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Abstract

Influenced by environmental conditions, underwater acoustic (UWA) communication

channels exhibit spatial and temporal variations, posing significant challenges for

UWA networking and applications. This dissertation develops statistical signal pro-

cessing approaches to model and predict variations of the channel and relevant envi-

ronmental factors.

Firstly, extensive field experiments are conducted in the Great Lakes region. Three

types of the freshwater river/lake acoustic channels are characterized in the aspects

of statistical channel variations and sound propagation loss, including stationary,

mobile and under-ice acoustic channels. Statistical data analysis shows that relative

to oceanic channels, freshwater river/lake channels have larger temporal coherence,

higher correlation among densely distributed channel paths, and less sound absorption

loss. Moreover, variations of the under-ice channels are less severe than those in open

water in terms of multipath structure and Doppler effect. Based on the observed

channel characteristics, insights on acoustic transceiver design are provided, and the

following two works are developed.

online modeling and prediction of slowly-varying channel parameters are investigated,

xxix



by exploiting their inherent temporal correlation and correlation with water environ-

ment. The temporal evolution of the channel statistics is modeled as the summation

of a time-varying environmental process, and a Markov latent process representing

unknown or unmeasurable physical mechanisms. An algorithm is developed to recur-

sively estimate the unknown model parameters and predict the channel parameter

of interest. The above model and the recursive algorithm are further extended to

the channel that exhibits periodic dynamics. The proposed models and algorithms

are evaluated via extensive simulations and data sets from two shallow-water experi-

ments. The experimental results reveal that the average channel-gain-to-noise-power

ratio, the fast fading statistics, and the average delay spread can be well predicted.

The inhomogeneity of the sound speed distribution is challenging for Autonomous

underwater vehicles (AUVs) communications and acoustic signaling-based AUV lo-

calization due to the refraction effect. Based on the time-of-flight (TOF) measure-

ments among the AUVs, a distributed and cooperative algorithm is developed for

joint sound speed estimation and AUV tracking. The joint probability distribution

of the time-of-flight (TOF) measurements, the sound speed parameters and the AUV

locations are represented by a factor graph, based on which a Gaussian message pass-

ing algorithm is proposed after the linearization of nonlinear measurement models.

Simulation results show that the AUV locations and the sound speed parameters can

be tracked with satisfying accuracy. Moreover, significant localization improvement

can be achieved when the sound speed stratification effect is taken into consideration.

xxx



Chapter 1

Introduction

Planet earth is known as "blue marble", more than 70% of its surface is covered by

water. Human as dwellings of this planet conduct all kinds of activities related to

water, including but not limited to deep ocean and polar region exploration, undersea

natural resource exploitation, recreational sports and military activities. Most of the

activities require data communication or status monitoring and consist of the drive

for underwater communications.

Common carriers of information for underwater communication include radio wave,

optical wave, magnetic wave and acoustic wave [6, 7, 8]. Among them the most

popular carrier for long distance communication is acoustic wave due to its unique

characteristics compared with other candidates [8].
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1.1 Characteristics of the Underwater Acoustics

Channels

As a mechanical wave, acoustic wave has a relative lower frequency than electromag-

netic (EM) waves. The acoustic frequency ranges from 10 Hz to 100 kHz [9], whilst the

frequency of EM waves is several orders of magnitude higher than acoustics. Acous-

tics have a relatively slow propagation speed in water, the nominal propagation speed

is 1500 m/s in sea water and smaller in fresh water. On the contrary, the nominal

speed of optical and radio wave is significantly higher, i.e. approximately 2.25× 108

m/s.

Directly related to the acoustic propagation, underwater acoustic communication

channels also have many signature properties compared to terrestrial radio channels.

• Large Doppler effect. Due to the low propagation speed, underwater acoustic

channels exhibit large Doppler effect due to the movement of the medium and

transmitting and receiving platform. The Doppler shift is defined as

f =
c± vr
c± vs

f0, (1.1)

where the vr and vs are the speed of the receiver and transmitter, respectively.
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f0 is the frequency of the original wave. It can be observed that a relatively

slow movement can cause significant Doppler shift in the underwater acoustic

environment since the speed of sound is 5 order of magnitude less than the

speed of EM wave.

• Large delay spread. Different from terrestrial radio channels, underwater acous-

tic channels are featured with severe multipath effect caused by the reflections

of the boundary of the water body and sometimes refraction effect, such as the

SOFAR channel. While the typical delay spread in terrestrial radio channels is

in the order of nanoseconds, underwater acoustic channels could have a delay

spread in the order of milliseconds. Due to the highly coherent channels, special

algorithms should be designed to decode and estimate the underwater acoustic

channels [10].

• Limited bandwidth. As mentioned in the previous section, the frequency of

acoustics ranges from 1 - 100 kHz. This essentially constrains the available

bandwidth for communication use. Due to the drive for high data through-

put, modern underwater acoustic communication systems usually use the high

frequency band.

• Transmission loss. The smaller propagation loss in water is the most important

property that makes acoustics the popular choice of carrier for long distance

underwater wireless communication. Typically, the sound wave can propagate

a distance of several kilometers. In special environments such as the SOFAR
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channel, it can even propagate hundreds of kilometers [11]. On the contrary,

the radio or optical waves can only propagate a distance of several tens me-

ters. Thus, radio and optics are commonly used for short-distance underwater

communications.

1.2 Spatial-Temporal Variations of the UWA Chan-

nels

Different from terrestrial radio channels, underwater acoustic channels are prone to

variations rooted in the change of the acoustic wave propagation and ambient noise.

• The temporal channel variations can be categorized as fast variations and slow

variations, which are also known as fast fading and slow fading in wireless

communications. Fast variations is caused by the multipath propagation of the

acoustic waves due to reflection at the boundary. Fast variation statistics are

highly correlated with the environment. For example, the wind speed changes

the surface dynamic, which in turn could change the multipath structure of

the channel. Moreover, wind and rain drops creates bubbles and changes the

reflection and scattering of the acoustic waves near surface. In terrestrial radio

channels, slow channel variations are usually caused by blocking of the signals.
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Although this is also a reason for the slow variations in UWA channels, sound

speed variation is an additional cause of shadowing in underwater environment.

• The spatial variations is mainly caused by the heterogeneous sound speed dis-

tribution in water. The sound stratification effect causes refraction of acoustic

waves, leading to non-straight line sound propagation and the convergence of

acoustic energy in some regions while limited acoustic energy in other regions.

The sound speed in water varies with environment factors, such as salinity,

temperature and pressure [12]. In shallow water environment such as river and

lake, the temperature structure of the water column is the major factor on the

speed of sound. In deep ocean environment, the pressure plays the most im-

portant role. Typically, the sound speed increases with depth as the pressure

also increases. The plot sound speed versus depth is known as sound speed

profile (SSP). It dominates the propagation of the acoustic wave. According

to Snell’s Law, the acoustic waves bend upwards in a increasing SSP and vice

versa. Knowledge of the sound speed is critical for the design, deployment and

performance analysis of an underwater communication system.

• Another important aspect of a UWA channel is the ambient noise. The ambient

noise in the communication frequency band above 1 kHz is primarily caused by

heavy precipitation, wind-induced bubble and spray, heavy traffic noise and

thermal noise [9]. The hydrodynamic noise, generated by bubbles, whitecaps,
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water droplets, surface waves and turbulence, are highly related to the time-

varying environmental factors. For the frequency band from 1 kHz to 25 kHz,

Knudsen’s curves [13] have been popularly used to depict the dependence of

hydrodynamic noise on the sea state [14],

NL = 56 + 19 log10(ss)− 17 log10(f), (1.2)

where NL is the noise level in dB re 1µPa/
√

Hz, f is the frequency in kHz,

1 < ss < 6 is the sea state which is linearly related to the mean wind speed in

m/s [9]. Based on extensive field measurements, the empirical models for the

sound pressure level cause by the wind and rain drops are obtained via curve

fitting in [15]. For the wind-generated sound in the frequency band from 1 kHz

to 50 kHz, the noise pressure level in dB re 1µPa2/Hz is modeled as

NL = −15.7 log10(f/8) + 20 log10(53.91V − 104.5), (1.3)

where V is the wind speed in m/s and f is the frequency in kHz. The rain fall

induced noise pressure level in dB re 1µPa2/Hz in the band of 1 kHz-10 kHz is

NL = log10(f/5)× [8.33 log10(R)− 14.3] + 15.4 log10(R) + 42.4, (1.4)

where f is the frequency in kHz, and R is the rainfall rate in the range of
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2 ∼ 200 millimeter/hour.

1.3 Contributions

In this thesis, the challenging spatial-temporal variation of the underwater acoustic

channels are identified. Specifically, the large scale temporal channel variation is

modeled and predicted in a point-to-point communication link. Moreover, sound

speed, whose variation accounts for the large-scale variation of the acoustic channels

, is estimated and tracked in a mobile sensor network.

In Chapter 2, based on extensive experimental data, this work characterized the

acoustic channels in freshwater rivers and lakes with and without ice coverage, and

compared the channel characteristics with those in oceans. Data analysis showed that

relative to oceanic channels, freshwater river/lake acoustic channels have larger tem-

poral coherence, higher correlation among densely distributed channel paths, and less

sound absorption loss. Additional, channel analyses revealed that under-ice acous-

tic channels could achieve longer transmission distances than open-water channels,

benefited from the SSP-induced surface-ducted sound propagation and possibly low

ambient noise levels. Furthermore, with the ice layer being a rigid surface reflector,

under-ice channels are more deterministic than open-water channels and have almost
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zero Doppler effect when both transmitter and receiver are stationary. Possible im-

pacts on transceiver design were discussed based on the observed characteristics.

Chapter 3 adopts a data-driven perspective and models the temporal evolution of a

slowly-varying channel parameter of interest as the summation of a time-invariant

component, a time-varying process that can be explicitly represented by available

environmental parameters, and a Markov latent process that describes the contribu-

tion from unknown or unmeasurable physical mechanisms. An algorithm is devel-

oped to recursively estimate the unknown model parameters and predict the channel

parameter of interest, based on sequentially collected channel measurements and en-

vironmental parameters in real time. We further extend the above model and the

recursive algorithm to the channel that exhibits periodic (a.k.a. seasonal) dynamics,

by introducing a multiplicative seasonal autoregressive process to model the seasonal

correlation. The proposed models and algorithms are evaluated via extensive simu-

lations and data sets from two shallow-water experiments. The experimental results

reveal that the average channel-gain-to-noise-power ratio, the fast fading statistics,

and the average delay spread can be well predicted.

Chapter 4 focuses on the estimation of the most important environment factor to

the acoustic channels, the sound speed, jointly with the tracking of an mobile AUV

network. The sound speed is modeled to capture the spatial and temporal variations.

The analytic results of the propagation delay and its gradient w.r.t. the sound speed
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parameters are obtained. Based on the propagation delay between sensor nodes, a

Gaussian message passing (GMP)-based method is proposed to recursively estimate

the parameters of the time-varying sound speed and the locations of the sensors in

a mobile network. The algorithm is extended to sound speed models with spatial

and temporal variations. Extensive simulations demonstrates the time-varying inho-

mogeneous sound speed and the mobile network can be well tracked. Moreover, the

improvement of the localization accuracy compared to the algorithm based on the

assume straight line propagation is investigated.

Contributions of the thesis are summarized and potential future works are discussed

in Chapter 5.

Notation: Bold upper case letters and lower case letters are used to denote matrices

and column vectors, respectively. AT denotes the transpose of matrix A. det(A)

denotes the determinant of matrix A. [a]m denotes the mth element of vector a, and

[A]m,k denotes the (m, k)th element of matrix A. E[x] denotes the expectation of

random variable x. N denotes a index set.
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Chapter 2

Experimental Investigation of

Underwater Acoustic Channels1

2.1 Introduction

Underwater acoustic (UWA) channels are often regarded as one of the most challeng-

ing medium for wireless communications. Significant progress on UWA channel char-

acterization and communications has been witnessed in the last two decades, whereas

most of the effort has been focused on oceanic and open-water environment [16], only

very limited research on under-ice acoustic channels is available [17, 18]. Driven by

1Some contents in this chapter were previously published in 2015 ACM WUWNet Conference, 2017
WUWNet Conference, 2014 IEEE Asilomar Conference, 2018 IEEE CCWC Conference and 2019
IEEE/OES AUV Workshop. Refer to Appendix A for granted permission letters
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the demand of a wide range of aquatic applications of UWA communications and

networking in freshwater rivers/lakes and ice-covered regions, such as water pollution

monitoring and disaster prevention [19, 20, 21, 22] and exploitation in polar regions

[23], it is imperative to understand the acoustic channels in those environments and

to examine suitable communication techniques tailored to the channel characteristics.

The distinction between oceanic acoustic channels and freshwater river/lake acoustic

channels could dictate very different transceiver designs. For example, the inter-

carrier-interference (ICI) in multicarrier communications incurred by large Doppler

spreads in oceanic channels has to be explicitly addressed [24, 25], while the inter-

symbol-interference (ISI) in single-carrier communications incurred by dense channel

paths in freshwater river/lake channels needs careful consideration [26]. Additionally,

different from the open-water environment, the under-ice environment often features

a sound speed profile (SSP) that has a positive gradient with respect to water depth.

According to Snell’s law, such a SSP refracts acoustic rays upward to the ice layer

where they are reflected back to water, leading to a surface-ducted sound propagation.

Should the receive node be within the surface duct, long-range acoustic communica-

tions can be achieved. In addition, relative to the open-water environment where the

surface wave serves as a moving reflector, the ice layer is rigid, leading to less variation

in the reflected path lengths (hence the Doppler effect) and the path amplitudes.
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Figure 2.1: Overview of the UWA experiment sites

This Chapter aims to provide some insights on the difference between oceanic acous-

tic channels and freshwater river/lake acoustic channels, and the difference between

open-water and under-ice acoustic channels, based on a series of underwater acoustic

communication experiments conducted in the Keweenaw Peninsula area as depicted

in Fig. 2.1. The data sets for freshwater river/lake acoustic channel analysis were col-

lected from three types of experiments conducted by our research group with the help

of the Great Lakes Research Center (GLRC), including four stationary experiments,

two mobile experiments and two under-ice experiments, and the data sets for oceanic

channel analysis were collected from one stationary and one mobile experiments con-

ducted by the Woods Hole Oceanographic Institution (WHOI) and held off the coast

of Martha’s Vineyard, Massachusetts in 2008 and 2010, respectively.
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UWA channels are defined by a plethora of environmental parameters, such as water

temperature and salinity, surface waves, bottom properties, and geometry of transmit-

ters and receivers. In this Chapter, we consider the characteristics of UWA channels

in the following aspects that pertain to communications.

• Temporal and spatial channel variations The underwater acoustic channels are

easily affected by environment factors, e.g., the wind speed will change the

ambient noise level and the temperature of the water will change propagation of

the sound speed due to the change of sound speed distribution. Additionally, the

distribution of the energy in the water field is usually not uniform. Some areas

have more acoustic energy, whereas others known as shadow zone have negligible

energy. This unevenly distribution of energy causes spatial variation of acoustic

channels. A different type of spatial variations is the channel difference between

close links in a network.

• Multipath characteristics: The channel multipath characteristics depend on

both environment conditions and geometry of transmitters and receivers. Typi-

cally, oceanic channels are often sparse with energy concentrated on a few paths

and the paths exhibit large Doppler spreads incurred by time-varying surface

reflections and/or mobile obstacles [24, 25]. On the other hand, freshwater

river/lake channels often have densely distributed paths with smaller Doppler

spreads. Despite extensive effort on characterizing various types of oceanic
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channels, to the authors’ best knowledge, there has been limited study on the

multipath characteristics in freshwater rivers/lakes [27].

• Sound propagation loss: Sound propagation loss in water consists of absorption

loss, spreading loss, and scattering loss. The absorption loss in seawater arises

from the chemical relaxation (due to boric acid and magnesium sulphate) and

absorption by pure water [28, 29]. Intuitively, less sound absorption in fresh-

water can be expected due to less salty content, whereas there has been very

limited experimental study on sound absorption in freshwater rivers or lakes,

with sporadic investigations in [30, 31, 32].

2.2 Theoretic Basics

2.2.1 Slowly-varying Channel Parameters

The UWA channel features multiple time-varying sound propagation paths. Denote

Npa as a generic representation of the number of paths. The channel impulse response

(CIR) at time t is

h(t; τ) =

Npa∑
p=1

Ap(t)δ(τ − τp(t)), (2.1)
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where Ap(t) and τp(t) are the time-varying amplitude and delay of the pth path,

respectively.

For an UWA transmission with Nbl short blocks, the channel is often assumed block-

stationary and could change from one block to another. For the `th block in the kth

transmission, the CIR can be approximated as

hk,`(t; τ) =

Npa,k,`∑
p=1

Ap,k,`δ(τ − (τp,k,` − ap,k,`t)), (2.2)

where Npa,k,` denotes the number of paths, and for each path, e.g., the pth path, the

amplitude is approximated as a constant Ap,k,`, and the delay variation is approxi-

mated by a first-order polynomial (τp,k,` − ap,k,`t) with τp,k,` being the initial delay

and ap,k,` being the Doppler rate, respectively. Estimation of the path parameters

is typically performed in each block based on training symbols. An example of the

estimated CIR based on the pilot subcarriers in one OFDM block in the SPACE08

experiment is depicted in Fig. 2.2. In addition, the channel SNR in the `th block of

the kth transmission can be denoted as

ζk,` :=
1

N0,k,`

Npa,k,`∑
p=1

|Ap,k,`|2, (2.3)

where N0,k,` is the noise power in the `th block.

Different from the fast variation of path parameters, the structure of the CIR could
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Figure 2.2: An example of the estimated channel impulse response within
an OFDM block duration of 129.46 milliseconds in SPACE08.

change slowly from one transmission to another in accordance with environmental

conditions. Corresponding to the multiple (Nbl) individual CIRs in the kth transmis-

sion, several examples of slowly-varying channel parameters are in the following.

• The average channel SNR in decibel (dB), defined as

ζdB[k] :=
1

Nbl

Nbl∑
`=1

10 log10(ζk,`). (2.4)

• The fast fading statistics. Despite the fast variation of path parameters within

one transmission, the statistics of the fast variation could change slowly from

one transmission to another. In this Chapter, we adopt a Nakagami-m channel
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fading model [33], and examine the temporal evolution of the fading parameter

m from one transmission to another. For the kth transmission, the fading

parameter m can be estimated based on the block SNRs {ζk,1, · · · , ζk,Nbl
} that

follow a corresponding Gamma distribution.

• The average RMS delay spread that quantifies the channel dispersion in delay

[34],

τspread[k] :=
1

Nbl

Nbl∑
`=1

√∑Npa,k,`

p=1 |Ap,k,`|2(τp,k,` − τ̄k,`)2√∑Npa,k,`

p=1 |Ap,k,`|2
, (2.5)

with

τ̄k,` :=

∑Npa,k,`

p=1 |Ap,k,`|2τp,k,`∑Npa,k,`

p=1 |Ap,k,`|2
. (2.6)

• The average RMS Doppler spread that quantifies the channel dispersion in the

Doppler rate, denoted by aspread[k], which can be similarly defined as τspread[k]

through replacing τp,k,` by ap,k,` in (2.5) and (2.6).

2.2.2 Multipath Characterization

Denote T as the block length of the waveform, and ĥ(t, τ) as the estimated channel

using the least squares (LS) method. Based on the channel estimates of Nbl blocks,

the channel power delay profile is estimated as [35],
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P̂ (τ) =

∫ NblT

0

|ĥ(t, τ)|2dt. (2.7)

The Doppler spectrum is introduced to characterize the Doppler effect of channel

paths,

P̂ (ν) =

∫ T

0

|Ŝ(ν, τ)|2dτ, (2.8)

where

Ŝ(ν, τ) =

∫ NblT

0

ĥ(t, τ) exp(−2πiνt)dt. (2.9)

The channel auto-correlation function defined as

R̂(∆t) =
1

T

∫ T

0

E
[
ĥ∗(t, τ)ĥ(t+ ∆t, τ)

]
dτ (2.10)

is used to characterize the channel temporal coherence property.

The normalized cross covariance is introduced to quantify the correlation of channel

taps,

M̂(τk, τl) =
χ(τk, τl)√

χ(τk, τk)χ(τl, τl)
, (2.11)

where
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h̃(t, τ) = ĥ(t, τ)− 1

NblT

∫ NblT

0

ĥ(t, τ)dt, (2.12)

χ(τk, τl) =

∣∣∣∣∫ NblT

0

h̃∗(t, τk)h̃(t, τl)dt

∣∣∣∣ . (2.13)

2.2.3 Sound Propagation Loss

We adopt an empirical model for underwater sound propagation loss over a distance

of d,

TL(d) = β10 log10 (d) + α(f)d+ ξ, (2.14)

where the first term corresponds to the spreading loss, the second term corresponds to

the frequency-dependent absorption loss, and the last term is a scaling factor related

to the scattering loss. In the scenario with an unknown gain factor of the automatic

gain control (AGC) at the receiver, it is difficult to directly map the recorded signal

strength to sound intensity. Therefore, in this Chapter we mainly focus on the rel-

ative sound propagation loss corresponding to a reference distance d0. For a source

transmitting at a particular sound level, denote I(d) as the sound intensity after

propagating a distance of d. The relative propagation loss in dB can be formulated

as

TL(d,d0) = TLd − TLd0 = 10 log10

I(d0)

I(d)
. (2.15)
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Denote P (d) as the power of the received digital signal after AGC, and G(d) as the

unknown AGC factor of the receiver. We have

I(d0)

I(d)
=
P (d0)/G(d0)

P (d)/G(d)
=
P (d0)G(d)

P (d)G(d0)
. (2.16)

To measure the relative propagation loss, we consider a system with a mobile trans-

mitter and a stationary receiver, and assume that the ambient noise intensity In at

the receiver does not change much within consecutive channel sounding transmissions.

Denote Pn(d) as the noise power within the recorded digital signal corresponding to

a transmission distance of d. We have

Pn(d0)

Pn(d)
=
InG(d0)

InG(d)
=
G(d0)

G(d)
. (2.17)

Substituting (2.17) into (2.16) yields

I(d0)

I(d)
=
P (d0)/G(d0)

P (d)/G(d)
=
P (d0)Pn(d)

P (d)Pn(d0)
, (2.18)

which leads to

TL(d,d0) = 10 log10

P (d0)Pn(d)

P (d)Pn(d0)
= 10 log10

SNR(d0)

SNR(d)
. (2.19)
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Hence, the relative propagation loss can be computed based on the received signal-

to-noise ratio (SNR) at different distances.

2.3 Stationary Acoustic Channels

2.3.1 Freshwater Lake Channels

Table 2.1
OFDM parameters in field experiments.

Parameters Lake tests SPACE08 MACE10
center frequency [kHz]: fc 17 13 13
bandwidth [kHz]: B 6 9.77 4.883
# of subcarriers: K 1024 1024 1024
symbol duration [ms]: T 170.7 104.86 209.7
frequency spacing [Hz]: 1/T 5.8594 9.54 4.77
guard interval [ms]: Tg 79.3 24.6 40.3

A stationary experiment (KWAUG14) was conducted in the Keweenaw Waterway

adjacent to Michigan Tech’s campus from Aug. 27 to 31, 2014 over a range of weather

conditions. Two AquaSeNT OFDM modems [36] — one as a transmitter, and the

other as a receiver — were deployed on two sides of the waterway with a distance

of 312 m; as shown in Fig. 2.3. The water depth was about 3 m. Both modems

were at 1.5 m in water. A sequence of channel probing signals followed by 20 OFDM-

modulated blocks was transmitted every 15 mins for five consecutive days. Parameter

settings of OFDM blocks in this experiment are summarized in Table 2.1.
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RX

TX

GLRC

Figure 2.3: KWAUG14 experiment setup.

Fig. 2.4 shows the weather conditions, received SNRs, and false alarms during the

experiment. One can observe that (1) the received SNR exhibits a large diurnal pat-

tern — the SNR in night-time transmissions is much higher than that in daytime

transmissions, and there are small-scale variations on top of the large-scale varia-

tions; the diurnal change in the signal and noise strength could be related to the

well-known “afternoon effect” caused by the diurnal and seasonal change in water

surface temperature [37], and also the increase of ambient interferences in daytime;

(2) as shown in the highlighted area of the received SNR curve, the received SNR

has large short-term fluctuations during the rainy condition, and a close examination

of the waveforms recorded during the rainy period reveals a considerable amount of

impulsive interferences; and (3) the false alarms triggered by ambient interferences
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Figure 2.4: KWAUG14: Evolution of several slowly-varying channel param-
eters. The sequences of the average channel SNR are scaled by corresponding
transmission power levels. RMS: root mean square.

appear mainly in the daytime, which might be due to heavy boating activities.

Fig. 2.5 shows the average normalized channel power profile, the average normal-

ized channel auto-correlations, and the representative normalized cross-correlation of

channel taps during the early morning and the afternoon transmissions on Aug. 28,

where the early morning results are averaged over 24 files recorded from 00:00 am to

5:45 am, and the afternoon results are averaged over 24 files recorded from 1:00 pm

to 6:45 pm. One can see that the early morning channel is highly correlated and that

the afternoon channel still maintains a high correlation around 0.8. Fig. 2.5 (c) and

(d) reveal higher correlation of channel taps in the early morning transmissions.
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Figure 2.5: KWAUG14: (a) normalized channel power profile; (b) nor-
malized auto-correlation; (c) normalized cross-correlation of channel taps in
early morning transmissions; and (d) normalized cross-correlation of channel
taps in afternoon transmissions.

