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A B S T R A C T

Water clarity, as measured by Secchi disk depth (ZSD) or diffuse attenuation (Kd), is an important indicator of a 
lake’s ecosystem state and can be reliably retrieved using satellite remote sensing. By combining data from 
multiple satellite missions, the European Space Agency’s Ocean Colour Climate Change Initiative (OC-CCI) aims 
to deliver stable, long-term, satellite data products suitable for trend assessments. Here we demonstrate the value 
of OC-CCI products for reporting on water clarity status and long-term trends in North America’s largest lakes. 
Extensive matchups between the OC-CCI Kd at 490 nm (Kd490) and in situ ZSD observations spanning 25 years 
enabled robust multi-lake validation of ZSD retrievals over a wide range of water clarity conditions (R2 = 0.9, 
MAPE = 29.6 %, BIAS = 6.6 %, N = 4297) providing a transferable model for large-scale mapping of inland 
water clarity. Significant differences in ZSD retrieval uncertainty were observed between years, missions, and 
specific periods marking changes in the sensor datasets contributing to the OC-CCI products. Bias-correction of 
the OC-CCI Kd490 provided confidence in the assumption of seamless continuity in this multi-mission dataset, 
thereby allowing long-term time-series analyses. Seasonal, inter-annual and inter-decadal variability and trends 
in lake-wide average ZSD were subsequently evaluated for nine large lakes across Canada and the U.S. over the 
1998–2023 period, capturing the timing and magnitude of significant shifts in water clarity conditions. Obser
vations agree well with documented periods of ecosystem change in response to the cumulative impacts from 
harmful algal blooms, nutrient status, invasive species, and hydrological events.

1. Introduction

North America’s inland freshwater systems are of enormous socio- 
economic importance, providing vital drinking, industrial and recrea
tional water resources, supporting valuable ecosystem services, 
contributing to global biogeochemical cycling, and serving as sentinels 
of anthropogenic influence on aquatic environments. Water quality, as 
defined by its chemical, physical, and biological characteristics, plays a 
critical role in determining the beneficial uses of these water resources. 
A key visual indicator of water quality, water clarity is often integral to 

inland and coastal water quality monitoring programs and reporting by 
governing agencies (Keith et al., 2023). Typically measured as a Secchi 
disk depth (ZSD) or diffuse attenuation coefficient (Kd), water clarity is 
an important gauge of ecosystem health state, while also playing a 
central role in regulating pelagic and benthic primary productivity, 
energy and material transfer, and impacting a waterbody’s aesthetic 
value. Freshwater quality varies regionally across North America and is 
affected by human disturbances such as land-use and climate change 
(Huot et al., 2019; Deutsch et al., 2022). Shifts in long-term climate 
trends, such as increasing water temperatures (Tong et al., 2023) and 
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decreasing ice cover (Huang et al., 2022), are having widespread im
pacts on these freshwater systems, with high-latitude regions in partic
ular experiencing rapid transformations (Ruhland et al., 2023). 
Increases in terrestrially-derived dissolved organic matter (DOM) lead
ing to the browning of inland waters (Williamson et al., 2015), eutro
phication and resulting nuisance or harmful algal blooms (HABs) 
(Stumpf et al., 2012; Binding et al., 2019), non-native invasive species 
(Barbiero and Tuchman, 2004), and the impact of changing hydrology 
and magnitude of flooding events on runoff and erosion, have led to 
notable changes in lake water clarity.

Consistent, long-term records of lake water quality are therefore 
critical not only for effective management of water resources but for 
understanding current and future responses of freshwater systems to 
anthropogenic change. However, data scarcity remains a pressing 
challenge, with spatially and temporally representative in situ data 
being prohibitively expensive and logistically challenging to obtain. For 
example, in Canada’s two northern great lakes, Great Slave Lake and 
Great Bear Lake, relatively few studies and little historical limnological 
data exist; remote access and a harsh subarctic climate make continuous 
monitoring datasets rare, yielding spatially patchy and temporally 
limited data sets (Muir et al., 2013). Even in the relatively data-rich 
Laurentian Great Lakes, sparse spatial coverage and the intermittent 
nature of ground-based monitoring often preclude robust conclusions 
regarding long-term lake-wide water quality status and trends (Dove 
and Chapra, 2015). The frequency, geographic coverage, and accessi
bility of satellite Earth Observation (EO) data therefore provide an ideal 
solution for long-term, large-scale monitoring of water quality.

Several satellite ocean colour missions with water quality observa
tion capabilities have been in operation over the last few decades (e.g., 
SeaWiFS, MODIS, MERIS, VIIRS, OLCI), forming an invaluable contig
uous record of aquatic colour radiometry data since 1997. Each satellite 
mission, however, has a finite lifespan (~10 years), resulting in long- 
term datasets being pieced together with observations from multiple 
sensor-specific archives. Challenges exist, therefore, in seamlessly 
merging products to produce consistent multi-mission remote sensing 
products for time-series analyses, due to the need to combine datasets 
from satellite missions with significant differences in sensor and product 
characteristics. Inconsistencies in the spectral, spatial, and temporal 
resolutions of remote sensing platforms mean that products require 
continuity assessment before such multi-sensor datasets can be relied 
upon. Otherwise, the potential for artifacts propagated into downstream 
products may ultimately affect the conclusions drawn from a time-series 
analysis (Groom et al., 2019; Mélin et al., 2017). Various methods exist 
for creating merged multi-mission ocean colour records (IOCCG, 2007) 
and several initiatives make global merged data products routinely 
available to users (e.g. GlobColor, OC-CCI). The European Space Agen
cy’s (ESA) Climate Change Initiative Ocean Colour (OC-CCI) products 
aim to deliver stable, long-term, satellite-based Essential Climate Vari
able (ECV) data suitable for trend assessments (Sathyendranath et al., 
2019). The distributed OC-CCI products include spectral remote sensing 
reflectance (Rrs(λ)), and derived optical and biogeochemical properties 
including absorption (a), backscatter (bb), downwelling attenuation 
coefficient at 490 nm (Kd490) and chlorophyll-a.

Numerous approaches exist for estimating ZSD from Rrs, ranging 
from empirical algorithms based on single band reflectance (Binding 
et al., 2007; Binding et al., 2015) or band ratios (Olmanson et al., 2008; 
Deutsch et al., 2022), analytical solutions based on radiative transfer 
theory (Lee et al., 2018), and more recently machine learning ap
proaches (Maciel et al., 2023; Zhang et al., 2022). Binding et al. (2007; 
2015) used a simple empirical relation between ZSD and Rrs at 555 nm 
(Rrs555) from three sensors (CZCS, SeaWiFS and MODIS), capturing 
dramatic changes in water clarity across the Laurentian Great Lakes 
resulting from oligotrophication, regional HABs, and changing biogeo
chemical processes influencing whiting events. Although this previously 
applied empirical relationship appears robust in the predominantly 
scattering waters of the Laurentian Great Lakes, Binding et al. (2015)

noted the same approach may not be appropriate in strongly absorbing 
waters, thereby limiting the algorithm’s suitability across wide-ranging 
optical water types. Considering the optical complexity of lake waters 
and the variable relationship between ZSD and the optically active pa
rameters contributing to water clarity (Jiang et al., 2019), here we 
extend and modify our previous work using a robust semi-analytical 
Kd490 algorithm accounting for absorption and scattering properties. 
The OC-CCI Kd490 is computed using the model of Lee et al. (2005) after 
applying the Quasi-Analytical Algorithm (QAA, v.6, Lee 2014) to derive 
a(λ) and bb(λ) by inverting Rrs(λ). Because it resolves the effects of both 
absorption and scattering on water clarity, the QAA approach is antic
ipated to be more representative of the wide-ranging optical water types 
across North America’s inland waters, thereby offering the potential for 
a more transferable model for large-scale mapping of water clarity 
compared with simple empirical approaches based on reflectance alone.

