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Abstract: Adiabatic logic has been proposed as a method for drastically reducing power consumption
in specialized low-power circuits. They often require specialized clock drivers that also function
as the main power supply, in contrast to standard CMOS logic, and these power clocks are often a
point of difficulty in the design process. A novel, stepwise charging driver circuit for four-phase
adiabatic logic is proposed and validated through a simulation study. The proposed circuit consists
of two identical driver circuits each driving two opposite adiabatic logic phases. Its performance
relative to ideal step-charging and a standard CMOS across mismatched phase loads is analyzed,
and new best practices are established. It is compared to a reference circuit consisting of one driver
circuit for each phase along with a paired on-chip tank capacitor. The proposed driver uses opposite
logic phases to act as the tank capacitor for each other in a “self-tanked” fashion. Each circuit was
simulated in 15 nm FinFET across a variety of frequencies for an arbitrary logic operation. Both
circuits showed comparable power consumption at all frequencies tested, yet the proposed driver
uses fewer transistors and control signals and eliminates the explicit tank capacitors entirely, vastly
reducing circuit area, complexity, and development time.

Keywords: adiabatic logic; stepwise charging; tank capacitor; FinFET

1. Introduction

Adiabatic logic, a novel approach in low-power digital circuit design, has been pro-
posed as a method to increase the energy efficiency of digital circuits, especially in energy
constrained applications such as IoT devices and other embedded systems. By employing
adiabatic logic, these energy-constrained applications can achieve notable improvements in
energy efficiency, allowing for prolonged battery life, reduced power consumption, and en-
hanced overall performance. The main principle by which an adiabatic logic circuit differs
from a typical CMOS logic circuit lies in the differing methods of charging or discharging a
load capacitance in the system through careful control of the power supply [1]. By smoothly
ramping between different target voltages (i.e., a logic high or a logic low), losses caused
by charging the load capacitance of each logic gate can be reduced. Often, this can require
complex resonant circuits adding to design time and reducing manufacturability [2–5]. Al-
ternatively, stepwise charging can be used to find a middle ground between typical CMOS
logic power consumption and ideal adiabatic logic operation [6–10]. Instead of smoothly
transitioning between targets as in ideal adiabatic logic or sharply jumping between a
logic high and a logic low, step-charging transitions between multiple intermediate voltage
levels. Step-charging energy consumption approaches that of ideal adiabatic charging as
the number of steps increases. These step-charging circuits can require multiple supply
voltage levels or large on-chip tank capacitors in their design. This work aims to reduce
design time and chip area by use of a redesigned step-charging driver circuit that eliminates
the need for tank capacitors.
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2. Adiabatic Logic

Consider a typical CMOS inverter with a load capacitance C as shown in Figure 1.
During a charging event, an amount of charge Q = CVDD travels from the power supply
to the load capacitance through the pull-up PFET. Now, the voltage across the load is equal
to the supply voltage VDD and the capacitor stores an amount of energy Estored = 1

2 CV2
DD,

but an amount of energy equal to Etotal = QVDD = CV2
DD leaves the power supply. The

difference is lost in the upper transistor (PFET). Similarly, it can be easily seen that during
a discharging event, all the charge stored in the capacitor is dumped to ground through
the lower transistor (NFET), and all the stored energy is lost in the NFET. Charging and
discharging events both consume an amount of energy, Elost =

1
2 CV2

DD, regardless of any
properties of the NFETs or PFETs that comprise the logic gates.
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Figure 1. CMOS inverter circuit showing the current path during both a charging and discharging
event. The capacitor C represents the load created by attaching further logic gates to the inverter.

By contrast, during adiabatic charging of the same system, the supply voltage, vS, is
not static but slowly ramps from 0 V to VDD over a time T. In doing so, the voltage across
the load capacitance can be modeled as approximately following the supply voltage, that
is, vC ≈ vS = VDD

T t. In doing so, the overall energy dissipated in charging the capacitor
over this time period can be found:

Elost =
RC
T

CV2
DD (1)

where R is the on-resistance of the PFET PMOS channel during charging. Through this
method, less than 1

