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Abstract: Bridges are crucial components of infrastructure networks that facilitate national connectiv-
ity and development. According to the National Bridge Inventory (NBI) and the Federal Highway
Administration (FHWA), the cost to repair U.S. bridges was recently estimated at approximately USD
164 billion. Traditionally, bridge inspections are performed manually, which poses several challenges
in terms of safety, efficiency, and accessibility. To address these issues, this research study introduces
a method using Unmanned Aerial Systems (UASs) to help automate the inspection process. This
methodology employs UASs to capture visual images of a concrete bridge deck, which are then
analyzed using advanced machine learning techniques of Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs) to detect damage and delamination. A case study on the Beyer
Road Concrete Bridge in Michigan is used to demonstrate the developed methodology. The findings
demonstrate that the ViT model outperforms the CNN in detecting bridge deck damage, with an
accuracy of 97%, compared to 92% for the CNN. Additionally, the ViT model showed a precision
of 96% and a recall of 97%, while the CNN model achieved a precision of 93% and a recall of 61%.
This technology not only enhances the maintenance of bridges but also significantly reduces the risks
associated with traditional inspection methods.

Keywords: automated bridge inspection; Unmanned Aerial System (UAS); machine learning (ML);
Convolutional Neural Network (CNN); Vision Transformer (ViT)

1. Introduction

Bridges are one of the major infrastructure elements that connect and advance the
development of any nation. They enhance the movement of goods and people and boost the
regional socio-economy of a country [1]. According to the National Bridge Inventory (NBI)
and the Federal Highway Administration (FHWA), there are more than 616,000 bridges in
the U.S. Around 40% of these bridges have passed their design life of 50 years, and 7.5% of
these bridges are considered structurally deficient [1]. The estimated cost to repair these
bridges equals nearly USD 164 billion [2–4].

In a traditional inspection procedure, each bridge undergoes periodic manual and
visual inspections to assess its physical and operational state. There are several safety,
efficiency, and accessibility issues associated with these traditional inspection procedures.
For example, these procedures are often conducted by blocking the traffic and potentially
placing the inspectors and engineers in areas with restricted movement. In addition, it is
difficult to reach every part of the bridge (such as the space between the girders, beams, or
other parts of the bridge). Last but not least, underwater bridge inspections require diving
equipment and trained personnel.
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Understanding the difficulties of traditional bridge inspection, some advanced tech-
nologies are offered to automate bridge inspection. UAS is one of these advanced technolo-
gies. UAS is a system consisting of a drone and usually a set of optical, LiDAR, and/or
thermal sensors mounted on the drone for data collection purposes.

By using UAS, it is possible to collect visual and thermal images and remotely inspect
different bridge components [5]. Some advantages of UAS data collection are as follows [5]:

• It reduces the overall time and the cost of inspection.
• It reduces traffic control during the time of inspection.
• It provides easy access to areas of the bridge that are difficult to reach, such as tall piers.
• Most importantly, it provides safety for the inspection crew by reducing the need

for interaction with hazardous environments and working in the tight and confined
spaces of snooper trucks and roadside areas.

UAS-collected data can be analyzed by using machine learning (ML). ML is a technique
that imitates intelligent human behavior by learning via computational methods. In this
method, a computer can develop learning algorithms that build models from data [6].
Under the context of ML, Convolutional Neural Networks (CNNs) and Vision Transformers
(ViTs) are two approaches inspired by the human brain, designed for processing visual
data [6]. While CNN uses convolutional layers to learn hierarchical representations and
extract meaningful features from images [7], ViT employs self-attention mechanisms to
treat images as sequences of patches, which enables more direct learning of relationships
across different parts of an image. This approach not only enhances classification accuracy
but also significantly reduces computational demands compared to CNN [8].

Recent studies have increasingly explored the use of ML for bridge inspections, pri-
marily focusing on Convolutional Neural Networks (CNNs) and, to a lesser extent, on
Vision Transformers (ViTs). The primary ML techniques employed for identifying and
locating damage and delamination on bridge decks include labeling areas, localization,
and segmentation [9]. These tools are utilized to analyze images collected by UAS [10],
facilitating the creation of damage and delamination reports [9].

The objective of this research study is to design an automated bridge inspection
framework that integrates UAS-collected data with ML tools including CNN and ViT to
detect damage and delamination on a concrete bridge deck. The performance of these two
tools is also compared in terms of Accuracy, Precision, Recall, and F Score for a case study
located in Michigan to illustrate the performance of the developed methodology.

2. Literature Review

A bridge is a structure including supports erected over a depression or an obstruction,
such as water, or highway [11]. The National Bridge Inspection Standards (NBIS) are
federal regulations in the United States that set forth guidelines for bridge inspectors
and state and define bridge inspection intervals. Basic intervals were established by the
NIBS for three different types of bridge inspection: routine inspection (every 24 months),
fracture critical member (every 24 months), and submerged inspection (every 60 months).
Inspection programs usually take a complete approach, including short-interval visits by
maintenance staff, medium intervals by certified inspectors, and long-term intervals by
licensed professional engineers [12].

In a traditional inspection procedure, each bridge undergoes periodic manual and
visual inspections to assess its physical and operational state. There are several safety,
efficiency, and accessibility issues associated with these traditional inspection procedures.
For example, these procedures are conducted by blocking the traffic and transporting the
inspectors and engineers in a tight and confined space. In addition, it is difficult to reach
every part of the bridge (such as the space between the girders, beams, or other parts of the
bridge). Last but not least, underwater bridge inspections require diving equipment and
trained personnel. The traditional approach of bridge inspection depends on the visual
inspection and manual measurement of damage which increases the duration, cost, and
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manpower required for the inspection. It also mainly depends on the bridge inspector’s
qualifications and experience and the frequency of the bridge inspection [13].

