from other species. Spectral differences exist 
between EWM and other SAV species in certain datasets, but the number of bands and 
types of indices used is important. It appears likely that sky conditions are having impacts 
on at least some spectral profiles, but data were preserved for analysis to understand if 
EWM could be detected under a variety of conditions. Hyperspectral-level data, such as 
the 65 resampled 10-nm bands used here, showed that EWM can be separated from other 
species when using detailed spectral information. An analysis of six multispectral bands 
corresponding to those of a UAS-mountable multispectral camera plus ratio and 
vegetation indices showed that mNDVI was critical in being able to differentiate EWM 
from other SAV and bottom types. It is likely that mNDVI is sensitive to the denser 
biomass of EWM that can grow near the water’s surface, forming a canopy over-topping 
other vegetation types near the water’s surface (i.e., within ∼1 m). Because red-edge and 
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red light have limited but sufficient penetration in these shallow depths, mNDVI is able 
to discriminate EWM from non-EWM. mNDVI was part of the group of ratios, whose 
reflectance values did not differ significantly for EWM across the three data collection 
methods, indicating that it should be a useful scale-independent metric for identifying 
EWM. mNDVI and other metrics that include red and infrared wavelengths are likely to 
be key elements of a mapping algorithm used for monitoring the extent of EWM and 
changes in response to treatment efforts. Analyzing EWM spectral data at the OOW, 
boatside, and UAS scales showed a reduced strength of signal for the UAS results versus 
other methods, with OOW and boatside methods producing similar results. Using 
boatside sampling appears to provide the same value as removing the vegetation from the 
water and then creating spectral profiles. The mNDVI, mNDAVI, and mWAVI EWM 
spectral data were similar across data collection methods, meaning these may provide a 
scale-independent method of EWM spectral profiling and mapping that can be applied to 
UAS-based mapping and monitoring of invasive SAV. 

Data collected at the UAS scale can cover larger areas than boatside methods or taking 
vegetation out of the water to identify it for mapping. With sufficient spectral bands and 
use of mNDVI, UAS-based imagery data are likely to provide the needed mapping 
information for monitoring EWM over areas larger than individual treatment locations. 
For imaging of EWM sites, this can mean either flying relatively low (10 m) to provide 
single-species, high-resolution mapping capability. However, the weaker signal of the 
UAS-collected data means that if identifying the spectral profile of underwater vegetation 
is the most critical element, then the boatside scale is likely to be the most useful since it 
provides higher-resolution information with a reduced chance for multiple species 
forming a part of the spectral profile and image, particularly if only small areas need to 
be monitored. 
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3 Classification of Eurasian Watermilfoil (Myriophyllum 
spicatum) Using a Drone-enabled Multispectral 
Imagery Analysis  

3.1 Abstract 

Remote sensing approaches that could identify species of submerged aquatic vegetation 
(SAV) and measure their extent in lake littoral zones would greatly enhance their study 
and management, especially if they can provide faster or more accurate results than 
traditional field methods. Remote sensing with multispectral sensors can provide this 
capability, but SAV identification with this technology must address the challenges of 
light extinction in aquatic environments where chlorophyll, dissolved organic carbon, and 
suspended minerals can affect water clarity and the strength of the sensed light signal. 
Here, we present an unmanned aerial system (UAS)-enabled methodology to identify the 
extent of the invasive SAV species Myriophyllum spicatum (Eurasian watermilfoil, or 
EWM), primarily using a six-band Tetracam multispectral camera, flown over sites in the 
Les Cheneaux Islands area of northwestern Lake Huron, Michigan, USA. We analyzed 
water chemistry and light data, and found our sites clustered into darker and clearer water 
sites. Two different scale parameters in object-based image analysis were compared to 
understand if creating different sized segmentation polygons for these two types of sites 
could improve classification accuracy. Smaller and larger scale parameter classification 
were applied to imagery from 10 sites collected over three years, for 20 classifications 
total. The overall average accuracy achieved was 76.7%, with 78.7% producer’s and 
77.6% user’s accuracy for EWM. These accuracies were higher than previously reported 
from other studies that used remote sensing to map SAV.  Our study found that the two 
tested scale parameters did not make a significant difference to accuracies based on water 
clarity. The EWM classification methodology described here should be applicable to 
other SAV species, especially if they have growth patterns that lead to high amounts of 
biomass relative to other species in the upper water column, which can be detected with 
the type of red-edge and infrared sensors deployed for this study. 

3.2 Introduction 

The amount of light penetration into a lake’s water column is a controlling factor for the 
species that exist in particular areas and helps to define the littoral zone where submerged 
aquatic vegetation (SAV) can grow.  Some invasive species of SAV have an 
advantageous ability to grow in littoral zones with lower light penetration than many 
native species (Valley and Newman 1998). Therefore, being able to reliably identify SAV 
to species or taxon in areas with higher extinction coefficients could help with 
understanding the extent of non-native invaders. The extinction coefficient of light in 
water is impacted by three main color-producing agents (CPAs): chlorophyll (CHL), 
suspended minerals (SM), and the colored dissolved organic matter (CDOM) component 
of dissolved organic carbon (DOC) (Shuchman et al. 2013). Because of these CPAs, 
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inland waters can be highly optically complex (Palmer et al. 2015), and CPA 
concentrations can change significantly over relatively short time intervals (Brezonik et 
al. 2015). 

Being able to remotely identify individual species or taxa of non-native aquatic plants 
and map their extent would be useful to their management. Identifying to vegetation class 
or dominant vegetation group may also be useful. Management of SAV is common 
because of verified and perceived negative impacts. For example, invasive plants that 
grow as SAV can have significant impacts in aquatic systems, such as reduced dissolved 
oxygen levels, greater presence of non-native fishes, reduced plant species richness, 
reduced forage value for waterfowl and macroinvertebrates, reduced human use of littoral 
zones, and negative influence on zooplankton abundance (Kuehne et al. 2016, Gallardo et 
al. 2016, Aloo et al. 2013, Trebitz and Taylor 2007). However, in some cases, total 
species diversity may not be lower in invaded aquatic plant communities (Gallardo et al. 
2016), the overall productivity can be the same (Van Goethem et al. 2020), and invasive 
aquatic plants may provide their own level of beneficial ecosystem services (Hershner 
and Havens 2008). Therefore, understanding the identity and distribution of species of 
SAV in lake littoral zones is an important challenge that could be addressed using remote 
sensing, but addressing this challenge will depend on our ability to remotely identify 
SAV in the optically complex waters characteristic of lake littoral zones. We expect that 
SAV will be harder to identify in areas affected by one or more CPAs, reducing light 
transmission, than in areas that have relatively clearer water. For example, in areas with a 
local tributary contribution of DOC, it may be more difficult to identify where SAV is 
located than in areas without sources contributing this CPA component.  

To address this possibility, we have continued work initially documented in Brooks et al. 
2019 to identify the extent of the invasive non-native submerged aquatic plant 
Myriophyllum spicatum (Eurasian watermilfoil or EWM) in a part of the Laurentian 
Great Lakes. EWM has been shown to reduce native species abundance (Boylen et al. 
1999, Madsen et al. 1991) and suppress native plants (Madsen 2005), lower lakeshore 
property values through interference with boating recreation (Zhang and Boyle 2010), 
impact swimming recreation (Madsen 2005), and it can increase P loads during 
decomposing after herbicide application (Nichols and Keeney 1973).  EWM was known 
to be present in the Laurentian Great Lakes by the early 1950s (Mills 1994), and it grows 
most abundantly in one to four meters of water (Smith and Barko 1990).  

Based on fieldwork observations, we expected that at least two types of sites might exist 
in our study area: sites with relatively clear waters and lower levels of CPAs that reduce 
light penetration, and sites with relatively darker (more turbid) waters and higher levels 
of CPAs that lead to greater light absorption and scattering. We hypothesized that an 
EWM identification methodology developed for areas with a higher light extinction 
coefficient will work better (be more accurate) in darker waters than in clearer waters, 
and that an EWM identification methodology developed for areas with a lower light 
extinction coefficient will work better (be more accurate) in clearer waters than in darker 
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waters. In this paper, we explored whether different image analysis parameters might lead 
to higher classification accuracy depending on site type. 

This led to the development of a testable hypothesis for this research: 

• HO: The clear water classification methodology produces the same accuracy result 
for clear water as it does for dark water; the dark water classification 
methodology produces the same accuracy for dark water as it does for clear water 

• HA: These methodologies do not produce the same accuracy results. 

This hypothesis can be diagrammed as follows (Table 3.1) if HO can be rejected and 
accuracies are higher when classification and water type match. 

Table 3.1. Diagram of hypothesis prediction if Ho is rejected and the clear and dark water 
algorithms produce higher accuracies for their own water types.  

  Classification type 
  Clear Dark 

Water type Clear Higher Lower 
 Dark Lower Higher 
  (Accuracy results) 

Also potentially important to EWM identification is how well mixed it is with other SAV 
species. The presence vs. absence of EWM, such as EWM vs. open water, is likely to be 
relatively simple to differentiate. However, when EWM is mixed in with several other 
species that may appear similar to the naked eye in visible light, it is likely to be more 
difficult to separate using readily available natural color (red/green/blue or RGB) 
cameras or those with a relatively small number of multispectral bands. In Brooks et al. 
(2019), we demonstrated that spectral profiles of submerged aquatic vegetation (SAV) 
can be used to identify EWM when using certain indices and bands. A modified 
Normalized Difference Vegetation Index (mNDVI, which used a ratio of red edge 
wavelength light to near-infrared light) was significantly different for EWM vs. other 
submerged aquatic vegetation, providing a potential means of identifying EWM with 
high-resolution remote sensing data. Averaging spectral data to 65 10-nm wide bands, 
similar to available hyperspectral systems, provided an ability to differentiate EWM from 
other species of SAV, whereas using only six to eight bands only worked occasionally. 
Moving from analyzing spectral profiles to imaging EWM and other SAV in the field is 
the next step in a process for using remote sensing as a practical tool in invasive SAV 
management.  

This paper focuses on deployment of multispectral cameras from an unmanned aerial 
system (UAS or “drone”) platform to enable rapid, timely imaging of EWM to identify 
its extent in littoral zones. We sought to understand the accuracy of our EWM mapping 
using multispectral UAS imagery methodology. The paper includes analysis of whether 
accounting for water clarity can improve the mapping of SAV, with a focus on EWM 
extent. 
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3.3 Methods 

3.3.1 Collection Sites and UAS-based Sensors Deployed for the 
Project 

We collected data on water color and vegetation characteristics at several sites in the Les 
Cheneaux Islands area of northwest Lake Huron (Michigan, USA) (Figure 3.1). 

 
Figure 3.1. The Les Cheneaux Islands area in northwest Lake Huron, with data collection 
sites. 

We sampled 11 sites in the Les Cheneaux Islands over six trips in 2016–2018; the 
sampling months and the sensor we were able to deploy on each sampling occasion are 
shown in Table 3.2. Three RGB-only camera systems were deployed via UAS, primarily 
to provide basemaps of the sites; these cameras were a Nikon D810 36mp camera flown 
onboard a Bergen hexacopter, the 12mp camera of a Phantom 3 Advanced (3A) UAS, 
and the 12mp camera of a Mavic Pro UAS. The U.S.-made Bergen hexacopter is a larger 
system that can carry payloads up to 5 kg for up to 15 minutes of flight (Figure 3.2). The 
Phantom 3 Advanced and Mavic Pro UAS are made by DJI and are designed to easily 
obtain RGB aerial photos, but not are not intended to carry additional payloads. 



Figure 3.2. The Bergen hexacopter UAS platform being deployed to collect aerial 
imagery for EWM identification in June 2017 at the Neil site in Hessel, MI. 

The six-band Tetracam Micro-MCA (Tetracam Inc.) described in Brooks et al. 2019 was 
deployed onboard the Bergen hexacopter when available to evaluate whether its 
multispectral capabilities could help distinguish EWM from other aquatic cover types. 
The VISNIR system that used a 16mp RGB Canon camera and a near-infrared-sensitive 
Canon camera was deployed on occasion using the Bergen hexacopter as a less costly 
potential alternative to the Tetracam for EWM identification purposes. The Bergen 
hexacopter was used to deploy the Nikon RGB, Tetracam multispectral, or VISNIR 
system one at a time. The RGB basemaps were also used to provide georeferencing of the 
Tetracam images, as that sensor did not have a built-in global navigation satellite system 
(GNSS). For multispectral imagery in 2016, we mostly flew at heights of around 10–15 
m, which produced images covering approximately a 3x3 m area, whereas we flew at 
heights of about 25–30 m to cover larger areas in each image for 2017 and 2018. After 
our first year of data collection, we decided that being able to cover larger areas was 
worth the trade-off of producing lower-resolution imagery when flying higher. 
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Table 3.2: Collection sites and sensors deployed by date in the Les Cheneaux Islands 
from 2016-2018. 

Collection 
Sites 

July  
2016 

August 
2016 

June  
2017 

July  
2017 

August 
2017 

August 
2018 

Breezeswept 
North     P3A 

D810/P3A/ 
TCAM/ 
VISNIR P3A/TCAM Mavic 

Court Dock D810/P3A 
D810/ 
TCAM 

P3A/ 
VISNIR 

D810/P3A/ 
VISNIR P3A Mavic 

Court East D810/P3A 
D810/ 
TCAM 

D810/P3A/ 
VISNIR 

D810/P3A/ 
TCAM/ 
VISNIR  P3A/TCAM 

Mavic/ 
VISNIR 

Court West P3A   
D810/P3A/ 
VISNIR P3A Mavic 

CRAMP P3A  P3A 
P3A/ 
VISNIR P3A 

Mavic/ 
TCAM/ 
VISNIR 

FDS D810/P3A 
D810/ 
TCAM 

D810/Mavic/
P3A/VISNI
R 

P3A 
/TCAM/ 
VISNIR P3A/TCAM Mavic 

Chappell   
D810/P3A/ 
VISNIR  P3A   

Hessel 
Marina   

P3A/ 
VISNIR 

D810/P3A/ 
TCAM/ 
VISNIR 

D810/P3A/ 
TCAM Mavic 

Neil   
D810/P3A/ 
VISNIR 

D810/P3A/ 
TCAM/ 
VISNIR 

D810/P3A/ 
TCAM Mavic 

Howells 
Dock  

D810/P3A/ 
TCAM 

D810/P3A/ 
VISNIR  

D810/P3A/ 
TCAM 

Mavic/ 
TCAM/ 
VISNIR 

Urie Point           
Mavic/ 
VISNIR 

Sensors: D810 = Nikon D810 RGB, P3A = Phantom 3 Advanced RGB, TCAM = 
Tetracam, VISNIR = Visible + Near-Infrared dual Canon, Mavic = Mavic Pro RGB 

Figure 3.3 shows an example of three sources of RGB imagery, from the Mavic Pro at 
Hessel Marina (a), the Canon RGB camera at Howells Dock (b) and the Nikon D810 
36mp RGB camera, also for Howells Dock.  
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Figure 3.3. Examples of natural color RGB UAS imagery: a) Hessel Marina from a 
12mp Mavic Pro camera, b) Howells Dock from a 16mp Canon camera (this provided the 
natural color part of the VISNIR system), and c) Howells Dock from a 36mp Nikon D810 
camera. 

Tetracam imagery consisted of six spectral bands collected at 490 (blue), 530 (green), 
550 (upper range of green), 600 (orange), 680 (red), and 720 nm (red edge), with the 
modified mNDVI calculated from the red-edge and red bands as described in Brooks et 
al. 2019. An example of the Tetracam data collected at the Hessel Marina site in July, 
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2017 is shown below in Figure 3.4, overlaid on a RGB image taken the same day with a 
Phantom 3A. The Tetracam imagery is shown in color infrared (CIR), with bands 6 
(720nm), 5 (680nm), and 2 (530 nm) displayed in the red, green, and blue channels, 
respectively. Two different views of the VISNIR data are shown in Figure 3.5, with the 
left figure (a) showing RGB imagery and the right figure (b) showing the near-infrared 
image, with vegetation showing as shades of the more prominent pink color. 

 

 
Figure 3.4. Two Tetracam images (center, shown in color infrared) from July 2017, 
displayed over a RGB composite Phantom 3A image for the Hessel Marina site taken on 
the same day; green pentagons indicate field sampling sites. 
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Figure 3.5. VISNIR imagery for the Court East site in June 2017, with RGB imagery 
shown at left (A) and near-infrared imagery shown at right (B). 

3.3.2 Water Chemistry Data and Analysis Methods 

At each site during each visit, we collected a set of standard water chemistry and light 
data to help quantify the CPA values at each site and characterize the sites as having 
darker or clearer waters. Primary data collected included the following: 

• Chlorophyll-a concentrations, in mg/m3  
• Light intensity, used to calculate extinction coefficient Kd(PAR) (or k for short) 
• Secchi disk transparency, in meters (along with depth to bottom) 
• Total suspended solids (TSS), in mg/L 
• Dissolved organic carbon (DOC) concentration, in mg/L 

The method we used for calculating chlorophyll data was based on standard methods 
(APHA 2005), including collecting water into 1-L plastic bottles and storing samples on 
ice until returning to the lab within eight hours. Water was filtered through 47-mm-
diameter 0.7-µm glass fiber filters, with filters wrapped in aluminum foil and frozen at -
20°C until analysis within a month. Chl-a filters were extracted in 95% ethanol and 
analyzed spectrophotometrically following APHA method 10200H.2.b/EPA method 
446.0, with calculations following Nusch 1980.  
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To calculate the extinction coefficient of photosynthetically active radiation Kd(PAR), 
we used a Li-Cor LI-193 SA spherical underwater quantum sensor with a LI-1400 
datalogger (LI-COR, Inc., Lincoln, NE, USA), with light intensity values recorded above 
the surface, immediately below the surface, and every 0.5 m until the bottom was 
reached, with the bottom depth also being recorded (Wetzel and Likens 2013). The log-
transformed light intensity values were then fit to a regression line, with the negative 
slope of the line being the extinction coefficient. We also recorded Secchi disk 
transparency depth at each site.  

For TSS, we used APHA method 2540B (APHA 2005) to calculate the mass of total 
suspended solids (TSS) in mg/L. Water was collected into 1-L plastic bottles and stored 
on ice until returning to the lab within eight hours. A well-mixed, measured volume of a 
water sample, typically 750–1000 mL, was filtered through a pre-weighed 47-mm-
diameter 0.7-µm glass fiber filter. The filter was heated to constant mass at 104 ± 1º C 
and then weighed. The mass of material captured on the filter divided by the water 
volume filtered is equal to the TSS. 

For DOC, we collected water samples in 60-mL Nalgene bottles. Samples were filtered 
through 0.45-μm membrane filters and frozen at -20°C until analysis. DOC samples were 
acidified with hydrochloric acid and quantified using a Shimadzu TOC-VCSN (Shimadzu 
Scientific Instruments, Columbia, Maryland). 