2 CV2
DD energy can be lost during a charging event through careful

control of device parameters and charging time.
There is a variety of circuit architectures that implement this adiabatic charging

method, with a common application being in different four-phase adiabatic logic fam-
ilies such as “efficient charge recovery logic” (ECRL) [11] and “positive feedback adiabatic
logic” (PFAL) [12]. In both families, the ideal power supply consists of a trapezoidal power
clock, as illustrated in Figure 2a. Four separate phases occur in the power clock: evaluate,
hold, recover, and wait. During the evaluate phase, the supply voltage follows the ramp
illustrated earlier and allows for the logic gate to perform its computation. The hold phase
holds the output logic values for any successor logic to evaluate its own operation. Recover
allows for the charge in the load capacitance to return to the power supply and the wait
phase provides symmetry for smooth operation. Four different power clocks are required
to implement an ECRL or PFAL system, staggered as shown in Figure 2b, with the evaluate
phase being in line with its predecessor’s hold phase. Logic is thus chained together as in
Figure 3, with each gate passing data along in a pipeline.
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and shown in Figure 5a. These consist of a large tank capacitance 𝐶் and pass-transistors 
for moving the required charge around. This driver circuit is controlled by a finite state 
machine of conventional CMOS logic with an operating frequency higher than that of the 
driven adiabatic logic (with the goal that the power saved by using adiabatic logic is not 
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levels during each phase of operation: evaluate, hold, recover, and wait; (b) four staggered power
clocks used in four-phase adiabatic logic, each offset 90 degrees such that the evaluate phase of one
clock is during the hold phase of its predecessor.
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Figure 3. Four successive buffers implemented in four-phase adiabatic logic, buffering a logical value
from point A to B, each taking a different power clock in sequence.

3. Stepwise Charging

As mentioned previously, for PFAL and ECRL, generation of the ideal trapezoidal
waveform is quite difficult and can require carefully tuned resonant circuits. To this end,
alternative methods consisting of multiple steps to intermediate voltages in the charging
process to mimic the smooth ramp up have been investigated [6–10]. The simplest of these
is the two-step charging case illustrated in Figure 4. A switch brings the load capacitance
to half the supply voltage during the evaluation phase, dissipating 1

8 CLV2
DD, followed by a

second switch to VDD and dissipating another 1
8 CLV2

DD. While nowhere near as efficient as
the ideal trapezoidal behavior in (1), the two-step case results in only 1

4 CLV2
DD being lost in

each charge or discharge cycle, half that of conventional CMOS.
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Figure 4. Stepwise charging of a load capacitance using two steps, each contributing half the charge
needed to reach supply voltage. The four phases used in this clock match those of the trapezoidal
clock of Figure 2a. The exponential behavior of charging and discharging the load capacitance is
exaggerated for illustration.
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To implement step-charging, specific driver circuits are used, as demonstrated in [7]
and shown in Figure 5a. These consist of a large tank capacitance CT and pass-transistors
for moving the required charge around. This driver circuit is controlled by a finite state
machine of conventional CMOS logic with an operating frequency higher than that of the
driven adiabatic logic (with the goal that the power saved by using adiabatic logic is not
outweighed by the power consumed by the driver circuit and control logic). During the
beginning of the evaluate and recover phases of the power clock the transmission gate
controlled by S1 levels the voltage between CL and CT , ideally bringing both their voltages
to VDD

2 . During the latter half of these phases, either S0 or S2 drives CL to the supply
voltage or ground, respectively. The control signal timing for the step driver can be seen in
Figure 5b.
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sources or sinks charge during the middle of evaluate and recover phases, respectively. (b) Control
signal timing for each of the pass transistors.

One of these driver circuits and companion FSM is required for each power clock and
the tank capacitance must be tuned to match the load carried by that specific clock’s logic,
with a larger tank capacitance allowing the step voltage to be closer to half the supply,
improving efficiency, though with more area overhead. In [7], it was found that a tank
capacitance equal to ten times the load capacitance was a good rule of thumb for proper
logical operation and circuit efficiency before hitting diminishing returns. In practice,
this requires careful investigation of the load represented by each phase of logic and an
additional area overhead needed to implement the large tank capacitance. A total of 4 tank
capacitances, 12 switching devices, and 12 different control signals are thus required to
implement this system for any four-phase adiabatic logic.

4. Improved Step-Charging Circuit

An improved step-charging circuit can be implemented using the circuit shown in
Figure 6a. In contrast to the reference work, only two of these circuits are needed, one for
each pair of opposite logic phases. Thus, only 10 switching devices and control signals are
required, and importantly, no explicit tank capacitors are required. It achieves this by using
the load capacitance, Cn, of phase ϕn as the tank capacitor for its opposite phase ϕn+2 and
vice versa in a “self-tanked” fashion.