2.1. Automated Bridge Inspection

In contrast to manual inspections, automated bridge inspection leverages advanced
technologies to optimize the collection, processing, analysis, and documentation of bridge
data, effectively overcoming many of the traditional method’s limitations [14]. Automated
data collection and data analysis phases and tools enabling each phase are described in the
following sections.

Automated Data Collection

The rapid progress of technology has transformed data collection techniques, which
have gradually shifted from conventional methods to advanced ones. The requirement
for scalability, precision, and efficiency in data collection across multiple domains has
propelled this shift [15]. Laser scanning technology is one of the emerging methods of data
collection in terms of bridge inspection due to its high precision and rapid data collection
rate. By capturing thousands of 3D points per second with accuracy down to the mm, laser
scanners make it possible to create intricate 3D bridge models for examination. For creating
methods for organizing data gathering in the field and for automating the analysis of the
data to find geometric elements of interest, advanced laser scanning technology may be
used [16].

In addition to laser scanners, remote sensors have been progressively integrated by
both public and private organizations into their infrastructure management workflow to
overcome the drawbacks of visual inspection. With the use of remote sensing technologies,
crack detection will be more automated and efficient, requiring less human inspection and
resolving time and accessibility concerns [6,17].

UAS is one of the remote sensing tools that can be equipped with different sensors
on the drone for data collection. By using UAS, it is possible to collect visual and thermal
images of bridge components and remotely inspect different bridge components [5]. These
data can be collected and processed into the inspection dataset such as point clouds, 3D
photologs, and ortho plane images. Some advantages of UAS data collection in comparison
to manual data collection are as follows [5]:

1. It reduces the overall time and the cost of inspection.
2. It reduces traffic control during the time of inspection.
3. It provides easy access to areas of the bridge that are difficult to reach, such as tall piers.
4. Most importantly, it provides safety for the inspection crew by removing the need

for interaction with hazardous environments and working in the tight and confined
space of the snooper trucks.

While laser scanning offers high precision, its practical applications in bridge inspec-
tion can be limited by high operational costs and the intricacies of data processing [17]. In
contrast, UAS provides a more versatile and cost-effective solution. UAS not only accesses
hard-to-reach areas with less risk but also delivers faster data collection with comparable
accuracy. Moreover, the flexibility and lower cost of deployment make UAS especially
advantageous for regular bridge monitoring, reducing both financial burdens and disrup-
tion to traffic, unlike laser scanning, which often requires extensive setup and can be more
disruptive. Thus, UAS emerges as a more suitable technology for comprehensive and
frequent bridge inspections [5,14].

While UAS is a highly effective tool for bridge inspections, there are some minor limi-
tations to consider. These include manageable challenges like optimizing data processing
algorithms [9] and the need for occasional additional manpower for drone operations [5].
The State of Ohio has shown that bridge inspectors can be trained in drone operations as
part of their job [18]. Environmental factors such as adverse weather can also influence
drone performance [5], and there are routine regulatory processes to navigate when flying
in restricted airspace [14]. Additionally, the size limitations of drone-mounted cameras
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and sensors may affect data collection to some extent [19]. Nonetheless, these issues are
generally outweighed by the significant benefits of UAS, making it a valuable tool for
bridge inspection tasks.

2.2. Machine Learning for Automated UAS Data Analysis

UAS data analysis requires the application of advanced computer vision and image
processing tools and techniques extract meaningful data from the collected images. One of
these tools is ML. The ML approach uses statistical models and algorithms to let systems
learn from data, find patterns, and make well-informed predictions or decisions.

Different algorithms are built for pattern recognition and classification of damage in
bridges such as cracking, weathering, and spalling using ML [20]. It has been proven that
ML enables accurate and comprehensive image-based damage detection in infrastructure
systems. Some of the popular ML approaches are CNN and ViT.

CNNs are a class of deep learning (DL) architecture intended for applications like
object detection, image classification, and image recognition. A CNN model consists
of several steps [7]. Numerous studies have investigated the application of CNNs in
bridge inspection. Dorafshan draws attention to the potential of CNNs in identifying and
measuring cracks, while Kim concentrates on the application of UASs equipped with high-
resolution vision sensors [7,8]. With the increase in detection accuracy, the effectiveness
and precision of CNNs in bridge inspection are even greater.

In addition to CNNs, ViT is another deep learning tool that uses architectures that are
effective for visual recognition. It consists of several layers of self-attention. One of the
core tasks in computer vision is image classification, which is labeling an image according
to its content. A ViT model predicts class labels for an input image by treating it as a
sequence of image patches, much to the word embeddings used when text is transformed.
When trained on sufficient data, ViT performs extraordinarily and requires four times less
processing power than CNN.

A range of methods have been proposed for crack detection. Luqman et al. employed
sophisticated advanced ML methods, i.e., Vision Transformation to concentrate on crack
detection. Their model uses images as datasets of around 5800 images with a resolution
of 224 × 224 pixels [21]. Their ViT model architecture was developed and trained by
combining the sliding window method with the trained ViT model to ultimately localize
the cracks. Their model was demonstrated to perform well in identifying and localization
of cracks [21].

Several other studies have utilized ML for bridge inspection purposes. A few of these
studies are reviewed and summarized in Table 1.

Table 1. Summary of the reviewed literature.

No. Paper Title Methodology Output

1 Seo et al.,
2022 [14].

Machine Learning
Approach to Visual Bridge

Inspection with Drones

CNN is used as a machine learning
algorithm.

Damage assessment is conducted
using semantic segmentation

software (ImageJ 2022).

Identification of different types of
damage such as cracking,

weathering, and spalling (chipping,
flaking, or breaking off of small

fragments from the surface).

2 Nguyen et al.,
2022 [9].

BIM-based mixed-reality
application for bridge

inspection and
maintenance

BIM-based model named
Heronbridge for bridge inspection

based on Microsoft HoloLens.

