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A B S T R A C T

Hip fractures present a significant healthcare challenge, especially within aging populations, where they are 
often caused by falls. These fractures lead to substantial morbidity and mortality, emphasizing the need for 
timely surgical intervention. Despite advancements in medical care, hip fractures impose a significant burden on 
individuals and healthcare systems. This paper focuses on the prediction of hip fracture risk in older and middle- 
aged adults, where falls and compromised bone quality are predominant factors.

The study cohort included 547 patients, with 94 experiencing hip fracture. To assess the risk of hip fracture, 
clinical variables and clinical variables combined with hip DXA imaging features were evaluated as predictors, 
followed by a novel staged approach. Hip DXA imaging features included those extracted by convolutional neural 
networks (CNNs), shape measurements, and texture features. Two ensemble machine learning models were 
evaluated: Ensemble 1 (clinical variables only) and Ensemble 2 (clinical variables and imaging features) using 
the logistic regression as the base classifier and bootstrapping for ensemble learning. The staged approach was 
developed using uncertainty quantification from Ensemble 1 which was used to decide if hip DXA imaging 
features were necessary to improve prediction for each subject. Ensemble 2 exhibited the highest performance, 
achieving an Area Under the Curve (AUC) of 0.95, an accuracy of 0.92, a sensitivity of 0.81, and a specificity of 
0.94. The staged model also performed well, with an AUC of 0.85, an accuracy of 0.86, a sensitivity of 0.56, and a 
specificity of 0.92, outperforming Ensemble 1, which had an AUC of 0.55, an accuracy of 0.73, a sensitivity of 
0.20, and a specificity of 0.83. Furthermore, the staged model suggested that 54.49 % of patients did not require 
DXA scanning, effectively balancing accuracy and specificity, while offering a robust solution when DXA data 
acquisition is not feasible. Statistical tests confirmed significant differences between the models, highlighting the 
advantages of advanced modeling strategies.

Our staged approach offers a cost-effective holistic view of patient health. It can identify individuals at risk of 
hip fracture with a high accuracy while reducing unnecessary DXA scans. This approach has great promise to 
guide the need for interventions to prevent hip fracture while reducing diagnostic cost and exposure to radiation.

Abbreviations: DXA, Dual-energy X-ray Absorptiometry; BMC, Bone Mineral Content; BMD, Bone Mineral Density; aBMD, areal BMD; ML, Machine Learning; CNN, 
Convolutional Neural Network; AUC, Area Under the Receiver Operating Characteristic Curve; CI, Confidence Interval; RFE, Recursive Feature Elimination.
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1. Introduction

Hip fractures, which are often precipitated by falls, present a sig
nificant healthcare challenge, particularly among aging populations. 
With the global aging trend, the incidence of hip fracture is expected to 
rise dramatically in the coming decades. For instance, while the annual 
global incidence was 1.3 million in 1990, it is projected to surge to a 
staggering 7 to 21 million by 2050 (Gullberg et al., 1997). In the United 
States alone, the annual incidence per 100,000 individuals ranges be
tween 197 and 201 for men and 511 to 553 for women, with rates 
increasing significantly with age (Dhanwal et al., 2011). These incidents 
have serious consequences on quality of life. Apart from causing 
morbidity and mortality, hip fractures impose a substantial economic 
burden. Patients often face approximately $40,000 direct medical cost 
within the first-year post-fracture, while the collective annual cost in the 
US alone surpasses $17 billion (Emmerson et al., 2024). The cost of hip 
fracture can be reduced by identifying patients at risk of hip fracture so 
they can be treated to reduce this risk.

Bone mineral density (BMD) is a key determinant of hip fracture risk. 
Dual-energy X-ray absorptiometry (DXA) plays a pivotal role in assess
ing areal BMD (aBMD) and fracture risk. DXA serves as the standard 
imaging modality guiding clinical decisions for the assessment of oste
oporosis and hip fracture risk, initiation of treatment and follow-up of 
individuals at risk.

Recent studies have explored innovative approaches, such as artifi
cial intelligence (AI) and machine learning (ML), to enhance the accu
racy of hip fracture risk prediction by leveraging DXA imaging alongside 
clinical data. This finding underscores the transformative impact of AI 
and ML technologies in augmenting the capabilities of healthcare pro
fessionals and improving patient outcomes in orthopedic care. Lex et al. 
(Lex et al., 2023) conducted a thorough investigation into the diagnostic 
accuracy of models in diagnosing hip fractures on radiographs and 
predicting postoperative clinical outcomes following hip fracture sur
gery relative to current practices. Their systematic review and meta- 
analysis of 39 studies revealed that AI models perform comparably to 
expert clinicians in diagnosing hip fractures. Cha et al. (Cha et al., 2022) 
systematically reviewed the use of AI and in diagnosing and classifying 
hip fractures, demonstrating high accuracy and effectiveness in clinical 
settings. Furthermore, Murphy et al. (Murphy et al., 2022) utilized two 
sets of radiographs: one from population without hip fractures collected 
as part of a bone mass study and another from those who had hip 
fractures from local National Hip Fracture Database audit records. Their 
study demonstrated that a trained neural network exhibits a remarkable 
19 % increase in accuracy in classifying hip fractures compared to 
experienced human observers within clinical settings. Zhao et al. (Zhao 
et al., 2023) introduced multi-view variational autoencoder and product 
of expert models for predicting proximal femoral fracture loads, which 
are inversely associated with incident hip fracture, by integrating whole- 
genome sequence features and DXA-derived imaging features. Addi
tionally, Hong et al. (Hong et al., 2021) developed a bone radiomics 
score using a random forest model and texture analysis of DXA hip im
ages for predicting incident hip fractures.

