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A b stra ct

This project extends known theorems for scalar valued functions to 
the context of Banach space valued functions. In particular, it contains 
generalizations of the classical theory of Lebesgue Integrals, complex 
measures, Radon-Nikodym theorem and Riesz Representation theorem.
We explore some properties of functions whose domains are abstract 
Banach spaces, where the usual derivatives are replaced by Radon- 
Nikodym derivatives.

The first two Chapters are devoted to infinite dimensional measurable 
functions and the problem of integrating them. Most of the basic 
properties of Bochner integration are forced on it by the classical 
Lebesgue integration and the usual definition of measurability.

The Radon-Nikodym theorem for Bochner Integral is the subject to 
Chapter III. The roles of reflexive spaces, separable anti-dual spaces 
and the Radon-Nikodym property of Banach spaces are also discussed 
in this Chapter. One of the most interesting aspects of the theory of 
the Bochner integral centers about the following questions: When does
a vector measure F: Ʒ ------>X arise as a Bochner integral of an L1(S,X)
function (i.e. F(E) = ∫ f dm)?

E
And conversely, if f e  L1}(S,X). Then, is F: Ʒ ------>X, defined by F(E) =  ∫fdm),

E
a countably additive vector measure, absolutely continuous with respect 
to the positive measure m? These two questiones are examined by the 
Radon-Nikodym theorem and the Riesz Representation theorem. It is worth 
observing, that the relationsip between these theorems are considered to 
be just a formality of translating a set of basic definitions from one 
context to another.

There are theories of integration similar to the Bochner Integral, that 
allow us to integrate functions that are only weakly measurable (The 
Pettis Integral) with respect to a positive measure. Also, the ultimate 
generality of the Bochner Integral, the Bartle Integral, for integrating 
vector valued functions with respect to a general vector measure.
However, these theories do not occupy a central role in our study and 
we limit ourselves to only mentioning [1] as an excellent reference.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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INTRODUCTION

The theory presented in this report may be used in a variaty of ways. One 
application of it is in the study of the Radon-Nikodym theorem and its 
relations to the topological and geometric structure of Banach spaces. 
Another one concerns existance proofs in some infinite dimensional 
problems. Often, people obtain estimates on solutions to approximate 
problems in an LP(S,X) space and it is nice to be able to use that LP(S,X) 
is reflexive, provided that X is. Thus, applying the Eberlein-Smulian 
theorem, one can extract a weakly convergent subsequence, the limit of 
which will, sometimes, be a solution of the problem. This is a standard 
procedure used in books like [1], [9], [11] and prerequisite material to 
read many papers, eg. [2], [4], [8], [15], [16]. Next, but not less important, 
is the use of the Radon-Nikodym and the Riesz Representation theorems 
in the theory of integral representation of linear compact operators in 
£.(Z.‘(5,3,m) ; x), see [1],

Though, all of the facts, theorems and results in the project are based 
on “Vector Measures”, by Diestel (Kent State U.) and Uhl (U. of Illinois), 
there are significant differences in the presentations, some of which 
we would like to point out:

1) The real Banach spaces and the dual spaces are extended in the project
to complex spaces and anti-dual spaces, respectively. Note that A 
element of the anti-dual space X  means that A(kx + y) = kA(x) +A(y).
One reason for using the anti-dual space rather then the dual space is
that the Riesz map, R:H----- >H', defined by is linear, for
H' being the anti-dual of the Hilbert space H\

2) About the definition of a measurable function:
In the project: * (• ):£ — >X is measurable, if xn(s) n_+—>x(s), V seS .

a . e .

However, the book and most other sources, only require xH(s)
Here, *„(•) are simple functions. Of course, both definitions are the 
same if the measure space (S,3,m) is complete (i.e. A c B c C , A, C e 3 

and m(C-A) = 0 implies Be 3).

Ivaylo D. Dinov “Bochner Integrals and Vector Measures’
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For example, Lebesgue measure on (-∞ , ∞ ). Our approach has the 
advantage of ensuring validity of the theorem that x(•) is measurable 
if and only if x~l(U) is measurable, whenever U is open, even in the case 
where (S,3,m) is not complete (say Lebesgue measure on the a-algebra 
of the Borel sets, or a product measure).

Having this theorem simplifies the presentation of the Pettis’ 
Measurability theorem and harmonizes better with the standard theory 
for scalar valued functions, where the measurable functions are defined 
by saying that the inverse images of open sets are measurable, see [13];

3) In the book the Riesz Representation theorem is stated and proved as/
a necessary and sufficient condition (i.e. (LP(S,X)) = Lp'(S,X') <=> X' has 
the Radon-Nikodym property with respect to the finite measure m). 
However, in this report we leave out the proof of necessity deliberately.

In this project the reader may find remarkable similarities between 
most of the results developed for functions with values in a Banach 
space and scalar valued case. For example, the proofs of Radon-Nikodym 
theorem, Riesz Representation theorem and reflexiveness of LP(S,X), in 
the report, are just generalizations using the usual proofs for scalar 
valued functions. On the other hand, some differences appear, as well. 
There is no Monotone Convergence theorem or Fatou’s lemma, and the proof 
of the Dominated Convergence theorem is basically different.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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MEASURABLE FUNCTIONS

Definition 1: A triple (5,3,m), is called a measure space if:
1.1) 5-set, 3 - a  algebra:

oo

(1.1.1) 0 ,563 , (1.1.2) Ae3 =» Ac e 3, (1.1.3) A ^ 3  ).
1=1

1.2) rn :3  measure Ô oo] . (2 .1) m(0) = 0,

(1.2.1) m(0) = 0, (1.2.2) Ac=B, A,Be 3 => m(A) < m(B),
f  o o  \  oo

(1.2.3) If is a disjoint collection, then m LK-
V»=l J  i=l

Definition 2: (5,3,m) is called cr-finite if 3 {5,}!! g3 such that £, t  5 and
'  '  * ^ i —>oo

m(Bl)<°o v / gN. Through this paper we always assume, that 
(5,3,m) is at least cr-finite, if not finite.

m
Definition 3 : A function *n(»):5----- >x is called simple, if xn(s) = ^j ciXEi (s>>*

i=1
where £;<=3, V i, and xn{•) is zero off a set of finite measure. 

Definition 4: A vector function *(•) :5-»(x,f ||x) is said to be:
4.1) Strongly measurable if there exists a sequence of simple 

functions {*„(•)}“ , such that xn(s) p°mtwlse >x(s), v^g 5;
n  1 n -> o o

4.2) Weakly measurable if v/ gX' /(*(•)) is a measurable
scalar valued function.

Theorem 1: Let (x,|| \x) be a separable Banach space. Then x:5-»(x,|| |x) is 
strongly measurable if and only if x~l(U) is measurable for 

all u open in x  (i.e. x~\u)e3 ).

Proof: 1) Sufficiency: Suppose x~l(U) is measurable, for all u open in x. 
Then x~l{U) is measurable for any Borel set u. Since

implies (^"1(C/))c = ̂ “1(C/c)e 3 . But x~l Qc/f = 0 ^ _1(C/i) f and so the set
v»=i

xiJ = [u^X: x~*(U)e3j forms a <r-algebra containing the open sets. 
Therefore, ¥  contains the Borel sets. Thus x~l(U) is measurable 

for any c/-Borel.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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Also, since x is separable 3 {an}~= ;1, a dense subset ofx.

Let ^ = | zeX :  Ik -^ ||x <min{||z-am||x : l < m < n y

(k-\ \
Thus, b% = jc-1(t/jfe) is measurable. Also, let B2 = b£- \Jb" .

<i=1 >
n

define: = neN (the closest approximation
1=1

to x(s) from {a/}"=1. Therefore, xn(s) — >*(■?), because 
is dense in x. Now, since (S,3,m) a-finite, 3 {B ^ e Z  such that 

Bi T S and « v/eN.
/—»°o

define: y* =*£„**. ?„(.?)■ poiDt'vlse >*($) in x, because for any sex
n—><»

= for large n. Also, clearly >>„(•) is a simple function, 
because it is 0 off a set of finite measure ( m(Bi)< «> V i e N ) .  

