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Abstract

In a nesting of a balanced incomplete block design (or

BIBD), we wish to add a point (the nested point) to

every block of a v k λ( , , )‐BIBD in such a way that we

end up with a partial v k λ( , + 1, + 1)‐BIBD. In the

case where the partial v k λ( , + 1, + 1)‐BIBD is in fact

a v k λ( , + 1, + 1)‐BIBD, we have a perfect nesting. We

show that a nesting is perfect if and only if k λ= 2 + 1.

Perfect nestings were previously known to exist in the

case of Steiner triple systems (i.e., v( , 3, 1)‐BIBDs)
when ≡v 1 mod 6, as well as for some symmetric

BIBDs. Here we study nestings of v( , 4, 1)‐BIBDs,
which are not perfect nestings. We prove that there is

a nested v( , 4, 1)‐BIBD if and only if ≡v 1or4 mod 12,

≥v 13. This is accomplished by a variety of direct and

recursive constructions.

KEYWORD S

balanced incomplete block design, nested design

1 | INTRODUCTION AND BACKGROUND

Various kinds of nested designs have been studied for many years. One definition of these
objects can be found in [8, VI.36], where it is required that a balanced incomplete block design
(BIBD) with blocks of size dk can be decomposed into d BIBDs with blocks of size k. Here we
consider a problem motivated by nesting of Steiner triple systems (STS), for example, as studied
in [13].
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An STS v( ), say X( , ), can be nested if there is a mapping →ϕ X: such that
∪ ∈ X A ϕ A A( , { { ( )} : }) is a v( , 4, 2)‐BIBD. In words, we are adding a fourth point to every

block of the STS v( ) so the result is a v( , 4, 2)‐BIBD. It was shown in [13] that, for all
≡v 1 mod 6, there exists a nested STS v( ).
One obvious generalization would be to start with an arbitrary v k λ( , , )‐BIBD and again add

a point to each block. The mapping →ϕ X: is a nesting provided that
∪ ∈ X A ϕ A A( , { { ( )} : }) is a partial v k λ( , + 1, + 1)‐BIBD. If the partial v k λ( , + 1, + 1)‐

BIBD is in fact a v k λ( , + 1, + 1)‐BIBD, we have a perfect nesting.
We define a bit of useful terminology. The point ϕ A( ) is called the nested point for the block

A. We refer to ∪A ϕ A{ ( )} as an augmented block. The multiset ∈ N ϕ A A= { ( ) : }ϕ consists of
all the nested points, counting multiplicities. The (possibly partial) v k λ( , + 1, + 1)‐BIBD
obtained from a nesting is called the augmented design. In the case where the nesting is perfect,
we may also call it the augmented BIBD.

Example 1.1. The base block B = {1, 2, 4, 10}, when developed modulo 13, yields a
(13, 4, 1)‐BIBD. Thus the blocks of the BIBD are B B B, + 1, …, + 12. If we nest B with 0 and
we nest B i+ with i for ≤ ≤i1 12, we obtain a nesting of the BIBD. The resulting partial
(13, 5, 2)‐BIBD has the following blocks, where the last point in each block is the nested point:

{1, 2, 4, 10, 0}, {2, 3, 5, 11, 1}, {3, 4, 6, 12, 2}, {4, 5, 7, 0, 3},

{5, 6, 8, 1, 4}, {6, 7, 9, 2, 5}, {7, 8, 10, 3, 6}, {8, 9, 11, 4, 7},

{9, 10, 12, 5, 8}, {10, 11, 0, 6, 9}, {11, 12, 1, 7, 10}, {12, 0, 2, 8, 11},

{0, 1, 3, 9, 12}.

We begin by proving a simple necessary condition for a BIBD to be nested. Here and
elsewhere, the replication number of a v k λ( , , )‐BIBD is the integer ∕r λ v k= ( − 1) ( − 1).
Every point in the BIBD occurs in exactly r blocks. The number of blocks in the BIBD is
denoted by b, where ∕ ∕b vr k λv v k k= = ( − 1) ( ( − 1)).

Lemma 1.1. Suppose that a v k λ( , , )‐BIBD has a nesting. Then ≥k λ2 + 1.

Proof. Suppose X( , ) is a v k λ( , , )‐BIBD and ϕ is a nesting. ∪ ∈ X A ϕ A A( , { { ( )} : })

is a partial v k λ( , + 1, + 1)‐BIBD. In the augmented design, the number of pairs that

occur in the b blocks is ( )b
k + 1

2
. Since every pair occurs at most λ + 1 times, we have

≤

 


 


 


b

k
λ

v+ 1

2
( + 1)

2
(1)

or

≤b k k λ v v( + ) ( + 1)( − ).2 2

Since ∕b λv v k k= ( − 1) ( ( − 1)), we have

≤λ v v k k

k k
λ v v

( − )( + )

−
( + 1)( − ).

2 2

2
2
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Hence,

≤λ k λ k( + 1) ( + 1)( − 1).

This simplifies to yield the desired inequality. □

In Theorem 1.2, we characterize perfect nestings in terms of the parameters of the BIBD.

Theorem 1.2. Suppose a v k λ( , , )‐BIBD has a nesting. The following are equivalent:

(1) k λ= 2 + 1,
(2) v r= 2 + 1, and
(3) the nesting is perfect.

Proof. Conditions (1) and (2) are equivalent because λ v r k( − 1) = ( − 1) in a BIBD.
The equivalence of (1) and (3) follows easily from the proof of Lemma 1.1. Since we have
equality in (1), it must be the case that every pair of points occurs exactly λ + 1 times in
the augmented design. Hence the nesting is perfect. □

Lemma 1.3. If a v k λ( , , )‐BIBD has a perfect nesting, then ≡v k1 mod 2 .

Proof. Every point in the augmented BIBD occurs in r′ blocks, where
∕r λ v k′ = ( + 1)( − 1) . Also, every point occurs in r blocks in the original v k λ( , , )‐

BIBD. Hence, every point occurs in Nϕ (the multiset of nested points) the same number of
times, namely, r r′ − times. Using the fact that k λ= 2 + 1, we have

r r
λ v

k

λ v

k
k v

k

k v

k

k v

k

k v

k
v

k

′ − =
( + 1)( − 1)

−
( − 1)

− 1

=
( + 1)( − 1)

2
−

( − 1)( − 1)

2( − 1)

=
( + 1)( − 1)

2
−

( − 1)

2

=
− 1

2
.

Since r r′ − is an integer, we have ≡v k1 mod 2 . □

Symmetric v k λ( , , )‐BIBDs having a perfect nesting have been characterized by Ó Cathain in
[12]. First, we use Theorem 1.2 to determine the possible parameters of a v k λ( , , )‐SBIBD that
could be perfectly nested. We have ∕k r v= = ( − 1) 2 and ∕λ k= ( − 1) 2, so the parameters are
those of a t t t(4 − 1, 2 − 1, − 1)‐SBIBD, as was shown in [12]. The following characterization is
also shown in [12].

Theorem 1.4 (Ó Cathain [12]). There exists a t t t(4 − 1, 2 − 1, − 1)‐SBIBD that can be
perfectly nested if and only if a skew‐Hadamard matrix of order t4 exists.
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At the present time, skew‐Hadamard matrices of order t4 are known to exist for all positive
integers t < 89 (see [9]).

The case k = 3, λ = 1 is the STS case. It was shown in [13] that there is a perfect nesting of
an STS v( ) (i.e., a nesting into a v( , 4, 2)‐BIBD) for all ≡v 1 mod 6. These are the same as Banff
designs (see [4]) with k = 3 that have exact colourings.

Nestings have also been considered from another point of view. Harmonious colourings of Levi
graphs have been studied in a few recent papers [1, 2, 4]. Connections with nestings were first
observed in [4]. We briefly summarize these connections now. First, we recall several definitions from
[1, 2, 4]. A harmonious colouring of a graphG is a proper vertex colouring ofG in which no two edges
receive the same pair of colours. The harmonious chromatic number of a graphG, denoted by h G( ), is
the minimum integer k such that G has a harmonious colouring using k colours.

Let X( , ) be a v k λ( , , )‐BIBD. The Levi graph of X( , ), denoted  X( , ), is the bipartite
point‐versus‐block incidence graph of X( , ). Thus  X( , ) has vertices ∪ X , and xA is an
edge if and only if ∈x A. It is easy to see that ≥ h X v( ( , )) . A Banff design, as defined in [4],
is a v k λ( , , )‐BIBD such that  h X v( ( , )) = . A Banff design has an exact colouring if every pair
of colours occurs in exactly one edge.

The following lemma is remarked in [4].

Lemma 1.5. A v k λ( , , )‐BIBD having a perfect nesting is equivalent to a v k λ( , , )‐Banff
design having an exact colouring.

The main problem studied in the two papers [1, 2] can be viewed as a generalized version of
nesting v( , 2, 1)‐BIBDs (i.e., complete graphs Kv). Lemma 1.1 asserts that a v( , 2, 1)‐BIBD cannot be
nested. The problem addressed in [1, 2] allows the number of points to be increased when the design
is nested. Nestings are found in these papers that minimize the number of “new” points used.

1.1 | Our contributions

In this paper, we completely determine the spectrum of nested v( , 4, 1)‐BIBDs. We prove that
there is a nested v( , 4, 1)‐BIBD if and only if ≡v 1 or 4 mod 12, ≥v 13. Of course, nestings of
v( , 4, 1)‐BIBDs are not perfect nestings because λ k2 + 1 = 3 < 4 = .

First, in Section 2 we introduce the related concept of nested group‐divisible designs. Nestings of
v( , 4, 1)‐BIBDs with ≡v 1 mod 12 are studied in Section 3, and those with ≡v 4 mod 12 are studied
in Section 4. Finally, Section 5 is a brief summary, where we also mention possible future work.

To prove our results, we use a variety of direct and recursive constructions in the rest of the paper.
Direct constructions include difference techniques (often based on finite fields) and computer con-
structions involving backtracking algorithms. Recursive constructions employ pairwise balanced
designs (PBDs), group‐divisible designs and difference matrices in various ways.