In this study, we aim to demonstrate the value of ESA’s OC-CCI Kd490 
products for reporting on the long-term temporal variability of water 
clarity in North America’s largest lakes. The assumption of seamless 
continuity in the OC-CCI Kd490 multi-mission product is critical in 
allowing long-term water clarity trend assessments. Despite the 
increasing availability of high-fidelity in situ optical property datasets in 
recent years (e.g. Lehmann et al., 2023), however, few large-scale 
datasets of Kd490 exist dating back to the beginning of the OC-CCI 
time series in the late 1990s. In this study we therefore made use of 
extensive historical in situ ZSD datasets curated from Canadian and U.S. 
water quality monitoring programs to calibrate a ZSD retrieval algorithm 
from the OC-CCI Kd490. Multi-mission continuity of the derived OC-CCI 
ZSD product was assessed before analyzing seasonal, interannual, and 
decadal status and trends in lake water clarity.

2. Methods

2.1. Study areas

North America’s nine largest lakes were selected for this study 
(Fig. 1). Their surface areas range from the smallest Lake Athabasca at 
7,500 km2 to Lake Superior at 82,000 km2. The lakes span in location 
latitudinally from 43◦ to 68◦ N and longitudinally from 75◦ to 125◦ W, 
covering wide-ranging climates and ecozones. The Laurentian Great 
Lakes have seen notable fluctuations in water clarity in recent decades 
(Binding et al., 2015, 2007) brought about by the combined effects of 
excessive nutrient loading and resulting HABs (Watson et al., 2016), 
subsequent nutrient management (Dove and Chapra, 2015), invasive 
zebra mussels (Fahnenstiel et al., 2010; Klerks et al., 1996), whiting 
events (Watkins et al., 2013), periodic sediment resuspension and 
shoreline erosion. Lakes Superior, Michigan, Huron, and Ontario are 
typically considered oligotrophic with high water clarity in their 
offshore waters and regional nearshore turbidity, whereas Lake Erie 
displays a distinct gradient from a shallow turbid and eutrophic western 
basin which experiences annual cyanobacterial blooms (Binding et al., 
2019; Stumpf et al., 2012), to deeper and meso/oligotrophic central and 
eastern basins.

Lake Winnipeg, located within the Canadian province of Manitoba, is 
the 10th largest freshwater lake in the world covering a surface area of 
23,750 km2. A shallow prairie lake, it is characterized by low water 
clarity brought about by high concentrations of dissolved organic matter 
and mineral resuspension as well as recurring severe cyanobacteria 
blooms (Binding et al., 2018). Lake Winnipeg has experienced a zebra 
mussel invasion initially identified in 2013 (DFO, 2014), colonizing 
most of the available hard substrate in the south basin and Narrows 
regions by 2017–19 (Depew et al., 2021). North-west of Lake Winnipeg 
and on the boundary of the Canadian provinces of Alberta and Sas
katchewan is Lake Athabasca, which is 283 km long with a maximum 
width of 50 km. Fed from the southwest by the Peace and Athabasca 
rivers, the western arm of Lake Athabasca is an area of active sediment 
deposition resulting in strong turbidity gradients from west to east 
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(Evans, 2000). At its outlet, the Slave River flows northward to Great 
Slave Lake in the Northwest Territories. Great Slave Lake is the deepest 
subarctic lake in North America and the second largest lake (after Great 
Bear Lake) that is entirely within Canada. It is seasonally ice-covered 
and typically oligotrophic, waters are generally clear in the east arm 
and turbid in the shallower Resolution Bay where the Slave River con
tributes an extensive plume of suspended sediments (Ruhland et al., 
2023; Evans, 2000). Finally, Great Bear Lake, also in the Northwest 
Territories, is the northernmost of the lakes studied. At its outlet, the 
Great Bear River flows west into the Mackenzie River. Great Bear Lake is 
a deep, cold monomictic lake (Johnson, 1975) and is typically ice- 
covered from late November to July (Rao et al., 2012). Its watershed 
is small and relatively undeveloped and as such the lake is considered a 
pristine ecosystem, with oligotrophic waters of high water clarity 
(Evans, 2000).

2.2. Datasets

2.2.1. OC-CCI Kd490
OC-CCI produces a multi-mission record of Rrs using data from the 

following sensors: SeaWiFS (Sea-viewing Wide-Field-of-view Sensor; 
September 1997 to December 2010), MERIS (MEdium spectral Resolu
tion Imaging Spectrometer; April 2002 to April 2012), MODIS-Aqua 
(Moderate-resolution Imaging Spectroradiometer; July 2002 to 
December 2019), VIIRS (Visible and Infrared Imaging Radiometer Suite, 
October 2011 to 2019), and OLCI (Ocean Land Colour Instrument; OLCI- 
A May 2016 to present, and OLCI-B June 2018 to present). Level-1 data 
from each sensor are atmospherically corrected to level-2 Rrs using 
either POLYMER or SeaDAS l2gen (for SeaWiFS) and binned to 4 km 
(sinusoidal grid) level-3 products with BEAM/SNAP (ESA/ESRIN, 
2022). Mixed pixels in the nearshore were removed by masking. The 
spectral wavebands of SeaWiFS, MODIS, and VIIRS are band shifted to 
the core reference bands of MERIS (412, 443, 490, 510, 560, 665 nm) by 
computing the Inherent Optical Properties (IOPs) using the QAA of Lee 
et al. (2002) as updated in v.6 (Lee, 2014) and back-computing the Rrs 
bands using a high-resolution spectral model (ESA/ESRIN, 2022). OLCI 
requires no band-shifting due to its consistent bands with the legacy 
MERIS bands. SeaWiFS and MODIS Rrs are further corrected to remove 
biases relative to MERIS Rrs, as calculated on a per-pixel basis over the 
2003–2007 period when all sensors overlapped. VIIRS and OLCI are then 
also bias-corrected using their coincident periods with MODIS. Finally, 

overlapping sensor data are merged by simple averaging. As a water 
turbidity indicator distributed by the OC-CCI, Kd490 is derived with the 
model of Lee et al. (2005) using the a(λ) and bb(λ) coefficients from QAA 
and the solar-zenith angle as inputs (Jerlov, 1976), with bbw coefficients 
from Zhang et al. (2009). Daily and monthly composite Kd490 products 
(v. 6.0) were accessed through the OC-CCI web portal (https://www.oce 
ancolour.org/portal). Monthly lake-average Kd490 were retrieved for 
each of the nine lakes in Fig. 1, using shapefiles of the lake boundaries 
obtained from the HydroLAKES database (Messager et al., 2016).

