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Abstract: Computer vision techniques have been employed to characterize dynamic properties of
structures, as well as to capture structural motion for system identification purposes. All of these
methods leverage image-processing techniques using a stationary camera. This requirement makes
finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges,
buildings, etc.) are often difficult to access, being constructed over rivers, roads, or other obstacles.
This paper seeks to use video from Unmanned Aerial Vehicles (UAVs) to address this problem.
As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue
of the camera itself moving; thus, the displacements of the structure obtained by processing UAV
video are relative to the UAV camera. Some efforts have been reported to compensate for the camera
motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a
new method for structural system identification using the UAV video directly. Several challenges
are addressed, including: (1) estimation of an appropriate scale factor; and (2) compensation for
the rolling shutter effect. Experimental validation is carried out to validate the proposed approach.
The experimental results demonstrate the efficacy and significant potential of the proposed approach.

Keywords: structural health monitoring; system identification; computer vision; Unmanned
Aerial Vehicles

1. Introduction

Structural system identification is the process of obtaining a model of a structural system based
on a set of measurements of structural responses. Oftentimes, the responses of a structure such
as displacements, accelerations, and strains are measured by traditional systems which usually
require a tedious installation process or expensive equipment [1]. For example, linear variable
differential transformers require fixed reference (e.g., scaffolds), and a GPS is either inaccurate or
expensive (e.g., NDGPS) [2]. Accelerometers are reference-free, but inaccurate in reconstructing the
DC component of the response [3].

Recently, computer vision-based techniques have been adopted to measure dynamic displacements
for structural system identification purposes. Vision-based methods can measure multiple points on the
structure, with a relatively simple installation and an inexpensive setup [3–8]. While the early stages
of vision-based techniques focused on the measurement of the response itself, recent studies showed
how these techniques could be used for system identification. Schumacher and Shariati [9] introduced
the concept of a virtual visual sensor (VVS) that could be used for the modal analysis of a structure.
Bartilson et al. [10] utilized a minimum quadratic difference (MQD) algorithm to analyze traffic signal

Sensors 2017, 17, 2075; doi:10.3390/s17092075 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17092075
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2075 2 of 12

structures. Feng and Feng [11,12] implemented upsampled cross correlation (UCC) and orientation
code matching (OCM) for structural system identification using a vision sensor system. Chen et al. [13]
used a motion magnification technique for modal identification. Yoon et al. [14] implemented a KLT
tracker to identify a model for a laboratory-scale six-story building model using a smartphone and
an action camera such as the GoPro camera. Feng and Feng [15] estimated stiffness reduction of a
beam structure using vision-based displacements. Cha et al. [16] implemented damage detection of a
cantilever beam using an unscented Kalman filter and vision-based, phase-based optical flow.

Despite the promising results of these vision-based approaches to utilizing cameras for structural
system identification, all of these systems require cameras to be fixed to a stationary reference; this
requirement limits their use for many civil infrastructure applications. For example, bridges are usually
constructed over rivers, roads, or other obstacles, which makes finding an appropriate location for
camera installation difficult. Also, the responses of high-rise buildings and some of their structural
components can be difficult to capture with fixed camera.

Unmanned aerial vehicles (UAVs) or unmanned aircraft systems (UASs) may provide an
opportunity to take a video of civil infrastructure more effectively by allowing the camera to
get closer to the structure. Commercial UAV markets are growing dramatically, resulting in
improved performance in terms of stability and mobility. Commercial-grade, off-the-shelf UAVs
are now equipped with 4K resolution cameras. Capturing images of civil infrastructure from an
aerial perspective using these UAVs offers the opportunity to resolve the issues with traditional
fixed-reference, vision-based structural monitoring. Furthermore, UAVs can enable non-contact remote
monitoring of a structure.

As opposed to the traditional way of using stationary cameras, the use of UAVs brings with it
the issue of the motion of the camera. Because the camera is moving, the measured displacement will
be relative to the UAV, not the absolute displacement. Yoon et al. [17,18] introduced an approach to
estimate the motion of the camera and then to determine the absolute displacement of the structure;
however, additional stationary targets needed to be identified in the scene. In addition, the scale
factor for the measurement needed to be determined, as the UAV’s distance from the structure is not
constant. Consequently, system identification results using the relative measurement will be erroneous.
In addition, a rolling shutter effect of the CMOS sensors found in most commercial video cameras can be
another source of error. Due to the sequential-readout structure of CMOS sensors, each scanline of the
acquired image is exposed at a different time, resulting in geometric image distortion when the object
or the video camera moves during image capture [19]. Because of the motion of UAVs, the effect of this
rolling shutter effect will have increased significance compared to when the camera was stationary.