2.3.2 Seawater Ocean Channels

We use the data collected from the surface processes and acoustic communications ex-

periment (SPACE08) to study the channel characteristics in the oceanic environment

[38]. The slowly-varying channel parameters and the weather conditions are depicted
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Figure 2.6: SPACE08: Evolution of several slowly-varying channel parame-
ters. The sequences of the average channel SNR are scaled by corresponding
transmission power levels. RMS: root mean square.

in Fig. 2.6. The experiment was conducted by the Woods Hole Oceanographic In-

stitution (WHOI), and held off the coast of Martha’s Vineyard, Massachusetts, from

Oct. 14 to Nov. 1, 2008. The water depth was about 15 m. Among all the six re-

ceivers, we only consider the data collected by the receiver labeled as S3 which was

200 m away from the transmitter. There are ten recorded files on each day, and each

file consists of 20 OFDM blocks. However, some data files recorded in the afternoon

on Julian date 300 were distorted, which are excluded for channel characterization.

Parameter settings of this experiment are summarized in Table 2.1.

Fig. 2.7 (a) shows the channel Doppler spectrum averaged over all the recorded files

in SPACE08. For comparison, the channel Doppler spectrum in the Portage Lake
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experiment averaged over all the recorded data files is also plotted. The higher side-

lobes of the Doppler spectrum in SPACE08 indicate larger Doppler spreads of channel

paths. Fig. 2.7 depicts the normalized auto-correlation of SPACE08 channels. Com-

pared to the lake channels in Figs. 2.5 (b), the sea channel exhibits lower temporal

correlations.

Fig. 2.8 illustrates the normalized cross covariance of channel taps averaged over the

files recorded on each day. Comparing the result with that in Figs. 2.5, one can see

that the channel taps in the lake environment have higher correlation.
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Figure 2.7: SPACE08: The normalized channel auto-correlations.

2.3.3 Spatial-Temporal Variation in UWA Network

A stationary networking experiment (KWST16) was conducted in Keweenaw Water-

way in April, 2016. Four OFDM modems were deployed in the river, which is depicted

in Fig. 2.9. The four acoustic nodes take turns to transmit while the others listen.

27



(a) JD: 296 (b) JD: 297 (c) JD: 298

(d) JD: 299 (e) JD: 300 (f) JD: 301

Figure 2.8: SPACE08: Normalized channel cross covariances; JD: Julian
date.

In an OFDM modulated waveform, the pilot signal-to-noise ratio (PSNR) can be

measured in the frequency domain with the following formula,

PSNR =
Ei∈IP [|yi|2]− Ei∈IN [|yi|2]

Ei∈IN [|yi|2]
, (2.20)

where yi is the observation on the ith subcarrier, IN and IP are the set of null and

pilot subcarriers, respectively.

The PSNRs from two links, their reciprocal links and the wind speed during the

experiment are plotted in Fig. 2.10. The temporal variation of the channel is clear.

Besides, the reciprocal channels are similar to each other and can be considered
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Figure 2.9: KWST16: The spatial-temporal variation experiment setup in
Keweenaw Waterway.

symmetric. Moreover, the spatial variations can be observed by comparing different

acoustic communication links. On the other hand, the variation pattern are similar

in different links and highly correlated with the wind speed. The similarity between

different links in the network is illustrated in the covariance matrix plot in Fig. 2.11.

It can be observed that the majority of the links have a normalized correlation greater

than 0.5. The similarity between different links can be exploited to predict the link

states given status of certain observed links.

2.4 Under-Ice Acoustic Channels

The under-ice experiment (LBMAR15) was conducted on March 10, 2015 when the

experiment area was fully covered by ice with depth around 0.5 m, and the open-water

29



22@00 22@12 23@00 23@12 24@00 24@12

Time

0

10

20

30

40
S

N
R

 [
d
B

]

-8

-6

-4

-2

0

2

4

6

8

w
in

d
 s

p
e
e
d
 [
m

/s
]

b-->a

a-->b

wind speed

(a)

22@00 22@12 23@00 23@12 24@00 24@12

Time

0

10

20

30

40

S
N

R
 [
d
B

]

-8

-6

-4

-2

0

2

4

6

8

w
in

d
 s

p
e
e
d
 [
m

/s
]

c-->a

a-->c

wind speed

(b)

22@00 22@12 23@00 23@12 24@00 24@12

Time

0

10

20

30

40

S
N

R
 [
d
B

]

-8

-6

-4

-2

0

2

4

6

8

w
in

d
 s

p
e
e
d
 [
m

/s
]

c-->b

b-->c

wind speed

(c)

22@00 22@12 23@00 23@12 24@00 24@12

Time

0

10

20

30

40

S
N

R
 [
d
B

]

-8

-6

-4

-2

0

2

4

6

8

w
in

d
 s

p
e
e
d
 [
m

/s
]

d-->a

a-->d

wind speed

(d)

22@00 22@12 23@00 23@12 24@00 24@12

Time

0

10

20

30

40

S
N

R
 [
d
B

]

-8

-6

-4

-2

0

2

4

6

8

w
in

d
 s

p
e
e
d
 [
m

/s
]

d-->b

b-->d

wind speed

(e)

22@00 22@12 23@00 23@12 24@00 24@12

Time

0

10

20

30

40

S
N

R
 [
d
B

]

-8

-6

-4

-2

0

2

4

6

8

w
in

d
 s

p
e
e
d
 [
m

/s
]

d-->c

c-->d

wind speed

(f)

Figure 2.10: KWST16: spatial and temporal variation of the acoustic links.
Terminating nodes of the links are indicted in the legends.

experiment (LBMAY15) was conducted on May 14, 2015, within about one month

since the ice disappeared. In both experiments, a pair of acoustic modems within the

frequency band [14 ∼ 20] kHz were used, one as a source node and the other as a

receive node. As illustrated in Fig. 2.12, the receive modem was deployed at a base

site, while the transmit modem was deployed sequentially at four different sites in

the under-ice experiment, which were about 500 m, 1 km, 2 km and 4 km from the

base site, respectively, and at six different sites in the open-water experiment, which

were about 450 m, 2 km, 3.9 km, 7.6 km, 11.2 km, 15.1 km away from the base site,

respectively. The modems were about 9.5 m in water in the under-ice experiment,

and 9 m in water in the open-water experiment. The water depth varies from 55 m

to 90 m in the experiment area. The transmitted waveform is modulated by OFDM
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Figure 2.11: KWST16: The covariance of any two acoustic links.

technique.

Due to limited salty content in water, the SSP largely depends on the water temper-

ature profile. The SSP in the under-ice experiment was not measured. The measured

SSP in the open-water experiment at different sites is shown in Fig. 2.12, where the

SSP with a positive gradient can still be observed in the water further offshore, e.g.,

at the sites of 2 km and 3.9 km away from the base site.

2.4.1 Transmission Loss

With the maximal modem transmission power of 30Watts, Fig. 2.13 shows the average

SNR and the average PSNR in both experiments. Due to the surface-ducted sound

propagation and possibly low ambient noise level in the under-ice environment, the
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Figure 2.12: LBMAR15 and LBMAY15: Experimental setup at L’Anse
Bay (Left). “x”: under-ice test sites; “+”: open-water test sits. SSPs in the
open-water experiment (Right).

under-ice channel enjoys higher receive SNRs than the open-water channel, and the

difference between the two types of channels is pronounced in PSNRs, indicating more

severe intercarrier interference hence larger Doppler effect in the open-water channel.

2.4.2 Multipath Channel Characteristics

The evolution of channel impulse responses in both experiments are illustrated in

Fig. 2.14, which shows that the under-ice channel is more stable than the open-water

channel. Particularly for the channels at a transmission distance around 500 m, the

magnitude histogram of the largest channel tap (the tap corresponding to the direct
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Figure 2.13: LBMAR15 and LBMAY15: The average and standard devia-
tion of SNRs at different transmission distances.

path) normalized by the noise standard deviation is shown in Fig. 2.15, along with the

Rician fitting curves with a K-factor of 26.4 and 4.46 in the under-ice experiment and

the open-water experiment, respectively. The large difference in the K-factors reveals

that the under-ice channel is more deterministic than the open-water channel. Using

compressed sensing techniques, the Doppler scale factor of each individual path can

be estimated. Corresponding to the channels at the distances of 500 m and 2 km, all

the paths in the under-ice environment have zero Doppler rate, while the open-water

channel suffers Doppler spreads at different levels, as depicted in Fig. 2.17. This can

also be observed from the scattering plots as shown in Fig. 2.16. Similar observations

can be obtained for the two types of channels at other transmission distances.

33



0 5 10
0

1

2

3

4

5

T
im

e
[s
]

Delay [ms] (500 m)

0 5 10
0

1

2

3

4

5

T
im

e
[s
]

Delay [ms] (4 km)

0 5 10
0

1

2

3

4

5

T
im

e
[s
]

Delay [ms] (450 m)

0 5 10
0

1

2

3

4

5

T
im

e
[s
]

Delay [ms] (2 km)
0 5 10

0

1

2

3

4

5

T
im

e
[s
]

Delay [ms] (2 km)

0 5 10
0

1

2

3

4

5
T
im

e
[s
]

Delay [ms] (3.9 km)

(Under ice Channels) (Open water Channels)

Figure 2.14: LBMAR15 and LBMAY15: Evolution of channel impulse
responses.

2.4.3 Spatial Variations and Impulsive Noises

On March 17, 2017, an under-ice experiment was conducted in Portage Lake, MI.

The experimental setup is shown in Fig. 2.18. During the experiment, the Portage

Lake was covered by about 40 cm thick ice. The water depth in the area varies from

8.3 to 11.3 meters. Three transceivers are installed at the three locations highlighted

in Fig. 2.18. Each transceiver will take turn to act as transmitters while the rest act
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Figure 2.15: Histogram and Rician fitting of the normalized maximal chan-
nel tap magnitude at the test site about 500 m. Left: under ice, K = 26.4
in Rician fitting; right: open water, K = 4.46 in Rician fitting.

as receivers.

In this experiment, the recorded acoustic channels are stable and exhibits negligible

Doppler effect as in other under-ice experiments. However, impulsive noises can be

frequently observed in the recorded waveforms. An example of the recorded signal

contaminated with impulsive noise at the receiver is depicted in Fig. 2.19.

During the experiment, we change the depths of both the transmitter and the receiver.

Figs. 2.20 show that even at the same location, channel quality and the received SNRs

change significantly mainly due to the shadowing effect caused by the structure of

the sound speed.
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Figure 2.16: LBMAR15 and LBMAY15: Scattering function generated
using m-sequence

2.5 Mobile Acoustic Channels

2.5.1 Transmission Loss

In this section, we study the relative sound propagation loss in two mobile experi-

ments: one was held in the Lake Superior and the other was held off the coast of
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channel paths. Left: under ice; right: open water.

Figure 2.18: Setup of the Portage-MAR17 experiment.

Martha’s Vineyard, Massachusetts.

The Lake Superior experiment abbreviated as LS14 was conducted in the Lake Supe-

rior near the north entry of the Keweenaw Waterway on Aug. 13, 2014. The receiver
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Figure 2.20: Portage-MAR17: The received SNR measurements at different
depths.

was fixed on a surface buoy while the transmitter was towed towards the receiver from

750 m to 20 m at a speed around 0.86 m/s. During the towing process, the transmit-

ter kept transmitting a channel sounding waveform that is identical to the waveform
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used in the Keweenaw Waterway experiment and the Portage Lake experiment. In

total 34 waveforms were recorded by the receiver.

The mobile acoustic communication experiment (MACE10) is a mobile experiment

conducted in ocean environment [38]. The experiment was carried out by Mr. Lee

Freitag and his team from the WHOI, off the coast of Martha’s Vineyard, Mas-

sachusetts, in June, 2010. The water depth was about 95 to 100 meters. The receiver

array was stationary, while the source was towed slowly away from the receiver from

500 m to 4.5 km and then towed back, at a speed around 1 m/s. Out of two tows

in the experiment, we only consider the data set collected in the first tow with 31

transmissions in total and 20 OFDM blocks in each transmission. We exclude one

file recorded during the turn of the source, where the received SNR is quite low.

Parameters of this experiment are summarized in Table 2.1.
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Figure 2.21: Relative propagation loss and curve fitting.

Taking a reference distance of 20 m in the Lake Superior experiment and of 500 m
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in MACE10, Fig. 2.21 depicts the relative propagation loss computed based on the

received SNRs in the two experiments (c.f. (2.19)) and the curve fitting results cor-

responding to the empirical propagation loss in (2.14). The estimated absorption

coefficient α(f) during the curve fitting is 1.9 dB/km and 2.3 dB/km in the Lake Su-

perior experiment and MACE10, respectively. The curve fitting results reveal that as

the transmission distance increases, the propagation loss increases logarithmically in

the Lake Superior experiment and linearly in MACE10, and the estimated absorption

coefficients indicates less sound absorption loss in the Lake Superior experiment than

in MACE10 due to less salty content in the lake water.

2.5.2 Doppler Effect and Mobile Channel Characteristics

Another mobile experiment (LP18) is conducted in Lily Pond, located just off of

Lake Superior near Houghton, Michigan in October, 2018. The experiment consisted

of four static nodes and a mobile node. As illustrated in Fig. 2.22, the four static

nodes were anchored at locations A, B, E and F. The mobile node was towed by a

human-operated boat at an average speed of around 1 m/s and traveled back-and-

forth between Site A and Site B. The water depth of the experiment area is around 8

meters, and the distance between Site A and Site B is 765 meters. During the towing

process, the mobile node transmitted a 4-second long communication waveform every

15 seconds at a power level of 0.3 Watts. The four static nodes served as receivers.
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Figure 2.22: LP18: Deployment locations for Lily Pond test on satellite
map.

The communication waveform has a carrier frequency of 24 kHz with a bandwidth

of 6 kHz. Besides the preamble and postamble, the waveform consists of a single

transmission data block modulated by the OFDM technique [39] and a rate-1/2 non-

binary low-density parity-check (LDPC) code with an overall transmission rate of

2,688 bits/second. To reveal the insights of UWA mobile communications, we focus

on the received waveforms at Node E when the mobile transmitter travels from Site

A to Site B, and present some of the processed results.
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Figure 2.23: LP18: The estimated Doppler scaling factor at Node E as the
transmitter moves from Site A to Site B.

Due to the low sound speed in water, the movement of the transmitter causes com-

pression or dilation of the communication waveform. Such a Doppler effect needs

to be carefully considered while processing the received data. The Doppler scaling

factor a is computed as a = v/c, where v is the transmitter node’s moving speed

with respect to Node E, and c ≈ 1, 450 m/s is the sound speed in water. In this

experiment, the estimated Doppler scaling factor based on the received waveforms at

Node E is shown in Fig. 2.23. One can observe the change of the Doppler scaling

factor when the transmitting modem gets near to Node E and then moves away from

it.

For each acoustic transmission, the UWA channel impulse response (i.e., the multipath

information) can be estimated via a least squares approach [39]. The evolution of the
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Figure 2.24: LP18: The estimated UWA channel at Node E as the trans-
mitter moves from Site A to Site B. A horizontal slice represents the channel
impulse response, where the magnitude is color coded.

UWA channel estimation as the transmitter node moves from Site A to Site B is

plotted in Fig. 2.24. One can observe an interesting change of the channel multipath

structure (especially the latter arrivals) at Node E.

2.6 Discussions on Transceiver Designs

The differences between freshwater river/lake channels and oceanic channels, under-

ice and open-water channels dictate different transceiver designs [4]. Specifically,

in the freshwater river/lake environment, the large correlation of channel taps can

be exploited to reduce the dimensionality of unknowns in channel estimation, and

the large channel temporal coherence can be leveraged for efficient channel tracking.
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On the contrary, despite large temporal dynamics of oceanic channels, the sparsity

of channel paths can be utilized to improve channel estimation accuracy via com-

pressed sensing techniques [40]. Moreover, consider that the sound absorption loss is

frequency-dependent. The low sound absorption loss in freshwater promises a large

transmission distance of high-frequency signal (e.g., ∼ 100 kHz), hence allows high-

frequency transceiver design with a large bandwidth.

Channel analyses revealed that under-ice acoustic channels could achieve longer trans-

mission distances than open-water channels, benefited from the SSP-induced surface-

ducted sound propagation. Furthermore, with the ice layer being a rigid surface

reflector, under-ice channels are more deterministic than open-water channels and

have almost zero Doppler effect when both transmitter and receiver are stationary.

Additionally, the ice-cracking impulsive noise should be taken into consideration in

the transceiver design. Specifically, impulsive noise mitigation methods should be

adopted to enhance the communication performance. For example, an analog nonlin-

ear preprocessor can be used to mitigate the signal outliers [3].

Lastly, awareness should be brought to designers that the depth of the transmitter and

receiver will affect the communication quality significantly. And potential research

opportunities of mobile channel modeling could arise from the observed evolution of

the mobile channel multipath structure.
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Chapter 3

Online Modeling and Prediction of

the Large-Scale Temporal Variation

in UWA Communication Channels1

3.1 Introduction

Underwater acoustic (UWA) channels exhibit large temporal dynamics. Influenced

by environmental conditions, such as water-air interface characteristics, the sound

speed profile and the distribution of ambient acoustic sources, the impulse response

1The work in this chapter was published in "IEEE Access" ©2018 IEEE. Some contents in the
chapter were also published in 2016 IEEE Oceans Conference. Refer to Appendix A for granted
permission letters
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of an UWA channel could fluctuate on various time scales: seasonal, diurnal, tidal

cycles, minutes in the presence of internal waves, and seconds with ocean swells

[35, 41, 42]. Extensive research has been devoted to the statistical modeling and

countermeasures of fast channel variation within a transmission that consists of one

or multiple packets [43, 44, 45]. The study on the large-scale channel variation,

namely, the temporal evolution of slowly-varying channel parameters over a long

term, e.g., hours, days, months, or years), has been very limited. Examples of those

slowly-varying parameters include the locally-averaged channel parameters within

a transmission, such as the average channel-gain-to-noise-power ratio (also referred

to as channel SNR), the average delay spread, the average Doppler spread, and the

statistics of fast channel variations. Compared to the fast channel variation, the large-

scale channel variation can be attributed to the large-scale change of environmental

conditions [45], hence holds a great potential of being predictable.

In this Chapter, we develop a data-driven approach for online modeling and prediction

of slowly-varying channel parameters in the real-time UWA communication system by

exploiting their correlation with water environmental conditions. Prediction of those

parameters will allow proactive adaptation of higher-level transmission strategies to

the channel dynamics. In the sequel, we will first briefly describe our observations

on the large-scale channel variation in two field experiments, and then summarize

existing approaches to modeling the large-scale channel variation. An overview of

this Chapter is presented in the end of this section.
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Figure 3.1: An example of the estimated channel impulse response within
an OFDM block duration of 129.46 milliseconds in SPACE08. The example
is the same as Fig. 2.2.

3.1.1 Observation of the Large-scale Channel Variation in

Field Experiments

We introduce the results from two field experiments to illustrate the large-scale chan-

nel dynamics. The SPACE08 experiment was conducted in an oceanic environment

where a waveform of 1 minute and within the frequency band [8, 18] kHz was trans-

mitted every 2 hours to a receiver which is 200 meters away. The waveform consists

of 60 short blocks, and each block is modulated by the ZP-OFDM technique and has
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a duration of 129.46 ms. Fig. 3.1 provides an example of the channel impulse re-

sponse (CIR) which is estimated based on the received waveform of one OFDM block

during a transmission. The KW-AUG14 experiment was conducted in the Keweenaw

Waterway near Michigan Tech, August 2014 where a waveform of 8.83 seconds and

within the frequency band [14, 20] kHz was transmitted every 15 minutes to a receiver

which is 312 meters away. The waveform consists of 20 ZP OFDM-modulated blocks,

and each of duration 250 ms. Detailed descriptions of the two experiments can be

found in Section 3.7. For each experiment, the CIR can be estimated based on each

received OFDM block, and the estimated CIRs within each transmission can be used

to calculate the locally-averaged channel parameters of the transmission; rigorous de-

scriptions can be found in Section 2.2.1. In Figs. 2.4 and 2.6, we plot the evolution of

several locally-averaged channel parameters throughout all transmissions in the two

field experiments. For both experiments, one can observe that the average channel

SNR is correlated with both the wind speed and the temperature. The Nakagami-m

fading parameter in KW-AUG14 exhibits negative correlation with the wind speed

and the temperature, while the correlation is not obvious in SPACE08. The average

root mean square (RMS) delay spread is correlated with the wind speed negatively in

SPACE08 while positively in KW-AUG14. Moreover, a diurnal pattern of the slowly-

varying channel parameters can be observed in KW-AUG14. Correlations between

UWA channel parameters and water environmental conditions have also been revealed

in other field experiments; see, e.g., [41, 42, 46, 47, 48]. In this Chapter, following
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the terminology in time series analysis, we refer to the UWA channels with periodic

dynamics (e.g., diurnal or monthly) as seasonal channels [49], where the “seasonal

cycle” does not necessarily correspond to the seasons in an astronomical year.

3.1.2 Existing Methods for Modeling the Large-scale UWA

Channel Variation

Existing methods for UWA channel modeling can be grouped into three categories:

the wave propagation theory-based modeling, empirical channel modeling and statis-

tical channel modeling. Compared to the latter two approaches, the wave propagation

theory-based model [50] yields the highest accuracy. However, it is a deterministic

method for a fixed geometry and environmental description, hence cannot accommo-

date random environmental dynamics.

Using measurements in various water settings, marine engineers have built empirical

models that relate the transmission loss and the ambient noise level with water envi-

ronmental parameters, such as water temperature, salinity, pH, surface wind speed,

rainfall rate, and sea state; see, e.g., [15, 51, 52, 53]. Consider that the acoustic

propagation property and the ambient acoustic environment are site-dependent. The

empirical model parameters are often computed via curve fitting based on field mea-

surements.
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In addition, statistical methods have been widely used to characterize the statistical

distribution of the signal transmission loss along each path or an equivalent power

loss after combining the signals propagating along multiple paths. Compared to the

characterization of channel fast fading [27, 45, 54], studies on the modeling of the

large-scale channel variation have been very limited. Based on field measurements,

a lognormal distribution of the locally-averaged transmission loss was proposed in

[45, 55], and the possibility of modeling the temporal evolution of the locally-averaged

transmission loss as a first-order autoregressive (AR) process was discussed in [56].

It is worth noting that existing channel modeling methods mainly work in an offline

manner. They are used either to evaluate the channel conditions before the system

deployment, or to characterize the channel behaviors based on field measurements

after the system is recovered.

3.1.3 Our Work

The goal of this Chapter is to develop a method for online modeling and prediction of

the large-scale channel variation during the system deployment based on sequentially

collected channel measurements and water environmental parameters. To this end, a

data-driven perspective is adopted to exploit the inherent correlation of the large-scale

channel variation and its correlation with water environmental conditions.
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Specifically, for a slowly-varying channel parameter of interest, we model its tempo-

ral evolution as the summation of (i) a time-invariant component, (ii) a time-varying

process that can be explicitly represented by available water environmental param-

eters, and (iii) a hidden Markov latent process which accounts for the contribution

from unknown or unmeasurable physical mechanisms. After casting the evolution

model into a state-space representation, and following the maximum likelihood (ML)

principle and the expectation-maximization (EM) algorithm [57], a low-complexity

algorithm is developed to recursively estimate the unknown model parameters based

on sequentially obtained channel measurements and environmental parameters during

the system operation, which then allows to predict the slowly-varying channel param-

eter in the near future. The proposed modeling method and the recursive algorithm

are further extended to seasonal channels, where a multiplicative seasonal AR process

[49] is introduced to model the seasonal correlation.

The effectiveness of the proposed models and recursive algorithms are evaluated via

simulations and data sets from two shallow-water experiments, the SPACE08 and the

KW-AUG14. The slowly-varying channel parameters that are examined using the

experimental data sets include the average channel SNR, the fast fading statistics, the

average RMS delay spread, and the average RMS Doppler spread. The results reveal

that superior modeling and prediction performance can be achieved by exploiting

the correlation between the large-scale channel variation and water environmental

parameters as well as the seasonal correlation in seasonal channels.
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Remark 1. The developed algorithms can be applied to real-time operating UWA

communication systems. Specifically, the model parameters can be updated recur-

sively in time step-by-step based on newly obtained channel measurements during

recent acoustic transmissions as well as newly obtained environmental parameters2.

The updated model allows the prediction of the large-scale channel variation based

on the forecast of environmental conditions. The prediction could guide higher-level

proactive adaptation of future transmission strategies, such as the transmission sched-

ule, the transmission power and rate, and the modulation scheme [58]. It has been

shown in an early study [59] that even with moderate channel prediction perfor-

mance, proactive adaptation of the transmission schedule improves energy efficiency

more than 20% than a benchmark method that transmits each packet upon its arrival

with minimal transmission power that meets a predetermined SNR threshold.

The rest of the chapter is organized as follows. The data-driven modeling method is

presented in Section 3.2. A recursive algorithm for the model parameter estimation

is developed in Section 3.3. Extension of the proposed model and the recursive algo-

rithm to seasonal channels is presented in Section 3.4. The model order selection for

practical UWA channels is discussed in Section 3.5. Simulations and experimental

data processing results are presented in Sections 3.6 and 3.7, respectively. Conclusions

are drawn in Section 3.8.

2The environmental parameters can be collected by sensors equipped on the communication nodes
(e.g., surface buoys and underwater nodes), or sent from a remote control center to surface buoys
via radio-frequency links.
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3.2 A Data-driven Method for Modeling Large-scale

Channel Variations

In this section, we will develop a data-driven method to model the temporal evolution

of a slowly-varying channel parameter of interest. Estimation of the model parameters

will be pursued in Sections III and IV.

