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also facilitate more productive commute time while reducing the driving stress due

to daily transit [4].

Figure 1.1: The autonomous Chevy Tahoe, 2007 DARPA Urban Challenge
winner, Carnegie Mellon University[1][2]

An Autonomous Vehicle is a robot carrying passengers and navigating through the

traffic. The above picture in Fig 1.1 is from the 2007 DARPA Urban Challenge, it

appropriately describes the extent of sensors required to make a car autonomous.

The on-board computer in a Self-Driving car performs the driving task governed by

several algorithms performing a decision-making task, which takes inputs from the

perception sensors and give output to the vehicle controllers. The driving task has

three major components on a high level:

1. Perception: It includes the perception of the environment surrounding the

vehicle. It is a crucial step to determine the precise vehicle location and identify

driving threats and safety issues along the drivable path.
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2. Planning: This step takes the input from the perception sensors for environ-

mental awareness and user for the destination requirements to layout a map

that is required to follow.

3. Vehicle motion control: At the planning step, the path map is also broken

down into longitudinal and lateral motion inputs. Now, the controller is required

to follow this reference input and guide the vehicle along the desired path.

In this chapter, we will first discuss the vehicle taxonomy in a bit more detail. Then,

we will breakdown the decision-making task at the systems level and will describe

the hierarchy of the decision-making process. Then, we will go through an overview

of the research conducted for this report.

1.1 Taxonomy of Autonomy

Although Autonomy seems a technology of the future, almost every vehicle on the

road exhibits some level of Autonomy. The levels of Automation in an autonomous

vehicle is based on the driving task and operating limits of the on-board computer.

Let’s define a few terms first:

† Longitudinal Control: Acceleration and braking control.

† Lateral Control: Steering control.
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† OEDR: Object and Event Detection and Response, it is the ability of the

vehicle to detect and react to the immediate events that can affect the driving

plan. It includes driver alert systems and responses based on surroundings

generally using short-range RADARs.

† ODD: Operational Design Domain, it constitutes the functional limits under

which the system is designed to operate. It includes environmental characteris-

tics, time of day, roadways, etc. under which a system can operate reliably.

† Fallback: It is defined as handling of the vehicle under emergencies. The

system here could guide the car to a minimum risk condition if the driver did

not intervene on time.

Based on the extent of driving control distributed between the car computer and

human driver SAE has structured a Taxonomy of Autonomy in SAE J3016 standard

as briefly summarized in Fig 1.2. The extent of autonomy is scaled from 0 to 5, where

Level 0 represents no automation, and Level 5 is for full automation [15].

1.2 Decision-Making Hierarchy

The decision-making process in a driverless car is hierarchical, as shown in Fig 1.3.

First, a route is planned considering the road network from the start point to the
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Figure 1.2: Taxonomy of Autonomy[3]

destination, which is pre-fed into the system. The shortest route is determined by

minimizing the cost function with edges weights along the path. This mission planner

followed by behavioral planning that navigates through the selected course consid-

ering driving conventions and rules while interacting with other traffic participants.

When the behavioral layer generates motion specifications, then the motion plan-

ner translates those specifications into a trajectory or reference path that is fed to

a low-level controller. It ensures the trajectory is feasible to track by the vehicle,

comfortable to the passengers, and free from the obstacles detected by the perception

sensors. At the last step, the reference trajectory is executed using a feedback con-

troller. A control system also reacts to the error accumulation and generates suitable

actuators inputs to the steering, throttle, and brakes. This report deals with the

route planning and motion planning steps of the decision making. A detailed outline

of the report is provided in the next section.
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Figure 1.3: Illustration of hierarchy in decision-making process[4]
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1.3 Report Overview

Building an autonomous vehicle is a broad subject and requires multidisciplinary

engineering collaboration. Although the inherent governing algorithms are inspired

by robotics, animations, and video games, automotive engineering plays a salient

role while optimizing these algorithms. Similarly, the research presented here utilizes

the core physical properties of an automobile to provide inherent constraints to the

autonomous vehicle control algorithms. On a high level, this report uses vehicle kine-

matics equations and vehicle dynamics equations separately for different applications.

Hence, it is divided into two parts:

1. Development of path planning algorithms using vehicle kinematics (Clothoids).

2. Vehicle dynamics modeling for high-speed vehicle motion control and au-

tonomous drifting.

For the first part, the underlying motivation is to have autonomous vehicles navigate

independently to the desired goal. The most common problems that are needed to

be addressed are path planning and motion control along the path. At any point,

the vehicle should be able to generate drivable paths, and corresponding steering

and throttle command, while satisfying physical vehicle limitations. Generally, the

imposed path constraints are curvature smoothness, actuator limits, and position and
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heading constraints at the start and the endpoints. For this purpose, Clothoids curves

are used; the main advantage is the vehicle kinematics consideration, which ensures

the drivability of the path and curvature smoothness.