2 | NESTED GROUP ‐DIVISIBLE DESIGNS

The proof of the existence of nested STS v( ) given in [13] made essential use of nested group‐
divisible designs. This is also a useful approach in studying the existence of other classes of
nested v k λ( , , )‐BIBDs, and these designs are also of interest in their own right. We review some
standard definitions first.

718 | BURATTI ET AL.
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Let K and L be sets of positive integers. A K λ( , )‐GDD with group sizes in L is a triple
 X( , , ) that satisfies the following properties:

1. X is a set of points.
2.  is a partition of X into groups, say  G G= { , …, }u1 , such that ∈ G L for all ∈ G .
3.  consists of a multiset of blocks such that

(a) ≤∩ G A 1 for all ∈ G and for all ∈ A ,
(b) every pair of points from different groups is contained in exactly λ blocks, and
(c) ∈ A K for all ∈ A .

The type of the GDD is the multiset ∈  G G{ : }. We usually use an exponential notation to
describe types: type t t …u u

1 2
1 2 denotes ui occurrences of ti for i = 1, 2, … . If all groups have size

t , then the type is tu for a positive integer u. Also, if  K = 1, say K k= { }, then we often write
k λ( , )‐GDD instead of K λ( , )‐GDD.

A partial GDD is the same as a GDD, except that every pair of points from distinct groups is
contained in at most λ blocks (and pairs of points from the same group never occur in the same
block).

We want to study the nestings of GDDs. A k λ( , )‐GDD of type tu can be nested if there is a
mapping →ϕ X: such that  X( , , ) is a partial k λ( + 1, + 1)‐GDD of type tu, where

∪ ∈ A ϕ A A= { { ( )} : }.

If the augmented partial GDD is actually a GDD (i.e., a k λ( + 1, + 1)‐GDD of type tu), then
we say that the nesting of the GDD is perfect.

We will prove next that k λ= 2 + 1 is a necessary condition for such a perfect nesting of a
GDD to exist (this is analogous to the case of perfect nestings of BIBDs).

It is easy to see that every point in a k λ( , )‐GDD of type tu occurs in exactly r blocks, where

r
λt u

k
=

( − 1)

− 1
.

Also, the number of blocks is b, where

b
λt u u

k k
=

( − 1)

( − 1)
.

2

Of course r and b must be integers, so

≡λt u k( − 1) 0 mod ( − 1) (2)

and

≡λt u u k k( − 1) 0 mod ( ( − 1)).2 (3)

A perfect nesting of a k λ( , )‐GDD of type tu yields a k λ( + 1, + 1)‐GDD of type tu. Hence,
the following additional necessary conditions for a perfect nesting (analogous to Equations 2
and 3) must be satisfied
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≡λ t u k( + 1) ( − 1) 0 mod (4)

and

≡λ t u u k k( + 1) ( − 1) 0 mod (( + 1) ).2 (5)

The number of blocks is not changed as a result of the nesting, so it must be the case that

λt u u

k k

λ t u u

k k

( − 1)

( − 1)
=

( + 1) ( − 1)

( + 1)
.

2 2

Simplifying, we have

k λ= 2 + 1.

Finally, in a perfect nesting, every point occurs in

r
λ t u

k
′ =

( + 1) ( − 1)

blocks in the k λ( + 1, + 1)‐GDD of type tu. So every point occurs as a nested point r r′ − times.
Using the fact that k λ= 2 + 1, we have, by the same kinds of calculations that were used in the
proof of Lemma 1.3,

r r
λ t u

k

λt u

k
t u

k

′ − =
( + 1) ( − 1)

−
( − 1)

− 1

=
( − 1)

2
.

Since r r′ − is an integer, we have

≡t u k( − 1) 0 mod(2 ). (6)

It is also obvious that ≥u k + 1, so we have proven the following necessary conditions for
the existence of a perfectly nested k λ( , )‐GDD of type tu.

Theorem 2.1. There exists a perfectly nested k λ( , )‐GDD of type tu only if k λ= 2 + 1,
conditions (2) and (4)–(6) are satisfied, and ≥u k + 1.

Necessary conditions for the existence of (4, 1)‐GDDs of type tu are obtained from (2)
and (3):

≡ ≡t u t u u( − 1) 0 mod 3 and ( − 1) 0 mod 12.2 (7)

We will consider nestings of (4, 1)‐GDDs of type tu where t = 3. When t = 3, the two
congruences (7) are equivalent to ≡u 0, 1 mod 4.
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To construct a nested GDD, we could try to find an appropriate set of base blocks in a group
G of order tu. In general, we would seek base blocks for a nested GDD having a specified block
size k and index λ.

Let G be an additive group, let H be a subgroup of G, and let ≥k 2 and ≥λ 1 be integers.
Here k is the block size and λ is the index. A relative difference family in ⧹G H (or RDF, for
short), denoted by G H k λ( , , , )‐RDF, is a set of k‐subsets ofG (called base blocks) that satisfy the
following property:

(1) The base blocks contain every difference in ⧹G H exactly λ times, and they contain no
difference in H . This property is stated more formally as follows.

For any ⊆B G, define

∈ ≠B x y x y B x yΔ( ) = { − : , , }.

Note that BΔ( ) may contain repeated elements, so it is a multiset. BΔ( ) consists of the
differences obtained from B.

Let  denote the multiset of all the base blocks. Then it should be the case that the following
multiset equation holds:

⧹
∈
 B λ G HΔ( ) = ( ).
B

A Banff relative difference family in ⧹G H (or BRDF, for short), denoted by G H k λ( , , , )‐
BRDF, is a G H k λ( , , , )‐RDF that satisfies the following additional two properties:

(2) The base blocks are all disjoint from H .
(3) The base blocks and their negatives are pairwise disjoint.

We will also use the notation g h k λ( , , , )‐BRDF to denote any G H k λ( , , , )‐BRDF in which
 G g= and  H h= .

Property (1) ensures we get a GDD having index λ by developing the base blocks
through G; the groups of the GDD are H and its cosets. Properties (2) and (3) ensure that
the GDD can be nested. We simply nest each base block with 0 and then develop all the
base blocks through the group G to obtain the augmented GDD. Note that the groups are
not nested.

BRDF are obvious generalizations of the Banff difference families that are defined in [4,
Defn. 3.4]. In fact, a Banff difference family in G (which generates a nested BIBD) is the same
thing as a BRDF in ⧹G {0}.

Example 2.1. The base block {1, 2, 4, 8} is a ( , {0, 5, 10}, 4, 1)15 ‐BRDF. We verify the
required three properties:

(1) The differences obtained from the base block are ±1, ±2, ±3, ±4, ±6, ±7.
(2) The base block is disjoint from {0, 5, 10}.
(3) The base block and its negative, namely, {7, 11, 13, 14}, are disjoint.Thus the devel-

opment of the base block yields a (4, 1)‐GDD of type 35. The groups of the GDD are {0, 5, 10},
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{1, 6, 11}, {2, 7, 12}, {3, 8, 13}, {4, 9, 14}. If we nest the base block with 0, then the devel-
opment of the resulting augmented base block of size five is a partial (5, 2)‐GDD of type 35.

Property (3) of a BRDF implies that there are no elements of order two in ⧹G H , that is, all
the elements of order 2 must be in the subgroup H . This may limit the groups that can possibly
give rise to an appropriate set of base blocks.

A G H k λ( , , , )‐BRDF yields a perfect nesting of the associated GDD when k λ= 2 + 1. In
this case, properties (2) and (3) can be replaced by the following property:

(2′) The base blocks and their negatives constitute a partition of ⧹G H .

We will use G H( , , 4, 1)‐BRDFs to generate nested v( , 4, 1)‐BIBDs and nested (4, 1)‐GDDs of
type 3u. This is considered further in Section 3.

3 | NESTING v( , 4, 1)‐BIBDS WITH ≡v mod1 12

The well‐known necessary (and sufficient) condition for existence of a v( , 4, 1)‐BIBD is
≡v 1, 4 mod 12. In this section, we study nested v( , 4, 1)‐BIBDs with ≡v 1 mod 12. We also

consider GDDs with block size four and λ = 1. First, we establish some useful results on
BRDFs.

Buratti et al. [4] have reported the existence of an ( , {0}, 4, 1)q ‐BRDF for all primes and
prime powers ≡q 1 mod 12. They also present a ( , {0}, 4, 1)85 ‐BRDF. We list base blocks for
( , {0}, 4, 1)v ‐BRDF for v = 13, 25, 37, 49 and 61 in Table 1, which were all found by computer.

Here is a general construction for v(3 , 3, 4, 1)‐BRDF for certain values of v.

Theorem 3.1. If v is an integer whose maximal prime power factors are all congruent to
1 modulo 4, then there exists a v(3 , 3, 4, 1)‐BRDF.

Proof. Let R =v i
j

q=1 i
be the ring which is the direct product of all the fields qi with qi

a maximal prime power factor of v; for instance,  R = ×45 5 9.
Let xi be a primitive fourth root of 1 in each constituent field qi, and then define

x x x= ( , …, )j1 . It is clear that the cyclic group U of order four generated by x acts
semiregularly on ⧹R {0}v . We also note that x = −12 , so U x x= {1, , −1, − }.

TABLE 1 BRDFs for nested v( , 4, 1)‐BIBDs.

v Group Base blocks

13 13 {1, 2, 4, 10}

25  ×5 5 {(3, 2), (3, 3), (4,2), (2,0)}, {(1, 4), (1, 1), (3, 4), (4, 0)}

37 37 {1, 2, 4, 25}, {3, 10, 22, 30}, {5, 9, 14, 20}

49 49 {1, 2, 4, 9}, {3, 7, 21, 32}, {5, 14, 24, 37}, {6, 18, 33, 39}

61 61 {1, 2, 4, 8}, {3, 11, 16, 37}, {5, 15, 29, 44}, {6, 23, 42, 51}, {7, 18, 30, 48}

Abbreviation: BRDF, Banff relative difference family.
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This means that if S is any complete system of representatives for the U ‐orbits on
⧹R {0}v , then we have

⊗ ⧹S U R= {0}.v (8)

Note that, for any two sets A and B, we are using the notation ⊗A B to denote the
multiset ∈ ∈ab a A b B{ : , }. When  A = 1, say A a= { }, we simply write aB for ⊗a B{ } .