Inspection information improved in
the interpretation, visualization, and
visual interpretation of 3D models.

3 Dorafshan
et al., 2018 [8].

Deep Learning Neural
Networks for

sUAS-Assisted Structural
Inspections: Feasibility and

Application

Deep learning CNN for concrete
deck inspection.

Autonomous image classification
and object detection and calculation

of learning parameters through
thousands to millions of iterations.

A CNN algorithm using Alex net
architecture and ResNet to improve

network evaluation.
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Table 1. Cont.

No. Paper Title Methodology Output

4 Chun et al.,
2022 [22].

A deep learning-based
image captioning method
to automatically generate

comprehensive
explanations of bridge

damage

Deep learning model to generate
texts for the condition of bridges.

Generation of explanatory texts for
1000 new bridge images.

5 Zhang et al.,
2022 [23].

The application of deep
learning in bridge health
monitoring: a literature

review

Deep learning based on deep neural
networks for structural health

monitoring (vibration- and
vision-based).

A review of bridge health
monitoring and damage detection

techniques.

6 Kim et al.,
2018 [7].

Application of Crack
Identification Techniques

for an Aging Concrete
Bridge Inspection Using an
Unmanned Aerial Vehicle

Commercial software, Pix4D
mapper 2022, for 3D model

generation.
AutoCAD 2017 to convert spatial

information into digital information
by using.

Three-dimensional point cloud of
bridge.

RCNN algorithm.

7 Choi et al.,
2023 [10].

Utilization and Verification
of Imaging Technology in
Smart Bridge Inspection
System: An Application

Study

Image processing and machine
learning data algorithms.

Three-dimensional external
inspection map.

VR assisted in illustrating inspection
details.

Inspection cost was reduced by 19%.

8 Azari et al.,
2022 [5].

Application of Unmanned
Aerial Systems for Bridge

Inspection

UAS and LiDAR (light detection and
imaging) to capture HD images.

Use of geospatial software programs
and CAD to create 3D model of

bridges.

Cost, time, and labor effectiveness
are reported.

9 Li et al.,
2021 [2].

Mapping textual
descriptions to condition

ratings to assist bridge
inspection and condition

assessment using
hierarchical attention

Hierarchical architecture recurrent
neural network (GRU-based

sequence encoder) with an attention
mechanism.

Condition rating and quality control
of bridges.

10 Hiasa et al.,
2018 [19].

Bridge Inspection and
Condition Assessment

Using Image-Based
Technologies with UAVs

Infrared thermography inspection to
detect subsurface defects such as

delamination and voids.
High-definition (HD) imaging
technologies to detect surface

defects such as cracks.

Crack size is assessed according to
several manuals or standards.

11 David V
et al. [24].

Photogrammetry
applications in routine
bridge inspection and

historic bridge
documentation

Photogrammetry techniques to
assess bridge geometry.

PhotoModeler 2006 software was
used to process the images for

measurement.

Photogrammetry techniques
provide sufficient accuracy.

12 Adhikari et al.,
2014 [25].

Image-based retrieval of
concrete crack properties

for bridge inspection

Integrated model based on digital
image processing to identify crack
quantification, change detection,

neural networks, and 3D
visualization.

Fourier transform of digital images
and integrated model is used to
detect crack length and change

detection.

13 Song et al.,
2022 [26].

Automatic segmentation
and quantification of

global cracks in concrete
structures based on deep

learning.

Methods of close-range scanning
and shooting to obtain HD
panoramas of the surface of

concrete.

Identification and quantification of
cracks and calculation of crack

width with 3.87% accuracy.
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Table 1. Cont.

No. Paper Title Methodology Output

14 Zang et al.,
2022 [27].

Automated fatigue crack
detection in steel box

girder of bridges based on
ensemble deep neural

network

Sub-networks (detection classifiers)
to differentiate cracks on images;

segmentation sub-network to obtain
pixel level crack details.

Crack segmentation.

15 Ayele et al.,
2020 [28].

Automatic Crack
Segmentation for

UAV-Assisted Bridge
Inspection

Mask RCNN.
Three-dimensional construction of

bridge geometry and damage
identification.

Detection, locating, and
quantification of cracks and

fractures on the bridge.

16 Zollini et al.,
2020 [29].

UAV Photogrammetry for
Concrete Bridge Inspection
Using Object-Based Image

Analysis (OBIA)

Object-Based Image Analysis
(OBIA). Concrete structure inspection model.

17 Potenza et al.,
2020 [30].

A robotics and
computer-aided procedure

for defect evaluation in
bridge inspection

Color-based image processing
algorithm and software DEEP
(Defect Detection by Enhanced

image processing).

Defect extension evaluation.

18 Wang et al.,
2022 [31].

Automatic concrete crack
segmentation model based

on transformer

Novel SegCrack model for
pixel-level crack segmentation using

a hierarchically structured
transformer.

Pixel-level crack segmentation.

19 Xiao et al.,
2023 [32].

Pavement crack detection
with hybrid-window

attentive vision
transformers

Vision Transformers. Pavement crack detection.

20
Reghukumar

et al.,
2021 [33].

Vision based segmentation
and classification of cracks

using deep neural
networks

Deep Neural Networks. Crack classification.

21 Ali et al.,
2023 [21].

Crack detection and
localization in stone floor

tiles using vision
transformation approach.

Vision Transformation. Crack detection and localization.

22
Escobar-Wolf

et al.,
2018 [34]

Close-range
photogrammetry and

thermal sensing
Edge detection techniques. Delamination and spall detection.

3. Materials and Methods

The primary objective of this research study is to develop an automated bridge inspec-
tion framework that leverages UAS to collect visual data of bridge surfaces which are then
analyzed using CNN and ViT tools. This integration aims to enhance the detection and
analysis of damage and delamination on concrete bridge decks. This methodology consists
of the following steps (Figure 1):

• Data collection: As the first step, the UAS collects images of the bridge deck surface as
raw data.