Therefore, *(•) is strongly measurable. <8>

2) Necessity: Let *(•) be strongly measurable thus 3 {*„(»)}~=1 -simple 
such that xn(s) P°intwise >̂ (5), v^e5. Let {at} * \ be the values of *nCs), so

n—>oo
P

xn(s) = 2aiX%(s) =» W  = {i: x„(j)ew}= (J e,-, where w is open in X,
1=1 a,eW

so x~l(W) is measurable. By same argument as in 1) x~l(W) is 
measurable for any Borel set w. Let u be any open set in x and 
let {vn};=1 be a sequence of open sets satisfying VHcU, Vn c  Vn+l

neN and u = \Jvn, then x~\vp)^\J f\x?(Vp) ^x~\vp) and
f l~  1 n=l k -n

x'\U) = 0 x ' ‘( V , ) c 0 h j  ( V < V f )] =  0 ^ ( r , ) c * - * ( l / ) .  therefore
p=1 p=l V «=l Jk=n )  p = 1

x~\U) = ufun x?<yp)] countable union of measurable sets, so
p=l\«=l k=n J

x~\u) is measurable for any open set u in x.

<8>

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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Theorem 2\ (Pettis 1938) Let (x,| ||x) be a separable Banach space and 

*(•):(&3,m> weakiy->[x\ || ), then *(•) is strongly measurable.
measurable

Lemma l l  If (*>|| ||x) be a separable Banach space and ||/|x^ i }

be the unit ball in x\ then there exists a sequence | /n } ĉzB' 

such that for all f0^B\ there exists a subsequence { / „ , } of 

\fn }°°, such that /oU)=lim fn (X) for all x<=x.

Proof: Let {a,}” , be a countable dense set in X. Consider the mapping
<Pn -B'--given by ?„(/)= (/(a,), .... /(«„))• c n is separable

and so is [see .Claim on p. 6]. That is, there exists { / * }~_ in s'

so that [vnUk))°l=l is dense in <p„(B’). Define {fp}~ ■ { /* } * ll=1* let

/0eS', choose / f t e{/,}J=1 such that |/o(aI) - / Pl(a,)|<;(±J> /= 1, 2....i.
Therefore, fPi{at) >/0 ) for all at and this implies that

fPl(*)■ f->oo >/«,(*) for all x e x  because is dense. <s>

Proof: [Pettis theorem] (1) First we show that *(•) weakly measurable
implies |*(*)|X :S----- >[0,oo] - measurable scalar valued function.

Suppose *(•) weakly measurable, let a  = {se s : tx(sHx < a) ,
Ay = peS: |/U(5))|<a}, observe that As p|Ay. By Hahn-Banach theorem

there exists /,(•), such that \fs\\x.= i and |/,(^ ))| = |^)(|x . Therefore 
P) Ay ^  p|Ay c  A, and so a = p)Ay. By lemma 1 there exists a sequence 

\ f \ x ^  f. ' l f \ x ^
oo

{fP} such that P |Ay = P |Ay . Thus A is measurable as a countable
WNi p=i '

intersection of measurable sets (notice that x(•) weakly 
measurable implies /(*(•»  measurable scalar valued function and 
so A/? are measurable sets).

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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(2) Now we observe that if *(•) is weakly measurable, then so is 
[*(•)-**], aeX . Therefore, x~l(B(a,r))={seS: ||jc(5)-a lx <r} is measurable 

for every ball B(a,r). x is separable, thus x  has a countable basis of 
such balls. So, if u is open in x  then there exist balls B(a,r) such 

that c/ = (j5(a,r) and jt"1( [ / ) = |J r 1(B(fl,r» countable union of measurable 
sets, that means x~l(U) - measurable for all u open. By theorem 1, 

*0 ) is strongly measurable. 0

.GoroJJ.&ry.....1.: *0 ) is strongly measurable if and only if *(•) is separably 
valued and weakly measurable.

Proof: 1) Necessity: Let *(•) be strongly measurable, then there exists a 
sequence of simple functions xn(s)--^ iD̂ ^ x(s)f if f^ x \  then

n—>»
>/(*(» ) and {/(^„(5)}~=1 is a sequence of measurable

n—>°o
functions (composition of continuous and measurable is a 

measurable function). Thus /(*(•)) is measurable as a limit of 
measurable functions. To see that *(•) is separably valued we 

observe that xn(s) P°mtwise >x(s), where xn{s) are simple thus if
n—><»»

D = {*n(s): seS}, d is separable and contains the values of 
xn(s), neN , therefore dx={x(s): seS}cD and thus the following 
claim gives that dx is separable;

Claim: Let m  be a separable metric space and TcM . Then t is separable. 

Proof: If m is separable and {a„}~=1 is dense in m , then

B = |{B(fln,r)}“=1: r e 0 n(O,oo)| will be a countable basis of m .

Define: B = {t/eB: UnT*0}, since B is countable, B = {t/y}J_i .

Take pjeUjnT, v/ew , Therefore, {pj} ^  will be dense in t .

0

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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2) Sufficiency: Let *(•) be weakly measurable and separably valued 
(i.e. *(S) is separable). Let be dense in x(S) and

z = j X (a*+% );y*: «<°°- aktbkeQy yk*{yP}~
U=i

then z is countable. Letting y - z implies that Y is separable, as 
a closure of a countable set, moreover Y is a Banach space with 
respect to the norm on x.

Now pick any / e T ,  y is a subspace of x , hence by Hahn-Banach 

theorem we can extend / e f  to an element f  of X' such that ^  = / .

Recall that *(•) is weakly measurable, thus /(*(•)) is a 
measurable scalar valued function and f(x(s)) = /(*($)), VseS.
Applying Pettis theorem for *(»):S—wea]dy >Y, a separable Banach

measurable

space, we obtain that *(•) is strongly measurable.

Theorem 3: (Another version of Pettis theorem)

Let X' be separable and / ( • ) :£  ™-ak~* >x'
measurable

(i.e. V x g X, / ( • ) *  is a measurable scalar valued function). 
Then / ( • )  is strongly measurable.

Lemma 2: Let b = {jcgX: H x < i} be the unit ball in x. Then if x ' is 
separable, there exists a sequence {*m}~=1<=fl satisfying: 

For all xeB there exists a subsequence °f {*m}~=i
such that x*(;tm )—; for all x*eX'.* k—»oo

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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Proof: (Lemma 2)
x ' separable, let D={^}~_1 be dense in x'. As in the proof of 

Lemma 1, we define:
Qn'B >cn by <pnU) = (*i(*), x2(x)t *£(*)). 

cn is separable so there exists czB , for all n, satisfying:

{?«(** )}~=1 dense in <jon(B).

Let {*p}J=1*{*?}J . thus if xeB there exists a sequence

satisfying x*(xp y ™ - - ^ x*(x)t for every jc*<=d . 

Since D is dense in x\ it follows that this holds for all / e x ' .
0

Proof: [Theorem 3]

(1) First we show that if / ( • )  is weak-* measurable 
then |y*(.)| is measurable.

Let A = {je,S: ||/(j)||x <a| and Ax = js e S: |/(.y)(*)| <a}.

Clearly, A cp |A X) where B is the unit ball in X but if
xeB

[y*Cs)(*)|̂ tf> Vjcg B, then and so a = PjA*.
X xeB

Now by lemma 2, there exists a sequence {*P}~=1 in B 

such that P|Ax = p|A^ , therefore, A = f]AXp.
x eB  p =1 p =1

Note, that AXf is measurable for all p, since the mapping
.s----- >y*(s)(xp) is measurable ( remember, that / ( • )  is weak-*
measurable by the hypothesis in theorem 3 ). Hence, A is 
measurable as a countable intersection of measurable sets.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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(2) Since a is measurable, | / ( #)|x, is measurable. Let a* <=x',
/ ( • )  weak-* measurable, implies that so is (y*(•)-<?) . Therefore,

if B(a*,r) is any ball in X', y* = jseS: | | ; y * <r} *s
measurable. But x' is separable, thus it has a countable 
basis of such balls (i.e. if u is open in x', then u = (J Bk(a,r)

k< oo
where a* ex', r>o). Then y*~\u)= is measurable

k<°°
as a countable union of measurable sets. Since x' is assumed 
to be separable, by theorem 1, / ( • )  is strongly measurable.