This paper proposes a new method for system identification using the relative displacements
obtained directly from the UAV’s video images. In addition, the paper addresses two additional
challenges: (1) changes in scale factor; and (2) rolling shutter effect. The scale factor is required to
relate the pixel motions between frames to real world units. Because the scale factor is affected by the
UAV’s motion, an adaptive scaling mechanism is introduced where the scale factor is recomputed for
every frame. An additional compensation method is proposed to minimize the rolling shutter effect.
The images are then processed to obtain accurate estimates of the displacement of the structure relative
to the UAV. Subsequently, the cross-correlation functions are calculated for the various points on the
structure, which effectively compensates for the motion of the UAV. Finally, these cross-correlations
functions are used with the NExT-ERA for system identification. The proposed method is validated
through an experiment on a six-story model building. The experiment compares three approaches for
system identification which uses accelerometers, a stationary-camera, vision-based system, and the
proposed vision-based system using an UAV. The comparison is made based on the accuracy of the
extracted modal parameters in terms of natural frequencies and mode shapes.
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2. Proposed Methodology

2.1. Overview

Figure 1 shows an overview of the proposed methodology. The underlying pipeline is composed of
three main phases: (1) the conventional, vision-based method for displacement measurement proposed by
Yoon et al. [14]; (2) novel methods for addressing the varying scale factor, rolling shutter effect, and; (3) the
system identification method using relative displacements of a structure free from the UAV’s motion.
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Figure 1. Overview of system identification using unmanned aerial vehicles (UAVs).

2.2. Conventional, Vision-Based Displacement Measurement

The first phase is to estimate the displacement of the structure relative to the UAV. This phase
is based on the structural displacement measurement proposed by Yoon et al. [14]. The first step is
camera calibration. Due to the imperfection of camera lenses, significant radial distortion exists in
the raw video. The camera calibration module removes this distortion for achieving more accurate
displacement measurement by applying the method proposed by Zhang [20]. Once the distortion
is removed, the dynamic response of structures is determined by analyzing the calibrated video
frame-by-frame. Once the region of the interests is selected by the user, feature points such as corner
points are extracted by using the Harris corner detector [21]. Using the extracted feature points,
relative displacements are calculated by applying the KLT tracker [22] while removing the outliers by
MLESAC [23]. The result of the procedure will be a displacement of each story relative to the reference.

This displacement vector
[

ui vi

]T
—in pixel coordinates—will be converted into world coordinates

and appropriately scaled as described in the following steps.

2.3. Displacement Measurement Using an UAV

The 2D projected point [u, v] on an image plane obtained from a camera installed on an UAV for
given 3D point in the world coordinate [X, Y, Z] (see Figure 2) can be expressed by using the pinhole
camera model [24] as

S

 u
v
1

 =

 αx γ u0

0 αy v0

0 0 1

[ R3×3 t1×3

]
X
Y
Z
1

 (1)
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where λ is an arbitrary value, R is a rotation matrix with 3 degree-of-freedom (i.e., θx, θy and θz),
t = [tx, ty, tz] is a UAV’s translation vector, αx, αy are the normalized focal length of a camera both
directions, and u0 and v0 are the principle points. After applying the camera calibration, γ, u0, and v0

can be set to zero, and α = αx = αy; then, the projected 2D image point can be written as below:

[
u
v

]
= 1

S

[
X
(
cos θy cos θz

)
+ Y

(
− cos θx sin θz + sin θx sin θy cos θz

)
+ Z

(
sin θx sin θz + cos θx sin θy cos θz

)
+ tx

X
(
cos θy sin θz

)
+ Y

(
cos θx cos θz − sin θx sin θy sin θz

)
+ Z

(
− cos θx sin θz + cos θx sin θy sin θz + ty

]
(2)

where S =
−X sin θy+Y sin θx cos θy+Z cos θx cos θy+tz

α is a scale factor that will be derived in Section 2.4.
Assuming in-plane structural motion and no translation in the z-direction, the change in 2D

relative displacement of a moving object with respect to the UAV’s motion at the i-th image frame can
be written as follows[

dx,i
dy,i

]
= Si+1

[
ui+1
vi+1

]
− Si

[
ui
vi

]
=

[
∆X
(
cos θy cos θz

)
+ ∆Y(− cos θx sin θz + sin θx sin θy cos θz

)
+ tx

∆X
(
cos θy sin θz

)
+ ∆Y(cos θx cos θz − sin θx sin θy sin θz

)
+ ty

]
(3)

where ∆X and ∆Y are the displacement of the structure between i-th and (i + 1)th image frame.
When the rotation angles are small, the Equation (3) can be re-written as below:[

dx,i
dy,i

]
= Si+1

[
ui+1
vi+1

]
− Si

[
ui
vi

]
∼=
[

∆X + tx

∆Y + ty

]
(4)

As indicated by Equation (4), the change in relative displacement captured by the UAV is
influenced by two factors: (1) scaling of the displacement related to S, and; (2) DC bias introduced
by translational motion of the UAV (i.e., tx and ty). The scaling issue can be resolved by introducing
an adaptive scale factor, as discussed in Section 2.4; the rolling shutter effect will be discussed in
Section 2.5, and the influence of translational motion will be reduced using the Natural Excitation
Technique (NExT) introduced in Section 2.6.
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Figure 2. Motion of the UAV with respect to a target structure.

2.4. Adaptive Scale Factor

Most of the methods for measuring the displacement of the structure from a fixed camera on
the ground assume the in-plane motion of the structure. This assumption allows for a constant scale
factor for not only the entire frame but between frames as well. Given such a condition, the scale factor
does not need to be determined at every frame to estimate the natural frequencies and mode shapes.
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However, this assumption is no longer valid for responses obtained through a moving camera, as in
the case of the UAV, since there is bound to be movement in the Z-direction (i.e., tz).

To address this issue, the scale factor for each frame can be calculated using the (1) known physical
length of an object and (2) the pixel distance of the two corresponding points defined by the user.
The distance of the two corresponding image points l can be expressed in terms of the known physical
length of an object L by expanding the Equation (2).

l = ‖p1 − p2‖ =
α

−X sin θy + Y sin θx cos θy + Z cos θx cos θy + tz
L =

1
S

L (5)

where p1 and p2 are the two end points of the object with a known physical length. ‖ · ‖2 is the L2-norm
of a vector. Note that α and Z are constant, and the angles are small, so the scale factor S will be a
function of camera motion in the Z-direction.

The scale factor S in the initial image frame can be determined by dividing the length of the
known object L by the pixel distance of the object in image frame l0. Based on the initial scale factor S0,
the scale factor in each frame can be calculated using two designated feature points in the image as:

S0 = L
l0

Si =
S0‖p0,1−p0,2‖
‖pi,1 −pi,2‖

(6)

where p0,1 and p0,2 are the two points having the maximum distance among the feature points in the
initial frame and pi,1 and pi,2 are the two corresponding feature points in frame i.

2.5. Rolling Shutter Compensation

Besides adjusting for a scale factor in each frame, the rolling shutter effect that causes geometric
distortions such as skew should be compensated. The rolling shutter (RS) is one type of image data
acquisition that scans each row of the image sequentially using the complementary metal-oxide
semiconductor (CMOS) sensors [19]. In the RS, due to the nature of sequential readout, if the relative
velocity of a UAV and the object is large, the error become dramatic; compensation should be made to
enable accurate system identification.

Figure 3 illustrates the readout time and exposure time of each scanning line (row) in the image
in the CMOS sensor. The readout time is the time required to digitize a single array of pixels and
is determined by the speed of the A/D conversion and the number of rows in an image frame.
The exposure time is the length of time when the CMOS sensor is exposed to light. Assuming the
frame-rate fs of the camera is constant, the readout time and the maximum processing time delay can
be expressed as

tr =
1

fsh
(7)

where tr is the readout time and maximum time delay for each line, and h is the height (total number
of lines) of the image.