3.2.1 A Data-driven Model for Slowly-varying Channel Pa-

rameters

Consider the temporal evolution of a slowly-varying channel parameter of interest,

which is represented by process {α[k]}, with k being an integer time index. We model

the process {α[k]} as the summation of a time-invariant component γ0, a time-varying

process {g[k]} that can be explicitly represented by available and relevant water

environmental parameters, and a latent process {x[k]} that describes the contribution

from unknown or unmeasurable physical mechanisms, namely,

α[k] = γ0 + g[k] + x[k], ∀k. (3.1)
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Specifically about the processes {g[k]} and {x[k]},

• The process {g[k]} can be taken as a function of L types of available and rele-

vant environmental parameters {φ`[k]; ` = 1, · · · , L}. Consider the potentially

nonlinear relationship between the slowly-varying channel parameter and water

environmental parameters [15, 51, 52, 53]. The function can be represented by

the Maclaurin series expansion,

g[k] =
L∑
`=1

c`φ`[k] +
L∑

`1=1

L∑
`2=1

c`1,`2φ`1 [k]φ`2 [k]

+
L∑

`1=1

L∑
`2=1

L∑
`3=1

c`1,`2,`3φ`1 [k]φ`2 [k]φ`3 [k] + · · · (3.2)

where the expansion coefficients are unknown and could be slowly time-varying.

Estimation of the expansion coefficients based on channel measurements and

environmental parameters is challenged by their infinite dimensionality.

To make the problem tractable, a finite number of important summands on

the right side of (3.2) can be selected to approximate the function. Specif-

ically, we include the infinite elements on the right side of (3.2) in a set

E [k] := {φ1[k], · · · , φL[k], φ2
1[k], φ1[k]φ2[k], · · · }, and denote I as an index set

of Nu important elements within E [k],∀k. The important elements can form a
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finite set U [k] := {u1[k], · · · , uNu [k]}, which yields the approximation,

g[k] ≈
Nu∑
n=1

bnun[k], (3.3)

where {bn} denote the coefficients of the Nu important elements.

• The latent process {x[k]} is modeled as a Markov process with memory length

of P ,

x[k] =
P∑
p=1

apx[k − p] + w[k], (3.4)

where the coefficients {ap} are unknown and could be slowly time-varying, and

the process noise w[k] follows a zero-mean Gaussian distribution with variance

σ2
w, namely, w[k] ∼ N (0, σ2

w).

The latent process order P and the index set I of important elements in E [k] can be

determined via a model-order selection criterion. A detailed discussion is presented

in Section 3.5.

Denote y[k] as the measurement of the slowly-varying channel parameter at time k.

We have

y[k] = γ0 + x[k] + g[k] + v[k], (3.5)

where v[k] is an equivalent noise term which consists of modeling inaccuracy and the

measurement noise, and is assumed v[k] ∼ N (0, σ2
v), independent from the process
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noise w[k] in (3.4).

Define a := [a1, · · · , aP ]T, b := [b1, · · · , bNu ]T, x[k] := [x[k], · · · , x[k − P + 1]]T, and

u[k] := [u1[k], · · · , uNu [k]]T. The system model can be compactly represented as

x[k] = aTx[k − 1] + w[k], (3.6a)

y[k] = γ0 + x[k] + bTu[k] + v[k]. (3.6b)

Define w[k] := [w[k], 0, · · · , 0]T, h := [1, 0, · · · , 0]T, and

A :=



a1 a2 · · · aP−1 aP

1 0 · · · 0 0

0 1 · · · 0 0

...
... . . . ...

...

0 0 · · · 1 0


.

We have the state-space representation of the system model,

x[k] = Ax[k − 1] + w[k], (3.7a)

y[k] = γ0 + hTx[k] + bTu[k] + v[k]. (3.7b)

Should the parameters in the set Θ := {γ0, a,b, σ
2
w, σ

2
v} be known, the latent process
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can be tracked via the Kalman filter [60]. In the next section, we will develop a

recursive algorithm to estimate the unknown model parameters while tracking the

latent process based on the measurements {y[k]} and the environmental parameter

vectors {u[k]}. The estimated model parameters allow multiple-step-ahead prediction

of the slowly-varying channel parameter. For notation convenience, in the sequel

we use x[k] and xk, y[k] and yk, x[k] and xk interchangeably, and denote xk2k1 :=

{xk1 , · · · , xk2} and yk2k1 := {yk1 , · · · , yk2}.

3.3 A Recursive Algorithm for Channel Modeling

and Prediction

Following the ML principle [60], the unknown parameters in Θ could be estimated at

each time step (e.g., time k) by maximizing the log-likelihood function of the com-

plete data set, Lk(Θ) := ln f(yk0 ,x−1,x
k
0|Θ). However, note that the latent process

{xk′} is not observable. The EM algorithm [57] can be applied to estimate the un-

known parameters iteratively through an expectation step and a maximization step.

Specifically, at time k,
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• Expectation: Given a parameter set estimation Θ̂, the expectation of the log-

likelihood function can be approximated as

E[Lk(Θ)|Θ̂] =

∫ ∫ [
ln f(yk0 ,x−1,x

k
0|Θ)

]
× f(x−1,x

k
0|yk0 , Θ̂)dx−1dx

k
0. (3.8)

• Maximization: The parameter set estimation can be updated as

Θ̂
(new)

= arg max
Θ

E[Lk(Θ)|Θ̂]. (3.9)

The iterative operation terminates when the number of iterations reaches a pre-

determined value or the change of the parameter set estimation is less than a pre-

determined threshold.

Note that (3.8) can be decomposed as

E[Lk(Θ)|Θ̂] =

∫
[ln f(x−1|Θ)]f(x−1|yk0 , Θ̂)dx−1

+
k∑

k′=0

∫
[ln f(xk′ , yk′|xk′−1,Θ)]×f(xk′ ,xk′−1|yk0 , Θ̂)dxk′dxk′−1. (3.10)

The expectation E[Lk(Θ)|Θ̂] is computed based on the probability density func-

tion (PDF) f(xk′ ,xk′−1|yk0 , Θ̂), ∀k′ ≤ k. For a given estimation Θ̂, finding

f(xk′ ,xk′−1|yk0 , Θ̂) requires to process all the data points. Hence, the original EM

algorithm is not amenable to online implementation.
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We next propose an approximation to E[Lk(Θ)|Θ̂] that enables the development of a

low-complexity recursive algorithm for the model parameter estimation and channel

tracking.

3.3.1 Approximation for Recursive Operation

The approximation to E[Lk(Θ)|Θ̂] is made in several steps.

First, we approximate the expectation in (3.10) by

E[Lk(Θ)|Θ̂] ≈ ln f(x−1|Θ)]

+
k∑

k′=0

∫
[ln f(xk′ , yk′ |xk′−1,Θ)]× f(xk′ ,xk′−1|yk

′

0 , Θ̂)dxk′dxk′−1, (3.11)

where the expectation of [ln f(xk′ , yk′ |xk′−1,Θ)] is performed with respect to

f(xk′ ,xk′−1|yk
′

0 , Θ̂) instead of f(xk′ ,xk′−1|yk0 , Θ̂). This removes the dependence of

{xk′ ,xk′−1} on future measurements.

Secondly, denote Θ̂k′ as the parameter set estimation at time k′. We

make a further approximation to (3.11) through replacing f(xk′ ,xk′−1|yk
′

0 , Θ̂) by
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f(xk′ ,xk′−1|yk
′

0 , Θ̂k′), ∀k′ < k, namely,

E[Lk(Θ)|Θ̂] ≈ ln f(x−1|Θ)

+
k−1∑
k′=0

∫
[ln f(xk′ , yk′ |xk′−1,Θ)]f(xk′ ,xk′−1|yk

′

0 , Θ̂k′)dxk′dxk′−1

+

∫
[ln f(xk, yk|xk−1,Θ)]× f(xk,xk−1|yk0 , Θ̂)dxkdxk−1. (3.12)

The approximations in (3.11) and (3.12) enable recursive computation of the sum-

mands on the right side of (3.12).

Thirdly, note that the joint PDF f(xk,xk−1|yk,yk−1
0 , Θ̂) can be decomposed as

f(xk,xk−1|yk,yk−1
0 , Θ̂)

= f(xk,xk−1|yk,yk−1
0 , Θ̂)δ(xk,xk−1)

=
1

c0

f(xk,xk−1, yk|yk−1
0 , Θ̂)δ(xk,xk−1)

=
1

c0

f(yk|xk, Θ̂)f(xk|xk−1, Θ̂)f(xk−1|yk−1
0 , Θ̂)δ(xk,xk−1), (3.13)

where c0 is a normalization constant, and the function δ(xk,xk−1) is introduced to

constrain the equity of common elements in xk and xk−1. We approximate the joint
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PDF by

f̃(xk,xk−1|yk,yk−1
0 , Θ̂) :=

1

c′0
f(yk|xk, Θ̂)f(xk|xk−1, Θ̂)f̃(xk−1|yk−1

0 , Θ̂k−1)δ(xk,xk−1),

(3.14)

where c′0 is a normalization constant, and the approximation is made through replac-

ing f(xk−1|yk−1
0 , Θ̂) in (3.13) by f̃(xk−1|yk−1

0 , Θ̂k−1) in (3.14), with f̃(xk′|yk
′

0 , Θ̂k′)

defined as the marginalization PDF of xk′ with respect to f̃(xk′ ,xk′−1|yk′ ,yk
′−1

0 , Θ̂k′),

∀k′.

Finally, based on (3.12) and (3.14), the expectation E[Lk(Θ)|Θ̂] is approximated by

Qk(Θ|Θ̂) which is recursively defined as

Qk(Θ|Θ̂)=λQk−1(Θ|Θ̂k−1)+

∫
[ln f(xk, yk|xk−1,Θ)] f̃(xk,xk−1|yk,yk−1

0 , Θ̂)dxk−1dxk,

(3.15)

where λ ∈ (0, 1] is a forgetting factor that accounts for the temporal variation of

unknown model parameters.

Based on (3.14) and (3.15), a recursive algorithm will be developed for the model

parameter estimation and channel tracking, while at each time step, operations sim-

ilar to the expectation and the maximization in the EM algorithm are iteratively

performed.
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Figure 3.2: The proposed low-complexity recursive algorithm at time k.

3.3.2 A Low-complexity Recursive Algorithm

Denote Θ̂
(i)

k = {γ̂(i)
0,k, â

(i)
k , b̂

(i)
k , σ̂

2,(i)
w,k , σ̂

2,(i)
v,k } as the parameter set estimation in the ith

iteration at time k. The function Qk(Θ|Θ̂
(i)

k ) is computed through finding the ex-

pectation of [ln f(xk, yk|xk−1,Θ)] with respect to the PDF f̃(xk,xk−1|yk,yk−1
0 , Θ̂

(i)

k )

(c.f. (3.15)). The parameter set estimation can then be updated as Θ̂
(i+1)

k =

arg maxΘ Qk(Θ|Θ̂
(i)

k ).
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At the outset, the proposed low-complexity recursive algorithm is depicted in Fig. 3.2.

Denote f̃(xk|yk0 , Θ̂k) = N (µk,Ck) (c.f. (3.14)). At time k, the algorithm takes the

PDF f̃(xk−1|yk−1
0 , Θ̂k−1) = N (µk−1,Ck−1), the parameter set estimation Θ̂k−1, aux-

iliary quantities {Mk−2,M
−1
ũ,k−1} (to be defined shortly; computed at time (k − 1)),

the measurement yk and the environmental parameter vector uk as input. Set Θ̂
(0)

k =

Θ̂k−1. Given the parameter set estimation Θ̂
(i)

k , the Kalman filtering and smoothing

can be performed to compute the expectations of quantities in [ln f(xk, yk|xk−1,Θ)]

with respect to the PDF f̃(xk,xk−1|yk,yk−1
0 , Θ̂

(i)

k ), namely, the second summand in

(3.15). The parameter set estimation can then be updated through maximizing

Qk(Θ|Θ̂
(i)

k ). The updated parameter estimation can then be used for the Kalman

filtering and smoothing in the next iteration. The iterative operation terminates

when the number of iterations reaches a pre-determined threshold Nit. We set

Θ̂
(Nit)

k = Θ̂k as the final parameter set estimation at time k. Based on Θ̂k, the

PDF f̃(xk|yk0 , Θ̂k) = N (µk,Ck) is computed via the Kalman filtering. The PDF

f̃(xk|yk0 , Θ̂k), the parameter set estimation Θ̂k and {Mk−1,M
−1
ũ,k} that are computed

at time k, will be used for the recursive operation at time (k+1). Additionally, based

on the parameter set estimation Θ̂k and the state estimation µk, multiple-step-ahead

prediction of the slowly-varying channel parameter can be achieved.

Next, we describe in details the component of the recursive and iterative parameter

estimation, the Kalman filtering and smoothing, and the multiple-step-ahead predic-

tion.
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3.3.2.1 Recursive and Iterative Parameter Estimation

The parameter estimation can be updated by maximizing Qk(Θ|Θ̂
(i)

k ). Note that

f(xk, yk|xk−1,Θ) = f(yk|xk,Θ)f(xk|xk−1,Θ). Substitute f(yk|xk,Θ) = N (γ0 + xk +

bTuk, σ
2
v) and f(xk|xk−1) = N (aTxk−1, σ

2
w) into the log-likelihood function in (3.15).

Denote ũk := [1,uT
k ]T. Set the partial derivative of Qk(Θ|Θ̂

(i)

k ) with respect to each

unknown parameter to zero. A set of recursive equations can be obtained; see the

detailed derivation in Appendix A,

â
(i+1)
k = âk−1 + M−1

k−1

(
E[xkxk−1]− E[xk−1x

T
k−1]âk−1

)
, (3.16a)

σ̂
2,(i+1)
w,k = σ̂2

w,k−1 +
1− λ
1− λk

{
E
[(
xk − â

(i+1),T
k xk−1

)2
]
− σ̂2

w,k−1

}
, (3.16b)γ̂

(i+1)
0,k

b̂
(i+1)
k

 =

γ̂0,k−1

b̂k−1

+
M−1

ũ,kũk

λ+ ũT
kM−1

ũ,kũk

(
yk − E[xk]− γ̂0,k−1 − b̂T

k−1uk

)
, (3.16c)

σ̂
2,(i+1)
v,k = σ̂2

v,k−1 +
1− λ

1− λk+1

{
E
[
(yk−xk−γ̂(i+1)

0,k −b̂
(i+1),T
k uk)

2
]
−σ̂2

v,k−1

}
, (3.16d)

with two matrices defined as

Mk−1 : = λMk−2 + E[xk−1x
T
k−1], (3.17a)

Mũ,k : = λMũ,k−1 + ũkũ
T
k . (3.17b)
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The expectations in (3.16) and (3.17) are performed with respect to

f̃(xk,xk−1|yk,yk−1
0 , Θ̂

(i)

k ) (c.f. (3.15)).

3.3.2.2 Kalman Filtering and Smoothing

Computation of the expectations in (3.16) and (3.17) requires the marginalization

of the joint PDF f̃(xk,xk−1|yk,yk−1
0 , Θ̂

(i)

k ) with respect to xk and xk−1, respectively.

Denote the marginal PDFs as f̃(xk|yk0 , Θ̂
(i)

k ) = N (µ
(i)
k ,C

(i)
k ) and f̆(xk−1|yk0 , Θ̂

(i)

k ) =

N (µ̆
(i)
k−1, C̆

(i)
k−1). Given the expansion of the joint PDF in (3.14), the marginalization

can be performed through the Kalman filtering and smoothing [60], as detailed next.

Define Â
(i)
k and Ĉ

(i)
w,k as the matrices corresponding to â

(i)
k and σ̂

2,(i)
w,k , respectively.

Based on f̃(xk−1|yk−1
0 , Θ̂k−1) and the system model in (3.7), the mean and the co-

variance matrix of xk in the marginal PDF f̃(xk|yk0 , Θ̂
(i)

k ) can be formulated as

µ
(i)
k =Â

(i)
k µk−1+k

(i)
k (yk−â

(i),T
k µk−1−γ̂

(i)
0,k−b̂

(i),T
k uk), (3.18a)

C
(i)
k = (I− k

(i)
k hT)P

(i)
k , (3.18b)

where the Kalman gain k
(i)
k = P

(i)
k h
(
σ̂

2,(i)
v,k + hTP

(i)
k h
)−1 and the prediction mean

square error (MSE) matrix P
(i)
k = Â

(i)
k Ck−1Â

(i),T
k + Ĉ

(i)
w . We further have

E[xkx
T
k |Θ̂

(i)

k ] = C
(i)
k + µ

(i)
k µ

(i),T
k .
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The marginal PDF f̆(xk−1|yk0 , Θ̂
(i)

k ) can be obtained via the one-step backward

smoothing, with the mean and the covariance matrix formulated as

µ̆
(i)
k−1 = µk−1 + J

(i)
k−1(µ

(i)
k − Â

(i)
k µk−1), (3.19a)

C̆
(i)
k−1 = Ck−1 + J

(i)
k−1(C

(i)
k −P

(i)
k )J

(i),T
k−1 , (3.19b)

where the gain matrix J
(i)
k−1 = Ck−1Â

(i),T
k (P

(i)
k )−1. We further have E[xk−1x

T
k−1|Θ̂

(i)

k ] =

C̆
(i)
k−1 + µ̆

(i)
k−1µ̆

(i),T
k−1 .

Based on the joint PDF f̃(xk,xk−1|yk,yk−1
0 , Θ̂

(i)

k ), the correlation between xk and

xk−1 can be obtained as

E[xkx
T
k−1|Θ̂

(i)

k ] = C
(i)
k J

(i),T
k−1 + µ

(i)
k µ̆

(i),T
k−1 . (3.20)

The expectations E[xk|Θ̂
(i)

k ], E[xkx
T
k−1|Θ̂

(i)

k ], and E[x2
k|Θ̂

(i)

k ] to be used in (3.16) can

be extracted from E[xk|Θ̂
(i)

k ] = µ
(i)
k , E[xkx

T
k−1|Θ̂

(i)

k ], and E[xkx
T
k |Θ̂

(i)

k ], respectively.

3.3.2.3 Multiple-step-ahead Prediction

Based on the parameter set estimation Θ̂k and the state estimation µk (denoted next

also as x̂k), the m-step-ahead prediction of the slowly-varying channel parameter can
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be recursively computed based on the system model in (3.6). Specifically,

x̂k+m = âT
k x̂k+m−1, (3.21a)

α̂k+m = γ̂0,k + x̂k+m + b̂T
kuk+m, (3.21b)

for m = 1, · · · , where uk+m can be obtained from meteorological forecast sources,

e.g., [61].

Remark 2. Although this Chapter assumes periodic channel measurements, the pro-

posed model and the recursive algorithm can be applied to the scenario with non-

periodic channel measurements through replacing the discrete-time state-space model

in (3.7) by a continuous-time state-space model (c.f. [60, Chap. 9]).

Remark 3. The proposed model and the recursive algorithm subsume a linear re-

gression method that models the temporal evolution of the slowly-varying channel

parameter only based on available environmental parameters without introducing the

latent process, namely, the model in (3.5) degrades to yk = γ0 + gk + wk. The model

parameters γ0 and b can be recursively estimated via (3.16c).
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3.3.2.4 Computational Complexity

The computational complexity of the proposed algorithm at each time step is analyzed

in the following. At the outset, we would like to note that in practical systems, the

values of P and Nu are typically very small. In Section 3.7, Nit = 20 and Nu = 2 are

used for the experimental data processing, and the value of P varies from 1 to 4 for

different channel parameters.

• Kalman filtering and smoothing: For (3.18), calculation of the Kalman gain

vector k
(i)
k of length P has (P 2 + 2P ) arithmetic multiplications (AMs), (P 2 +

P + 2) arithmetic additions (AAs) and 1 arithmetic division (AD). Calculation

of the MSE matrix P
(i)
k of size (P × P ) has (2P 3) AMs and (2P 3 + 2P 2) AAs.

Eq. (3.18a) has (P 2+2P+Nu) AMs and (P 2+3P+Nu+4) AAs, and Eq. (3.18b)

has (P 3+P 2) AMs and (P 3+2P 2) AAs. The total computations associated with

(3.18) include (3P 3 +3P 2 +4P +Nu) AMs, (3P 3 +6P 2 +4P +4+Nu) AAs and

1 AD. For (3.19), calculation of the gain matrix J
(i)
k−1 of size (P ×P ) has (2P 3)

AMs and (2P 3) AAs for the matrix multiplication and a complexity of O(P 3)

for the inversion of matrix P
(i)
k . Eq. (3.19a) has (2P 2) AMs and (2P 2+4P ) AAs,

and Eq. (3.19b) has (2P 3) AMs and (2P 3 + 4P 2) AAs. The total computations

associated with (3.19) include (4P 3 + 2P 2) AMs, (4P 3 + 6P 2 + 4P ) AAs and

a (P × P ) matrix inversion with complexity O(P 3). In addition, calculation
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of E[xkx
T
k |Θ̂

(i)

k ] and of E[xk−1x
T
k−1|Θ̂

(i)

k ] each has (P 2) AMs and (2P 2) AAs.

Calculation of the correlation matrix in (3.20) has (P 3+P 2) AMs and (P 3+2P 2)

AAs. Therefore, the total computations for Kalman filtering and smoothing

include (8P 3 + 8P 2 + 4P +Nu) AMs, (8P 3 + 18P 2 + 8P + 6 +Nu) AAs, 1 AD

and the inversion of a (P × P ) matrix with complexity O(P 3).

• Parameter estimation: For (3.16a), calculation of the matrix Mk−1 of size (P ×

P ) in (3.17a) has (P 2) AMs and (2P 2) AAs. Eq. (3.16a) has (2P 2) AMs,

(2P 2 +4P ) AAs and the inversion of Mk−1 with complexity O(P 3). Eq. (3.16b)

has (P 2+3P+1) AMs and (P 2+2P+6) AAs. Eq. (3.16c) involves the calculation

and the inversion of matrix Mũ,k of size (Nu + 1) × (Nu + 1). Note that the

Woodbury matrix identity [60] can be applied for the recursive computation

of M−1
ũ,k based on M−1

ũ,k−1. Therefore, the total computations associated with

(3.16c) include (5N2
u + 13Nu + 9) AMs, (4N2

u + 12Nu + 16) AAs and 2 ADs.

Lastly, Eq. (3.16d) has (Nu + 4) AMs and (Nu + 9) AAs. Therefore, the total

computations to update the parameter estimations include (3P 2 + 3P + 5N2
u +

14Nu + 14) AMs, (3P 2 + 6P + 4N2
u + 13Nu + 31) AAs, 2 ADs and the inversion

of a (P × P ) matrix with complexity O(P 3).

• Iterative operations: The proposed algorithm performs Nit iterations of com-

putations in (3.16) - (3.20). Therefore, the computations at each time step

include Nit(8P
3 + 11P 2 + 7P + 5N2

u + 15Nu+ 14) AMs, Nit(8P
3 + 21P 2 + 14P +

4N2
u +14Nu+37) AAs, (3Nit) ADs and a complexity of O

(
2Nit(P

3)
)
for matrix
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inversion.

3.4 Modeling and Prediction in Seasonal Channels

The UWA channel could exhibit periodic variations, such as the diurnal pattern as

depicted in Fig. 2.4. In this type of channels, the slowly-varying channel parameter

in one cycle could be highly correlated with those in previous cycles. Following the

terminology in time series analysis [49], we refer to such type of channels as seasonal

channels.

The data-driven model in (3.5) applies to seasonal channels. However, different from

non-seasonal channels, the latent process in seasonal channels will be represented

by a multiplicative seasonal AR process (AR(P ) × (Pse)S) [49], whose polynomial

representation in the lag operatorD is a multiplication of the polynomial of an AR(P )

process, (1 −
∑P

p=1 apD
p), and the polynomial of a seasonal AR(Pse) process, (1 −∑Pse

q=1 ξqD
qS), where S � P denotes the seasonal cycle. The latent process in the

time domain can be represented as

x[k] =
P∑
p=1

apx[k − p] +
Pse∑
q=1

ξqx[k − qS]−
P∑
p=1

Pse∑
q=1

apξqx[k − qS − p] + w[k]. (3.22)
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The proposed recursive algorithm for non-seasonal channels could be applied to sea-

sonal channels by defining a long state vector [xk, xk−1, · · · , xk−PseS−P+1]T of length

(P + PseS). This, however, will incur very large computational and storage cost. In

this section, we will exploit the structure of (3.22), and develop a low-cost recursive

algorithm for seasonal channels. To make the exposition easier, we focus on a simple

scenario with Pse = 1, namely,

x[k]=
P∑
p=1

apx[k − p]+ξx[k − S]−ξ
P∑
p=1

apx[k − S − p]+w[k], (3.23)

while the developed algorithm can be extended to the scenario Pse > 1 with slight

modification.

Based on (3.23), we introduce an auxiliary random variable,

zk := xk − ξxk−S, (3.24)

which according to (3.23), forms an AR process,

zk =
P∑
p=1

apzk−p + wk. (3.25)

Define zk := [zk, · · · , zk−P+1]T. We have the state-space representation of (3.25),

zk = Azk−1 + wk, (3.26)
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where A and wk are defined as in (3.7). The latent process can be reformulated as

xk = aTzk−1 + ξxk−S + wk. (3.27)

Note that according to the principle of orthogonality [60], xk−S is independent of zk

(c.f. (3.24)) and correspondingly (aTzk−1) (c.f. (3.25)).