0

Theorem 4: If x' is separable, so is x.

Proof: Let £={*€X:  M x <i} be the unit ball in x . Since x' is separable 
applying lemma 2, we obtain a sequence {*m}~=1c fl with the

property: v* gB, <={*m}~=1 such that whenever x*eX',
Let

V  =  \ ^ j { ak + ibk)Xmk : n<°°. ak,bk^Qt e{*m}~=1J, 
then v is  a separable subspace of x. We claim that: v ^ x .

If not, there exists an element *0e X - v .  By the separation 
theorem, there exists x*eX' satisfying x*(xo)*0, x*(v) = o VveV.

Definitely, xo*0, and j^ r-eB .
Ir° lx

Therefore, v ^ x  and so x is separable.
0

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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1 0

Corollary.....2. If x  is reflexive Banach space, then x is separable 
if and only if x' is separable.

Proof: 1) Sufficiency is given by theorem 4, x' separable =»x separable;

2) Necessity: Let x be separable and reflexive. Then the mapping 
6 :X -  1- x", defined by 0(x)x*=x*(x) will be onto.

onto

X"*6fc)**
T

jcgX --- > X' 3/

In addition, e is linear and continuous, so if {^n}~=1 is dense in x, 
then {(&n)}7=i W,H be a countable dense set in the double-dual 
space x". Now we apply theorem 4, for x' andx", to get that 
the separability of x" implies separability of x'.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures"
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Definition 5: Let *(•):(£,3 .m )-slronelW x,| | ), where (5,3,m)
measurable

measure space and (x,|| |x) is a Banach space. 
Bochner integrable if:

is a finite 

Then *(•) is

1) There exists a sequence of simple functions {*n}~=1, 
such that xn(s) ?°'ntwise

n—
2) And J|[xw(s) -  ̂ (5)|xti/n - nk_̂ oo > 0.

5

Definition

Remark;

6.1) If xn(s)=YlckXEt(s) is simple then J*n(5)^  = Xc*m(E*>;
*=1 $ *=i

6.2) If *(•) is Bochner integrable, then jx (s)dm =  lim j x k(s)dm.
s k~*°°s

Note that (x,|| |x) will be in general an infinite diminsional 
space, thus ck are no more constants, rather they are infinite 
dimensional vectors. Now we will be showing that the Bochner 
integral is well defined.

Proposition 1: The Bochner Integral is well defined on simple functions.

p q
Proof: Suppose x„(s)=’̂ c/cz Ei(s) = '^d1Xf:(s), VseS. We need to show that

*=i /=i

m r  r  P  P

note that: J a ^ c kxEk(s)dm = j^ A (c k)xEk(s)dm = y£ lA(ck)m(Ek)=A X ,ckm(Ek)
5 k=l sk=1 k=l U=1

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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ZJckm(Ek) = 2j<iim(Fl ). Let AeX ' , then A ^ c kx Ek(s) = A * V^ S .
* = i  z = i  U = i  J  u = i  >
Consequently, since the integral is well defined on scalar valued

functions in i}(S ,q , we obtain \ A ^ c kx Ek(s)dm = \ ̂ d i x Fi{s)dm. Also,
5 *=1 c Z=1
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f ^  9 £ g 1
j  AZ jdiXF,(s)dm = j^ A ( d ,) x F,(s)dm = j j A(dl )m(Fl) = A ^ d ^ F t )  . 
S 1=1 5/=l /=1 l/=l >

(  P \ f  q  \
Hence, A £ ckm(Ek) = a  . Now since A gX' was arbitrary

U=l J w=i >
p 11

we have that: X ĉ m(£A:) = X ^ m(F^- 
*=1 /=!

<8>
Bemarks;. (1) The Bochner integral is linear on simple functions:

Sk=1
f p pJ axn(s)dm = J £ ackx El (s)dm = £ ackm(Ek) =

*=1
p p

a^Ckm(Ek) = a j ^ c k%Ek (s)dm = a jx n(s)dm; 
k=1 S*=l

P <7 P <1
Let xn(s)=±j ckx E,U)> ym(s) = 2 f̂>lXfi(s), then

*=i /=i *=1 /=i

will be a simple function and thus by the very definition
r X  *
J xn(.s)+ym(5)Jm = 2],citm (^ )+ ^ rf/m(F/). Here we used the fact that 
s k=1 /=i

the Bochner integral is well defined on simple functions.

<8>

(2) j k  (5)||xrfm>[Jxn(5)Jm| for simple functions. To show this let
5 IS \x

P
xn(s) = ĵCkXEk(s) an6 {dt be the set of all distinct non-zero

k=1
m

values of x„Cs). Also, let Fi =x^\di'),i = thus xn(s) = ̂ jdixFlGO-
i=l

m
Observe, that = I K  ||x ^ (5 ) ,  Since VseS=>seFio for

1=1
m

some <0 and ^  therefore, ||x„M|x = |4o \x = Y\d\xXF,(*)■
f>f0 i=l

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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Hence,
m m m II 8

j'lxn(.sAxdm = JXKIIjf (i) = XKIxm(f‘)- =l\x„(s)dm ;
s  S»=1 i=l 11=1 IIX IU X

0

Theorem 5: Let *(•) be Bochner integrable, then the Bochner integral 
$x(s)dm is well defined.
s

Proof: Suppose {4}~  > « = L2 are two sequences of simple functionsl J n=l
such that

xn(s) l=l2oo >*C0» VseS, J |4 (^ ) -4 (^ ) | |^ m  ->0, i  =  1,2.
n-^oo 5

We need to show that jxn(s)dm and jx%(s)dm have the same limit, as
s s

n->oo and that the limit exists.

1) Existance of the limits:

which is assumed to converge to 0. Thus, forms a

Cauchy sequence in a Banach space. Therefore, 3 l im jj<l(s)dm, i = 1,2;
n °° s

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”

p p p
(3) If AeX' , *„(*) = X c**£,(*), then j A'LckXE,(^m = Aj'^jckXEt(s)dm:

k= l s *=1 5*=1

/ ^ ic tx£t(sWm= |;/A(ct )x£t(i¥m= £  A(ct )m(Et ) = 
s k= \ k = \s  *=1

=  A ^ c km(Ek) = A \ '£ i ckXE
yk=i y s*=i

0

1J 4 (s)dm - J 4 (s)dm = IJ (4 (5) - xlk(s))dm V J |4 (4- 4 (•s>||x dm' * = V2 * 
b  5 lx b  x 5



1 4

< lim inf f|4(s)—xi(j)l dm+hm inf f xj(s)—x%(s)\ dm< —+— = e, since 
k—>o° " *X n —>« J H HX 2 2

5 5

J||4Cs)-4,(s)|| dm< — , * = 1,2 whenever n and m are large enough.

<8>

Theorem 6: Let *(•) be defined on a finite measure space then
*0) is Bochner integrable if and only if *(•) is strongly 

measurable and J||jc(5)lxJm <«.