• Data processing: The raw data are then processed automatically by labeling the
features of the data to create positive (damaged) and negative (undamaged) datasets.

• Data analysis: CNN and ViT algorithms are developed, and the labeled data are
deployed in these models to identify and localize damage on the bridge deck.

• Model evaluation and results: The final step assesses the performance of the model
after it is trained on specific datasets, focusing on its ability to predict and classify
data accurately. The evaluation encompasses various metrics such as training loss, val-
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idation loss, model accuracy, and validation accuracy, which help gauge the model’s
efficiency and reliability.
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Figure 1. Automated bridge inspection. Figure 1. Automated bridge inspection.

3.1. Data Collection

UAS is used to collect visual data during the first step of data collection. Its main
purpose is to take high-resolution photos of the target areas. With its ability to collect
data across wide and inaccessible areas with precision and efficiency, UAS images provide
unique insights into bridge conditions. The different UAS platforms are illustrated in the
Illustrative Example section of this study.

3.2. Data Processing

In the second step, images collected by UAS are processed. Frequently initially in .tiff
file format, these images are then converted to .jpeg format, or they can be in .jpeg format
initially, depending on the drone and sensor set being used. During this conversion, RGB
channels are preserved while cropping the JPEG images to a specified size. Subsequently,
the images are manually classified into two datasets: the positive dataset, which includes
photos showing damage, and the negative dataset, which comprises images without
damage. Careful attention is given to accurately distinguish between these two categories
during this manual classification process. Steps for this conversion are shown in Figure 2.
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3.3. Data Analysis

As the third step, the labeled images are analyzed using the CNN and ViT algorithms
developed by the authors. These two algorithms are explained in the following sections.

3.3.1. Data Analysis Using CNN

Figure 3 illustrates the methodology developed for data analysis using the CNN approach.

1 
 

 

Figure 3. Methodology chart for CNN model.

As explained at the beginning of the Methodology section, a data frame is created to
represent the dataset, labeled as positive (damaged) or negative (undamaged) and stored
in the file path. The data are then shuffled to ensure randomization and prevent bias in the
dataset. For training the neural networks, all the datasets are rescaled by a factor of 1/255,
normalizing the pixel values to the range of [0, 1]. The dataset is then split into 70% for
training and 30% for evaluation purposes. Additionally, 20% of the training data are used
for validation during the model training.

The model uses images of 120 × 120-pixel size with RGB color data. The CNN
architecture is designed using TensorFlow’s Keras Interface, introducing different layers to
extract features from the data. The first layer is the input layer, which takes the input data,
followed by two convolutional layers with 16 and 32 filters respectively, each followed by a
ReLU activation function. After these layers, max pooling is applied to down sample the
spatial dimensions of the data, and global average pooling is used to reduce the output to a
single value.

The model is compiled using binary cross-entropy as the loss function, accuracy as
the performance metric, and Adam as the optimizer. The model is trained for 100 epochs,
with an early stopping mechanism introduced if there is no change in the model accuracy
for 15 consecutive epochs. Data such as accuracy and loss are recorded to evaluate the
model’s efficiency and to establish a robust framework for the CNN model. The evaluation
of the model is conducted based on the metrics described in Section 3.4 and its result is
interpreted using the illustrative example.

3.3.2. Data Analysis Using ViT

A ViT model is designed in addition to the CNN model. Figure 4 illustrates the model
developed based on the ViT approach.

The data collection and initial processing are the same as mentioned in Sections 3.1 and 3.2.
A data frame is created to represent the dataset, which is then labeled and stored. The data
are shuffled, rescaled, and normalized as mentioned in Section 3.3.1. The dataset is split into
a 70–30 ratio for training and testing, with 20% of the data used for validation purposes.

Instead of using convolutional layers, the ViT model uses a transformer architecture,
which was originally developed for natural language processing tasks. In the initial steps of
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the model architecture, the input images are divided into fixed-size patches. These patches
are then flattened into vectors and subjected to a linear projection. Positional encodings are
added to the patches to retain their positional information. Multiple transformer encoder
layers are then applied to the ViT model.

1 
 

 
Figure 4. Methodology chart for ViT model.

A self-attention mechanism is employed in the model to capture dependencies between
patches, regardless of their original positions in the images. Each attention head is a
position-wise forward neural network, typically composed of two fully connected layers
separated by a ReLU activation. To assist in training deeper models, residual connections
are used after the normalization layer. A classification token is prepended to the sequence
of patch embeddings to obtain the output, and this output from the final transformer
encoder layer is used for classification tasks.

The pretrained model from Hugging Face is fine-tuned to meet the specific require-
ments of this study [35]. The model is trained for 100 epochs, with all accuracy and loss
metrics recorded for evaluation. Finally, the model is evaluated using the same methods
mentioned in Section 3.3.1.

3.4. Model Evaluation and Results

The final step in the methodology is model evaluation, which assesses how well the
trained model performs on a particular dataset. Test accuracy and loss are computed for this
purpose. It also allows the model to function with the test data, generating comprehensive
classification reports and confusion maps as well as model predictions. The confusion
matrix is transformed into a heatmap that makes it evident where the model hits and
misses the target. Ultimately, it is a comprehensive guide for training, tracking the model’s
development, and assessing how well it performs in the specific region of image surface
damage identification. Some of the metrics used during the evaluation of the model are
described in the following section.

3.4.1. Training Loss

Training loss comcpares outputs predicted by the model to the known labels for
training data. It is often measured by a loss such as cross-entropy for a classification
problem or mean square error for regression.