3.3.3 Site Type Analysis 

We organized data by site and by date, and then averaged values by site to help 
understand whether the sites could be clustered into types based on their color producing 
agents (represented by TSS, Chl-a, and DOC), with water clarity estimated by the 
extinction coefficient Kd(PAR). Table 3.3 shows the average data, and the data for each 
individual site by date are included in the supplementary appendix materials. We used the 
R cluster package for computing hierarchical clustering (Maechler et al. 2019) and the 
factoextra package for visualizing the results (Kassambara and Mundt 2007), all in R 
version 3.6.0 (R Core Team 2019). To investigate the optimal number of clusters, we 
performed k-means clustering on the site-averaged data initially using 2, 3, 4, and 5 
clusters to help understand potential site clusters present in the data. We used the gap 
statistic method to estimate the optimal number of clusters using the fviz_nbclust 
function available in the factoextra package. We used the ward.D2 method to compute 
hierarchical clustering using a Euclidean dissimilarity matrix. The fviz_dend function 
was used to create a dendrogram to visualize the results of the cluster analysis. 
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Table 3.3. Water chemistry and light data summarized by site 

Collection 
Sites Region 

TSS 
(g/L) 

TSS 
S.D. 

Chl-a 
(mg/m^3) 

Chl-a 
S.D. 

DOC 
mgC/
L 

DOC 
S.D. 

k ext. 
coeff. 
(m-1) k S.D. 

Breezeswept 
South 

Les Cheneaux 
Islands 0.0056 0.0036 2.516 0.628 6.996 1.258 1.5587 0.1533 

Breezeswept 
North 

Les Cheneaux 
Islands 0.0024 0.0000 1.332 0.209 8.017 0.928 0.9221 0.1507 

Court Dock 
Les Cheneaux 
Islands 0.0183   0.888   5.359 1.483 2.1960 0.4806 

Court East 
Les Cheneaux 
Islands 0.0036 0.0034 1.110 1.064 10.249 4.239 1.6186 0.5407 

Court West 
Les Cheneaux 
Islands 0.0015 0.0013 0.740 0.209 12.730 3.917 1.8877 0.4759 

CRAMP 
Les Cheneaux 
Islands 0.0072   4.973   5.059   1.2256   

FDS 
Les Cheneaux 
Islands 0.0011 0.0027 1.480 1.356 5.174 2.059 1.3115 0.5561 

Chappell 
Les Cheneaux 
Islands 0.0075 0.0098 0.148 0.209 2.906 1.032 0.5010 0.0778 

Hessel 
Marina 

Les Cheneaux 
Islands 0.0005 0.0014 0.863   2.875 0.569 0.6194 0.5867 

Neil 
Les Cheneaux 
Islands 0.0012 0.0010 0.656 0.438 2.568 0.362 0.5277 0.0878 

Howells 
Dock 

Les Cheneaux 
Islands 0.0032 0.0036 1.235 1.113 3.015 0.460 0.7424 0.0470 

Urie Point 
Les Cheneaux 
Islands 0.0011   1.733   2.710   0.4396   

3.3.4 Vegetation Data and Analysis Methods 

Field sampling of vegetation type and density was completed through visual estimates, 
rake tosses, and rake twists, with results recorded on standardized field sheets. Visual 
estimate methods and percent vegetation by sampling location were described in Brooks 
et al. 2019 and based on the Michigan Department of Environmental Quality guidance of 
2005 (MDEQ 2005). Visual estimates were made by an experienced aquatic vegetation 
expert at the same locations used to create the spectral profiles analyzed for Brooks et al. 
2019, representing an approximately 3-m radius. In 2016, visual estimates were made in 
approximately the center of each sampling site and recorded on a field data sheet, and 
location coordinates were recorded with a Trimble GeoExplorer GPS with sub-meter 
accuracy. In 2017 and 2018, three marker buoys were placed in the water around each 
site and three visual estimates were made per buoy in different directions, with locations 
recorded with the same Trimble GPS and visual estimate data recorded on field sheets. 
These field sheets were later transferred into a project spreadsheet that documented all 
three years of field survey vegetation and water sampling data. These data formed the 
primary source of information for classifying the multispectral UAS-collected images and 
in assessing accuracy of the classification results. 

Rake twists provided a more benthic-oriented sampling of vegetation types than rake 
tosses. For rake tosses, a rake end was tied to a rope, thrown approximately 10 m and 
dragged back towards the boat, as shown in Figs. 3.6(a) and 3.6(b). Rake fullness was 



 

57 

scored on a four-point scale (1, 2, 3, or 4 = found, sparse, common, dense) based on a 
visual estimation, and vegetation types were recorded by approximate predominance. 
With rake twists, a rake end mounted on a two-meter pole was thrust downwards into the 
water immediately off the side of the research vessel (Figure 3.7) (Johnson and Newman 
2011). Vegetation caught in the rake was deposited in buckets for sorting and 
identification, including predominance on a five-point scale. The macrophytes from each 
twist rake sample were separated and identified to species using Fasset et al. 2006 and 
Skawinski 2014. Species of Chara and Elodea were identified to genus. EWM and hybrid 
EWM (M. spicatum x sibiricum) were grouped together, as they are not distinguishable in 
the field and are difficult to separate (Parkinson et al. 2011). The samples were dried for 
48 h at 60°C to determine dry weight (see Van Goethem et al. 2020 for additional detail). 

Photographs of sampling sites were taken with a rugged, waterproof GPS-enabled 
camera. Photos were generally taken both above and below water to help capture the 
appearance of SAV and provide supplementary information on species identification. 

 
Figure 3.6.  Rake toss in action and example results from an area with less dense SAV 
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Figure 3.7.  Rake twist sample immediately after retrieval from the water from an area 
with dense SAV, undergoing visual estimation of density. 

3.3.5 Spectral data 

Collection and analysis of spectral data at the project sites is described in Brooks et al. 
2019. That study found that a modified Normalized Difference Vegetation Index 
(mNDVI) using red-edge and red bands was significantly different among dominant 
vegetation groups using our 2016 and 2017 spectral data, with no difference among 
months of data collection and no significant interaction between collection month and 
dominant vegetation group. It appeared that mNDVI was detecting different amounts of 
SAV biomass, even given the limited water penetration of the red-edge (720 nm) band. 
mNDVI also appeared to be scale-independent and more appropriate for identifying 
EWM than other species of SAV. Using the six spectral bands alone rarely resulted in 
EWM being identified separately from other vegetation. However, using field 
spectrometer data averaged to 65 10-nm bands, representative of hyperspectral data, did 
show reliable separability of EWM from the spectral profiles of eight other vegetation 
types. As noted in the sensor descriptions, the available multispectral systems included 
either six bands for Tetracam that could be used to calculate mNDVI or four bands for 
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VISNIR that could be used to calculate standard NDVI. All of these bands were included 
for image classification in case some bands in addition to mNDVI or NDVI could help 
provide differentiation for individual sites, if not consistently. 

3.3.6 Imagery Analysis and Classification 

To create geospatial output layers of EWM location and extent, we used the object-based 
image analysis (OBIA) software eCognition Developer, version 9 (Trimble Germany 
2017). Recent work, particularly by Visser et al. (2013, 2018), has shown promise in 
applying eCognition’s OBIA capabilities to mapping submerged aquatic vegetation, 
including EWM, in at least a riverine environment. These studies note how impacts of the 
water column appear to limit SAV species discrimination, but that the shape and texture 
variables calculated by eCognition show greater ability in helping differentiate species.  

We used eCognition Developer’s multiresolution segmentation classification routine, 
with mean brightness, means of each band, and mean max difference as the classification 
features. Based on initial visual assessment of image segmentation, we modified the scale 
parameter to develop segmentation objects (polygons) that appeared to capture the extent 
of submerged aquatic vegetation patches without the polygons being mixed with 
dissimilar appearing areas. Scale parameter is a user-specified threshold in eCognition 
where a higher value results in a smaller number of larger segments; smaller values result 
in smaller, more fine-scale segments. We primarily focused on two scale parameters, one 
larger and one smaller, to test whether the scale parameter could be optimized for 
accuracy based on water characteristics. Based on these investigations, a scale parameter 
of 25 appeared to capture the extent of SAV well for clear water sites, while a larger scale 
parameter of 50 appeared best at this for representing SAV extent for dark water sites.  

We explored whether different segmentation parameters might lead to higher 
classification accuracy depending on site type. After developing classification schemes 
that appeared more appropriate for clear and dark water sites, we then also applied the 
classification scheme to the opposite water type. Visual interpretation of classification 
results was used, informed by field data including estimation of vegetation species 
present and their extent, with rake toss and rake twist data also helping to verify visual 
estimate results. We followed the accuracy assessment methods of Congalton and Green 
(2019), including selecting their recommended number of assessment points per 
classification type and randomly locating those points within each class (such as EWM, 
open water, etc.) using ESRI ArcMap. Any segmentation polygons used for classification 
training were not used for accuracy assessment. 

For each randomly located point in the accuracy assessment, the classifier’s identification 
for the point was compared to what the field team identified the point as in the vegetation 
surveys, primarily using the visual estimate data since that represented the uppermost 
layer of vegetation, which was similar to what the UAS imagery was capturing.  UAS 
RGB orthoimagery, the multispectral imagery used for classification, and location-tagged 
photos were also used to determine classification accuracy. 
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The number of sampling points for the accuracy assessment of classification results was 
determined using the multinomial distribution in the equation shown below (Toratora, 
1978).  In the equation, n is equivalent to the number of recommended samples. 

 n=BΠi(1-Πi)/bi2 (3.1) 

For our assessment, we had a desired confidence level of 85% and a desired precision of 
15% (represented as b in above equation). The Chi-squared(χ2) inverse of right tailed 
probability represented as B, is calculated with (𝜶𝜶/k)=probability, assuming 1 degree of 
freedom.  In this case, 𝜶𝜶 is equivalent to desired precision, k is equivalent to the number 
of classes at each site and Πi is equivalent to the percent cover of each class (Toratora, 
1978; Congalton and Green, 2019). This tends to lead to more common classes (larger 
total area within an image classification) getting more sampling points, and less common 
classes getting fewer sampling points. 

After determining the values of n for all classes within a study site, the largest of those 
values was then chosen as the required number of samples for that site.  From there, the 
total recommended number of samples was next distributed among all classes by 
multiplying the recommended number of samples by the percent cover of each class.  
Sample counts were then rounded to the nearest whole number.  Based on the sample 
counts, the specified number of sample points was then generated within each class. 

Once points are selected and all classifications have been standardized, the error 
assessment of each site is begun and an error matrix is created.  Each matrix contains 
reference data along the horizontal axis and classified data along the vertical axis 
(Congalton and Green, 2019).  Once complete, an overall accuracy is computed by 
summing the diagonal elements of the matrix and then dividing that sum by the totals for 
each row.  In addition to overall accuracy, the producer's and user’s accuracy were 
calculated for EWM. This determines accuracy on a class by class basis. We report the 
overall accuracy, and the user’s and producer’s accuracy for EWM. The producer’s 
accuracy is a measure of omission error, calculated by dividing the number of correct 
pixels (or points) divided by the total number of pixels (or points) derived from ground-
truth reference data (Congalton 1991). It helps tell the creator (producer) of the map how 
well a class has been mapped. The user’s accuracy helps describe the probability that a 
point on the map is classified correctly, and is calculated by dividing the total number of 
pixels (or points) for a class by the total number of pixels or points that were mapped in 
that class. It represents how well the classification results for each class represent what is 
actually present in the mapping area (Banko 1998). 

To help understand whether the accuracy of EWM discrimination was dependent on the 
area of EWM present at a site, the total numbers of classification points used for accuracy 
assessment (as recommended by the Congalton and Green method) are included in our 
results. Error matrices were calculated for all classifications following Congalton 1991. 
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Applying the two sets of classification parameters (developed for the clear and dark water 
sites) yielded two accuracy assessments per classification mapping result. To test the 
hypothesis that classification accuracy was affected by scale parameter, we applied a 
two-way ANOVA mixed model in JMP version 14.0.0 (SAS Institute Inc., Cary, North 
Carolina, USA), with fixed model effects, Scale and Site_type and the interaction 
Scale*Site_type, as well as a random factor for sampling site and date. Significance for 
all fixed factors was considered at p = 0.05. Scale represented whether the accuracy result 
was based on using the smaller or larger eCognition scale parameter parameter (i.e., 25 or 
50 as described above). Site_type was determined from the cluster analysis based on CPA 
at each site as described above. The two-way ANOVA was run for three different 
response variables: overall accuracy, EWM producer’s accuracy, and EWM user’s 
accuracy using all classification accuracy results, to evaluate whether scale or site type 
might differ for one or more of these accuracy calculations. 

3.4 Results 

3.4.1 Types of Sites 

The TSS values were very low at all sampling sites (see Table 3.3), with values in the 
range of 0.0011 to 0.0183 g/L (1.1 to 18.3 mg/L). Chl-a values were characteristic of 
oligotrophic conditions (defined as < 2.5 mg/m3, see Istvánovics 2010), with only single 
samples at Breezeswept South, Court East, CRAMP, and Howells Dock above 2.5 
mg/m3. DOC values were relatively high, with the highest values occurring at the sites 
near Cedarville (averaging 5.06 to 12.73 mg C/L) where a stream (Pearson Creek) 
empties into Cedarville Bay. Other sites, which do not have a stream near them, had 
values in the range of 2.57 to 3.02 mg C/L. Reflecting these inputs, the extinction 
coefficient values were highest, indicating the lowest water clarity, for the Cedarville area 
sites of Breezeswept North, Court Dock, Court East, Court West, CRAMP, and FDS 
(0.92 to 2.20 /m) but lower for the other sites of Chappell, Hessel Marina, Neil, Howells 
Dock, and Urie Point (0.50 to 0.74 /m). 

Figure 3.8 shows the results of the five-group dendrogram analysis. The five sites in the 
first dendrogram branch (Chappell, Hessel Marina, Neil, Howells Dock, and Urie Point) 
are the same ones that are not near a stream source and that we labeled as our “clear 
water” sites; the remaining sites in the second branch (Court Dock, CRAMP, Court East, 
Court West, Breezeswept South, Breezeswept North, and FDS) are all close to Pearson 
Creek with its relatively high DOC waters and were labeled as our “dark water” sites. 
The dendrogram analysis shows that the sites with higher average DOC (higher light 
extinction coefficient) can be differentiated into different clusters, but all within the same 
branch. All sites in the clearer water cluster had k values of below 0.8 m-1 while all sites 
in the darker water cluster had k values of above 0.9 m-1. 
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Figure 3.8. Dendrogram results for site clustering; sites with a lower extinction 
coefficient have clustered on the left (in light blue) while darker water sites form multiple 
clusters but all within the second branch. 

3.4.2 Classification Results 

We had sufficient project resources and usable multispectral imagery to create 
classification mapping results for five sites with varying numbers of dates: Breezeswept 
North (for one date, July 2017), Court East (three dates: August 2016, June 2017, and 
July 2017), Hessel Marina (one date: July 2017), Howells Dock (three dates: August 
2016, August 2017, and August 2018), and Neil (one date: July 2017). The August 2017 
Howells Dock classification work was completed using two images that were classified 
separately to try and produce more accurate results. When they were initially analyzed 
together, spectral differences for the same species between images made accurate 
classification difficult. As noted, every site was classified using both the “dark water” 
and “clear water” eCognition scale parameters (clear = 25 and dark = 50), resulting in at 
least two results per analyzed site (summarized in Table 3.4).  

3.4.2.1 Breezeswept North 

Figure 3.9 shows the analyzed Tetracam imagery for Breezeswept North with a CIR band 
combination in July 2017 (9A) and the classification results with scale parameter = 25 
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(9B), and with scale parameter = 50 (9C); a Nikon D800 RGB image collected via 
Bergen Hexacopter forms the background. Breezeswept North has relatively higher DOC 
and Kd(PAR) extinction values and therefore is in the darker water cluster grouping. 

  
Figure 3.9. Tetracam multispectral image of Breezeswept North using color-infrared 
bands (A) and classification results with scale parameter = 25 (B), and with scale 
parameter = 50 (C). 

Visual estimates indicated that three SAV species were prominent at Breezeswept North 
based on four survey points in or near the Tetracam image area: EWM, Elodea 
canadensis (Canadian waterweed), and Potamogeton zosteriformis (flat-stem pondweed). 
The canopies of EWM and flat-stem pondweed were 0.5 m or less from the water 
surface, while the tallest Elodea was 0.5 to 0.75 m below the surface. Figure 3.10A 
shows EWM and flat-stem pondweed close to the water’s surface at the site, and 3.10B 
shows mostly flat-stem pondweed beneath the water’s surface. 3.10C shows an overview 
RGB image of the site (taken with the RGB VISNIR camera), and 3.10D shows the 
mostly sunny conditions on the day of the data collection, which supported greater water 
penetration by the available sunlight. The densest areas of SAV appear as the brightest 
red color in Figure 3.9A, just north and northeast of the boat; these areas were mostly 
Elodea just north of the boat but flat-stem pondweed northeast of the boat. EWM was 
sparser than either of these species and mostly occurred in the northern part of the image, 
but was a smaller component than Elodea, which is reflected in the classification results. 
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The major visible difference in the classification results using the two scales was that flat-
stem pondweed formed a larger part of the result with the larger scale parameter. The 
extent of EWM appears similar with both scale results. 

 
Figure 3.10. Field photos helping to document conditions at Breezeswept North on the 
day of data collection in July 2017, including documentation of EWM and flat-stem 
pondweed near the water’s surface (a), flat-stem pondweed as seen underwater (b), an 
overview RGB image of the site (c), and mostly sunny sky conditions on the day of the 
data collection (d). 

3.4.2.2 Court East 

Figure 3.11 shows the analyzed Tetracam imagery for the Court East site in August 2016 
(3.11A) and the classification results with scale parameter = 25 (11B), and with scale 
parameter = 50 (3.11C); a Nikon D800 RGB image collected via Bergen Hexacopter 
forms the background. Court East is in the dark water cluster grouping, close to the 
mouth of Pearson Creek.  
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Figure 3.11. Tetracam multispectral image of Court East from August 2016 using color-
infrared bands (A) and classification results with scale parameter = 25 (B) and scale 
parameter = 50 (C). 

With 2016 flights mostly taking place at lower elevations than in later years, the August 
2016 Court East classifications in Figure 3.11 cover a relatively small area of 
approximately 3x3 m (in contrast, the single Breezeswept North image in 3.9A from a 
higher flight elevation covers an area of approximately 15x15 m). Visual surveys 
indicated that the surface vegetation showing as the brightest red towards the top right in 
the NIR view (3.11A) was Nuphar variegata (spatterdock or bullhead pond lily) and the 
underwater vegetation was EWM. The field photograph taken on the same survey day in 
2016 in Figure 3.12A helps verify this, and also the presence of an area of detached 
surface vegetation with EWM visible underwater that was able to be classified. Figure 
3.12B shows an underwater photograph taken at this site, showing EWM with visible 
periphytic algae. This EWM shows up as dark red areas underwater in the color-infrared 
display in 3.11A due to sufficient penetration by the red edge band (720 nm) of the 
Tetracam into the water column. 
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Figure 3.12. Field photographs showing much of the Court East August 2016 
classification area on the same day as UAS imagery was collected, including (a) the 
presence of spatterdock and some loose surface vegetation at the surface near the 
spatterdock and (b) EWM underwater. 

Figure 3.13 shows the analyzed Tetracam imagery for the Court East site in June 2017 
(3.13A) and the classification results with scale parameter = 25 (3.13B) and scale 
parameter = 50 (3.13C); a Phantom 3A RGB composite image forms the background. 