Proof: 1) Suppose that *(•) is Bochner integrable, then *(•) is strongly
measurable and there exists a sequence of simple functions

{ *„ ( .)} - ,  xn(s) P0̂ ^ . >jc(5). By Fatou’s lemma
n ~ L

-x{s)\xdm < lim inf j\xn(s)-xm(ŝ \xdm 
s s s m~*°° s

thus JIxis^hxdm<j||*rt(s)||xdm + lim inf J||*n(s) - xm(j)||xdm, now if n and m 
S s m->°° 5

are large J||xn(s)-*m(s)||xd/n<il therefore, J||jc(5)||x^m< J||a:n(5)||x^m+i<oo.
5 s s

2) To show the other direction, we let *(•) be strongly measurable 
and Define G„ = [seS: |*„(.s)|x <;2||*M|x} and

5
f xn(s), s g Gn (/.e|*n(j)||x < 2||x(.s)||x) 

ynU) =  Xn(s )X G .W =  |  0_ , eGn (l'.e. ^ n(i)|x > 2||x(^|x )-

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”

2) J x\ (s)dm -  J x\ (s)dm < J (4  (s) -  x\(s)jdm < J (s) -  x\ (s)||̂  dm <
t  5 X \\s x S

^ J |4 (•*) -  x(s)|x dm + J|*Cs)- x l ( s ^ d m <  
s s

|Since: |^(s)-jf(5)J^ >0, |4(.s)-x(.s)| = lim||jri(j)-4(^)|Jf» * = l»2j  

[ Applying Fatou's lemma we obtain:



1 5

Therefore, if x(s)= 0 then yn(s)=o, VneN and if *(.s)*o then 
y„(s) P ° ^ e >*(*)

{since *„(,) ■*”  >*w  }.
n—> ° °  n—> ° °

Furthermore, |y/I(̂ )||A.<2||jc(̂ )||x, VneA, sg5, then 
k W -y m ^ l*  ^|y*M|x +ivmr̂ >|x s 4\\x(six  € Remember, that
|yn(s)-ymWllv------------- >0, so applying the Dominated
Convergence Theorem (for l‘ (S) functions) we obtain: 
lim f|v„W-yM(i)|L</m=f lim \yn(s)-ym(s ix dm = o and hence

m,n— > « *  *  m,n—> ° °5 5
lly*W-ymWM"» >0- Then {y„«}“=1 is the desired

sequence of simple functions, that makes *(•) Bochner integrable.
«>

Proposition 2: Let *(•) be Bochner integrable, AeX'.Then
r \

1) jj;c(s)dm  ̂J||jt(s)|xd/n; 2) J A(x(s))dm = A Jx(s)dm 
b lx 5 5 U

lim J|yn(s)-Jt(s)|xdm = J lim \\yn(s)-x(sHx dm = 0, lim J \yn(sj[\x dm = J\x(s%x dm 
n~*°° s s n~*°° n—>°° 5 s

and lim f||yn(5)-ym(5)||x m̂ = o.
n,m—> ° ° ^

Then by definition Jx(s)dm = lim . Since the norm || |x is a

continuous function If ̂ ) J  = lim If < lim f W y ^  dm = f |x(5)||x
b  llx n \\s llx n~*°°s s

dm
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Proof: 1) Suppose *(•) is Bochner integrable, then 3{*„(*)}~=1 a sequence of 
simple functions such that xn(s) pomtwlse >x(s), as above we let

n—

[x„(s), SeG„  (i.£.||j:„(i)|A.S2||jc(i)||A.) poinwise
y»(s) = *n«*G„W = j ... . thus y»(*)—JE-------- »*(*)[ o, J(£Gb (i.e. |^n(i)||x  > 2|ir(i)||x ) » -» -

since x„( )̂ pointw-'se >*0 ). By the Dominated Convergence Theorem
n—»o °



2) Let A ex ', then

A |  x(s)dm -  A “ 5 J » . (s)dm = lim A |yn(s)dm I = lim J A(y„(.s))dm= 
vs ) s ) vs ) n~*°° s
=jHmA(y/i(5))fim = jA(jt(.y))</m. Equality * is justified by

s"~*~ s
the Dominated Convergence Theorem, since

|A y» |  ̂ < 2||A||x,||jc(̂ )||x € Ll(5,X) ®
_i_

Definition 7: LP(S,X) = < *(•): S— ||*(.)||, = \H s% dm P«~>, „>1.
mtegrable |_s

Lemma 3: Let {*„(*)}~=1 be a Cauchy sequence in LP(S,X) such that
oo

X l ^ + i H i p <0°- Then there exists * (•)€ lp(S,X) satisfying:
n=1

a.e.
x»W  ~ ^ Z  >* ( * > ■ >°-

1
N f r  1 7

Proof: 1) Define: #AKs) = Xl*n+i^>“ *n(‘s)||x . thus |&vO)||p = JlkwHlx^m -
n=1 |_5

by Minkowski’s inequality for real valued functions

N  ̂p N 00

«=lV5 J  n=l n=l
Hence gN(»)e L"(S),JV-natural. Letting $(*)= lim gN(s) impliesN-*~
that gN(S) t  g(s), VseS. By the Monotone Convergence Theorem

N—*oo

(for real valued functions), gW eLp(S) and

p
= Therefore, Is« |p= =

00 S s  Ls
_  \_

= N ^ i IUrr<dTxdm ” = lim| (̂.)| < lim 5>„+i (•)-*„«! = X I W ,)“JC«M|I, <°° • 
I s  J  w-»~ P N ^ ~ n = l  n= l

16
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There exists a set e , such that VseS-E, gCs)<°° and m(E) = o.
Now we observe that Xl(s)<=Lp(S,x) and

N
XN+1 (^) = (*AT+ 1  (5) “  * 1  (S)) + *1 (•*) = X  (*n+l (*) “  *n (•*)) + *1(*) .

n=l
oo

then ^ ( x n+i(s)-xn(s)) is absolutely summable for s e S - E .
n=1

Furthermore, the space x is complete and therefore this sum
oo

is summable (i.e. ^{xn+1(s)-xn(s)) converges to an element in x).
n=1

In conclusion, V ieS-E, 3 l im ^ ( i) ,  we will call this limit
o

{lim xN(s), s e S - E
N-*°° . Since xN(*)e Lp(S,x), then xN(») is strongly

0 , s<=E
measurable, by the necessity of corollary 1, xN(») is separably valued 

and weakly measurable. Hence x(•) is separably valued, as a limit of 
such functions. Also, if f e X '  then /(*„(•)) will be measurable and
Um(/(jcn(s))) = /(*(*)), for all s<zS-E and f(x(s))=o, s<=E.
n—

We obtain, that /(*(•)) is measurable, as a limit of measurable 
functions. Thus *(•) is weakly measurable and therefore 
strongly measurable (by the sufficiency of corollary 1).

2) Now we apply Fatou’s lemma (for ^-valued functions) to get: 
J||jc(5)-jcN(5)||^/n<lim inf J|xM(j)- x N(s%px dm. Let e>0 be arbitrary. Since

oo

X llW - ) - * » ( - ) |p < ~  . applying the triangle inequality for norms:
N-1

^p M -\(  ^p A/-1
j||*A f(s )-*A K *)||£ ^  < £  \\xi+i(s)-Xi(s^\Px dm =  X | | * l( * ) - x l+i(*)||/, < £ ,

U  J i = N \ s  )  i - N

provided that m >n , and N is large enough.

Therefore, ! * ( • ) - **(*)||p <e, whenever N is large.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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We observe, that *(•)<= LP(S,X), by Minkowski’s inequality
1 1  1

11*0)11,,= J1*0)11 px dm < J||jCArO)l|̂/n + j\\x(s)-xN(si(\Px dm , and SO
Is J IS J Ls

||jc(»)|| <||*N(»)| +£<«», for N large. This completes the proof of lemma 3.

Theorem 7: lp(s,x) is a Banach space. Moreover, any Cauchy sequence has 
a subsequence that converges almost everywhere (a.e.).

Proof: Let {*n(«)}~=1 eLp(s,x) be a Cauchy sequence. We can extract a 

subsequence {*„, (»)}“=l = {*„(«)}“=1 satisfying:
oo 00  1

Then, - S “T = 1<00> lemma 3 gives the existance of
*=i * *+1 P k = l 2

an element *(*)e lp(s,x ), such that, xn (s) a* >x(s) and
* k -> < «

||jc„t(>)-x(^|p >0. Therefore, if N,k are sufficiently large

|M * )  -  X(*ip £ ||*nt (•) -  *(«)|  ̂+ Î nt (•)~ ̂ (*)||p < f  ■+1 = e. Since
{jcn(*)}~=le lp(s,x) was chosen to be Cauchy.