Training loss = 1/N∑N
i=1 Loss (1)

where N = number of samples in the training set.
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3.4.2. Model Accuracy

When a trained model is assessed on a different test dataset, its overall performance is
known as model accuracy. It is derived as below:

Model accuracy =
Number o f correct Predictions

Total number o f predictions
× 100% (2)

3.4.3. Validation Loss

Validation loss is the loss of the model on the validation dataset, a separate set of
samples that are never used as training samples but rather used to test the model’s general-
ization abilities. It is computed with the same loss function used for the training loss.

Training loss = 1/M∑M
j=1 Loss (3)

where M = number of samples in the validation set.

3.4.4. Validation Accuracy

In the validation dataset, validation accuracy is the percentage of properly predicted
instances. Ground truth data for delamination locations were available from a bridge
inspection process including hammer sounding, chain dragging, and marking of likely
delamination areas performed for the study described in [36]. Spalling was detected
through visual interpretation and field visits to the bridge. Validation accuracy is derived
as follows:

Validation Accuracy =
Number o f correct Predictions
Total Number o f Predictions

× 100% (4)

3.4.5. Epoch

A single training session that goes through the complete training dataset is referred to
as an epoch. The model minimizes the training loss in each epoch by iteratively updating
its parameters depending on the training data.

3.4.6. Precision

The precision of the model is defined as the ratio of true-positive (TP) predictions to
all positive predictions (i.e., both true-positive and false-positive (FP) predictions). It is
derived as

Precision =
TP

TP + FP
(5)

3.4.7. Recall

Recall is a statistical measure that quantifies the percentage of actual positive predic-
tions in the dataset that correspond to true-positive forecasts. It is calculated by dividing the
true-positive predictions by the total of false-negative (FN) and true-positive predictions.

Recall =
TP

TP + FN
(6)

3.4.8. F1 Score

The harmonic mean of recall and precision yields the F1 score, which strikes a balance
between the two metrices. It ranges from 0 to 1 and higher values indicate better performance.

F1 Score = 2 ×
(

Precision × Recall
Precision + Recall

)
(7)
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3.4.9. Macro Avg

The macro average determines the mean of a performance metric (such as recall,
precision, or F1 score) for every class, ignoring any imbalance in the distribution of classes.

Macro Avg = ∑C
i=1 Loss Metric/(Number o f Classes(C)) (8)

3.4.10. Weighted Avg

The weighted average weights each class’s contribution according to its percentage in
the dataset, considering any class imbalance while calculating the average of the perfor-
mance indicator.

Weighted Avg = ∑C
i=1

Metric(i)× Class(i)
Total Instances in the dataset

(9)

3.4.11. Confusion Matrix

The confusion matrix is a table used to summarize the performance of a classification
model. It describes the extent to which actual and predicted class labels match or do not
match. The rows of the confusion matrix correspond to the “actual” class labels, while the
columns correspond to the “predicted” class labels. Each cell of the matrix represents the
count (or proportion) of data that fall into the actual predicted class label combinations. It
consists of four main components:

• True positive (TP): It is the number of cases in the positive class that the model properly
predicts to be positive.

• False positive (FP): It is the number of cases in the negative class that model incorrectly
predicts to be positive.

• True negative (TN): It is the number of cases in the negative class that the model
properly predicts to be negative.

• False negative (FN): It is the number of cases in the positive class that model incorrectly
predicts to be negative.

4. Illustrative Experiment

To illustrate the proposed methodology, a Michigan Department of Transportation
(MDOT) bridge case is studied. UAS data on this bridge were collected by the Michigan
Tech Research Institute (MTRI) over the Beyer Road bridge near Saginaw, Michigan. The
Beyer Road bridge over Cheboyganing Creek measures 67 ft long by 26 ft wide with a
concrete surface deck. During the initial inspection in 2016, the bridge deck was rated as
having a surface condition of “5” (“fair”) due to four large spalls and one delaminated area.
On 30 December 2016, RGB and thermal imagery were captured at this location using the
Nikon D810 and DJI Phantom 3A coupled sensors. MTRI provided ground control points
with 10 cm positional accuracy for georeferencing outputs. After the initial investigation
and data collection in 2016, the bridge did not receive significant maintenance before
another UAS-enabled deck assessment in August 2021. Thus, in August 2021, the site was
revisited to determine whether there had been any changes in delamination and thermal
and optical images were acquired by MTRI [37]. Figure 5 illustrates the data collected from
this bridge, in two formats of thermal image (on left) and optical image (on right).

4.1. Data Collection

The different tools that were used during the data collection include (a) Nikon D810,
(b) DJI Phantom 3A, (c) DJI M2EA, (d) Bergen Quad-8, and (e) SSI survey GPS. Each of
these tools plays a crucial role in capturing comprehensive data for the bridge inspection,
described in the following section.
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Figure 5. Beyer Road Bridge, near Saginaw, Mi, showing thermal data (left) and optical data (right)
(image courtesy: MTRI [37]).

4.1.1. Nikon D810

The Nikon D810 is a digital single-lens reflex (DSLR) camera equipped with a
36.3-megapixel sensor. This camera can continuously capture photos at a maximum rate
of two frames per second. It features photo geotagging capabilities through an Aokatec
AK-G1 GPS unit attached to the camera. For typical pavement bridge inspections, a 50 mm
prime lens is commonly used. The images are captured at an altitude of 30 m (100 feet),
resulting in a ground sample distance (GSD) of 3 mm, meaning that each pixel in the image
represents a 3 mm square area on the ground. Figure 6 illustrates this camera, mounted on
a Bergen Quad-8 UAS.
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4.1.2. DJI Phantom 3A

The DJI Phantom 3A is a quadcopter equipped with a 12.4-megapixel camera capable
of recording 2.7 K resolution videos at 30 frames per second (Figure 7). It can reach a top
speed of 35 mph and has a flight duration of up to 23 min. The drone features three-axis
gimbals for camera stabilization, providing high-resolution first-person-view (FPV) video.
With a 94-degree field of view, the camera offers a wide range of angles. When flying
at an altitude of 15 m (50 feet), the drone achieves a ground sample distance (GSD) of
10 mm (2/5 inch), covering approximately 115 square feet per frame. At the maximum
flight height of 122 m (400 feet) allowed by the FAA, it achieves a GSD of about 66 mm
(2.6 inches), capturing around 850 square feet per frame.
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4.1.3. DJI M2EA