Although these findings underscore the transformative impact of AI 
and ML technologies in diagnosing hip fractures, the problem of iden
tifying patients at risk of hip fracture so fractures can be prevented still 
remains and current ML and AI approaches for predicting hip fractures 
have notable limitations. Some often utilize only a single modality of 
data, either clinical or imaging, which can lead to limited predictive 
accuracy. Moreover, most multi-modality ML methods require all mo
dalities to be obtained in advance for effective prediction, increasing the 
cost, radiation and complexity of the diagnostic process.

To address this important limitation, we introduce a novel staged 
approach for predicting hip fracture which would be more efficient and 
economical. Unlike current methods, our approach is structured into 
two distinct stages. In the first stage, we focus solely on clinical char
acteristics. We then use uncertainty quantification of the first stage to 

determine if proceeding to subsequent diagnostics in the second stage is 
necessary. If so, this second stage expands our analysis to incorporate 
imaging features extracted from hip DXA images. By integrating both 
clinical and imaging data with ML in this second stage, which is based on 
uncertainty quantification in the first stage, this staged approach aims to 
improve prediction accuracy and adaptability to diverse clinical 
scenarios.

2. Materials and methods

Our study employed a staged approach to improve prediction accu
racy and adaptability in predicting hip fracture risk. By integrating 
clinical and imaging data using ML, we aim to optimize model perfor
mance while minimizing clinical costs and procedural time. Inspired by 
the sequential decision-making processes commonly employed in clin
ical practice, our methodology incorporated advanced techniques to 
optimize model performance (Fig. 1).

2.1. Cohort description

The dataset utilized in this study was sourced from the UK Biobank 
(application ID: 61915), representing a valuable resource for investi
gating bone health parameters. DXA imaging, essential for evaluating 
BMD and morphology, was performed by trained radiographers using 
the GE-Lunar iDXA instrument. Regular calibration of this instrument to 
a manufacturer’s phantom (GE-Lunar, Madison, WI) and daily quality 
control procedures ensured the accuracy and reliability of DXA mea
surements (Resource 502, 2024). This comprehensive DXA dataset 
covers various anatomical regions, including the whole body, lateral 
thoraco-lumbar spine, and bilateral hips and knees. For this study, we 
focused on a subset of this cohort, comprising 547 patients with DXA hip 
images. In addition to including DXA measurements at various sites, we 
focused on analysis of the DXA images of the hip. Notably, among the 
subset of patients with DXA hip images, 94 individuals experienced hip 
fractures (with 40 males) after the DXA imaging and clinical data 
collection, thereby representing prospective fracture events. The ma
jority (n = 453) were non-fractured individuals (with 226 males). All 
individuals in our sample were of British ethnicity.

2.2. Clinical factors

Our study considered a plethora of variables crucial for under
standing various aspects of participants’ health profiles. These variables 
encompassed demographic details such as age at recruitment, sex, and 
genetic sex, and ethnicity. The ethnicity of all patients in our sample is 
British, emphasizing the homogeneity of ethnic background within our 
study population. Anthropometric measurements like weight were also 
included. Additionally, information regarding participants’ average 
total household income before tax, and lifestyle factors including 
smoking and alcohol consumption statuses were considered (Supp. 
Table 1). We also examined dietary habits, including variations in diet 
and major dietary changes in the last 5 years, along with the occurrence 
of falls and bone fractures in the past year and 5 years, respectively. 
Notably, a small proportion (about 5 %) of individuals with bone frac
tures experienced hip fractures, underscoring the diversity in fracture 
types within our dataset. The regular intake of vitamin and mineral 
supplements was also documented. This comprehensive array of clinical 
data facilitated a thorough exploration of factors influencing partici
pants’ health and enabled meaningful insights into bone health and 
related risk factors.

2.3. DXA imaging feature analysis

In our study focused on predicting hip fracture risk, we manually 
annotated the left and right contours of the femur to isolate our region of 
interest from the raw DXA images. The raw DXA images were extracted 
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directly from the DXA scans conducted at the UK Biobank Imaging 
Assessment Centre, following the procedures in their protocol (Resource 
502, 2024). The images were exported as DICOM files, ensuring that 
they were in their original format and not derived from secondary 
sources such as PDF reports. To maintain measurement accuracy and 
consistency, these images were calibrated to bone mineral density 
(BMD) using the manufacturer’s phantom, which is part of the standard 
quality control protocol. This calibration process, performed daily, en
sures that all data accurately reflects the true BMD values. To ensure 
consistency across the dataset, DXA images were standardized to a size 
of 224 × 224 pixels.