0

Remark;: Clearly, Fatou’s lemma and Monotone Convergence theorem 
make no sense for vector valued functions. However, the 
Dominated Convergence theorem does and here is how it works.

a,e.
Theorem 8: Let *(•) and xn(•) be strongly measurable, and *„($)— — »*($). 

Also, let s(s)eL1(s,ir*') satisfy ||*„(*)||x a<r<g(s),VneW.Then:

1) *(•) is Bochner integrable;

2) f x{s)dm = lim f xn(s)dm. 
S S
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Proof: 1) Suppose x„(s) —  >x(s), then ^ ]^ (i)|x +||^)||x s 2
n —*°o

Thus, by the usual Dominated Convergence theorem (for real 
valued functions) 0= f lim|;tnCs)-;c(.s)|xrfm = lim f||*n(s)-*(s)||x<im.

", n—>°° v,S J
Also, if e>0 is arbitrary, letting m,n be large enough implies:

lkn(*)-^m (*)|li= J|kn(«s)-^/n(^)|X^ ^ \\xn{s)-x{s^xdm +\\x(s)~ Xm ( S ^ x d m  < j + §  = £.
s s s

Therefore, {*„(*)}~=1 is Cauchy in i}(s,x). By theorem 7, there 
exists an element y(?)ei}(s,x) and a subsequence

c K (C i '  such that x*Ss)

However, lim ** (s)a= x(s), thus y(s)^=x(s). And so, ~ > ||;y(*)|li =|x(»)|1.
oo *

Now we apply theorem 6 to get that *(•) is Bochner 
integrable.

2) To show the second part we use the hypothesis and part one:

y*(s)</m-Jxn($)dml <j\\xn(s)-x(xHxdm >0 .
I \s s lx 5

Therefore, f x(s)dm = lim f xn(s)dm.
* , n ->  oo JS S
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VECTOR  measures

Definition 8: Let (5,3) be a pair of a set and a cr-algebra on it. Then 
the function F :3----- >(y,\\ ||y)-Banach space, is called

f  oo \ oo
a vector measure if: F (J f, =^JF(Ei), for any disjoint

<i=i J  i=l
union of sets in 3.

Definition 9: Suppose E e 3 ,  n(£) = |{£i}”=1-disjoint: ^ £ t = E, 3, i = l,...,nj 

is called partition of the set e .

Definition 10: Let F be a vector measure, then

|/K£) = sup|xiF(£,)|j,: n(£) = {£,}"=1 -  finite partition of fij 
is called the total variation of f .

Proposition 3 : Let |F|(5)<°<>, then |f| is a measure (i.e. (5,3,|f|) is a measure 
space).

Proof: 1) Suppose Exr \ E2 = 0  and e > 0  is arbitrary. Since |F|(5)<°o, then
|f ) (f ^ ) < oo, * = 1,2. Thus, there exist partitions n(Ft) = {F;}"*i, k = 1,2,

such that | f t £* ) - e < X ||F(£*)L> k Let n(£1u £ 2)=n(£1)un (£2), then
i=1

=Elk(£l i + £ l F(£2 i> l ^ ) - e  + |/1(£2)-e.
E€n(£iu£2) <»*

Because £>0 is arbitrary small, |/;Kf1u F2)^IfK£:i )+If I(f2)-
f  n \ n

By induction, |F| (J f ,- > ^ |fKf ,), /i <«» and
\i= 1 J  i=l

SO

\ i - 1 )  V/=i )  1=1 v»=i / i - 1
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2) Suppose is a disjoint sequence of sets in 3. Denote
oo

Eeo = \jEi , |F|(£00)<oo. Let £>o, there exists a partition n(£U)={/L}"=1,
i=i

n
so that |/;K£0o)-£<^L||F(Ai)||y ■ Observe, that is a disjoint

i=i
collection. Now since f is a vector measure,

| / t£ - ) -e < X |; |F (A I n£*)||l,=>f;X |F (A i n£*)|1,sX |fK £ t ), because
1=1 *=1 * = 1/=1 k = l

n
U (**  nAi) = Ek, Vk and |f |(Ek) is the supremum of such partitions.
i= i

oo

Since £>0 is arbitrary small, we obtain
k= 1

Finally, 1) and 2) imply that and hence
k=1

\F\:S--------- > [0 ,o o ] is a measure.

(*) Fubini’s theorem for counting measure justifies this equality.

Definition 11: A Banach space (r,| \\Y) is said to have the Radon-Nikodym 
Property if: Assuming

vector . \
1) 3 F :3 >(r,| ||y) with |f |(5)< oc, where (s,S,m) is a finite

measure space and
2) F(E) = o whenever m(E) = o (i.e. F « m ,  f  is absolutely

continuous with respect to m).
It follows that: 3 g(*)ei}(s,Y) such that F(E) = Jg(s)dm, V£e 3.

E
Remark.: Some Banach spaces have the Radon-Nikodym Property and some 

do not. Now we will identify some classes of spaces that do have it.

Theorem 9: Let x' be a separable anti-dual space. Then x' has the 
Radon-Nikodym Property.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”

|F(A)Ik= |^ U ( e*^ 4 > J  = | | j F ( A , n £ t )j < X |f (A n £ t ))|r  ,= 1.....n. Then
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Proof: Let F: 3 vector >x \  (s,3,m) be finite measure space, \F̂ s)< °° and
measure

F « m .  Let x<=x be fixed.

(1) Consider the mapping: fx \3----- >c, such that fx(E) = f (E)x . First
we will show that fx is a complex measure absolutely continuous 
with respect to the total variation of F  (i.e. fx« | f |).

(1.1) Let be a disjoint collection of sets in 3. Then, since f is
a vector measure, we have the following:

f  -  'X (  ( «  Y\ A f  n  A
Fx M e , =  F j j E ;  ( x )  =  £ e ( E , )  «  =  U m ^ F C E , )  (x) =

V *= i /  V v * = i  J J \i= l  /  v  1= 1  y

 ̂ n A (  n  ̂ (  n _________A 00 00
= 8(x) l i m  Y e ( £ , )  =  l i m  6>u ) Y e ( e , )  =  l i m  Y f ( £ , K i )  =  Y  E ( E , ) ( ; t )  =  Y  f ^ e , ) .

J «-H 1-1 ""Hi-i J ;=i i=i

Where Q.x--------->x" is as usual the James map defined by 0(x)(x*) = x*(x).

(1.2) Suppose |f|(E)=o. Then |f*(£)|= |F(E)(x)|< |F(E)||X,|H|;(.<|eKe)M x, VjceX 
=> |i^(£)| = o , therefore fx « | f |, as claimed.

Now applying the usual Radon-Nikodym theorem for complex 
measures we obtain the existance of / <t( * ) e L 1( 5 , c )  such that:

( * )  F(E)x = \ fx(s)d\F\, V E  e  3

E
We also note that |A(s)|a<’H Xl because |F|(£T>||A:lx >iF(£)||x,Wx >\F(E)x\ = 

=  J/ * « # ] .  so \\x\\x  > j ^ p - j/xWdlfj , V E e  3  (provided M ( £ ) * o ) .

a.e.
A well known theorem from real analysis implies that \fx(sl\  ̂\\4x •
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(3.1) M *) is well defined. Suppose zn then

|4 W - /z.U)| = |4 - z.(.)|< |2n-z mHy wn^  >0 , so {4W }"=1 is Cauchy.

Also, the limit is independent of the choice of the sequence 
{z„}“=1e D , converging to * ,  because if 4  >z.

then |4 W - 4 (s)|^||4 - z „ |x - Thus, f z(s) = hz(s)if z e D  and s e M .