2.2.2. In situ Secchi disk depth (ZSD) matchups
In situ measures of ZSD are typically conducted using a 20 cm black- 

and-white Secchi disk lowered into the water over the shaded side of a 
research/monitoring vessel or other platform, with the depth at which 
the disk remains visible to the naked eye being recorded. An extensive 
dataset of historical in situ ZSD (>10,000 observations) was curated from 
several bi-national research and monitoring programs. Environment 
Climate Change Canada’s (ECCC) Watershed Hydrology and Ecology 
Research Division (WHERD) has conducted regular research cruises in 
the lower Great Lakes (Erie and Ontario) since 2004 for the collection of 
aquatic optics, remote sensing, and biogeochemical variables, typically 
targeting peak algal bloom occurrences in August/September. In addi
tion, ECCC’s Freshwater Quality Monitoring and Surveillance (FWQMS) 
program operates regular spring and summer whole-lake surveys of 
water quality on Lakes Ontario, Erie, Huron, and Superior, data from 
which can be readily accessed in the government of Canada’s open data 
catalogue. Similarly, the U.S. Environmental Protection Agency (EPA) 
Great Lakes National Program Office (GLNPO) samples water quality 
variables to assess the health of the Great Lakes ecosystem, with data 
housed in the Great Lakes Environmental Database (GLENDA).

The U.S. National Oceanic and Atmospheric Administration (NOAA) 
Great Lakes Environmental Research Laboratory (GLERL), along with 
the Cooperative Institute for Great Lakes Research (CIGLR), created a 
HAB monitoring program for western Lake Erie that has conducted 
routine sampling of the basin since 2012 (Boegehold et al., 2023). 
Sampling takes place throughout the pre-bloom, bloom, and post-bloom 
period (typically from May through October) at eight stations which 
were chosen to reflect a broad range of environmental conditions. The 
monitoring program consists of many parameters including biogeo
chemistry (e.g., chlorophyll-a, nutrients, toxins) and optical properties 
for the calibration and validation of remote sensing algorithms.

Fig. 1. Analysis focused on nine of the largest lakes by area in Canada and the U.S., including the Laurentian Great Lakes, Lake Winnipeg, Lake Athabasca, Great 
Slave, and Great Bear Lakes. In situ data from Lake Simcoe was also included in the matchup-exercise.
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Since 2011, a group of arctic aquatic researchers from the Depart
ment of Fisheries and Oceans Canada implemented a cumulative impact 
monitoring program in the main basin of Great Slave Lake, under the 
funding support of the Northwest Territories (NWT-CIMP). A 245-grid 
system, separated by 5 min of latitude and 10 min of longitude, was 
developed to cover the six management areas of the main basin of Great 
Slave Lake (Zhu et al., 2024; Zhu et al., 2017). Sampling occurred be
tween June and August 2012–2022 and included measures of the 
limnological variables: depth (m), temperature (◦C), dissolved oxygen 
(mg/l), pH, turbidity (NTU), conductivity (μs/cm) and ZSD (m).

Manitoba Environment and Climate Change (MECC) has maintained 
a long-term water quality monitoring program on Lake Winnipeg since 
1999 to track changes in lake water quality over a network of 65 stations 
ranging across the North and South basins of the lake and extending 
radially from near-shore to off-shore/lake centre. Chemical and bio
logical samples are collected during the spring, summer, and fall lake 
cruises from the Lake Winnipeg Research Consortium Inc.(LWRC)- 
operated Motor Vessel Namao. LWRC, MECC, and ECCC also collect 
physiochemical parameters coincident with water and sediment sample 
collection, including ZSD.

We also included in the matchup analysis ZSD data from Ontario’s 
provincial monitoring program on Lake Simcoe. Although Lake Simcoe 
was not considered further in the analysis of ZSD status and trends due to 
its smaller lake area, data from its centre-lake monitoring station pro
vided an extensive long-term dataset of in situ ZSD spanning the whole 
period of the OC-CCI and therefore was a valuable additional dataset for 
assessing the continuity of the Kd490 products. No in situ data was ac
quired from Lake Athabasca or Great Bear Lake, but the comprehensive 
range of observations collected across the other lakes (capturing oligo
trophic, eutrophic, dystrophic, and turbid waters) is expected to 

adequately capture the variability of conditions in these two large lake 
systems given what is known about their general water quality status.

Station coordinates and sampling dates from the compiled dataset of 
in situ ZSD observations were uploaded to the OC-CCI data portal to 
extract same-day single pixel (at 4 km resolution) matchups of OC-CCI 
satellite-derived Kd490. In total 4297 matchups were obtained across 
all lakes, with Lake Erie and Lake Winnipeg offering the highest number 
of matchups, and Great Slave Lake the least (Fig. 2a). Fig. 2a documents 
the natural range of water clarity conditions on the nine lakes, with Lake 
Winnipeg by far the most turbid, and Lakes Huron, Superior and 
Michigan exhibiting the clearest waters. The full range of matchup ob
servations spanned ZSD from 0.2 m to 36 m, with 29 % of the matchups 
representing highly turbid waters in which ZSD < 2 m (Fig. 2b). Total 
matchups in any given year ranged from 82 to 274, except for 2020 due 
to the impact of the COVID-19 pandemic on sampling campaigns that 
year (Fig. 2c). The gradual increase in monitoring effort over the time 
period is notable, with the last few years’ decline attributed both to 
remnant impacts of the pandemic on monitoring programs, and normal 
delays in releasing data to the public domain.

2.3. Data analyses

The relationship between OC-CCI Kd490 and in situ ZSD was assessed 
using leave-one-year-out cross-validation. The slope and intercept of 
linear least-square regressions were determined sequentially on data 
subsets after leaving one year out (Electronic Supplementary Material
(ESM) Table S1). The predictive performance of each relationship was 
then assessed on the independent remaining year’s data, calculating the 
MAPE and BIAS according to Eq (1) and Eq (2) every year from 1998 to 
2022 (i.e. matchups from 1998 were used to assess the performance of 

Fig. 2. (a) Boxplot distribution of in situ ZSD for each lake used in the matchup dataset, where the box captures the 1st to 3rd quartiles, the median is marked by the 
horizontal line, mean marked by a cross, and whiskers extend to mark the minimum and maximum. [N] is the total number of matchups for each lake, (b) number of 
ZSD matchups per 1 m bin in the range 0–36 m, and (c) total ZSD matchups per year.
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the relationship generated with data from 1999 to 2022, those from 
1999 validated the relationship from 1998 and 2000–2022, etc.). The 
final linear relationship between Kd490 and ZSD, along with its perfor
mance metrics, were taken as the average of all subset assessments. 