When one phase is dropping in its first step down from VDD, this charge is used to
step up the opposite phase from ground. If the load capacitances for each phase are equal,
then any charge will be distributed equally, the step voltage will be equal to VDD

2 , and the
energy consumed remains at half of that of a conventional CMOS. If the load capacitances
are not equal (a more likely scenario), then the load capacitances for each phase can be
defined as such: CL is the nominal CMOS load and will correspond to the phase with
the lower load and CH will correspond to the phase with the higher load. CH = αCL and
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α ≥ 1, α representing the factor by which one phase’s load is larger than the other. Note
that the order of these two loads does not matter, as a full cycle of their power clocks will
be considered. Due to charge conservation between the mismatched capacitances, two
different step voltages occur at different points in the power clock:

Vstep−A =
1

α + 1
VDD and Vstep−B =

α

α + 1
VDD (2)
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ϕL, the clock corresponding to the lower load, will attain α
α+1 VDD on its way to

charging to VDD, while lowering to 1
α+1 VDD on its descent to 0 V. ϕH will do just the

opposite on its way up and down. Now, a charging event and the energy lost for ϕL can be
decomposed into its two steps:

EL,charging =
1
2

CL

(
α

α + 1
VDD

)2
+

1
2

CL

(
VDD − α

α + 1
VDD

)2
(3)

EL,charging =
1
2

CLV2
DD

[
1 − 2

α

α + 1
+ 2

(
α

α + 1

)2
]

. (4)

A discharge event and its energy can be decomposed in the same way:

EL,discharging =
1
2

CLV2
DD

[
1 − 2

1
α + 1

+ 2
(

1
α + 1

)2
]

. (5)

Combined, the overall energy lost during a complete cycle of ϕL can be shown as
follows:

EL =
1
2

CLV2
DD · 2

α2 + 1

(α + 1)2 . (6)

It is at this moment that two interesting observations can be made. Setting α = 1,
results in the case with no mismatch and an overall energy loss of 1

2 CLV2
DD for both a single

charge and discharge, congruent with the results stated in the goals of stepwise charging
(note that ECMOS = CLV2

DD when combining a single charge and discharge). Additionally,
taking the limit as α → ∞ results in EL = CLV2

DD, again, the standard CMOS result. This
factor can be thought of as corresponding to a higher load capacitance whose voltage
cannot be changed no matter how much charge is taken out of it, a Vstep−A = 0 V, and
a Vstep−B = VDD. Thus, the higher capacitance acts as a static voltage source, just like a
CMOS power supply.
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The same process of finding energy loss can be performed for CH as well, remembering
to factor in α for the load capacitance being a higher value, resulting in the following:

EH =
1
2

CLV2
DD · 2α

α2 + 1

(α + 1)2 . (7)

Again, this can be checked for congruence to the no mismatch case by setting α = 1,
and indeed does result in half the energy of standard CMOS charging. Combining both (6)
and (7), a combined energy loss for the two mismatched phases can be determined:

EH + EL = CLV2
DD ·

[
α

α2 + 1

(α + 1)2 +
α2 + 1

(α + 1)2

]
= CLV2

DD

[
α2 + 1
α + 1

]
. (8)

Similarly, the energy for a standard CMOS circuit going through both a charge and
discharge cycle with two different loads can also be determined:

ECMOS = EH,CMOS + EL,CMOS = αCLV2
DD + CLV2

DD = (α + 1)CLV2
DD. (9)

An energy savings factor can then be defined as the ratio between (8) and (9):

ESF% =
EH + EL

EH,CMOS + EL,CMOS
=

α2 + 1

(α + 1 )2 . (10)

For the matched α = 1 case, this again shows that the step-charging circuit will use
half the energy of a standard CMOS circuit. Even if the higher load in a phase is twice that
of the lower, this still results in an energy consumption 55% that of standard CMOS.

It may seem prudent at this point to add additional compensation capacitance to the
lower load phase to force CH = CL and α = 1. However, doing so changes the combined
energy of the step-charging phases to the following:

EH,compensated + EL,compensated = αCLV2
DD. (11)

This can be compared to the unadjusted energy in (8) to determine how much com-
pensation adjusts the energy used:

Compensation % Change =
EH,compensated + EL,compensated

EH + EL
=

α2 + α

α2 + 1
. (12)

For α > 1, this always results in more energy being used in the compensated case vs.
the uncompensated case in (10). Therefore, there is no benefit to adding capacitance to the
lower load to account for a mismatch between phases.

5. Implementation and Simulation

A test circuit was designed using the FreePDK15 15 nm FinFET PDK provided by
North Carolina State University [13].