 
Figure 3.13. VISNIR multispectral image from June 2017 for Court East using color-
infrared bands (A) and classification results with scale parameter = 25 (B) and scale 
parameter = 50 (C). 
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At the Court East site in June of 2017, field surveys showed that visible vegetation was 
primarily EWM near the sampling buoys, with some areas of Potamogeton pusillus ssp. 
pusillus (small or small-leaf pondweed), shown out of the water in Figure 3.14D, and 
Elodea. During this visit, Elodea was mostly beneath the water’s surface, while the top of 
the EWM canopy was at the surface (but not emergent) (Figures 3.14A and 3.14B). 
Floating spatterdock leaves were distinctly visible, as were areas of detached, floating 
surface vegetation (3.14C). We thought it could be possible to differentiate the EWM 
visible at the surface from small pondweed and selected areas for use in classification that 
were dominated by those two vegetation types based on the visual estimates that took 
place near the three sampling buoys deployed here. The dense EWM shows up 
prominently in the near-infrared VISNIR imagery (Figure 3.13A), but training sites for 
small pondweed were harder to reliably select because the areas were not extensive, and 
it appeared mostly near the detached surface vegetation in classification results (Figures 
3.13B and 3.13C). The scale parameter = 25 results (designed for clearer waters) and the 
scale parameter = 50 results (designed for the darker waters, such as this site) appear 
different, with small pondweed more extensive with the smaller scale parameter and 
EWM more extensive with the larger scale parameter. Detached surface vegetation 
appears similar in both results. 

 
Figure 3.14. Field photos taken at Court East on the July 2017 survey day, showing a 
mixture of EWM and Elodea beneath the water surface (A), dense EWM at the water 
surface (B), detached areas of vegetation to the right of the survey vessel with two 
sampling buoy locations visible in the background (C), and small pondweed removed 
from the water (D). 

Court East in July 2017 was one of the sites we used when initially testing different scale 
parameters. Figure 3.15 adds a classification result with a very small scale parameter of 5 
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(Fig. 3.15A), zoomed in to the northeast corner of the area shown in Figure 13. The three 
different scale parameters (5 vs. 25 vs. 50) create classification results with different 
appearances. The smallest scale parameter allows for more finely divided vegetation 
polygons and the ability to include a spatterdock class that we were not able to capture 
with training areas at the two larger scale parameters. Small pondweed appears less 
extensive with the smallest scale parameter but more extensive with the scale parameter 
of 25. 

 
Figure 3.15. Comparison of June 2017 VISNIR classification results for the northeastern 
corner of the analyzed image, with scale parameter = 5 (A), 25 (B), and 50 (C). 



 

69 

 
Figure 3.16. Tetracam multispectral image from July 2017 for Court East using color-
infrared bands (A) and classification results with scale parameter = 25 (B) and scale 
parameter = 50 (C). 

Our visit to Court East in July 2017 occurred soon after an aquatic vegetation harvester 
had been deployed by local marinas to control nuisance growth, leaving behind 
significant areas of detached surface vegetation. These show up as the brighter white 
areas in the Tetracam CIR image (Fig. 3.16A), so we created a separate vegetation class 
for this cover type. Visual estimates for the area around a sampling buoy in the southwest 
corner showed a dominance of Elodea with EWM also being prominent. Underwater 
photos such as Fig. 3.17 showed EWM and Elodea closely mixed together, and 
inspection of the Tetracam imagery did not show any obvious difference between the 
two. The tops of the canopies for both species were approximately 0.75 m to 1.0 m below 
the surface in approximately 1.5 m of water. Because they were growing so closely 
together, we created a “mixed EWM/Elodea” class for this classification.  
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Figure 3.17. Underwater photo taken in the southwest corner of the Court East July 2017 
Tetracam image area, showing a matrix of Elodea and EWM. 
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3.4.2.3  Hessel Marina 

 
Figure 3.18. Tetracam multispectral image from July 2017 for Hessel Marina using 
color-infrared bands (A) and classification results with scale parameter = 25 (B) and scale 
parameter = 50 (C). 

Visual estimates recorded for the Hessel Marina site in July 2017 showed that the 
predominant vegetation was EWM, with Potamogeton crispus (curlyleaf pondweed, 
another invasive pecies of SAV) also present. Field photos such as Figure 3.19 show both 
species present, with curlyleaf having similar heights and appearing generally brighter in 
this instance than EWM. This observation led us to identify the brightest areas of SAV in 
the imagery as curlyleaf. The extent of EWM in the July 2017 Hessel Marina 
classification results (Figs. 3.18 B and C) appears similar between the two scale 
parameters, but curlyleaf covers larger areas in the scale parameter = 50 results (Fig. 
3.18C).  
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Figure 3.19. Field photo of part of the area covered by the Tetracam image shown in Fig. 
3.18, with both EWM and curlyleaf pondweed present. 

3.4.2.4  Howells Dock 

Three Howells Dock classifications were completed using the six Tetracam bands plus 
mNDVI, including one for August 2016, two image scenes for August 2017, and one for 
August 2018. Howells Dock has locally extensive EWM that appears to be growing on 
the underwater remnants of an old crib dock and has not undergone treatment for EWM 
removal or reduction since at least 2015. Figure 3.20 shows the input image and 
classification results for August 2016; Figure 3.21 shows the August 2017 result for 
Tetracam image number 910, Figure 3.22 shows the August 2017 result for image 
number 916, and Figure 3.23 shows the August 2018 image and results. For August 2017, 
we found that there was sufficient color variation between neighboring Tetracam images 
that we analyzed images separately.  
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Figure 3.20. Tetracam multispectral imagery from August 2016 for Howells Dock (A) 
using color-infrared bands (A) and classification results with scale parameter = 25 (B) 
and scale parameter = 50 (C). 
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Figure 3.21. Tetracam multispectral image number 910 from August 2017 for the 
northern part of Howells Dock (A) using color-infrared bands (A), classification results 
with scale parameter = 25 (B), and with scale parameter = 50 (C). 
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Figure 3.22. Tetracam multispectral image number 916 from August 2017 for the centre 
part of Howells Dock using color-infrared bands (A), classification results with scale 
parameter = 25 (B), and with scale parameter = 50 (C). 
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Figure 3.23. Tetracam multispectral image from August 2018 for Howells Dock using 
color-infrared bands (A), classification results with scale parameter = 25 (B), and with 
scale parameter = 50 (C). 

The August 2016 Howells Dock classification (Fig. 3.20) used four Tetracam images that 
were combined into a single image for classification purposes, with each covering 
approximately at 3x3m area. The visual estimates for this site showed that vegetation was 
primarily EWM, with nearby areas of eelgrass (Vallisneria americana, also known as 
water celery or tapegrass) not visible in the Tetracam images. While northern 
watermilfoil (Myriophyllum sibiricum), a native species, was not recorded in the visual 
estimates, it was present in the rake twist data for this site, and it could be seen in field 
photographs that were inspected more closely after field work was completed (Fig. 3.24). 
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Figure 3.24. The bright green vegetation is northern watermilfoil that was visible in the 
August 2016 Tetracam imagery for Howells Dock, while the darker green/brown 
vegetation is Eurasian watermilfoil. 

The areas visible in image 910 (Fig. 3.21) were predominantly EWM that were one to 
two meters below the surface, with small areas of eelgrass based on our visual estimates, 
and the classification results reflect this. The areas in image 916 (Fig. 3.22) were a mix of 
eelgrass and EWM based on visual estimates. The peduncles (long, coiled flower stalk) 
of eelgrass were quite distinct in the field (Fig. 3.25) and could be seen in the Tetracam 
imagery as well, serving to help define training sites for classification. There did not 
appear to be distinct visually identifiable differences in the Tetracam imagery between 
EWM and eelgrass for the main stems of the plants when reviewing the aerial imagery 
that had been collected. 
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Figure 3.25. Example of eelgrass peduncles visible at the water’s surface near one of the 
sampling buoys in August 2017 at Howells Dock, with a Trimble GPS unit recording the 
location in the foreground. 
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Fieldwork in August 2018 showed that there was almost no eelgrass present at Howells 
Dock and only EWM could be identified visually, at depths of 0.5 to 1.5 m below the 
water’s surface (Fig. 3.26). This informed our selection of training polygons and the 
results shown in Fig. 3.23, where only EWM and visible bottom are identified, along with 
a distinct class for the buoys (one of which can be seen in Figure 3.25). Areas of EWM 
vs. the visible lake bottom are distinct in the input imagery and in the classification 
results. 

 
Figure 3.26. Example underwater field photo taken on the same day as the August 2018 
Tetracam flight showing EWM. 
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3.4.2.5 Neil 

 
Figure 3.27. Tetracam multispectral image from August 2018 for Neil using color-
infrared bands (A), classification results with scale parameter = 25 (B), and with scale 
parameter = 50 (C). 

Visual estimates showed that the taller vegetation showing up as darker areas in Fig. 
3.27A was EWM, especially on the southwest side of the breakwater in the middle of the 
image. EWM was 1.75 m beneath the surface in approximately 2.4 m of water. There was 
also a vegetation class we initially called “low vegetation” from visual estimates because 
it appeared to be at the bottom of the site (in approximately 2.4 m of water). Rake tosses 
showed this to be Chara (both EWM and Chara can be seen in Fig. 3.28). The 
breakwater had three distinct-appearing areas in the Tetracam image of exposed rocks, 
deeper rocks, and algae covered rocks in between these, so these were all used as training 
and mapping classes for the classification results, but they could also be combined into a 
single “rocks” class. 
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Figure 3.28. Example underwater photo of Neil area taken at a transition zone between 
EWM (top left, taller and darker vegetation) and Chara (bottom right, shorter and lighter 
colored vegetation). 

3.4.3 Error Analysis 

The error matrices for each classification are summarized in Table 3.4, and the full error 
matrices are available as supplementary material in Appendix 2-A.  
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Table 3.4. Summary of error analysis results for 2016-2018 classifications 

Site Date 

Image 
type 
(and 
no.) 

Overall 
accuracy 

EWM 
producer’s 
accuracy 

EWM 
user’s 
accuracy 

Water 
type 

Scale 
parameter 

No. of 
SAV 
classes 

Breezeswept 
N. 

July 
2017 

TC 74.5% 
(38/51) 

0.0% 
(0/2) 

0.0% 
(0/1) 

Dark 25 3 

Breezeswept 
N. 

July 
2017 

TC 71.7% 
(33/46) 

25.0% 
(1/4) 

100% 
(1/1) 

Dark 50 3 

Court East Aug. 
2016 

TC 83.3% 
(40/48) 

93.3% 
(14/15) 

73.7% 
(14/19) 

Dark 25 1 

Court East Aug. 
2016 

TC 80.9% 
(38/47) 

90.0% 
(9/10) 

56.2% 
(9/16) 

Dark 50 1 

Court East June 
2017 

VN 67.9% 
(38/56) 

56.0% 
(14/25) 

66.7% 
(14/21) 

Dark 25 2 

Court East June 
2017 

VN 67.9% 
(38/56) 

73.7% 
(14/19) 

51.9% 
(14/27) 

Dark 50 2 

Court East July 
2017 

TC 97.7% 
(43/44) 

100%1 

(14/14) 
93.3%1 

(14/15) 
Dark 25 11 

Court East July 
2017 

TC 88.9% 
(40/45) 

80.0%1 

(12/15) 
85.7%1 

(12/14) 
Dark 50 11 

Hessel 
Marina 

July 
2017 

TC 60.4% 
(32/53) 

73.3% 
(11/15) 

57.9% 
(11/19) 

Clear 25 2 

Hessel 
Marina 

July 
2017 

TC 60.0% 
(30/50) 

60.0% 
(12/20) 

60.0% 
(12/20) 

Clear 50 2 

Howells 
Dock 

Aug. 
2016 

TC 93.0% 
(40/43) 

100% 
(19/19) 

95.0% 
(19/20) 

Clear 25 2 

Howells 
Dock 

Aug. 
2016 

TC 88.4% 
(38/43) 

89.5% 
(17/19) 

85.0% 
(17/20) 

Clear 50 2 

Howells 
Dock 

Aug. 
2017 

TC - 
910 

74.5% 
(35/47) 

80.8% 
(21/26) 

77.8% 
(21/27) 

Clear 25 2 

Howells 
Dock 

Aug. 
2017 

TC - 
910 

74.5% 
(35/47) 

76.7% 
(23/30) 

85.2% 
(23/27) 

Clear 50 2 

Howells 
Dock 

Aug. 
2017 

TC - 
916 

72.5% 
(37/51) 

65.5% 
(19/29) 

95.0% 
(19/20) 

Clear 25 2 

Howells 
Dock 

Aug. 
2017 

TC - 
916 

84.6% 
(44/52) 

79.2% 
(19/24) 

90.5% 
(19/21) 

Clear 50 2 

Howells 
Dock 

Aug. 
2018 

TC 86.7% 
(26/30) 

100% 
(17/17) 

81.0% 
(17/21) 

Clear 25 1 

Howells 
Dock 

Aug. 
2018 

TC 82.4% 
(28/34) 

100% 
(19/19) 

76.0% 
(19/25) 

Clear 50 1 

Neil July  
2017 

TC 73.2% 
(41/56) 

72.2% 
(13/18) 

92.9% 
(13/14) 

Clear 25 2 

Neil July 
2017 

TC 79.6% 
(43/54) 

75.0% 
(12/16) 

92.3% 
(12/13) 

Clear 50 2 

All sites and 
classifications 

  76.7% 
(731/953) 

78.7% 
(280/356) 

77.6% 
(280/361) 

   

TC = Tetracam system; VN = VISNIR system; 1 = In July 2017, the Court East site was a matrix of EWM and Elodea 
that was not visibly separate in imagery or field photos so this was treated as a mixed EWM/Elodea class for accuracy 
assessment. 

Overall accuracies varied from a low of 60.0% at Hessel Marina in July 2017 with scale 
parameter = 50 (30/50 interpretation points correct) to a high of 97.7% at Court East in 
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July 2017 with scale parameter = 25 (43/44 correct). The lowest EWM producer’s 
accuracy was 0.0% at Breezeswept North in July 2017 with scale parameter = 25, but this 
was at a site with a limited presence of EWM and 0/2 interpretation points correct; 
excluding this site, EWM producer’s accuracies ranged from a low of 56.0% at Court 
East in June 2017 (for the only pair of classifications done from VISNIR imagery) with 
scale parameter = 25 (14/25 correct) to three sites having a high of 100%: at Court East in 
July 2017 with scale parameter = 25, with this site having a mixed EWM/Elodea class 
(14/14 correct); Howells Dock in August 2016 with scale parameter = 25 (19/19 correct); 
and Howells Dock in August 2018 for scale parameters 25 and 50 (17/17 correct for scale 
parameter = 25 and 19/19 correct for scale parameter = 50). Excluding Breezeswept 
North again where EWM was present but scarce, EWM user’s accuracies ranged from a 
low of 51.9% at Court East in June 2017 with scale parameter = 50 (14/27 correct, for the 
only VISNIR classification pair) to two sites with a high of 95.0%: Howells Dock in 
August 2016 with scale parameter = 25 (19/20 correct) and Howells Dock image 916 in 
August 2017 with scale parameter = 25 (19/20 correct). Average accuracies using all 20 
classification results were 76.7% for overall accuracy, 78.7% for producer’s accuracy, 
and 77.6% for user’s accuracy. 

These results can also be summarized to match the format of Table 3.1, with the averages 
plus or minus one standard deviation (see Table 3.5). For the “clear water” type of sites 
with greater light penetration on average, the average accuracy for the “clear” type 
classification with scale parameter = 25 was not higher than that for the “dark” type 
classification with scale parameter = 50. For the “dark water” sites with lower light 
penetration on average, accuracy was higher using the “clear” type scale parameter than 
the “dark” type scale parameter. This was the opposite of our prediction that accuracies 
would be higher when our selected classification scale parameter and water type 
matched. All of the average accuracies were within one standard deviation of each other, 
indicating that it was unlikely that they were significantly different. 

Table 3.5. Summary of average accuracy results by site (water) type and classification 
type (small scale parameter = light or large scale parameter = dark).  

  Classification type 
  Clear Dark 
Water type Clear 76.7% (+/-10.5%) 78.3% (+/-9.2%) 
 Dark 80.9% (+/-11.2%) 77.4% (+/-8.2%) 

  (+/- one standard deviation) 

The two-way ANOVA mixed model was designed to understand whether the 
classification accuracies were significantly affected by scale parameter. Table 3.6 shows 
these mixed model results. 
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Table 3.6.  Results for the mixed model analysis for each tested accuracy (overall, EWM 
producer’s, and EWM user’s) using all sites and years. 

Dependent variable 
 Effect Num DF Den DF F value Pr > F 
Overall accuracy Scale 1 8.0 0.291 0.6042 

Site_type 1 8.0 0.055 0.8199 
Scale*Site_type 1 8.0 1.907 0.2047 

Producer’s accuracy Scale 1 8.0 0.096 0.7641 
Site_type 1 8.0 1.020 0.3421 
Scale*Site_type 1 8.0 0.505 0.4976 

User’s accuracy Scale 1 8.0 0.387 0.5512 
Site_type 1 8.0 2.879 0.1282 
Scale*Site_type 1 8.0 0.496 0.5012 

None of the results were significant at the p = 0.05 level. Neither the scale parameter nor 
the site type appear to have a significant effect on overall accuracy, and there was not a 
significant interaction between scale and site type.  

As the classification process continued, it seemed possible that accuracy was influenced 
by the number of SAV species classes  that we were attempting to map for each image. 
Numbers of SAV classes ranged from one (such as at Howells Dock in August 2018 
when only EWM was mapped based on vegetation field surveys, Fig. 3.23) to as many as 
three (at Breezeswept North, with EWM, Elodea, and flatstem pondweed all identified 
and mapped, Fig. 3.9). To test this, we used the linear regression function in JMP version 
14.0.0 to regress accuracy as the response variable against the number of SAV classes. 
We ran the regression for overall accuracy, producer’s accuracy, and user’s accuracy.  

For overall accuracy, a significant regression equation was found (F(1,18) = 6.3872, p = 
0.0211) with the following formula (Fig. 3.29):  

 Overall accuracy = 0.934 - 0.085 x (number of SAV classes), R2 = 0.2619. (2) 
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Figure 3.29. Regression equation for overall accuracy vs. number of SAV classes. 

For producer’s accuracy, a significant regression equation was found (F(1,18) = 34.8510, 
p < 0.0001) with the following formula:  

 Producer’s accuracy = 1.346 - 0.334 x (number of SAV classes), R2 = 0.6594 (3) 

For user’s accuracy, a significant regression equation was not found (F(1,18) = 1.5128, p 
= 0.2345). 
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Figure 3.30. Regression equation for producer’s accuracy vs. number of SAV classes. 

3.5 Discussion 

The cluster analysis showed that we had two types of sites based on the water chemistry 
data that were collected: those with relatively clear water and those with relatively darker 
water. This informed our classification methods, with the idea that a smaller scale 
parameter was more appropriate for clear water sites and a larger scale parameter was 
more appropriate for dark water sites. However, classification accuracy did not differ 
significantly between the light and dark water sites in our analyses, with some local 
variation. Accuracies varied among the classified images, most often in the range of 50-
100%, with an average overall accuracy of 76.7%, producer’s accuracy of 78.7%, and 
user’s accuracy of 77.6% across the 20 classifications. With the Tetracam results, we 
were able to exceed the 61% maximum overall accuracy noted in Visser et al. 2018 on a 
consistent basis across both dark and clear water sites. VISNIR results were only 
available for one site, as this was a backup sensing system, but were more similar to the 
Visser levels of accuracy.  