3.4.1 Approximation for Recursive Operation

We redefine the unknown parameter set as Θ := {γ0, a, ξ,b, σ
2
w, σ

2
v}. Based on (3.27),

the log-likelihood function [ln f(yk0 ,x−1,x
k
0|Θ)] can be decomposed as

Lk(Θ) =
k∑

k′=0

ln f(xk′ , yk′ |zk′−1, xk′−S,Θ) + ln f(x−1, · · · , x−S|Θ). (3.28)

Similar to non-seasonal channels, for the development of a recursive algorithm, an

approximation to E
[
Lk(Θ)|Θ̂

]
can be made through several steps. Particularly about
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the joint PDF f(xk, zk−1, xk−S|yk0 , Θ̂), it can be decomposed and approximated as

f(xk,zk−1, xk−S|yk,yk−1
0 , Θ̂) =

1

c1

f(xk, zk−1, xk−S, yk|yk−1
0 , Θ̂) (3.29a)

=
1

c1

f(yk|xk, Θ̂)f(xk|zk−1, xk−S, Θ̂)f(zk−1, xk−S|yk−1
0 , Θ̂) (3.29b)

≈ 1

c′1
f(yk|xk, Θ̂)f(xk|zk−1, xk−S, Θ̂)f(zk−1|yk−1

0 , Θ̂)f(xk−S|yk−1
0 , Θ̂) (3.29c)

=
1

c′1
f(yk|xk, Θ̂)f(zk|zk−1, Θ̂)f(zk−1|yk−1

0 , Θ̂)f(xk−S|yk−1
0 , Θ̂)δ(zk, xk − ξxk−S)

(3.29d)

=
1

c′1
f(yk|xk, Θ̂)f(zk|zk−1, Θ̂)f(zk−1|yk−1

0 , Θ̂)f(xk−S|yk−1
0 , Θ̂)

× δ(zk, xk − ξxk−S)δ(zk, zk−1), (3.29e)

where c1 and c′1 are normalization constants, δ(zk, xk − ξxk−S) is introduced to en-

sure the equity in (3.24), and the approximation from (3.29b) to (3.29c) is made

by assuming that f(zk−1,xk−S|yk−1
0 ,Θ̂)≈f(zk−1|yk−1

0 ,Θ̂)f(xk−S|yk−1
0 ,Θ̂). We further

approximate the above PDF by

f̃(xk, zk−1, xk−S|yk0 , Θ̂) :=
1

c
′′
1

f(yk|xk, Θ̂)f(zk|zk−1, Θ̂)

× f̃(zk−1|yk−1
0 , Θ̂k−1)f̃(xk−S|yk−S0 , Θ̂k−S)δ(zk, xk − ξxk−S)δ(zk, zk−1), (3.30)

where c′′1 is a normalization constant, and the approximation is made through re-

placing f(zk−1|yk−1
0 , Θ̂) and f(xk−S|yk−1

0 , Θ̂) in (3.29e) by f̃(zk−1|yk−1
0 , Θ̂k−1) and

f̃(xk−S|yk−S0 , Θ̂k−S), respectively, with f̃(zk′|yk
′

0 , Θ̂k′) and f̃(xk′|yk
′

0 , Θ̂k′) defined as
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the marginalization of f̃(xk′ , zk′−1, xk′−S|yk
′

0 , Θ̂) with respect to zk′ and xk′ , ∀k′.

Similar to the non-seasonal channel, the expectation E[Lk(Θ)|Θ̂] can be approximated

by Qse,k(Θ|Θ̂) which is recursively defined as

Qse,k(Θ|Θ̂) = λQse,k−1(Θ|Θ̂k−1)

+

∫
[ln f(xk, yk|zk−1, xk−S,Θ)]f̃(xk, zk−1, xk−S|yk0 , Θ̂)dxkdzk−1dxk−S. (3.31)

3.4.2 A Low-complexity Recursive Algorithm

The proposed algorithm for seasonal channels operates recursively in a similar fash-

ion as that for non-seasonal channels. Denote f̃(xk−S|yk−S0 , Θ̂k−S) = N (µk−S, σ
2
k−S)

and f̃(zk−1|yk−1
0 , Θ̂k−1) = N (µz,k−1,Cz,k−1). At time k, the algorithm takes

f̃(zk−1|yk−1
0 , Θ̂k−1), f̃(xk−S|yk−S0 , Θ̂k−S), the parameter set estimation Θ̂k−1, aux-

iliary quantities (M̃a,k−2, m̃ξ,k−2,M
−1
ũ,k−1) (to be defined shortly; computed at time

(k − 1)), the measurement yk and the environmental parameter vector uk as in-

put, and sets Θ̂
(0)

k = Θ̂k−1. The parameter set estimation and the Bayesian fil-

tering and smoothing can be performed iteratively, until the number of iterations

reaches a pre-determined threshold Nit. The final parameter set estimation at time

k is set as Θ̂k = Θ̂
(Nit)

k . Based on Θ̂k, the PDFs f̃(zk|yk0 , Θ̂k) = N (µz,k,Cz,k)

and f̃(xk|yk0 , Θ̂k) = N (µk, σ
2
k) are computed via the Bayesian filtering. The PDF

74



f̃(zk|yk0 , Θ̂k), Θ̂k and (M̃a,k−1, m̃ξ,k−1,M
−1
ũ,k) that are computed at time k, will be

used for the recursive operation at time (k + 1). The PDF f̃(xk|yk0 , Θ̂k) will be used

for the recursive operation at time (k+ S). Additionally, based on the parameter set

estimation Θ̂k and the state estimation µz,k and {µk′ ; k′ ≤ k}, multiple-step-ahead

prediction of the slowly-varying channel parameter can be achieved.

We next briefly describe the recursive and iterative parameter estimation and the

multiple-step-ahead prediction. A detailed description of the Bayesian filtering and

smoothing is presented in Section 3.4.3.

3.4.2.1 Recursive and Iterative Parameter Estimation

At time k, given the parameter set estimation in the ith iteration, Θ̂
(i)

k , and following

the same procedure as in Section 3.3.2.1, the parameter set estimation can be updated

through maximizing Qse,k(Θ|Θ̂
(i)

k ). Specifically, the estimations of {γ0,bk, σ
2
v} can be

updated according to the same equations as in (3.16). The estimations of {a, ξ, σ2
w}

can be updated as

â
(i+1)
k = âk−1 + M̃−1

a,k−1

{
E [zkzk−1]− E

[
zk−1z

T
k−1

]
âk−1

}
, (3.32a)

ξ̂
(i+1)
k = ξ̂k−1+m̃−1

ξ,k−1

{
E
[
(xk−â

(i+1),T
k zk−1)xk−S

]
−E

[
x2
k−S
]
ξ̂k−1

}
, (3.32b)

σ̂
2,(i+1)
w,k = σ̂2

w,k−1 +
1− λ
1− λk

{
E
[(
xk−ξ̂(i+1)

k xk−S−â
(i+1),T
k zk−1

)2
]
−σ̂2

w,k−1

}
, (3.32c)
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where M̃a,k−1 and m̃ξ,k−1 are defined as

M̃a,k−1 := λM̃a,k−2 + E[zk−1z
T
k−1], (3.33a)

m̃ξ,k−1 := λm̃ξ,k−2 + E[x2
k−S]. (3.33b)

The expectations are performed with respect to f̃(xk, zk−1,

xk−S|yk0 , Θ̂
(i)

k ).

3.4.2.2 Multiple-step-ahead Prediction

Based on the parameter set estimation Θ̂k and the state estimation µz,k and

{µk′ ; k′ ≤ k} (denoted next also as ẑk and {x̂k′ ; k′ ≤ k}, respectively), the m-step-

ahead prediction of the latent process and the slowly-varying channel parameter can

be obtained recursively as

ẑk+m = âT
k ẑk+m−1, (3.34a)

x̂k+m = ẑk+m + ξ̂kx̂k+m−S, (3.34b)

α̂k+m = γ̂0,k + x̂k+m + b̂T
kuk+m, (3.34c)

for m = 1, · · · , where uk+m can be obtained from meteorological forecast sources,

e.g., [61].
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3.4.3 Bayesian Filtering and Smoothing

To find the expectations in (3.32) and (3.33), we compute the marginalization of

f̃(xk, zk−1, xk−S|yk0 , Θ̂
(i)

k ) with respect to xk, zk, zk−1, and xk−S, respectively. Denote

the marginal PDFs as

f̃(xk|yk0 , Θ̂
(i)

k ) = N (µ
(i)
k , σ

2,(i)
k ),

f̃(zk|yk0 , Θ̂
(i)

k ) = N (µ
(i)
z,k,C

(i)
z,k),

f̆(zk−1|yk0 , Θ̂
(i)

k ) = N (µ̆
(i)
z,k−1, C̆

(i)
z,k−1),

f̆(xk−S|yk0 , Θ̂
(i)

k ) = N (µ̆
(i)
k−S, σ̆

2,(i)
k−S).

Based on f̃(zk−1|yk−1
0 , Θ̂k−1), f̃(xk−S|yk−S0 , Θ̂k−S), and the model in (3.27), xk can

be predicted and with the prediction MSE,

µ
(i)
k|k−1 = â

(i),T
k µz,k−1 + ξ̂

(i)
k µk−S,

σ
2,(i)
k|k−1 = â

(i),T
k Cz,k−1â

(i)
k + ξ̂

(i),2
k σ2

k−S + σ
2,(i)
w,k .

Based on the measurement yk and the measurement model in (3.6b), the mean and
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the variance of xk in the marginal PDF f̃(xk|yk0 , Θ̂
(i)

k ) can be formulated as

µ
(i)
k = µ

(i)
k|k−1 +

σ
2,(i)
k|k−1

σ
2,(i)
v,k + σ

2,(i)
k|k−1

× (yk − µ(i)
k|k−1 − γ̂

(i)
0,k − b̂

(i),T
k uk), (3.35a)

σ
2,(i)
k =

σ
2,(i)
v,k σ

2,(i)
k|k−1

σ
2,(i)
v,k + σ

2,(i)
k|k−1

. (3.35b)

We further have E[x2
k|Θ̂

(i)

k ] = σ
2,(i)
k + (µ

(i)
k )2.

Similar operation can be applied to zk. Define Â
(i)
k and Ĉ

(i)
w,k as the matrix correspond-

ing to â
(i)
k and σ̂2,(i)

w,k , respectively. Based on f̃(zk−1|yk−1
0 , Θ̂k−1), zk can be predicted

as Â
(i)
k µz,k−1, with the prediction MSE matrix P

(i)
z,k = Â

(i)
k Cz,k−1Â

(i),T
k + Ĉ

(i)
w,k. Note

that the measurement yk can be represented as

yk = γ0 + hTzk + ξxk−S + bTuk + vk.

Define the gain vector k
(i)
z,k = P

(i)
z,kh

(
ξ̂

(i),2
k σ2

k−S + σ̂
(i)
k,v + hTP

(i)
z,kh

)−1. The mean and

the covariance matrix of zk in the marginal PDF f̃(zk|yk0 , Θ̂
(i)

k ) can be formulated as

µ
(i)
z,k = Â

(i)
k µz,k−1+k

(i)
z,k

×
(
yk−â

(i),T
k µz,k−1−ξ̂

(i)
k µk−S−γ̂

(i)
0,k−b̂

(i),T
k uk

)
, (3.36a)

C
(i)
z,k = (I− k

(i)
z,kh

T)P
(i)
z,k. (3.36b)
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We further have E[zkz
T
k |Θ̂

(i)

k ] = C
(i)
z,k + µ

(i)
z,kµ

(i),T
z,k .

Furthermore, the marginal PDF f̆(zk−1|yk0 , Θ̂
(i)

k ) can be obtained via the one-step

backward smoothing. Denote the gain matrix J
(i)
z,k−1 = Cz,k−1Â

(i),T
k (P

(i)
z,k)
−1. The

mean and the covariance matrix of zk−1 in the marginal PDF can be formulated as

µ̆
(i)
z,k−1 = µz,k−1 + J

(i)
z,k−1(µ

(i)
z,k − Â

(i)
k µz,k−1), (3.37a)

C̆
(i)
z,k−1 = Cz,k−1 + J

(i)
z,k−1(C

(i)
z,k −P

(i)
z,k)J

(i),T
z,k−1. (3.37b)

We further have E[zk−1z
T
k−1|Θ̂

(i)

k ] = C̆
(i)
z,k−1 + µ̆

(i)
z,k−1µ̆

(i),T
z,k−1. Based on the joint PDF

f̃(xk, zk−1, xk−S|yk0 , Θ̂
(i)

k ), we also have E[zkz
T
k−1|Θ̂

(i)

k ] = C
(i)
z,kJ

(i),T
z,k−1 + µ

(i)
z,kµ̆

(i),T
z,k−1.

Given f̃(xk−S|yk−S0 , Θ̂k−S), f̃(zk−1|yk−1
0 , Θ̂k−1), and the measurement representation,

yk = γ0 + aTzk−1 + ξxk−S + bTuk + wk + vk,

the mean and the variance in the marginalized PDF f̆(xk−S|yk0 , Θ̂
(i)

k ), can be formu-

lated as

µ̆
(i)
k−S = µk−S +

ξ̂
(i)
k σ

2
k−S
(
yk−â

(i),T
k µz,k−1−ξ̂

(i)
k µk−S−γ̂

(i)
0,k−b̂

(i),T
k uk

)
â

(i),T
k Cz,k−1â

(i)
k +σ

2,(i)
w,k +σ

2,(i)
v,k +ξ̂

2,(i)
k σ2

k−S

, (3.38a)

σ̆
2,(i)
k−S =

(â
(i),T
k Cz,k−1â

(i)
k + σ

2,(i)
w,k + σ

2,(i)
v,k )σ2

k−S

â
(i),T
k Cz,k−1â

(i)
k + σ

2,(i)
w,k + σ

2,(i)
v,k + ξ̂

2,(i)
k σ2

k−S

. (3.38b)
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We further have E[x2
k−S|Θ̂

(i)

k ] = σ̆
2,(i)
k−S + (µ̆

(i)
k−S)2.

The expectations to be used in (3.32) and (3.33) can be directly extracted from

the above results. In particular, given (3.24), the expectation E[xkxk−S|Θ̂
(i)

k ] can

be computed based on E[z2
k|Θ̂

(i)

k ], E[x2
k|Θ̂

(i)

k ] and E[x2
k−S|Θ̂

(i)

k ]. Note that xk−S and

(aTzk−1) are independent. We have E[xk−S(a
(i),T
k zk−1)|Θ̂

(i)

k ] = µ̆
(i)
k−S(a

(i),T
k µ̆

(i)
z,k−1).

3.5 Model Order Selection

The non-seasonal latent process in (3.4) can be regarded as a degraded seasonal latent

process in (3.22) with a seasonal order of zero. The orders (P, Pse) and the index set

I of Nu important elements within E [k],∀k for the process {gk}, can be determined

via the the minimum description length (MDL) criterion [62], as described in the

following.

We stack the channel measurements {y[k]} into a long vector y of length K. Stack

the coefficients of the seasonal AR(Pse) process into a vector ξ := [ξ1, · · · , ξPse ]
T

(c.f. (3.22)). Define a long vector θ :=
(
[1 aT]⊗ [1 ξT]

)T of length (P + 1)× (Pse + 1)

and with ⊗ denoting the Kronecker product.
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Figure 3.3: Non-seasonal channels: Normalized mean square estimation
error of the model parameters and the latent process.

Based on (3.5) and (3.22), we have

y = H(γ0,b)θ + n, (3.39)

where H(γ0,b) is a matrix containing unknown parameters, and its kth row is formed

by γ0, {y[k′]; k′ < k} according to (P, Pse), and by the elements in {E [k′]; k′ ≤ k} that

are indexed by I and weighed by b, and n is a noise vector, with n[k] ∼ N (0, σ2
n).
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Figure 3.4: Non-seasonal channels: Prediction performance with the chan-
nel generation knowledge. Clairvoyant: the Kalman filter performance with
perfect knowledge of model parameters.

The optimal values of (P, Pse) and the index set I can be determined according to

the MDL criterion [62],

min
(P,Pse,I)

K

2
ln σ̂2

n +
1

2
(P + Pse +Nu) lnK, (3.40)

where σ̂2
n = 1

K
yTP⊥(γ̂0, b̂)y is the ML estimation of the noise variance, with

P⊥(γ̂0, b̂) := I − H(γ̂0, b̂)(HT(γ̂0, b̂)H(γ̂0, b̂))−1HT(γ̂0, b̂), and (P + Pse + Nu) is

the number of model parameters. The ML estimation γ̂0 and b̂ can be found based

on (3.39) by iterative computational methods. In real applications, consider that the

large-scale phenomena of water environments change very slowly. The model order
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selection can be carried out once in a while by a central processing station, after

it collects the measured slowly-varying channel parameters from underwater nodes.

Given small values of (P, Pse) and limited types of environmental parameters, the

optimization problem in (3.40) can be solved via exhaustive search.

3.6 Simulation Results

The proposed recursive algorithms are evaluated via Monte Carlo simulations. In

each simulation setting, we consider 400 Monte Carlo runs, and each run contains a

time series of a slowly-varying channel parameter of 3000 samples. The time series

is generated according to the model specified in (3.6). In each Monte Carlo run, the

time-invariant component γ0 is randomly selected uniformly from [3, 30]. The latent

processes in non-seasonal channels are generated as AR(P ) processes according to

(3.4), while the latent processes in seasonal channels are generated as multiplica-

tive seasonal AR processes (AR(P ) × (1)96) according to (3.23), with the seasonal

coefficient ξ randomly selected uniformly from [−1, 1]. Two types of environmental

parameters are considered. The time sequences of environmental parameters are gen-

erated independently as AR(P ) processes. The AR coefficients of each process are

obtained based on a minimum-phase polynomial whose roots are randomly chosen

within the unit circle in the complex plane. The process {gk} is generated as a lin-

ear combination of the time sequences of the two types of environmental parameters
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Figure 3.5: Non-seasonal channels: Prediction performance without the
channel generation knowledge. P = 2.

φi[k],

g[k] =
L=2∑
l=1

blφl[k]. (3.41)

The combinational coefficients in b = [b1, b2]T are randomly selected according to a

uniform distribution over [0.2, 1] × ζ, where ζ is a scalar for controlling the energy

ratio between the process {gk} and the latent process {xk}. Specifically, we define

the energy ratio

η :=

∑K
k=1 x

2
k∑K

k=1(x2
k + g2

k)
, (3.42)

to control the contribution of the latent process {xk} and the contribution of the

process {gk} in the generated time series {αk}, with K = 3000. When η = 1, the

sequence {αk} only consists of γ0 and the latent process. When η = 0, the sequence

{αk} only consists of γ0 and the process {gk}. The value of ζ can be computed based

on a pre-selected value of η. The energy ratio between the summed process {xk + gk}

and the measurement noise is set to a moderate value of 8 dB.

The normalized mean square error (NMSE) is taken as the performance metric, which
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Figure 3.6: Seasonal channels: Normalized mean square estimation error
of the model parameters and the latent process.

is computed after the convergence of the model parameter estimation. Specifically,

for vector a, the estimation NMSE is computed as

1

N

K∑
k=k0

‖a− âk‖2
2

‖a‖2
2

, (3.43)

where âk is the estimation at time k, k0 is the time index when the estimation

converges, N := (K − k0 + 1), and ‖ · ‖2 denotes the `2 norm. The estimation NMSE

of other model parameters can be similarly computed. The estimation NMSE of the

latent process is computed as

1
N

∑K
k=k0

(xk − x̂k)2

1
N

∑K
k=k0

x2
k

. (3.44)

The NMSE of the m-step-ahead prediction of the slowly-varying channel parameter

is computed as
1

N−m
∑K−m

k=k0
(αk+m − α̂k+m)2

1
N

∑K
k=k0

(αk − ᾱ)2
, (3.45)
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with ᾱ being the average of the sequence {αk}. In the proposed algorithm for non-

seasonal channels and for seasonal channels, the forgetting factor is set as λ = 0.99.

The proposed algorithms in all the simulation settings converge within about k0 = 800

time steps.

3.6.1 Non-seasonal Channels

The recursive algorithm for non-seasonal channels will be evaluated in two scenarios.

The first scenario assumes perfect prior knowledge of the latent process order P and

has access to both types of environmental parameters, while the second scenario does

not assume the prior knowledge of the latent process order and may not have access

to all the environmental parameters. The second scenario is closer to real world

applications.

3.6.1.1 Modeling and Prediction with Channel Generation Knowledge

The proposed recursive algorithm is evaluated using the sequences of {αk} that are

generated according to different latent process orders and different values of the energy

ratio η. The estimation NMSEs of a, b, γ0 and the latent process are depicted in

Fig. 3.3. One can see that as the energy ratio η increases, the estimation NMSE of

a and of the latent process decreases, while the estimation NMSE of b increases. In
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addition, as the latent process order P increases, the estimation NMSE of a increases

drastically, whereas the estimation NMSEs of b, γ0 and the latent process are less

sensitive to the order change. The vector b and the time-invariant component γ0 can

be accurately estimated with the NMSE less than 10−2 and 10−4, respectively.

Corresponding to the latent process order P = 2 and different values of the energy

ratio η, Fig. 3.4 depicts the m-step-ahead prediction performance of the proposed

algorithm. As a performance upper bound, the m-step-ahead prediction NMSE of

the Kalman filter with perfect knowledge of the model parameters is also plotted.

One can observe that the proposed algorithm achieves a performance very close to

the performance upper bound. Additionally, the prediction accuracy improves as the

contribution of the latent process decreases (i.e., as η decreases). In other words, the

channel can be more accurately modeled and predicted when it has less contribution

from unknown physical mechanisms or unavailable environmental parameters.

3.6.1.2 Modeling and Prediction without Channel Generation Knowledge

We generate the sequences of {αk} according to the latent process order P = 2 and

different values of the energy ratio η. Without the knowledge of P = 2 and potentially

in lack of one or both types of environment parameters, the m-step-ahead prediction

performance of the proposed algorithm is shown in Fig. 3.5, where different orders of

the latent process are examined for channel modeling and prediction. One can see
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Figure 3.7: Seasonal channels: Prediction performance with the channel
generation knowledge. Clairvoyant: the Kalman filter performance with per-
fect knowledge of model parameters.
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Figure 3.8: Seasonal channels: Prediction performance without the channel
generation knowledge. P = 2.

that the prediction performance improves when more environmental parameters are

incorporated and when the contribution of the latent process decreases. Furthermore,

for each energy ratio, performance improvement can be observed when the order of

the latent process increases from 1 to the true value of 2, while the improvement
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is less obvious for further increase. Additionally, when the energy ratio equals to

one, namely, the sequence {αk} only consists of the time-invariant component γ0 and

the latent process, incorporation of the environmental parameters into the channel

modeling does not lead to obvious performance degradation.

3.6.2 Seasonal Channels

Following the seasonality in the KW-AUG14 experiment, we consider a seasonal cycle

of S = 96. We next evaluate the proposed algorithm for seasonal channels with and

without the channel generation knowledge.

3.6.2.1 Modeling and Prediction with Channel Generation Knowledge

For the sequences of {αk} with different values of P and different values of η, the

estimation NMSEs of a, ξ and the latent process are depicted in Fig. 3.6. The

estimation NMSEs of b, γ0 are almost identical to those in Fig. 3.3 for non-seasonal

channels. Comparing the NMSEs in Figs. 3.3 and 3.6, one can see that the estimation

NMSE of a in seasonal channels is larger than that in non-seasonal channels, primarily

because of the nonlinear relationship between a and ξ. Furthermore, the estimation

NMSE of the latent process in seasonal channels is less than that in non-seasonal

channels, thanks to the seasonal correlation of the latent process.
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Figure 3.9: SPACE08: Autocorrelation of slowly-varying channel parame-
ters and their correlation with environmental measurements.

Corresponding to P = 2 and different values of the energy ratio η, Fig. 3.7 shows the

m-step-ahead prediction performance of the proposed algorithm. As a performance

upper bound, the m-step-ahead prediction NMSE of the Kalman filter with perfect

knowledge of the model parameters is also plotted. One can obtain similar observa-

tions as those in non-seasonal channels. However, compared to the simulation results

in Fig. 3.4, less NMSE can be achieved in the seasonal channel, benefiting from the

seasonal correlation of the latent process.
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3.6.2.2 Modeling and Prediction without Channel Generation Knowledge

We generate the sequences of {αk} in seasonal channels with P = 2 and different

values of the energy ratio η. Without the knowledge of P = 2 and potentially in the

lack of one or both types of environmental parameters, the m-step-ahead prediction

performance of the proposed algorithm is shown in Fig. 3.8, where different values of

P are examined. Compared to Fig. 3.5, similar observations can be obtained, while

as the energy ratio η increases, higher prediction accuracy can be achieved in the

seasonal channel, benefiting from the seasonal correlation of the latent process.

3.7 Experimental Data Processing

The proposed models and algorithms are evaluated using measurements from two

shallow-water field experiments: one is the Surface Processes and Acoustic Commu-

nication Experiment (SPACE08) conducted from Oct. 14 to Nov. 1, 2008 near the

coast of Martha’s Vineyard, MA, and the other was conducted in the Keweenaw Wa-

terway, MI in Aug. 2014, abbreviated as KW-AUG14. In SPACE08, a waveform of

1 minute and within the frequency band [8, 18] kHz was transmitted every 2 hours

at a fixed power level. The waveform consists of 60 ZP OFDM-modulated blocks

with parameters specified in Table 2.1. In KW-AUG14, a waveform of 8.83 seconds
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and within the frequency band [14, 20] kHz was transmitted every 15 minutes at a

fixed power level. The waveform consists of 20 ZP OFDM-modulated blocks with

parameters specified in Table 2.1. The CIR is estimated per OFDM block based on

measurements at pilot subcarriers using a sparse channel estimator which exploits

the multipath sparsity in the delay and the Doppler domain [25]. Four types of

slowly-varying channel parameters derived from the estimated CIRs are examined in

this section, including the average channel SNR, the Nakagami-m fading parameter,

the average RMS delay spread, and the average RMS Doppler spread (c.f. Section

2.2.1). While many environmental parameters have impact on UWA channels, the

wind speed and temperature are chosen in this Chapter to evaluate the proposed

algorithms based on their availability and low acquisition cost. In addition, noticing

that the water condition in KW-AUG14 was calm with negligible Doppler effect, we

skip the analysis of the average RMS Doppler spread in this experiment.