The second part of the research develops an extensive vehicle dynamics model with a

non-linear tire model intended to simulate drifting maneuvers. Even if drifting is not

considered as a general use case, the effects of approximation in vehicle dynamics can

produce an error in the vehicle position and orientation predictions anywhere from

3% to 9% [9]. As autonomous vehicles are getting more complex, and these errors

can be crucial for vehicle controls. Although not a part of this report, vehicle roll

characteristics can produce unaccounted lateral load transfer and hence can interfere

in lateral acceleration measurements from the IMU sensor. With this motivation, a

vehicle dynamics mathematical model is created for this research; it also utilizes a

non-linear tire model along with tire slip and vehicle sideslip.

1.4 Objective

The main intention of this report is to improve the capability of our test vehicle AV-2

as shown in the Fig 1.4. While testing our vehicle, we laid out several waypoints

about 5 m apart. Now, our car, similar to a typical autonomous vehicle navigates

using an IMU sensor and only uses GPS data to correct its path whenever GPS data
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is available. Therefore, this discrete nature of the waypoints and lower update rates

of the GPS sensor make it challenging to obtain a GPS data point exactly at those

waypoints, such that the correction step can be done with enough accuracy. Hence, an

interpolation curve between those waypoints is required to get a reasonably continuous

set of waypoints. Therefore, for this purpose, Clothoid curves are used because they

take vehicle kinematics constraints into account and give a feasible driving path with

smooth curvature changes.

Figure 1.4: Autonomous test vehicle AV-2

Further, the vehicle dynamics modeling part in this report is an attempt to provide

a feed-forward estimator of the vehicle states during drifting. The drifting modeling

and analysis is inspired from the works of Hindiyeh [9], Kaba [13], Gonzales [16],

Zhang [17] and Jelavic [18]. A combination of the techniques described in the above

mentioned literature are used to reproduce a drift analysis for our test vehicle, the

vehicle parameters are given in Table 5.1.
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1.5 Report Outline

As the report is divided into two parts, part 1 contains a path planning algo-

rithm using Clothoid curves. Chapter 2 further describes the motivation for using

Clothoids, fundamental mathematics involved in generating Clothoids curves, and

problem formulation. Whereas, chapter 3 discusses the results and characteristics

of the Clothoids. Chapter 4 discusses some limitations to the current analysis and

future work. In part 2, chapter 5 briefly touches the concept of vehicle dynamics

and develops a drifting model. Chapter 6 describes the vehicle and tire model, and

chapter 7 describes the corresponding Simulink environment model. Then, chapter 8

contains the results of the equilibrium analysis of the drifts and generation of vehicle

model inputs required for controlled drifting. Finally, chapter 9 lays out possible fu-

ture work, and chapter 10 concludes the report. Also, as a word of caution, both parts

are worked upon separately, therefore, some independence is taken while naming the

symbols. Thus, both the parts can have a different symbol for the same quantity.

The naming conventions are carefully explained in the first chapter of each part.
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Part I

Clothoid curves
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Chapter 2

Clothoid equations generation

This chapter discusses the mathematical concepts and physical interpretations of the

Clothoid curve. It also contains derivations and constraints on the Clothoids from

vehicle kinematics equations.

An autonomous vehicle navigates by relying hugely upon the and IMU sensor and

perception sensors (LIDAR and Stereo Camera are used for lane detection). How-

ever, these perception sensors, although reliable when fused appropriately, have lower

update rates of 5 - 20Hz and are generally affected by environmental agents. There-

fore, state estimation algorithms use only an IMU sensor for navigation and make a

correction whenever a LIDAR or GNSS data is available. Therefore, path planning

becomes crucial as the vehicle navigates mostly through its INS; a good path planning
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algorithm could make INS-only navigation more dependable. The Clothoids curves

are based on the vehicle kinematic equations and are used in road constructions as

well. Therefore, a Clothoid based path planning algorithm can generate vehicle steer-

ing and throttle map throughout the path, which can be used as an input to the

open-loop navigation if required.

2.1 Vehicle Kinematics Model

The construction of an autonomous vehicle, or a robot in general, is critical while

determining its optimal path. Two- dimensional operation of a robot often have

3 degrees of freedom. Longitudinal translation along the x-axis, lateral translation

along the y-axis, and rotation along the z-axis, which is perpendicular to the XY-

plane. A hypothetical robot can rotate on the spot with no limits of degrees of rotation

and can move sideways with no restrictions. Whereas a car-like autonomous vehicle

has restricted maneuverability and greatly dependent on the previous orientation

of the vehicle. Although a vehicle also has 3 degrees of freedom, it has only two

controls, linear and angular control. This limitation does not allow a vehicle to make

sharp turns as a robot. Thus a vehicle cannot trace a path with non-differentiable

characteristics; hence this makes the trajectory equations non-integrable; therefore, it

is called a non-holonomic system. This non-holonomic nature adds further complexity

to the path planning algorithm since even if a vehicle is controllable, it cannot perform

13



Figure 2.1: Bicycle model [5]

any arbitrary motion.

