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Abstract 

Fe-Ga alloys, also referred to as Galfenol, have attracted great attention as new giant 

magnetostrictive materials for over fifteen years. They exhibit large magnetostriction, 

small hysteresis, good machinability, and high tensile strength, providing many advantages 

over other functional materials like magnetostrictive Terfenol-D, piezoelectric PZT, and 

magnetic shape memory Ni-Mn-Ga. In spite of the intense interest in Fe-Ga alloys, the 

domain phenomena that underlie their properties and functionalities are less known. Using 

the Bitter method, a systematic study of magnetic domain structures in Fe-Ga single 

crystals of different compositions and heat treatments has been performed. Our domain 

observation experiments reveal numerous previously unknown domain patterns and their 

responses to magnetic fields. Zigzag domain walls, previously observed in Galfenol, are 

reinterpreted as V-lines formed by the meeting of two domain walls. Two types of charged 

90° domain walls are described for the first time in this material, including a new type of 

zigzag wall.  

As a cubic system of high magnetostriction and weak magnetocrystalline anisotropy, 

the domains on Fe-Ga surfaces are largely determined by the image forces (both 

magnetostatic and elastostatic) associated with the surfaces, making it challenging to infer 

inner bulk domains from surface observations, while the bulk domains dominate the 

material responses. Using domain theory, the observed domain structures and their 

evolutions near the surfaces were analyzed. The findings advance our understanding of the 

domain phenomena and mechanisms responsible for the magnetoelastic behaviors of Fe-

Ga alloys.
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1 Introduction and Background 

1.1 Introduction 

Fe-Ga alloys, also known as galfenol, show great promise as magnetostrictive 

materials. Magnetistriction up to ~400 ppm has been demonstrated at certain compositions 

[1]. It also has good strength and ductility compared to the more brittle magnetostrictive 

Terfenol-D and piezoelectric PZT (lead zirconate titanate). For example, single crystal 

Fe83Ga17 had a tensile strength of 580 MPa, yield strength of 450 MPa, and elongation of 

1.6% on a [110] tensile axis and a yield strength of 515 MPa and 2% elongation on a [100] 

tensile axis [2]. Polycrystalline Fe81.6Ga18.4 with a [100] preferred orientation had a tensile 

strength of 370 MPa and a 1.2% elongation [3]. The relatively high ductility means galfenol 

is more machineable than its brittle counterparts. Due to its attractive properties, galfenol 

has seen use in a wide range of applications, including linear actuators [4, 5], bimetal 

bending actuators [6-8], vibration generation [9], and energy harvesting [10]. While it has 

many advantages, not much is known about the mechanisms driving the behavior of this 

material. The reason for the large magnetostriction is not fully understood and the magnetic 

domain structure has not been thoroughly characterized. 

This work seeks to address the lack of knowledge about magnetic domains in 

galfenol. The bulk of magnetic domain characterization has revolved around false domain 

structures resulting from poor surface preparation. Recent work by Chopra and Wuttig [11] 

revealed a new “cellular” domain structure, which is still poorly understood. Here, new 

interpretations will be explored for this cellular structure. Entirely new domain structures 

will also be presented, which have never been demonstrated in galfenol before. 

1.2 Magnetic Properties of Galfenol 

A short summary of magnetic properties of galfenol is included here for context. 

Galfenol is a soft magnetic material with very low hysteresis and effectively no coercivity. 

It has cubic anisotropy with <100> easy directions. Values of the anisotropy constants, K1 
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and K2, are shown in Table 1.1, collected by Rafique et al. from single crystals in the as-

grown state [12]. A discussion of magnetic anisotropy is given in Section 1.3.2. 

 

Composition (at% Ga) K1 (KJ/m3) K2 (KJ/m3) 

5 66 -135 

12.5 49 -110 

14 46 -96 

18 33 -79 

20 -2 14 
Table 1.1: Anisotropy constants, K1 and K2 for different compositions of galfenol. 