(3.2) Let xeX be arbitrary, Ee3 and — >x. z „ e D . Remember
that |fKS)<°° and Wx +1 dominates |/._(.s-)| for every n large enough. 
By the Dominated Convergence theorem:

F(E)(X) = lim  F(E)(z„) = lim  f f z (i)d|f| = f hxU)d\F\.
" "^~E E

If seM,|/i^(4= lim k  (s)|slim|z„|L=|x||„ while if |Â (i)| = o<||jc|x .
n-̂ oo' " I n-̂ oo A

Let jc.yeX, a , b e C  and ---------->x, vn---------- >;y,^ n n->«« n—>oo J  n n—>oo

----------»£, where xn,yn eD , an,bn e(Q +iQ ), VneAf. Then for s e M ,n—>oo

hax+by(s ) ~  t t m  / ( a ^ + b ^ ) ^ )  =  )  =  ahx(s) +  b hy(s)

while if seM, both sides equal zero. Thus /iax+fey(5) = ̂ (5 )+F /iy(5), Vs. 

Summarizing:

n

F(£)(jc) = J^(j)4|f1
E

V5GlS
hax+by(s) = ahx(s) + bhy(s), VseS

(4) Define h(*):S----- >x' by h(s)x = hx(s). Clearly, (**) implies h(s)<=X', VseS.
Moreover, because hx(») is a measurable scalar valued
function,as a pointwise limit of measurable functions (namely 
Xmc(•*)/*„(*)» where zn >x). Then, h(•) is weak-* measurable and
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(2) On the next step we will be refining the map /*(•) on a set of
measure zero. Let Afx = {.seS: |/*Cs)|> Ml*}- Since x' is separable, 
so is x (by theorem 4). Let £>={*i}~j be a countable dense subset

OO oo

of x and mx = { J mXi . Then |/ ;̂m1)< ^ |/K m ^) = o, since |f |(m^) = o, View,
»=i i=i

a.e.
(recall that: |/*(.s)| < Wx).
Pick up £e 3, a,be C, x.yeD, Since

j  f(ax+by)(s)d\F] = F(E)(ax + by) = aF(E)(,x)+bF(E)(y) = j a f x(s) +  bfy(s)d\F\, VEe 3
E E

a.e. __
This yields that fax+byis) = afx(s)+ bfy(s). The exeptional set of 

measure zero depends on the choice of a,b<=c and x , y * x .  Now, we 
want to refine /*(•), so that the above equation holds for all s e S .

Define b = ; ^ € 0 + iQ, e d, m < ®o|.

Then d is a countable vector space over the field (Q+iQ).
m a e  m

Let z - ^ a kxik gD, f z(s)= ^ a kf Xiit(s), denote by M(z) the exeptional
k=1 k=1 *

set, so m(M(z)) = 0. Also, let m 2= |J m (z), thus m(M2) = o.
Z€D

m
Now, we have /Zw = £ a ]fc/I . w  and |/2(i)|<H x , V z e D . seM=M1uM2.

k=1
Therefore, for all seM = Ml yjM2 (note: m(M) = o), a,£e(<2 +;e) and 

x , y e D  we have fax+by^)=afx^ )+ b fy(s).

[ l im / z (5), if s t M
(3) Define " , where xeX, z„eD, z„--------- and

[0 , if s e M  n_>~

D is dense in X. Observe the following:
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by Pettis theorem 3 w» is measurable (Re: x' is separable).
,(**)

Also, |J»(*)|*. = sup|/j( )̂jf| = sup|/l,(i)| < 1, SO s |fl(5 )<~ .
Ml51 Wx î

Then (**) implies F(£)(;c) = J/ix (.s)<i|Fl=
E E

/  \
(5) Let A gX", then proposition 2 implies A J/i(.s)</|f | = JA(ft(s)M|4 V£g3.

<e  )  E

Hence,
r \

jh(s)d\F] ( jc)  = J/i(5)(^|f |, V£e3 and therefore,
<E )  E

U) = J/i(5)(x) ^  = J ^ (^ |^ (=)F(£)U), 3, VjcgX
kE )  E E

Then, \h{s)d\F\= F(E), V£e3.
E

(6) Finally, F «m  =» |F|«m. By the usual Radon-Nikodym theorem, 
there exists k(*)e Ll(S,C), so that |/K£) = Jk(s)dm, V £ g 3 .  Thus the

E
following claim implies: F(E) = Jh(s)k(s)dm, V£e 3.

E
Letting g(s)=h(s)k(s), VseS wraps up the proof of this theorem. 

Claim: Let F(E) = \h(s)d\F] and |£l(D) = jk(s)dm, V E, D e3. Then F(E) = jh(s)k(s)dm,
E D  E

v E e3 (i.e. d\F\=k(s)dm), where the functions h(s) and k(s) are as 
defined in theorem 9 .

Proof: Since &(•) is Bochner integrable with respect to |f] (thus /i(») 
is measurable), there exists a sequence of simple functions 

/!„(•), such that:

(1) hn(s) = f j ckXE;Ur, (2) hn(s) ■̂ intwise >h(s).
*= l

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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We observe that without loss of generality I/in(5>||x <||/i(5>||x +i, VseS, 
otherwise we multiply by the characteristic function of the 

set Grt={.seS: \hn(sj{\x <||/i(̂ )|x h-i} , as we did in the proof of theorem 6 
Under this modification, the functions ^(s) still satisfy the above 

two conditions.

Now let Eg3, the Dominated Convergence Theorem yields:
p

F(E )=  lim fhnis)d\F\= lim f
n̂  1

p p p
= lim = r ' £) = ̂ Z c*: J =

n->0°S * = 1 rt->0°*=l n̂ °° k=l £ ;n £

Because ||/in(5)||A:<||/i(5)|x + i< 2 l so ||/in(s)*(s)||x <2*0) (since ^ )> 0 ) .  
Furthermore, =* 2k(s)Gi}(S,m). Therefore, applying the

Dominated Convergence theorem is justified (for real valued functions).

lim J hn(s)XE(s)k(s)dm = J lim hn(s)XE(s)k(s)dm = J h{s)XE ŝ)k(<s)dm =  J h(s)k(s)dm. 

Hence, F(£) = J *(j)A:(s)dm , V£e3, as we claimed.
E

<8>

Corollary 3: If (x,| ||x) is a separable, reflexive Banach space, then it 
has the Radon-Nikodym Property.
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Proof: Let x be reflexive and separable. Then X" is separable, since
/

X = X". However, X" = (X') and so X" is a separable anti-dual 
space. By the Radon-Nikodym Theorem (thm. 9) X" has the 
Radon-Nikodym Property and therefore so does X.

0

Remark: In fact, it can be shown that any reflexive Banach space has the 
Radon-Nikodym Property (see “Vector Measures”, Diestel & Uhl).

Definition 12: If x and y are Banach spaces, we say that x is isometric
to y if there exists y/<=L(X,Y) (i.e. y . x  Meat->y ) such that </(•)

continuous
is 1-1,ontoand ||v'(*)||r = M X, We write X=Y t0 indicate,

that x and y are isometric. The map y/(*) is called an isometry.

Our next goal is to show that, if x is a Banach space, x' has
Radon-Nikodym Property and (s,3,m) is a finite measure space, then

/

(z/GS,X)) = LP'(S,X'). To do this, we need some preliminary results.

Theorem 10: Let x be a Banach space and (s,3,m) be a finite measure
space. Let p >l and - + — = i (if p = l  => p '= <*>)• Then lp\ s,x ') 

p P
is isometric to a subspace of . Also, for g(«) e i f  (S,x' ) ,

where («,/>=«(/).

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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Proof: (1) Suppose / ( • ) €  z / ( S , X ) and g(»)eWe claim, that
< * C ) . / ( « ) > e  t ‘ (S, O :

(1.1) Clearly, («(•),/(•)) is measurable, since both maps are 
measurable;

(1.2) K ^ W ./O l-a o  = JKsW ./M ) ^  = Jls(i)(/(i))M"> ^ -
s S S

used Holder’s inequality.