In this report, we will use a bicycle model; this model uses a single tire at each axle

with stiffness and force capability of both tires in an axle “lumped” into one. It

represents the vehicle kinematics appropriately in a simple model while neglecting

vehicle dynamics characteristics. A bicycle model is schematically shown in the Fig

2.1. In this model, the steering angle is given as φ, θ is the heading angle, the rear

wheel is fixed to the vehicle heading, and L is the wheelbase of the car. Another

rationale for using the vehicle kinematics model is that the roads and traffic rules are

designed to avoid vehicle drifting. Although the speed at some highways could be

high enough to simulate the dynamic characteristics of the vehicle, the change in the

yaw rate is limited to avoid a car going out of control. Therefore, almost all paved

roads can be formulated using only vehicle kinematic equations.

Let v(t) be the velocity at any time t, x and y be position coordinates, φ(t) be the

steering angle and θ(t) be the vehicle heading angle at any time t. Therefore, the
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system can be broken down into the equations as shown below:

dx(t)

dt
= v(t) cos θ(t)

dy(t)

dt
= v(t) sin θ(t)

dθ(t)

dt
=
v(t)

L
tanφ(t) (2.1)

The Equation 2.1 is in the time-domain, however, for our purpose we require these

equations in space-domain because we will be working on curvature constraint. This

can be achieved easily by making following substitution v(t).dt = ds, assuming the

v(t) 6= 0 and v(t) is continuous i.e. mathematically analogous to the trajectory being

a one-to-one function and differentiable at all the points. Equation 2.1 becomes:

dx(s)

ds
= cos θ(s)

dy(s)

ds
= sin θ(s)

dθ(s)

ds
=

1

L
tanφ(s) (2.2)

2.2 Clothoids

A Clothoid curve is also called as Euler spiral or Cornu spiral. From Equation 2.2,

let κ(s) = dθ(s)
ds

, where κ(s) is the curvature as the function of path travelled. If we
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limit κ(s) as a strictly linear function of s, i.e.

κ(s) = cs+ κ0 (2.3)

Then the Equation 2.3 represents a Clothoid, where c is a proportional constant.

A Clothoid segment is shown in Fig 2.2, we can notice that as the path length is

increasing, on both the sides, the curvature is also increasing. As discussed earlier

Figure 2.2: Clothoid segment. If the curvature is considered to be a signed
quantity it forms a double spiral

as well, this linear characteristic in curvature is the reason why this curve describes

vehicle path appropriately. It is analogous to the turning of steering wheel with a

constant angular velocity. The curvature is defined as the derivative of the tangent

of the steering angle [7]. Now, after making the substitutions the Clothoid equations
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can be written as:

x(s) = x0 +

∫ s

0

cos(θ(s))ds

y(s) = y0 +

∫ s

0

sin(θ(s))ds

θ(s) = θ0 +

∫ s

0

κ(s)ds (2.4)

Further, this integral representation in Equation 2.4 is called Fresnel integrals. The

profusion of names indicates the fact that the linear varying curvature to arclength

property has been utilized independently for different applications. Chronologically,

the first discovery of the Clothoids was done by Jacob Bernoulli in 1694. The problem

he was solved using Clothoids was in elasticity, the problem was: If a cantilever

spring is loaded with a mass at its free end forms a straight line. What shape it will

take once the spring is unloaded?[6]. A Fig 2.3 provides a pictorial discription of

the problem stated above. Later, Augustin Fresnel in 1818, derived the well-known

Fresnel integrals while working on his research in light diffraction in a single slit

experiment. In an attempt to integrate all the small wavefronts to calculate the light

intensity at the screen Fresnel derived the same equations. Further history behind

the Clthoids can be found in [6] in more detail.

Today, Clothoids are used widely used to generate transitional curves between straight

lines and circular arcs, and between two circular arcs with different radii. It has

17



Figure 2.3: Clothoid as a solution to the elasticity problem [6]

applications in laying railway tracks, road construction, computer graphics, and ani-

mations. Clothoid based transitional curves are appealing since a smooth change in

curvature leads to a continuous change in the lateral forces experienced by the pas-

sengers in the vehicle. Besides that, it prevents the vehicle from going out of control

by limiting lateral forces and hence reducing the risk of accidents.
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2.3 Problem formulation

We use G1 Hermite interpolation for waypoint navigation, which is the interpolation

of two points with a given tangent of direction in a plane. If the curvature is also

assigned to the given points, then the interpolation will be called G2 interpolation

[7].