Values of saturation magnetization for a few compositions are shown in Table 1.2, 

collected by Restorff et al. using polycrystals in the as grown state [13].  

 

Composition (at% Ga) Saturation Magnetization, µ0Ms (T) 

12.5 1.74 

18.4 1.62 

18.4 1.61 

18.4 1.58 

19.5 1.53 

22 1.36 
Table 1.2: Values of saturation magnetization for different compositions of galfenol. 

A few values of the magnetostriction constants λ100 and λ111 are given in Table 1.3, 

collected by Clark et al. from as-grown single crystals. For a wider range of values of λ100 

for quenched and as-grown samples, refer to Figure 1.14. Magnetostriction will be 

discussed in Section 1.3.4. 
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Composition (at% Ga) λ100 (ppm) λ111 (ppm) 

5.8 79  

13.2 210  

17 311  

18.7 395  

24.1 270  

27.2 350  

8.6  -27 

13.2  -24 

20.88  42 

28.63  61 

Table 1.3: Magnetostriction constants λ100 and λ111 for different compositions of galfenol. 

1.3 Basics of Magnetism 

Before exploring the complex magnetic domain behavior of galfenol alloys, it is 

helpful to understand the energetics of ferromagnetic materials and the fundamentals of 

magnetic domain theory. 

1.3.1 Exchange Energy 

Ferromagnetism arises as result of the exchange interaction. The exchange 

interaction is a quantum effect which tends to align magnetic moments parallel to each 

other. Large scale magnetized bodies are made possible by the alignment caused by the 

exchange interaction. As long as the exchange effect is stronger that thermal effects, this 

ferromagnetic state will dominate. The form of the exchange energy is given by Eq. 1. 

 

Eq. 1 𝐸௫ ൌ 𝐴 ׬ |∇𝑚|ଶ𝑑𝑉 
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The value A is the exchange constant, a material constant, and m is the direction of the 

magnetization. Exchange energy is a gradient effect that resists changes in the 

magnetization direction. It is a short-range interaction, and its effects are seen most clearly 

inside of domain walls. 

1.3.2 Magnetic Anisotropy 

The energy associated with a magnetization state is also related to orientation with respect 

to the crystal lattice. This anisotropy energy dictates which magnetization orientations are 

allowed in the material. The orientations of lowest energy are called “easy directions,” and 

in general the magnetization will occur along these easy directions. For a cubic material, 

the anisotropy energy per unit volume is given by Eq. 2. 

 

Eq. 2 𝑒௄ ൌ 𝐾ଵሺ𝑚ଵ
ଶ𝑚ଶ

ଶ ൅ 𝑚ଵ
ଶ𝑚ଷ

ଶ ൅ 𝑚ଶ
ଶ𝑚ଷ

ଶሻ ൅ 𝐾ଶ𝑚ଵ
ଶ𝑚ଶ

ଶ𝑚ଷ
ଶ 

 

The constants K1 and K2 are the first and second order anisotropy constants which are 

unique to each material. The components m1, m2, and m3 are components of the 

magnetization direction parallel to [100], [010] and [001] respectively. The magnitudes 

and signs of K1 and K2 dictate which directions are easy directions. By minimizing the 

energy in Eq. 2, it is possible to find which values of K will correspond to the three possible 

easy directions: <100>, <110>, and <111>. Using Eq. 3 as a condition, the ranges of K for 

each easy direction can be found through the method of Lagrange multipliers. 

 

Eq. 3 𝑚ଵ
ଶ ൅ 𝑚ଶ

ଶ ൅ 𝑚ଷ
ଶ ൌ 1 

 

This is done by finding the stationary points in Eq. 4, where λ is the Lagrange multiplier. 