/
(2) Define: v -.U’\s,X’)-----------^[/(.S .x j), by *i/(g)(f) = \{g(s),fU))dm- V /(.)eZ/’(S,X).

s
We note that v is linear and continuous and is in (lp(S,X)) :

(2.1) A$, + g2)(/) = | (A& (s)+ g2(s), f(s))dm = J  (A& (s) + g2(s))(.f(s))dm =
s s

=  j  (A<gi(5))(/(5)Mm  + J (g 2C s ) ) ( / (» )^  =  
s s

= J l(gi(s),f(s))dm + l (g2(s),f(sj)dm = Ay/(gl) ( f )  + V'(g2')(fy'
s s

(2-2) ||n \ \ L' {S' X ) ) = SUP kU X/)l= sup
5

<

(12 )
< sup |K«W,/W)|dm < sup UI (̂S,X')l/ll.',(S.X)-kli''(W) ’

hence Nl(z.'(s,x))' £ llslz/is,*-) (Le- VC) is a bounded linear operator)
/

and the image of i/ forms a subspace of I

(2.3) \i/(g)(ctf) = J (g(s),otf(s))dm = J a(g(s),f(s))dm  = caf/(g)(f)• 
s s

(3) To verify the second part, we need to show that
IMIfz/^x))' HHI^s.*') {for al\g(*)eLp\s,x') with kW ^^X ' ) > 0 ’ 

otherwise it is obvious}. If so, equality (***) is established.

•vaylo D. Dinov “Bochner Integrals and Vector Measures”
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(3.1) First, let g(s)=^ckxEt(s) be simple, where {c*}[=1ex'
*=i

p
and {Ek}pk=l is a partition of s (i.e. {Ek}pk=l-disjoint, ( jE k=s).

k=l
It is clear, that |[g(*)||r  € lp\s,C), since g(»)eLp\s,x').

Let £ >o be given. Choose /i(»)€Lp(5,[0,c»)) such that:
i

h(s)>0, J\\g(s)\\px,dm = !<?(*y) | | ^ and J{h(s))pdm
\s

i\ -
< 1.

(for example, let h(s) = |<g(5)||(// l)a~l , where a  = j\\g(s)\\px ,dm
ŝ

i
P

Now, let {<f*}£=1eX be chosen so that (c*,dt )>||c<:|x, -
M L\S,C)

:  V* = l....p

and |K||x <i, v*. Also, let f (s)  = %dThen /(.)ez /(s ,x )
*=i

and |/(«)||t, s l, by the choice of *(•) and ||<4 || <1, V*. Therefore,

the desired equality \\vg\\(L,{SX)) =ML'\s,x'y for simP,e functions.

(3.2) Finally, let g(*) be any function in Lp\s,x') and {g„(*)]~=1 be a 
sequence of simple functions in lp\s,x'), such that 8n~^>8 

in lp\s,x'). Because, \\t is linear and bounded, we get that
(3)

L'(S.X)) j™ l^ « l l ( L ' ( 5 tJ0) “  ^ ^ 1 ^ IL ''(5,X ')

completes the proof of theorem 10.

,y This
<8>
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Lemma 4: Suppose x  is a Banach space, X' has the Radon-Nikodym
/

Property, is a finite measure space and .
Then F ( E ) e X ' ,  defined by F(E)(x) = 1(x e (, >x)- is a vector
measure with finite total variation (i.e. |F|(S)<~). Also, F « m .

Proof: (1) First we show that F(E) is in x', the way it is defined.
Let Jt .ye x , A e C, then f  (£)( At + y) = ;(*£(.)( At + y)) = 1(XXe ^)(x) + * £(*)(y)) = 
= X/U£CXJt))+/U£(»)(y)) = AF(£)(x)+F(£)(y). So F(E)is conjugate linear. 

Furthermore, |F(E)|X,= sup |F(£)(i)| = sup |f(^£(»)W)| <

sW(£*(iX))' s u p ^ c x ^ ^ s W (t,(s,x))'(m(£))7<~. since JW«(tf(S,x)).|a|x £1
Hence, F(E) is bounded linear operator on x (i.e. it is continuous).

(2) Now let {£*}~=1 be a disjoint sequence of sets in 3 and £00 = (J ^  e 3.
k=1

F(£„)(jO - £ f(£*)(x)
k=1

r nixE_Wx))-l £(*£,(•)(*))
u=l

’(ae.O W I - S 'U e, (• )« ) =
*=1

-MfL'CS.X))
n

ae. w ( * ) - I a£,w ( 4  s

- IMI(i.'(s,x)) |A£.(*)(-r) A\j£,(*X^)|  ̂ -Mlfz'iS.X))

Jfc=l
/  

m U £*VA:>n+l )
14X ’

Recall, that m(S)<~ and if a„ = I If *, v«€jv, then a„ 4 0 ,  /n(A!)<
k̂ n

Since m:3 >[0,/n(S)], we have m(An) i  m(0) = 0

(i.e.

measure/  \
U £* o). Therefore, ^F(Ek) iD

k=1

So, F is a vector measure, as claimed. Furthermore, it is 
staightforward to see that F « m ,  using only the definition.
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(3) To show that F has finite total variation (i.e. |FK5̂ <oo)f we 
,et {^}lt=ie3 be any Partition of s (i.e. {tf*}*=1-disjoint and
n

IJ //* = S ) .  Also, let €>o be given and || |̂|x <i, k = i,...,n be such that
*=i

||/r(//*)||;r <F(Hk)(xk)+̂ - (observe that |^T̂ ||X =|K1X and for an 

appropriate r , F(Hk)(eiTxk) = e~iTF(Hk)(xk) will be real).

Summing up for k = \....n, we get:

Xll̂ M*- 2 X X**)+e = X!(x h , (•)(**))+e<
k=l k=1 k=1

~ll/l(r(5,X)) E * # /* ^ * * )  + £-M(z/(S,X))
ll*=l Lr(S,X)

^XHk(sXxki  dm
k=i

+ £<

dm
s k-\

+ £ =~M(z/(S,X)) (m^ ) p +  £  < o o .

Then 1/^5)<«, since {Hk}nk=l is an arbitrary partition of s 

( recall: |/r|(5) = sup|^||F(//jt)||x /: {Hk}̂ =l-  disjoint partition of sj ).

<s>
Now we will state and prove the Riesz-Representation Theorem 

for lp spaces of vector valued functions.

Theorem 11: Let x be a Banach space, x' has the Radon-Nikodym Property
/

and (5,3,m) be a finite measure space. Then (z/’cs.X)) =Lp\s,x') 
(we will be showing that the map i f r o m  theorem 10, is onto).
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Proof; (1) Suppose /e(Lp(S,X)j . We define a vector measure F(E)eX' by
(a)

F(E)(x) = VxeX. Then, lemma 4 yields that F  is absolutely
continuous with respect to m (i.e. F « m )  and has finite total 

variation (i.e. |F|(S)<°°). Furthermore, since x' has the Radon- 
Nikodym Property, there exists #(•)<= i}(S,x') so that

F(E) -  j g ( s ) d m,  V£g 3 .
E

(2) Now, let Ks) = ̂ ckXEt(s) be a simple function. Then
k=1

.by (a) * by (Jb)m=/ Z c**£, = £ '(c**£-) = X f(£*Xc*> =

= Xj(«W > ctVm = J\«('s) • = •
*= l£ , 5 \  *=1 I S

Here we used that g(*)<= l\s,x'), (i.e. #(•) is conjugate linear on x).

If we knew g(*)eLp\s,X'), then this would mean y/(g)=l , because the 
simple functions are dense in lp(S,X). However, we only know

#(*)e i}(S,x'). Now, we claim that in fact g(?)eLp\s,x').