For each ∈s S, let us consider the following 4‐subset of  R× v3 :

B s s sx sx= {(1, ), (1, − ), (2, ), (2, − )}.s

The differences arising from pairs of elements of Bs yields the set

∪B s sx s x s xΔ = ({0} × {±2 , ±2 }) ({1, 2} × {± ( − 1), ± ( + 1)}).s

Since x = −12 , we have x x x x x− 1 = + = ( + 1)2 . Thus, replacing x − 1 with
x x( + 1) in the above formula, we can write:

∪B sU x sUΔ = ({0} × 2 ) ({1, 2} × ( + 1) ).s

Consider the family ∈ B s S= { : }s . The differences arising from the sets in  are

∪

⊗ ∪ ⊗

∈

∈ ∈

 
 

B

sU x sU

S U x S U

Δ = Δ

= ({0} × 2 ) ({1, 2} × ( + 1) )

= ({0} × 2( )) ({1, 2} × ( + 1)( )).

s S
s

s S s S

Then, taking into account (8), we have

⧹ ∪ ⧹

⧹ 
 R R

R

Δ = ({0} × ( {0})) ({1, 2} × ( {0}))

= ( × ) ( × {0}),

v v

v3 3

which means that  is a  R( × , × {0}, 4, 1)v3 3 ‐RDF.
Now note that we have

∪B B sU− = {1, 2} × ,s s

so that, again taking (8) into account, the union of the base blocks of  and their
negatives is ⧹R{1, 2} × ( {0})v , which is a set, not a multiset! This guarantees that  has
the “Banff properties” (i.e., properties (2) and (3) in the definition of a BRDF)) and hence
 is a v(3 , 3, 4, 1)‐BRDF. □

We note that when v is a prime, the construction given above is a slight variation of the old
construction for a 1‐rotational v(3 , 4, 1)‐BIBD given by Moore [11].

The smallest value ≡v 1 mod 4 that is not covered by Theorem 3.1 is v = 21. Here we have
a BRDF that was found by computer.
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Example 3.1. We present base blocks for a (63, 3, 4, 1)‐BRDF in 63:

{1, 2, 4, 8}, {3, 11, 16, 44}, {5, 14, 25, 43}, {6, 18, 33, 50}, {7, 17, 31, 54}.

We will now prove that nested v( , 4, 1)‐BIBDs exist for all ≡v 1 mod 12. We adapt the
recursive techniques first described in [13]. Here we make use of group‐divisible designs λ = 1

having multiple block sizes and group sizes. The following theorem is a straightforward
adaptation of the main construction from [13].

Theorem 3.2. Suppose  X( , , ) is a K( , 1)‐GDD with group sizes in L that satisfies the
following properties:

• For all ∈k K , there is a nested (4, 1)‐GDD of type 3k.
• For all ∈ Lℓ , there is a nested (3ℓ + 1, 4, 1)‐BIBD.

Then there is a nested  X(3 + 1, 4, 1)‐BIBD.

Proof. Start with the hypothesized GDD  X( , , ), give every point weight three and
apply Wilson's Fundamental GDD construction [8, Section IV.2.1, Theorem 2.5]. Blocks
are replaced by nested GDDs whose groups are the three copies of each of the points in
the block. The groups are replaced by nested BIBDs that include one “new” point along
with the copies of all the points in the group. □

We also require the notion of a PBD. A v K( , )‐PBD is a pair X( , ) that satisfies the
following properties:

• X is a set of v points.
•  consists of a set of blocks such that

– every pair of points is contained in exactly one block, and
– ∈ A K for all ∈ A .

We can now prove the following complete existence result for ≡v 1 mod 12.

Theorem 3.3. For all ≡v 1 mod 12, there is a nested v( , 4, 1)‐BIBD.

Proof. It is well known that there is a w( , {5, 9})‐PBD for all
≡ ≠w w1 mod 4, 13, 17, 29, 33, 113 (see [8, Section IV.3.2, Table 3.23]). Delete a point

x from such a PBD. The blocks that contained x yield the groups (having sizes 4 and 8) of
a GDD. Hence, we obtain a {5, 9}‐GDD with groups sizes in {4, 8}, for all
≡ ≠w w0 mod 4, 12, 16, 28, 32, 112. There is a nested (13, 4, 1)‐BIBD and a nested

(25, 4, 1)‐BIBD, as well as nested (4, 1)‐GDDs of types 35 and 39 (see Table 1 and
Theorem 3.1). Applying Theorem 3.2, we obtain a nested w(3 + 1, 4, 1)‐BIBD for all
≡ ≠w w0 mod 4, 12, 16, 28, 32, 112. The results from [4] that were mentioned at the

beginning of this section show that nested w(3 + 1, 4, 1)‐BIBDs exist for these five values
of w. □
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4 | NESTING v( , 4, 1)‐BIBDS WITH ≡v mod4 12

We begin by presenting various small nested v( , 4, 1)‐BIBDs for ≡v 4 mod 12.

Example 4.1. A nested (16, 4, 1)‐BIBD. We list the 20 blocks in the augmented design
(the last point in each block is the nested point):

{3, 6, 12, 7, 1}, {4, 7, 8, 15, 2}, {5, 8, 9, 16, 1}, {6, 9, 15, 10, 3},

{7, 16, 11, 13, 3}, {8, 11, 10, 12, 6}, {9, 12, 13, 14, 4}, {11, 14, 15, 1, 10},

{12, 15, 16, 2, 9}, {16, 1, 10, 3, 4}, {10, 2, 13, 4, 5}, {15, 13, 3, 5, 14},

{16, 4, 14, 6, 7}, {10, 14, 5, 7, 8}, {13, 6, 1, 8, 15}, {1, 7, 2, 9, 13},

{14, 2, 8, 3, 12}, {3, 9, 4, 11, 8}, {1, 4, 5, 12, 11}, {2, 5, 11, 6, 16}.

Example 4.2. A nested (28, 4, 1)‐BIBD. We take the points to be ∪ ∞( ) { }3
3 . We

specify three base blocks. The first two base blocks are developed modulo (3, 3, 3); the
last base block is developed modulo (−,3, 3). The base blocks are as follows (the last point
in each block is the nested point):

∞

{(0, 1, 0), (0, 2, 0), (1, 1, 2), (1, 2, 1), (0, 1, 2)}, {(0, 0, 1), (0, 0, 2), (1, 2, 2),

(1, 1, 1), (2, 0, 0)},

{(0, 0, 0), (1, 0, 0), (2, 0, 0), , (0, 1, 0)}.

This augmented design has an automorphism of order 9, generated by  {0} × ×3 3.
The next examples are all defined in cyclic groups v, where ≡v 4 mod 12. The designs are

generated from ∕v( + 8) 12 base blocks. The last base block will be ∕ ∕ ∕v v v x{0, 4, 2, 3 4, } for
some x . We take all translates of the first ∕v( − 4) 12 base blocks, and the first ∕v 4 translates of
the last base block.

To construct a nested v( , 4, 1)‐BIBD, we could start with a known example of a cyclic
v( , 4, 1)‐BIBD (which without loss of generality contains ∕ ∕ ∕v v v{0, 4, 2, 3 4} as a base block) and
then find a valid nested point for each base block. This is very quick using backtracking.
Basically all that is required is that the differences (plus and minus) that include a nested point
are all different and none of them is 0 or ∕v 2. Note that this does not create a cyclic nested BIBD
because we only take the first ∕v 4 translates of the last base block.

It was recently shown in [16] that a cyclic v( , 4, 1)‐BIBD exists if and only if
≡ ≠v v1 or 4 mod 12, 16, 25 or 28. Many of the nested BIBDs we construct use known

examples of cyclic v( , 4, 1)‐BIBDs as a starting point. These BIBDs can be found in several
papers, including [3, 6, 7].

Here is a different (but essentially equivalent) way of looking at the problem. Clearly we can
replace any base block by any translate of it. Suppose we take translates of the first ∕v( − 4) 12

base blocks (we are just omitting the last base block) in such a way that the nested point in each
of these base blocks is 0. If we delete the nested points from the augmented BIBD, then we have
a slight relaxation of a v( , 4, 4, 1)‐BRDF that we call a weak v( , 4, 4, 1)‐BRDF. The only dif-
ference from a BRDF is that, in a weak v( , 4, 4, 1)‐BRDF, base blocks may contain one of the
two points ∕v 4 or ∕v3 4, whereas this is not allowed in a v( , 4, 4, 1)‐BRDF. That is, the first
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∕v( − 4) 12 base blocks thus obtained satisfy properties (1) and (3) of a v( , 4, 4, 1)‐BRDF, but
they are not required to satisfy property (2).

Thus, given a weak v( , 4, 4, 1)‐BRDF, we have implicitly defined 0 to be the nested point for
each base block. To obtain the augmented BIBD, we need to also find a suitable nested point x
for the “short orbit” ∕ ∕ ∕H v v v= {0, 4, 2, 3 4} (which is just the subgroup of order 4). A point x
will be suitable if the set

∕ ∕ ∕H x x x v x v x v±( − ) = {± , ±( − 4), ±( − 2), ±( − 3 4)}

is disjoint from the union of the blocks in the BRDF and their negatives.
Summarizing, we have the following connections between BRDFs, weak BRDFs, nested

GDDs and nested BIBDs.

• A v( , 4, 4, 1)‐BRDF generates a nested GDD of type ∕4v 4 by nesting every base block with 0
and developing the augmented base blocks through the group G.