Imaging feature extraction was performed using two pre-trained 
CNN models: VGG16 (Simonyan et al., 2024) and Xception (Chollet, 
2017). These CNN models extracted rich feature representations from 
the preprocessed DXA images, capturing both global and fine-grained 
details crucial for accurate prediction. Alongside CNN-based feature 
extraction, 2D shape measurements and texture features from the DXA 
images were computed using specialized packages. Specifically, the 

shape measurements were computed using the IMEA package (Kroell, 
2021), which assessed the 2D geometric characteristics of the femur 
region. Similarly, texture features were extracted using the PyRadiomics 
package (van Griethuysen et al., 2017), enabling the capture of detailed 
textural information from the DXA images. Femur parameters from 
medical reports of DXA images (Supp. Table 2) were also included as 
DXA imaging features in this study; they provided intricate measure
ments of BMD and bone mineral content (BMC) at various anatomical 
sites, shedding light on participants’ overall bone health.

2.4. Ensemble 1: Hip fracture prediction using clinical factors

We first employed logistic regression as the base classifier and used a 
bootstrapping strategy to perform ensemble learning for hip fracture 
prediction using clinical factors. The developed model was named 
Ensemble 1. To mitigate dimensionality and enhance model interpret
ability, feature selection techniques such as univariate feature selection 
via near zero variance filtering and correlation filtering were employed. 

Fig. 1. The staged approach for hip fracture prediction, employing internal logic rules where the model progresses to Stage I if the standard deviation is less than or 
equal to the specified threshold and the absolute difference between the mean values of hip fracture probabilities and 0.50 exceeds the halfway threshold; otherwise, 
Stage II is initiated for comprehensive risk evaluation.
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Furthermore, Recursive Feature Elimination (RFE) (Guyon et al., 2002) 
was used to identify the most relevant features in a multivariate fashion. 
These methods identified the most relevant features for predicting the 
target variable, ensuring that only informative features were retained 
for analysis. Each ensemble model was trained on a resampled subset of 
the data through stratified cross-validation, promoting robustness, and 
capturing variations within the dataset.

2.5. Ensemble 2: Hip fracture prediction using clinical factors and DXA 
images

We integrated DXA-derived imaging features with clinical factors to 
build a hip fracture prediction model named Ensemble 2. Similar to 
Ensemble 1, logistic regression was employed as the base classifier and a 
bootstrapping strategy was employed to train the hip fracture prediction 
model. The DXA derived imaging features included the extracted fea
tures from the CNN models, shape measurements and texture features. 

Fig. 2. The modeling process, encompassing feature extraction, selection, and ensemble techniques, to optimize predictive performance using clinical and imaging 
data, followed by evaluation and validation of the resulting model.
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This integrated feature set provided a holistic representation of both 
anatomical and clinical aspects relevant to hip fracture prediction. Inner 
cross-validation was conducted on the training data to optimize the 
hyperparameters of the base models, such as the number of base models 
comprised in the Ensemble 2 model, the percentage of random samples 
for training each base model, and the respective base models’ 
hyperparameters.

2.6. Staged method and uncertainty analysis

To minimize clinical costs and DXA imaging exposure, a sequential, 
“staged” model was constructed to integrate predictions from Ensemble 
1 (Stage I) and Ensemble 2 (Stage II). This sequential model leverages 
the strengths of the Ensembles 1 and 2, which are each comprised of 
multiple collections of sub-models. Our central hypothesis is that if the 
Ensemble 1 model can predict hip fracture for a subject with high con
fidence, then the subsequent stage, Ensemble 2, which uses both clinical 
factors and DXA imaging screening, is no longer needed. The confidence 
in predicting hip fracture would be based on the calculated uncertainty. 
If the confidence in the results from Ensemble 1 is above an established 
threshold (uncertainty is low), pursuing analysis via Ensemble 2 would 
be unnecessary, clinical costs would be reduced and DXA imaging 
screening would be avoided. However, if the uncertainty of hip fracture 
prediction is smaller than the threshold, the Ensemble 2 model would be 
employed to perform hip fracture risk assessment.

In detail, by training 50 individual logistic regression classifiers on 
different bootstrapped samples of our training dataset, we created a 
robust ensemble capable of delivering accurate hip fracture risk pre
diction. For each subject in our test dataset, we generated predictions 
from all 50 individual logistic regression classifiers from Ensemble 1, 
and then calculated the mean and standard deviation of these pre
dictions. The mean provided our final predicted risk, while the standard 
deviation served as a measure of uncertainty. In addition, if the standard 
deviation is less than or equal to a standard deviation threshold, indi
cating low variability and high reliability of the predictions, and the 
mean prediction deviates significantly from 0.50 beyond a set halfway 
threshold (midway threshold in Fig. 1), the predicted risk in Stage I is 
accepted. This means the prediction is deemed reliable and no DXA 
testing is required. Conversely, if either condition is not met, indicating 
higher uncertainty or insufficient confidence in the prediction, the 
process moves to Stage II, necessitating additional DXA testing to ensure 
accuracy. This approach optimizes the diagnostic process by balancing 
prediction reliability with the need for further stages.