MAPE =
100
n
∑n

i=1

⃒
⃒
⃒
⃒
ZSD(Pred)i − ZSD(Obs)i

ZSD(Obs)i

⃒
⃒
⃒
⃒ (1) 

BIAS =
100
n
∑n

i=1

(
ZSD(Pred)i − ZSD(Obs)i

ZSD(Obs)i

)

(2) 

In order to assess inter-annual and inter-sensor continuity in the OC-CCI 
products, the final single Kd490-ZSD relationship was applied to all 
matchups and the MAPE and BIAS of predicted ZSD calculated. Mood’s 
median test (Mood, 1950) was then used to assess whether there were 
any significant differences in the median MAPE and BIAS of each year, 
mission, and key periods of changing data sources in the OC-CCI dataset. 
If there was significant evidence that population medians were different, 
post hoc testing was conducted to determine the magnitude of the dif
ferences using pairwise Mood’s median tests with pairwise bootstrap 
confidence intervals, correcting for multiple simultaneous inferences by 
applying a Bonferroni correction.

To view seasonal and interannual variability in the OC-CCI lake-wide 
average ZSD, monthly and annual ZSD anomalies (ΔZSD, Eq (3) were 
determined as the percentage difference between the annual (or 
monthly) average ZSD and the long term (1998–2023) average ZSD. 
Annual averages were calculated as the average of all available monthly 
ZSD, which varied for each lake due to data gaps brought about by 
seasonal ice extent, but were kept consistent for all years on each lake. 
For most lakes the annual ZSD included observations for May-November, 
whereas for the northernmost lakes, winter ice cover reduced the 
observation window to June-October for Great Slave Lake and Lake 
Athabasca, and July–September for Great Bear Lake. 

ΔZSD = 100

⎡

⎢
⎢
⎢
⎢
⎣

ZSDi −

(

1
n
∑2023

i=1998ZSDi

)

(

1
n
∑2023

i=1998ZSDi

)

⎤

⎥
⎥
⎥
⎥
⎦

(3) 

Where ZSDi is either the annual or monthly average ZSD.
Nonparametric Mann–Kendall tests for monotonic trends were 

applied (Hussain and Mahmud, 2019) to determine the significance of 
temporal ZSD trends using moving windows of ten years, with the 
magnitude of those temporal trends estimated using Thiel–Sen’s slope 
(mTS). These tests are recognized to be robust to outliers and more ac
curate for skewed or heteroskedastic data and have been used widely for 
assessing temporal trends in limnological studies (Ho et al., 2019; Tar
anu et al., 2015; Hirsch et al., 1982).

3. Results

3.1. ZSD Calibration-Validation

The total 4297 matchups resulted in a robust relationship between in 
situ ZSD and the OC-CCI Kd490 (Fig. 3) with average retrieval un
certainties of 29.6 % MAPE and 6.6 % BIAS based on the leave-one-year- 
out cross-validation (ESM Table S1). Individual lake data contributions 
occupied different spaces in this relationship due to the inherent dif
ferences in their range of water clarity conditions (Fig. 4). Leave-one- 
lake-out cross-validation therefore resulted in small deviations in the 
slope of the relationship between ZSD and Kd490, although MAPE and 
BIAS remained in the 29–32 % and 0–15 % ranges respectively. 
Furthermore, no more than 10 % of any individual lake data fell outside 
the 99 % prediction interval of the relationship from the remaining lake 
data, suggesting that despite some expected regional differences, the 
average relationship has broad applicability and adequately represents 
the ZSD-Kd490 relationship for all the validated lakes in the study.

Fig. 3. Agreement between same-day matchups of in situ ZSD and the satellite-derived daily OC-CCI Kd490 product for the entire multi-lake multi-mission dataset.
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3.2. Multi-Sensor continuity assessment

Adequate numbers of matchups for each year of the time series (with 
the exception perhaps of 2020 due to pandemic-related impacts on 
monitoring programs) allowed reliable estimates of annual ZSD retrieval 
uncertainties. Assessment was then made of the temporal consistency in 

retrieval uncertainties as reported by %MAPE and %BIAS. Annual me
dian MAPE and BIAS ranged from 15.5 to 35.6 % and from − 25 to 23.3 
% respectively over the 1998–2022 time-period (Fig. 5). Significant 
differences were found among the reported annual median MAPE 
(Moods median χ2 = 113.94, p < 0.0001) and BIAS (Moods Median χ2 =

220.04, p < 0.0001).

Fig. 4. Lake-specific distribution of data in the log10 ZSD vs log10 OC-CCI Kd490 space. Centre line represents the algorithm fit from the leave-one-lake-out validation 
(i.e. using all data except the left-out lake, N is therefore the total dataset minus the data from the named lake), dashed lines represent the 99 % confidence interval of 
that fit.

Fig. 5. Time series of annual ZSD retrieval MAPE (a) and BIAS (b), using the best-fit relation of the whole dataset as reported in Fig. 3. For reference, the lower panel 
(c) captures the periods of the five contributing sensor datasets.
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Similarly, the retrieval uncertainties were calculated for key periods 
across the dataset to ascertain any mission-related offsets that could lead 
to artifacts in the time-series. Firstly, uncertainties were calculated for 
the independent mission periods, 1998–2010 for SeaWiFS, 2002–2011 
for MERIS, 2002–2019 for MODIS, 2015–2019 for VIIRS and 2016 to 
present for OLCI (Fig. 5c). Median MAPE in retrieved ZSD for any given 
mission period ranged from 20 % to 25.2 %, with the highest uncertainty 
recorded during the VIIRS and OLCI windows. Moods median tests 
confirmed significant differences in the median MAPE between missions 
(χ2 = 32.6564, p < 0.0001), with OLCI noted as having higher retrieval 
uncertainties than SeaWiFS (by 5.3 %, p < 0.0001), MERIS (by 4.5 %, p 
= 0.0001), and MODIS (by 3.8 %, p = 0.0017). Median BIAS ranged 
from an underestimate of ZSD by 6.5 % for MERIS to an overestimate of 
2.8 % by OLCI, again with significant differences among mission periods 
(χ2 = 40.9011, p < 0.0001). Due to the overlap in mission operating 
periods and the range of data contributions to the composite dataset, 
however, it is challenging to identify and correct mission-specific arti
facts using these windows. Instead, following the approach of Oostende 
et al. (2022) a second assessment was carried out for key periods of 
change in the data sources; the time-series was divided into four broad 
sub-periods defined as the period when only SeaWiFS was available (P1: 
1998–2002), the period when MERIS and MODIS were incorporated 
(P2: 2002–2011), the period when VIIRS was launched and MERIS 
terminated (P3: 2012–2015) and the period when OLCI was included 
(P4: 2016 − present). For these defined periods, median MAPE ranged 
from 18.3 % for P1 to 24.0 % for P4, with significant differences re
ported among the groups (χ2 = 16.16, p = 0.0011) which was attributed 
to the difference between P4 and P1 (5.6 %, p = 0.004) and between P4 
and P2 (3.3 %, p = 0.004). Likewise, the median BIAS in retrieved ZSD 
was 9.4 % for P1, − 6.5 % for P2, − 3.4 % for P3 and 1.5 % for P4, with 
significant differences noted between P1 and all other periods as well as 
between P2 and P4. It was these period-specific median biases that were 
subsequently applied to the time-series of OC-CCI ZSD as a correction to 
remove potential artifacts in the dataset introduced by sensor merging.