• Suppose we have a weak v( , 4, 4, 1)‐BRDF and we are also able to find a suitable nested
point x for the subgroup H of order 4. Then the development of the augmented base
blocks through G, together with the first ∕v 4 translates of ∪H x{ }, form a nested
v( , 4, 1)‐BIBD.

In the following examples, the nested points are the last points in each base block.

Example 4.3. Suppose we start with the following weak (40, 4, 4, 1)‐BRDF:

{2, 1, 16, 10}, {25, 18, 6, 29}, {12, 9, 36, 14}.

These three blocks do not comprise a (40, 4, 4, 1)‐BRDF because ∕v10 = 4 occurs in
the first base block.

The point x = 3 is suitable, since

H±( − 3) = {±3, ±7, ±17, ±13}

is disjoint from the three base blocks and their negatives. It follows that we obtain the
following base blocks for a nested (40, 4, 1)‐BIBD (where the last point in each block is
the nested point):

{2, 1, 16, 10, 0}, {25, 18, 6, 29, 0}, {12, 9, 36, 14, 0},

{0, 10, 20, 30, 3}.

The first three base blocks are developed modulo 40, and the last base block is
translated by 0, …, 9.

At the present time, we do not have a set of base blocks for a nested (40, 4, 1)‐BIBD in
which the first three base blocks form a BRDF. However, we do have an example of a
(40, 4, 4, 1)‐BRDF:

{3, 2, 17, 11}, {1, 34, 22, 5}, {12, 9, 36, 14}.
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The following examples use a presentation similar to Example 4.3. All of the base blocks
(except for the last one) are developed modulo v. For the last base block, we just take the first
∕v 4 translates. The nested point is always the last point in a base block.

Example 4.4. Base blocks for a nested (52, 4, 1)‐BIBD:

{41, 40, 19, 46, 0}, {17, 15, 8, 50, 0}, {27, 24, 9, 38, 0},

{51, 47, 31, 7, 0}, {0, 13, 26, 39, 3}.

Here the first four base blocks yield a BRDF, because neither 13 nor 39 is an element
of any of the first four base blocks.

We remark that an alternate construction for v = 52 is given in Example 4.12.

Example 4.5. Base blocks for a nested (64, 4, 1)‐BIBD:

{20, 21, 23, 27, 0}, {50, 55, 4, 33, 0}, {26, 34, 59, 6, 0},

{57, 2, 12, 36, 0}, {63, 11, 25, 48, 0}, {0, 16, 32, 48, 3}.

Here the first five base blocks yield a BRDF.

Example 4.6. Base blocks for a nested (76, 4, 1)‐BIBD:

{4, 5, 11, 26, 0}, {7, 9, 18, 52, 0}, {20, 23, 3, 15, 0},

{42, 46, 74, 16, 0}, {47, 57, 8, 22, 0}, {75, 12, 35, 59, 0},

{0, 19, 38, 57, 6}.

Here the first six base blocks yield a BRDF.

Example 4.7. Base blocks for a nested (88, 4, 1)‐BIBD:

{8, 9, 13, 26, 0}, {14, 17, 29, 68, 0}, {19, 28, 64, 5, 0},

{40, 42, 61, 72, 0}, {51, 57, 82, 4, 0}, {63, 70, 2, 30, 0},

{87, 7, 23, 49, 0}, {0, 22, 44, 66, 10}.

Here the first seven base blocks yield a BRDF.

Example 4.8. Base blocks for a nested (100, 4, 1)‐BIBD:

{96, 97, 99, 5, 0}, {94, 98, 14, 53, 0}, {88, 93, 19, 41, 0},

{62, 73, 92, 24, 0}, {70, 77, 91, 33, 0}, {29, 57, 69, 42, 0},

{49, 84, 66, 20, 0}, {79, 56, 89, 13, 0}, {0, 25, 50, 75, 10}.

Here the first eight base blocks yield a BRDF.
We remark that an alternate construction for v = 100 is given in Theorem 4.11.

Example 4.9. Base blocks for a nested (112, 4, 1)‐BIBD:
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{111, 4, 12, 21, 0}, {110, 8, 19, 38, 0}, {107, 7, 9, 54, 0},

{86, 101, 102, 15, 0}, {88, 106, 27, 51, 0}, {13, 33, 71, 77, 0},

{55, 78, 82, 16, 0}, {14, 48, 83, 90, 0}, {63, 92, 95, 32, 0},

{0, 28, 56, 84, 3}.

Here the first nine base blocks yield a BRDF.

Example 4.10. Base blocks for a nested (124, 4, 1)‐BIBD:

{1, 2, 67, 4, 0}, {3, 8, 85, 18, 0}, {5, 30, 43, 80, 0},

{7, 40, 48, 88, 0}, {6, 51, 107, 15, 0}, {22, 66, 38, 11, 0},

{75, 87, 104, 53, 0}, {78, 14, 99, 92, 0}, {45, 97, 26, 115, 0},

{65, 69, 89, 95, 0}, {0, 31, 62, 93, 10}.

Here the first ten base blocks yield a BRDF.

Several additional small examples of nested v( , 4, 1)‐BIBDs (for ≡v 4 mod 12) are presented
in the Appendix. From Examples 4.1–4.10, Examples A.1–A.5, and Table 5 (for v = 148), we
have

Lemma 4.1. There exist nested v( , 4, 1)‐BIBDs for ≤ ≤≡v v4 mod 12, 16 196.

Nested (4, 1)‐GDDs of type ≡u3 , 0 mod 4u , are useful ingredients in constructing nested
v( , 4, 1)‐BIBDs with ≡v 4 mod 12. We present one such nested GDD in Example 4.11.

Example 4.11. A nested (4, 1)‐GDD of type 38. There are 42 blocks in this GDD, and
42 = 2 × 21, so we want two base blocks developed modulo 21. But there are 24 points.
So we take the point set of the GDD to be ∪ ∞ ∞ ∞ { , , }21 0 1 2 . The groups are the seven
cosets of {0, 7, 14} in 21 and ∞ ∞ ∞{ , , }0 1 2 . The blocks are the 21‐orbits of

∞{2, 4, 10, 13, 0}, {15, 16, 20, , 0},0

where the action of 21 on 21 itself is the natural one, whereas the action of 21 on
∞ ∞ ∞{ , , }0 1 2 is defined by∞ ∞g+ =i i g+ mod 3 for every pair ∈ i g( , ) {0, 1, 2} × 21. As
usual, the last point in each block is the nested point.

We will now state some useful corollaries of Theorem 3.2. We observe that we can only
apply Theorem 3.2 using a GDD having block and group sizes that are congruent to 0 or 1
modulo 4. Our main construction makes use of transversal designs TD k m( , ). A TD k m( , ) is a
k( , 1)‐GDD of typemk. Thus every block in a transversal design is a transversal of the k groups.
It is well known that a TD k m( , ) is equivalent to k − 2 mutually orthogonal Latin squares of
order m.

Corollary 4.2. Suppose ≡m 0 or 1 mod 4 and let ≤ ≤t m0 . Suppose there exists a
TD m(9, ) and a nested t(3 + 1, 4, 1)‐BIBD. If ≡m 1 mod 4, suppose also that there exists a
nested m(3 + 1, 4, 1)‐BIBD. Then there exists a nested m t(3(8 + ) + 1, 4, 1)‐BIBD.
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Proof. Deletem t− points from a group of a TD m(9, ). We obtain an ({8, 9}, 1)‐GDD of
typem t8 1. From Example 4.11 and Theorem 3.1 with v = 9, there are nested (4, 1)‐GDDs
of types 38 and 39 (resp.). If ≡m 0 mod 4, there is a nested m(3 + 1, 4, 1)‐BIBD by
Theorem 3.3. If ≡m 1 mod 4, there is a nested m(3 + 1, 4, 1)‐BIBD by hypothesis.
Finally, there is a nested t(3 + 1, 4, 1)‐BIBD by hypothesis. The desired result is then
obtained by applying Theorem 3.2. □

It will be useful to know when TD m(9, ) exist. Results can be found in the Handbook of
Combinatorial Designs [8, Section III.3.6, Table 3.87]. First we focus on ≡m 0 mod 4. We will
actually only make use of TD m(9, ) with ≡m 0 mod 8, since there are almost no “small”
examples of TD m(9, ) with ≡m 4 mod 8. On the other hand, TD m(9, ) with ≡m 0 mod 8

always exist.

Lemma 4.3. If ≡m 0 mod 8, then there is a TD m(9, ).

Proof. See [8, Section III.3.6]. □

We now prove an easy preliminary bound using Corollary 4.2.

Theorem 4.4. For all ≥≡v v4 mod 12, 1924, there is a nested v( , 4, 1)‐BIBD.

Proof. Assume ≥≡v v4 mod 12, 1924. Write v w u= 192 + , where ≡u 4 mod 12,

≤ ≤u16 196 (observe that these values of u cover all the residue classes modulo 192
that are congruent to 4 modulo 12). For each such value of u, there is a nested u( , 4, 1)‐
BIBD from Lemma 4.1. We have v m t= 3(8 + ) + 1, where m w= 8 and ∕t u= ( − 1) 3.
Hence there is a TD m(9, ) from Lemma 4.3. We have

≥m w
v u

= 8 =
−

24

1924 − 196

24
= 72

and

≤t 196 − 1

3
= 65.

Hence ≥m t , so we can apply Corollary 4.2. The result is a nested v( , 4, 1)‐BIBD. □

Using Corollary 4.2, we can also construct nested v( , 4, 1)‐BIBDs for many values
≡v v4 mod 12, < 1924. For a given value ofm, we can construct nested v( , 4, 1)‐BIBDs for an

interval of values ≡v 4 mod 12, as indicated in Table 2. In every case, we have
v m t= 3(8 + ) + 1, as in the proof of Theorem 4.4. Any value of ≡m 0 mod 8 can be used. On
the other hand, when ≡m 1 mod 4, we need to check [8, Section III.3.6] to see that a
TD m(9, ) exists, and we also require a nested m(3 + 1, 4, 1)‐BIBD. For the values of m
considered in Table 2, the existence of the required nested m(3 + 1, 4, 1)‐BIBDs follows from
Lemma 4.1.