For model training, nested cross-validation structure was employed 
(Fig. 2). Initially, the dataset was divided into an outer training fold 
comprising 492 samples and an outer test fold with 55 samples. From the 
training fold, two separate validation sets were extracted, each con
taining 45 samples. To preprocess the data and mitigate outliers, 
centering/scaling and spatial sign transformations were applied. Next, 
two validation sets were sliced from the original training fold to fine- 
tune hyperparameters for the multi-stage bridge between the 
Ensemble models, which include standard deviation thresholds and 
midway thresholds that govern the transition from Stage I to Stage II, i. 
e., whether evaluation of the patient will require DXA images for an 
evaluation using Ensemble 2. These two thresholds are optimized to 
achieve a balanced trade-off between predictions retained from 
Ensemble 1 and those cascading into Ensemble 2, using a scaled 
weighted Area Under the Curve (AUC) metric. Finally, the best- 
performing staged model is identified using the outer test set to ensure 
its robustness and generalization.

2.7. Statistical analysis

In this study, comprehensive statistical analyses were performed to 
evaluate model performance and feature associations with hip fracture 
risk. The DeLong test was used to compare AUC curves and McNemar’s 

test assessed sensitivity and specificity variations. Chi-square test and 
Fisher’s exact tests revealed the associations between categorical vari
ables and fracture risk, while t-tests highlighted differences in contin
uous variables between fracture groups.

3. Results

The study cohort comprised 547 patients, with 94 individuals who 
experienced hip fractures. An initial assessment revealed that 54.49 % of 
the patients did not require analysis via Stage II, i.e. Ensemble 2, which 
involved DXA scanning, while 45.52 % did. Patients who did not require 
DXA scanning lacked significant risk factors such as younger age, no 
history of prior fractures, absence of clinical risk factors for osteoporosis 
(e.g., history of smoking, excessive alcohol consumption), and initial 
clinical assessments indicating low risk. The distribution of patients not 
requiring DXA was characterized by the following percentiles: 25th 
percentile at 35.45 %, 50th percentile at 46.78 %, and 75th percentile at 
59.55 %.

Table 1 summarizes the performance metrics of the models 
employed in this study. Notably, Ensemble 2 emerged as the frontrunner 
with the highest AUC of 0.95 (95 % CI: 0.87–1.00), followed closely by 
the staged model at 0.85 (95 % CI: 0.78–0.92). Ensemble 1 exhibited a 
comparatively lower AUC of 0.70 (95 % CI: 0.55–0.85). These findings 
underline the superior predictive performance of Ensemble 2 and the 
staged model in fracture risk assessment. Diving deeper into accuracy 
and specificity, the staged model showcased superior performance, with 
accuracy reaching 86.11 % and specificity peaking at 92.49 %. Addi
tionally, fracture risk assessment tool (FRAX) with aBMD (left hip) and 
FRAX without aBMD yielded AUC scores of 0.76 and 0.62, respectively, 
lower than those for the Ensemble 2 and the Staged models, highlighting 
the marked improvements of our ML approaches over FRAX models for 
fracture risk assessment.

Our analysis utilized rigorous statistical testing, DeLong tests and 
McNemar’s sensitivity and specificity test, to reveal significant differ
ences between the models. Confidence intervals (CIs) for the DeLong 
tests were computed, indicating AUC 95 % CIs for the staged model of 
AUC = 0.81–0.89, Ensemble 1 of 0.49–0.61, Ensemble 2 of 0.94–0.98, 
FRAX with aBMD (left) of 0.70–0.81, and FRAX without aBMD of 
0.55–0.69. Additionally, the DeLong tests yielded p-values, indicating 
the significance of the differences in AUC between different model pairs: 
Staged vs. Ensemble 1 p < 0.001, and Staged vs. FRAX with BMD (left) p 
= 0.004. McNemar’s sensitivity and specificity test also provided in
sights, with p-values indicating the significance of differences in sensi
tivity and specificity between model pairs, such as between Staged and 
Boot1 (sensitivity: <0.0001, specificity: <0.0001).

Additionally, the study identified significant associations between 
categorical variables (Table 2) like alcohol consumption and average 
household income with fracture risk, as well as notable differences in 
continuous variables such as age and various BMD measurements among 
patient groups (Table 3). Baseline statistics including p-values from chi- 
square, Fisher, and t-tests for categorical (Table 4) and continuous 
(Table 5) variables were also calculated. These findings underscore the 
potential of ensemble learning and staged modeling in enhancing hip- 
fracture risk assessment, offering insights for clinical decision-making 
and preventive strategies.

To visually encapsulate the findings, AUCs of the ensemble stage I 
(Fig. 3A), ensemble stage II (Fig. 3B) and staged (Fig. 3C) models are 
presented. Ensemble 2 emerged as the standout performer, consistently 
surpassing its counterparts. However, no significant disparities were 
observed between the staged model and either Ensemble 1 or 2, 
underscoring the robustness of the staged approach and its effectiveness 
in reducing medical costs. Figs. 4A and 4B further enrich our under
standing by highlighting the importance of various features. Ensemble 
models underscored age, weight, and dietary changes as significant 
predictors (Fig. 4A). Conversely, Ensemble 2 prioritized DXA parame
ters, such as convex area and projection area, accentuating their role in 
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fracture risk assessment (Fig. 5).