 

Eq. 4 𝑒௄ ൌ 𝐾ଵሺ𝑚ଵ
ଶ𝑚ଶ

ଶ ൅ 𝑚ଵ
ଶ𝑚ଷ

ଶ ൅ 𝑚ଶ
ଶ𝑚ଷ

ଶሻ ൅ 𝐾ଶ𝑚ଵ
ଶ𝑚ଶ

ଶ𝑚ଷ
ଶ 

െ𝜆ሺ𝑚ଵ
ଶ ൅ 𝑚ଶ

ଶ ൅ 𝑚ଷ
ଶ െ 1ሻ 
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The first step is finding the partial derivatives of eK with respect to m1, m2, and m3. For m1 

this is shown in Eq. 5, simplified in Eq. 6. 

 

Eq. 5 
డ௘಼

డ௠భ
ൌ 𝐾ଵሺ2𝑚ଵ𝑚ଶ

ଶ ൅ 2𝑚ଵ𝑚ଷ
ଶሻ ൅ 2𝐾ଶ𝑚ଵ𝑚ଶ

ଶ𝑚ଷ
ଶ െ 2𝑚ଵ𝜆 ൌ 0 

 

Eq. 6 
డ௘಼

డ௠భ
ൌ 2𝑚ଵሾ𝐾ଵሺ𝑚ଶ

ଶ ൅ 𝑚ଷ
ଶሻ ൅ 𝐾ଶ𝑚ଶ

ଶ𝑚ଷ
ଶ െ 𝜆ሿ ൌ 0 

 

The same can be done for m2 and m3. 

 

Eq. 7 
డ௘಼

డ௠మ
ൌ 2𝑚ଶሾ𝐾ଵሺ𝑚ଵ

ଶ ൅ 𝑚ଷ
ଶሻ ൅ 𝐾ଶ𝑚ଵ

ଶ𝑚ଷ
ଶ െ 𝜆ሿ ൌ 0 

 

Eq. 8 
డ௘಼

డ௠య
ൌ 2𝑚ଷሾ𝐾ଵሺ𝑚ଵ

ଶ ൅ 𝑚ଶ
ଶሻ ൅ 𝐾ଶ𝑚ଵ

ଶ𝑚ଶ
ଶ െ 𝜆ሿ ൌ 0 

It is helpful to first consider some simplified cases. The first case is K1=0. If K1=0 

then Eq. 2 reduces to Eq. 9. 

 

Eq. 9 𝑒௄ ൌ 𝐾ଶ𝑚ଵ
ଶ𝑚ଶ

ଶ𝑚ଷ
ଶ 

For K2>0, the energy is minimized if any component of m is zero. The easy direction is 

then form <ab0> for any a and b subject to a2+b2=1. For this case, <100> and <110> are 

both easy directions.  For K2<0, the largest negative energy value must be found by solving 

Eq. 6, Eq. 7, and Eq. 8. For K1=0 these are reduced to Eq. 10, where i, j, and k can be 1, 2, 

or 3 interchangeably. 

 

Eq. 10 
డ௘಼

డ௠೔
ൌ 𝑚௜ൣ𝐾ଶ𝑚௝

ଶ𝑚௞
ଶ െ 𝜆൧ ൌ 0 

Since mi=0 would result in an energy of zero, the minimization must follow Eq. 11. 
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Eq. 11 𝑚௝
ଶ𝑚௞

ଶ െ 𝜆 ൌ 0 

Inputting values for j and k and setting the equations equal gives Eq. 12. 

 

Eq. 12 𝑚ଵ
ଶ𝑚ଶ

ଶ ൌ 𝑚ଶ
ଶ𝑚ଷ

ଶ ൌ 𝑚ଷ
ଶ𝑚ଵ

ଶ 

 

This is satisfied by m1
2=m2

2=m3
2, so for K1=0 and K2<0, [111] is the easy direction. 

The second case to consider is K2=0. In this case Eq. 2 becomes Eq. 13. 