This circuit consisted of two of the step-charging driver circuits depicted in Figure 6a
as well as an example test logic circuit (Figure 7) implemented in ECRL using the methods
laid out in [11]. Buffers were interspersed to add additional load to the example circuit
as well as to keep signals properly in-phase as they are pipelined through the circuit in
accordance with ECRL design principles. Control signals for the step-driver circuits were
defined using idealized voltage sources and follow the timing of Figure 6b.



J. Low Power Electron. Appl. 2024, 14, 34 7 of 10

J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW 6 of 10 
 

 

Again, this can be checked for congruence to the no mismatch case by setting 𝛼 = 1, 
and indeed does result in half the energy of standard CMOS charging. Combining both 
(6) and (7), a combined energy loss for the two mismatched phases can be determined:   𝐸ு + 𝐸  =  𝐶𝑉ଶ ⋅ ቈ𝛼 𝛼ଶ + 1ሺ𝛼 + 1ሻଶ + 𝛼ଶ + 1ሺ𝛼 + 1ሻଶ = 𝐶𝑉ଶ ቈ𝛼ଶ + 1𝛼 + 1 . (8)

Similarly, the energy for a standard CMOS circuit going through both a charge and 
discharge cycle with two different loads can also be determined: 𝐸ெைௌ  =  𝐸ு,ெைௌ + 𝐸,ெைௌ  =  𝛼𝐶𝑉ଶ + 𝐶𝑉ଶ = ሺ𝛼 + 1ሻ𝐶𝑉ଶ . (9)

An energy savings factor can then be defined as the ratio between (8) and (9): 𝐸𝑆𝐹% =  𝐸ு + 𝐸𝐸ு,ெைௌ + 𝐸,ெைௌ = 𝛼ଶ + 1ሺ𝛼 + 1 ሻଶ . (10)

For the matched 𝛼 =  1 case, this again shows that the step-charging circuit will use 
half the energy of a standard CMOS circuit. Even if the higher load in a phase is twice that 
of the lower, this still results in an energy consumption 55% that of standard CMOS. 

It may seem prudent at this point to add additional compensation capacitance to the 
lower load phase to force 𝐶ு  =  𝐶  and 𝛼 =  1 . However, doing so changes the com-
bined energy of the step-charging phases to the following: 𝐸ு,௦௧ௗ + 𝐸,௦௧ௗ  =  𝛼𝐶𝑉ଶ . (11)

This can be compared to the unadjusted energy in (8) to determine how much com-
pensation adjusts the energy used: 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 % 𝐶ℎ𝑎𝑛𝑔𝑒 =  𝐸ு,௦௧ௗ + 𝐸,௦௧ௗ 𝐸ு + 𝐸 = 𝛼ଶ + 𝛼𝛼ଶ + 1. (12)

For 𝛼  1, this always results in more energy being used in the compensated case vs. 
the uncompensated case in (10). Therefore, there is no benefit to adding capacitance to the 
lower load to account for a mismatch between phases. 

5. Implementation and Simulation 
A test circuit was designed using the FreePDK15 15 nm FinFET PDK provided by 

North Carolina State University [13].  
This circuit consisted of two of the step-charging driver circuits depicted in Figure 6a 

as well as an example test logic circuit (Figure 7) implemented in ECRL using the methods 
laid out in [11]. Buffers were interspersed to add additional load to the example circuit as 
well as to keep signals properly in-phase as they are pipelined through the circuit in ac-
cordance with ECRL design principles. Control signals for the step-driver circuits were 
defined using idealized voltage sources and follow the timing of Figure 6b. 

 
Figure 7. Logic circuit used to test the power consumption of the stepwise charging driver circuits. 
Each combination of logic signals 𝐴, 𝐵,  and 𝐶 were tested. Each gate was implemented in ECRL, 
and buffers were included to ensure proper timing of signal propagation through the circuit. Each 
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Figure 7. Logic circuit used to test the power consumption of the stepwise charging driver circuits.
Each combination of logic signals A, B, and C were tested. Each gate was implemented in ECRL,
and buffers were included to ensure proper timing of signal propagation through the circuit. Each
logic gate used minimized FinFETs as allowed for by the PDK with two fins per device.

All FinFETs used in the simulation were of minimum sizing, as detailed in the PDK
with two fins used per device. VDD was set to 0.8 V.

The A, B, and C data signals depicted in Figure 7 merely count up from a binary 0 with
A being the least significant bit and C being the most significant, allowing for all logical
results to be evaluated for the average power consumption. All results are available after
one ECRL period after being applied due to the inherent pipelining of ECRL.