4. Discussion

In our study, we developed a staged based ML model to predict hip 
fracture, utilizing data from 547 patients, including 94 individuals with 
a history of hip fracture from the UK Biobank dataset. Ensemble 1 
included only clinical features while Ensemble 2 included DXA imaging 
features along with clinical features. The Staged model performed 
comparable to Ensemble 2 with an AUC of 0.85 compared to 0.95, ac
curacy of 0.86 compared to 0.92, while requiring DXA data only 45.52 % 
of the subjects. The inclusion of imaging features in Stage II, reduced 

uncertainty for both hip fracture and non-fracture subjects (Fig. 6), 
improving sensitivity and specificity (0.81 and 0.94, respectively).

4.1. Staged modeling for hip fracture risk prediction

Our staged approach for hip fracture risk prediction represents a 
novel methodology aimed at enhancing the accuracy and reliability of 
fracture risk assessment. Unlike traditional single-stage models, which 
often rely on a singular set of features for prediction, our approach 
systematically integrates multiple stages, each tailored to leverage 
specific types of data. In the first stage of our staged approach, we focus 
on utilizing clinical variables to build a foundational understanding of 
each patient’s health profile. This initial stage incorporates demographic 
details, medical history, lifestyle factors, and other relevant clinical in
dicators to establish a comprehensive baseline for fracture risk assess
ment. Following the initial clinical assessment, our approach progresses 
to the Ensemble Stage II, where imaging features extracted from hip 

Table 1 
The AVG performance metrics, such as AUC, accuracy, sensitivity, and specificity, for the various models. It includes STD values to indicate metric variability across 
evaluations. AVG: Average, STD: Standard Deviation.

AUC Accuracy Sensitivity Specificity

Ensemble Model 1 0.5548 ± 0.1367 0.7239 ± 0.0645 0.1956 ± 0.1486 0.9342 ± 0.0511
Ensemble Model 2 0.9541 ± 0.0358 0.9195 ± 0.0274 0.8078 ± 0.1336 0.9427 ± 0.0224
STAGED Model 0.8486 ± 0.0918 0.8611 ± 0.0463 0.5578 ± 0.2338 0.9249 ± 0.0394

Table 2 
Baseline statistics of categorical features related to hip fracture. It compares the 
information on different factors related to hip fractures between individuals who 
experienced hip fractures (“Hip Fracture (Yes)”) and those who didn’t (“Hip 
Fracture (No)”). Each row represents a specific feature mentioned in the study. 
The numbers in the table represent percentages and counts within each group.

Feature Hip fracture 
(No)

Hip fracture 
(Yes)

Alcohol consumption (Never Consumed) 1 (0.2 %) 4 (4.3 %)
Alcohol consumption (previous) 3 (0.7 %) 0 (0 %)
Alcohol consumption (current) 449 (99.1 %) 90 (95.7 %)
Average Household Income(Do not Know) 11 (2.4 %) 2 (2.1 %)
Average Household Income (Prefer not to 

answer)
24 (5.3 %) 7 (7.4 %)

Average Household Income (<18,000£) 63 (13.9 %) 23 (24.5 %)
Average Household Income (18,000£ to 

30,999£)
130 (28.7 %) 22 (23.4 %)

Average Household Income (31,000£ to 
51,999£)

130 (28.7 %) 20 (21.3 %)

Average Household Income (52,000£ to 
100,000£)

76 (16.8 %) 17 (18.1 %)

Average Household Income (>100,000£) 19 (4.2 %) 3 (3.2 %)
Variation in diet (Never/Rarely) 153 (33.8 %) 34 (36.2 %)
Variation in diet (Sometimes) 258 (57.0 %) 51 (54.3 %)
Variation in diet (Often) 42 (9.3 %) 9 (9.6 %)
Falls in last year (Prefer not to answer) 1 (0.2 %) 1 (1.1 %)
Falls in last year (None) 356 (78.6 %) 74 (78.7 %)
Falls in last year (Only one) 65 (14.3 %) 13 (13.8 %)
Falls in last year (More than one) 31 (6.8 %) 6 (6.4 %)
Fracture/broken bones in last 5 years (Do not 

know)
1 (0.2 %) 0 (0 %)

Fracture/broken bones in last 5 years (Prefer to 
know)

1 (0.2 %) 0 (0 %)

Fracture/broken bones in last 5 years (None) 420 (92.7 %) 86 (91.5 %)
Fracture/broken bones in last 5 years (yes) 31 (6.8 %) 8 (8.5 %)
Genetic sex (female) 227 (50.1 %) 54 (57.4 %)
Genetic sex (male) 226 (49.9 %) 40 (42.6 %)
Major change in diet IN LAST 5 YEARS(Not 

due to illness)
283 (62.5 %) 65 (69.1 %)

Major change in diet IN LAST 5 YEARS (due to 
illness)

29 (6.4 %) 7 (7.4 %)

Major change in diet IN LAST 5 YEARS (other 
reasons)

141 (31.1 %) 22 (23.4 %)

Sex (female) 227 (50.1 %) 54 (57.4 %)
Sex (male) 226 (49.9 %) 40 (42.6 %)
Smoking (Prefer not to answer) 3 (0.7 %) 0 (0 %)
Smoking (Never) 247 (54.5 %) 52 (55.3 %)
Smoking (Previous) 187 (41.3 %) 36 (38.3 %)
Smoking (Current Smoker) 16 (3.5 %) 6 (6.4 %)
Vitamin Supplement (None) 377 (83.2 %) 79 (84.0 %)
Vitamin Supplement (Yes) 76 (16.8 %) 15 (16.0 %)

Table 3 
Baseline statistics of continuous features related to hip fracture. It compares 
measurements and statistics between two groups: individuals who experienced 
hip fractures and those who did not. Each row represents a specific feature. The 
columns show the average value (mean) and the variation (standard deviation) 
within each group.