Examining Table 2, we see that there are 29 values ≥≡v v4 mod 12, 4, yet to be con-
structed. These are listed in Table 3. All 29 values will be handled later in the paper, so we
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include a reference in Table 3 for a construction for each of them. For some values of v, we list
more than one construction method.

Here is a simple construction that can be used to eliminate several of these exceptions.

Lemma 4.5. Suppose there is a resolvable m(56 + 8, 8, 1)‐BIBD. Let ≤ ≤t m0 8 and
suppose there exists a nested t(3 + 1, 4, 1)‐BIBD. Then there exists a nested v( , 4, 1)‐BIBD
for v m t= 168 + 3 + 25.

Proof. The resolvable m(56 + 8, 8, 1)‐BIBD has m8 + 1 parallel classes of blocks, say
≤ ≤ i m, 1 8 + 1i . Add infinite points to the blocks in t of the parallel classes, where

≤ ≤t m0 8 . That is, for ≤ ≤i t1 , adjoin a new point∞i to every block in i. The infinite
points, namely, ≤ ≤∞ i t{ : 1 }i , comprise a group in the GDD. The m7 + 1 blocks in
another parallel class, say t+1, yield the remaining groups. The result is an ({8, 9}, 1)‐
GDD of type t8 m7 +1 1.

We have nested (25, 4, 1)‐BIBDs (Table 1) and nested (4, 1)‐GDDs of
type 38 (Example 4.11) and type 39 (Theorem 3.1 with v = 9). Finally, a nested

TABLE 2 Intervals of values ≡v 4 mod 12 for which nested v( , 4, 1)‐BIBDs exist.

m t v

72 5, 9,…, 65 1744, 1756,…, 1924

65 5, 9,…, 65 1576, 1588,…, 1756

64 5, 9,…, 61 1552, 1564,…, 1720

61 5, 9,…, 61 1480, 1492,…, 1648

56 5, 9,…, 53 1360, 1372,…, 1504

53 5, 9,…, 53 1288, 1300,…, 1432

49 5, 9,…, 49 1192, 1204,…, 1324

48 5, 9,…, 45 1168, 1180,…, 1288

41 5, 9,…, 41 1000, 1012,…, 1108

40 5, 9,…, 37 976, 988,…, 1072

37 5, 9,…, 37 904, 916,…, 1000

32 5, 9,…, 29 784, 796,…, 856

29 5, 9,…, 29 712, 724,…, 784

25 5, 9,…, 25 616, 628,…, 676

24 5, 9,…, 21 592, 604,…, 640

17 5, 9, 13, 17 424, 436, 448, 460

16 5, 9, 13 400, 412, 424

13 5, 9, 13 328, 340, 352

9 5, 9 232, 244

8 5 208
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t(3 + 1, 4, 1)‐BIBD exists by hypothesis. Apply Theorem 3.2 to obtain a nested
m(3(56 + 8)+ t3 + 1, 4, 1)‐BIBD. □

We note that if we want to construct a nested v( , 4, 1)‐BIBD with ≡v 4 mod 12 using
Lemma 4.5, then we must take ≥≡t t1 mod 4, 5.

Corollary 4.6. There exist nested v( , 4, 1)‐BIBDs for

∈v {376, 388, 544, 556, 568, 580, 880, 892, 1120, 1132, 1144, 1156}.

Proof. In this proof, existence of the required resolvable m(56 + 8, 8, 1)‐BIBDs follows
from [8, Section II.7.4, Table 7.41].

First, we apply Lemma 4.5 with m t= 2, = 5, 9 to obtain nested (376, 4, 1)‐ and
(388, 4, 1)‐BIBDs. Here we require a resolvable (120, 8, 1)‐BIBD and nested (16, 4, 1)‐ and
(28, 4, 1)‐BIBDs as ingredients.

For v = 544, 556, 568 and 580, let m = 3 and t = 5, 9, 13, 17. Here we require a
resolvable (176, 8, 1)‐BIBD and nested (16, 4, 1)‐, (28, 4, 1)‐, (40, 4, 1)‐ and (52, 4, 1)‐
BIBDs as ingredients.

For v = 880, 892, letm = 5 and t = 5, 9. Here we require a resolvable (288, 8, 1)‐BIBD
and nested (16, 4, 1)‐ and (28, 4, 1)‐BIBDs as ingredients.

For v = 1120, 1132, 1144 and 1156, letm = 6 and t = 29, 33, 37, 41. Here we require a
resolvable (344, 8, 1)‐BIBD and nested (88, 4, 1)‐, (100, 4, 1)‐, (112, 4, 1)‐ and (124, 4, 1)‐
BIBD as ingredients. □

TABLE 3 The 29 values ≡v 4 mod 12 remaining to be handled following Table 2.

v Construction v Construction

220 [Example A.6] 256 [Lemma 4.13]

268 [Example A.7] 280 [Table 4]

292 Table 5, q = 73 304 [Example A.8]

316 [Example A.9] 364 [Table 4]

376 Corollary 4.6 388 Corollary 4.6 or Table 5, q = 97

472 [Example A.10] 484 [Corollary 4.11 or Example A.11]

496 [Example A.12] 508 [Example A.13]

520 [Table 4] 532 [Table 4]

544 Corollary 4.6 556 Corollary 4.6

568 Corollary 4.6 580 Corollary 4.6

688 Example A.14 or [14, Corollary 2.2] 700 [Table 4]

868 [Table 4] 880 Corollary 4.6

892 Corollary 4.6 1120 Corollary 4.6

1132 Corollary 4.6 1144 Corollary 4.6

1156 Corollary 4.6
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We now present a construction that makes use of difference matrices. Given an additive
groupG of order g and a positive integer k, a G k( , , 1) difference matrix (DM, for short) is a k g×

matrix M with entries from G such that the difference of any two distinct rows of M is a
permutation of the elements of G. A difference matrix M is homogeneous (HDM, for short) if
every row of M is a permutation of G.

Actually, for our purposes, we only need homogeneous difference matrices in groups of prime
power order, which are easy to construct. Specifically, the multiplication table of q is an  q( , , 1)q ‐
DM for any prime power q. Such a difference matrix has a row of 0's. Suppose ≤ ≤k q1 − 1. If we
delete the row of 0's and q k− − 1 additional rows, we get an  k( , , 1)q ‐HDM.

Here is a useful “product construction” for BRDF that uses homogeneous difference
matrices.

Lemma 4.7. If there exist a G H k( , , , 1)1 ‐BRDF and a G k( , , 1)2 ‐HDM, then there exists a
G G H G k( × , × , , 1)1 2 2 ‐BRDF.

Proof. For each block B b b b= { , , …, }k1 2 of a G H k( , , , 1)1 ‐BRDF, say  , and for each
column m m( , …, )c kc

T
1 of a G k( , , 1)2 ‐HDM, say M m= ( )rc , let

∘B M b m b m b m= {( , ), ( , ), …, ( , )}.c
c c k kc1 1 2 2

Then define

≤ ≤∘ ≔ ∘ ∈   M B M B c G{ : , 1 }.c
2

First, it is easy to check that ∘ M is a G G H G k( × , × , , 1)1 2 2 ‐RDF. Consider a
difference g g( , )1 2 where ∈ ⧹g G H1 1 and ∈g G2 2. There is a unique block ∈ B such that
there exists ∈b b B,i j with b b g− =i j 1. There is also a unique column c of M such that
m m g− =ic jc 2, because M is a difference matrix. Hence, b m b m{( , ), ( , )}i ic j jc is the unique
pair in a block of ∘ M that yields the difference g g( , )1 2 . It is also clear that no differences
h g( , )2 occur with ∈h H , because no differences in H occur in the blocks in ∈ B .
We now consider the Banff property. We need to show that the base blocks in ∘ M

are all disjoint from H G× 2, and the base blocks and their negatives are pairwise disjoint.
First, we prove that there are no points g g( , )1 2 in a block of ∘ M if ∈g H1 . Suppose

∈ ∘g g B M( , ) c
1 2 , where ∈g H1 and ∈ B . Then ∈g B1 , which is impossible because 

is a G H k( , , , 1)1 ‐BRDF.
Finally, denote ≤ ≤∘ ∘ ∈   M B M B c G−( ) = {−( ) : , 1 }c

2 . We show that a point
g g( , )1 2 is in at most one block in ∘ ∪ ∘ M M( ) −( ), where ∈ ⧹g G H1 1 and ∈g G2 2.
The point g1 is in at most one block of ∪ − , where ∈ B B− = {− : }, since  is a
G H k( , , , 1)1 ‐BRDF. Assume ∈ ∈ g B1 (the argument is similar if ∈ ∈ g B− −1 . We
have ∈g b B= i1 for some i. There is a unique column c of M such thatm g=ic 2, because
the difference matrix M is homogeneous. So ∈ ∘g g B M( , ) c

1 2 and g g( , )1 2 occurs in no
other block of ∘ ∪ ∘ M M( ) −( ). □

Lemma 4.8 is just a standard “filling in holes” construction.

Lemma 4.8. If there exists a G H k( , , , 1)1 ‐BRDF with  G v=1 and  H h= , and a nested
h k( , , 1)‐BIBD, then there exists a nested v k( , , 1)‐BIBD.
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Proof. The G H k( , , , 1)1 ‐BRDF generates a nested k( , 1)‐GDD of type ∕hv h. Fill in each
group with a nested h k( , , 1)‐BIBD. □

The two preceding lemmas can be used to construct nested v( , 4, 1)‐BIBDs for several values
of v, as summarized in Table 4. Note that the required BRDFs were shown to exist in
Examples 4.3–4.10.

Our last theoretical construction yields nested v( , 4, 1)‐BIBDs for v q= 4 , where
≡q 1 mod 12 is a prime or prime power, provided that certain conditions are satisfied.

Lemma 4.9 is based on ideas that were introduced in the discussion preceding Example 4.3.