3.3. Inter-annual ZSD variability and trends

The ZSD retrieval algorithm in Fig. 3 was applied to monthly com
posite OC-CCI-Kd490 products, corrected for the period-specific bias 
from Fig. 5b, and extracted as lake-wide average ZSD for each lake from 
1998 to 2023. Derived monthly ZSD, annual ZSD anomalies, decadal 
trends, and rates of change are presented in Fig. 7 for each of the nine 
lakes. Of the northern lakes, Great Bear Lake was the clearest, with 
monthly lake-average ZSD ranging from 6.1 m to 9.7 m, and with little 
interannual variability in the annual average ZSD, deviating from the 
long-term average by a maximum of 10.4 % in 2014 and − 9.2 % in 2006. 
Nevertheless, significant decadal trends in ZSD were observed, declining 
over 1998–2007, before a period of increasing ZSD through 2015, fol
lowed by declines until 2023. Great Slave Lake exhibited much lower 
water clarity, ranging from a minimum lake-average ZSD of 0.7 m to a 
maximum of only 2.1 m and with significant interannual variability, 
with annual ZSD deviating from the long-term average by as much as 39 
% in 2010 and − 36 % in 2020. Interdecadal trends captured a period of 
increasing ZSD until ~ 2010 before declining. Similarly, Lake Atha
basca’s monthly lake-average ZSD ranged from 0.8 m to a maximum of 3 
m. Its peak annual ZSD deviated from the long-term average by 42 % in 
2015, and like Great Slave Lake, saw a minimum ZSD (30 % below 
normal) in 2020. There were no significant decadal trends before 2005, 
after which there were three decadal periods of increasing ZSD before 
declines driven by the low of 2020. Lake Winnipeg showed the lowest 
water clarity of all the lakes studied, ranging from a minimum monthly 
lake-average ZSD of 0.3 m to a maximum of only 1.4 m. Below-average 
annual water clarity (by as much as 24 %) persisted for over a decade 
before transitioning abruptly in 2012 to a period of elevated ZSD, 
peaking in 2021 at 32 % above the long-term average. Decadal trends 
confirm significant declines in Lake Winnipeg water clarity until ~ 2009 
then switching to a period of significantly increasing ZSD before stabi
lizing in the last few years. However, the absolute rate of decadal change 
in ZSD (Fig. 7d) peaked at only 2.3 cm per year due to the low baseline 

Fig. 6. ZSD retrieval MAPE and BIAS using the best-fit relation of the whole dataset as reported in Fig. 3, for (a) mission-specific periods and (b) time periods 
representing key changes in the input data sources of the OC-CCCI as defined by P1− P4.
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levels of clarity on the lake.
Of the Laurentian Great Lakes, Lake Superior has some of the highest 

water clarity, with lake-average monthly ZSD ranging from 6.1 m to 12.9 
m. Minimum annual ZSD was observed in 1999 (15.1 % below average), 
with an increasing trend toward peak ZSD in 2007 (at 11 % above 
average), before significant declines since ~ 2009. Annual rates of 
change in ZSD (mTS) ranged from 22 cm per year for the decade begin
ning in 1998 to − 21 cm per year for the decade beginning 2010. Lake 
Huron showed a lower minimum water clarity than Superior (monthly 
minimum of 5.1 m observed in 1998), but at its peak, had a higher ZSD 
than Superior (peaking at 13 m in 2012). Decadal trends showed a 
consistent increase in ZSD from the 1990 s through to ~ 2011 at a rate of 
21–23 cm per year before stabilizing. Lake Michigan shows very similar 
water clarity conditions to Lake Huron, with a range in monthly ZSD of 
5.5–13.3 m and a consistent trend of increasing water clarity from a 
minimum in the 1990s to a peak around 2012–15, increasing at a rate of 
up to 30 cm per year. Lake Erie is the shallowest and thus most turbid of 
the Laurentian Great Lakes, with monthly ZSD ranging from 1.1 m to 7.0 
m. There was little significant change in ZSD recorded in Lake Erie with 
the exception of a small increase captured over the first three decadal 
periods. Finally on Lake Ontario, monthly ZSD ranged from 4.5 m to 11.4 
m, with a notable period of below-average water clarity from 1998 to 
2002 before significant increases to fairly stable conditions for the 
remainder of the time series.

3.4. ZSD seasonality

Seasonality of water clarity showed significant variation between 
lakes and over time (Fig. 8). On Great Bear Lake, where observations 
were restricted to just July-September, there was limited seasonal 
variability both within and between years. Water clarity peaked in July, 
declining through August and September. Despite interannual vari
ability in monthly ZSD of less than +/-10 %, seasonal decadal trends 
suggest significant recent declines in September water clarity (ESM 
Figure S1). In Great Slave Lake the minimum annual ZSD observed in 
2020 was driven by low water clarity across the whole season, with 
August and September in particular being 47 % and 48 % below normal 
respectively. Seasonality of low water clarity decades (e.g. those starting 
in 2013 and 2014) showed a notable decrease in ZSD in July, increasing 
in August before declining into the fall. In contrast, the seasonality of 
higher water clarity decades (e.g. those starting in 2006 and 2008) 
showed a broader spring/summer peak. Of note, monthly ZSD in July 
2010 and August 2015 was more than 60 % and 54 % above seasonal 
norms respectively. In Lake Athabasca, ZSD peaked consistently in 
August, reaching a minimum ZSD in October. The 1998–2007 decade 
exhibited the lowest water clarity, whereas the highest water clarity was 
observed in the 2007–2016 and 2008–2017 decades. Lake Winnipeg saw 
significant declines in June-September ZSD until ~ 2012 (ESM 
Figure S1), with summer ZSD of 2010 being 30 % below the long-term 
average, leading to a minimum decadal ZSD in the 2002–2012 period. 
This then shifted to increasing spring and summer ZSD, with peak 

Fig. 7. Time series of (a) OC-CCI derived monthly lake-average BIAS-corrected ZSD, (b) annual ZSD anomaly as the percentage difference between the annual average 
ZSD and the long term average ZSD (1998–2023), (c) 10 year rolling trends in ZSD from Theil-Sen’s Slope after Seasonal Mann-Kendall test for monotonic trends (grey 
= insignificant trend, black = significant trend at p < 0.05), and (d) the magnitude of the Thiel Sen slope (mTS) for each decadal interval plotted on the first year of 
each 10 year period, where positive slopes above the dash line indicate a trend of increasing ZSD and negative slopes below the dash line indicate a trend of 
decreasing ZSD.
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decadal ZSD in 2012–2022. The greatest interannual variability in 
monthly ZSD was observed in July. No significant changes in November 
water clarity were observed, but the decadal seasonality shows some 
suggestion of the seasonal peak in ZSD broadening or shifting later in the 
year. The apparent increase in ZSD seasonality on Lake Winnipeg is 
captured by an increase in the coefficient of variation (CV) of monthly 
ZSD each year, ranging from 12-27 % before 2012 to 20–37 % after 2012.