Feature Mean Standard deviation

Hip fracture 
(No)

Hip fracture 
(Yes)

Hip fracture 
(No)

Hip fracture 
(Yes)

Age 57.70 59.70 7.05 7.51
Femur neck BMC 

(left)
4.96 4.48 0.99 1.12

Femur neck BMD 
(left)

0.94 0.82 0.14 0.13

Femur total BMD 
(left)

1.01 0.86 0.16 0.13

Femur Total BMD 
T-score(left)

− 0.32 − 1.47 1.15 0.92

Femur troch BMD 
(left)

0.85 0.72 0.16 0.14

Femur troch BMD 
T-score(left)

− 0.10 − 1.21 1.25 1.06

Femur wards BMD 
(left)

0.73 0.60 0.14 0.12

Femur wards BMD 
T-score(left)

− 1.59 − 2.51 1.08 0.89

Pelvis BMC 334.96 299.12 79.90 73.75
Femur neck BMC 

(right)
4.99 4.43 1.00 0.89

Femur neck BMD 
(right)

0.94 0.82 0.14 0.11

Femur total BMD 
(right)

1.00 0.86 0.16 0.13

Femur neck BMD 
T-score(right)

− 0.34 − 1.43 1.14 0.94

Femur troch BMD 
(right)

0.84 0.72 0.16 0.14

Femur troch BMD 
T-score(right)

− 0.15 − 1.22 1.23 1.09

Femur wards BMD 
(right)

0.73 0.60 0.15 0.15

Femur wards BMD 
T-score(right)

− 1.58 − 2.55 1.13 0.85

Weight 77.27 74.48 14.39 15.05
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DXA images are included. By incorporating this additional layer of data, 
we aim to enrich the predictive capabilities of our model, capturing 
subtle nuances and anatomical insights that may not be discernible from 
clinical variables alone. Ensemble 2 emerged as the top-performing 
model, achieving a high AUC with strong accuracy, sensitivity, and 
specificity. In assessing the performance of the stage II model within our 
staged framework, we scrutinized its AUC alongside corresponding CIs 
relative to standard deviation percentiles (Fig. 5). As our analysis pro
gressed from left to right along these percentiles which results in a 
smaller and smaller subset of the data whose patients have higher un
certainty, we notice the performance of the model in terms of AUC de
creases. This approach allows us to delve into predictions with higher 
uncertainty, showcasing that increased uncertainty leads to decreased 

performance. Moreover, this behavior potentially creates the opportu
nity to add a third stage of analysis, e.g. genetic data (Nethander et al., 
2022) or quantitative computed tomography images (Awal and Faisal, 
2024) which are more costly and less available than DXA but can pro
vide more nuanced and complementary information in such a sequential 
approach.

One of the key strengths of our staged approach lies in its adapt
ability and flexibility. The use of internal logic rules allows for dynamic 
decision-making, determining whether the acquisition of DXA data is 
necessary based on the information gathered in the initial clinical stage. 
This ensures that resources are allocated efficiently, with additional 
imaging studies being performed only when deemed essential for ac
curate risk assessment. Moreover, our staged approach offers enhanced 
interpretability compared to complex AI-driven models. By breaking 
down the prediction process into distinct stages, clinicians can better 
understand the rationale behind each decision, facilitating trust and 
confidence in the model’s outputs.

4.2. Comparison with BMD T-scores

Our study compared the performance of our staged approach for hip 
fracture risk prediction with left femur BMD T-scores, a widely used 
metric for diagnosing osteoporosis (Faulkner, 2005). The classification 
of bone density categories by the World Health Organization (WHO) 
Study Group is determined by T-scores. According to their criteria, bone 
density is considered normal when the T-score is − 1 or greater, while 
osteopenia is characterized by T-scores ranging between − 1 and − 2.5, 
and osteoporosis is diagnosed when the T-score falls at − 2.5 or below 
(Cosman et al., 2014). Using the T-score to predict hip fracture risk, 
individuals with normal bone density had a prediction accuracy of 0.37, 
sensitivity of 0.26, and specificity of 0.40. Those with osteoporosis 
showed higher accuracy (0.83) and specificity (0.98) but lower sensi
tivity (0.13). Osteopenia had intermediate with accuracy, sensitivity, 
and specificity of 0.62. In our study, 52 % of individuals with normal 
bone density, 56 % with osteopenia and 64 % with osteoporosis had low 
uncertainty in Stage I, suggesting that DXA scans were often unnecessary 
for assessing fracture risk. Our staged approach with an average AUC of 
0.85, an accuracy of 0.86, a sensitivity of 0.56, and a specificity of 0.92, 
effectively identified high-risk individuals and demonstrated strong 
predictive performance, supporting its potential utility in clinical 
practice.