The DJI M2EA is a portable quadcopter equipped with a 12.35-megapixel camera
capable of recording 4K video and a radiometric FLIR camera with 640 × 512-pixel resolu-
tion; the data in Figure 5 were collected with this system. It has a top speed of 64 km/hr
(40 mph) and a flight duration of 27 min. The drone features a collision avoidance system
that prevents collisions from both forward and downward directions. It provides high-
resolution FPV footage and is stabilized by a 3-axis gimbal. The camera has a 78.8-degree
field of view. When flying at an altitude of 15 m (50 feet), the drone achieves a ground
sample distance (GSD) of 6 mm (1/4 inch), covering approximately 650 square feet per
frame. At the maximum flight height of 122 m (400 feet) allowed by the FAA, it achieves a
GSD of about 50 mm (2 inches), capturing around 60 square meter (650 square feet) per
frame. This quadcopter is shown in Figure 8 in three modes of folded (left), ready-to-fly
(center) and flying (right).
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4.1.4. Bergen Quad-8

Bergen RC produces the quadcopter, the Bergen Quad-8 (Figure 9), which has a flight
time of 20 min, allowing for data collection while maintaining a 25% battery reserve. This
versatile drone can mount various sensors, such as the FLIR VUE Pro and Nikon D810,
with a payload capacity of up to 4.5 kg (10 pounds) for comprehensive data collection.

4.1.5. Ground Control Points with GPS

The locations of ground control points required to improve the positional accuracy of
the UAS imagery were provided by MTRI. Each bridge had a different number of calibration
points, with at least four being typical. The positioning methods deployed in 2016 used cloth
ground control targets, with the center location recorded with a decimeter-accuracy Trimble
GeoXH GPS unit, with post-processing kinematic (PPK) data. The positions obtained from
this method had an accuracy within 10 cm horizontally and 20 cm feet vertically, meeting
the team’s normal accuracy requirements for close-range photogrammetry drone data
collections. In 2021, the MTRI team deployed Propeller Aeropoints (Figure 10) which have
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built-in GPS with a PPK workflow, which enabled an accuracy of 3 cm horizontally and
6 cm vertically.
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4.2. Data Processing

In the second step, the images collected by the UAS were processed. The following
figures provide an overview of the sample dataset. As shown in Figures 11 and 12, the
dataset was prepared for testing, training, and evaluating the two models, CNN and ViT, for
damage detection. The negative dataset consisted of 585 images, while the positive dataset
comprised 251 images. These images were manually classified to train the model effectively.
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Figure 12. Negative dataset (undamaged).

4.3. Data Analysis

As the third step, for data analysis, CNN and ViT model algorithms were devel-
oped. The developed models were evaluated using the different functions mentioned in
Section 3.3, and the results were interpreted in the subsequent step. To provide a compre-
hensive overview of our methodology, two distinct models were developed, each with
its unique approach to data analysis. The CNN model leveraged convolutional layers
to extract hierarchical features from the images, while the ViT model utilized a trans-
former architecture to capture long-range dependencies within the image patches. Both
models were trained and validated using the same dataset, ensuring a fair comparison of
their performance.

4.4. Model Evaluation and Results

Model evaluation is described for each tool as follows.

4.4.1. CNN Model Evaluation and Results

The model was trained for 100 epochs. The graph of training and validation loss over
time is shown in Figure 13, and model accuracy is depicted in Figure 14.
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Figure 14. Graphical representation of accuracy over epochs using CNN.

Figure 14 illustrates how the model is getting better in each epoch of the training.
Furthermore, Table 2 shows the results of the above graph in four points: the 1st epoch of
training, the 50th epoch of the training, the 98th epoch of the training, and the 100th epoch
of the training. As illustrated in these figures, it is evident that the performance of the
model improved gradually as the number of epochs increased during training. At epoch
1, the model predicted the training dataset with a loss of 0.51 and an accuracy of 82.69%.
After 50 epochs, the accuracy of the trained model increased to 88.25%, demonstrating
a significant improvement in performance, with loss decreasing from 0.51 to 0.30. The
training continued to achieve better results, with accuracy further improving to 92.09%
at epoch 98 and loss decreasing to 0.22. By the end of 100 epochs, the model achieved an
accuracy of 91.45%, although there was a slight increase in the loss value to 0.22.

Table 2. Sample data of loss and accuracy over time.

Epoch Number Loss Accuracy Validation Loss Validation Accuracy

1 0.5195 0.8269 0.4505 0.8291
50 0.3037 0.8825 0.3022 0.8632
98 0.2247 0.9209 0.2447 0.8974

100 0.2282 0.9145 0.2302 0.9145

The CNN model was evaluated using confusion matrices, as shown in Figure 15. The
classification report of the CNN model is shown in Table 3.

Table 3. Classification report of CNN model.

Precision Recall F1 Score Support

Negative 0.92 0.99 0.95 207
Positive 0.93 0.61 0.74 44

Accuracy 0.92 251
Macro avg 0.92 0.80 0.84 251

Weighted avg 0.92 0.87 0.94 251

Based on the CNN model analysis, the model demonstrates a test accuracy of 92% and
a test loss of 0.22. These performance metrics indicate the extent to which the classification
model can predict the two classes, “Negative” and “Positive”. Specifically, the precision of
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the “Negative” class is 0.92, meaning that 92% of the cases predicted as negative are true
negatives. With a recall of 0.99, it suggests that nearly all actual “Negative” instances were
correctly identified. The F1 score of 0.95 reflects a balance between precision and recall for
the “Negative” class.
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The dataset contains 207 instances of the “Negative” class. For the “Positive” class,
the recall is 0.61, indicating that 61% of actual positive instances were correctly identified.
The precision for the “Positive” class is 0.93, meaning that 93% of the cases predicted as
positive are true positives. The F1 score for the “Positive” class is 0.74, reflecting the balance
between precision and recall. The “Positive” class consists of 44 instances in the dataset.