The problem which is addresses here is to find the Clothoid curve segment that joins

two points. Let us consider (x0, y0) be the starting point and (x1, y1) be the end

point, with θ0 and θ1 be the heading angle at the start and end respectively.First, we

will derive the θ(s) from the Equation 2.4 using substitution of κ(s) = cs+ κ0.

θ(s) = θ0 +

∫ s

0

(cs+ κ0)ds

= θ0 +
1

2
cs2 + κ0s

=⇒ θ(s) =
1

2
cs2 + κ0s+ θ0 (2.5)

Now, using Equation 2.5 with τ as the independent variable to avoid confusion be-

tween the variable and the integration limit. x(s) and y(s) can be written as:

x(s) = x0 +

∫ s

0

cos(
1

2
cτ 2 + κ0τ + θ0)dτ

y(s) = y0 +

∫ s

0

sin(
1

2
cτ 2 + κ0τ + θ0)dτ (2.6)
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Let the path contains N waypoints which will require N-1 clothoid segments. Then

Equation 2.7 represents the x and y coordinates at the ith point of the path.

xi+1 = xi +

∫ si+1

si

cos(
1

2
c(τ − si)2 + κi(τ − si) + θi)dτ

yi+1 = yi +

∫ si+1

si

sin(
1

2
c(τ − si)2 + κi(τ − si) + θi)dτ (2.7)

Now, since we have derived a general case, we will now discuss the problem in hand

which is to find a curve from the Equation 2.7 that satisfies:

x(0) = x0

x(s) = x1

y(0) = y0

y(s) = y1

( ˙x(0), ˙y(0)) = (cos(θ0), sin(θ0))

( ˙x(s), ˙y(s)) = (cos(θ1), sin(θ1)) (2.8)

Where s is the total length of the segment.Now, at i = 0:

x1 = x0 +

∫ s

0

cos(
1

2
cτ 2 + κ0τ + θ0)dτ

y1 = y0 +

∫ s

0

sin(
1

2
cτ 2 + κ0τ + θ0)dτ (2.9)
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After rearranging Equation 2.9 we get:

x1 − x0 −
∫ s

0

cos(
1

2
cτ 2 + κ0τ + θ0)dτ = 0

y1 − y0 −
∫ s

0

sin(
1

2
cτ 2 + κ0τ + θ0)dτ = 0 (2.10)

Now, the Equation 2.10 is needed to solved to obtain the required path segment.

However, there are 2 equations and 3 unknowns namely, s, c and κ0, hence the

equation cannot be solved as it is. There is another problem with solving those

equations is with the term cτ 2, if we closely notice that τ 2 when integrated will

be come the path length s. Therefore, cτ 2 makes the equation non-homogeneous

which is further difficult to solve. Thus, to solve the equations we will introduce

some substitutions, before that, let’s assume an angle φ such that φ0 = θ0 − φ and

φ1 = θ1 − φ. We will also put:

x1 − x0 = ∆x, y1 − y0 = ∆y, A =
1

2
cτ 2, δ = θ1 − θ0 (2.11)

Now, using Equation 2.11 and 2.5, we can write κ0τ = δ − A. Further, we will also

convert ∆x and ∆y into polar coordinates as: ∆x = r. cos(φ),∆y = r. sin(φ) and

following trigonometric identities:

cos(p− q) = cos p cos q + sin p sin q, sin(p− q) = sin p cos q − cos p sin q (2.12)
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Now, using Equation 2.10 we will define f(s,A) and g(A):

f(s, A) = [∆x−
∫ s

0

cos(A+ (δ − A) + θ0)dτ ]. cosφ+ [∆y −
∫ s

0

(sin(A+ (δ − A) + θ0)dτ ]. sinφ

= [r cos2 φ−
∫ s

0

(cos(A+ (δ − A) + θ0). cosφ)dτ ]

+ [r sin2 φ−
∫ s

0

sin(A+ (δ − A) + θ0). sinφ)dτ ]

= r +

∫ s

0

cos(A+ (δ − A) + φ0)dτ

=
√

∆x2 + ∆y2 +

∫ s

0

cos(A+ (δ − A) + φ0)dτ (2.13)

Similarly g(A) which is a function only in A can be derived as shown in below.

Equation 2.15 is a change of limit to 1 of the Fresnel integral, the complete derivation

is given in [7].

g(A) =
1

s

∫ s

0

sin(A+ (δ − A) + φ0)dτ (2.14)

=

∫ 1

0

sin(A+ (δ − A) + φ0)dτ (2.15)

Now, the interpolation problem can be solved by only solving g(A) and the unknowns

can be calculated by reverse substitution[7].
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