 

Eq. 13 𝑒௄ ൌ 𝐾ଵሺ𝑚ଵ
ଶ𝑚ଶ

ଶ ൅ 𝑚ଵ
ଶ𝑚ଷ

ଶ ൅ 𝑚ଶ
ଶ𝑚ଷ

ଶሻ 

The energy is reduced to zero if two m components are zero, so for K1>0, the easy direction 

is [100]. As before, if K1<0, the partial derivatives must be solved. In this case, these reduce 

to Eq. 14. 

 

Eq. 14 
డ௘಼

డ௠೔
ൌ 𝑚௜𝐾ଵ൫𝑚௝

ଶ ൅ 𝑚௞
ଶ൯ ൌ 0 

The case of mi=0 is again discarded resulting in Eq. 15. 

 

Eq. 15 𝑚௝
ଶ ൅ 𝑚௞

ଶ ൌ 0 

Inserting values for j and k and setting the equations equal gives 

 

Eq. 16 𝑚ଵ
ଶ ൅ 𝑚ଶ

ଶ ൌ 𝑚ଶ
ଶ ൅ 𝑚ଷ

ଶ ൌ 𝑚ଷ
ଶ ൅ 𝑚ଵ

ଶ 

This is satisfied by m1
2=m2

2=m3
2, so for K2=0 and K2<0, [111] is the easy direction. 

The third case, when K1്0 and K2്0, is the least simplified. In this case the three possible 

easy directions are entered in Eq. 2. For [100] the energy is given by Eq. 17. 

 

Eq. 17 𝑒௄ଵ଴଴ ൌ 0 
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For [110], m=[
ଵ

√ଶ
, ଵ

√ଶ
, 0] and the energy is given by Eq. 18. 

 

Eq. 18 𝑒௄ଵଵ଴ ൌ ଵ

ସ
𝐾ଵ 

 

For [111], m=[
ଵ

√ଷ
, ଵ

√ଷ
, ଵ

√ଷ
] and the energy is given by Eq. 19. 

 

Eq. 19 𝑒௄ଵଵଵ ൌ ଵ

ଷ
𝐾ଵ ൅ ଵ

ଶ଻
𝐾ଶ 

By finding where Eq. 17, Eq. 18, and Eq. 19 are equal, the boundary conditions for 

the different easy directions can be determined. Solving eK100 = eK110 gives K1=0, solving 

eK100 = eK111 gives K2=-9K1, and solving eK110 = eK111 gives K2=െ ଽ

ସ
K1. Using these 

boundary conditions and the boundary conditions from the first two cases Figure 1.1 was 

constructed. Figure 1.1a shows the dependence of the easy direction on the values of K1 

and K2. In Figure 1.1b, the “hard” and “medium” directions are shown as well. These are 

the directions representing the highest energy state and an intermediate energy state, 

respectively. The energy of these other directions is important to consider in regions like 

the magnetic domain wall, where the magnetization moves away from the easy direction. 
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Figure 1.1: Easy and hard directions in a cubic system as a function of K1 and K2. The 

preferred easy directions are plotted as a function of K1 and K2 in (a). In (b), the easy, 

medium, and hard directions are represented. They are shown in ascending order with the 

lowest energy direction on the bottom and the highest energy on top. 

By plotting the energy as a function of direction in spherical coordinates it becomes 

easier to visualize the easy directions. Figure 1.2 shows spherical plots of eK+C for different 

values of K1 and K2. The constant C is added to plots of negative anisotropy so that the 

easy directions always appear as minima. Parts a-c show easy directions of <100>, <110>, 

and <111> respectively. Parts d-f show the special cases where two easy directions coexist. 

Figure 1.2d shows the boundary where case K1=0, part e shows the case K2 = െ ଽ

ସ
K1, and 

part f shows the case K2 = -9K1. For galfenol, the easy direction is <100>. The constants 

selected for Figure 1.2a are representative of Fe95Ga5  (K1 = 66 KJ/m3, K2 = -135 KJ/m3) 

[12]. 
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Figure 1.2: Spherical plots of anisotropy energy, eK, for different values of K1 and K2. A 

constant C was added to eK for cases with negative anisotropy so that the easy directions 

consistently appear as minima. 