4.3. Comparison with FRAX

FRAX predictions were calculated using clinical and DXA informa
tion extracted from the UK Biobank dataset. We utilized the official 
FRAX tool from the University of Sheffield, incorporating both BMD and 
non-BMD methods. For BMD calculations, femur neck BMD measure
ments from the UK Biobank were used, and the tool was set to reflect the 
use of Lunar equipment. In the absence of BMD data, the FRAX without 
BMD option was applied. Missing data were managed by excluding 
participants with incomplete information from the analysis, ensuring 
that only complete data were used for FRAX calculations. This approach 
maintained the accuracy of the predictions, with the final 10-year 
probability of hip fracture derived from a systematic web automation 
process. In comparing the performance of our staged approach for hip 
fracture risk prediction with the FRAX tool, we observe notable differ
ences in predictive accuracy. Our approach, leveraging a combination of 
clinical variables and imaging features, achieved an AUC of 0.85 with an 
accuracy of 0.86, sensitivity of 0.56, and specificity of 0.93, which is far 
superior to FRAX with BMD (left femur), AUC of 0.76 (95 % CI of 
0.70–0.82), an accuracy of 0.71, sensitivity of 0.69 and specificity of 
0.72. The higher AUC value of our approach indicates enhanced sensi
tivity and specificity in identifying individuals at risk of hip fractures, 
thereby improving the overall predictive performance. Similarly, when 
comparing our approach to FRAX without BMD, which yielded an AUC 

Table 4 
P-values from both the chi-square test and Fisher test for categorical features. 
The tests evaluate associations between categorical variables and the outcome.

Feature Chi-square Fisher’s

Falls in Last Year (Prefer Not to Answer) 0.7691 0.3144
Falls in Last Year (None) 0.9999 1.0000
Falls in Last Year (Only One) 0.9999 1.0000
Falls in Last Year (More Than One) 0.9999 1.0000
Major Change in Diet in Last 5 Years (Not Due to Illness) 0.2684 0.2402
Major Change in Diet (Due to Illness) 0.8860 0.6522
Major Change in Diet (Other Reasons) 0.1721 0.1725
Variation in Diet (Never/Rarely) 0.7444 0.7201
Variation in Diet (Sometimes) 0.7144 0.6488
Variation in Diet (Often) 0.9999 0.8480
Alcohol Consumption (Never Consumed) 0.0017 0.0036
Alcohol Consumption (Previous) 0.9810 1
Alcohol Consumption (Current) 0.0448 0.0329
Smoking (Prefer Not to Answer) 0.9810 1
Smoking (Never) 0.9786 0.9098
Smoking (Previous) 0.6744 0.6452
Smoking (Current Smoker) 0.3213 0.2428
Average Household Income (Do Not Know) 0.9999 1.0000
Average Household Income (Prefer Not to Answer) 0.5654 0.4599
Average Household Income (<£18,000) 0.0162 0.0185
Average Household Income (£18,000 to £30,999) 0.3596 0.3148
Average Household Income (£31,000 to £51,999) 0.1800 0.1628
Average Household Income (£52,000 to £100,000) 0.8757 0.7635
Average Household Income (>£100,000) 0.8714 1.0000
Vitamin Supplement 0.9665 1.0000
Genetic Sex 0.2373 0.2132
Fracture/Broken Bones in Last 5 Years 0.8658 0.6689
Sex 0.2373 0.2132

Table 5 
P-values obtained from t-tests for categorical features used in the 
study. The t-tests evaluate differences in means between groups for 
each variable.

Feature p-value

Age 0.0188
Weight 0.1012
Right Femur Neck BMD <0.0001
Right Femur Neck BMC <0.0001
Right Femur Total BMD <0.0001
Right Femur Total BMD T-score <0.0001
Right Trochanter BMD <0.0001
Right Trochanter BMD T-score <0.0001
Right Wards BMD <0.0001
Right Wards BMD T-score <0.0001
Left Femur Neck BMD <0.0001
Left Femur Neck BMC <0.001
Left Femur Total BMD <0.0001
Left Femur Total BMD T-score <0.0001
Left Trochanter BMD <0.0001
Left Trochanter BMD T-score <0.0001
Left Wards BMD <0.0001
Left Wards BMD T-score <0.0001
Pelvis BMC <0.0001
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of 0.62 (95 % CI of 0.55–0.69), an accuracy of 0.76, sensitivity of 0.42 
and specificity of 0.83, our model again exhibited superior performance 
(p < 0.001). The DeLong tests yielded p-values, indicating the signifi
cance of the differences in AUC between different model pairs. For 

instance, the p-value for comparing Staged vs. FRAX with BMD (left 
femur) was 0.004, and for comparing Staged vs. FRAX without BMD, it 
was <0.0001). Despite FRAX being a widely used tool for fracture risk 
assessment, our staged approach demonstrated enhanced accuracy and 

Fig. 3A. ROC curves for ensemble stage I 
Fig. 3A plot depicts the mean ROC curve representing the average performance of Ensemble Stage I in predicting hip fracture risk, along with variability represented 
by standard deviation. The ROC curve illustrates the trade-off between sensitivity and specificity across different threshold values. 
Fig. 3B. ROC curves for ensemble stage II 
Fig. 3B. The plot shows the mean ROC curve for Ensemble Stage II, depicting the average performance across multiple iterations. The variability around the mean 
curve illustrates the uncertainty associated with the model’s predictions. 
Fig. 3C. ROC curves for the staged model 
Fig. 3C depicts Receiver Operating Characteristic (ROC) curves for the staged hip fracture risk prediction model. The mean ROC curve represents the average 
performance across multiple iterations, with the shaded area indicating the variability or uncertainty associated with the model’s predictions.