Lemma 4.9. Let  be a G H k( , , , 1)‐BRDF with G a group of order v and H a subgroup
of G of order k. If there exists a nontrivial coset of H having an empty intersection with all
the base blocks of  and with all their negatives, then there exists a nested v k( , , 1)‐BIBD.

Proof. Let dev be the development of  and let  be the set of cosets of H in G. The
pair ∪ G dev( , ) is a v k( , , 1)‐BIBD. By assumption, there is an element ∈ ⧹g G H

such that H g+ is disjoint from all the base blocks of  and with all their negatives.
Consider the map

∪ ⟶ f dev G:

defined by

∈ ∈

∈

f B t t B t G

f H t g t t G

( + ) = for all and for all ,

( + ) = + for all .

It is straightforward to check that f is a nesting and then the assertion follows. □

Lemma 4.10. Let q n= 12 + 1 be a prime power and let C6 be the subgroup of *q of
index 6. Assume that there exists a 16‐tuple a a a( , , …, )1 2 16 of elements of *q satisfying the

following conditions:

(i) Each of the four lists of differences

TABLE 4 Applications of Lemmas 4.7 and 4.8.

v Ingredients

280 (40, 4, 4, 1)‐BRDF+ (7, 4, 1)‐HDM+nested (28, 4, 1)‐BIBD

364 (52, 4, 4, 1)‐BRDF+ (7, 4, 1)‐HDM+nested (28, 4, 1)‐BIBD

520 (40, 4, 4, 1)‐BRDF+ (13, 4, 1)‐HDM+nested (52, 4, 1)‐BIBD

532 (76, 4, 4, 1)‐BRDF+ (7, 4, 1)‐HDM+nested (28, 4, 1)‐BIBD

700 (100, 4, 4, 1)‐BRDF+ (7, 4, 1)‐HDM+nested (28, 4, 1)‐BIBD

868 (124, 4, 4, 1)‐BRDF+ (7, 4, 1)‐HDM+nested (28, 4, 1)‐BIBD

Abbreviations: BIBD, balanced incomplete block design; BRDF, Banff relative difference family; HDM, homogeneous
difference matrix.
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a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

Δ = { − , − , − , − , − , − },

Δ = { − , − , − , − , − , − },

Δ = { − , − , − , − , − , − },

Δ = { − , − , − , − , − , − }

0,0 1 2 5 6 10 11 10 12 11 12 15 16

0,1 1 3 2 3 5 7 6 7 14 15 14 16

1,0 1 4 2 4 5 8 6 8 13 15 13 16

1,1 3 4 7 8 9 10 9 11 9 12 13 14

is a complete system of representatives for the cosets of C6 in *q.

(ii) Each of the four lists

U a a a a a

U a a a

U a a a

U a a a a a

= { , , , , },

= { , , },

= { , , },

= { , , , , }

0,0 1 2 5 6 9

0,1 3 7 13

1,0 4 8 14

1,1 10 11 12 15 16

is a partial system of representatives for the cosets of C6 in *q distinct from C6.

Then there exists a nested q(4 , 4, 1)‐BIBD.

Proof. Let us consider the following 4‐subsets of  × q4 :

B a a a a

B a a a a

B a a a a

B a a a a

= {(0, 0, ), (0, 0, ), (0, 1, ), (1, 0, )},

= {(0, 0, ), (0, 0, ), (0, 1, ), (1, 0, )},

= {(0, 0, ), (1, 1, ), (1, 1, ), (1, 1, )},

= {(0, 1, ), (1, 0, ), (1, 1, ), (1, 1, )}.

1 1 2 3 4

2 5 6 7 8

3 9 10 11 12

4 13 14 15 16

One can patiently check that we have

⊗
∈

 B xΔ = { } × (Δ {1, −1}).
i

i
x

x
=1

4

4

The assumption that q n= 12 + 1 guarantees that ∈ C−1 6, hence {1, −1} is a
subgroup of C6.

Let S be a complete system of representatives for the cosets of {1, −1} in C6 (note that
∕ S q= ( − 1) 12). Then, set

≤ ≤ ∈ B i s S= { : 1 4, },i s,

where Bi s, is the set obtained from Bi by multiplying the last coordinates of all its
elements by s. Note that ∕  q= ( − 1) 3.

We have ⊗ S C{1, −1} = 6 by definition of S. Also, for every ∈ x 4 we have
⊗ CΔ = *x q

6 by condition i( ), so we can write ⊗ ⊗ S(Δ {1, −1}) = *x q. It follows that
we have

⧹    Δ = × * = ( × ) ( × {0}),q q4 4 4
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which means that  is a   ( × , × {0}, 4, 1)q4 4 ‐RDF.
The union U (counting multiplicities) of the blocks of  and their negatives is given by

⊗ ⊗

⊗

∈

∈





 


U x U S

x U C

= { } × ( {1, −1} )

= { } × ( ).

x
x

x
x

6

4

4

In view of ii( ), we have that ⊗U Cx
6 is the union of five or three distinct cosets ofC6 in *q

according to whether ∈x {(0, 0), (1, 1)} or ∈x {(0, 1), (1, 0)}, respectively. Thus U does not
have repeated elements and it does not cover any element of  × {0}4 , hence  is a BRDF.

Finally, U is disjoint from  x× { }4 for every ∈x C6. The assertion then follows from
Lemma 4.9. □

In the above construction, every block in  is nested with (0, 0, 0), and the short orbit is
generated from H x= {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1), (0, 0, )} where the nested point is
any ∈x C6. We only take translates of the short orbit through q.

Example 4.12. Let us apply Lemma 4.10 in the smallest case q = 13. This will yield a
nested (52, 4, 1)‐BIBD. Here we have C = {1, −1}6 so that the cosets of C6 in *13 are all
pairs g g{ , − } of nonzero elements of *13:

{1, 12}, {2, 11}, {3, 10}, {4, 9}, {5, 8}, {6, 7}.

Let us consider the following 16‐tuple

a a a( , , …, ) = (2, 3, 5, 7, 4, 6, 11, 3, 5, 2, 9, 6, 3, 9, 5, 10)1 2 16

of elements of *13. Keeping the same notation as in Lemma 4.10 we have

U U

U U

Δ = {12, 11, 6, 9, 3, 8}, Δ = {10, 11, 6, 8, 4, 12},

Δ = {8, 9, 1, 3, 11, 6}, Δ = {11, 8, 3, 9, 12, 7},

= {2, 3, 4, 6, 5}, = {5, 11, 3},

= {7, 3, 9}, = {2, 9, 6, 5, 10}.

00 01

10 11

00 01

10 11

It is readily seen that conditions (i) and (ii) of Lemma 4.10 are satisfied.
In this case we can take S = {1} and then a   ( × , × {0}, 1)4 13 4 ‐BRDF is given by the

following four base blocks:

B

B

B

B

= {(0, 0, 2), (0, 0, 3), (0, 1, 5), (1, 0, 7)},

= {(0, 0, 4), (0, 0, 6), (0, 1, 11), (1, 0, 3)},

= {(0, 0, 5), (1, 1, 2), (1, 1, 9), (1, 1, 6},

= {(0, 1, 3), (1, 0, 9), (1, 1, 5), (1, 1, 10)}.

1

2

3

4

These base blocks are all nested with (0, 0, 0) and developed through  ×4 13. We can take
∈x C= 1 6, and then the short orbit is H = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1), (0, 0, 1)},

where we develop the last co‐ordinate through 13.
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We present 16‐tuples satisfying the conditions of Lemma 4.10 for primes
≤ ≡q q193, 1 mod 12, in Table 5. For each such q, a nested q(4 , 4, 1)‐BIBD exists.
Finally, we have some results for q a prime power.

Corollary 4.11. There exists an   ( × , × {0}, 4, 1)q4 4 ‐BRDF and a nested q(4 , 4, 1)‐
BIBD for q = 25, 49 and 121.

Proof. These are applications of Lemma 4.10, using the following 16‐tuples:

• in ∕  x x x= [ ] ( + + 2)25 5
2 , use

x x x x x x x x

x x x x x x x x

( , 1 + , 2 , 3 , 2 + , 3 + 2 , 1 + , 4 + 4 ,

3 + , 4 + , 4 + 3 , 2 + 2 , 3 + , 2 + 3 , , 4 + 2 ).

• in ∕  x x= [ ] ( + 1)49 7
2 , use

x x x x x x x x

x x x x x x x

(2 , 3 , 4 , 5 , 1 + 2 , 1 + 4 , 5 , 2 + 4 ,

2 + 3 , 1 + 2 , 4, 4 + 3 , 2 + 3 , 6 + 2 , 4 + 6 , 5 + 4 ).

• in ∕  x x= [ ] ( + 1)121 11
2 , use

x x x x x x x x

x x x x x x x x

(1 + , 1 + 2 , 2 + , 2 + 2 , 1 + 3 , 2 + , 3 + 4 , 4 + 2 ,

1 + 4 , 2 + , 3 + 2 , 5 + 10 , 1 + , 7 + 2 , 4 + 7 , 10 + 4 ).

□

We remark that alternate constructions for v = 196 and 484 (i.e., base blocks that
were found by backtracking in cyclic groups) are given in Examples A.5 and A.11,
respectively.

TABLE 5 Sixteen‐tuples satisfying the conditions of Lemma 4.10 for primes ≤ ≡q q193, 1 mod 12.

p (a a a, , …,1 2 16)

13 (2, 3, 5, 7, 4, 6, 11, 3, 5, 2, 9, 6, 3, 9, 5, 10)

37 (2, 3, 4, 5, 5, 8, 2, 14, 9, 2, 4, 23, 5, 3, 16, 24)

61 (2, 4, 6, 7, 5, 8, 13, 15, 10, 2, 24, 32, 8, 25, 45, 57)

73 (2, 4, 6, 7, 5, 10, 15, 26, 13, 6, 15, 44, 4, 16, 36, 43)

97 (2, 4, 5, 6, 5, 10, 15, 17, 19, 2, 6, 28, 2, 53, 23, 57)

109 (2, 3, 5, 6, 6, 9, 15, 17, 11, 2, 21, 58, 2, 7, 89, 98)

157 (2, 3, 5, 6, 5, 13, 18, 7, 15, 2, 13, 109, 2, 40, 102, 133)

181 (2, 3, 4, 7, 6, 9, 2, 16, 18, 8, 10, 41, 6, 11, 20, 169)

193 (2, 4, 6, 7, 5, 10, 15, 26, 11, 4, 5, 16, 4, 38, 80, 160)
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Using the theorem of Weil on multiplicative character sums, along the lines of [5], it is
possible to prove that a 16‐tuple of elements of q satisfying the conditions of Lemma 4.10 exists
whenever q > 9, 152, 353.