(3) Let c „= {5eS: l^(^)|x. <*}. Define i(h) = i(hzGJ. Then I g(lp(S,x)) and 
for any fi(*) simple in Lp(S,x)

/(/i) = /(/i*G>) = J(sCs) * [hXGRYs)ym = J{zg„(5)s(5) ,
5 5

Since simple functions are dense and \s,x'), this
equation holds for all /i(»)eLP(S,X). Therefore, by theorem 10,

| \sXc. Hz/cS,*') sup
MiP(j.x)s

Slip | / ( ^ 0 , |s IWI(i?(i,jD) •Iz/’rs.n
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Therefore, by the Monotone Convergence Theorem,

It follows that gWeLp\s,x'). Also, the series of inequalities 
in (2) hold for all h(»)eLp(S,X). Hence

/ = yg
and v is onto. Then, theorem 10 yields lp\s,x') = (lp(S,X)) .

<8>

The next two corollaries identify classes of Banach spaces 
(x,|| lx) for which we can characterize the anti-dual space of
Lp(S,X) for p>l.

/
Cprollary. 4.;. If x' is a separable anti-dual space, then lp\s,x')= (lp(S,x,)).

Proof; Separability of X' implies that X' has the Radon-Nikodym Property 
(by theorem 9). (5,3,m) is assumed to be a finite measure space,

therefore, theorem 11 yields lp'(S,x')= (lp(S,X))J .
<8>

Corollary 5;. If x is separable and reflexive, then lp\s,x') = (lp(S,x)) .

Proof: By corollary 2, x' is separable, since x is separable and reflexive. 
Applying the preceding corollary 4 wraps up the proof.

<8>
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Corollary..6: Let (5,3,m) be a finite measure space and (x,|| ||x ) be a separable
reflexive Banach space. Then lp(S,X) is reflexive for 1 </?<<».

Remark: It can be shown, that l\s,x) is separable and (l^ s,*)) = l°°(5,x ').
However, L°°(S,x') is not always separable itself. Therefore, by the 
converse of corollary 2, L°°(S,x') and Ll(S,x) are not always reflexive.

Proof: (1) First, by theorems 10 and 11 the map yr. Lp\s,x')-----,
defined by , y/(f*)(f) = J(/*Cs), f(s))dm V /(•)€ LP(S,X), is linear, 1-1,

onto and continuous. Also, same holds for the inverse map
y/~l : (lp(S,x)J----->Lp\s,x'). We have the following integral
equation for y/~l:

l (l)Ys) , f ( s )^dm = i ŷfi f̂ *(/)) > /) = (/» />.
5

where:
/ ( • )  g  Lp(S,X) 
/*(•) € Lp\ s ,X ') 

/**(•)€ LP(S,X")

l g (lf{S,X))

h g  ( z / ( S , X ' ) )

From now on, a new subindex of the mapping y/ comes into 
play, showing exactly which lp space yr acts on.

(2) Define by
V, :Lp\s,X')--- *(lf(S,X))

¥p.:L’’(S,X")-----

Respectively for the inverse mappings:

j{(y/p\l)Ys) , m)dm = {l , /)

(Vp/* . /) = /(/*(*). fU))dm
s

(vy /** . / * )  = |( /* *W  • f ’ (s))dm

V p l - (L p(S ,x j) ----- *Lp\ s ,X ')

Vy1 : (Lp’(S,X')j-----♦ If IS, X") J , = ( * , / * )
and
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(3) Let 9 .x---->x" and G\Lp(S,x)---->(lp(S,x)) be the James maps
( p ( x ) , x * } = ( (©(/),/)=(L/). We will be showing that 0  is onto 
(i.e. that l p (S,x ) is reflexive).

Define b\Lp(S,X)---->Lp(S ,x") by (0(/))(s) = 0(/(s)). Then 0 is onto
since x is reflexive (i.e. d is onto).

Consider the following diagram:

By the Riesz Representation Theorem (theorem 11), we know 
lat y/y and (y/-"1) are both onto mappings, where (y/71) 
is defined as follows:

(lp(s,.jo) —  (lp'(S,x ')) 
0 T _ t  Vp.

LP(S,X) — Lp(S,X")

(z.P(S,X)) < r - ^ ---  ({/’'(S.X'))
, l j  = (h , ¥~p\o).

(Z/’CS.X)) V' > Lp\s ,X ’)

(4) Finally, we observe that Q=̂ {y/pl)j* oy/pf0e

((W ) °vy °e)/). I W(vy °e)(/), ^V/))=J((er)w , (¥ -\i))(.s))dm =

= J(fl(/Cs)) > ( ^ 1(0)(^))jm = J ^ /,1(/))(s) , / ( j ) W  = (/ , /) = (©(/> , /).
c c 's s

Hence, 0 is onto because ©“ ((v ^ fo y y b g j and (y/p1)*oy/p,o0

is onto. This proves the corollary.

<8>
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Appendix

[1] Theorem: {Inequalities of Holder and Minkowski} Suppose l</?,/?'<<*>
and —+ —7 = 1 (if p = 1 => p -  oo). Then for /  and g measurable

P  P
real valued functions the following two inequalities hold:

(1) ^ r^ m j ;
I  i  I

(2) | /  + s|,=  ̂ J |/+ *!'<*»j  < |j|/|V m j +̂ j\g\pdmj = ||/||p + ||̂ ||p ■

[2] Theorem: {Hahn-Banach} Let M be a subspace of a complex vector
space X, and suppose f:M  conjU8ate. >C and |/(;t)| < for
all x e M, where A' is a const. Then there exists a conjudate 

linear function /  (extention of / )  so that = f  and
[7(at)|^ AH|jc||x, V xeX.

[3] Corollary 1 : {Separation theorem} Suppose X is a normed vector space
and K is a closed convex subset of X. If peKc (=X-K),  

then there exists a real number r, such that
Re/(p)>r>Re/(*), V keK.

[4] Corollary 2: Let X be a normed vector space and A' be a closed
subspace of X. If PeKc (=X-K ), then there exists feX' ,  
such that f(k) = 0, V keK and /(/?)*0.

[5] Theorem: {Monotone Convergence Th. for positive real valued functions}
Let (S,3,m) be a positive measure space and {/„}J=1 be a 

sequence of measurable functions such that /„ < fH+l,
= V seS and fn(s),f(s)> 0, V 5eS. Then /  is 

measurable and lim j fn(s)dm = \f(s)dm.
n °̂° s s
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[6] Theorem: {Fatou’s Lemma) Let (S,3,m) be a positive measure space and 
{/*}J=1 be a sequence of measurable functions such that
fn(s)>0, V seS. If #0) = lim inffn(s), then g is measurable and 
lim̂ inf J fn (s)dm > J g(s)dm, V£ e 3.

"  ~  E E

[7] Theorem: {Dominated Convergence Theorem for real valued functions) 
Let {/„}J=1 be a convergent sequence of measurable functions 
and lim/„($) = f(s). Then if there exists a measurable function
g>0, so that |/„(s)| <#(*), v neN, V seS and jg(s)dm<<*> we 

have that /  is measurable and limj/„(s>im = J / C s > f t n < o o .

[8] Theorem: {Riesz Representation Theorem) Let p> 1, (S,3,m) be a finite
/

measure space and A g (l%s,m)) . Then there exists a unique
h e Lp (S,m), SO that A(/) = f h{s)J(s)dmy V feL p(S,m), where -  + -̂ - = 1.

S P  P

[9] Theorem: {Radon-Nikodym Theorem for finite positive measures)
Let A and p be positive measures defined on on a measure 
space (S,3). Suppose A is absolutely continuous with respect 
to p (i.e. A « /x , p(E) = 0=> A(£) = 0). Then, there exists 
/ e such that /(s)>0 and A(£) = j  f(s)dp, V £e 3.

[10] Theorem: (Fubini) Let f : X x Y ---->[0,oo] be measurable with respect to
the o-algebra 3 x f .  Then 
f  fd( A x n) = J J f{x,y)dttdX = j j  f(x,y)dXdn .

X x Y  X Y  Y X

[11] Theorem: {Eberlein Smulian) If (y,|| ||y) is a reflexive Banach space,
then the unit ball in Y is weakly sequentially compact 

(i.e. if {**}*.* e£«U), then { ^ n}n=1 <={**Li • *kn n_^
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