The distortion, in terms of the number of pixels, and due to the rolling shutter in the i-th line
compared to the first line, di,RS, can then be written as the following equation:

di,RS = tr(i− 1)Vrel (8)

where Vrel is the relative velocity in the direction where the rolling shutter occurs between the
camera and the structure. Vrel was obtained by the optical-flow using each sequential image frame.
To compensate for the effect of the RS, the di,RS was subtracted from the feature points at the i-th line.
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2.6. Natural Excitation Technique (NExT) for System Identification

As described in the Section 2.2, the displacement obtained by a UAV denoted in Equation (4) is
comprised of both the movement of the target structure and of the UAV. Rather than identifying the
UAV’s movement to get absolute structural displacement, the proposed method seeks to use relative
displacements from multiple locations of interest on the structure to conduct system identification.

To conduct system identification using the multiple relative displacements of the target structure
obtained by a UAV, the cross-correlations between the relative displacements are used for system
identification. Provided that the natural frequencies of the target structure do not overlap with
the frequencies induced by the UAV’s non-stationary drift, the correlation between the relative
displacements can be used for structural system identification.

Consider two 2-D displacements Di extracted at a point designated i in the image as:

Di =

[
xi(t) + tx(t) + mi(t) 0

0 yi(t) + ty(t) + ni(t)

]
(9)

where Di is the decoupled matrix of 2D displacement; xi(t), yi(t) are the true absolute displacements
of a target structure in the x and y axis at a point i in the image; tx(t), ty(t) are the translational
movements of a UAV; and mi(t) and ni(t) are measurement noise in the x and y axis, respectively.
The cross-correlation functions between D1, D2 are evaluated as

RD1D2 =

E[

[
x1(t + τ) + tx(t + τ) + m1(t + τ) 0

0 y1(t + τ) + ty(t + τ) + n1(t + τ)

][
x2(t) + tx(t) + m2(t) 0

0 y2(t) + ty(t) + n2(t)

]
]

=

[
Rx1x2 + Rx1tx + Rx2tx + Rtxtx 0

0 Ry1y2 + Ry1ty + Ry2ty + Rtyty

] (10)

Provided that the dynamic translational movement of a UAV does not have correlation with
the relative displacements of a structure, the cross-correlation RD1D2 between the two 2D relative
displacements can be expressed as

RD1D2 =

[
Rx1x2 + Rtxtx 0

0 Ry1y2 + Rtyty

]
(11)

Because the cross-correlation between the translational motion (i.e., Rtxtx or Rtyty ) does not involve
the dynamic characteristics of the target structure, the cross-correlation between relative displacements
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can be used for system identification using a natural excitation technique (NExT), output-only modal
analysis (James, et al. [25]). The NExT uses the correlation function of RDiDre f (τ) to express the
structural equation of motion in terms of M, C, and K as:

M
..
RDiDref(τ) + C

.
RDiDref(τ) + KRDiDref(τ) = 0 (12)

where, RDiDref(τ) is the correlation function between the relative displacement obtained at point
i and at the reference point in the image , and M, C, and K are the mass, damping, and stiffness
matrices, respectively.

To extract the structural modal properties, the eigensystem realization algorithm (ERA) was
applied after the NExT (see Figure 4), in which the cross-correlations between multiple relative
displacements were obtained by applying the inverse Fourier transform of the cross power spectral
density (CPSD) functions.
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3. Experimental Validation

3.1. Experimental Setup

An experiment was designed to verify the proposed method. More specifically, the purpose
was to verify whether the proposed method could allow a commercial grade UAV and an attached
camera to accurately conduct system identification of a target structure by effectively reducing the
error caused by the varying scale factor and the rolling shutter effect. A lab-scale test was carried
out on a six-story building model. The six-story building model is a shear building that has equal
masses at every floor and the building model is fixed on a uni-directional shaking table (see Figure 5).
The six natural frequencies of the shear building model are 1.657, 5.04, 8.14, 10.83, 12.93, and 14.34 Hz.
To excite the various structural vibration modes, a band-limited white noise (BLWN) was used as input
motion during this experiment.

The DJI Phantom 3, a commercial grade UAV was used for the test. The camera installed on the
UAV has 1080 p resolution and a frame rate of 25 fps. Also, the gimbal that holds the camera to the
UAV embeds an accelerometer and a gyroscope to stabilize the motion of the camera against 3-axis
rotation. The UAV was hovering by maintaining a 2 m distance from the structure to avoid collision.