All of our sites could be considered to have relatively clear water, though, with average k 
values of 0.5010 to 2.1960. While Visser et al. 2013 and 2018 do not report a light 
extinction coefficient for their river site in Belgium, values for other waters indicate that 
our nearshore areas of the Les Cheneaux Islands were relatively clear: for a shallow, 
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turbid reservoir in Texas, Lee and Rast (1997) report k values of 2.49 to 7.93 m-1 while 
values up to 8 m-1 were reported in eutrophic Lake Okeechobee, FL, depending on the 
season and lake location (Philips et al. 1995); our values are more similar to Lake 
Mendota in Wisconsin which have been reported in the range of 0.35 to 0.85 m-1 
(Hansson et al. 1994).  

Visser et al. (2018) note that there are many factors that affect overall accuracy for SAV 
identification, including band alignment problems for multispectral imaging devices and 
the radiometric impacts of sky factors (sunglint, specular reflection, shading). We did see 
some alignment issues, particularly in the red edge bands, but these did not appear 
significant over the scale of the images being analyzed, at least based on the mapping 
accuracies we obtained. We found that clear sky, sunny days were optimal for obtaining 
images where SAV was most easily visible, while cloudy days produced a large amount 
of cloud reflectance on the water surface and limited light penetration that made SAV 
identification much more difficult. We eliminated all imagery collected on overcast days 
from our analysis because of these issues; therefore, this issue should not affect the 
results and analyses we present here. 

The quality and quantity of field data also likely impacted our ability to create relatively 
accurate SAV mapping results. Visser compared their OBIA-derived results to manually 
delineated class boundaries and types to assess accuracy and noted that this can have 
limitations, as manual interpretation is not error-free. We found that above-water and 
below-water photos, taken with a waterproof digital camera with GPS capability, were 
very important for evaluating multispectral imagery, especially when referenced to 
standardized recording of visual estimates of percent cover by SAV species. After our 
first year and initial attempts to classify the collected imagery, we had found it 
challenging to relate the visual interpretation (and other vegetation estimates) to specific 
locations in the imagery, despite recording the position of the boat during field visits. We 
found that deploying numbered buoys, and being able to see those in UAS imagery, made 
this process much easier, especially when significant time (months or years) could 
sometimes go by between field visits and final image classification and accuracy 
assessment. We recommend the adoption of these types of marker buoys when using 
UAS imagery to identify SAV taxa and other applications with similar scale. 

Vis et al. (2003) compared field data of emergent and submerged aquatic vegetation to 
distribution mapping created using remote sensing and echo sounding techniques. Echo 
sounding produced the most comparable results to field data, with 71% producer’s 
accuracy and 73% user’s accuracy for non-canopy-forming SAV species (such as 
eelgrass and Chara), but they were not able to map canopy-forming SAV such as 
Myriophyllum spp. They tested an early multispectral airborne sensor with eight bands 
ranging from 390 to 1100 nm (ultraviolet edge to near-infrared) but only achieved 18% 
overall accuracy with 7 m pixel resolution, and concluded that image-based remote 
sensing was “expensive and problematic”. While they noted problems with water color 
including turbidity, we were able to identify EWM in sites such as Court East where it 
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was found a meter below the surface, and at two meters below the surface in clear water 
sites such as Howells Dock.  

We had expected that the scale parameter of 25 would produce more accurate results for 
clear water sites and the scale parameter of 50 would produce more accurate results for 
dark water sites. This was based largely on a visual impression from the initial 
classification results that a smaller scale parameter appeared to capture finer details in the 
extent of SAV more accurately than larger ones. It had seemed that greater detail was 
visible for the SAV areas in clear water sites and that the smaller scale parameter would 
help capture this. For the dark water sites, SAV areas appeared to be less distinct in early 
classifications, with DOC being the primary CPA affecting water clarity here. However, 
this was not borne out when all classifications were completed and the accuracy 
assessment was complete, as shown in Table 3.5. Indeed, accuracies were statistically 
similar, and were slightly higher with the smaller scale parameter for dark water sites and 
slightly higher with the larger scale paramater for clear water sites. This was confirmed 
through the ANOVA mixed model results, where scale parameter was not associated with 
a significant difference in overall, producer’s, or user’s accuracy. It may be that each 
SAV type has its own optimal scale parameter for the highest accuracy results; this idea 
has been investigated for terrestrial land cover types (Huiping et al. 2003). Scale 
parameters are designed to help reflect the landscape heterogeneity captured by imagery 
(Gamanya et al. 2007), and further investigation of how this parameter can best be used 
to help identify specific SAV species of interest may be warranted. It appeared that the 
smaller scale parameter enabled more precise selection of training areas for classification, 
but this also could mean that inherent variability within a cover class could be missed. 
This may be what occurred with the large visible differences in extent between the maps 
created using the two scale parameters for the flat-stem pondweed at Breezeswept North, 
small pondweed at Court East in June 2017, and the deeper rocks class at Neil.   

The regression analysis results showed a significant effect of the number of SAV classes 
on overall and producer’s accuracy. Sites with two or three species of SAV produced 
lower accuracy results than sites with just one SAV type to identify for overall and 
producer’s accuracy. With multiple SAV types, there is the potential for them to be 
spectrally similar, at least with the multispectral sensors tested here (Chapter 2 and 
Brooks et al. 2019). With only one SAV class, we were generally only trying to 
differentiate it from open water or uncolonized bottom substrate, which is easier to 
accomplish due to larger spectral differences. Our methods have the greatest applicability 
if the purpose of EWM identification is to map its extent in underwater stands where it is 
predominant. This would be most useful when tracking changes in its extent due to 
management efforts that focus on EWM-dominated stands. 

Wood et al. 2012 noted that percentage cover, percentage volume, and dry weight 
biomass mass could be strongly correlated (R2 range of 54-96%) for SAV in shallow 
rivers, with seasonal and site variations in these relationships. We have previously 
demonstrated that percent cover can reasonably related to biomass for SAV in our 
Cladophora algae remote sensing work that used Landsat data to map SAV extent with 
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83% overall accuracy across Lakes Michigan, Huron, Erie, and Ontario (Brooks et al. 
2015, Shuchman et al. 2013). Relatively accurate mapping of EWM could potentially be 
used to estimate EWM biomass and how this could change when EWM undergoes 
management methods.  

With SAV, we have been attempting to measure the presence and extent of specific 
species at sites that have a greater variability in the sensing environment than terrestrial 
sites. Atmospheric correction of imagery of terrestrial areas is a standard procedure, 
especially for satellite imagery, but we are dealing with apparent optical properties of 
water affected by the CPAs and the inherent optical properties affected by the absorption 
and backscatter of the light signal that gets attenuated. Visser et al. 2018 noted that 
standard targets of 85% accuracy are based on terrestrial environments but are more 
challenging in aquatic environments due to these types of complication factors. In our 
sites, we have areas with higher DOC values, most likely because of a local creek that 
drains wetland areas, while sites further away without a local DOC source have clearer 
water. Even without DOC, absorption, backscatter, and surface glint make aquatic remote 
sensing more challenging (Bukata et al. 1995, Silva et al. 2008).  

3.6 Conclusions 

While we found that our field sites clustered into two distinct types (relatively dark and 
relative clear waters), our attempt to use two different scale parameters that could help 
improve classification accuracy for these types of sites did not result in significant 
differences. At least as tested, the scale parameter of 25 for clear water sites was not any 
more useful than a scale parameter of 50, and a scale parameter of 50 for dark water sites 
was not any more useful than a scale parameter of 25.  However, the overall 76.7% 
average accuracy we obtained, with 78.7% producer’s accuracy and 77.6% user’s 
accuracy for EWM, is higher than previously reported efforts for SAV mapping, and 
shows promise for multispectral UAS-enabled identification of EWM extent.  

We also found that the inclusion of mNDVI appeared useful in identifying EWM, most 
likely because this index is sensitive to green vegetative biomass. Despite limited 
penetration of the red, red edge, and near-infrared wavelengths into the water column, we 
found sufficient penetration that multispectral sensing including a red edge or near-
infrared sensitive camera system could help identify SAV, at least if it was present in the 
first meter of water at sites with higher DOC concentrations or first two meters at 
relatively clear water sites. In Brooks et al. 2019, we found that additional spectral bands 
were more likely to lead to reliable EWM identification, and exploration of the specific 
wavelengths in the red to near-infrared that help identify shallow-depth SAV species is 
recommended. 

With multispectral sensors now deployable onboard UAS on a practical basis, together 
they can be a valuable tool for ecologists and aquatic managers wanting to understand the 
extent of specific species of SAV such as EWM, particularly where the species is 
dominant in the area of interest. With the dominance of SAV species changing year by 
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year, as seen at some of our sites, UAS-based methods can provide information on the 
variability of these sites. It can also show the changing extent and presence of different 
species throughout a growing season, such as when we were able to visit sites three times 
in one summer. The most rapid changes in SAV extent can be due to anthropogenic 
management of aquatic vegetation, such as the harvesting that occurred in parts of our 
study area. We expect that our methods will be most applicable to monitoring the effects 
of these types of management methods. 
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Appendix 3.A: Supplementary Data 

Table 3.A.1. Water chemistry and light data by site and by collection date 

Collection Sites Date 
TSS 
(g/L) 

Chl-a 
(mg/m^3) 

DOC 
mgC/L 

CDOM 
(r.u.) 

k ext. 
coeff.  
(m-1) 

Breezeswept South 7/19/2017 0.0081 2.960 6.106 NA 1.6671 
Breezeswept South 8/24/2017 0.0030 2.072 7.885 NA 1.4503 
Breezeswept North 7/19/2017 0.0024 1.480 7.360 NA 1.0286 
Breezeswept North 8/23/2017 0.0023 1.184 8.673 1.672 0.8155 
Court Dock 7/14/2016 0.0183 0.888 4.310 NA 2.5358 
Court Dock 8/26/2016 NA NA 6.407 14.497 1.8561 
Court East 7/14/2016 NA NA NA NA 2.1743 
Court East 8/26/2016 NA 0.592 NA NA NA 
Court East 6/20/2017 0.0076 0.888 7.630 3.012 1.4040 
Court East 7/19/2017 0.0014 2.664 7.977 NA 0.9664 
Court East 8/23/2017 0.0020 0.296 15.140 3.851 1.9298 
Court West 7/19/2017 0.0006 0.592 9.960 NA 1.5512 
Court West 8/23/2017 0.0024 0.888 15.500 NA 2.2242 
CRAMP 8/20/2018 0.0072 4.973 5.059 1.171 1.2256 
FDS 7/15/2016 0.0019 0.000 3.210 NA 0.8675 
FDS 8/25/2016 NA 0.592 4.248 6.835 2.2194 
FDS 6/22/2017 0.0044 1.776 3.634 0.967 0.8526 
FDS 7/18/2017 -0.0021 1.480 7.553 NA 1.3591 
FDS 8/22/2017 0.0004 3.552 7.227 1.765 1.2589 
Chappell 6/21/2017 0.0144 0.296 3.635 0.252 0.4460 
Chappell 8/24/2017 0.0006 0.000 2.176 0.848 0.5560 
Hessel Marina 7/20/2017 -0.0008 1.184 2.805 NA 0.3103 
Hessel Marina 8/24/2017 0.0020 0.296 3.476 1.460 1.1400 
Hessel Marina 8/23/2018 0.0003 1.430 2.344 0.393 0.4079 
Neil 6/23/2017 0.0011 0.000 2.348 0.251 0.3786 
Neil 7/20/2017 -0.0001 0.888 2.321 NA 0.2198 
Neil 8/24/2017 0.0015 0.888 3.096 0.612 0.2341 
Neil 8/23/2018 0.0024 0.847 2.505 0.292 1.2782 
Howells Dock 8/26/2016 NA 0.592 2.919 1.614 0.5199 
Howells Dock 6/21/2017 0.0073 NA 2.738 0.464 0.4836 
Howells Dock 8/25/2017 0.0007 0.592 3.690 0.435 0.5769 
Howells Dock 8/22/2018 0.0015 3.276 2.711 0.438 1.3893 
Urie Point 8/22/2018 0.0011 1.993 2.710 0.311 0.4396 
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Table 3.A.2 Error matrices for all classifications, with scale parameter = 25 and = 50 
results. 

 
Breezeswept North July 2017   
Tetracam Scale 
Parameter 25 Reference Data   
 

 
Open 
water 

Flatstem 
Pondweed EWM Elodea Shadow 

Detached 
Surface 
Veg 

Row 
Total 

User's 
Accuracy 

 Open 
water 25 1 0 7 0 0 33 75.8% 

 Flatstem 
Pondweed 0 0 0 0 0 1 1 0.0% 

Classified EWM 0 0 0 0 1 0 1 0.0% 
Data Elodea 1 0 2 12 0 0 15 80.0% 
 Shadow 0 0 0 0 1 0 1 100.0% 
 Detached 

Surface 
Veg 0 0 0 0 0 0 0 n/a 

 Column 
Total 26 1 2 19 2 1 51  

 Producer's 
Accuracy 96.2% 0.0% 0.0% 63.2% 50.0% 0.0% 

OVERALL 
ACCURACY= 

        38/51=74.5% 
    
Breezeswept North July 2017    
Tetracam Scale 
Parameter 50 Reference Data 

   
 

 
Open 
water 

Flatstem 
Pondweed EWM Elodea 

Detached 
Surface 
Veg 

Row 
Total 

User's 
Accuracy  

 Open 
water 21 0 2 8 0 31 67.7%  

Classified 
Data 

Flatstem 
Pondweed 0 1 0 0 0 1 100.0%  

 EWM 0 0 1 0 0 1 100.0%  
 Elodea 1 0 1 10 0 12 83.3%  
 Detached 

Surface 
Veg 1 0 0 0 0 1 0.0%  

 Column 
Total 23 1 4 18 0 46    

 Producer's 
Accuracy 91.3% 100.0% 25.0% 55.6% n/a 

OVERALL 
ACCURACY=  

       33/46=71.7%  
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Court East August 2016    
Tetracam Scale Parameter 25 Reference Data   

  EWM Open Water Spatterdock Surface Veg 
Row 
Total 

User's 
Accuracy 

    EWM 14 5 0 0 19 73.7% 
Classified Open Water 1 24 0 0 25 96.0% 

Data Spatterdock 0 0 1 0 1 100.0% 
    Surface Veg 0 0 2 1 3 33.3% 
   Column Total 15 29 3 1 48  

   
Producer's 
Accuracy 93.3% 82.8% 33.3% 100.0% 

OVERALL 
ACCURACY= 

        40/48=83.3% 
Court East August 2016        
Tetracam Scale Parameter 50 Reference Data   

 EWM Open Water Spatterdock Surface Veg 
Row 
Total 

User's 
Accuracy 

    EWM 9 7 0 0 16 56.3% 
Classified Open Water 1 25 0 0 26 96.2% 

Data Spatterdock 0 0 4 0 4 100.0% 
    Surface Veg 0 0 1 0 1 0.0% 
   Column Total 10 32 5 0 47  

   
Producer's 
Accuracy 90.0% 78.1% 80.0% n/a 

OVERALL 
ACCURACY= 

        38/47=80.9% 

 
Court East June 2017  Reference Data   
VISNIR Scale Parameter 25 

Open Water 
Detached 
Surface Veg EWM 

Small Leaf 
Pondweed 

Row 
Total 

User's 
Accuracy 

   Open Water 19 0 10 0 29 65.52% 

Classified 
Detached Surface 
Veg 0 3 0 0 3 100.00% 

Data EWM 6 0 14 1 21 66.67% 

   
Small Leaf 
Pondweed 0 0 1 2 3 66.67% 

   Column Total 25 3 25 3 56  

   
Producer's 
Accuracy 76.00% 100.00% 56.00% 66.67% 

OVERALL 
ACCURACY= 

        38/56=67.9%           
Court East June 2017 Reference Data   
VISNIR Scale Parameter 50 

Open Water 
Detached 
Surface Veg EWM 

Small Leaf 
Pondweed 

Row 
Total 

User's 
Accuracy 

   Open Water 20 0 3 0 23 87.0% 

Classified 
Detached Surface 
Veg 0 4 0 0 4 100.0% 

Data EWM 10 3 14 0 27 51.9% 

   
Small Leaf 
Pondweed 0 0 2 0 2 0.0% 

   Column Total 30 7 19 0 56  

   
Producer's 
Accuracy 66.7% 57.1% 73.7% n/a 

OVERALL 
ACCURACY= 

        38/56=67.9% 
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Court East July 2017 Reference Data   
Tetracam Scale Parameter 25 Open 

Water 
EWM/Elodea 
Mix 

Detached Surface 
Veg Row Total 

User's 
Accuracy 

   Open Water 13 0 0 13 100.0% 
Classified EWM/Elodea Mix 0 14 1 15 93.3% 

Data Detached Surface Veg 0 0 16 16 100.0% 
   Column Total 13 14 17 44  
   Producer's Accuracy 100.0% 100.0% 94.1% OVERALL ACCURACY= 
        43/44=97.7%          
Court East July 2017 Reference Data   
Tetracam Scale Parameter 50 Open 

Water 
EWM/Elodea 
Mix 

Detached Surface 
Veg Row Total 

User's 
Accuracy 

   Open Water 11 3 0 14 78.6% 
Classified EWM/Elodea Mix 1 12 1 14 85.7% 

Data Detached Surface Veg 0 0 17 17 100.0% 
   Column Total 12 15 18 45  
   Producer's Accuracy 91.7% 80.0% 94.4% OVERALL ACCURACY= 
        40/45=88.9% 

 
Hessel Tetracam July 2017 Reference Data   
Tetracam Scale Parameter 25 Curlyleaf 

Pondweed EWM 
Deeper 
Water Dock 

Visible 
Bottom 

Row 
Total 

User's 
Accuracy 

   Curlyleaf Pondweed 2 0 0 0 0 2 100.0% 
   EWM 4 11 0 1 3 19 57.9% 
Classified Deeper Water 7 4 11 1 1 24 45.8% 

Data Dock 0 0 0 1 0 1 100.0% 
   Visible Bottom 0 0 0 0 7 7 100.0% 
   Column Total 13 15 11 3 11 53  

   Producer's Accuracy 15.38% 73.33% 100.0% 33.3% 63.6% 
OVERALL 

ACCURACY= 

          
32/53=60.4
%            

Hessel Tetracam July 2017 Reference Data   
Tetracam Scale Parameter 50 Curlyleaf 

Pondweed EWM 
Deeper 
Water Dock 

Visible 
Bottom 

Row 
Total 

User's 
Accuracy 

   Curlyleaf Pondweed 1 1 0 0 0 2 50.0% 
Classified EWM 3 12 1 0 4 20 60.0% 

Data Deeper Water 2 6 12 0 2 22 54.5% 
   Dock 0 0 0 0 0 0 n/a 
   Visible Bottom 0 1 0 0 5 6 83.3% 
   Column Total 6 20 13 0 11 50  