The model’s overall accuracy is 0.92, which represents the percentage of correct
predictions across both classes. The macro average and weighted average provide a
comprehensive measure across both classes, aggregating precision, recall, and F1 score
statistics. The weighted average, in particular, accounts for the number of instances per
class, providing a more accurate measure of overall performance. Considering both micro
and macro averages, the results indicate that the model performed well overall.

4.4.2. ViT Model Evaluation and results

For the ViT model, the model was also trained for 100 epochs. The graph for training
and validation loss over time is shown in Figure 16 and model accuracy in shown in
Figure 17.

In addition, Table 4 shows the results at five points: the 1st epoch of training, the 50th
epoch of the training, the 98th epoch of the training, and the 100th epoch of the training.

Table 4. Sample data of loss and accuracy over time.

Epoch Number Training Loss Validation Loss Accuracy

1 No log 0.68 0.65
15 0.20 0.24 0.94
50 0.03 0.11 0.95
68 0.02 0.10 0.97

100 0.01 0.09 0.97
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It is evident that the performance of the model improved gradually as the number
of epochs increased during training. During the first 14 epochs, the training loss showed
no log, indicating the initializing or warm-up phase to stabilize or adapt the data. At the
beginning of training, the validation loss and accuracy were 0.68 and 65.34%, respectively.
By epoch 15, the accuracy of the trained model increased to 94.58%, with a training loss
of 0.20 and a validation loss of 0.24, demonstrating a significant improvement in the ViT
model’s performance.
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Figure 17. Graphical representation of accuracy over epochs using ViT.

In the middle of the training, the model achieved an accuracy of 95.66%, with a training
loss of 0.03 and a validation loss of 0.11. The training continued to achieve better results,
with accuracy further improving to 97.47% at epoch 68, and the training loss decreasing
to 0.02 and the validation loss to 0.10. By the end of 100 epochs, the model achieved an
accuracy of 97.11%, with a training loss of 0.01 and a validation loss of 0.09.

The ViT model was evaluated using a confusion matrix, as shown in Figure 18. The
classification report of the ViT model is illustrated in Table 5.
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Table 5. Classification report of ViT model.

Precision Recall F1 Score Support

Negative 0.97 0.96 0.97 139
Positive 0.96 0.97 0.97 138

Accuracy 0.97 277
Macro avg 0.97 0.97 0.97 277

Weighted avg 0.97 0.97 0.97 277

Based on the ViT model analysis, the model demonstrates an accuracy of 97.11%.
These performance metrics indicate how well the model classified data as “Negative” and
“Positive”. For the “Negative” class, the recall is 0.96, illustrating that nearly 96% of actual
“Negative” instances were detected, and the precision is 0.97, meaning that almost 97%
of cases predicted as “Negative” were true. The F1 score for this class is 0.97, reflecting a
balance between precision and recall. The original dataset contained a total of 138 instances
of the “Negative” class.

For the “Positive” class, the recall is 0.97, indicating that nearly 97% of actual “Positive”
instances were detected, while the precision is 0.96, meaning that nearly 96% of cases
predicted as “Positive” were true. This class also has an F1 score of 0.97, demonstrating a
fair balance between recall and precision. The “Positive” class consisted of 139 instances in
the dataset.

The model’s overall accuracy is 97.11%. The macro average and weighted average
metrics provide combined measures for both classes; the macro average is the unweighted
mean of precision, recall, and F1 score, while the weighted average considers the total
number of examples in each class, providing a more comprehensive analysis of unbalanced
sample sizes. The macro average precision, recall, and F1 score are all slightly over 0.97,
indicating balanced performance in both classes. Similarly, the F1 score, weighted average
precision, and recall are all slightly over 0.97, reflecting the overall strong performance
across the sample.

The performance of the CNN and ViT models was compared based on various factors,
as shown in Table 6. This table demonstrates that the ViT model generally performs better
in terms of accuracy, precision, recall, and F1 score. However, it requires a significantly
longer training time (about 8 times more) compared to the CNN model.
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Table 6. Comparison table of CNN and ViT models.

Model Factors CNN Model ViT Model

Model Accuracy 0.92 0.97
Negative Precision 0.92 0.97
Positive precision 0.93 0.96
Negative Recall 0.99 0.96
Positive Recall 0.61 0.97

Negative F1 Score 0.95 0.97
Positive F1 Score 0.74 0.97

All experiments were conducted on a MacBook Pro workstation equipped with M2
processor, 16 GB of RAM, and an integrated GPU. This minimal system configuration was
chosen to ensure that the work is replicable across similar hardware setups, making this
methodology accessible for broader application. The time to train the CNN model with
this minimum system configuration was 12 min, in comparison to 91 min for the ViT model.
Using a high-end system equipped with an NVIDIA RTX 3080 GPU, the training time for
the CNN model could be reduced to approximately 2 min and that of the ViT model to
around 15 min.

5. Discussion

This paper presents an automated bridge inspection framework that integrates UAS
and advanced ML techniques, including CNN and ViT, to detect and analyze damage
on concrete bridge decks. The methodology enhances inspection accuracy, efficiency,
and safety by leveraging high-resolution imagery and automated data analysis. The
comparative analysis reveals that while the ViT model offers superior performance in
terms of accuracy, precision, recall, and F1 score, it requires more training time compared
to the CNN model. The findings demonstrate the potential of integrating UAS and ML
in infrastructure maintenance, providing valuable insights for infrastructure inspectors,
project managers, and policymakers to improve maintenance strategies, allocate resources
effectively, and ensure the longevity and safety of critical infrastructure.