We have used a simple backtracking algorithm to find appropriate 16‐tuples for all primes
≡q q1 mod 12, < 9, 152, 353. There are 152,835 such primes, so we do not list all the

16‐tuples; however, a listing of these 16‐tuples is available from the authors.
As a result, we can state the following.

Theorem 4.12. There exists a   ( × , × {0}, 4, 1)p4 4 ‐BRDF and a nested p(4 , 4, 1)‐BIBD
for any prime ≡p 1 mod 12.

We believe that 16‐tuples satisfying the conditions of Lemma 4.10 can also be found for the
prime powers q < 9, 152, 353. However, we have not done this computation.

Lemma 4.13. There is a nested (256, 4, 1)‐BIBD.

Proof. An affine plane of order 16 is a (256, 16, 1)‐BIBD. It suffices to replace every
block with a nested (16, 4, 1)‐BIBD (this is a PBD‐closure construction). □

The case v = 688 can be handled by a recursive construction that is described in [14,
Corollary 2.2] (we also present base blocks for v = 688 that were found by computer in the
Appendix). The remaining exceptions, that is,

∈v {220, 268, 304, 316, 472, 496, 508},

are eliminated by using a backtracking algorithm to compute nestings of given sets of base
blocks. These are presented in the Appendix.

Summarizing, we have our main theorem.

Theorem 4.14. There exists a nested v( , 4, 1)‐BIBD for all ≥≡v v4 mod 12, 16.

5 | SUMMARY AND CONCLUSION

The next case of interest for perfect nestings is v( , 5, 2)‐BIBDs. We have found infinite classes of
nested v( , 5, 2)‐BIBDs and nested (5, 2)‐GDDs. We will discuss this problem further in a
forthcoming paper.

Many variations of nestings can be considered. When k λ< 2 + 1, a nesting of a
v k λ( , , )‐BIBD does not exist. A relaxed definition of nesting would allow new points to be
added to the BIBD, so a v k λ( , , )‐BIBD would be nested into a partial w k λ( , + 1, + 1)‐BIBD
for some w v> . This is the approach that is taken in [1, 2] in the case k λ= 2, = 1. The
natural problem to consider is to construct nestings in which w is minimized. Additional
work along these lines can be found in [15], where the notions of “strong” and “weak”
nestings are developed.

Another possible generalization would be to study nestings of v k λ( , , )‐BIBDs into
(partial) v k λ( , , ′)‐BIBDs, where λ λ′ > + 1. We are not aware of any prior work on this
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problem. Finally, we should mention that asymptotic existence of nestings of BIBDs is
studied in [10].
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APPENDIX A

Example A.1. Base blocks for a nested (136, 4, 1)‐BIBD:

{134, 135, 5, 27, 0}, {130, 133, 15, 81, 0}, {123, 132, 50, 112, 0},

{129, 20, 46, 96, 0}, {127, 72, 14, 28, 0}, {87, 92, 128, 111, 0},

{103, 105, 115, 38, 0}, {99, 107, 19, 61, 0}, {100, 104, 69, 53, 0},

{74, 89, 114, 17, 0}, {58, 71, 101, 26, 0}, {0, 34, 68, 102, 11}.

Example A.2. Base blocks for a nested (160, 4, 1)‐BIBD:

{1, 2, 6, 12, 0}, {4, 7, 19, 37, 0}, {5, 14, 50, 104, 0},

{3, 10, 32, 59, 0}, {8, 29, 95, 16, 0}, {11, 74, 112, 35, 0},

{9, 28, 76, 119, 0}, {17, 31, 63, 88, 0}, {55, 71, 133, 20, 0},

{30, 47, 67, 135, 0}, {13, 36, 121, 77, 0}, {134, 136, 34, 108, 0},

{38, 69, 103, 145, 0}, {0, 40, 80, 120, 18}.

Example A.3. Base blocks for a nested (172, 4, 1)‐BIBD:

{171, 132, 109, 62, 0}, {170, 71, 124, 137, 0}, {131, 103, 107, 128, 0},

{169, 150, 55, 160, 0}, {165, 130, 147, 96, 0}, {37, 81, 122, 39, 0},

{166, 46, 134, 146, 0}, {164, 93, 82, 67, 0}, {156, 157, 33, 149, 0},

{84, 4, 121, 10, 0}, {45, 113, 5, 83, 0}, {94, 99, 72, 153, 0},

{116, 161, 85, 145, 0}, {32, 68, 125, 18, 0}, {0, 43, 86, 129, 9}.

Example A.4. Base blocks for a nested (184, 4, 1)‐BIBD:

{183, 12, 99, 113, 0}, {182, 21, 148, 60, 0}, {181, 23, 103, 65, 0},

{178, 180, 63, 128, 0}, {179, 24, 84, 142, 0}, {175, 10, 38, 120, 0},

{171, 7, 50, 127, 0}, {165, 166, 170, 176, 0}, {140, 143, 155, 173, 0},

{159, 168, 20, 74, 0}, {129, 156, 80, 58, 0}, {137, 145, 162, 34, 0},

{82, 106, 157, 141, 0}, {95, 167, 136, 88, 0}, {115, 147, 54, 94, 0},

{0, 46, 92, 138, 15}.

Example A.5. Base blocks for a nested (196, 4, 1)‐BIBD:

{195, 15, 115, 135, 0}, {194, 8, 142, 19, 0}, {192, 14, 49, 118, 0},

{193, 11, 163, 45, 0}, {184, 191, 79, 51, 0}, {190, 17, 59, 123, 0},

{183, 189, 70, 96, 0}, {186, 22, 76, 116, 0}, {167, 168, 172, 9, 0},

{156, 159, 171, 74, 0}, {119, 128, 164, 69, 0}, {114, 141, 53, 160, 0},

{165, 50, 178, 107, 0}, {111, 158, 150, 133, 0}, {35, 176, 152, 101, 0},

{138, 169, 97, 140, 0}, {0, 49, 98, 147, 23}.
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Example A.6. Base blocks for a nested (220, 4, 1)‐BIBD:

{219, 13, 101, 78, 0}, {217, 17, 77, 145, 0}, {218, 6, 50, 121, 0},

{216, 18, 44, 139, 0}, {215, 11, 89, 175, 0}, {211, 16, 177, 57, 0},

{213, 26, 68, 137, 0}, {201, 212, 30, 54, 0}, {192, 193, 197, 210, 0},

{181, 184, 196, 15, 0}, {155, 164, 200, 97, 0}, {140, 167, 55, 186, 0},

{191, 52, 156, 109, 0}, {182, 189, 12, 76, 0}, {157, 178, 87, 59, 0},

{125, 188, 135, 51, 0}, {129, 98, 159, 127, 0}, {72, 199, 162, 66, 0},

{0, 55, 110, 165, 14}.

Example A.7. Base blocks for a nested (268, 4, 1)‐BIBD:

{267, 2, 35, 187, 0}, {265, 5, 95, 195, 0}, {264, 8, 28, 143, 0},

{262, 15, 76, 153, 0}, {261, 23, 39, 48, 0}, {259, 29, 63, 190, 0},

{257, 34, 139, 162, 0}, {252, 24, 26, 128, 0}, {251, 255, 22, 202, 0},

{248, 258, 79, 126, 0}, {238, 256, 38, 146, 0}, {228, 250, 111, 163, 0},

{216, 247, 90, 104, 0}, {254, 49, 50, 123, 0}, {183, 231, 237, 156, 0},

{236, 241, 64, 165, 0}, {224, 235, 53, 207, 0}, {208, 227, 19, 43, 0},

{94, 120, 135, 179, 0}, {132, 169, 198, 75, 0}, {166, 209, 222, 47, 0},

{155, 206, 213, 93, 0}, {0, 67, 134, 201, 25}.

Example A.8. Base blocks for a nested (304, 4, 1)‐BIBD:

{52, 235, 185, 92, 0}, {244, 39, 269, 283, 0}, {126, 300, 234, 164, 0},

{25, 173, 49, 29, 0}, {227, 123, 6, 232, 0}, {205, 294, 260, 208, 0},

{270, 272, 175, 211, 0}, {273, 284, 26, 217, 0}, {62, 78, 111, 203, 0},

{165, 191, 303, 42, 0}, {8, 55, 109, 197, 0}, {56, 118, 135, 166, 0},

{3, 121, 149, 150, 0}, {7, 15, 88, 292, 0}, {293, 302, 33, 40, 0},

{147, 159, 45, 75, 0}, {38, 53, 59, 237, 0}, {239, 261, 89, 176, 0},

{199, 222, 267, 103, 0}, {110, 142, 277, 287, 0}, {130, 167, 258, 36, 0},

{172, 225, 243, 19, 0}, {98, 156, 220, 295, 0}, {47, 112, 153, 282, 0},

{30, 133, 146, 223, 0}, {0, 76, 152, 228, 180}.