The proposed system was compared to the reference driver circuit in Figure 5. First an
implementation of the reference driver circuit was designed using minimum sized FinFET
parameters and two fins per device. Control signals were also created using ideal voltage
sources. This is to keep consistency with the proposed driver implementation. Then, a
sweep of the tank capacitor for each driver was performed to confirm the findings laid
out in [7], each of the four drivers receiving identical capacitance values. The reference
drivers were attached to each clock phase for the test logic circuit and driven to result in an
adiabatic logic frequency of 250 MHz. Average power consumption was then computed
for these simulations. These results can be seen in Figure 8. After a tank capacitance of
20 fF, savings in power suffers from significant diminishing returns. Therefore, 20 fF was
chosen as the baseline for tank capacitor in the reference driver circuit, with 100 fF being
used as an extreme to compare efficiency with the proposed driver circuit. In all reference
driver simulations, tank capacitors were pre-charged to 0.4 V in order to model the circuit
having reach its steady state of operation, with the goal being to mimic the “few cycles to
settle” requirement laid out in [7]. Simulations for each circuit were then performed at a
range of adiabatic system frequencies (100 MHz to 1 GHz), and power consumption for
each system (proposed, reference at 20 fF, and reference at 100 fF) was calculated.
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Figure 8. Tank capacitor sweep at 250 MHz operation of the reference driver and test logic circuit.
After about 20 fF of tank capacitance on each phase, the circuit hits diminishing returns in regard to
power savings.

6. Analysis

All test logic circuits adequately performed the logical operations required under their
respective drivers, confirming that both methods are sufficient for proper logical operation.
Power consumption across the frequency range for each driver is shown in Figure 9. As
can be seen, across the majority of the frequency range, both the 20 fF reference driver,
the 100 fF reference driver, and the proposed driver perform within 1% of each other with
regard to power consumption. Lower frequencies slightly deviate from each other as these
ranges are more dominated by leakage power rather than the dynamic switching power.
Additionally, when observing the waveforms of the clocks in Figure 10 for the proposed
driver, the mismatch in load between the phases can be seen. ϕ0 and ϕ2 are relatively well
balanced, and their step voltages do not deviate far from VDD

2 during either charging or
discharging. This can be explained by the relatively even load for each phase based on
the logic used in Figure 7. ϕ1 and ϕ3, however, show a deviation to about 480 mV at the
worst in a given charge or discharge cycle. Again, by looking at Figure 7, it is easy to see
that the load seen by ϕ3 is the lowest in the circuit, as the outputs of logic gates driven by
ϕ3 do not drive any other gates, only their self-loading is present. Adding dummy load
to clock 3 in the form of capacitor connected NFETs allowed for the step voltage to reach
closer to the ideal of VDD

2 , in agreement with (2) and the reduction in α to be closer to 1, but
overall increased the power consumed by the circuit in agreement with the findings in (11)
and (12).
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Figure 9. Comparison of power consumption for each circuit under test at different adiabatic logic
frequencies. The proposed stepwise charging driver circuit is compared to the reference work at with
both 20 fF and 100 fF tank capacitors. During low-frequency operation, power is largely dominated
by leakage current and little change in power consumption occurs with a change in frequency. As
frequency increases, power scales linearly. Higher frequencies show power consumptions within 1%
of each other for each circuit under test.
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Figure 10. Power clock waveforms for the proposed stepwise charging driver circuit at 500 MHz
adiabatic logic operation. Upper plot: ϕ0 (red) and ϕ2 (blue) can be seen to have relatively equal load
as both their step voltages follow closely to half the supply voltage. Lower plot: ϕ1 (green) and ϕ3

(orange) show mismatched load as their step voltages deviate from half the supply. An analysis of
the unloaded outputs of ϕ3 in Figure 7 show this to be the case, with only the self-loading of the logic
gates present for that power clock.

7. Conclusions

A novel stepwise charging driver circuit for four-phase adiabatic logic was designed
and analyzed for power consumption compared to a standard CMOS and to a reference
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step driver design. A series of simulations was performed using the FreePDK15 15 nm
FinFET process comparing the two driver circuits. The proposed and reference drivers
were both tasked with driving the same arbitrary logic function and both logical accuracy
and power consumption were analyzed. These simulations were performed across a logical
frequency range of 100 MHz to 1 GHz. Both drivers were able to drive the logic circuits
for correct logical operation for each frequency tested. For the majority of the frequency
range observed, both proposed and reference driver circuits operated within 1% power
consumption of each other for the performance of adiabatic logic operations. However,
the proposed driver circuit eliminates six transistors, six control signals, and four on-chip
tank capacitors, leading to reduced circuit area requirements for the same circuit operation
and efficiency.
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