For performance comparison, we introduce a recursive linear regression (LR) method

where the time sequence of a slowly-varying channel parameter is modeled as the

summation of a time-invariant component γ0 and a process {gk} described by envi-

ronmental measurements defined as in (3.41); see Remark 3 in Section 3.3.2.
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Figure 3.10: SPACE08: Prediction performance of the proposed algorithm
and the recursive LR in non-seasonal channels.

3.7.1 SPACE08 with Non-seasonal Channel Variations

In SPACE08, we consider the signals received by a 12-element hydrophone array,

which was vertically mounted on a fixed tripod 200 meters away from the source.

The adjacent elements have a 12 cm spacing and the top element is 3.25 meters

above the sea floor. The water depth is about 15 meters. The source transducer was
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Table 3.1
The estimated model parameters.

Slowly-varying channel parameter â ξ̂ b̂ ([wind speed, temperature]) γ̂0 η
SPACE08: Channel SNR 0.967 - [-1.189, -0.206] 12.503 0.828
SPACE08: m fading parameter [0.153,0.197,0.251,0.189] - [-0.0004, 0.0005] 7.99 0.989
SPACE08: RMS delay spread 0.759 - [-0.411, -0.039] 2.204 0.235
SPACE08: RMS Doppler spread [0.267,0.130] - [0.010, 0.013] 0.748 0.952
KW-AUG14: Channel SNR 0.908 0.068 [-0.098, -0.145] 23.486 0.513
KW-AUG14: m fading parameter [0.593,0.148,0.145] -0.013 [-0.193, -0.142] 5.96 0.391
KW-AUG14: RMS delay spread [0.259,0.224] 0.061 [0.006, 0.006] 1.296 0.976

mounted 4 meters above the bottom. The average channel SNR scaled by the trans-

mission power, the Nakagami-m fading parameter, the average RMS delay spread,

and the average RMS Doppler spread within each transmission and over the 12 hy-

drophones are shown in Fig. 2.6, along with the mean wind speed and the mean air

temperature measurements measured respectively by a 3-axis sonic anemometer and

a VaiPTU located at 12.5 meters above the mean sea level on the meteorological mast

of the Martha’s Vineyard Coastal Observatory (MVCO) [63]. The autocorrelation of

the slowly-varying channel parameters and their correlation with environmental mea-

surements are depicted in Fig. 3.9. One can see that the average channel SNR and the

average RMS delay spread are negatively correlated with the wind speed and their

correlation with the temperature are not obvious. The Nakagami-m fading parameter

exhibits high inherent temporal correlation, and slight positive correlation with the

temperature and slight negative correlation with the wind speed. The average RMS

Doppler spread shows slight positive correlation with the temperature and negligible

correlation with the wind speed.

In the proposed algorithm, we set the forgetting factor λ = 0.96 for the average
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Figure 3.11: KW-AUG14: Autocorrelation of slowly-varying channel pa-
rameters and their correlation with environmental measurements.

channel SNR sequence, λ = 0.92 for the Nakagami-m parameter sequence, and λ = 1

for the sequences of other slowly-varying channel parameters. According to the MDL

criterion in (3.40), the optimal order of the latent process is chosen as P = 1 for the

sequences of the average channel SNR and the average RMS delay spread, P = 2

for the sequence of the average RMS Doppler spread, and P = 4 for the sequence

of the Nakagami-m fading parameter. In addition, the sequences of the wind speed

and the temperature are normalized individually to have a unit power, and a linear

combination of the two types of environmental parameters will be used for modeling

the process {gk} (c.f. (3.2)). With the incorporation of both types of environmental

measurements into the modeling, the model parameters estimated by the proposed

algorithm are listed in Table 3.1. The estimated coefficients in b̂ indicate the amount

of contribution from each type of environmental parameters, and the value of η reveals

the energy ratio between the estimated latent process {x̂k} and the summed process

{x̂k + ĝk}.
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Figure 3.12: KW-AUG14: Prediction performance of several algorithms in
seasonal channels.

The prediction performance of the proposed algorithm and the recursive LR are shown

in Fig. 3.10. Specifically, the proposed algorithm with the incorporation of both types

of environmental measurements achieves the best performance for all the four types of

slowly-varying channel parameters. For the average channel SNR and the Nakagami-

m fading parameter, the proposed algorithm outperforms considerably the recursive

LR by introducing the latent process to model the temporal variation caused by un-

known physical mechanisms. About the average RMS delay spread, thanks to its

high correlation with the wind speed, the recursive LR achieves a good performance

and outperforms the proposed algorithm without the incorporation of environmental

measurements. About the average RMS Doppler spread, due to its fast decaying au-

tocorrelation and limited correlation with environmental measurements, its prediction

performance is not as good as the other three types of channel parameters.

96



3.7.2 KW-AUG14 with Seasonal Channel Variations

In KW-AUG14, the transmission waveform was received by an acoustic modem lo-

cated 312 meters away from the source. The acoustic modem has 4 hydrophones

which are fixed at the vertexes of a horizontal square with 7 cm side length. The

water depth of the experimental area varies from 3 to 6 meters. The average chan-

nel SNR scaled by the transmission power, the Nakagami-m fading parameter, and

the average RMS delay spread within each transmission and over 4 hydrophones are

depicted in Fig. 2.4, along with the wind speed and the temperature measurements

obtained from the Weather Underground [61]. The autocorrelation of those slowly-

varying channel parameters and their correlation with environmental measurements

are shown in Fig. 3.11. It can be seen that both the average channel SNR and

the Nakagami-m fading parameter have high negative correlation with both the wind

speed and the temperature, while the average RMS delay spread exhibits positive cor-

relation with both types of environmental measurements. In addition, the sequences

of all the three types of slowly-varying channel parameters exhibit a seasonal cycle of

96 (24 hours).

In the proposed algorithm, we set the forgetting factor λ = 1 for all the three types

of slowly-varying channel parameters. According to the MDL criterion in (3.40), the

optimal orders of the latent process are chosen as P = 1 and Pse = 1 for the average
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channel SNR and the Nakagami-m fading parameter, and P = 2 and Pse = 1 for the

average RMS delay spread. In addition, the sequences of the wind speed and the tem-

perature are normalized individually to have a unit power, and a linear combination of

the two types of environmental parameters will be used for modeling the process {gk}

(c.f. (3.2)). With the incorporation of both types of environmental measurements

into the modeling, the estimated model parameters are listed in Table 3.1.

The prediction performance of the average channel SNR, the Nakagami-m fading

parameter, and the average RMS delay spread are shown in Fig. 3.12. For compar-

ison, the algorithm proposed for non-seasonal channels is also evaluated, where the

latent process is modeled as an AR(P ) process without considering the seasonality.

It can be observed that the proposed algorithm for seasonal channels achieves the

best performance when both types of environmental measurements are incorporated.

Additionally, as the wind speed and the temperature have similar cross-correlation

with the sequences of the three slowly-varying channel parameters (c.f. Fig. 3.11),

similar performances are obtained when either type of the environmental measure-

ments is incorporated into the modeling. Furthermore, compared to the model and

the algorithm proposed for non-seasonal channels, the proposed model and algorithm

for seasonal channels achieve superior performance by explicitly modeling the channel

seasonality and correspondingly exploiting the seasonality for prediction.
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3.8 Summary

This Chapter studied the online modeling and prediction of slowly-varying locally-

averaged channel parameters over a long term, by exploiting their inherent temporal

correlation and correlation with environmental conditions. From a data-driven per-

spective, the temporal evolution of a slowly-varying channel parameter of interest

was modeled as the summation of a time-invariant component, a process that can

be explicitly represented by available and relevant environmental parameters, and a

Markov latent process that describes the contribution from unknown or unmeasur-

able physical mechanisms. A recursive algorithm was developed to estimate the un-

known model parameters based on sequentially collected channel measurements and

environmental parameters during real-time system operations. The updated model

allows multiple-step-ahead prediction of the slowly-varying channel parameter, which

could then guide higher-level proactive adaptation of communication strategies to the

channel dynamics. The proposed model and the recursive algorithm were extended

to seasonal channels by introducing a multiplicative seasonal AR process to model

the channel seasonal correlation. Simulations and data sets from two shallow-water

experiments were used to validate the effectiveness of the proposed models and al-

gorithms. The experimental data processing revealed that the average channel SNR,

the Nakagami-m fading parameter, and the average RMS delay spread can be rea-

sonably well predicted. In addition, superior modeling and prediction performance
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can be achieved by exploiting the seasonal correlation in seasonal channels. With the

predicted short-term channel quality, the algorithm can be applied in applications of

transmission planning. Readers are referred to [64] for details of an application of

this algorithm in a reinforcement learning-based adaptive point-to-point transmission

scheduling scheme.
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Chapter 4

Distributed AUV Tracking and Sound

Speed Estimation in Mobile Acoustic

Networks with Sound Stratification1

4.1 Introduction

Autonomous underwater vehicles (AUVs) have been extensively used for ocean and

inland lake exploration, oil and gas drilling, and environment monitoring [65], particu-

larly in deep sea and ice-covered regions. Due to the large attenuation of radio signals

1The work in this chapter has been submitted to "IEEE Open Journal of the Communication Society"
©2019 IEEE.
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in water, acoustics are typically used for underwater wireless information transfer and

AUV navigation control. The water medium can be inhomogeneous and the sound

speed varies depending on environmental parameters, e.g., the temperature, pressure

and salinity, particularly in deep water and under-ice environments. Figure 2.12 il-

lustrates obvious spatial variation of the sound speed in the Lake Superior [2]. The

sound stratification effect causes refraction of acoustic waves, leading to non-straight

line sound propagation and the convergence of acoustic energy in some regions while

shadowing in other regions.

The knowledge of sound speed in the area of interest is critical for AUVs to make

informative navigational decisions and choose appropriate acoustic communication

strategies. In this Chapter, a distributed algorithm is developed for joint sound speed

estimation and AUV tracking, based on acoustic measurements collected by AUVs

as they maneuver underwater2. The acoustic measurements used in this Chapter are

the time-of-flight (TOF) of acoustic signals between two AUVs. Given the impact

of varying sound speed on the acoustic propagation, the sound speed estimation

cannot be separated from AUV localization and tracking. The sound speed estimation

requires AUV locations, and AUV localization and tracking requires the sound speed

information to convert the TOF measurements into distance measures.

2It is often inefficient for an AUV to measure the sound speed field online, as it needs to derail from
the pre-defined routes and navigate through the whole water column, which consumes significant
amount of time and energy.
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Traditional treatment for sound speed inversion belongs to the field of ocean tomog-

raphy, where matched field processing (MFP) techniques dominate [66, 67]. Usually,

MFP requires a "forward" acoustic propagation model, e.g. normal mode model, to

synthesize the acoustic field or other acoustic features with tentative sound speed

parameter and/or other parameters of interest such as source location. The parame-

ters of interest are tuned to match the resulting acoustic features with observations,

which are usually obtained through vertically aligned array (VLA). The work in [68]

models the sound speed profile with empirical orthogonal functions (EOFs), and es-

timates the sound speed coefficients by MFP technique. Field pressure and sound

speed measurement observations from a hydrophone array are used by [69], and takes

the modes and sound speed profile as the state. This information is used to identify

the condition for observability of the system and to estimate the sound speed in a

simulated environment assuming the observable conditions are met. The work in [70]

tracks the sound speed EOF coefficients with sequential measurements, where the

unscented Kalman filter (UKF) is adopted and a vertical aligned hydrophone array

is set to measure the sound pressure field generated from a fixed source. An inver-

sion method for a range-dependent sound speed field is proposed in [71]. The sound

speed field is modeled as horizontally tracked piece-wise sound speed profiles, which

is a linear combination of the EOFs. Ensemble Kalman filtering (EnKF) algorithm is

adopted to track the sound speed field. The works in [72] and [73] parameterize the

sound speed with basis expansion methods and estimate the coefficients of the sound
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speed basis functions through minimizing the difference between multipath arrival

time observations and theoretical computations. Accuracy of these methods depends

on the resolution of the multipath arrival time, however, satisfying resolutions are

hard to achieve in reality. Moreover, strong prior knowledge of the sound speed

parameters or source locations should be used to initiate the algorithm. Achieving

certain level of success, MFP based methods require accurate geometrical knowledge

of the transmission environment and complex field measurements to work. In ad-

dition, the forward model is computationally hungry. Therefore, these methods are

only suitable for offline processing.

Besides MFP based methods, some of the recent efforts for sound speed estimation

include [74] which estimates the sound speed profiles with artificial neural networks

(ANN). The inputs to the network are physical surface measurements such as heat

flux and surface wind stress, and even sound speed measurements at several depths.

Even though the estimated SSP is accurate, the used features are too costly to ob-

tain for sensor nodes in an underwater network. A compressive sensing framework is

used by [75] to formulate the sound speed estimation problem. In other words, the

perturbation of the sound speed profile is a sparse combination of a large number

of EOFs, while majority of the coefficients are zero. The method also adopts the

hydrophone array measurement setup. A layered approach is used by [76], which

discretizes the sound speed profile with layers and estimates the sound speeds in each

layer by matching the computed reflection time with the measurements. Similarly,
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Ref. [77] approximates the propagation trace within each layer by a second order poly-

nomial, and estimates the sound speed profile using the gradient of the polynomial.

The sound speed measurements are collected at the layer boundaries. A method to

simultaneously estimate the uniform sound speed and the locations of floats based

on low resolution propagation delay measurements is proposed by [78]. However, the

computations are in a centralized fashion. In addition, the multi-floats are not treated

as a network, rather they communicate with anchors independently. The work in [79]

estimates the sound speed with several randomly deployed anchor nodes based on the

TOF between anchor nodes and the ray theory. The proposed approach requires the

collection of all the TOF measurements at a processing center. After obtaining the

estimated sound speed profile, a target node can be localized according to ray theory.

Dead reckoning-based AUV localization and tracking methods utilize measurements

from sensors, e.g. the Doppler Velocity Logger (DVL), and previously estimated lo-

cation to update the current estimation. Those methods are known to accumulate

errors and require frequent re-calibration [80]. Range-based or angle-based underwa-

ter localization methods usually do not take the heterogeneity of the sound speed

into consideration and assume the propagation trace being a straight line. Then,

tri-lateration or triangulation is used to locate the targets depending on the measure-

ment type. The concept of using mobile anchor nodes to track targets is explored in

[81]. In this method, range measurements are used to update locations while depth
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is assumed known. The large propagation delay for the range measurement is ad-

dressed. A cooperative algorithm to track the AUVs in a fully mobile network has

been proposed in [82]. Noisy depth information is assumed available from pressure

sensors, thus a 3D space is mapped to a 2D plane. And the approach requires the

AUVs having ranging capability, where straight line propagation is assumed implic-

itly. A simultaneous localization and mapping (SLAM) method in [83] proposes an

approach to track the AUV and simultaneously survey the baseline transponders. A

uniform sound speed is assumed to convert TOF information to range measurements.

The whole trajectory of the AUV is obtained by solving a constrained optimization

problem. A method to track a target with a UWSN, using particle filtering tech-

niques, has been proposed in [84]. The underwater sensor network is static and the

locations of the nodes are known. The sound pressure is the measurement and mod-

eled as inversely proportional to the square of the distance. Another work in [85]

proposes a method to localize a mobile target with a static UWSN using range or

angle measurements. The mobile node only passively listens to the broadcast message

from the anchor nodes and obtains the range measurements. Trajectory of the target

can be estimated and improved when new measurement is obtained. The work in

[86] proposes to track a target with a network using derived distances from TOF and

tri-lateration. It also proposes a scheme to activate a subset of nodes to save energy.

While the majority of underwater localization works assume a constant sound speed
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and straight line propagation, efforts have been spent on localization with more realis-

tic sound speed assumptions. A localization and tracking algorithm in an isogradient

sound speed profile is proposed in [87]. The analytic relationship between locations

of the transmitting and receiving nodes and the TOF is obtained. The gradient of

the TOF with respect to the locations is also obtained and used to linearize the no-

linear TOF model. The results enable the tracking algorithm based on the extended

Kalman filtering (EKF). The approximated sound speed profile is valid in deep water

and under-ice environment. The work in [88] considers a range-independent sound

speed profile and uses ray tracing to find a contour whose points have the same TOF

to the anchor node. With more TOF observations, more TOF contours have to be

computed. The final location of the target is obtained by minimizing the summation

of the distances to all the contours. This approach is not computationally efficient

and does not scale well with the number of TOF measurements. This work is ex-

tended in [89] to convert the distance information to a location vector by adopting

the multidimensional scaling algorithm [90] and the stochastic proximity embedding

algorithm [91]. The algorithms is operated on a computing node where computing

resources are not a constraint. Similarly, [92] reduces the number of ray tracing com-

putations by taking advantage of the fact that the rays close to each other exhibit

similar pattern. However, the algorithm still requires to use the ray tracing engine,

which is computationally complex and consumes large amount of energy. Therefore,

it is not suitable for real time applications.
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In this Chapter, we propose a Gaussian message passing (GMP)-based method to

iteratively estimate the location-dependent sound speed and track the nodes in an

AUV network. Several sound speed models are proposed and parameterized to cap-

ture the spatial and temporal variations. The propagation of acoustic waves in some

models are derived according to the ray theory. Extensive simulations are conducted

to investigate the performance of the proposed algorithm in different sound speed

environments.

The major contributions of this Chapter are as follows.

• The proposed algorithm specifically considers the inhomogeneity of the sound

speed field, and simultaneously solves the tracking of the AUV network and

the estimation of the sound speed field. The awareness of the sound speed

stratification effect makes the algorithm outperform those that simply assume

a uniform sound speed [81, 82, 83, 85].

• The proposed approach enables online and distributed tracking of the spatially

and temporally-varying sound speed field with a mobile AUV network, while

existing sound speed inversion approaches either only work offline or need sig-

nificant empirical knowledge of the sound speed field [69, 74, 75, 76].

• The spatial and temporal correlation of the sound speed field is utilized to

predict the sound speed by using Gaussian process regression with truncated
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observations. Therefore, the proposed underwater sound speed model is suitable

for the Gaussian message passing-based framework.

The rest of the paper is organized as follows. The sound speed field models are

presented in Section 4.2. The system model and the joint AUV and sound speed

tracking problem are stated in Section 4.3. A factor graph-based distributed algorithm

is developed for sound speed models with temporal variations in Section 4.4. The

algorithm is extended to incorporate the spatial-temporal variations of the sound

speed field in Section 4.5. The proposed algorithms are evaluated in Section 4.6 via

simulations. Conclusions are drawn in Section 3.8.

4.2 Sound Speed Field Modeling

The sound speed in water often varies in space and time. Appropriate modeling of

the sound speed field is essential to capture the sound propagation characteristics in

water. Depending on the spatial and temporal variation of the sound speed field,

several models can be used.

Denote the sound speed at location [x, y, z] and time t by c(x, y, z, t). Two simplified

sound speed models include,

• Uniform sound speed model: The sound speed is assumed constant in time and
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space, namely,

c(x, y, z, t) = c, , ∀x, y, z, t (4.1)

which yields the straight line propagation of acoustic waves.

• Isogradient sound speed model: The sound speed is assumed only depth-

dependent and invariant in time, namely,

c(x, y, z, t) = b+ az, ∀x, y, t (4.2)

where b is the sound speed at the water surface, and a is the changing rate of

the sound speed with depth. For this model analytic solutions to the acoustic

propagation have been derived in [87].

To incorporate the temporal variation of the sound speed field, the coefficients in

(4.1) and (4.2) can be modeled as the first-order auto-regressive (AR1) processes.

Specifically,

• Uniform sound speed with time variation:

c(x, y, z, t) = c̄+ c̃(t), (4.3)
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where c̄ is assumed as a known constant, and c̃(t) is an AR1 process,

c̃(t) = c̃(t− 1) + wc(t), (4.4)

with wc(t) ∼ N (0, σ2
c ) being a zero-mean white Gaussian noise.

• Isogradient sound speed with time-varying coefficients:

c(x, y, z, t) =
(
b̄+ b̃(t)

)
+
(
ā+ ã(t)

)
z, (4.5)

where b̄ and ā are constants usually known from empirical observations (ā ≈ 0.05

in the Munk profile [93] and in Fig. 2.12 and ā = 0.1 reported in [87]), and b̃(t)

and ã(t) are independent AR1 processes,

b̃(t) = b̃(t− 1) + wb(t), (4.6)

ã(t) = ã(t− 1) + wa(t), (4.7)

with wb(t) and wa(t) being independent zero-mean white Gaussian noise having

variance σ2
b and σ2

a, respectively.

This model can closely approximate the SSP in certain water environments, such

as under-ice environment and deep sea environment [94]. A more sophisticated

sound speed profile could be segmented vertically and each segment can be

approximated by this model [95].
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To further characterize the spatial and temporal variation of the sound speed field, it

can be statistically modeled as a Gaussian random field (a.k.a., Gaussian process) in

space and time. Specifically,

• Spatiotemporal Gaussian process model:

c(s) ∼ GP
(
m̄c(s),Kc(s, s′)

)
. (4.8)

where s := [x, y, z, t]T is the coordinates in space and time, m̄c(s) is the mean

of c(s), and K(s, s′) is the covariance between c(s) and c(s′). In this Chapter a

squared exponential covariance function is adopted,

K(s, s′) = σ2
f exp

(
−(x− x′)2 + (y − y′)2 + (z − z′)2

2l2

)
× exp

(
−(t− t′)2

2l2t

)
, (4.9)

where σ2
f is the variance of c(s), ∀s, l is the distance scale that determines the

field spatial correlation at locations [x, y, z] and [x′, y′, z′], and lt is the distance

scale that determines the field spatial correlation at time t and t′. The three

parameters, σ2
f , l, lt are referred to as hyper-parameters[96] and are assumed

known a priori based on past observations.
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4.3 Problem Statement

4.3.1 System Model

The system under consideration consists ofM AUVs andN surface gateways deployed

in an underwater area of interest Xarea ∈ R3. The AUVs maneuver underwater for a

pre-defined mission, and the gateways are spatially distributed at fixed locations. The

AUVs and gateways are equipped with acoustic communication units, and therefore

can acoustically exchange messages underwater. In addition, surface gateways can

get access to the Global Positioning System (GPS) for precise location information,

and can serve as reference nodes for underwater AUV positioning. The sound speed

field c(Xarea) in the area of interest Xarea may change in space and time depending

on environmental parameters, such as temperature, salinity and pressure. Time is

slotted for the system operation. At the beginning of each time slot, acoustic mea-

surements (specifically the TOF measurements between any two neighboring nodes)

are collected. Within each time slot the AUVs cooperate with each other through

acoustic communications for distributed AUV tracking and sound speed estimation.

Let us denote the time slot index by k, the AUV index set by M = {1, 2, · · · ,M}.

Let N→i,k denote the set of nodes that can transmit to the i-th AUV in the kth time
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slot and Ni→,k denote the set of nodes that can receive from the i-th AUV in the

kth time slot. The location of the i-th AUV at the beginning of the kth time slot is

denoted by xi,k := [xi,k, yi,k, zi,k]
T ∈ Xarea. For parameterization of the sound speed

field c(Xarea) in the kth time slot, ηk is used to denote the parameter vector. For the

transmission from node i to node j ∈ Ni→,k, the acoustic signal propagation delay is

a function of xi,k, xj,k and ηk.

4.3.2 Measurement Collection

At the beginning of time slot k, node i ∈ M collects TOF measurements {τj→i,k}

from nodes {j ∈ N→i,k}. When the AUV network is synchronized, the TOF can be

measured from a one-way transmission, where the transmitted time stamp tt is sent to

node i, the TOF is simply the difference between the two time stamps, i.e. τj→i,k =

tr − tt. When the AUV network is not synchronized, the TOF can be computed

through the round-trip TOF. To be specific, node i sends out its transmission time

ti,t to node j. Once node j receives the information, it responds with a similar

message after a time interval twait, which can be a common configuration in all the

sensor nodes. Assuming the replied message is received by node i at ti,r, the TOF

can be obtained as τj←i,k = (ti,r − ti,t − twait)/2. Note that this method assumes that

the reciprocal channels are symmetric [1]. When the frequency offset of the crystals

is considered, the method in [97] can be used to obtained the TOF.
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The measurement of the sound propagation delay, τj→i,k, can be expressed as

τj→i,k = fτ (xi,k,xj,k,ηk) + nj→i,k, (4.10)

where function fτ (·) represents the nonlinear mapping of the node locations to

the propagation delay in a sound speed field parameterized by ηk, and nj→i,k ∼

N (0, σ2
τ,j→i) is the measurement noise which is assumed following a Gaussian distri-

bution. Note that in real systems the delay measurement τj→i,k is estimated based

on the received signal at node i whose SNR decreases as the distance between the

transmitter and the receiver increases. Therefore the noise variance σ2
τ,j→i may change

with the distance between node i and node j.

4.3.3 AUV Mobility Model

We assume that all the AUVs can move independently. For the i-th AUV, its mobility

can be modeled as

xi,k+1 = xi,k + vi,k∆t+ wi,k, (4.11)

where vi := [vxi,k , vyi,k , vzi,k ]T is the speed vector of the i-th AUV which is available

from the AUV’s pitometer sensor, ∆t is the time increment of one time step, and

wi,k is the model inaccuracy which is assumed following Gaussian distribution wi,k ∼

N (03×1, σ
2
i I3). For anchors, we have vi,k = 03×1 and σ2

i ≈ 0. From the probabilistic
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perspective, the mobility model can be expressed as

p(xi,k+1|xi,k) ∼ N (xi,k + vi,k∆t, σ
2
i I3). (4.12)

4.3.4 Problem Formulation for Joint AUV Tracking and

Sound Speed Estimation

Let us denote the locations of all the AUVs in time slot k by xall,k, all the measure-

ments in time slot k by τall,k, the locations of all the AUVs up to time slot k, by x
(0:k)
all ,

and the sound speed field parameters up to time k, by η(0:k). Similarly, we use τ (0:k)
all

to denote all the measurements up to time k.