Example A.9. Base blocks for a nested (316, 4, 1)‐BIBD:

{53, 54, 247, 88, 0}, {216, 81, 254, 231, 0}, {205, 102, 131, 76, 0},

{132, 213, 230, 307, 0}, {301, 110, 27, 60, 0}, {150, 23, 168, 137, 0},

{283, 128, 221, 218, 0}, {140, 209, 294, 67, 0}, {25, 190, 91, 84, 0},

{278, 207, 160, 73, 0}, {154, 259, 284, 21, 0}, {178, 223, 8, 121, 0},

{90, 99, 296, 129, 0}, {115, 164, 113, 222, 0}, {314, 19, 268, 89, 0},

{275, 56, 136, 80, 0}, {120, 77, 237, 125, 0}, {24, 108, 144, 13, 0},

{74, 250, 135, 304, 0}, {124, 64, 105, 42, 0}, {55, 255, 92, 65, 0},

{14, 18, 106, 234, 0}, {170, 182, 130, 198, 0}, {47, 299, 155, 3, 0},

{167, 31, 199, 271, 0}, {163, 171, 39, 177, 0}, {0, 237, 158, 79, 44}.
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Example A.10. Base blocks for a nested (472, 4, 1)‐BIBD:

{470, 471, 56, 71, 0}, {469, 8, 64, 368, 0}, {468, 15, 100, 217, 0},

{467, 25, 43, 70, 0}, {463, 465, 237, 437, 0}, {466, 10, 90, 293, 0},

{440, 461, 119, 172, 0}, {460, 21, 227, 369, 0}, {459, 31, 86, 181, 0},

{449, 458, 122, 174, 0}, {438, 455, 89, 109, 0}, {432, 456, 175, 391, 0},

{420, 454, 113, 272, 0}, {413, 453, 120, 186, 0}, {450, 24, 75, 233, 0},

{446, 28, 126, 136, 0}, {443, 50, 128, 302, 0}, {452, 66, 221, 303, 0},

{445, 78, 168, 279, 0}, {442, 84, 155, 322, 0}, {430, 83, 118, 295, 0},

{378, 191, 114, 439, 0}, {374, 55, 411, 433, 0}, {375, 176, 73, 435, 0},

{400, 157, 436, 404, 0}, {421, 257, 76, 426, 0}, {277, 414, 364, 280, 0},

{339, 153, 77, 403, 0}, {366, 48, 405, 428, 0}, {362, 164, 62, 425, 0},

{385, 143, 423, 392, 0}, {305, 142, 434, 313, 0}, {260, 398, 349, 266, 0},

{357, 173, 99, 427, 0}, {275, 431, 318, 343, 0}, {111, 387, 287, 180, 0},

{367, 127, 409, 380, 0}, {218, 57, 351, 232, 0}, {278, 418, 371, 290, 0},

{0, 118, 236, 354, 53}.

Example A.11. Base blocks for a nested (484, 4, 1)‐BIBD:

{140, 431, 352, 201, 0}, {389, 62, 426, 448, 0}, {386, 179, 74, 446, 0},

{304, 55, 340, 308, 0}, {475, 309, 124, 480, 0}, {223, 366, 314, 226, 0},

{93, 385, 307, 157, 0}, {159, 317, 198, 221, 0}, {145, 423, 319, 208, 0},

{381, 133, 419, 388, 0}, {375, 210, 26, 383, 0}, {63, 207, 156, 69, 0},

{2, 296, 220, 72, 0}, {173, 333, 216, 241, 0}, {372, 168, 66, 441, 0},

{398, 152, 440, 411, 0}, {8, 329, 147, 22, 0}, {467, 129, 80, 479, 0},

{449, 450, 460, 393, 0}, {466, 468, 114, 451, 0}, {182, 191, 215, 292, 0},

{287, 303, 361, 387, 0}, {394, 105, 126, 153, 0}, {483, 29, 178, 212, 0},

{200, 240, 356, 14, 0}, {163, 300, 371, 48, 0}, {442, 41, 222, 336, 0},

{81, 146, 291, 471, 0}, {433, 52, 102, 228, 0}, {125, 205, 294, 106, 0},

{324, 377, 405, 154, 0}, {236, 326, 367, 439, 0}, {143, 238, 345, 400, 0},

{282, 348, 368, 85, 0}, {54, 172, 218, 465, 0}, {342, 464, 25, 219, 0},

{257, 301, 425, 82, 0}, {47, 199, 234, 281, 0}, {335, 6, 60, 135, 0},

{211, 229, 365, 473, 0}, {0, 121, 242, 363, 131}.
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Example A.12. Base blocks for a nested (496, 4, 1)‐BIBD:

{85, 385, 304, 147, 0}, {290, 450, 328, 350, 0}, {364, 153, 45, 425, 0},

{100, 341, 137, 104, 0}, {386, 215, 24, 391, 0}, {470, 118, 67, 473, 0},

{44, 345, 265, 109, 0}, {13, 174, 53, 76, 0}, {108, 394, 287, 172, 0},

{157, 399, 196, 164, 0}, {3, 329, 139, 11, 0}, {84, 229, 179, 90, 0},

{457, 264, 186, 32, 0}, {245, 408, 289, 314, 0}, {356, 148, 43, 426, 0},

{187, 431, 230, 200, 0}, {128, 456, 268, 142, 0}, {427, 78, 30, 439, 0},

{131, 133, 401, 47, 0}, {492, 129, 144, 145, 0}, {448, 458, 18, 124, 0},

{395, 413, 444, 468, 0}, {379, 398, 475, 33, 0}, {237, 257, 446, 119, 0},

{93, 114, 190, 437, 0}, {462, 1, 152, 181, 0}, {115, 160, 313, 360, 0},

{180, 252, 459, 55, 0}, {22, 74, 165, 288, 0}, {445, 454, 143, 211, 0},

{476, 8, 54, 112, 0}, {312, 346, 113, 154, 0}, {60, 96, 197, 280, 0},

{240, 282, 66, 123, 0}, {486, 75, 92, 321, 0}, {246, 305, 358, 469, 0},

{233, 308, 489, 103, 0}, {218, 297, 424, 130, 0}, {169, 272, 283, 438, 0},

{81, 201, 227, 14, 0}, {241, 416, 2, 29, 0}, {0, 124, 248, 372, 149}.

Example A.13. Base blocks for a nested (508, 4, 1)‐BIBD:

{86, 390, 307, 147, 0}, {471, 127, 1, 23, 0}, {506, 287, 177, 57, 0},

{77, 323, 114, 81, 0}, {276, 101, 413, 281, 0}, {469, 110, 54, 472, 0},

{224, 21, 447, 288, 0}, {53, 218, 93, 116, 0}, {308, 90, 489, 370, 0},

{195, 442, 234, 202, 0}, {33, 367, 172, 41, 0}, {385, 27, 480, 391, 0},

{55, 362, 282, 125, 0}, {145, 312, 189, 214, 0}, {5, 297, 190, 73, 0},

{443, 184, 486, 456, 0}, {15, 351, 158, 29, 0}, {420, 64, 11, 432, 0},

{6, 314, 235, 79, 0}, {206, 374, 252, 278, 0}, {495, 280, 174, 58, 0},

{309, 51, 354, 325, 0}, {251, 80, 396, 268, 0}, {311, 464, 412, 326, 0},

{104, 105, 357, 69, 0}, {159, 161, 264, 478, 0}, {40, 50, 115, 375, 0},

{187, 198, 279, 328, 0}, {38, 47, 135, 329, 0}, {94, 113, 338, 389, 0},

{341, 388, 488, 143, 0}, {286, 352, 437, 168, 0}, {462, 68, 102, 301, 0},

{500, 12, 289, 366, 0}, {463, 3, 31, 193, 0}, {164, 248, 275, 106, 0},

{501, 129, 203, 380, 0}, {231, 249, 343, 364, 0}, {292, 333, 400, 242, 0},

{241, 295, 419, 217, 0}, {304, 417, 459, 247, 0}, {109, 285, 316, 482, 0},

{0, 127, 254, 381, 212}.
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Example A.14. Base blocks for a nested (688, 4, 1)‐BIBD:

{39, 255, 340, 614, 0}, {200, 339, 370, 422, 0}, {91, 242, 403, 487, 0},

{37, 84, 88, 442, 0}, {103, 368, 547, 552, 0}, {428, 502, 625, 628, 0},

{142, 230, 503, 615, 0}, {301, 438, 470, 524, 0}, {257, 407, 567, 654, 0},

{123, 169, 176, 529, 0}, {108, 116, 354, 618, 0}, {343, 416, 538, 544, 0},

{16, 127, 341, 432, 0}, {20, 76, 540, 675, 0}, {112, 202, 492, 641, 0},

{65, 110, 120, 472, 0}, {36, 213, 224, 461, 0}, {189, 261, 382, 391, 0},

{25, 134, 346, 443, 0}, {451, 582, 617, 677, 0}, {253, 400, 557, 653, 0},

{24, 40, 390, 669, 0}, {96, 357, 532, 549, 0}, {332, 402, 521, 536, 0},

{7, 276, 384, 595, 0}, {198, 327, 363, 425, 0}, {41, 328, 474, 630, 0},

{178, 220, 239, 588, 0}, {99, 273, 293, 527, 0}, {308, 377, 495, 513, 0},

{92, 195, 463, 570, 0}, {254, 381, 418, 482, 0}, {62, 217, 319, 605, 0},

{18, 59, 81, 429, 0}, {210, 469, 642, 665, 0}, {105, 126, 608, 676, 0},

{2, 3, 27, 448, 0}, {564, 566, 646, 658, 0}, {221, 265, 545, 558, 0},

{51, 78, 241, 477, 0}, {111, 456, 484, 632, 0}, {248, 358, 392, 406, 0},

{191, 399, 466, 505, 0}, {162, 212, 543, 659, 0}, {43, 119, 598, 627, 0},

{223, 404, 518, 680, 0}, {192, 317, 374, 515, 0}, {107, 133, 439, 479, 0},

{64, 129, 283, 523, 0}, {264, 302, 379, 522, 0}, {53, 350, 408, 621, 0},

{229, 436, 514, 666, 0}, {149, 179, 228, 684, 0}, {158, 251, 383, 454, 0},

{95, 235, 316, 533, 0}, {57, 199, 323, 398, 0}, {146, 445, 550, 616, 0},

{0, 172, 334, 516, 419}.
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