As a reference, a stationary camera, an LG smartphone G3, was installed on the ground 1 m away
from the structure to extract the absolute structural displacements. The video in the stationary camera
was originally recorded at 60 fps with 1080 p and resampled at 25 fps for comparison. In addition,
accelerometers were deployed on each story of the shear building model to compare the system
identification results. The sampling rate for the acceleration was 1024 Hz.
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3.2. Analyzed Adaptive Scale Factor

As discussed in the Section 2.3, the scale factor for the each image taken by the camera changes
over time, due to the z-direction motion of the UAV. The scale factor was calculated for each frame
automatically using the proposed method. Figure 6 shows that the scale factor varied from 0.925 to
0.981 during 30 s of the video, leading to maximum of 5.7% error in displacement conversion from
pixel to mm.
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3.3. Comparison of the Dynamic Responses

Using the proposed procedure, the relative displacements of the six-story building model using a
UAV were obtained, analyzed, and compared with the ones from a stationary camera on the ground.
Figure 7 shows that there was large discrepancy between the relative displacements obtained from the
UAV and the absolute displacements obtained from a stationary camera. It is easy to conclude that the
motion of the UAV causes the drifts occurring in all six stories, since the trends are consistent across
the floors.

Figure 8 shows the CPSD of responses from the 5th floor and 6th floor of the shear building
model from the UAV and two reference measurements from the stationary camera and accelerometers.
Figure 8 shows that the cross power spectral densities from the UAV agreed very well with the reference
in the frequency domain by showing three clear natural frequencies, while the relative displacements
obtained from the UAV were significantly different compared to the absolute displacements from the
stationary camera. Note that the CPSD obtained from the UAV had a large discrepancy in the DC
component, with references due to the motion of the UAV.
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(UAV) and references.

Based on the CPSD, NExT-ERA was then performed to conduct system identification; Table 1 and
Figure 9 compare the results, in which the following observation can be made.

• Assuming that the system identification result from the accelerometers was the most reliable,
the result from both the stationary camera and the UAV showed around 1% of maximum error
in terms of natural frequency estimation. The comparison indicates that the proposed method
using the UAV provides as accurate natural modes as those obtained from the stationary camera
and accelerometers.

• Mode shapes extracted by the proposed method using the UAV were compared with ones from
the stationary camera and the accelerometers in terms of the mode assurance criteria (MAC) value;
all three mode shapes showed over 99% consistency when compared with the reference, and are
shown in Figure 9.
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Table 1. Comparison of system identification results.

Natural Frequencies (Hz) MAC (%) Error (%)

Mode Accelerometers
(Reference)

Stationary
Camera UAV Stationary

Camera UAV Stationary
Camera UAV

1 1.632 1.649 1.649 99.99 99.99 1.04 1.04
2 5.054 5.060 5.043 99.99 99.86 0.12 0.22
3 8.175 8.166 8.170 99.99 99.67 0.11 0.06

Sensors 2017, 17, 2075 10 of 12 

 

Table 1. Comparison of system identification results. 

Natural Frequencies (Hz) MAC (%) Error (%) 

Mode 
Accelerometers 

(Reference) 
Stationary Camera UAV Stationary Camera UAV 

Stationary 
Camera 

UAV 

1 1.632 1.649 1.649 99.99 99.99 1.04 1.04 
2 5.054 5.060 5.043 99.99 99.86 0.12 0.22 
3 8.175 8.166 8.170 99.99 99.67 0.11 0.06 

Fl
oo

r

Normalized Amplitude  

Figure 9. Comparison of mode shapes. 

4. Discussion 

The proposed method was able to cancel out the three translational motion (i.e., ݐ௫, ݐ௬ and ݐ௭) 
without directly calculating the camera motion. As shown in Section 2, the adaptive scale factor 
introduced in Equation (6) could resolve the issue of out-of-plane motion (Z-direction) of the camera. 
The cross-correlations of the projected displacement introduced in Equation (11) could cancel out the 
other two translation motions (X and Y direction) of the camera. 