A. Shaik et al.                                                                                                                                                                                                                                   Bone Reports 22 (2024) 101805 

8 



(caption on next page)

A. Shaik et al.                                                                                                                                                                                                                                   Bone Reports 22 (2024) 101805 

9 



reliability in predicting hip fractures, underscoring the effectiveness of 
incorporating imaging features alongside clinical variables in a step
wise, staged manner.

4.4. Cost and radiation reduction

Our staged approach for hip fracture risk prediction not only im
proves diagnostic accuracy but also addresses cost and radiation con
cerns. It identified that 54.49 % of the patients did not require DXA 
scanning, while 45.52 % did. For subjects with BMD (left femur) T-score 
≤ − 1.0 and > − 1.0, 55 % and 52 %, respectively, had low uncertainty in 
Stage I, indicating DXA scans were unnecessary for determining high 
fracture risk. This efficiency in distinguishing high-risk patients early in 
the diagnostic process optimizes resource allocation, leading to signifi
cant cost savings.

By leveraging existing imaging data, such as DXA scans, our 
approach reduces the need for additional imaging tests, minimizing 
radiation exposure and associated risks. This targeted use of clinical and 
imaging data not only enhances diagnostic accuracy but also lowers the 
likelihood of missed diagnoses or unnecessary treatments, contributing 
to overall healthcare cost reduction.

Fig. 4A. Feature importance – Ensemble stage I 
Fig. 4A illustrates the fold-aggregated ensemble-averaged absolute feature importance for stage I ensemble models. This assessment determines the importance of 
each feature based on its contribution to the predictive performance of the ensemble model. 
Fig. 4B. Feature importance – Ensemble stage II 
Fig. 4B showcases the top 20-fold aggregated ensemble averaged absolute feature importance for Stage II ensemble modeling. The importance of each feature is 
determined based on its contribution to the predictive performance of the model.

Fig. 5. Ensemble 2’s AUC with 95 % DeLong Confidence Intervals(CI) across standard deviation percentiles or more extreme values. This analysis offers insights into 
the model’s performance variability across varying levels of uncertainty.

Fig. 6. The distribution of uncertainty observed in both Stage I, where only 
clinical factors are utilized, and Stage II, where clinical factors and DXA im
aging features are incorporated.
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4.5. Interpretability of our model

Our model’s clinical relevance is highlighted by its identification of 
significant predictors of hip fracture risk as age, weight, dietary changes, 
and DXA parameters consistent with established literature on fracture 
risk factors. These findings have the potential to guide clinical decision- 
making by enabling the early identification of individuals at high risk of 
fractures, thus facilitating the implementation of tailored interventions 
to effectively reduce fracture risk. Additionally, our staged modeling 
approach offers the potential for further refinement and expansion by 
incorporating additional features, such as genetic data, to enhance its 
predictive capabilities.

4.6. Future feasibility

Extracting the features used in our model from DXA data presents 
challenges, especially as raw data may not be accessible in standard 
clinical settings. To address this, collaboration with DXA manufacturers 
to develop tools for direct feature extraction is essential. In the mean
time, independent software solutions for processing DXA outputs could 
serve as an interim measure. Ensuring practical implementation will 
require efforts to standardize procedures and integrate manufacturer 
support.

4.7. Limitations

First, this study involved a relatively small number of subjects, which 
is an inherent limitation in the study design. Increasing the sample size 
would improve the statistical power and generalizability of our findings. 
Additionally, the performance and feasibility of the data-driven system 
might be influenced by the quality of the data. For instance, in
consistencies or inaccuracies in clinical data and DXA images could 
impact the model’s predictive accuracy. Second, there were missing 
features in the UKBiobank repository. Not all potential risk factors for 
hip fractures were captured or included in the analysis. This limitation 
might have resulted in an incomplete representation of each patient’s 
health profile. Incorporating additional relevant features such as genetic 
data, comprehensive environmental factors, and more detailed medical 
history could further refine the model’s predictive capabilities. Third, 
the ethnicity of all patients in our sample is British, emphasizing the 
homogeneity of ethnic background within our study population. This 
lack of ethnic diversity may limit the generalizability of the model to 
more diverse populations. Lastly, and perhaps most importantly, this 
study did not include external validation using datasets from other 
populations or healthcare settings.

5. Conclusion

We developed a staged approach combining clinical data and DXA 
hip images for hip fracture risk prediction. By considering various fac
tors like age, weight, and bone health alongside images with machine 
learning and uncertainty quantification, our staged model offers a cost- 
effective holistic view of patients’ health. Through rigorous evaluation, 
we found that our staged approach could identify individuals at risk with 
a high accuracy while reducing the need for DXA scans by 54.49 %. This 
staged approach shows great promise to guide interventions to prevent 
hip fracture with reduced cost and radiation.
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