5.1. Limitations

When implementing an automated ML model for infrastructure inspection, several
limitations must be considered. One major challenge is dealing with blurry and noisy
images, which can mislead the model and reduce its accuracy. Noisy and blurry images
pose significant difficulties in data processing, as they obscure relevant features and create
randomness in pixel values. This noise can lead to both false positives and false negatives,
undermining the reliability of the model. Addressing these issues is crucial to enhancing
the model’s performance and accuracy.

Adverse weather conditions, such as strong winds, also complicate data collection.
High winds can affect the stability and control of drones, resulting in blurred or unusable
images. The excessive movement caused by wind leads to poor-quality datasets, while
the lightweight nature of drones increases the risk of damage or loss, making it difficult to
maintain position, altitude, and flight path. Harsh weather conditions can further damage
the drone, its equipment, and sensors, leading to incomplete data collection. Rain is also
usually incompatible with imaging-based drone data collections.

Data storage and handling present additional challenges due to the large number
of high-quality image files involved. Managing and organizing these extensive datasets
requires substantial computing and storage resources. Each image contains a vast amount
of information, necessitating robust storage systems and security mechanisms to maintain
data integrity and security. Effective platform accessibility and data transmission further
increase complexity, requiring careful design and execution.

Training the model effectively requires a large number of datasets to achieve better ac-
curacy and performance. A comprehensive dataset not only enhances the model’s training
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but also improves its real-world application for damage detection. A heterogeneous dataset
encompassing various materials, conditions, and scenarios allows the model to generalize
better to new images. Both positive (damaged) and negative (undamaged) images are used
to train the model to recognize damage-related attributes. Given that ML algorithms learn
complex representations of damage from both linear and nonlinear features, substantial
data are necessary for efficient learning. Additionally, a large, regularized dataset helps pre-
vent overfitting in complex models, resulting in a more resilient, accurate, and generalizable
model for detecting delamination in engineering and construction applications.

5.2. Future Scope

Future directions for this research include expanding the application of CNN and ViT
models to larger datasets and to steel bridges. Larger datasets are essential for detecting
damage in more complex bridge structures. The capabilities of these models for compre-
hensive steel bridge inspections have not been sufficiently explored in this project, which
could result in improved accuracy and reduced false positives.

CNNs are effective at capturing features and dependencies between localized regions
due to their architecture, which is designed to understand global feature dependencies
among pixels in an image. ViT, on the other hand, captures features and dependencies
through self-attention techniques specifically designed for images. However, both models
require larger datasets to fully realize their potential. The architecture of both models can
generalize more diverse fracture patterns and handle the complicated conditions of steel
bridges when trained on larger datasets. Given the often complex designs of steel bridges,
it is crucial for both CNN and ViT models to be trained on extensive datasets to accurately
detect damage, ensuring structural integrity and safety. Engineers can explore various
architectures of CNN and ViT with larger datasets to improve the detection process, leading
to safer and more effective monitoring and analysis of steel bridges.

Additionally, the CNN and ViT models can be compared with other models, such as
RCNN and DL models, which are also developed for damage detection. Comparing these
models helps in understanding their architectures and performance. CNNs adopt global
feature dependencies among pixels, while the ViT model uses self-attention techniques for
global feature dependencies. The RCNN model, however, employs region-based detection
for feature localization and visual recognition using ML. Understanding the architectures,
performance, generalization abilities, and resource requirements of different models enables
engineers to identify and evaluate the most suitable model for real-world implementation
in structural health monitoring systems. Empirical evaluations of these models on large
datasets and under various environmental conditions can enhance the robustness, accuracy,
speed, and efficiency of damage detection in steel bridges and other structural applications,
facilitating timely repairs and maintenance.

6. Conclusions

As national infrastructure (particularly bridges) continues to age, regular monitoring
and inspection are essential for safe operation and maintenance. Traditionally, bridge
inspectors rely on visible inspection tools and manuals to examine bridges and make
recommendations. However, advancements in technology, including the use of UAS and
ML techniques, have improved data collection and analysis processes.

This research study aims to identify and locate damage on bridge decks using data
collected by UAS, employing image processing techniques and ML algorithms. This study
specifically discusses the utilization of CNN and ViT models for damage detection, using a
dataset containing 836 images, split into positive (damaged) and negative (undamaged)
samples. Both models were trained and achieved accuracies exceeding 90%.

During the experimental phase, 30% of the dataset was used for testing, resulting in
an accuracy of 92% for the CNN model and 97% for the ViT model. Both models were then
tested with a new dataset of bridge images not used during training, and both successfully
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located damage and patches on the bridge deck. This demonstrates the strength of both
models in performing damage detection tasks.

In the case study, both CNN and ViT models demonstrated excellent performance in
detecting damage and non-damage in images. However, the ViT model achieved higher
accuracy (97.11%) compared to the CNN model (92.03%). Both models play a significant role
in infrastructure inspection, helping to prevent economic losses and structural failures and
enhancing the safety of inspection crews by reducing exposure to traffic and other hazards.

Overall, this study highlights the transformative potential of integrating UAS with ML
techniques for automated bridge inspection. By leveraging the strengths of CNN and ViT
models, it is possible to achieve high accuracy in damage detection, thus offering a reliable
alternative to traditional inspection methods. The significant improvements in accuracy
and efficiency demonstrated by the ViT model suggest a promising direction for future
research and application in infrastructure monitoring. Moreover, this study underscores
the necessity for ongoing development and refinement of ML algorithms to enhance
their applicability and effectiveness in real-world scenarios. Continued advancements in
these technologies will be crucial in addressing the growing demands of infrastructure
maintenance and ensuring the safety and reliability of our bridge networks.
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