In this study, the validation test was conducted at an indoor laboratory where wind affect was 
negligible. Due to the environment, the assumption of the small rotational motion of the camera was 
able to hold. However, when subjected to strong wind, the assumption of small rotational motion 
cannot hold anymore, and thus the correlation will not be invariant to the camera motion. For 
example, displacements at each story will be subjected to the same amount of translation when the 
rotational motion is negligible. On the other hand, the displacement of each story will be subjected 
to a different amount of translation when the rotational motion is large, resulting in inconsistent 
correlations. Therefore, in such cases, a method calculating absolute displacement such as Yoon et al. 
[14] should be applied, even though the method requires additional stationary points and a longer 
calculation time. 

5. Conclusions 

This paper presents a vision-based method for system identification using consumer-grade 
cameras in a UAV to conduct system identification. Unlike traditional, vision-based system 
identification, three major problems arise due to the non-stationary motion of the UAV. These are: 
(1) change in scale factor; (2) the rolling shutter effect; and (3) conducting system identification using 
the relative displacement obtained from the aerial camera. To address these issues, novel image-

Figure 9. Comparison of mode shapes.

4. Discussion

The proposed method was able to cancel out the three translational motion (i.e., tx, ty and tz)
without directly calculating the camera motion. As shown in Section 2, the adaptive scale factor
introduced in Equation (6) could resolve the issue of out-of-plane motion (Z-direction) of the camera.
The cross-correlations of the projected displacement introduced in Equation (11) could cancel out the
other two translation motions (X and Y direction) of the camera.

In this study, the validation test was conducted at an indoor laboratory where wind affect was
negligible. Due to the environment, the assumption of the small rotational motion of the camera was
able to hold. However, when subjected to strong wind, the assumption of small rotational motion
cannot hold anymore, and thus the correlation will not be invariant to the camera motion. For example,
displacements at each story will be subjected to the same amount of translation when the rotational
motion is negligible. On the other hand, the displacement of each story will be subjected to a different
amount of translation when the rotational motion is large, resulting in inconsistent correlations.
Therefore, in such cases, a method calculating absolute displacement such as Yoon et al. [14] should be
applied, even though the method requires additional stationary points and a longer calculation time.

5. Conclusions

This paper presents a vision-based method for system identification using consumer-grade
cameras in a UAV to conduct system identification. Unlike traditional, vision-based system
identification, three major problems arise due to the non-stationary motion of the UAV. These are:
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(1) change in scale factor; (2) the rolling shutter effect; and (3) conducting system identification using the
relative displacement obtained from the aerial camera. To address these issues, novel image-processing
techniques for compensating errors and a cross-correlation-based system identification process were
proposed in the paper.

An image-processing technique is applied to extract relative structural displacements when the
camera is subjected to the nonstationary motion of a UAV. Based on the information extracted from
vision-based displacement measurements, the signal is corrected in two steps. First, adaptive scaling
is developed and applied to update the time-varying scale factor with each frame. Second, a rolling
shutter compensation is applied which compensates for the image distortion due to progressive
scanning of CMOS sensors. However, the displacements extracted from the camera in the UAV still
contain not only the motion of the target structure but also the motion induced by the movement of
the UAV. The proposed method eliminates the effect of motion of the UAV for system identification by
employing the NExT-ERA method, which uses cross-correlation between the extracted displacements.

An experimental test was carried out on a six-story shear building model with the UAV to validate
the proposed method. A stationary camera and accelerometers were employed to obtain reference
measurement. The shear building model was excited by a shaking table with band-limited white noise.
The experimental results show that the change in scale factor due to the out-of-plane motion of the
UAV (up to 5.7%) was successfully compensated through the proposed method. Also, the results of
system identification indicate that the proposed UAV-based method estimated the natural frequency,
with a maximum error of 1%, and the mode shapes, with MAC value of as low as 99.67, for mode shape
extraction when compared with the reference obtained from the accelerometers. The experimental
results show that the proposed method has the potential to identify the natural frequencies and the
mode shapes with reasonable levels of accuracy.

The proposed method can estimate the modal properties of a target structure without identifying
the location of a UAV in real-time for system identification, which is highly expensive in computation.
However, careful attention must be paid to the hovering motion of the UAV, which accounted for
0–1 Hz in the frequency range. As the UAV’s motion is predominantly below 0.5 Hz, it is likely to miss
the natural frequencies that are located below 0.5 Hz.
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