1.3.3 Magnetostatic Energy 

While exchange energy and anisotropy are local effects, the magnetostatic energy 

is a long-range interaction. Magnetostatic energy is the result of the stray field (or 

demagnetizing fields) and is sometimes also called stray field energy. Stray fields are 

magnetic fields that result from the discontinuities in the magnetization state of the 
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material. The stray field, Hd, is defined by the divergence of the magnetization, as in Eq. 

20, where M is magnetization. 

 

Eq. 20 𝑑𝑖𝑣 𝐻ௗሬሬሬሬሬ⃗ ൌ െ𝑑𝑖𝑣 ሺ𝑀ሬሬ⃗ ሻ 

The stray field energy is then described by Eq. 21, where the integral is taken over the 

volume of the sample and μ0 is the permeability of a vaccuum. 

 

Eq. 21 െ ଵ

ଶ
𝜇଴ ׬ 𝐻ௗሬሬሬሬሬ⃗ ∙ 𝑀ሬሬ⃗ 𝑑𝑉 

 

The stray field arises from an effective magnetic charge within the material. The volume 

charge density λv and the surface charge density σs are defined by Eq. 22 and Eq. 23 

respectively. 

 

Eq. 22 𝜆௩ ൌ െ𝑑𝑖𝑣 𝜇଴𝑀ሬሬ⃗  

 

Eq. 23 𝜎௦ ൌ 𝜇଴ሺ𝑀ଵሬሬሬሬሬ⃗ െ 𝑀ଶሬሬሬሬሬ⃗ ሻ ∙ 𝑛ሬ⃗  

The vector n is the outward pointing normal direction of a surface separating two 

regions of different magnetization vectors, M1 and M2. The surface could be a free surface, 

a grain boundary, or a domain wall. For free surfaces or boundaries with a nonmagnetic 

phase, m2 is zero. These charge densities are used to define the potential of the stray field, 

given by Eq. 24 where r and r’ are positions in the material. 

 

Eq. 24 𝛷ௗሺ𝑟ሻ ൌ ଵ

ସగఓబ
ሾ׬

ఒೡሺ௥⃗ᇱሻ

|௥⃗ି௥⃗ᇲ|
𝑑𝑉ᇱ ൅ ׬

ఙೞሺ௥⃗ᇱሻ

|௥⃗ି௥⃗ᇲ|
𝑑𝑆ᇱሿ 

 

The magnetostatic or stray field energy, Ed, can then be determined by Eq. 25. 

 

Eq. 25 𝐸ௗ ൌ ଵ

ଶ
ሾ׬ 𝜆௩ሺ𝑟ሻ𝛷ௗሺ𝑟ሻ𝑑𝑉 ൅ ׬ 𝜎௦ሺ𝑟ሻ𝛷ௗሺ𝑟ሻ𝑑𝑆ሿ 
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In general, Eq. 24 and Eq. 25 must be solve numerically, except in some special 

cases. Some conclusions can be drawn from them though. Since the stray fields act over a 

long range, magnetically charged surfaces produce a magnetostatic energy in the whole 

volume of the material. This provides a strong driving force for the elimination of surface 

charges, and this is the primary driving force for the formation of magnetic domains. 

 

Figure 1.3: Examples of charge free domain walls in a cubic material with <100> easy 

directions, viewed from a [001] surface. A 180° wall is shown in (a), and a 90° domain 

wall with Ψ=90° is shown in (b). 

Domain structures, whenever possible, will form flux closure patterns which 

eliminate all surface charges. The types of domain walls that are allowed are dictated by a 

condition of zero surface charge. 