The trends that were evident on Lake Superior on an annual basis are 
mirrored in the monthly ZSD, with increases in ZSD prior to 2012 

dominated by increases in spring and summer ZSD. In contrast, declines 
in more recent years have been more prominent in October and 
November, with November 2016 and 2017 in particular being 20 % and 
26 % below long-term norms respectively. Peak decadal ZSD on Superior 
was observed in 2003–2012. Lake Huron water clarity typically peaked 
in July before declining consistently in later months. Lake Huron’s 
spring water clarity saw especially significant increases (ESM Figure S1) 
ranging from lows of as much as 33 % below normal in May/June prior 
to 2002 to a peak in 2012 at 32 % above normal, with decadal averages 

Fig. 8. (a) Hovmöller diagrams showing monthly ZSD anomalies calculated as the percentage difference between monthly ZSD and the long term (1998–2023) 
average monthly ZSD, and (b) seasonal variability of decadal average ZSD (i.e. 1998 shows the average monthly ZSD over the 1998–2007 period, 1999 is for 
1999–2008, etc).
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stabilizing in more recent years.
Very clear shifts in seasonal water clarity conditions were observed 

in Lake Michigan, with a 44 % increase in decade-average May ZSD from 
8.1 m in 1998–2007 to nearly 11.7 m in 2014–2023. Increases over the 
same period of 33 % and 18 % were recorded for decade-averaged June 
and July ZSD respectively. Individual monthly anomalies ranged from 
37 % below the long-term average in August of 1998 to 33 % above 
average in May of 2015. Decadal trends captured significant increases 
for May-August, with no significant trends observed in October and 
November water clarity (ESM Figure S1). These spring-weighted in
creases in water clarity have resulted in a shift in the observed seasonal 
pattern of ZSD on the lake, from a July peak in water clarity in the 
1998–2007 period to a May peak in more recent years. The increased ZSD 
seasonality gained by the higher springtime water clarity is reflected in 
the average annual CV of 15 % before 2008 increasing to 20 % after 
2008.

For the lower Great Lakes, two very different patterns in water clarity 
seasonality were evident. In Lake Erie, decade-average ZSD peaked 
consistently in July, reaching a minimum ZSD in November. There’s a 
large amount of interannual variability in monthly ZSD particularly in 
May (monthly anomalies ranging from − 38 % in 2003 to 60 % in 2015) 
and November (from − 38 % in 2015 to 36 % in 2008). Nevertheless, 
decadal seasonality has remained remarkably stable over the observa
tion period, with no notable monthly trends detected (ESM Figure S2). 
In contrast, Lake Ontario saw significant increases in ZSD from May 
through August until around 2008 before stabilizing. The seasonality is 
driven by peak water clarity in May followed by a local minimum in 
June, a second peak in July and then the lowest water clarity in August 
and September before increasing again into October/November. The 
greatest increase in monthly decade-average ZSD was observed in June, 
increasing by 23 % from 7.2 m in 1998 to 8.8 m in 2012.

4. Discussion

4.1. Drivers of water clarity changes

Seasonal, inter-annual and inter-decadal variability and trends in ZSD 
agree well with documented periods of change on each lake in response 
to the cumulative impacts on water clarity from harmful algal blooms, 
nutrient status, invasive species, and extreme hydrological events. For 
example, the time-series captures the impact of an unprecedented high- 
water year for Great Slave Lake in 2020 (Fig. 7b, Fig. 8a), after precip
itation in the watershed reached a 20-year peak. Turbidity subsequently 
reached historic highs in July 2020 due to very heavy sediment loads 
from the Slave River, the largest tributary to the lake, gaining much 
media attention (Cabin Radio, 2020; CBC, 2020) and visible in satellite 
imagery as an extensive turbidity plume (USGS, 2020). High flows in the 
Slave River were matched by very high flows in the Peace and Athabasca 
Rivers, as well as extremely high water levels in the Peace-Athabasca 
Delta and Lake Athabasca, therefore the low water clarity seen in 
Great Slave was also mirrored in Lake Athabasca during the same period 
(Fig. 7b). In contrast, periods of low discharge from the Slave River (e.g. 
2005, as observed in ECCC hydrometric data) saw some of the highest 
water clarity in both Great Slave and Lake Athabasca. In addition to 
these hydrological drivers, significant changes in biological productivity 
in these northern lakes have been recently documented (Ruhland et al., 
2023; Sayers et al., 2020) which could contribute to the observed sea
sonal and temporal trends in water clarity. Remote sensing data from 
2003 to 2018 (Sayers et al., 2020) showed a steady and significant in
crease in lake-wide primary production on Great Slave and Great Bear 
lakes, while pronounced shifts in phytoplankton community composi
tion in response to accelerated Arctic warming have also been docu
mented (Ruhland et al. 2023). The reduced seasonal data availability of 
the OC-CCI dataset in these northern lakes (from July to September for 
Great Bear and June to October for Great Slave and Lake Athabasca) 
highlight some of the limitations of remote sensing of water quality at 

high latitudes due to ice cover and low solar angles.
Results for Lake Winnipeg suggest a period of declining water clarity 

followed by a shift to increasing water clarity in recent years beginning 
in ~ 2012 (Fig. 7b). Since the 1990s, Lake Winnipeg experienced a 
period of rapid eutrophication, leading to severe recurring algal blooms 
(Binding et al., 2018; Bunting et al., 2016). Efforts to reduce nutrient 
loading to Lake Winnipeg are ongoing, with the long-term goal of 
reducing phosphorus concentrations in the lake to pre-1990 levels 
(Bunting et al., 2016; Government of Manitoba, 2020). Between 2010 
and 2023, implemented management actions prevented an estimated 
390 tons of phosphorus from reaching Lake Winnipeg (ECCC, 2024). 
Total Phosphorus and Nitrogen concentrations in the north basin of the 
lake were reported to be below the long-term mean in 2012–2019 and 
2012–2021 respectively (Government of Manitoba, 2023). Over the 
same period, invasive zebra mussels (Dreissena polymorpha) were 
introduced to the lake, with the first adult mussels reported in 2013, 
although anecdotal evidence suggests their arrival may have already 
occurred in 2012 or earlier (Page, 2020). The establishment of zebra 
mussels in the Laurentian Great Lakes contributed to significant local
ized increases in water transparency in the years immediately following 
their colonization (Holland, 1993). The timing of an apparent regime 
shift in water clarity conditions on Lake Winnipeg around 2012 toward 
increasing ZSD is therefore in good agreement with the anticipated dual 
impacts of implemented nutrient management practices and the intro
duction of zebra mussels. Further, similarly to Great Slave Lake, annual 
hydrological variability in sediment loading from relatively TSS-rich 
tributaries to Lake Winnipeg (Government of Manitoba, 2023) may 
contribute to annual and longer-term clarity trends and variability.