In this Chapter, we adopt a Bayesian framework for joint sound speed estimation and

AUV tracking. A recursive algorithm is designed to update the sound speed estima-

tion and AUV locations at every time step when new measurements are available.

Specifically, at time k, the sound speed and AUV locations can be estimated based

on the posterior distribution p
(
xall,k,ηk|τ

(0:k)
all

)
. Consider the Markovian property of

the time sequences x
(0:k)
all , η(0:k) and τ

(0:k)
all , namely, p(xi,k|x(0:k−1)

i ) = p(xi,k|xi,k−1)

(c.f. (4.12)), p(ηk|η(0:k−1)) = p(ηk|ηk−1) (c.f. (4.4) and (4.6)), and p(τall,k|x(0:k)
all ) =

p(τall,k|xall,k) (c.f. (4.10)). The posteriori distribution p
(
xall,k,ηk|τ

(0:k)
all

)
can be recur-

sively computed via message passing based on the factor-graph (FG) representation
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of the joint posterior distribution,

p
(
x

(0:k)
all ,η(0:k)|τ (0:k)

all

)
, (4.13)

using the sum-product algorithm (SPA) [98, 99].

In Section 4.4, we first focus on the algorithm design corresponding to the sound

speed environment modeled by (4.3) or (4.5). Then in Section 4.5, we extend the

algorithm to sound speed models with spatiotemporal variations modeled by (4.8).

4.4 Factor Graph-based Distributed AUV Tracking

and Sound Speed Estimation

In this section, we develop a distributed algorithm for joint AUV tracking and sound

speed estimation through Gaussian message passing (GMP), over a factor graph (FG)

representation of the posterior PDF p
(
xall,k,ηk|τ

(0:k)
all

)
, when the sound speed envi-

ronment is modeled as (4.3) or (4.5). Although the non-parametric belief propaga-

tion (NBP) method [100] is applicable, it requires a significant amount of samples

to achieve adequate accuracy, thus causing considerable communications overhead
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within the resource-limited sensor network. The parametric GMP reduces the commu-

nication overhead through only passing the PDF parameters. Note that the measure-

ment model in (4.10) is nonlinear and the message passing through the measurement

model is non-Gaussian. We first tackle this problem by linearizing the measurement

model. A factor graph representation of the joint PDF is then presented, followed

by the GMP algorithm over the FG, for distributed and recursive AUV tracking and

sound speed estimation.

4.4.1 Linearization of the Measurement Model

Defining x̌i,k := [xT
i,k,x

T
j,k,ηi,k]

T, the measurement model can be rewritten as τj→i,k =

fτ (x̌i,k) + nj→i,k. The nonlinear function fτ (x̌i,k) can be approximated by the first-

order Taylor series expansion around the estimated values, x̌i,k−1,

fτ (x̌i,k) ≈ fτ (x̌i,k−1) +∇fτ (x̌)|x̌=x̌i,k−1
(x̌i,k − x̌i,k−1),

= Dj→i,k + CT
j→i,kxi,k + ET

j→i,kxj,k + AT
j→i,kηi,k, (4.14)

where we define Dj→i,k := fτ (x̌i,k−1) − ∇fτ (x̌)|x̌=x̌i,k−1
x̌i,k−1, Cj→i,k :=

∇xi
fτ (x̌)|x̌=x̌i,k−1

, Ej→i,k := ∇xj
fτ (x̌)|x̌=x̌i,k−1

, Aj→i,k := ∇ηifτ (x̌)|x̌=x̌i,k−1
. The par-

tial derivatives of the propagation delay in uniform and isogradient sound speed en-

vironments are derived in Appendix A and can be directly incorporated here.
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4.4.2 Factor Graph Representation of the Joint Posterior PDF

in (4.13)

Factor graph along with the sum-product algorithm as an efficient tool is widely used

for probabilistic marginalization in machine learning, coding, signal processing, and

cooperative localization [98, 99, 101]. According to the assumptions in Section 4.3,

the posterior PDF in (4.13) can be factorized as

p(x
(0:k)
all ,η(0:k)|τ (0:k)

all ) ∝ p(x
(0:k)
all ,η(0:k), τ

(0:k)
all )

∝ p(xall,k,ηk, τall,k|xall,k−1,ηk−1)p(x
(0:k−1)
all ,η(0:k−1), τ

(0:k−1)
all )

∝ p(τall,k|xall,k,ηk)p(xall,k|xall,k−1)p(ηk|ηk−1)p(x
(0:k−1)
all ,η(0:k−1), τ

(0:k−1)
all )

=

[
k∏

k′=1

p(τall,k′|xall,k′ ,ηk′)p(xall,k′ |xall,k′−1)p(ηk′ |ηk−1)

]
p(xall,0)p(η0) (4.15)

=
k∏

k′=1

{∏
i∈M

[ ∏
j∈N→i,k′

p(τj→i,k′ |xi,k′ ,xj,k′ ,ηk′)

]

× p(xi,k′|xi,k′−1)

}
p(ηk′|ηk′−1)×

∏
i∈M

p(xi,0)p(η0) (4.16)

where p(η0) denotes the prior PDF of the sound speed parameters following inde-

pendent Gaussian distributions, i.e. N (η̄0,Ση0), where Ση0 is a diagonal matrix and

[Ση0 ]i,i = σ2
ηi
. p(xall,0) denotes the prior knowledge of node locations. Here the prior
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knowledge of node locations are assumed following independent Gaussian distribu-

tions, with p(xi,0) = N (mi,0, σ
2
i,0I3) in which mi,0 is the a priori location of the i-th

node and σ2
i,0I3 is the covariance matrix of the prior location.

Note that the sound speed coefficient ηk affects all the propagation delay measure-

ments. For distributed implementation of the algorithm, we introduce a set of auxil-

iary variables, namely, an auxiliary local variable ηi,k for node i, ∀i ∈M, and enforce

the local variables at each time step to be identical to a global value (ηk). The joint

PDF in (4.16) can be reformulated as

k∏
k′=1

∏
i∈M

{ ∏
j∈N→i,k′

p(xi,k′|xi,k′−1)p(ηi,k′ |ηi,k′−1)︸ ︷︷ ︸
:=hi,k′−1

×
[
p(τj→i,k′|xi,k′ ,xj,k′ ,ηi,k′ ,ηj,k′)p=(ηi,k′ ,ηj,k′)

]︸ ︷︷ ︸
:=φj→i,k′

}

×
∏
i∈M

{
p(xi,0)× p(ηi,0)

∏
j∈M

p=(ηi,0,ηj,0)
}

(4.17)

where p=(ηi,k′ ,ηj,k′) := δ(ηi,k′ − ηj,k′) is the Dirac delta function, representing the

equality constraint on auxiliary variables.

We adopt the Forney-style factor graph [102] to represent the distribution in (4.17),

where edges and vertexes denote the variables and factors in (4.17), respectively.

To simplify the factor graph representation, we stack the two independent variables

into a vector πi,k′ := [xT
i,k′ ,η

T
i,k′ ]

T. Group the two transition probability factors
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Figure 4.1: Factor graph representation of the joint posterior PDF (4.17).
The black arrows show the temporal direction of message flow. The red
dashed arrows represent the outgoing message through acoustic communica-
tion, and the blue arrows are the correction message. The factors within the
square are maintained by node i.
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Figure 4.2: Elementary linear operations in factor graph.

p(xi,k′|xi,k′−1)p(ηi,k′|ηi,k′−1) into one factor denoted by h(πi,k′ ,πi,k′−1) (abbreviated as

hi,k′−1 in the FG). Group the two factors p(τj→i,k′ |xi,k′ ,xj,k′ ,ηi,k′ ,ηj,k′)p=(ηi,k′ ,ηj,k′)

into another factor denoted by φj→i,k′(πi,k′ ,πj,k′) (abbreviated as φj→i,k′ in the FG).

Fig. 4.1 depicts the FG, where the i-th node and two nominal neighboring nodes

j, ` ∈ N→i,k′ are taken as an example for illustration.
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Remark 4. For the special cases of the static sound speed models, e.g. (4.1) and (4.2),

the sound speed evolution model degrades to

p(ηi,k′ |ηi,k′−1) = p=(ηi,k′ ,ηi,k′−1). (4.18)

4.4.3 Gaussian Message Propagation

A Gaussian message from edge π to vertex h in the factor graph is denoted as

µπ→h(·) = N (mπ→,Vπ→h), where mπ→h and Vπ→h are the mean and covariance

matrix, respectively. Occasionally, the precision matrix is used instead of the co-

variance matrix for numerical stability, Σπ→h = V†π→h. Additionally, the belief of a

variable π is denoted as bπ(·) with similar parameterization. After the linearization

in Section 4.4.1, the factor graph is composed of typical vertices representing the lin-

ear operations preserving Gaussianity of input messages. The transformation of the

messages going through those nodes is well known and can be found in [99]. For the

sake of completeness, we list the results of related operations in Fig. 4.2, based on

which we calculate the Gaussian messages propagating in the factor graph.
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Figure 4.3: Illustration of the message transmissions in a simple network
with two AUVs and three gateway nodes. The messages sent from AUV to
the anchor nodes are not shown for brevity.

4.4.3.1 Message schedule

The GMP algorithm contains several typical operations, namely, prediction operation,

correction operation and belief or outgoing message computation. The message flow

schedule is illustrated in Fig. 4.1. At the beginning of time k′, the message from the

prediction operation µhi,k′−1→πi,k′ (·) is computed first, which is then used to initiate

the outgoing message of πi,k′ , µπi,k′→φj→i,k′
(·). The red dashed arrow in Fig. 4.1 repre-

sents the outgoing messages sent to its neighbours through acoustic communications.

After receiving all the outgoing messages from neighbours, the correction operation
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is performed to obtain the correction message, i.e. µφj→i,k′→πi,k′ (·), ∀j ∈ N→i,k′ , indi-

cated by the blue arrows in Fig. 4.1. Based on the correction messages, the outgoing

message or the belief message is updated for the next iteration depending on whether

a broadcast scheme is used (see Remark 3 for details). After a pre-defined Niter it-

erations are finished, the algorithm moves to the next time step and uses the belief

message as the prior for the prediction operation. Fig. 4.3 illustrates the message

exchange in a simple network with two AUVs and three gateway nodes. The mes-

sages sent from AUV to the anchor nodes are not shown for brevity. The algorithm

with the broadcast scheme is summarized in Algorithm 1. The details of the typical

operations are as follows.

4.4.3.1.1 Prediction Operation At time slot k, the prediction operation models

the AUV mobility and sound speed evolution to obtain µhi,k′−1→πi,k′ (·). Due to the in-

dependence of the two evolution models, this is equivalent to predicting µhi,k′−1→xi,k′
(·)

and µhi,k′−1→ηi,k′ (·) independently.

Given µπi,k′−1→hi,k′−1
(·), the a posteriori message from previous time step k′ − 1, and

the mobility model in (4.12), the predicted mean and covariance matrix related to
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Figure 4.4: Extended factor graph of φj→i,k′ after linearization. The blue
notations correspond to the variable or function names in the factor graph
Fig. 4.1.

the node location are

mhi,k′−1→xi,k′
= mxi,k′−1→hi,k′−1

+ vi,k′∆t, (4.19)

Vhi,k′−1→xi,k′
= Vxi,k′−1→hi,k′−1

+ σ2
i I3. (4.20)

With the assumption that the sound speed parameters evolve as a random walk

process, prediction of the sound speed parameters can be obtained as

mhi,k′−1→ηi,k′ = mηi,k′−1→hi,k′−1
, (4.21)

Vhi,k′−1→ηi,k′ = Vηi,k′−1→hi,k′−1
+ Vηk′

. (4.22)
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4.4.3.1.2 Correction Operation The correction operation incorporates the

measurements to update the location and the sound speed parameters. The result-

ing message denoted as µφj→i,k′→πi,k′ (·) can be decomposed as µφj→i,k′→xi,k′
(·) and

µφj→i,k′→ηi,k′ (·), which are treated separately.

As presented in Section 4.4.1, the node φj→i,k′ depicts the nonlinear measurement

model and can be linearized to preserve the Gaussianity of the transformations. The

linearized vertex of φj→i,k′ is illustrated in Fig. 4.4. To perform the correction opera-

tion at agent i, the messages µπj,k→i,k′(·) ∀j ∈ N→i,k′ are first collected from its neigh-

bours through acoustic communications, as indicated by the red arrows in Fig. 4.4.

Meanwhile, the message µπi,k′→φj→i,k′
(·) is available locally at node i. Let us denote

the intermittent message from the "summation" node to Cj→i,k′ by µt. Following the

result from Fig. 4.2, we can obtain,

mt = τj→i,k′ − (Dj→i,k′ + Ej→i,k′mxj,k′→Ej→i,k′
+ Aj→i,k′mη̃i,k′→Aj→i,k′

), (4.23)

Vt = σ2
j→i,k′ + Aj→i,k′Vη̃i,k′→Aj→i,k′

AT
j→i,k′ + Ej→i,k′Vxj,k′→Ej→i,k′

ET
j→i,k′ , (4.24)

where mη̃i,k′→Aj→i,k′
and Vη̃i,k,k′→Aj→i,k′

are extracted locally from µπi,k′→φj→i,k′
(·). The

message µφj→i,k′→xi,k′
(·) is a result of the transformation by vertex Cj→i,k′ on the
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intermittent message µt(·), thus

mφj→i,k′→xi,k′
= (CT

j→i,k′V
†
tCj→i,k′)

†CT
j→i,k′V

†
tmt, (4.25)

Vφj→i,k′→xi,k′
= (CT

j→i,k′V
†
tCj→i,k′)

†. (4.26)

The intermittent correction message for the sound speed parameters, µAj→i,k′→η̃i,k′ (·),

can be obtained following the same procedures. Incorporating the message

µηj,k′→φj→i,k′
(·), the final correction message for the sound speed is obtained as,

µφj→i,k′→ηi,k′ (·) = µAj→i,k′→η̃i,k′ (·)× µηj,k′→φj→i,k′
(·). (4.27)

The product of two or multiple Gaussian messages is equivalent to the "equality"

transformation in Fig. 4.2, where the results can be used to compute the mean and

the precision matrix of µφj→i,k′→ηi,k′ (·).

Remark 5. If µηj,k′→φj→i,k′
(·) is not transmitted by agent j, µφj→i,k′→η̃i,k′ (·) can be

treated as µφj→i,k′→ηi,k′ (·) with slight performance degradation. Additionally, consen-

sus of the network estimation on the sound speed parameters might not reach.

4.4.3.1.3 Outgoing Message and Belief Message During the correction op-

eration, the outgoing message µπi,k′→φj→i,k′
(·) is required and can be computed at
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Algorithm 1 Joint UWSN and Sound Speed Tracking in Uniform or Isogradient
Sound Speed
Input: Prior message µπi,0→hi,0(·) ∀i ∈M, number of iterations Niter

Output: Beliefs of sensor locations and sound speed
1: for k = 1, · · · do (# time step index)
2: Compute the prediction µhi,k−1→πi,k(·) according to Eqs. (4.19) to (4.22) in

parallel ∀i ∈M
3: Initialize beliefs b(0)

πi,k(·) = µhi,k−1→πi,k(·) in parallel ∀i ∈M
4: for l = 1, 2, · · · , Niter do (# iteration index)
5: Broadcast b(l−1)

πi,k (·) in parallel ∀i ∈M
6: Receive µπj→φj→i

= b
(l−1)
πj,k (·) ∀j ∈ N→i,k in parallel ∀i ∈M

7: Compute the correction messages µφj→i,k→πi,k(·) ∀j ∈ N→i,k according to
Eqs. (4.23) to (4.27) in parallel ∀i ∈M

8: Update the belief b(l)
πi,k(·) according to (4.29) in parallel ∀i ∈M.

9: end for
10: Assign posterior message µπi,k→hi,k(·) = b

(Niter)
πi,k (·) in parallel ∀i ∈M

11: end for

agent i. Although we treat the location variable xi,k′ and the sound speed param-

eters ηi,k′ as a whole, the corresponding formulae can be applied independently

for each variable. Assuming that all the correction messages are available, i.e.

µφj′→i,k′→πi,k′ (·) ∀j
′ ∈ N→i,k′ , j′ 6= j, the outgoing message can be computed as

µπi,k′→φj→i,k′
(·) = µhi,k′−1→πi,k′ (·)

∏
j′∈N→i,k′ ,j

′ 6=j

µφj′→i,k′→πi,k′ (·). (4.28)

As the summary of a variable, the belief message can be similarly computed as

bπi,k′ (·) = µhi,k′−1→πi,k′ (·)
∏

j′∈N→i,k′

µφj′→i,k′→πi,k′ (·). (4.29)

Again, the product of multiple Gaussian messages can be obtained from the re-

sults in Fig. 4.2. Note that the only difference between the belief message bπi,k′ and
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the outgoing message µπi,k′→φj→i,k′
(·) is the incorporation of the correction message

µφj→i,k′→πi,k′ (·).

Remark 6. Each outgoing message needs to be transferred to its corresponding neigh-

bor, for example, µπi,k′→φj→i,k′
(·) is needed at agent j. Thus, the communication

overhead is formidable. In reality, the agents can broadcast the belief message to all

the neighbours in place of the target specific messages. Thus, the communication

overhead is significantly reduced.

4.5 Extension to Spatially and Temporally Varying

Sound Speed Field

In this section, we extend the proposed algorithm to the sound speed environment

with spatiotemporal variations modeled as a Gaussian random field as in (4.8). In the

previous time-varying sound speed models, the sound speed parameter only depends

on the value at the previous time step. On the contrary, in a spatiotemporal GP

sound speed model, all the current and historical sound speed observations at different

locations are correlated. This brings challenges for a distributed and memory efficient

algorithm. To alleviate the obstacle, we ignore the less correlated observations in the

Gaussian process, and only focus on the most relevant observations. Following the
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same procedures, we first factorize the joint posterior PDF in (4.13). Then based on

the factorization, the factor graph and GMP algorithm are developed.

4.5.1 Factorization of the Joint Posterior PDF (4.13)

The posterior PDF can be reformulated as

p(x
(0:k)
all , c(x

(0:k)
all ), τ

(0:k)
all ) ∝ p(τall,k|xall,k, c(xall,k))

× p(xall,k, c(xall,k)|x(0:k−1)
all , c(x

(0:k−1)
all ))p(x

(0:k−1)
all , c(x

(0:k−1)
all ), τ

(0:k−1)
all ). (4.30)

For distributed and recursive estimation of AUV locations and the sound speed field,

several approximations are made in the following. Firstly,

• AS1) The sound propagation delay from node j to node i depends on the sound

speed field c(Xarea). Here the measurement model is approximated as

τj→i,k =
‖xi,k − xj,k‖

(c(xi,k) + c(xj,k))/2
+ nj→i,k, (4.31)

where ‖xi,k − xj,k‖ is the Euclidean distance between the two agents.
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Therefore, the likelihood function can be factorized as

p(τall,k|xall,k, c(xall,k))

=
∏
i∈M

∏
j∈N→i,k

p(τj→i,k|xi,k,xj,k, c(xi,k), c(xj,k)). (4.32)

Secondly, the conditional PDF p(xall,k, c(xall,k)|x(0:k−1)
all , c(x

(0:k−1)
all )) can be approxi-

mated as,

p(xall,k, c(xall,k)|x(0:k−1)
all , c(x

(0:k−1)
all )),

= p(c(xall,k)|xall,k,x
(0:k−1)
all , c(x

(0:k−1)
all ))p(xall,k|x(0:k−1)

all ),

AS2)
≈ p(c(xall,k)|xall,k,xall,k−1, c(xall,k−1))p(xall,k|x(0:k−1)

all ), (4.33)

AS3)
≈
∏
i∈M

p(c(xi,k)|xi,k,xall,k−1, c(xall,k−1))p(xall,k|x(0:k−1)
all ), (4.34)

AS4)
≈

∏
i∈M

p(c(xi,k)|xi,k,xi,k−1, {xj,k−1}j∈N→i,k−1

, c(xi,k−1), {c(xj,k−1)}j∈N→i,k−1
)
∏
i∈M

p(xi,k|xi,k−1),

=
∏
i∈M

p(c(xi,k),xi,k|xi,k−1, {xj,k−1}j∈N→i,k−1
, c(xi,k−1), {c(xj,k−1)}j∈N→i,k−1

). (4.35)

• AS2): As a Gaussian process, the sound speed samples at the current loca-

tions c(xall,k) are correlated to all the historical sound speed samples c(x(0:k−1)
all ).

Together they follow a Gaussian distribution. We remove the dependence

of c(xall,k) on the historical samples except those in the last time step, i.e.
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c(xall,k−1). The temporal truncation enables the memory efficient algorithm

design since only the latest sound speed samples are maintained in memory.

• AS3): Conditioned on the sound speed samples in the previous time step

c(xall,k−1), the sound speed sample at one location c(xi,k) is independent of

the sound speed sample at other locations at time k, thus the joint PDF of the

sound speed samples at time k is approximated as the product of the indepen-

dent PDF of each sound speed samples.

• AS4): From the covariance function in (4.9), the covariance between two sound

speed variables decreases with the distance between the sample locations. We

assume the covariance becomes negligible when the distance is greater than

the communication distance. In other word, the sound speed sample c(xi,k)

is assumed to be independent of the samples whose locations are not in its

communication range.

Remark 7. AS2) and AS4) temporally and spatially truncate the correlated observa-

tions of a Gaussian process. While the assumptions reflect the temporal and spatial

constraints of the mobile network, the impact of observation truncation on Gaussian

process regression is analyzed in [103].

Let us define πi,t,k := [xT
i,k, c(xi,k)]

T. The joint posterior PDF can be approximated
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Figure 4.5: Factor graph for the joint UWSN and sound speed tracking
problem in a location-dependent sound speed. The black arrows show the
temporal direction of message flow. The red dashed arrows represent the
outgoing message through acoustic communication, and the blue arrows are
the correction message.
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Figure 4.6: Extended graph of the prediction operation, hi,k′−1, in the FG
with spatiotemporal variations.

as,

k∏
k′=1

∏
i∈M

{ ∏
j∈N→i,k′

[p(τj→i,k′ |πi,k′ ,πj,k′)]p(πi,k′ |πi,k′−1, {πj,k′−1}j∈N→i,k′−1
)

}∏
i∈M

p(πi,0).

(4.36)

with p(πi,0) = p(xi,0)p(c(xi,0)). Let us denote p(πi,k′|πi,k′−1, {πj,k′−1}j∈N→i,k′−1
) by

hi,k′−1 and p(τj→i,k′ |πi,k′ ,πj,k′) by φj→i,k′ for brevity, the corresponding factor graph

is depicted in Fig. 4.5.
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4.5.2 Gaussian Message Propagation

The message schedule for the extended GMP algorithm is similar to the original one

in Section 4.4.3.1, except that the final beliefs from each agent’s neighbours, e.g.

bπj,k′−1
(·), ∀j ∈ N→i,k′−1, are stored in memory and used in the prediction operation

at time k. Note that the communication overhead is not increased because the belief

message bπj,k′−1
(·) has already been collected at time k′−1 for the correction operation.

Thus, the extended algorithm for sound speed filed with spatiotemporal variations

can also be summarized in Algorithm 1, except that the prediction and correction

operations should be modified to accommodate the factor graph change.

4.5.2.1 Prediction Operation

The structure of the factor graph in Fig. 4.5 for the extended sound speed model is

different from Fig. 4.1 only in the connections from πj,k′−1 to hi,k′−1. These additional

connections lead to a different prediction operation. The corresponding vertex hi,k′−1

is expanded in Fig. 4.6. It can be observed that the AUV mobility model is the

same, i.e. modeled by p(xi,k′|xi,k′−1). On the contrary, the evolution of the sound

speed at one location is no longer independent of the other locations as indicated by

p(c(xi,k′)|c(xi,k′−1), {πj,k′−1}j∈N→i,k′−1
). Considering the belief messages bπi,k′−1

(·) and
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bπj,k′−1
(·) flowing into hj,k′−1 as the noisy observation of the true Gaussian process at

xi,k′−1 and xj,k′−1, respectively, the Gaussian process regression (GPR) algorithm can

be utilized to compute the prediction message of the sound speed µhj,k′−1→πj,k′ (·).

Let us define mci,k′−1
:= [mci,k′−1

,mcj1,k′−1
, · · · ,mcjNi

,k′−1
]T and a diagonal covari-

ance matrix Vci,k′−1
:= diag([σ2

ci,k′−1
, σ2

cj1,k′−1
, · · · , σ2

cjNi
,k′−1

]T), where jNi
∈ N→i,k′−1

and Ni is the number of elements in N→i,k′−1, the mean and variance of the

sound speed are extracted from bπj,k′−1
(·). We denote the coordinate in space and

time by si,k′ = [xT
i,k′ , k

′]T and stack the coordinates of the observations into S :=

[si,k′−1, sj,k′−1, · · · , sjNi
,k′−1]. We also define a matrix Kc as a (Ni+1)×(Ni+1) matrix,

the elements are the covariances of the observation pairs [Kc]i1,i2 := K(si1 , si2), which

is the squared exponential function defined in (4.9) and [S]i1 is the ith1 coordinate in S.

Similarly, we define a covariance vector kc whose elements is [kc]i1 := K(si,k′ , [S]i1).

and a scalar kc := K(si,k′ , si,k′), where si,k′ = [xT
i,k′ , k

′]T is the coordinate of the target.