   Producer's Accuracy 16.67% 60.00% 92.3% n/a 45.5% 
OVERALL 

ACCURACY= 

          
30/50=60.0
% 
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Howells Dock August 2016 Reference Data   
Tetracam Scale Parameter 25 Northern 

Watermilfoil EWM Open 
Row 
Total 

User's 
Accuracy 

   Northern  Watermilfoil 0 0 1 1 0.00% 
Classified EWM 0 19 1 20 95.00% 

Data Open 1 0 21 22 95.45% 
   Column Total 1 19 23 43  

   Producer's Accuracy 0.00% 100.00% 91.30% 
OVERALL 

ACCURACY= 
        40/43=93.0%          
Howells Dock August 2016 Reference Data   
Tetracam Scale Parameter 50 Northern 

Watermilfoil EWM Open 
Row 
Total 

User's 
Accuracy 

   Northern Watermilfoil 1 0 0 1 100.00% 
Classified EWM 1 17 2 20 85.00% 

Data Open 0 2 20 22 90.91% 
   Column Total 2 19 22 43  

   Producer's Accuracy 50.00% 89.47% 90.91% 
OVERALL 

ACCURACY= 
        38/43=88.4% 

 
Howells Dock August 2017  Reference Data   
Tetracam Scale Parameter 25 Image 910 

Bottom EWM Eelgrass Row Total 
User's 
Accuracy 

   Bottom 14 5 0 19 73.68% 
Classified EWM 2 21 4 27 77.78% 

Data Eelgrass 1 0 0 1 0.00% 
   Column Total 17 26 4 47  

   Producer's Accuracy 82.35% 80.77% 0.00% 
OVERALL 

ACCURACY= 

        
35/47=74.5

%          
Howells Dock August 2017 Reference Data   
Tetracam Scale Parameter 50 Image 910 

Bottom EWM Eelgrass Row Total 
User's 
Accuracy 

   Bottom 11 7 0 18 61.11% 
  Classified EWM 2 23 2 27 85.19% 
  Data Eelgrass 1 0 1 2 50.00% 
   Column Total 14 30 3 47  

   Producer's Accuracy 78.57% 76.67% 33.33% 
OVERALL 

ACCURACY= 

        
35/47=74.5

% 
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Howells Dock August 2017 Reference Data   
Tetracam Scale Parameter 25 
Image 916 

Visible 
Bottom EWM Eelgrass 

Mixed 
Vegetation Row Total 

User's 
Accuracy 

   Visible Bottom 11 8 0 0 19 57.9% 
Classified EWM 1 19 0 0 20 95.0% 

Data Eelgrass 0 2 2 2 6 33.3% 
   Mixed Vegetation 1 0 0 5 6 83.3% 
   Column Total 13 29 2 7 51  

   Producer's Accuracy 84.6% 65.5% 100.0% 71.4% 
OVERALL 

ACCURACY= 
        37/51=72.5%           
Howells Dock August 2017 Reference Data   
Tetracam Scale Parameter 50 
Image 916 

Visible 
Bottom EWM Eelgrass 

Mixed 
Vegetation Row Total 

User's 
Accuracy 

   Visible Bottom 16 2 0 1 19 84.2% 
Classified EWM 2 19 0 0 21 90.5% 

Data Eelgrass 0 2 4 0 6 66.7% 
   Mixed Vegetation 0 1 0 5 6 83.3% 
   Column Total 18 24 4 6 52  

   Producer's Accuracy 88.9% 79.2% 100.0% 83.3% 
OVERALL 

ACCURACY= 
        44/52=84.6% 

 
Howells Dock August 2018 Reference Data   
Tetracam Scale Parameter 25 EWM Bottom Row Total User's Accuracy 

Classified EWM  17 4 21 80.95% 
Data Bottom 0 9 9 100.00% 

   Column Total 17 13 30  
   Producer's Accuracy 100.00% 69.23% OVERALL ACCURACY= 
       26/30=86.7%         
Howells Dock August 2018 Reference Data   
Tetracam Scale Parameter 50 EWM Bottom Row Total User's Accuracy 
  Classified EWM  19 6 25 76.00% 
  Data Bottom 0 9 9 100.00% 
   Column Total 19 15 34  
   Producer's Accuracy 100.00% 60.00% OVERALL ACCURACY= 
       28/34=82.4% 
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Neil July 
2017  Reference Data   
Tetracam Scale Parameter 
25 

Algae 
covered 
rocks Chara 

Deeper 
rocks EWM 

Exposed 
rocks 

Visible 
Bottom 

Row 
Total 

User's 
Accuracy 

   
Algae covered 
rocks 3 0 0 0 0 0 3 100.0% 

   Chara 0 18 2 5 0 1 26 69.2% 
Classified Deeper rocks 1 0 1 0 0 0 2 50.0% 

Data EWM 0 1 0 13 0 0 14 92.9% 
   Exposed rocks 0 0 0 0 1 0 1 100.0% 
   Visible Bottom 0 4 1 0 0 5 10 50.0% 
   Column Total 4 23 4 18 1 6 56  

   
Producer's 
Accuracy 75.0% 78.3% 25.0% 72.2% 100.0% 83.3% 

OVERALL 
ACCURACY= 

          41/56=73.2%             
Neil July 2017 Reference Data   
Tetracam Scale Parameter 
50 

Algae 
covered 
rocks Chara 

Deeper 
rocks EWM 

Exposed 
rocks 

Visible 
Bottom 

Row 
Total 

User's 
Accuracy 

   
Algae covered 
rocks 3 0 1 0 0 0 4 75.0% 

   Chara 0 20 0 4 0 0 24 83.3% 
Classified Deeper rocks 1 0 4 0 0 0 5 80.0% 

Data EWM 0 1 0 12 0 0 13 92.3% 
   Exposed rocks 0 0 0 0 0 0 0 n/a 
   Visible Bottom 0 3 1 0 0 4 8 50.0% 
   Column Total 4 24 6 16 0 4 54  

   
Producer's 
Accuracy 75.00% 83.33% 66.7% 75.0% n/a 100.0% 

OVERALL 
ACCURACY= 

          43/54=79.6% 
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4 Measuring Change in EWM Extent Due to Treatment 
Using Multispectral UAS Imagery 

4.1 Abstract 

Remote sensing of aquatic ecosystems can enable measuring and monitoring of 
ecological characteristics of littoral zones. This study used multispectral and natural color 
cameras mounted on small unmanned aerial systems (UAS) to image areas that 
underwent management to reduce the extent of the invasive submerged aquatic plant 
Eurasian watermilfoil (Myriophyllum spicatum or EWM). The three study sites, located 
in the Upper Peninsula of Michigan, USA, each underwent different treatments: one had 
EWM removed via mechanical harvesting, another had a native fungus applied as a 
method of biological control, and a third underwent EWM removal via diver-assisted 
suction harvesting. We collected imagery from each site before and after treatment and 
conducted image classifications to quantify reductions in EWM extent for all three 
treatments. Extent reductions of 63-89% were measured with analyzed UAS imagery. 
These results demonstrate that UAS-enabled remote sensing can be used to monitor 
change in aquatic ecosystems such as removal of invasive aquatic plants, and could be 
applied to other monitoring needs.  

4.2 Introduction 

Remote sensing data such as aerial and satellite imagery can be a useful field survey and 
assessment tool for quantitative assessment of aquatic plant species and communities, but 
it has mainly been applied for floating and emergent plants, with limited successful use 
for submerged aquatic vegetation (SAV) (Ackleson and Klemas 1987, Birk and Ecke 
2014, Madsen and Wersal 2018, Silva et al. 2008, Visser et al. 2018). These papers have 
shown at least some ability to identify the extent and type of aquatic vegetation. Ackleson 
and Klemas (1987) using low-resolution Landsat MSS and TM imagery found relative 
success with one of four classes of SAV based on density (but not species), and found 
that masking out optically deep waters >1.9m improved accuracy. Birk and Ecke (2014) 
focused on emerging and floating-leaved taxa for Swedish lakes, because high DOC 
concentrations make submergent vegetation difficult to identify. They note that UAS 
remote sensing missions cost 75% less than macrophyte field samping. They conclude 
that remote sensing is useful for high DOC lakes that have depths less than two meters, 
which is where most littoral productivity takes place. Madsen and Wersal (2018) also 
note that remote sensing of aquatic vegetation has been focused on emergent and floating 
vegetation because of light absorption in water issues. Visser et al. 2018 obtained 53-61% 
accuracy for SAV identification in clear-water streams, and also noted that light 
absorption in aquatic environments is a complicating factor. All of studies support the 
idea that SAV identification has the challenge of being subject to the effects of the color-
producing agents (CPAs) of chlorophyll, dissolved organic carbon (DOC, specifically 
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color dissolved organic matter, CDOM), and suspended minerals that attenuate the 
backscattered light signal that reaches remote sensors (Shuchman et al. 2013). 

There are many different species of invasive SAV present in the midwest; the Midwest 
Invasive Plant Network lists 16 species in need of monitoring to help reduce their spread 
(2008) and there are 18 aquatic plants species that are prohibited from sale in Michigan 
(https://www.canr.msu.edu/news/aquatic-plant-species-prohibited-from-sale-in-
michigan). In Michigan and elsewhere, considerable funding is spent on the treatment 
and control of many species of invasive aquatic plants, especially Eurasian watermilfoil 
(Myriophyllum spicatum L., hereafter EWM) (Czarapata 2005). These efforts often 
provide only short-term relief (Johnson and Blossey 2002). EWM is now present in many 
North American lakes, often growing at nuisance levels, particularly in waters one to four 
meters deep (Smith and Barko 1990). Negative effects of dense EWM growth include 
restricting recreation such as boating, swimming, and sport fishing; reducing lakeside 
property values, clogging water intakes, lowering dissolved oxygen concentrations, and 
reducing numbers of native plant species (Madsen et al. 1991, Smith and Barko 1990, 
Unmuth et al. 2000, Zhang and Boyle 2010). 

Treatment methods known to be deployed for EWM control include mechanical 
harvesting (Painter 1988), diver-assisted suction harvesting or DASH (Tucker 2017), 
herbicide (Nelson and Shearer 2006), and biological control methods such as weevils 
(Roley and Newman 2006) and application of at least two species of native fungus 
(Nelson and Shearer 2006, Sorsa et al. 1988). Evaluating the ecological impacts and 
efficacy of different treatment methods would be enhanced by having a repeatable, 
practical method of measuring reductions in the extent and density of invasive SAV 
species through these types of treatment methods. 

Our recent work (Brooks et al. 2019) has shown that specific species of SAV can be 
identified using remote sensing data. Our analysis included multispectral and 
hyperspectral profile data, with the results showing that a modified version of the 
normalized difference vegetation index (mNDVI) was useful for identifying different 
vegetation types. We further demonstrated that multispectral imagery collected with an 
unmanned aerial system (UAS) platform is able to map the extent of EWM in multiple 
shallow water (<2m) sites with reasonable accuracy of 78.7% producer’s accuracy and 
77.6% user’s accuracy, and overall average accuracy of 76.7% (Chapter 2 of this 
dissertation). These accuracies were generally higher than other remote sensing mapping 
results and helped demonstrate that multispectral UAV-enabled mapping could be a 
practical tool for invasive SAV identification. This level of accuracy also provides the 
potential to quantify changes in extent of SAV, which would be helpful in understanding 
the impacts and efficacy of different methods of aquatic plant management.  

In this study, we demonstrate how using the methods developed and demonstrated in 
Brooks et al. 2019 and Chapter 3 are able to produce quantitative information on the 
change in EWM extent for three types of treatment: mechanical harvesting, DASH, and 
fungal treatment. Our goal was to understand if and how quantitative results could be 

https://www.canr.msu.edu/news/aquatic-plant-species-prohibited-from-sale-in-michigan
https://www.canr.msu.edu/news/aquatic-plant-species-prohibited-from-sale-in-michigan
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created using UAS-enabled sensing that would reflect the visible effects of different 
treatment methods. Our hypothesis was that analysis of UAS-collected imagery would 
show a difference in amounts of visible EWM present comparing imagery collected 
before and after treatment. 

4.3 Materials and Methods 

We collected multispectral imagery from a hexacopter UAS platform in the Les 
Cheneaux Islands area of Michigan, USA, in northwestern Lake Huron and in the 
Sturgeon River Sloughs area of the Keweenaw Waterway, which bisects the Keweenaw 
Peninsula and connects to Lake Superior (Figure 4.1). Three sites and time periods from 
our EWM studies coincided with three treatment methods designed to reduce the extent 
of EWM (Table 4.1).  

 
Figure 4.1. Les Cheneaux Islands and Keweenaw Waterway areas in northern Michigan, 
USA. 
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Table 4.1. Treatment locations with geospatial analysis of change in EWM extent 

Site and 
location 

Treatment 
type 

Pre-treatment 
UAS assessment 

time period 

Time period 
of treatment 

Post-treatment 
UAS assessment 

time period 
Court East, Les 
Cheneaux Islands 

Mechanical 
harvesting 

June 2017 July 2017 August 2017 

Hessel Marina, Les 
Cheneaux Islands 

Biological 
control (Mt 
fungus) 

July 2017 (1 week 
before treatment) 

July 2017 August 2018 

Sturgeon River 
Sloughs, 
Keweenaw 
Waterway 

DASH July 2017 (1 day 
before treatment) 

July 2017 July 2017 (3 days 
after treatment) 

In the Les Cheneaux Islands, mechanical harvesting by an aquatic weed harvesting boat 
operated by a local marina, apparently focused on EWM removal and independent of our 
project, took place in the Court East study location near Cedarville, MI, in between a 
field visit in June of 2017 and shortly before field work at the same location in July 2017, 
with a repeat visit in August of 2017. VISNIR imagery was analyzed to show the extent 
of EWM before treatment in June of 2017 and Tetracam imagery was collected in July 
and August of 2017. In the Hessel Marina location of the Les Cheneaux Islands, a 
biological control agent, the native fungal pathogen Mycoleptodiscus terrestris (Gerd.) or 
“Mt” was deployed in July 2017. Mt fungus has been investigated and tested for many 
decades as a biocontrol agent for EWM (Smith and Winfield 1991).  It has to be 
fermented and then is applied as part of a solution in areas infested with EWM, where it 
causes necrotic legions on the plant and its eventual disintegration (Verma and 
Charudattan 1993). The Hessel Marina site was imaged with RGB and Tetracam imagery 
one week before treatment in July 2017, and revisited in August 2018 one year later for 
post-treatment sampling. We could only deploy RGB cameras for the post-treatment 
sampling due to hexacopter malfunction that prevented aerial deployment of the 
Tetracam at Hessel Marina, so the comparisons are based on two dates of RGB imagery 
covering the same treated area. At the Sturgeon River Sloughs in the Keweenaw 
Waterway near Houghton, MI, , the VISNIR system was deployed before and after a 
DASH aquatic plant management treatment experiment.  Pre-treatment imagery was 
collected on a Monday in July 2017, after which treatment occurred; post-treatment 
images were collected on the Friday of the same week. These three different types of 
treatment provided an opportunity to test and potentially demonstrate if multispectral 
UAS-enabled sensing could provide quantitative information on the changes in EWM 
extent due to the treatment methods.   

The UAS deployed to collect multispectral data was a Bergen Hexacopter manufactured 
by Bergen RC Helicopters of Vandalia, MI. This system was used to deploy a 
multispectral imaging camera, the Tetracam six-band Micro-MCA6 multispectral imager, 
as described in Brooks et al. 2019 / Chapter 2.  This sensor is capable of being sensitive 
to six narrow bands of light in the visible to near-infrared range. These bands are 10-
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nanometer (nm) wide ranging from approximately 400 to 1000 nm, with the actual bands 
set by installed filters. The version deployed for these surveys was sensitive to 490 nm 
(blue), 530 nm (green band version 1), 550 nm (green band version 2), 600 nm 
(yellow/orange), 680 nm (red), and 720 nm (red edge). We also often used the hexacopter 
platform to collect 36-megapixel (mp) natural color (red/green/blue or RGB) images of 
field sites. We also often deployed a DJI Phantom 3 Advanced (P3A) and DJI Mavic to 
collect 12-mp RGB aerial images that could form basemaps of field sites useful for 
georeferencing multispectral images. We stitched together the RGB images into 
orthophotographs (orthophotos) using on-board global positioning system (GPS) data for 
each image and Agisoft Metashape (Agisoft, St. Petersburg, Russia, 2019) as the close-
range photogrammetry software solution. Because the Tetracam sensor was rented until 
the last year of data collection and therefore was not always available for field use, we 
developed a backup low-cost “VISNIR” system (described in Chapter 3) that deployed 
two Canon “point and shoot” RGB cameras from the Bergen UAS; one of these of which 
was modified to make it sensitive only to the near-infrared in the approximate range of 
830-1100 nm. This type of consumer-grade camera conversion has been shown to be 
useful for terrestrial vegetation mapping applications such as crop evaluation and 
invasive plant identification using the converted near-infrared capability on other Canon 
cameras (Yang et al. 2014). 

Our work in analyzing spectral profiles described in Brooks et al. 2019 demonstrated that 
it was possible to identify EWM from other SAV species, although this required a 
hyperspectral set of bands to accomplish reliably. The work also showed that a modified 
version of the Normalized Difference Vegetation Index (NDVI) that used the 720nm red 
edge band in place of a true infrared band was significant in differentiating EWM from 
other SAV species. The modified NDVI (mNDVI) was calculated for all analyzed 
Tetracam image sets and used to map the extent of EWM for ten sets of multispectral 
images at five sites in the Les Cheneaux Islands, including the Hessel Marina and Court 
East sites. The use of the VISNIR system was demonstrated as a lower-cost alternative to 
the Tettracam sensor for mapping at one site (Court East) to identify EWM and map its 
extent. We completed image classifications presented in this chapter with object-based 
image analysis (OBIA) software eCognition Developer, version 9 (Trimble Germany 
2017) using methods described in Chapter 2.  

With classifications available before and after treatment at the three sites, we calculated 
the visible extent of EWM vs. other SAV for each pair of before and after images using 
ESRI Desktop ArcMap version 10.6 and 10.7. Imagery classification results were 
maintained in a locally appropriate Universal Transverse Mercator (UTM) project to 
support accurate area calculations. The before and after areas were placed into summary 
tables, and total areas and percentage of total areas calculated. 

4.4 Results and Discussion 

Figure 4.2 shows three dates of multispectral UAV imagery for the Court East site in the 
Les Cheneaux Islands, from June 2017 using VISNIR imagery (before mechanical 



 

107 

harvesting), July 2017 using Tetracam imagery (within a few days of mechanical 
harvesting), and August 2017 using Tetracam imagery (one month after harvesting). 
Figure 4.3 shows the results of each of the classifications for the input images. To enable 
direct comparison of change in vegetation types and extent due to harvesting, Figure 4.4 
focuses on the June 2017 pre-harvesting imagery with the same extent as the analyzed 
frame of August 2017 post-harvest Tetracam imagery shown in Figure 4.2C.  The 
classifications show in Figure 4.3A and 4.3B had accuracy assessments completed in 
Chapter 3; the June 2017 result displayed had an overall accuracy of 67.9% and the July 
2017 result had an overall accuracy of 97.7%. Using the same accuracy assessment 
methods used in Chapter 3, the August 2017 classification result has an overall accuracy 
of 92.3%. Figures 4.2, 4.3, and 4.4 show approximately parallel areas of EWM that 
remained after vegetation removal, with the mostly empty areas in between where the 
harvester removed vegetation. Figure 4.5 shows another view of this area, taken on the 
same day as the Tetracam image, with remaining rows of EWM and the harvested visible 
towards the top right. 