Increases in water clarity in Lakes Huron, Michigan, and Ontario, 
particularly in the spring (Fig. 8b), are in good agreement with docu
mented reductions in productivity in those lakes due to the effects of 
nutrient management and invasive zebra mussels (Barbiero et al., 2012; 
Evans et al., 2011). Lakes Huron and Michigan have undergone gradual 
oligotrophication coincident with, and anticipated by, nutrient man
agement implementation (Evans et al., 2011). Barbiero et al. (2012)
noted a distinct convergence of the trophic state in the three upper lakes, 
corroborated here with the increases in transparency in Lakes Huron and 
Michigan to Secchi depths roughly equivalent to, and sometimes 
exceeding, Lake Superior (Fig. 7a). Barbiero et al. (2012) also reported 
that the seasonality of chlorophyll-a has been dramatically reduced in 
Lake Huron and Lake Michigan, with the spring bloom largely absent 
from both lakes and instead a seasonal maximum occurring in autumn, 
as is the case in Lake Superior. These shifts in seasonality have been 
captured in the decadal trends in water clarity reported here (Fig. 8b). 
The timing of dramatic drops in production has been found to coincide 
with the expansion of populations of invasive dreissenid mussels in 
Lakes Huron and Michigan in the early 2000s and mid-2000s respec
tively (Evans et al., 2011). In Lake Michigan, adult quagga mussels 
increased dramatically in density between 2001 and 2006, with 
extraordinary increases in water transparency along with simultaneous 
decreases of chlorophyll-a in the late-winter bloom (Kerfoot et al., 
2010). Consistent with those observations, here we found the maximum 
rates of change in ZSD were the decades centered on 2002 through to 
2004, with the annual rates of change as high as 30 cm for Lake Mich
igan and 22 cm for Huron. Lake Huron saw the first switch from below- 
average summer water clarity to above-average in 2004, whereas 
Michigan was two years later in 2006 (Fig. 8a).

Lake Erie has undergone a period of re-eutrophication since the mid- 
1990s, with a resurgence of annual algal blooms persisting mainly in the 
western basin throughout the summer and into late fall (Scavia et al., 
2014; Stumpf et al., 2012; Watson et al., 2016). The blooms of 2011 and 
2015 in particular were the largest in the last two decades (Zeng and 
Binding, 2021) and here results showed June-October average ZSD 14 % 
and 11 % below normal in those two years, respectively. The lack of any 
discernible seasonal, interannual or decadal trends in water clarity on 
Lake Erie is therefore contrary to concerns over the increasing severity of 
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these blooms. The shallowest of the Great Lakes, Erie also experiences 
frequent wind-driven resuspension events that often dominate lake-wide 
water clarity, and it is perhaps this seasonal and interannual variability 
in mineral turbidity that obscures any potential trends in algal-driven 
water clarity. Likewise, the blooms in Erie are generally restricted to 
its western basin, and so reporting here on the whole lake-average ZSD 
could potentially reduce such spatial heterogeneity.

On Lake Ontario, Barbiero et al. (2006) reported a near doubling of 
summer Secchi depths in the 1990s, postulating a reduction in calcite 
precipitation (whiting events), resulting from the effects of dreissenids 
on offshore calcium concentrations. Satellite-derived Secchi on the 
lower Great Lakes reported by Binding et al. (2007) suggested a decrease 
in whiting events and associated water clarity on Lake Ontario between 
the CZCS and SeaWiFS missions periods, although intermittent whiting 
events remained. Watkins et al. (2013) showed ongoing whiting events 
in their time series of Rrs550 extending to 2011, and the present study 
suggests those whiting events remain a frequent contributor to seasonal 
water clarity, resulting in minima in ZSD in August/September each year. 
Results here suggest that the previously reported increases in water 
clarity in Lake Ontario continued into the early 2000s before stabilizing 
(Fig. 7b). Changes in seasonal ZSD in Lake Ontario were greatest in the 
spring and early summer (Fig. 8b), corroborating the observations of 
Binding et al. (2007) which captured dramatic increases in springtime 
water clarity between CZCS and SeaWiFS, and in agreement with re
ported reductions in chlorophyll-a following mussel colonization and 
reductions in total phosphorus to the lake (Nicholls, 2001).

4.2. Multi-mission continuity of the OC-CCI products

The OC-CCI project aims to deliver a consistent and homogenous 
data set of ocean colour and bio-geo-optical products for long term time- 
series and climate related studies. While every effort has been made by 
the OC-CCI team to remove bias and minimize the difference between 
mission periods, some product uncertainties and discontinuity inevi
tably remain and user caution is advised particularly around the start 
and end times of the individual sensor datasets (ESA/ESRIN, 2022). 
Mélin et al. (2017) assessed temporal trends among the OC-CCI 
chlorophyll-a products and found overall good agreement between 
single mission and the merged data products. Nezlin et al. (in review) 
reported consistency in the timing of chlorophyll-a regime shifts in the 
Laurentian Great Lakes measured from the OC-CCI dataset compared 
with those measured from individual sensors, suggesting limited impact 
of multi-mission data merging on their analysis. However, others have 
noted significant inter-mission inconsistencies, typically appearing as 
steps in the OC-CCI products coinciding with mission periods, which 
could be potentially misinterpreted as natural variability and trends 
(van Oostende et al., 2022). In the present study, to mitigate the impact 
of any remaining sensor-specific artifacts in the data, we applied a 
correction based on the observed interannual variability of ZSD retrieval 
bias, as determined for the four key periods of data transition in the OC- 
CCI dataset (Fig. 6b). Even though a large quantity of matchups were 
available for this exercise, differences in the number (and location) of 
matchups between years and sensor-specific periods may introduce 
uncertainty in the applied bias corrections. Other approaches have also 
been suggested in the literature, for example van Oostende et al. (2022)
introduced the temporal gap detection method, to improve the temporal 
homogeneity of multi-mission datasets by correcting the differences in 
observational gaps per pixel. Despite these added steps being taken to 
minimize the uncertainty of inter-sensor bias it cannot be discounted 
that some discontinuities in the time-series remain. However, the fact 
that the interannual variability and trends in ZSD presented here varied 
so distinctly between the lakes studied suggests there were no consistent 
data-related artifacts overriding our results. Furthermore, the timing of 
observed changes in ZSD were entirely consistent with known ecosystem 
shifts and hydrological events in each lake, suggesting that any 
remaining uncertainty in multi-mission continuity is small and that the 

OC-CCI captured accurately the temporal variability of water clarity on 
these lakes.