According to the GPR algorithm in Appendix B, the prediction message

µhj,k′−1→c(xi,k′ )
(·) can be computed as

σ2
hj,k′−1→c(xi,k′ )

= kc − kc(Kc + Vci,k′−1
)†kT

c , (4.37)

mhj,k′−1→c(xi,k′ )
= m̄ci,k′+kc(Kc+Vci,k′−1

)†(mci,k′−1
−m̄ci,k′−1

), (4.38)

where m̄ci,k′
= m̄(si,k′) is the mean of the sound speed parameters at the target
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location, and m̄ci,k′−1
is the vector of the mean sound speed at the locations of obser-

vations.

Remark 8. The unknown hyperparameters in the covariance function (4.9), i.e.

{σ2
f , l, lt}, can be estimated by maximizing the marginal likelihood function [96], de-

tailed results can be found in Appendix B.

4.5.2.2 Correction Operation

The extended factor graph for the correction operation φj→i,k′ is similar to Fig. 4.4.

A major difference is that the two sound speeds are summed together and used in

the measurement model, and the node Aj→i,k′ absorbs the constant 1/2. Similar

to the procedures in (4.25) and (4.26), the correction message µφj→i,k′→xi,k′
(·) and

µAj→i,k′→c̃(xi,k′ )
(·) can be computed. Incorporating the results in Fig. 4.2 and the

message µc(xj,k′ )→φj→i,k′
(·), the final correction message µφj→i,k′→c̃(xi,k′ )

(·) for the sound

speed can be obtained.

Remark 9. If the sound speed can be measured by an AUV at its location, for

example, c̃(xi,k) = c(xi,k) + nci,k , where nci,k is assumed to be a Guassian noise.

The independent measurements at all the AUVs can be easily fused together with

estimated sound speed field in our problem setup. The factorization in (4.36) can be
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modified as

k∏
k′=1

∏
i∈M

{ ∏
j∈N→i,k′

[p(τj→i,k′ |πi,k′ ,πj,k′)]p(πi,k′ |πi,k′−1, {πj,k′−1}j∈N→i,k′−1
)

× p(c̃(xi,k)|c(xi,k))

}∏
i∈M

p(πi,0). (4.39)

With this factorization, the factor graph and the corresponding Gaussian message

propagation algorithm can be modified slightly. Specifically, the correction operation

and the belief message computation procedures should be changed accordingly.

The belief and outgoing message computations, and the message schedule are the same

as the original algorithm. Thus Algorithm 1 can also be used for the spatially and

temporally varying sound speed with modification of the prediction and correction

procedures.

4.6 Simulation Results

In this section, we evaluate the proposed algorithm through Monte Carlo simulations.

In the simulations, we target a rectangular region of dmax × dmax. N = 9 anchors are

fixed at locations whose coordinates along each dimension equal [0, 0.5, 1]×dmax, and

M = 100 mobile agents are randomly distributed in the region initially following
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(b) Time step 1

Figure 4.7: Estimation results of the network at different time steps. The
black triangles are the anchor nodes, the blue squares are the mobile agents,
and the red circles are the estimated locations of the mobile agents. Niter =
10 iterations are performed within each time step.

uniform distribution. The initial guess of the ith agent’s location is randomly gener-

ated around the true location as x̂i,0 = xi,0 + e, where e ∼ N (0, σ2
eI). For anchor

nodes, σe = 10−4×dmax reflecting a strong prior knowledge, and for the mobile nodes

σe = 0.1 × dmax reflecting a weak prior knowledge. The maximum communication

distance of the mobile agents and anchors is a portion of the length of the region,

i.e. dcomm = rc × dmax. For all the simulations, a total number of K = 30 time

steps is investigated. Niter iterations are computed within each time step. The algo-

rithm is assumed to use the broadcast scheme if not specified otherwise. The mobile

agents move according to the model in (4.12), where the sound speed vi along each

direction is randomly generated following uniform distribution in the interval [−3, 3]

m/s at each time step, and the standard deviation of the movement noise is σi = 20

m. The interval of each time step is ∆t = 10 s. Because the propagation delay is
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estimated from the received signal, the accuracy depends on the SNR of the signal.

Thus, the standard deviation of the observation noise is assumed to be proportional

to the nominal propagation delay between node i and node j in the mean sound speed

c̄ = 1500 m/s, i.e. σij ∼ N (0, rodij/c̄), where ro is a scaling constant. We use the root

mean square error (RMSE) as the metric for localization and sound speed estimation

performance,

RMSE[k] =

√√√√ 1

M

M∑
i

‖xi,k − x̂i,k‖2, (4.40)

where x̂i,k is the estimated location of node i at time k and ‖ · ‖ is the l2-norm.

Due to the similarity of the sound speed models, the algorithm is investigated in the

following typical sound speed models: a) time-varying uniform sound speed model in

(4.3); b) time-varying isogradient sound speed in (4.5); c) spatiotemporal Gaussian

process sound speed model in (4.8).

4.6.1 Time-varying Homogeneous Sound Speed

First, we investigate the algorithm performance in a time-varying homogeneous sound

speed field. The length of the area is dmax = 10 km. The sound speed evolves as the

random walk process defined in (4.4), and the noise standard deviation σc = 5 m/s.

Fig. 4.7 illustrates the cooperative localization performance from a realization. The
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algorithm is initialized as in Fig. 4.7(a), The black triangles are the anchor nodes, the

blue squares are the mobile agents, and the red circles are the estimated locations of

the mobile agents. The number of iterations at each time step is Niter = 10, and the

communication distance scale is rc = 0.3. Fig. 4.7(b) is the estimation of the network

after time step 1. As we can observe, the network is able to localize majority of the

mobile agents after the first time step.

Fig. 4.8 shows how the observation noise affects the tracking performance. The AUVs

can either send target specific messages about the location and sound speed estima-

tion or broadcast the message to all neighbours. Obviously, the broadcast scheme

reduces communication load significantly. Fig. 4.8 compares the performance of the

two message transmission schemes with different observation noise level. Niter = 3

iterations are conducted in each time step, and the communication distance scale is

rc = 0.3. The tested observation noise scales are ro = [0.02, 0.04, 0.06]. It can be

observed that the two schemes have very close performance, with the target-specific

scheme slightly better than the broadcast scheme. The same results can be observed

in simulations of the time-varying isogradient sound speed model and spatiotemporal

Gaussian process model.
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Figure 4.8: Comparison of the broadcast scheme and target specific message
scheme.

4.6.2 Time-varying Isogradient Sound Speed Model

In this section, we investigate the algorithm performance in a time-varying isogradient

sound speed. The length of the area of interest is dmax = 2 km, and 100 mobile agents

are randomly scattered in the area. The parameters of the sound speed model in η

are modeled as independent random walk processes as in (4.6) with b̄ = 1500 m/s,

and ā = 0.1. The standard deviations of the evolution noises are σa = 0.01 and

σb = 25 m/s, respectively. 200 Monte Carlo realizations are simulated to obtain the

following average results.

The performance metric for b is the RMSE similarly as defined in (4.40). Since a is

usually less than 1, using RMSE as performance metric will not provide much insight.
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Thus, we define the normalized absolute error (NAE) as the metric for a,

NAEa[k] =
1

M

M∑
i

|âi,k − ak|/|ak|, (4.41)

where âi,k is the estimated sound speed model parameter at the estimated location

x̂i, and ak is the true parameter at time k.
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Figure 4.9: Average tracking performance of the network and the isogradi-
ent, time-varying sound speed with different iterations Niter.

Fig. 4.9 shows the tracking performance of the proposed algorithm with different

number of iterations at each time step. The communication scale and observation

noise scale are rd = 0.4 and ro = 0.01, respectively. It can be observed that the

proposed algorithm takes longer time to converge with a smaller number of iterations

at each time step. However, as the time step increases, the results with different

iteration setups converge to the same accuracy asymptotically. Since more iterations

require more energy-consuming communications, a balanced choice would be some
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value between 3 − 6, beyond which the performance improvement is not significant.

Similar results can be observed in simulations of the time-varying uniform sound

speed model and spatiotemporal Gaussian process model.

4.6.3 Spatiotemporal Gaussian Process Sound Speed

To investigate the algorithm performance in a GP sound speed model in (4.8), we

set dmax = 10 km and 100 mobile nodes are randomly deployed in the area. The

spatiotemporal sound speed is generated following Gaussian process, the signal stan-

dard deviation is σf = 20 m/s, the length scale is l = 300 m, and the time scale

is lt = 1 s. the observation noise scale is ro = 0.01. Niter = 3 iterations are con-

ducted at each time step. Fig. 4.10 demonstrates how the accuracy changes with

the maximum communication distances, under different tested communication scales

rc = [0.2, 0.3, 0.4, 0.5]. It can be observed that both the accuracy of the network lo-

cation and the sound speed can be improved with a longer communication distance.

Because as the communication distance increases, more and more sensor nodes are in

the neighborhood for message exchange and measurement collections. Additionally,

one can draw the conclusion that the maximum communication distance should ex-

ceed certain value depending on the number of nodes in the network in order to make

the algorithm converge. In other words, the algorithm converges when the number of
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neighbors for each node is large enough. Once the algorithm converges, the perfor-

mance will be similar eventually as time goes on. This conclusion is also supported

by simulation results with different sound speed models.
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Figure 4.10: Average tracking performance in spatiotemporal GP sound
speed model with different communication distances.

4.6.4 Performance Improvement of the Sound Speed-aware

Algorithm

In this section, we conduct an extra experiment to understand how much gain can

be achieved by the proposed algorithm in an isogradient sound speed field against

the algorithm that assumes a homogeneous sound speed field. The communication

scale is set as rd = 0.4, the number of iterations at each time step is Niter = 10. The

results are averaged over 200 runs. At each run, the sound speed is set as time-varying
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Figure 4.11: Comparison of the tracking performance between isogradient
and uniform sound speed.

isogradient model. Both the algorithm with isogradient sound speed model and the

algorithm with uniform sound speed are run in the same simulated environment. The

other simulation parameters are the same as the setup for isogradient sound speed

model. Fig. 4.11 compares the performance of the two algorithms with different

observation noise variances. It shows that the proposed algorithm for isogradient

model achieves a significant gain as compared to the one assuming the sound speed

as homogeneous. Depending on the noise level, the gain could be as much as 25

meters in terms of average RMSE localization errors.

4.7 Summary

This Chapter studied the estimation of spatially and temporally varying sound speed

and tracking of AUVs in a mobile network. Several sound speed models are used to
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emphasise the different spatial-temporal variations. A distributed Gaussian message

passing algorithm is proposed to recursively estimated the time-varying isogradient

sound speed and the locations of the AUVs. The algorithm is extended to capitalize

on the spatial correlation of the sound speed. Extensive simulations are conducted

to evaluate the proposed algorithms. Results reveal that the AUV network and the

sound speed parameters can be well tracked. Moreover, significant improvement of

localization performance is achieved when the sound speed stratification effect is taken

into consideration.
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Chapter 5

Conclusions

This dissertation treats the UWA channel variations from different perspectives and

emphasizes applications with sequential measurements in UWA networks.

The insights of temporal and spatial variations are obtained from substantial ex-

perimental data. Comparisons of mobile and stationary channels, open-water and

under-ice channels are presented. Transceivers will gain communication margin if the

environment specific channel properties are taken into consideration. The experimen-

tal observations inspire two research topics related to the channel variations.

The large-scale, slowly time-varying channels statistics are modeled and predicted

from a date-driven perspective. By passing the intricate physical interaction between

acoustic waves and the underwater environment, statistical correlation is utilized to
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capture the dependence of the temporal channel variation on the environment. As

a general signal processing approach, the proposed dynamical model and recursive

algorithms can be used for the prediction of a broad range of channel parameters.

As it is impossible to model all the environment factors to understand the channel

variations from a physical perspective, the most relevant one - sound speed distribu-

tion is singled out and studied. Leveraging the Bayesian framework, the joint PDF

of variables of interest is represented by normal factor graph. Considering the tem-

poral causal constraint and the connectivity constraint of the mobile AUV network,

an iterative algorithm is adopted to simultaneously track the agent location ( a local

variable to the agent) and the sound speed parameters (a global variable). Without

collecting and processing in a computing center, the proposed approach distribute

the computation load to the network with certain communication cost.

Still, many problems need to be worked on in the future. With prosperity of UWA

networks, correlation between different communication links could be capitalized on

to predict the link status of the complete network. Moreover, the reincarnation of

neural networks in the artificial intelligence community makes it very promising to

explore the sequential models, such as recurrent neural network (RNN), to solve the

complex channel variation problems.
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Appendix A

Derivation from Eq. (3.15) to

Eqs. (3.16) and (3.17) in Chapter 3

According to (3.15), we have the batched representation of Qk(Θ|Θ̂),

Qk(Θ|Θ̂) = E[ln f(xk, yk|xk−1,Θ)]+

k−1∑
k′=0

λk−k
′E[ln f(xk′ , yk′ |xk′−1,Θ)]+ ln f(x−1|Θ), (A.1)

where the expectation of [ln f(xk, yk|xk−1,Θ)] is performed with respect to

f̃(xk,xk−1|yk,yk−1
0 , Θ̂), and the expectation of [ln f(xk′ , yk′|xk′−1,Θ)], k′ < k is per-

formed with respect to f̃(xk′ ,xk′−1|yk′ ,yk
′−1

0 , Θ̂k′). Note that f(xk, yk|xk−1,Θ) =
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f(yk|xk,Θ)f(xk|xk−1,Θ). We have,

Qk(Θ|Θ̂) = E[ln f(xk|xk−1,Θ)] + E[ln f(yk|xk,Θ)]

+
k−1∑
k′=0

λk−k
′{E[ln f(xk′ |xk′−1,Θ)] + E[ln f(yk′ |xk′ ,Θ)]}+ ln f(x−1|Θ). (A.2)

Substitute f(yk|xk,Θ) = N (γ0 + xk + bTuk, σ
2
v) and f(xk|xk−1) = N (aTxk−1, σ

2
w)

into (A.2), and set the partial derivative of Qk(Θ|Θ̂) with respect to each unknown

parameter in the set Θ = {γ0, a,b, σ
2
w, σ

2
v} to zero. One can obtain the batched

estimation of the unknown parameters. The recursive estimation can then be derived

based on the batched estimation. Next, we take a as an example to illustrate the

derivation of the recursive estimation in (3.16a). The recursive estimation of all the

other unknown parameters can be similarly derived.

Substitute f(xk′ |xk′−1) = N (aTxk′−1, σ
2
w) into (A.2). We have

−Qk(Θ|Θ̂) = E
[

1

2σ2
w

(xk − aTxk−1)2

]
+

k−1∑
k′=0

λk−k
′E
[

1

2σ2
w

(xk′ − aTxk′−1)2

]
+ others.

(A.3)
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Set the partial derivative of Qk(Θ|Θ̂) with respect to a to zero,

−∂Qk(Θ|Θ̂)

∂a
= E

[
1

2σ2
w

(xk − aTxk−1)xT
k−1

]
+

k−1∑
k′=0

λk−k
′E
[

1

2σ2
w

(xk′ − aTxk′−1)xT
k′−1

]
= 0. (A.4)

We obtained the batched estimation of a at time k,

âk = M−1
k−1πk, (A.5)

where the matrix Mk−1 and the vector πk are defined, respectively, as

Mk−1 := E[xk−1x
T
k−1] +

k−1∑
k′=0

λk−k
′E[xk′−1x

T
k′−1],

πk := E[xkxk−1] +
k−1∑
k′=0

λk−k
′E[xk′xk′−1].

which can be recursively represented as,

Mk−1 = λMk−2 + E[xk−1x
T
k−1],

πk = λπk−1 + E[xkxk−1].
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According to the Woodbury matrix identity [60], we have

M−1
k−1 = λ−1M−1

k−2 − λ
−1M−1

k−1E[xk−1x
T
k−1]M−1

k−2. (A.6)

The recursive representation of (A.5) can then be derived as,

âk = M−1
k−1E[xkxk−1] +

(
λ−1M−1

k−2−λ
−1M−1

k−1E[xk−1x
T
k−1]M−1

k−2

)
λπk−1

= M−1
k−1E[xkxk−1] +

(
M−1

k−2πk−1 −M−1
k−1E[xk−1x

T
k−1]M−1

k−2πk−1

)
= M−1

k−1E[xkxk−1]+
(
âk−1−M−1

k−1E[xk−1x
T
k−1]âk−1

)
= âk−1 + M−1

k−1

(
E[xkxk−1]− E[xk−1x

T
k−1]âk−1

)
. (A.7)

For the proposed recursive and iterative algorithm in Section 3.3.2, corresponding

to the parameter set estimation Θ̂
(i)

k in the ith iteration, the result in (A.7) can be

generalized to (3.16a) which is obtained by maximizing Qk(Θ|Θ̂
(i)

k ).
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Appendix B

Detailed Derivations for Chapter 4

B.1 Gradients of τ in Uniform and Isogradient

Sound Speed Fields

B.1.1 Uniform sound speed field

For a homogeneous sound speed model, the distance between the transmitter at lo-

cation (rT, zT) and the receiver at location (rR, zR) is d =
√

(rT − rR)2 + (zT − zR)2,

and the propagation delay is τ = d/c. The partial derivatives w.r.t coordinates can
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be easily found. For example,

∂τ

∂rT

=
rT − rR

cd
, (B.1)

∂τ

∂c
=
−d
c2
. (B.2)

B.1.2 Isogradient sound speed field

According to the ray theory, the propagation delay in an isogradient sound speed field

can be obtained analytically as [87],

τ = −1

a

(
log

1 + sin θT

cos θT

− log
1 + sin θR

cos θR

)
, (B.3)

where θT and θR are the angle between the ray and the horizontal direction at the

transmitter and the receiver, respectively. Define θT = β + α and θR = β − α, and α

and β can be found by solving Eqs. (10) and (11) in [87]. The gradients w.r.t. the

locations can be computed using Eqs. (13) to (18) in [87].

The gradient of the propagation delay w.r.t. the sound speed parameters, i.e. ∂τ/∂a
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and ∂τ/∂b are derived next. From (B.3) one can obtain

∂τ

∂b
=

1

a

(
1

cos θT

+
1

cos θR

)
∂α

∂b
, (B.4)

∂τ

∂a
= −τ

a
+

1

a

(
1

cos θT

+
1

cos θR

)
∂α

∂a
, (B.5)

where we have used (B.3) and the fact that β depends only on the locations of the

transmitter and the receiver, thus ∂θR/∂b = ∂α/∂b, ∂θT/∂b = −∂α/∂b, ∂θR/∂a =

∂α/∂a, and ∂θT/∂a = −∂α/∂a. To this point, we still need ∂α/∂b and ∂α/∂a to

solve (B.4) and (B.5), which can be obtained by performing partial derivative on both

sides of (B.3). After simple manipulations, we list the results below

∂α

∂a
=
b(zT − zR)

(b+ azR)2

(cosα− sinα tan β)2

2 tan β
, (B.6)

∂α

∂b
=
a(zR − zT)

(b+ azR)2

(cosα− sinα tan β)2

2 tan β
. (B.7)

In the special case where rT = rR, the propagation delay becomes,

τ = −sign(zR − zT) · 1

a
log

c(zT)

c(zR)
, (B.8)
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where sign(x) is the sign of x. When zT > zR, the corresponding gradients are

∂τ

∂rT

=
∂τ

∂rR

= 0, (B.9)

∂τ

∂zR

= − 1

b+ azR

, (B.10)

∂τ

∂zT

=
1

b+ azT

, (B.11)

∂τ

∂a
=

1

a2
log

b+ azR

b+ azT

− b(zR − zT)

a(b+ azR)(b+ azT)
, (B.12)

∂τ

∂b
=

zR − zT

(b+ azR)(b+ azT)
. (B.13)

When zT < zR, the signs of the above gradients are negated. During numerical

implementation, when two nodes are approximately vertically aligned, it is safe to

consider rT = rR and use the corresponding results to avoid numerical problems

caused by 1
rT−rR

in the results of the common cases.

B.2 Gaussian Process Regression

The Gaussian process defined in (4.8) is determined by the mean function mc(s) and

the covariance function K(s, s′) defined in (4.9). Assume some noisy observations of

the function, e.g. ỹ(si), are available at si for i ∈M as

y(si) = c(si) + ε, (B.14)
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where εi ∼ N (0, σ2
ε ) is the additive Gaussian noise. Stack the observations into a

vector y := [y(s1), y(s2), · · · , y(sM), ]T. y follows Gaussian distribution,

y ∼ N (m,V), (B.15)

where m and V are the mean and the covariance matrix, respectively. The i-th

element of m is [m]i = mc(si), and the (i, j)-th element of the covariance matrix is

[V ]ij = Kc(si, sj) + δijσ
2
ε , which is related to the distance between si and sj and the

uncertainty of the measurement itself.

Denote c∗ as the Gaussian process at interested locations s∗. According to the Gaus-

sian Process Regression (GPR) algorithm[96], [cT
∗ ,y

T]T is jointly Gaussian, thus the

conditional distribution of c∗ given y is also Gaussian, i.e., p(c∗|y) ∼ N (m∗,C∗), and

m∗ = ms∗ + Vs∗,sV
†(y −m), (B.16)

V∗ = Vs∗ −Vs∗,sV
†VT

s∗,s, (B.17)

where Vs∗,s is the covariance matrix of the variables at s∗ and s.
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Appendix C

Letters of Permission

C.1 Permission Letters for Chapter 2
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❲❀✷✹✸✳✿✵✸✰✼Ü ✻❖❖❖ ✿❲❲✺✿✾ ❲✾✰❙✸✼✺✼✵✹Ø ✱✸✵❯ ✺✿✳❯ ✾✺❲✾✸✼✵✺❚ ✽✸❅❀✾✺ ✿✼❚P✰✾ ✵✿✷✹✺❝

Ý❨ ✻✽ ✿ ✴❀✷✴✵✿✼✵✸✿✹ ❲✰✾✵✸✰✼ ✰✽ ✵❯✺ ✰✾✸❅✸✼✿✹ ❲✿❲✺✾ ✸✴ ✵✰ ✷✺ ❀✴✺❚Ö ✿✼❚ ✸✽ Ø✰❀ ✿✾✺ ✼✰✵ ✵❯✺ ✴✺✼✸✰✾ ✿❀✵❯✰✾Ö ✿✹✴✰ ✰✷✵✿✸✼ ✵❯✺

✴✺✼✸✰✾ ✿❀✵❯✰✾Þ✴ ✿❲❲✾✰❜✿✹❝

➲➳➵➸➺➻➳➼➳➽➾➚ ➾➪ ➶➳ ➹➪➘➘➪➴➳➷ ➴➬➳➽ ➸➚➺➽➮ ➱➽ ➳➽➾➺➻➳ ÑÒÒÒ Ó➪❐✃➻➺➮➬➾➳➷ ❐➱❐➳➻ ➺➽ ➱ ➾➬➳➚➺➚Ô

▼❨ ß❯✺ ✽✰✹✹✰✱✸✼❅ ✻❖❖❖ ✳✰❲Ø✾✸❅❯✵P ✳✾✺❚✸✵ ✼✰✵✸✳✺ ✴❯✰❀✹❚ ✷✺ ❲✹✿✳✺❚ ❲✾✰❙✸✼✺✼✵✹Ø ✸✼ ✵❯✺ ✾✺✽✺✾✺✼✳✺✴à Ù ÚØ✺✿✾ ✰✽ ✰✾✸❅✸✼✿✹

❲❀✷✹✸✳✿✵✸✰✼Ü ✻❖❖❖❝ á✺❲✾✸✼✵✺❚Ö ✱✸✵❯ ❲✺✾❙✸✴✴✸✰✼Ö ✽✾✰❙ Ú✿❀✵❯✰✾ ✼✿❙✺✴Ö ❲✿❲✺✾ ✵✸✵✹✺Ö ✻❖❖❖ ❲❀✷✹✸✳✿✵✸✰✼ ✵✸✵✹✺Ö ✿✼❚

❙✰✼✵❯PØ✺✿✾ ✰✽ ❲❀✷✹✸✳✿✵✸✰✼Ü

❑❨ ◗✼✹Ø ✵❯✺ ✿✳✳✺❲✵✺❚ ❜✺✾✴✸✰✼ ✰✽ ✿✼ ✻❖❖❖ ✳✰❲Ø✾✸❅❯✵✺❚ ❲✿❲✺✾ ✳✿✼ ✷✺ ❀✴✺❚ ✱❯✺✼ ❲✰✴✵✸✼❅ ✵❯✺ ❲✿❲✺✾ ✰✾ Ø✰❀✾ ✵❯✺✴✸✴

✰✼✲✹✸✼✺❝

Ý❨ ✻✼ ❲✹✿✳✸✼❅ ✵❯✺ ✵❯✺✴✸✴ ✰✼ ✵❯✺ ✿❀✵❯✰✾Þ✴ ❀✼✸❜✺✾✴✸✵Ø ✱✺✷✴✸✵✺Ö ❲✹✺✿✴✺ ❚✸✴❲✹✿Ø ✵❯✺ ✽✰✹✹✰✱✸✼❅ ❙✺✴✴✿❅✺ ✸✼ ✿ ❲✾✰❙✸✼✺✼✵

❲✹✿✳✺ ✰✼ ✵❯✺ ✱✺✷✴✸✵✺à ✻✼ ✾✺✽✺✾✺✼✳✺ ✵✰ ✻❖❖❖ ✳✰❲Ø✾✸❅❯✵✺❚ ❙✿✵✺✾✸✿✹ ✱❯✸✳❯ ✸✴ ❀✴✺❚ ✱✸✵❯ ❲✺✾❙✸✴✴✸✰✼ ✸✼ ✵❯✸✴ ✵❯✺✴✸✴Ö ✵❯✺