 
Figure 4.2. Multispectral imagery of the Court East site, A) before mechanical harvesting 
(June 2017), B) a few days after mechanical harvesting (July 2017), and C) a month after 
mechanical harvesting. 
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Figure 4.3. Classification results for the Court East showing imagery before (A) and after 
(B) mechanical harvesting. Results shown in A and B were previously described in 
Chapter 3. 
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Figure 4.4. Identical extents for the June 2017 pre-harvesting classification and the 
August 2017 post-harvesting classification to enable change comparison at the Court East 
site. 

Clipping the extent of the June 2017 pre-harvest VISNIR image down to the extent of the 
analyzed August 2018 Tetracam image resulted in an area of 108.6 m2. In June of 2017, 
the classification results showed that the vegetation visible at the surface area was 29.0% 
EWM and 40.5% small pondweed (Potamogeton pusillus ssp. pusillus), for a total of 
69.5% vegetated (Table 4.2). One month after mechanical harvesting, the vegetated area 
was 10.6% EWM, with no small pondweed reported from visual estimates recorded on 
the same day, and the balance of the area as open water. Total visible EWM was reduced 
from 31.5 m2 to 11.5 m2 for the comparable area (a reduction of 63%).  
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Table 4.2. Change in class areas from June 2017 to August 2017 at the Court East site, 
before and after mechanical harvesting treatment. 

June 2017   
Class Area (m2) Percent 
Buoy   0.1   0.1% 
Detached surface vegetation 11.0 10.1% 
EWM 31.5 29.0% 
Open water 21.9 20.2% 
Small pondweed 44.0 40.5% 
  108.6   
August 2017   
Class Area (m2) Percent 
EWM   11.5 10.6% 
Open water 112.6 89.4% 
  108.6   

 
Figure 4.5. Natural color UAV image of the Court East site, with the harvested “rows” 
and remaining vegetation also captured in the Tetracam image taken on the same day. 
Additional harvesting took place towards the docks on the bottom left and further to the 
top right. 

Figure 4.6 shows two dates of natural color UAV imagery for the Hessel Marina site in 
the Les Cheneaux Islands, one from July 2017 (4.6A, left) a few days after Mt fungus 
was applied to approximately the 652 m2 area outlined in yellow, and one from August 
2018 (4.6B, right), a year after this application.  
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Figure 4.6. Hessel Marina natural color imagery from A) July 2017 at the start of Mt 
treatment and from B) August 2018 one year after treatment. 

Figure 4.7 shows the classification results using RGB imagery, with a large change in 
extent of EWM a year after application. The group performing the application, the Les 
Cheneaux Watershed Council, reported that EWM biomass at the Hessel Marina site was 
“minimal” one year after treatment, and that non-EWM macrophyte biomass was six 
times greater than EWM at this point (Smith et al. 2018). However, our visual estimates 
showed EWM was still predominant, although rake tosses produced levels of 2 (“sparse”) 
and no higher for EWM, Elodea sp., and clasping-leaf pondweed (Potamogeton 
richardsonii). Classification results indicate that 59.8% of the treatment area was EWM 
in July 2017 (and 1.7% other SAV for total SAV cover of 61.5%), but by August 2018, 
this same area was 16.0% EWM and 63.4% other SAV (for total SAV cover of 79.4%; 
Table 3.3). This equates to a reduction in EWM extent from 390.0 m2 to 104.7 m2 of the 
652.4 m2 treatment area (a 73% reduction). Smith et al. report similar total SAV biomass 
in 2017 vs. 2018. However, the contrast in SAV types reported by the Michigan Tech and 
Watershed Council field surveys could indicate that these results, which use only RGB 
imagery, are resulting in an overestimate of EWM reduction one year after treatment if 
using the Watershed Council data. 
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Figure 4.7. Hessel Marina classification results from A) July 2017 of the week before Mt 
treatment and from B) August 2018 one year after treatment. 

Table 4.3. Change in class areas from July 2017 to August 2018 at the Hessel Marina 
site, from the start of Mt treatment to one year later. 

Class July 2017 area (m2) % of area August 2018 area (m2) % of area 
Open water 200.8 30.8% 86.2 13.2% 
EWM 390.0 59.8% 104.7 16.0% 
Other SAV 11.0 1.7% 413.6 63.4% 
Boats/Docks 50.6 7.8% 47.9 7.3% 
  652.4   652.4   

Figure 4.8 shows the four DASH plots in the Sloughs area of the Keweenaw Waterway 
with near-infrared VISNIR UAS imagery collected on July 17th (immediately before 
treatment) and July 21st (immediately after treatment) in 2017. Surface vegetation (such 
as lily pads) and near-surface vegetation, such as EWM, show up as a brighter pink color 
in the near-infrared imagery due to stronger reflectance of green, healthy vegetation in 
this spectral band. The southernmost plot has some glint in the pre-treatment image, but 
the reduction in SAV presence can be more easily seen in the other three DASH plots in 
the post-treatment image. 
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Figure 4.8. Near-infrared UAV imagery for the same locations at four DASH treatment 
plots immediately pre- and post-treatment in July, 2017 at the Sloughs site. 

The Sloughs classification results are shown in Figure 4.9, with all four plots appearing to 
have little remaining EWM areas immediately after DASH treatment. On July 17, 2017, 
visible EWM forms 25.1% of the surface area of the four plots (with 1.6% other aquatic 
vegetation), while on July 21st, this has been reduced to 2.7% of the surface area (with 
0.2% other aquatic vegetation), a reduction from 44 m2 to 4.7 m2 (89%) of the 175 m2 
combined plot areas. 
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Figure 4.9. Classification results for pre- and post-DASH treatment color-infrared 
imagery  

Table 4.4. Change in class areas from July 17, 2017 to July 21, 2017 at the Sloughs site, 
before and after DASH treatment 

Class 
Pre-DASH 
area (m2) % of area 

Post-DASH 
area (m2) % of area 

Open water 119.4 68.2% 169.3 96.8% 
EWM 44.0 25.1% 4.7 2.7% 
Other aquatic vegetation 2.8 1.6% 0.4 0.2% 
Other (buoy or glint) 8.9 5.1% 0.5 0.3% 
  175.0   175.0   

These three examples indicate that it is possible to quantify the impacts of three types of 
EWM treatment. In all three cases, we were able to measure a reduction in EWM extent 
after treatment using UAS-enabled methods developed for Brooks et al. 2019 (Chapter 2) 
and Chapter 3 that have approximately 78% mapping accuracy for EWM. For the 
mechanical harvesting and DASH treatment, this represents detection of immediate 
change. For Mt fungus, we appear to be quantifying a change in balance of EWM vs. 
other macrophytes one year after this treatment. 
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Our study was focused on detecting change in EWM following treatment using a novel 
remote sensing approach, not to evaluate the appropriateness or efficacy of various 
treatment techniques. The entity choosing to treat EWM must consider what treatment 
methods make the most sense for location conditions, including available funding, 
willingness to deploy different treatment methods, and tolerance for effects of treatment 
such as EWM fragmentation, as discussed below. 

It must be noted that mechanical harvesting comes with significant problems as a 
management tool. EWM reproduces primarily by vegetative fragments (Grace and 
Wetzel 1978). EWM management guides note that there is a high risk of spread due to 
stem fragments created by mechanical harvesting (Jacobs and Mangold 2009), and 
repeated harvesting efforts may actually increase EWM extent (Smith and Barko 1990). 
It is likely that the 63% reduction in EWM extent we saw in imagery covering the same 
area resulted in significant fragmentation of EWM and its potential re-establishment in 
existing areas and spread to nearby areas. 

The DASH technique was developed in part to help address the negative effects of 
mechanical harvesting. Eichler et al. (1993) describe an early application of suction 
harvesting on Lake George, New York, USA where herbicides and mechanical cutting 
were considered unacceptable due to water quality and fragmentation concerns. Their 
DASH technique used a vacuum pump mounted on a pontoon boat, with a diver pulling 
the EWM (including the roots) and feeding it into two vacuum hoses. A 2,828 m2 area 
was suction harvested with 28 person-days of effort. A year after DASH, only 7% of the 
pre-harvest biomass was present during a revisit. Tucker (2017) reported on application 
of DASH for another invasive milfoil, Myriophyllum heterophyllum (variable milfoil) in 
New Hampshire, USA, that also spreads primarily by fragmentation.  DASH is described 
as efficient, and providing significant advantages over just hand-pulling and useful for 
management of dense milfoil stands. Our results showing an 89% decrease in EWM 
extent appear to support that DASH treatment is effective at rapid reductions in EWM 
presence, at least within the depth that our imagery could penetrate. 

The Mt fungus treatment technique has been reported on for a number of decades as a 
method of biological control for EWM (Smith and Winfield 1991) based on promising 
results from greenhouse cylinders. More recently, Nelson and Shearer (2005) reported up 
to 79% reduction in EWM biomass with Mt alone and up to 90% when combined with 
herbicide. It has been deployed twice in the open nearshore waters of the Les Cheneaux 
Islands in 2014 and 2017 by the Les Cheneaux Watershed Council (Smith et al. 2018). 
The fungus must be grown in a fermenter and transported to the field site, and then 
applied from a boat, such as the gravity fed mix tank setup used at the Les Cheneaux 
Islands, (Figure 4.10), making practical deployment currently expensive. In the 2017 
demonstration at the Les Cheneaux Islands, a 70% reduction in EWM biomass was 
reported at 70 days after treatment while a nearby control site had an increase in its EWM 
biomass (Smith et al. 2018).  
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Figure 4.10. Deployment of the Mt fungus from a customized treatment vessel in the Les 
Cheneaux Islands in 2017 by the Les Cheneaux Watershed Council. 

4.5 Conclusions 

We have demonstrated that UAS-enabled sensing can provide quantitative data 
documenting changes in visible extent of EWM most obviously due to three types of 
treatment. For three areas in the Upper Peninsula of Michigan each undergoing different 
types of treatment (mechanical harvesting, biological treatment, and DASH), we 
measured the reduction in EWM extent in area and percentage terms. At a mechanical 
harvesting site, we measured a 63% reduction in the extent of EWM one month after 
treatment, using multispectral UAS imagery. At a Mt fungus biological treatment site, we 
measured a 73% reduction in EWM extent one year after treatment using natural color 
imagery, although differing field results may indicate this reduction was not as large as 
measured. At a DASH treatment site, we measured an 89% reduction in EWM extent 
using multispectral UAS imagery within three days of the treatment being completed. 
UAS-enabled sensing also has the potential to scale to mapping larger areas while still 
providing high-resolution data that could help track site-specific effects. If entities 
engaging in treatment efforts want a method to quantify the effects of different 
management methods, then UAS-enabled remote sensing is an important tool to consider. 
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	2 Multiscale collection and analysis of submerged aquatic vegetation spectral profiles for Eurasian watermilfoil detection
	2.1 Abstract
	The ability to differentiate a non-native aquatic plant, Myriophyllum spicatum (Eurasian watermilfoil or EWM), from other submerged aquatic vegetation (SAV) using spectral data collected at multiple scales was investigated as a precursor to mapping of...

	2.2 Introduction
	Aquatic vegetation provides a key refuge and growth habitat for a variety of plant and animal species in the shallow littoral regions on the edges of waterbodies (Jeppesen et al. 2012, Rozas and Odum 1988), supporting more species per unit of primary ...
	Aquatic vegetation in littoral zones includes both species that emerge above the water surface (emergent aquatic vegetation) and those submerged below the surface (hereafter submerged aquatic vegetation, or SAV), which presents different opportunities...
	Previous work has indicated that the mapping of SAV can be possible using satellite imagery under certain conditions. Initial work such as Ackleson and Klemas (1987) showed feasibility for mapping a species of SAV using Landsat satellite imagery, noti...
	The use of unmanned aerial system (UAS) is a relatively new area of research that can provide a source of mid-to-fine scale data (Flynn and Chapra 2014) that may provide better resolution and detection of SAV at appropriate scales for studying lake li...
	Understanding ecologically relevant patterns of macrophyte dynamics requires identification of individual SAV species that grow in mixed assemblages, which is possible if SAV species appear spectrally distinct when using scale-appropriate remote sensi...
	EWM provides a test case to evaluate whether UAS-based spectrometry and multispectral imagery can be used to map SAV at scales relevant to management. In this study, we developed methods to rapidly create spectral profiles of aquatic plants of interes...
	1. Can spectral profiles of EWM be differentiated from those of other SAV species using spectroradiometer data and multispectral imagery collected in the upper Great Lakes?
	2. Do EWM spectral profiles collected at three different sampling scales exhibit similar spectral signatures for our upper Great Lakes study areas?
	The three data collection scales were individual SAV samples measured out of the water (sample footprint diameter ∼5 cm), SAV in the water measured from a boat (∼50 cm), and SAV in the water measured from a UAS platform (∼5 m). If spectral signatures ...

	2.3 Sensing Design
	To address the study questions, we deployed and developed a set of remote sensing data collection tools that included spectroradiometers, natural color and multispectral cameras, and UAS to collect data at the three scales described above. The goal wa...
	We used two multispectral camera systems in this study. We selected the Micro-MCA-6 six-channel multispectral camera manufactured by Tetracam (Chatsworth, California) for its ability to cover the 400 to 1000 nm (visible to near-infrared) spectral rang...
	As a low-cost multispectral backup, we developed a dual camera system, referred to as the VISNIR system, for the 2017 summer field season that included a Canon point-and-shoot 16 mp camera for natural color (RGB) data collection and a second Canon poi...
	We deployed a variety of UAS for the study, all of which met the US Federal Aviation Administration (FAA) definition of a small UAS (under 25 kg) and were flown by experienced UAS pilots. The largest system was a hexacopter (six rotors) system manufac...
	Smaller UAS used in this project had their own integrated RGB camera systems with 12 mp. These were intended to provide sufficient detail to identify sites that might have EWM, to potentially map changes in overall SAV density, and most importantly, t...
	Figure 2.1. Location of data collections in the Upper Peninsula of Michigan, including the Keweenaw Waterway in the Keweenaw Peninsula and the Les Cheneaux Islands area in northwest Lake Huron.

	2.4 Experiments and Validation
	2.4.1 Data Collection Areas
	Study data characterizing the spectral profiles of vegetation from individual species to assemblages were collected at multiple sites in the Les Cheneaux Islands region of northwest Lake Huron (Figs. 2.1 and 2.2). EWM in Michigan and in other Midweste...

	2.4.2 Scales of Spectral Data Collection and Processing Methods
	To answer the study questions about EWM detection and spectral profile similarity, a diverse set of field spectra for EWM and other species and bottom types were needed. Table 2.1 lists all the sites, dates, number of averaged spectra by site, and sca...
	We recorded spectral data at three sampling levels:
	1. Plant-level spectra of a single species of aquatic vegetation retrieved out of the water and sensed immediately after removal to prevent spectral decay with either the ASD FieldSpec 3 or the LPR system [Figs. 2.3(a) and 2.3(b)]. The spectrometer op...
	2. Spectral measurements were made from the side of the boat, with the sensor head mounted on an extension pole at least 1 m in length. The pole mount both allowed the operator to hold the sensor away from boat shadows and reflections and safely held ...
	3. Nadir spectra from the LPR system mounted on a UAS flying directly above a vegetation patch of known composition [Figs. 2.3(d)–2.3(f)]. When mounted on the UAS, the LPR’s irradiance sensor was fixed to a rod on top of the system in the zenith direc...
	Figure 2.2. Detailed locations of data collection sites for spectral and UAS data within the Les Cheneaux Islands and the Keweenaw Waterway.
	Table 2.1.  Collection sites listing types of spectral data collected by time period and data collection scale. The number of averaged spectral profiles collected per site is included in parentheses
	Note: Scale and method of spectral data collection: OOW, out-of-water; Boatside, from side of boat; UAS, Unmanned aerial system with the lightweight portable radiometer.
	Figure 2.3. Images demonstrating field data collection methods. (a) Single-species plants on a black tarp about to have their spectral profile recorded for OOW scale data. From left to right: Chara sp. (stonewort), Potamogeton richardsonii (clasping-l...
	The boat-based sampling was designed to test and demonstrate the strength of the spectral signature that could be expected to be available for UAS-based spectral profiling and imaging. This is a scale similar to the resolution of UAS-based multispectr...
	Analysis of the UAS-based spectra was designed to help understand whether vegetation types can be differentiated when a larger area is being assessed than the OOW or boatside scale data. With integration over the larger spectral footprint captured fro...
	Visual estimates of plant species densities by percent were made by an experienced aquatic vegetation expert for areas where spectral data were being recorded, and species identities were confirmed by rake toss after spectral data collection was compl...
	All spectra were calibrated to remote sensing reflectance (Rrs), a unitless value defined as the ratio of water-leaving radiance to the total downwelling irradiance just above water. The ASD spectra were calibrated using a Spectralon panel of a known ...
	,𝑅-𝑟𝑠-0+. = ,,𝐿-𝑤-0+.,𝜆,,𝜃-𝑑..-,𝐸-𝑑-0+.,𝜆..  (1)
	= Water-leaving radiance just above the water surface / Downwelling Irradiance
	Spectral profiles corresponding to the same sampling run at a particular location and target were averaged.

	2.4.3 Statistical Analysis Methods
	To analyze whether spectral profiles were significantly different from each other for different species or assemblages, the averaged profiles were treated as distributions and analyzed using the nonparametric two-sample Kolmogorov–Smirnov (K-S) test (...
	The K-S test analysis focused on the spectral reflectance data for the OOW species-level samples, collected in 2017 and 2015 using the ASD FieldSpec3 spectroradiometer because the differences among species should be strongest in this dataset. A sample...
	1. The same six bands as the Tetracam multispectral camera. These represented averaging of 10 one-nm-wide bands (i.e., 490 nm is an average of the reflectance values of 485 to 495 nm, etc.). Although such average reflectances may not measure the “true...
	2. The eight spectral bands that contain most of the spectral information needed to map coastal wetlands in the Great Lakes including SAV, according to Becker et al. (Becker et al. 2005, Becker et al. 2007), which were rounded to the nearest nm: 515 n...
	3. To test the effect of the number of bands on the separability of spectral signatures, the 651 individual spectral bands were averaged into 65 10-nm-wide bands; Everitt et al. (2011) used 10-nm wide bands for their tank-based spectral analysis of SA...
	To test for the capability of indices and ratios to help differentiate SAV species when combined with reduced datasets, the following indices were calculated as described below:
	 Red edge/blue ratio (RE/BLUE, i.e., 720 nm/490 nm)
	 The modified normalized difference vegetation index (mNDVI)
	 The modified normalized difference aquatic vegetation index (mNDAVI)
	 The modified water-adjusted vegetation index (mWAVI).
	NDVI, NDAVI, and WAVI were previously developed for terrestrial (NDVI) or aquatic uses (NDAVI and WAVI) but were included because of the possibility that sufficient light penetration might enable them to be useful for mapping SAV near the water’s surf...
	The red edge/blue (RE/BLUE) ratio was selected from among several tested ratios [red edge to red (720:680 nm), red edge to orange (720:600 nm), red edge to green 2 (720:550 nm), and red edge to green 1 (720:530 nm)] based on it having the largest stan...
	NDVI is a long-used indicator of green biomass, with larger values indicating more green biomass being present (Rouse et al. 1974, Tucker et al. 2005). Here, the 720-nm red edge band was used in place of the NIR band for analysis, as it was the longes...
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	Previous work has found red-edge reflectance to be useful for identifying wetland vegetation types due to its sensitivity to biomass (Adam et al. 2010, Ouyang et al. 2013). The nearby red edge wavelength of 715 nm has also been shown to have a strong ...
	As NDVI was developed as an index for terrestrial biomass analysis, two related aquatic indices reviewed and used by Villa et al. (2014) that might help with SAV mapping were also modified for application here: the NDAVI and WAVI. NDAVI uses a blue ba...
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	WAVI also uses a blue band instead of red but also includes a correction factor (L) to adjust for the effect of the background signal. We adopted a value of 0.5 for L based on Villa’s description of this as a reasonable value for reducing background i...
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	We compared spectral characteristics among plots with differing SAV cover using analysis of variance (ANOVA) using the larger set of boatside data, which totaled 62 spectral data profiles, covering data collections in mid-July 2016, late August 2016, ...
	To determine whether EWM was generally different from any other sampled SAV type, the other SAV dominant vegetation types were grouped into an “other SAV” class. These dominant vegetation groups were tested with study dates using two-way ANOVA, with p...
	To evaluate the impact of the three different scales of collecting spectral data, EWM spectral profiles were compared from the June 2017 data collection when OOW, boatside, and LPR UAS data were collected at the same sites on the same day. A single-fa...