4.3. Consistency with previous studies

Binding et al. (2015) applied a simple empirical ZSD algorithm built 
on coincident in situ ZSD and satellite-measured Rrs555, reporting dra
matic changes in water clarity of the Laurentian Great Lakes over three 
mission periods (CZCS, SeaWiFS and MODIS). We would expect the 
relationship between ZSD and Rrs555, however, to be sensitive to the 
level of absorption within the waterbody under consideration. We have 
observed that the algorithm fails in strongly absorbing waters such as 
black water events in Lake Winnipeg (unpublished work), where the 
absorption-diminished Rrs555 results in significant overestimates in 
retrieved ZSD. Here we compared the results of the OC-CCI Kd490-derived 
ZSD with retrievals using the previous Rrs555-based algorithm for the 
Laurentian Great Lakes (Fig. 9). A good agreement exists between the 
two approaches for the more turbid waters of Lake Erie and Ontario 
where algal blooms, sediment resuspension, and whiting events drive 
water clarity. In contrast, in the clear waters of Lake Superior, Huron 
and Michigan, the Rrs555-derived ZSD is significantly lower than the OC- 

Fig. 9. Time series of lake-wide average ZSD for the Canadian Great lakes 
derived from the empirical relationship with Rrs555 published in Binding et al. 
(2015) and that validated in the present study from the OC-CCI Kd490 product.
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CCI derived ZSD. This is consistent with the anticipated effect of 
absorbing waters on the algorithm calibration in Binding et al. (2015), 
forcing a higher intercept and therefore resulting in underestimation of 
ZSD in clear waters, and overestimation of ZSD in strongly absorbing 
waters (see ESM Figure S2). These results point to an increased confi
dence in IOP-derived water clarity products relative to simple 
reflectance-based algorithms, with results of the present study being 
more broadly applicable over wide-ranging optical water types.

4.4. Variability of the ZSD-Kd490 relationship

The OC-CCI project provides ocean colour ECV data products, with a 
focus on Case-1 water algorithm approaches. Multiple sources of po
tential variability and uncertainty exist in the distributed Kd490 prod
ucts, particularly for coastal and inland water applications. In addition 
to the multi-mission merging bias already discussed, further sources of 
uncertainty in the Kd490 products can be attributed to uncertainties in 
atmospheric correction over optically complex inland waters, regional 
and temporal variability in the inherent optical properties, contamina
tion from optically shallow waters (i.e. bottom effects) and adjacency 
effects. Any bias in the retrieved Kd490 in these optically complex waters 
will therefore be propagated into the defined relationship between Kd490 
and ZSD, which will also include uncertainties brought about by sub- 
pixel variability, and bias in the inherently subjective measurement of 
ZSD in the field. Some variability in the ZSD-Kd490 relationship can likely 
be attributed to the coarse spatial resolution of the Level-3 OC-CCI 
products (4 km), particularly in dynamic nearshore environments. A 
stronger relationship may be anticipated using the same Kd490 products 
at the sensor’s native resolutions. In the past decades, a number of 
empirical relationships have been developed between ZSD and KPAR or 
Kd(λ) with measurements from various water bodies (Lee et al., 2018). 
From theory, ZSD can be approximated by 1.48/KPAR, consistent with the 
range of coefficients reported in the literature between 1.27 and 2 from 
in situ datasets (Lee et al., 2018). The equivalent coefficient observed in 
the present study is 1.19 for the whole multi-lake dataset, so at the low 
end of the coefficients curated in Lee et al. (2018) but close to those 
reported for the most turbid waters of Chesapeake Bay (Gallegos et al., 
1990). Atmospheric correction in highly turbid waters very often over
corrects reflectance in the blue portion of the spectrum, leading to 
overestimates in derived Kd490, which may contribute to the low coef
ficient observed here. Furthermore, the relationships in Lee et al. (2018)
are for broad-spectrum KPAR rather than the Kd490 reported by OC-CCI. 
The relationships between water clarity and optically active parameters 
are complex and variable (Jiang et al., 2019), with different wavelengths 
sensitive to different water constituents, which can lead to underesti
mation or overestimation of ZSD for different optical waters from a single 
relationship (Zhang et al., 2022). Some have proposed a pre- 
classification step in ZSD retrieval algorithms, for example Liu et al. 
(2013) categorized waters into three types before establishing empirical 
relationships, which may provide further improvements in retrieval 
uncertainties in future efforts. Furthermore, several studies have re
ported that the QAA model for IOPs has greater uncertainties in turbid 
inland waters (Jiang et al., 2019; Shanmugam et al., 2010) and it can be 
assumed those errors will be propagated to the estimations of Kd(λ) and 
ZSD. Adopting recommendations that such semi-analytical algorithms 
designed for open ocean waters be modified before applying to coastal 
and inland waters (Huang et al., 2013) may further reduce retrieval 
uncertainties in the present study. Despite the extensive satellite 
matchups of a wide range of in situ ZSD across diverse water types 
(oligotrophic through eutrophic, mineral turbidity through DOM-laden 
waters), the derived algorithm may still introduce uncertainties when 
applied to lakes outside of the validation dataset (here for example in 
Great Bear Lake and Lake Athabasca). While we believe the matchup 
dataset likely encompasses the water clarity properties of these two 
additional lakes, given what is known about their water conditions 
(oligotrophic in Great Bear and a gradient of turbid to oligotrophic in 

Athabasca), any future water quality monitoring on these under- 
sampled lakes would be valuable in further validating retrievals and 
assessing the broader transferability and uncertainties of the approach.

4.5. Management implications

Data scarcity remains a significant challenge in reporting on the 
status and long-term trends of inland water quality over countries as 
large as Canada and the U.S. with their vast water resources. For a 
Canada-wide assessment, Deutsch et al. (2022) reported on Secchi depth 
retrieved from Landsat 8 using a reflectance ratio algorithm for ~ 
100,000 lakes across southern Canada, providing a valuable snapshot of 
the broad spatial patterns in water clarity in relation to lake morpho
logical and hydrological conditions and human impacts. Here we pro
vide a comprehensive assessment of the seasonal, interannual and 
decadal variability of water clarity for a number of Canada’s large lakes, 
underscoring the significant temporal variability that the many lakes 
across Canada might experience. Such temporal time-series provide an 
effective indicator of lake responses to the cumulative impacts of 
hydroclimatic events, invasive species, eutrophication, and imple
mented water resource management actions. High fidelity remote 
sensing products made possible with merged multi-mission datasets will 
be critical for robust long-term monitoring and reporting of lake water 
quality status and trends, particularly in addressing directives of the 
newly formed Canada Water Agency and binational commitments for 
transboundary watersheds. Continuing efforts from space agencies and 
data providers to deliver consistent bias-minimized merged multi- 
mission data products would be welcome in reducing uncertainties in 
downstream products.
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nearshore-areas and https://data.ontario.ca/dataset/georgian-bay- 
water-quality); U.S. Environmental Protection Agency Great Lakes 
monitoring data available through the Great Lakes Environmental 
Database (GLENDA) (accessed via the U.S. Environmental Protection 
Agency (EPA) Central Data Exchange (CDX) at https://cdx.epa.gov/); 
ECCC’s Great Lakes Water Quality Monitoring and Surveillance data 
(accessed at: https://data-donnees.ec.gc.ca/data/substances/monitor/ 

C. Binding et al.                                                                                                                                                                                                                                 Journal of Great Lakes Research xxx (xxxx) xxx 

12 



great-lakes-water-quality-monitoring-and-aquatic-ecosystem-health- 
data/great-lakes-water-quality-monitoring-and-surveillance-data/); 
and NOAA GLERL’s HAB Monitoring program data available from the 
NOAA National Centers for Environmental Information (NCEI) at 
https://www.ncei.noaa.gov/.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jglr.2024.102454.
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Briland, R.D., Daloğlu, I., DePinto, J.V., Dolan, D.M., Evans, M.A., Farmer, T.M., 
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