✻❖❖❖ ❚✰✺✴ ✼✰✵ ✺✼❚✰✾✴✺ ✿✼Ø ✰✽ Ú❀✼✸❜✺✾✴✸✵ØP✺❚❀✳✿✵✸✰✼✿✹ ✺✼✵✸✵ØÞ✴ ✼✿❙✺ ❅✰✺✴ ❯✺✾✺ÜÞ✴ ❲✾✰❚❀✳✵✴ ✰✾ ✴✺✾❜✸✳✺✴❝ ✻✼✵✺✾✼✿✹ ✰✾

❲✺✾✴✰✼✿✹ ❀✴✺ ✰✽ ✵❯✸✴ ❙✿✵✺✾✸✿✹ ✸✴ ❲✺✾❙✸✵✵✺❚❝ ✻✽ ✸✼✵✺✾✺✴✵✺❚ ✸✼ ✾✺❲✾✸✼✵✸✼❅P✾✺❲❀✷✹✸✴❯✸✼❅ ✻❖❖❖ ✳✰❲Ø✾✸❅❯✵✺❚ ❙✿✵✺✾✸✿✹ ✽✰✾

✿❚❜✺✾✵✸✴✸✼❅ ✰✾ ❲✾✰❙✰✵✸✰✼✿✹ ❲❀✾❲✰✴✺✴ ✰✾ ✽✰✾ ✳✾✺✿✵✸✼❅ ✼✺✱ ✳✰✹✹✺✳✵✸❜✺ ✱✰✾❄✴ ✽✰✾ ✾✺✴✿✹✺ ✰✾ ✾✺❚✸✴✵✾✸✷❀✵✸✰✼Ö ❲✹✺✿✴✺ ❅✰ ✵✰

❯✵✵❲àPP✱✱✱❝✸✺✺✺❝✰✾❅P❲❀✷✹✸✳✿✵✸✰✼✴â✴✵✿✼❚✿✾❚✴P❲❀✷✹✸✳✿✵✸✰✼✴P✾✸❅❯✵✴P✾✸❅❯✵✴â✹✸✼❄❝❯✵❙✹ ✵✰ ✹✺✿✾✼ ❯✰✱ ✵✰ ✰✷✵✿✸✼ ✿ ✯✸✳✺✼✴✺

✽✾✰❙ á✸❅❯✵✴✯✸✼❄❝

✻✽ ✿❲❲✹✸✳✿✷✹✺Ö ❁✼✸❜✺✾✴✸✵Ø ✶✸✳✾✰✽✸✹❙✴ ✿✼❚P✰✾ ã✾✰ä❀✺✴✵ ✯✸✷✾✿✾ØÖ ✰✾ ✵❯✺ ✮✾✳❯✸❜✺✴ ✰✽ å✿✼✿❚✿ ❙✿Ø ✴❀❲❲✹Ø ✴✸✼❅✹✺ ✳✰❲✸✺✴

✰✽ ✵❯✺ ❚✸✴✴✺✾✵✿✵✸✰✼❝

❞❡❢❣❤✐❥❦❧ ♠ ♥♦♣æ ❞❡❢❣❤✐❥❦❧ ❞➄➋➂❤➂➃➁➋ ❞➋➃❧➋❤r s➃➁➉ ➍➄➄ ➅✐❥❦❧➆ ➅➋➆➋❤ç➋➌➉ è❤✐ç➂➁❣ ➆❧➂❧➋➊➋➃❧➉ é➋❤➊➆ ➂➃➌ ❞❡➃➌✐❧✐❡➃➆➉
❞❡➊➊➋➃❧➆➒ ê➋ ➑❡➀➄➌ ➄✐➈➋ ❧❡ ❦➋➂❤ ë❤❡➊ ❣❡➀➉ tì➊➂✐➄ ➀➆ ➂❧ ➁➀➆❧❡➊➋❤➁➂❤➋í➁❡❢❣❤✐❥❦❧➉➁❡➊
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★✩✪✫✬✭ ✮✯✰✱✲✳✴✵✶ ✷✸✴✳✶ ✹✴✺✴✻✼✺✴✸✽ ✴✽

✾✽✿✶❀❁✼✺✶❀ ❂❃✸✱✳✺✴❃

❄✸✯✯✱✽✴❃✼✺✴✸✽ ❅❆✳✺✶✯✳❇

❈❉✰✶❀✴✯✶✽✺✼✲ ❅✺✱✿✴✶✳

❊❋●❍✬■✬●❏✬

❑■❋❏✬✬▲✩●▼◆✭

❖P◗❘ ✮❈❈❈ ❘✺❙ ❂✽✽✱✼✲

❄✸✯✰✱✺✴✽✻ ✼✽✿ ❄✸✯✯✱✽✴❃✼✺✴✸✽

❚✸❀❯✳❙✸✰ ✼✽✿ ❄✸✽❱✶❀✶✽❃✶

❲❄❄❚❄❳

❨❩✪❬❋■✭ ❭✶❪✼ ❫✼❀✼❪✴✿✶❙

❑❩❴✫✩◆❬✬■✭ ✮❈❈❈

❵❛✪✬✭ ❜✼✽❝ ❖P◗❘

❞❡❢❣❤✐❥❦❧ ♠ ♥♦♣qr sttt

✉✈✇①②✉✈✇①②

①③ ④⑤⑥⑦⑧⑨ ⑩ ❶⑤❷④⑧❸❹❺❻❼❶⑤❽
⑥❾⑨⑧❿ ❣❡➀ ➁➂➃ ➄❡❥✐➃ ❧❡
➅✐❥❦❧➆➇✐➃➈ ➀➆✐➃❥ ❣❡➀❤
➁❡❢❣❤✐❥❦❧➉➁❡➊ ➁❤➋➌➋➃❧✐➂➄➆➉

➍➄❤➋➂➌❣ ⑩ ➎❸❹❺❻❾✉❸➏➐ ⑥❾⑨⑧ ❡❤
➑➂➃❧ ❧❡ ➄➋➂❤➃ ➊❡❤➋➒

➓➔→➣↔➣ ↕ ➙↔➣➣→➛➜➝➜↔➞➟ ➠→➡➣→

★❬✬ ➢➤➤➤ ▲❋✬◆ ●❋✪ ■✬➥❩✩■✬ ✩●▲✩➦✩▲❩❛✫◆ ➧❋■➨✩●▼ ❋● ❛ ✪❬✬◆✩◆ ✪❋ ❋❴✪❛✩● ❛ ❍❋■➩❛✫ ■✬❩◆✬ ✫✩❏✬●◆✬➫ ❬❋➧✬➦✬■➫

➭❋❩ ➩❛➭ ➯■✩●✪ ❋❩✪ ✪❬✩◆ ◆✪❛✪✬➩✬●✪ ✪❋ ❴✬ ❩◆✬▲ ❛◆ ❛ ➯✬■➩✩◆◆✩❋● ▼■❛●✪✭

➲➳➵➸➺➻➳➼➳➽➾➚ ➾➪ ➶➳ ➹➪➘➘➪➴➳➷ ➴➬➳➽ ➸➚➺➽➮ ➱➽✃ ❐➪➻➾➺➪➽ ❒➳❮➮❮❰ ➹➺➮➸➻➳❰ ➮➻➱❐➬❰ ➾➱➶➘➳❰ ➪➻ ➾➳Ï➾➸➱➘ ➼➱➾➳➻➺➱➘Ð ➪➹ ➱➽ ÑÒÒÒ

Ó➪❐✃➻➺➮➬➾➳➷ ❐➱❐➳➻ ➺➽ ➱ ➾➬➳➚➺➚Ô

◗❳ ✮✽ ✺❙✶ ❃✼✳✶ ✸❱ ✺✶❉✺✱✼✲ ✯✼✺✶❀✴✼✲ ❲✶❝✻❝Õ ✱✳✴✽✻ ✳❙✸❀✺ Ö✱✸✺✶✳ ✸❀ ❀✶❱✶❀❀✴✽✻ ✺✸ ✺❙✶ ❁✸❀❯ ❁✴✺❙✴✽ ✺❙✶✳✶ ✰✼✰✶❀✳❳ ✱✳✶❀✳

✯✱✳✺ ✻✴✵✶ ❱✱✲✲ ❃❀✶✿✴✺ ✺✸ ✺❙✶ ✸❀✴✻✴✽✼✲ ✳✸✱❀❃✶ ❲✼✱✺❙✸❀Õ ✰✼✰✶❀Õ ✰✱×✲✴❃✼✺✴✸✽❳ ❱✸✲✲✸❁✶✿ ×❆ ✺❙✶ ✮❈❈❈ ❃✸✰❆❀✴✻❙✺ ✲✴✽✶ Ø

❖P◗◗ ✮❈❈❈❝

❖❳ ✮✽ ✺❙✶ ❃✼✳✶ ✸❱ ✴✲✲✱✳✺❀✼✺✴✸✽✳ ✸❀ ✺✼×✱✲✼❀ ✯✼✺✶❀✴✼✲Õ ❁✶ ❀✶Ö✱✴❀✶ ✺❙✼✺ ✺❙✶ ❃✸✰❆❀✴✻❙✺ ✲✴✽✶ Ø ÙÚ✶✼❀ ✸❱ ✸❀✴✻✴✽✼✲

✰✱×✲✴❃✼✺✴✸✽Û ✮❈❈❈ ✼✰✰✶✼❀ ✰❀✸✯✴✽✶✽✺✲❆ ❁✴✺❙ ✶✼❃❙ ❀✶✰❀✴✽✺✶✿ ❱✴✻✱❀✶ ✼✽✿Ü✸❀ ✺✼×✲✶❝

Ý❳ ✮❱ ✼ ✳✱×✳✺✼✽✺✴✼✲ ✰✸❀✺✴✸✽ ✸❱ ✺❙✶ ✸❀✴✻✴✽✼✲ ✰✼✰✶❀ ✴✳ ✺✸ ×✶ ✱✳✶✿Õ ✼✽✿ ✴❱ ❆✸✱ ✼❀✶ ✽✸✺ ✺❙✶ ✳✶✽✴✸❀ ✼✱✺❙✸❀Õ ✼✲✳✸ ✸×✺✼✴✽ ✺❙✶

✳✶✽✴✸❀ ✼✱✺❙✸❀Þ✳ ✼✰✰❀✸✵✼✲❝

➲➳➵➸➺➻➳➼➳➽➾➚ ➾➪ ➶➳ ➹➪➘➘➪➴➳➷ ➴➬➳➽ ➸➚➺➽➮ ➱➽ ➳➽➾➺➻➳ ÑÒÒÒ Ó➪❐✃➻➺➮➬➾➳➷ ❐➱❐➳➻ ➺➽ ➱ ➾➬➳➚➺➚Ô

◗❳ ß❙✶ ❱✸✲✲✸❁✴✽✻ ✮❈❈❈ ❃✸✰❆❀✴✻❙✺Ü ❃❀✶✿✴✺ ✽✸✺✴❃✶ ✳❙✸✱✲✿ ×✶ ✰✲✼❃✶✿ ✰❀✸✯✴✽✶✽✺✲❆ ✴✽ ✺❙✶ ❀✶❱✶❀✶✽❃✶✳❇ Ø Ù❆✶✼❀ ✸❱ ✸❀✴✻✴✽✼✲

✰✱×✲✴❃✼✺✴✸✽Û ✮❈❈❈❝ ❭✶✰❀✴✽✺✶✿Õ ❁✴✺❙ ✰✶❀✯✴✳✳✴✸✽Õ ❱❀✸✯ Ù✼✱✺❙✸❀ ✽✼✯✶✳Õ ✰✼✰✶❀ ✺✴✺✲✶Õ ✮❈❈❈ ✰✱×✲✴❃✼✺✴✸✽ ✺✴✺✲✶Õ ✼✽✿

✯✸✽✺❙Ü❆✶✼❀ ✸❱ ✰✱×✲✴❃✼✺✴✸✽Û

❖❳ à✽✲❆ ✺❙✶ ✼❃❃✶✰✺✶✿ ✵✶❀✳✴✸✽ ✸❱ ✼✽ ✮❈❈❈ ❃✸✰❆❀✴✻❙✺✶✿ ✰✼✰✶❀ ❃✼✽ ×✶ ✱✳✶✿ ❁❙✶✽ ✰✸✳✺✴✽✻ ✺❙✶ ✰✼✰✶❀ ✸❀ ❆✸✱❀ ✺❙✶✳✴✳

✸✽á✲✴✽✶❝

Ý❳ ✮✽ ✰✲✼❃✴✽✻ ✺❙✶ ✺❙✶✳✴✳ ✸✽ ✺❙✶ ✼✱✺❙✸❀Þ✳ ✱✽✴✵✶❀✳✴✺❆ ❁✶×✳✴✺✶Õ ✰✲✶✼✳✶ ✿✴✳✰✲✼❆ ✺❙✶ ❱✸✲✲✸❁✴✽✻ ✯✶✳✳✼✻✶ ✴✽ ✼ ✰❀✸✯✴✽✶✽✺

✰✲✼❃✶ ✸✽ ✺❙✶ ❁✶×✳✴✺✶❇ ✮✽ ❀✶❱✶❀✶✽❃✶ ✺✸ ✮❈❈❈ ❃✸✰❆❀✴✻❙✺✶✿ ✯✼✺✶❀✴✼✲ ❁❙✴❃❙ ✴✳ ✱✳✶✿ ❁✴✺❙ ✰✶❀✯✴✳✳✴✸✽ ✴✽ ✺❙✴✳ ✺❙✶✳✴✳Õ ✺❙✶

✮❈❈❈ ✿✸✶✳ ✽✸✺ ✶✽✿✸❀✳✶ ✼✽❆ ✸❱ Ù✱✽✴✵✶❀✳✴✺❆Ü✶✿✱❃✼✺✴✸✽✼✲ ✶✽✺✴✺❆Þ✳ ✽✼✯✶ ✻✸✶✳ ❙✶❀✶ÛÞ✳ ✰❀✸✿✱❃✺✳ ✸❀ ✳✶❀✵✴❃✶✳❝ ✮✽✺✶❀✽✼✲ ✸❀

✰✶❀✳✸✽✼✲ ✱✳✶ ✸❱ ✺❙✴✳ ✯✼✺✶❀✴✼✲ ✴✳ ✰✶❀✯✴✺✺✶✿❝ ✮❱ ✴✽✺✶❀✶✳✺✶✿ ✴✽ ❀✶✰❀✴✽✺✴✽✻Ü❀✶✰✱×✲✴✳❙✴✽✻ ✮❈❈❈ ❃✸✰❆❀✴✻❙✺✶✿ ✯✼✺✶❀✴✼✲ ❱✸❀

✼✿✵✶❀✺✴✳✴✽✻ ✸❀ ✰❀✸✯✸✺✴✸✽✼✲ ✰✱❀✰✸✳✶✳ ✸❀ ❱✸❀ ❃❀✶✼✺✴✽✻ ✽✶❁ ❃✸✲✲✶❃✺✴✵✶ ❁✸❀❯✳ ❱✸❀ ❀✶✳✼✲✶ ✸❀ ❀✶✿✴✳✺❀✴×✱✺✴✸✽Õ ✰✲✶✼✳✶ ✻✸ ✺✸

❙✺✺✰❇ÜÜ❁❁❁❝✴✶✶✶❝✸❀✻Ü✰✱×✲✴❃✼✺✴✸✽✳â✳✺✼✽✿✼❀✿✳Ü✰✱×✲✴❃✼✺✴✸✽✳Ü❀✴✻❙✺✳Ü❀✴✻❙✺✳â✲✴✽❯❝❙✺✯✲ ✺✸ ✲✶✼❀✽ ❙✸❁ ✺✸ ✸×✺✼✴✽ ✼ ã✴❃✶✽✳✶

❱❀✸✯ ❭✴✻❙✺✳ã✴✽❯❝

✮❱ ✼✰✰✲✴❃✼×✲✶Õ ✾✽✴✵✶❀✳✴✺❆ ✹✴❃❀✸❱✴✲✯✳ ✼✽✿Ü✸❀ ä❀✸å✱✶✳✺ ã✴×❀✼❀❆Õ ✸❀ ✺❙✶ ❂❀❃❙✴✵✶✳ ✸❱ ❄✼✽✼✿✼ ✯✼❆ ✳✱✰✰✲❆ ✳✴✽✻✲✶ ❃✸✰✴✶✳

✸❱ ✺❙✶ ✿✴✳✳✶❀✺✼✺✴✸✽❝

❞❡❢❣❤✐❥❦❧ ♠ ♥♦♣q ❞❡❢❣❤✐❥❦❧ ❞➄➋➂❤➂➃➁➋ ❞➋➃❧➋❤r s➃➁➉ ➍➄➄ ➅✐❥❦❧➆ ➅➋➆➋❤æ➋➌➉ ç❤✐æ➂➁❣ ➆❧➂❧➋➊➋➃❧➉ è➋❤➊➆ ➂➃➌ ❞❡➃➌✐❧✐❡➃➆➉
❞❡➊➊➋➃❧➆➒ é➋ ➑❡➀➄➌ ➄✐➈➋ ❧❡ ❦➋➂❤ ê❤❡➊ ❣❡➀➉ të➊➂✐➄ ➀➆ ➂❧ ➁➀➆❧❡➊➋❤➁➂❤➋ì➁❡❢❣❤✐❥❦❧➉➁❡➊
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C.2 Permission Letters for Chapter 3

�✁✂✄✁☎✆✂� ✝✞✟✠✡☛☞✞✌✍✎ ✏✑ ✒✓✔✑✕✞✟✠✡ ✒☞✖✗✕✗✌✘✖ ✒✖✌✡✖✕

✠✡✡✔☛✙✁✁☛✂✆✆✚✘✓✔✑✕✞✟✠✡✚✘✓✛✁✜✔✔✢✞☛✔✗✡✘✠✣✖✕✤☞✖✡✥✦✓✕✛✧✓✔ ✂✁✂

★✩✪✫✬✭ ✮✯✰✱✯✲ ✳✴✵✲✰✱✯✶ ✷✯✵ ✸✹✲✵✱✺✻✱✴✯

✴✼ ✻✽✲ ✾✷✹✶✲✿❀✺✷✰✲ ❁✲❂❃✴✹✷✰

❄✷✹✱✷✻✱✴✯ ✱✯ ❅✯✵✲✹❆✷✻✲✹ ❇✺✴❈❉✻✱✺

❊✴❂❂❈✯✱✺✷✻✱✴✯ ❊✽✷✯✯✲✰❉

❋●✪❍■❏✭ ❑✲✯❉✽✲✯✶ ❀❈✯

▲●▼✫✩◆❖✪✩■P✭ ◗❘❘❘ ❇✺✺✲❉❉

▲●▼✫✩❙❍✬❏✭ ◗❘❘❘

❚❖✪✬✭ ❯❱❲❳

❨❩❬❭❪❫❴❵❛ ❜ ❝❞❡❢❣ ❤✐✐✐

❥❦❧♠♥❥❦❧♠♥

♠♦ ♣qrst✉ ✈ ✇q①♣t②③④⑤⑥✇q⑦
r⑧✉t⑨ ❭❩⑩ ❶❷❸ ❹❩❴❫❸ ❛❩
❺❫❴❵❛❻❼❫❸❽ ⑩❻❫❸❴ ❭❩⑩❪
❶❩❬❭❪❫❴❵❛❾❶❩❿ ❶❪➀➁➀❸❛❫❷❹❻❾

➂❹❪➀❷➁❭ ✈ ➃②③④⑤⑧❥②➄➅ r⑧✉t ❩❪
➆❷❸❛ ❛❩ ❹➀❷❪❸ ❿❩❪➀➇

➈➉➊➋➌➋ ➍ ➎➌➋➋➊➏➐➑➐➌➒➓ ➔➊→➋➊

★❍✬ ➣↔↔↔ ↕■✬❙ P■✪ ❏✬➙●✩❏✬ ✩P↕✩➛✩↕●❖✫❙ ➜■❏➝✩P➞ ■P ❖ ✪❍✬❙✩❙ ✪■ ■▼✪❖✩P ❖ ➟■❏➠❖✫ ❏✬●❙✬ ✫✩◆✬P❙✬➡ ❍■➜✬➛✬❏➡

➢■● ➠❖➢ ➤❏✩P✪ ■●✪ ✪❍✩❙ ❙✪❖✪✬➠✬P✪ ✪■ ▼✬ ●❙✬↕ ❖❙ ❖ ➤✬❏➠✩❙❙✩■P ➞❏❖P✪✭

➥➦➧➨➩➫➦➭➦➯➲➳ ➲➵ ➸➦ ➺➵➻➻➵➼➦➽ ➼➾➦➯ ➨➳➩➯➚ ➪➯➶ ➹➵➫➲➩➵➯ ➘➦➴➚➴➷ ➺➩➚➨➫➦➷ ➚➫➪➹➾➷ ➲➪➸➻➦➷ ➵➫ ➲➦➬➲➨➪➻ ➭➪➲➦➫➩➪➻➮ ➵➺ ➪➯ ➱✃✃✃

❐➵➹➶➫➩➚➾➲➦➽ ➹➪➹➦➫ ➩➯ ➪ ➲➾➦➳➩➳❒

❲❮ ◗✯ ✻✽✲ ✺✷❉✲ ✴✼ ✻✲❰✻❈✷✰ ❂✷✻✲✹✱✷✰ Ï✲Ð✶ÐÑ ❈❉✱✯✶ ❉✽✴✹✻ Ò❈✴✻✲❉ ✴✹ ✹✲✼✲✹✹✱✯✶ ✻✴ ✻✽✲ ❆✴✹Ó ❆✱✻✽✱✯ ✻✽✲❉✲ ❃✷❃✲✹❉❮ ❈❉✲✹❉

❂❈❉✻ ✶✱Ô✲ ✼❈✰✰ ✺✹✲✵✱✻ ✻✴ ✻✽✲ ✴✹✱✶✱✯✷✰ ❉✴❈✹✺✲ Ï✷❈✻✽✴✹Ñ ❃✷❃✲✹Ñ ❃❈Õ✰✱✺✷✻✱✴✯❮ ✼✴✰✰✴❆✲✵ ÕÖ ✻✽✲ ◗❘❘❘ ✺✴❃Ö✹✱✶✽✻ ✰✱✯✲ ×

❯❱❲❲ ◗❘❘❘Ð

❯❮ ◗✯ ✻✽✲ ✺✷❉✲ ✴✼ ✱✰✰❈❉✻✹✷✻✱✴✯❉ ✴✹ ✻✷Õ❈✰✷✹ ❂✷✻✲✹✱✷✰Ñ ❆✲ ✹✲Ò❈✱✹✲ ✻✽✷✻ ✻✽✲ ✺✴❃Ö✹✱✶✽✻ ✰✱✯✲ × ØÙ✲✷✹ ✴✼ ✴✹✱✶✱✯✷✰

❃❈Õ✰✱✺✷✻✱✴✯Ú ◗❘❘❘ ✷❃❃✲✷✹ ❃✹✴❂✱✯✲✯✻✰Ö ❆✱✻✽ ✲✷✺✽ ✹✲❃✹✱✯✻✲✵ ✼✱✶❈✹✲ ✷✯✵Û✴✹ ✻✷Õ✰✲Ð

Ü❮ ◗✼ ✷ ❉❈Õ❉✻✷✯✻✱✷✰ ❃✴✹✻✱✴✯ ✴✼ ✻✽✲ ✴✹✱✶✱✯✷✰ ❃✷❃✲✹ ✱❉ ✻✴ Õ✲ ❈❉✲✵Ñ ✷✯✵ ✱✼ Ö✴❈ ✷✹✲ ✯✴✻ ✻✽✲ ❉✲✯✱✴✹ ✷❈✻✽✴✹Ñ ✷✰❉✴ ✴Õ✻✷✱✯ ✻✽✲

❉✲✯✱✴✹ ✷❈✻✽✴✹Ý❉ ✷❃❃✹✴Ô✷✰Ð

➥➦➧➨➩➫➦➭➦➯➲➳ ➲➵ ➸➦ ➺➵➻➻➵➼➦➽ ➼➾➦➯ ➨➳➩➯➚ ➪➯ ➦➯➲➩➫➦ ➱✃✃✃ ❐➵➹➶➫➩➚➾➲➦➽ ➹➪➹➦➫ ➩➯ ➪ ➲➾➦➳➩➳❒

❲❮ ❁✽✲ ✼✴✰✰✴❆✱✯✶ ◗❘❘❘ ✺✴❃Ö✹✱✶✽✻Û ✺✹✲✵✱✻ ✯✴✻✱✺✲ ❉✽✴❈✰✵ Õ✲ ❃✰✷✺✲✵ ❃✹✴❂✱✯✲✯✻✰Ö ✱✯ ✻✽✲ ✹✲✼✲✹✲✯✺✲❉Þ × ØÖ✲✷✹ ✴✼ ✴✹✱✶✱✯✷✰

❃❈Õ✰✱✺✷✻✱✴✯Ú ◗❘❘❘Ð ß✲❃✹✱✯✻✲✵Ñ ❆✱✻✽ ❃✲✹❂✱❉❉✱✴✯Ñ ✼✹✴❂ Ø✷❈✻✽✴✹ ✯✷❂✲❉Ñ ❃✷❃✲✹ ✻✱✻✰✲Ñ ◗❘❘❘ ❃❈Õ✰✱✺✷✻✱✴✯ ✻✱✻✰✲Ñ ✷✯✵

❂✴✯✻✽ÛÖ✲✷✹ ✴✼ ❃❈Õ✰✱✺✷✻✱✴✯Ú

❯❮ ✮✯✰Ö ✻✽✲ ✷✺✺✲❃✻✲✵ Ô✲✹❉✱✴✯ ✴✼ ✷✯ ◗❘❘❘ ✺✴❃Ö✹✱✶✽✻✲✵ ❃✷❃✲✹ ✺✷✯ Õ✲ ❈❉✲✵ ❆✽✲✯ ❃✴❉✻✱✯✶ ✻✽✲ ❃✷❃✲✹ ✴✹ Ö✴❈✹ ✻✽✲❉✱❉
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