	2.5 Results and Discussions
	2.5.1 Out-of-Water Spectral Data Results
	To first address the question of whether different SAV species appear spectrally different, we compared OOW spectral profiles. For 2015 to 2017, we collected a total of 78 OOW spectral profiles after averaging. The June 2015 OOW spectral data, collect...
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	For the June 2015 dataset resampled to the Tetracam bands [Fig. 2.5(a)], the EWM sample was significantly different (p < 0.05) from the spatterdock and floating bur-reed spectral samples but not the white water-lily, eel grass, clasping-leaf pondweed,...
	Figure 2.4. OOW spectral data: (a) Spectral profiles of eight OOW aquatic plant species from June 2015, showing ultraviolet to near-infrared (350 to 1000 nm) wavelengths for all 651 bands. (b) Spectral profiles for nine aquatic plant species, plus a r...
	Figure 2.5. Resampled spectral reflectance values for Tetracam and Becker bands: (a) Resampled to approximate the Tetracam bands for the eight OOW species samples collected in 2015, (b) resampled to the Becker bands for the 2015 OOW data, (c) spectral...
	Using 65 bands and the June 2017 OOW, ASD-collected dataset yielded the K-S results shown in Table 2.2.
	This analysis suggested that EWM1 was significantly different from six of the seven other SAV species, the other EWM sample (EWM2), and a black reference tarp, with varying levels of significance. EWM1 was not significantly different from the Clasping...
	Table 2.2.  K-S test of June 2017 OOW spectral data averaged to 65 10-nm-wide bands.
	*Significant at p < 0.05.   **Significant at p < 0.01.   ***Significant at p < 0.001.

	2.5.2 Boatside Spectral Data Results
	Figure 2.6 represents boatside spectral data collected at three locations in the Les Cheneaux Islands study location in August 2016, a part of the 62 total spectral profiles collected in 2016 to 2017. The site with mostly bare rock beneath the ASD had...
	Figure 2.6. Spectral profiles of SAV species and combinations from 2016, collected boatside using the ASD, directly over patches of vegetation in the water.
	The results of the two-way ANOVA mixed model analysis of the combined 2016 to 2017 boatside spectral dataset are shown in Table 2.3.
	Table 2.3.  Results for the mixed model analysis for each tested wavelength, ratio, and index for the complete 2016 to 2017 boatside dataset with 62 spectral profiles.
	*Significant at the p ¼ 0.05 level.
	mNDVI was significantly different among dominant vegetation groups (F4;17.5 = 3.16, p = 0.04), with no difference among months and no significant interaction between month and dominant vegetation group. The RE/BLUE ratio, mNDAVI, and mWAVI did not hav...
	To help verify a significant contribution of vegetation to these boatside spectra, we calculated the difference between red edge reflectance (709 nm) in our spectra and a baseline between 681 and 754 nm, analogous to the MERIS maximum chlorophyll inde...

	2.5.3 UAS Spectral Data Results
	Figure 2.7 shows the complete spectral profiles for the June 2017 UAS data, a part of the 41 total UAS-based spectral profiles collected in 2016 to 2017. The six Tetracam bands were again approximated from the profile data, and the four ratios were ad...
	The June 2017 UAS-based data (Fig. 2.7 and Table 2.4) showed that the six samples including significant EWM cover (five with EWM being the most dominant and one dominated by Chara with EWM as a secondary dominant) did appear statistically different th...
	Figure 2.7. Spectral reflectance values for the UAS data collected over 13 areas with multiple species assemblages, sampled in June 2017.
	Table 2.4.  K-S test of June 2017 UAS-based spectral data resampled to Tetracam bands plus ratios.
	Note: NA, not applicable (same profile). *Significant at p < 0.05.   **Significant at p < 0.01.   ***Significant at p < 0.001.
	We hypothesized that the July 2017 spectral data might show a more distinct pattern for EWM, because the vegetation would be more fully developed (taller, denser) a month later than the relatively early in the growing season June 2017 data. Also, the ...

	2.5.4 Comparison of Spectral Profile Results across Scale-Based Collection Methods
	In the June 2017 data collection, all three methods of spectral data collection were deployed. This enabled comparison of the EWM spectral data (shown in Table 2.6) at three different scales, using the single-factor ANOVA, TukeyHSD, and Tukey–Kramer m...
	In Fig. 2.8(a), there is a clear difference between the relatively low reflectance values for EWM seen in the OOW spectra and the higher values for the boatside and UAS spectra. Table 2.6 shows the UAS reflectance for the six Tetracam bands average 13...
	Table 2.7 shows the results of comparing EWM spectral reflectance values for the three spectral data collection methods. For all of the Tetracam wavelengths and the RE/BLUE ratio, the means of the groups were not equal (see ANOVA results for p-values ...
	Table 2.5.  K-S test of July 2017 UAS-based spectral data resampled to  Tetracam bands plus ratios.
	Note: NA, not applicable (same profile).*Significant at p < 0.05.   **Significant at p <  0.01.   ***Significant at p < 0.001.

	2.5.5 Discussion of Spectral Profile Results and Analysis
	For all tested datasets, using all available 1-nm bands resulted in spectral profiles being different (for example, for the OOW data in Fig. 2.4 and boatside data in Fig. 2.6). However, deploying an imaging system for mapping in the field that would u...
	This could not be repeated in a similar dataset from a month later (Table 2.5). An analysis of 65 bands (the 651 bands from a June 2017 OOW dataset averaged to 10-nm wide) did show reliable separability of EWM from eight other vegetation spectral prof...
	For distinguishing EWM from other vegetation, the ANOVA mixed model analysis showed that the mNDVI ratio is important (Table 2.3) but that individual Tetracam bands or the RE/BLUE ratio and aquatic-specific mNDAVI and mWAVI indices were not helpful. A...
	A comparison of EWM spectral profiles across the OOW, boatside, and UAS scales of data collection showed significantly lower Rrs values for the UAS method versus the OOW and boatside methods (Table 2.6). The lower values for the UAS are probably cause...
	The comparison of EWM spectra across the three data collection methods indicated that the spectral results are different for the Tetracam bands and the RE/BLUE ratio but not for the mNDVI, mNDAVI, and mWAVI indices (Table 2.7). For the Tetracam wavele...
	Table 2.6.  Input data used for analysis of EWM spectral data collected at the OOW, boatside, and UAS scales, with comparison of averages by collection method.
	Table 2.7.  Results of the ANOVA, Tukey HSD, and Tukey-Kruskal procedures to test for differences between group means by wavelength, index, and ratio.
	Note: Bold = significant at adjusted p-value = 0.05. NA = Not applicable since ANOVA Ho not rejected
	Figure 2.8. Comparison of spectral profiles for June 2017 across three methods of sampling: (a) for the six tetracam bands and (b) for the ratio and indices.

	2.5.6 Research Directions
	Related research is underway to use the methods and results described here to develop an EWM mapping algorithm and apply it for mapping EWM extent for nearshore locations in the Laurentian Great Lakes region. The EWM algorithm combined with the UAS-ba...
	To move this research direction forward, a preliminary proof-of-concept example of mapping EWM from a UAS-collected image was completed, pending development of the spectrally-based EWM-specific algorithm. As noted above, with the UAS flights, 5 mp ima...
	Another research direction is accounting for the impact of water characteristics on the identification of EWM versus other SAV species. As part of the larger project study, data on light conditions and water characteristics have been collected on the ...
	Figure 2.9. UAS-collected RGB image of predominantly EWM using an eCognition object-based classification into four class types. Area in red (at bottom) is enlarged in the top two images. Field images at the top left demonstrate that the EWM being mapp...


	2.6 Conclusion
	Detailed, multiscale spectral data provided the ability to understand whether and how EWM can be spectrally distinguished from other species. Spectral differences exist between EWM and other SAV species in certain datasets, but the number of bands and...
	Data collected at the UAS scale can cover larger areas than boatside methods or taking vegetation out of the water to identify it for mapping. With sufficient spectral bands and use of mNDVI, UAS-based imagery data are likely to provide the needed map...
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	3 Classification of Eurasian Watermilfoil (Myriophyllum spicatum) Using a Drone-enabled Multispectral Imagery Analysis
	3.1 Abstract
	Remote sensing approaches that could identify species of submerged aquatic vegetation (SAV) and measure their extent in lake littoral zones would greatly enhance their study and management, especially if they can provide faster or more accurate result...

	3.2 Introduction
	The amount of light penetration into a lake’s water column is a controlling factor for the species that exist in particular areas and helps to define the littoral zone where submerged aquatic vegetation (SAV) can grow.  Some invasive species of SAV ha...
	Being able to remotely identify individual species or taxa of non-native aquatic plants and map their extent would be useful to their management. Identifying to vegetation class or dominant vegetation group may also be useful. Management of SAV is com...
	To address this possibility, we have continued work initially documented in Brooks et al. 2019 to identify the extent of the invasive non-native submerged aquatic plant Myriophyllum spicatum (Eurasian watermilfoil or EWM) in a part of the Laurentian G...
	Based on fieldwork observations, we expected that at least two types of sites might exist in our study area: sites with relatively clear waters and lower levels of CPAs that reduce light penetration, and sites with relatively darker (more turbid) wate...
	This led to the development of a testable hypothesis for this research:
	 HO: The clear water classification methodology produces the same accuracy result for clear water as it does for dark water; the dark water classification methodology produces the same accuracy for dark water as it does for clear water
	 HA: These methodologies do not produce the same accuracy results.
	This hypothesis can be diagrammed as follows (Table 3.1) if HO can be rejected and accuracies are higher when classification and water type match.
	Table 3.1. Diagram of hypothesis prediction if Ho is rejected and the clear and dark water algorithms produce higher accuracies for their own water types.
	Also potentially important to EWM identification is how well mixed it is with other SAV species. The presence vs. absence of EWM, such as EWM vs. open water, is likely to be relatively simple to differentiate. However, when EWM is mixed in with severa...
	This paper focuses on deployment of multispectral cameras from an unmanned aerial system (UAS or “drone”) platform to enable rapid, timely imaging of EWM to identify its extent in littoral zones. We sought to understand the accuracy of our EWM mapping...

	3.3 Methods
	3.3.1 Collection Sites and UAS-based Sensors Deployed for the Project
	We collected data on water color and vegetation characteristics at several sites in the Les Cheneaux Islands area of northwest Lake Huron (Michigan, USA) (Figure 3.1).
	Figure 3.1. The Les Cheneaux Islands area in northwest Lake Huron, with data collection sites.
	We sampled 11 sites in the Les Cheneaux Islands over six trips in 2016–2018; the sampling months and the sensor we were able to deploy on each sampling occasion are shown in Table 3.2. Three RGB-only camera systems were deployed via UAS, primarily to ...
	Figure 3.2. The Bergen hexacopter UAS platform being deployed to collect aerial imagery for EWM identification in June 2017 at the Neil site in Hessel, MI.
	The six-band Tetracam Micro-MCA (Tetracam Inc.) described in Brooks et al. 2019 was deployed onboard the Bergen hexacopter when available to evaluate whether its multispectral capabilities could help distinguish EWM from other aquatic cover types. The...
	Table 3.2: Collection sites and sensors deployed by date in the Les Cheneaux Islands from 2016-2018.
	Sensors: D810 = Nikon D810 RGB, P3A = Phantom 3 Advanced RGB, TCAM = Tetracam, VISNIR = Visible + Near-Infrared dual Canon, Mavic = Mavic Pro RGB
	Figure 3.3 shows an example of three sources of RGB imagery, from the Mavic Pro at Hessel Marina (a), the Canon RGB camera at Howells Dock (b) and the Nikon D810 36mp RGB camera, also for Howells Dock.
	Figure 3.3. Examples of natural color RGB UAS imagery: a) Hessel Marina from a 12mp Mavic Pro camera, b) Howells Dock from a 16mp Canon camera (this provided the natural color part of the VISNIR system), and c) Howells Dock from a 36mp Nikon D810 camera.
	Tetracam imagery consisted of six spectral bands collected at 490 (blue), 530 (green), 550 (upper range of green), 600 (orange), 680 (red), and 720 nm (red edge), with the modified mNDVI calculated from the red-edge and red bands as described in Brook...
	Figure 3.4. Two Tetracam images (center, shown in color infrared) from July 2017, displayed over a RGB composite Phantom 3A image for the Hessel Marina site taken on the same day; green pentagons indicate field sampling sites.
	Figure 3.5. VISNIR imagery for the Court East site in June 2017, with RGB imagery shown at left (A) and near-infrared imagery shown at right (B).

	3.3.2 Water Chemistry Data and Analysis Methods
	At each site during each visit, we collected a set of standard water chemistry and light data to help quantify the CPA values at each site and characterize the sites as having darker or clearer waters. Primary data collected included the following:
	 Chlorophyll-a concentrations, in mg/m3
	 Light intensity, used to calculate extinction coefficient Kd(PAR) (or k for short)
	 Secchi disk transparency, in meters (along with depth to bottom)
	 Total suspended solids (TSS), in mg/L
	 Dissolved organic carbon (DOC) concentration, in mg/L
	The method we used for calculating chlorophyll data was based on standard methods (APHA 2005), including collecting water into 1-L plastic bottles and storing samples on ice until returning to the lab within eight hours. Water was filtered through 47-...
	To calculate the extinction coefficient of photosynthetically active radiation Kd(PAR), we used a Li-Cor LI-193 SA spherical underwater quantum sensor with a LI-1400 datalogger (LI-COR, Inc., Lincoln, NE, USA), with light intensity values recorded abo...
	For TSS, we used APHA method 2540B (APHA 2005) to calculate the mass of total suspended solids (TSS) in mg/L. Water was collected into 1-L plastic bottles and stored on ice until returning to the lab within eight hours. A well-mixed, measured volume o...
	For DOC, we collected water samples in 60-mL Nalgene bottles. Samples were filtered through 0.45-μm membrane filters and frozen at -20 C until analysis. DOC samples were acidified with hydrochloric acid and quantified using a Shimadzu TOC-VCSN (Shimad...

	3.3.3 Site Type Analysis
	We organized data by site and by date, and then averaged values by site to help understand whether the sites could be clustered into types based on their color producing agents (represented by TSS, Chl-a, and DOC), with water clarity estimated by the ...
	Table 3.3. Water chemistry and light data summarized by site

	3.3.4 Vegetation Data and Analysis Methods
	Field sampling of vegetation type and density was completed through visual estimates, rake tosses, and rake twists, with results recorded on standardized field sheets. Visual estimate methods and percent vegetation by sampling location were described ...
	Rake twists provided a more benthic-oriented sampling of vegetation types than rake tosses. For rake tosses, a rake end was tied to a rope, thrown approximately 10 m and dragged back towards the boat, as shown in Figs. 3.6(a) and 3.6(b). Rake fullness...
	Photographs of sampling sites were taken with a rugged, waterproof GPS-enabled camera. Photos were generally taken both above and below water to help capture the appearance of SAV and provide supplementary information on species identification.
	Figure 3.6.  Rake toss in action and example results from an area with less dense SAV
	Figure 3.7.  Rake twist sample immediately after retrieval from the water from an area with dense SAV, undergoing visual estimation of density.

	3.3.5 Spectral data
	Collection and analysis of spectral data at the project sites is described in Brooks et al. 2019. That study found that a modified Normalized Difference Vegetation Index (mNDVI) using red-edge and red bands was significantly different among dominant v...

	3.3.6 Imagery Analysis and Classification
	To create geospatial output layers of EWM location and extent, we used the object-based image analysis (OBIA) software eCognition Developer, version 9 (Trimble Germany 2017). Recent work, particularly by Visser et al. (2013, 2018), has shown promise i...
	We used eCognition Developer’s multiresolution segmentation classification routine, with mean brightness, means of each band, and mean max difference as the classification features. Based on initial visual assessment of image segmentation, we modified...
	We explored whether different segmentation parameters might lead to higher classification accuracy depending on site type. After developing classification schemes that appeared more appropriate for clear and dark water sites, we then also applied the ...
	For each randomly located point in the accuracy assessment, the classifier’s identification for the point was compared to what the field team identified the point as in the vegetation surveys, primarily using the visual estimate data since that repres...
	The number of sampling points for the accuracy assessment of classification results was determined using the multinomial distribution in the equation shown below (Toratora, 1978).  In the equation, n is equivalent to the number of recommended samples.
	n=BΠi(1-Πi)/bi2 (3.1)
	For our assessment, we had a desired confidence level of 85% and a desired precision of 15% (represented as b in above equation). The Chi-squared(χ2) inverse of right tailed probability represented as B, is calculated with (𝜶/k)=probability, assuming...
	After determining the values of n for all classes within a study site, the largest of those values was then chosen as the required number of samples for that site.  From there, the total recommended number of samples was next distributed among all cla...
	Once points are selected and all classifications have been standardized, the error assessment of each site is begun and an error matrix is created.  Each matrix contains reference data along the horizontal axis and classified data along the vertical a...
	To help understand whether the accuracy of EWM discrimination was dependent on the area of EWM present at a site, the total numbers of classification points used for accuracy assessment (as recommended by the Congalton and Green method) are included i...
	Applying the two sets of classification parameters (developed for the clear and dark water sites) yielded two accuracy assessments per classification mapping result. To test the hypothesis that classification accuracy was affected by scale parameter, ...


	3.4 Results
	3.4.1 Types of Sites
	The TSS values were very low at all sampling sites (see Table 3.3), with values in the range of 0.0011 to 0.0183 g/L (1.1 to 18.3 mg/L). Chl-a values were characteristic of oligotrophic conditions (defined as < 2.5 mg/m3, see Istvánovics 2010), with o...
	Figure 3.8 shows the results of the five-group dendrogram analysis. The five sites in the first dendrogram branch (Chappell, Hessel Marina, Neil, Howells Dock, and Urie Point) are the same ones that are not near a stream source and that we labeled as ...
	Figure 3.8. Dendrogram results for site clustering; sites with a lower extinction coefficient have clustered on the left (in light blue) while darker water sites form multiple clusters but all within the second branch.

	3.4.2 Classification Results
	We had sufficient project resources and usable multispectral imagery to create classification mapping results for five sites with varying numbers of dates: Breezeswept North (for one date, July 2017), Court East (three dates: August 2016, June 2017, a...
	3.4.2.1 Breezeswept North
	Figure 3.9 shows the analyzed Tetracam imagery for Breezeswept North with a CIR band combination in July 2017 (9A) and the classification results with scale parameter = 25 (9B), and with scale parameter = 50 (9C); a Nikon D800 RGB image collected via ...
	Figure 3.9. Tetracam multispectral image of Breezeswept North using color-infrared bands (A) and classification results with scale parameter = 25 (B), and with scale parameter = 50 (C).
	Visual estimates indicated that three SAV species were prominent at Breezeswept North based on four survey points in or near the Tetracam image area: EWM, Elodea canadensis (Canadian waterweed), and Potamogeton zosteriformis (flat-stem pondweed). The ...
	Figure 3.10. Field photos helping to document conditions at Breezeswept North on the day of data collection in July 2017, including documentation of EWM and flat-stem pondweed near the water’s surface (a), flat-stem pondweed as seen underwater (b), an...
	3.4.2.2 Court East
	Figure 3.11 shows the analyzed Tetracam imagery for the Court East site in August 2016 (3.11A) and the classification results with scale parameter = 25 (11B), and with scale parameter = 50 (3.11C); a Nikon D800 RGB image collected via Bergen Hexacopte...
	Figure 3.11. Tetracam multispectral image of Court East from August 2016 using color-infrared bands (A) and classification results with scale parameter = 25 (B) and scale parameter = 50 (C).
	With 2016 flights mostly taking place at lower elevations than in later years, the August 2016 Court East classifications in Figure 3.11 cover a relatively small area of approximately 3x3 m (in contrast, the single Breezeswept North image in 3.9A from...
	Figure 3.12. Field photographs showing much of the Court East August 2016 classification area on the same day as UAS imagery was collected, including (a) the presence of spatterdock and some loose surface vegetation at the surface near the spatterdock...
	Figure 3.13 shows the analyzed Tetracam imagery for the Court East site in June 2017 (3.13A) and the classification results with scale parameter = 25 (3.13B) and scale parameter = 50 (3.13C); a Phantom 3A RGB composite image forms the background.
	Figure 3.13. VISNIR multispectral image from June 2017 for Court East using color-infrared bands (A) and classification results with scale parameter = 25 (B) and scale parameter = 50 (C).
	At the Court East site in June of 2017, field surveys showed that visible vegetation was primarily EWM near the sampling buoys, with some areas of Potamogeton pusillus ssp. pusillus (small or small-leaf pondweed), shown out of the water in Figure 3.14...
	Figure 3.14. Field photos taken at Court East on the July 2017 survey day, showing a mixture of EWM and Elodea beneath the water surface (A), dense EWM at the water surface (B), detached areas of vegetation to the right of the survey vessel with two s...
	Court East in July 2017 was one of the sites we used when initially testing different scale parameters. Figure 3.15 adds a classification result with a very small scale parameter of 5 (Fig. 3.15A), zoomed in to the northeast corner of the area shown i...
	Figure 3.15. Comparison of June 2017 VISNIR classification results for the northeastern corner of the analyzed image, with scale parameter = 5 (A), 25 (B), and 50 (C).
	Figure 3.16. Tetracam multispectral image from July 2017 for Court East using color-infrared bands (A) and classification results with scale parameter = 25 (B) and scale parameter = 50 (C).
	Our visit to Court East in July 2017 occurred soon after an aquatic vegetation harvester had been deployed by local marinas to control nuisance growth, leaving behind significant areas of detached surface vegetation. These show up as the brighter whit...
	Figure 3.17. Underwater photo taken in the southwest corner of the Court East July 2017 Tetracam image area, showing a matrix of Elodea and EWM.
	3.4.2.3  Hessel Marina
	Figure 3.18. Tetracam multispectral image from July 2017 for Hessel Marina using color-infrared bands (A) and classification results with scale parameter = 25 (B) and scale parameter = 50 (C).
	Visual estimates recorded for the Hessel Marina site in July 2017 showed that the predominant vegetation was EWM, with Potamogeton crispus (curlyleaf pondweed, another invasive pecies of SAV) also present. Field photos such as Figure 3.19 show both sp...
	Figure 3.19. Field photo of part of the area covered by the Tetracam image shown in Fig. 3.18, with both EWM and curlyleaf pondweed present.
	3.4.2.4  Howells Dock
	Three Howells Dock classifications were completed using the six Tetracam bands plus mNDVI, including one for August 2016, two image scenes for August 2017, and one for August 2018. Howells Dock has locally extensive EWM that appears to be growing on t...
	Figure 3.20. Tetracam multispectral imagery from August 2016 for Howells Dock (A) using color-infrared bands (A) and classification results with scale parameter = 25 (B) and scale parameter = 50 (C).
	Figure 3.21. Tetracam multispectral image number 910 from August 2017 for the northern part of Howells Dock (A) using color-infrared bands (A), classification results with scale parameter = 25 (B), and with scale parameter = 50 (C).
	Figure 3.22. Tetracam multispectral image number 916 from August 2017 for the centre part of Howells Dock using color-infrared bands (A), classification results with scale parameter = 25 (B), and with scale parameter = 50 (C).
	Figure 3.23. Tetracam multispectral image from August 2018 for Howells Dock using color-infrared bands (A), classification results with scale parameter = 25 (B), and with scale parameter = 50 (C).
	The August 2016 Howells Dock classification (Fig. 3.20) used four Tetracam images that were combined into a single image for classification purposes, with each covering approximately at 3x3m area. The visual estimates for this site showed that vegetat...
	Figure 3.24. The bright green vegetation is northern watermilfoil that was visible in the August 2016 Tetracam imagery for Howells Dock, while the darker green/brown vegetation is Eurasian watermilfoil.
	The areas visible in image 910 (Fig. 3.21) were predominantly EWM that were one to two meters below the surface, with small areas of eelgrass based on our visual estimates, and the classification results reflect this. The areas in image 916 (Fig. 3.22...
	Figure 3.25. Example of eelgrass peduncles visible at the water’s surface near one of the sampling buoys in August 2017 at Howells Dock, with a Trimble GPS unit recording the location in the foreground.
	Fieldwork in August 2018 showed that there was almost no eelgrass present at Howells Dock and only EWM could be identified visually, at depths of 0.5 to 1.5 m below the water’s surface (Fig. 3.26). This informed our selection of training polygons and ...
	Figure 3.26. Example underwater field photo taken on the same day as the August 2018 Tetracam flight showing EWM.
	3.4.2.5 Neil
	Figure 3.27. Tetracam multispectral image from August 2018 for Neil using color-infrared bands (A), classification results with scale parameter = 25 (B), and with scale parameter = 50 (C).
	Visual estimates showed that the taller vegetation showing up as darker areas in Fig. 3.27A was EWM, especially on the southwest side of the breakwater in the middle of the image. EWM was 1.75 m beneath the surface in approximately 2.4 m of water. The...
	Figure 3.28. Example underwater photo of Neil area taken at a transition zone between EWM (top left, taller and darker vegetation) and Chara (bottom right, shorter and lighter colored vegetation).

	3.4.3 Error Analysis
	The error matrices for each classification are summarized in Table 3.4, and the full error matrices are available as supplementary material in Appendix 2-A.
	Table 3.4. Summary of error analysis results for 2016-2018 classifications
	TC = Tetracam system; VN = VISNIR system; 1 = In July 2017, the Court East site was a matrix of EWM and Elodea that was not visibly separate in imagery or field photos so this was treated as a mixed EWM/Elodea class for accuracy assessment.
	Overall accuracies varied from a low of 60.0% at Hessel Marina in July 2017 with scale parameter = 50 (30/50 interpretation points correct) to a high of 97.7% at Court East in July 2017 with scale parameter = 25 (43/44 correct). The lowest EWM produce...
	These results can also be summarized to match the format of Table 3.1, with the averages plus or minus one standard deviation (see Table 3.5). For the “clear water” type of sites with greater light penetration on average, the average accuracy for the ...
	Table 3.5. Summary of average accuracy results by site (water) type and classification type (small scale parameter = light or large scale parameter = dark).
	The two-way ANOVA mixed model was designed to understand whether the classification accuracies were significantly affected by scale parameter. Table 3.6 shows these mixed model results.
	Table 3.6.  Results for the mixed model analysis for each tested accuracy (overall, EWM producer’s, and EWM user’s) using all sites and years.
	None of the results were significant at the p = 0.05 level. Neither the scale parameter nor the site type appear to have a significant effect on overall accuracy, and there was not a significant interaction between scale and site type.
	As the classification process continued, it seemed possible that accuracy was influenced by the number of SAV species classes  that we were attempting to map for each image. Numbers of SAV classes ranged from one (such as at Howells Dock in August 201...
	For overall accuracy, a significant regression equation was found (F(1,18) = 6.3872, p = 0.0211) with the following formula (Fig. 3.29):
	Overall accuracy = 0.934 - 0.085 x (number of SAV classes), R2 = 0.2619. (2)
	Figure 3.29. Regression equation for overall accuracy vs. number of SAV classes.
	For producer’s accuracy, a significant regression equation was found (F(1,18) = 34.8510, p < 0.0001) with the following formula:
	Producer’s accuracy = 1.346 - 0.334 x (number of SAV classes), R2 = 0.6594 (3)
	For user’s accuracy, a significant regression equation was not found (F(1,18) = 1.5128, p = 0.2345).
	Figure 3.30. Regression equation for producer’s accuracy vs. number of SAV classes.


	3.5 Discussion
	The cluster analysis showed that we had two types of sites based on the water chemistry data that were collected: those with relatively clear water and those with relatively darker water. This informed our classification methods, with the idea that a ...
	All of our sites could be considered to have relatively clear water, though, with average k values of 0.5010 to 2.1960. While Visser et al. 2013 and 2018 do not report a light extinction coefficient for their river site in Belgium, values for other wa...
	Visser et al. (2018) note that there are many factors that affect overall accuracy for SAV identification, including band alignment problems for multispectral imaging devices and the radiometric impacts of sky factors (sunglint, specular reflection, s...
	The quality and quantity of field data also likely impacted our ability to create relatively accurate SAV mapping results. Visser compared their OBIA-derived results to manually delineated class boundaries and types to assess accuracy and noted that t...
	Vis et al. (2003) compared field data of emergent and submerged aquatic vegetation to distribution mapping created using remote sensing and echo sounding techniques. Echo sounding produced the most comparable results to field data, with 71% producer’s...
	We had expected that the scale parameter of 25 would produce more accurate results for clear water sites and the scale parameter of 50 would produce more accurate results for dark water sites. This was based largely on a visual impression from the ini...
	The regression analysis results showed a significant effect of the number of SAV classes on overall and producer’s accuracy. Sites with two or three species of SAV produced lower accuracy results than sites with just one SAV type to identify for overa...
	Wood et al. 2012 noted that percentage cover, percentage volume, and dry weight biomass mass could be strongly correlated (R2 range of 54-96%) for SAV in shallow rivers, with seasonal and site variations in these relationships. We have previously demo...
	With SAV, we have been attempting to measure the presence and extent of specific species at sites that have a greater variability in the sensing environment than terrestrial sites. Atmospheric correction of imagery of terrestrial areas is a standard p...

	3.6 Conclusions
	While we found that our field sites clustered into two distinct types (relatively dark and relative clear waters), our attempt to use two different scale parameters that could help improve classification accuracy for these types of sites did not resul...
	We also found that the inclusion of mNDVI appeared useful in identifying EWM, most likely because this index is sensitive to green vegetative biomass. Despite limited penetration of the red, red edge, and near-infrared wavelengths into the water colum...
	With multispectral sensors now deployable onboard UAS on a practical basis, together they can be a valuable tool for ecologists and aquatic managers wanting to understand the extent of specific species of SAV such as EWM, particularly where the specie...
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	4 Measuring Change in EWM Extent Due to Treatment Using Multispectral UAS Imagery
	4.1 Abstract
	Remote sensing of aquatic ecosystems can enable measuring and monitoring of ecological characteristics of littoral zones. This study used multispectral and natural color cameras mounted on small unmanned aerial systems (UAS) to image areas that underw...

	4.2 Introduction
	Remote sensing data such as aerial and satellite imagery can be a useful field survey and assessment tool for quantitative assessment of aquatic plant species and communities, but it has mainly been applied for floating and emergent plants, with limit...
	There are many different species of invasive SAV present in the midwest; the Midwest Invasive Plant Network lists 16 species in need of monitoring to help reduce their spread (2008) and there are 18 aquatic plants species that are prohibited from sale...
	Treatment methods known to be deployed for EWM control include mechanical harvesting (Painter 1988), diver-assisted suction harvesting or DASH (Tucker 2017), herbicide (Nelson and Shearer 2006), and biological control methods such as weevils (Roley an...
	Our recent work (Brooks et al. 2019) has shown that specific species of SAV can be identified using remote sensing data. Our analysis included multispectral and hyperspectral profile data, with the results showing that a modified version of the normal...
	In this study, we demonstrate how using the methods developed and demonstrated in Brooks et al. 2019 and Chapter 3 are able to produce quantitative information on the change in EWM extent for three types of treatment: mechanical harvesting, DASH, and ...

	4.3 Materials and Methods
	We collected multispectral imagery from a hexacopter UAS platform in the Les Cheneaux Islands area of Michigan, USA, in northwestern Lake Huron and in the Sturgeon River Sloughs area of the Keweenaw Waterway, which bisects the Keweenaw Peninsula and c...
	Figure 4.1. Les Cheneaux Islands and Keweenaw Waterway areas in northern Michigan, USA.
	Table 4.1. Treatment locations with geospatial analysis of change in EWM extent
	In the Les Cheneaux Islands, mechanical harvesting by an aquatic weed harvesting boat operated by a local marina, apparently focused on EWM removal and independent of our project, took place in the Court East study location near Cedarville, MI, in bet...
	The UAS deployed to collect multispectral data was a Bergen Hexacopter manufactured by Bergen RC Helicopters of Vandalia, MI. This system was used to deploy a multispectral imaging camera, the Tetracam six-band Micro-MCA6 multispectral imager, as desc...
	Our work in analyzing spectral profiles described in Brooks et al. 2019 demonstrated that it was possible to identify EWM from other SAV species, although this required a hyperspectral set of bands to accomplish reliably. The work also showed that a m...
	With classifications available before and after treatment at the three sites, we calculated the visible extent of EWM vs. other SAV for each pair of before and after images using ESRI Desktop ArcMap version 10.6 and 10.7. Imagery classification result...

	4.4 Results and Discussion
	Figure 4.2 shows three dates of multispectral UAV imagery for the Court East site in the Les Cheneaux Islands, from June 2017 using VISNIR imagery (before mechanical harvesting), July 2017 using Tetracam imagery (within a few days of mechanical harves...
	Figure 4.2. Multispectral imagery of the Court East site, A) before mechanical harvesting (June 2017), B) a few days after mechanical harvesting (July 2017), and C) a month after mechanical harvesting.
	Figure 4.3. Classification results for the Court East showing imagery before (A) and after (B) mechanical harvesting. Results shown in A and B were previously described in Chapter 3.
	Figure 4.4. Identical extents for the June 2017 pre-harvesting classification and the August 2017 post-harvesting classification to enable change comparison at the Court East site.
	Clipping the extent of the June 2017 pre-harvest VISNIR image down to the extent of the analyzed August 2018 Tetracam image resulted in an area of 108.6 m2. In June of 2017, the classification results showed that the vegetation visible at the surface ...
	Table 4.2. Change in class areas from June 2017 to August 2017 at the Court East site, before and after mechanical harvesting treatment.
	Figure 4.5. Natural color UAV image of the Court East site, with the harvested “rows” and remaining vegetation also captured in the Tetracam image taken on the same day. Additional harvesting took place towards the docks on the bottom left and further...
	Figure 4.6 shows two dates of natural color UAV imagery for the Hessel Marina site in the Les Cheneaux Islands, one from July 2017 (4.6A, left) a few days after Mt fungus was applied to approximately the 652 m2 area outlined in yellow, and one from Au...
	Figure 4.6. Hessel Marina natural color imagery from A) July 2017 at the start of Mt treatment and from B) August 2018 one year after treatment.
	Figure 4.7 shows the classification results using RGB imagery, with a large change in extent of EWM a year after application. The group performing the application, the Les Cheneaux Watershed Council, reported that EWM biomass at the Hessel Marina site...
	Figure 4.7. Hessel Marina classification results from A) July 2017 of the week before Mt treatment and from B) August 2018 one year after treatment.
	Table 4.3. Change in class areas from July 2017 to August 2018 at the Hessel Marina site, from the start of Mt treatment to one year later.
	Figure 4.8 shows the four DASH plots in the Sloughs area of the Keweenaw Waterway with near-infrared VISNIR UAS imagery collected on July 17th (immediately before treatment) and July 21st (immediately after treatment) in 2017. Surface vegetation (such...
	Figure 4.8. Near-infrared UAV imagery for the same locations at four DASH treatment plots immediately pre- and post-treatment in July, 2017 at the Sloughs site.
	The Sloughs classification results are shown in Figure 4.9, with all four plots appearing to have little remaining EWM areas immediately after DASH treatment. On July 17, 2017, visible EWM forms 25.1% of the surface area of the four plots (with 1.6% o...
	Figure 4.9. Classification results for pre- and post-DASH treatment color-infrared imagery
	Table 4.4. Change in class areas from July 17, 2017 to July 21, 2017 at the Sloughs site, before and after DASH treatment
	These three examples indicate that it is possible to quantify the impacts of three types of EWM treatment. In all three cases, we were able to measure a reduction in EWM extent after treatment using UAS-enabled methods developed for Brooks et al. 2019...
	Our study was focused on detecting change in EWM following treatment using a novel remote sensing approach, not to evaluate the appropriateness or efficacy of various treatment techniques. The entity choosing to treat EWM must consider what treatment ...
	It must be noted that mechanical harvesting comes with significant problems as a management tool. EWM reproduces primarily by vegetative fragments (Grace and Wetzel 1978). EWM management guides note that there is a high risk of spread due to stem frag...
	The DASH technique was developed in part to help address the negative effects of mechanical harvesting. Eichler et al. (1993) describe an early application of suction harvesting on Lake George, New York, USA where herbicides and mechanical cutting wer...
	The Mt fungus treatment technique has been reported on for a number of decades as a method of biological control for EWM (Smith and Winfield 1991) based on promising results from greenhouse cylinders. More recently, Nelson and Shearer (2005) reported ...
	Figure 4.10. Deployment of the Mt fungus from a customized treatment vessel in the Les Cheneaux Islands in 2017 by the Les Cheneaux Watershed Council.

	4.5 Conclusions
	We have demonstrated that UAS-enabled sensing can provide quantitative data documenting changes in visible extent of EWM most obviously due to three types of treatment. For three areas in the Upper Peninsula of Michigan each undergoing different types...
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