 

Eq. 26 ൫𝑀ଵሬሬሬሬሬ⃗ െ 𝑀ଶሬሬሬሬሬ⃗ ൯ ∙ 𝑛ሬ⃗ ൌ 0 

Domain walls that meet this condition are considered charge-free. For a cubic 

material with <100> easy directions there are two possible solutions to this equation. If M1 

and M2 are both perpendicular to n and oppose each other, the result is a 180° domain wall, 

so called because the magnetization changes by 180° across the wall. The other possibility 

is a 90° domain wall where the magnetization changes by 90°. Examples of the two domain 

wall types are shown in Figure 1.3. There are a range of orientations of the 90° wall that 

are uncharged. This is demonstrated in Figure 1.4. The wall can rotate along the angle Ψ 

and always satisfy Eq. 26. In practice, the orientations of the 90° domain wall are 

constrained by another consideration: the magnetoelastic energy. 
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Figure 1.4: Possible charge-free orientations of 90° domain walls. The wall can rotate at 

any value of the angle Ψ. 

1.3.4 Magnetoelastic Energy 

Another important term to consider is magnetoelastic energy, the energy arising from 

magnetostriction. Magnetostriction is a strain induced by the magnetization of the material. 

Eq. 27 defines the saturation magnetostriction, λs, the magnetostrictive strain at saturation 

relative to a demagnetized state. 

 

Eq. 27 𝜆௦ ൌ ଷ

ଶ
𝜆ଵ଴଴ ቀ𝑚ଵ

ସ ൅ 𝑚ଶ
ସ ൅ 𝑚ଷ

ସ െ ଵ

ଷ
ቁ ൅ 3𝜆ଵଵଵሺ𝑚ଵ

ଶ𝑚ଶ
ଶ ൅ 𝑚ଶ

ଶ𝑚ଷ
ଶ ൅ 𝑚ଷ

ଶ𝑚ଵ
ଶሻ 

 

The material constants λ100 and λ111 represent the saturation magnetostriction in the [100] 

and [111] directions respectively, and m1, m2, and m3 are components of the magnetization 

direction. Eq. 27 only applies when determining the magnetostriction in the direction of 

the magnetization. To find the magnetostriction in any arbitrary direction, defined by the 

components b1, b2, and b3, Eq. 28 is used. 

 

Eq. 28 𝜆௦ ൌ ଷ

ଶ
𝜆ଵ଴଴ ቀ𝑚ଵ

ଶ𝑏ଵ
ଶ ൅ 𝑚ଶ

ଶ𝑏ଶ
ଶ ൅ 𝑚ଷ

ଶ𝑏ଷ
ଶ െ ଵ

ଷ
ቁ 

൅3𝜆ଵଵଵሺ𝑚ଵ𝑚ଶ𝑏ଵ 𝑏ଶ ൅ 𝑚ଶ𝑚ଷ𝑏ଶ𝑏ଷ ൅ 𝑚ଷ𝑚ଵ𝑏ଷ𝑏ଵሻ 
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The general strain state is represented by a second rank tensor, εij. 

 

Eq. 29  𝜀௜௝ ൌ ቐ

ଷ

ଶ
𝜆ଵ଴଴ ቀ𝑚௜

ଶ െ ଵ

ଷ
ቁ ,       𝑖 ൌ 𝑗

ଷ

ଶ
𝜆ଵଵଵ𝑚௜𝑚௞,                𝑖 ് 𝑗

 

The magnetostrictive strain state can help to explain why not all 90° walls have equal 

energy. Domain walls which are elastically compatible (i.e. those without any misfit strain) 

are preferred. The misfit strain, Δε, is defined as the difference between the strain states 

ε(1) and ε(2) in two adjacent domains. 

 

Eq. 30 ∆𝜀 ൌ 𝜀ሺଵሻ െ 𝜀ሺଶሻ 

 

Figure 1.5: Misfit strain on 90° domain walls in Fe86.8Ga13.2. Plots of magnetostrictive 

strain (in ppm) are given for magnetization along [100] (a) and [010] (b). The absolute 

value of the misfit strain is shown in (c). 

Figure 1.5 shows a spherical plot of the magnetsostrictive strain for Fe86.8Ga13.2 [1] 

magnetized in the [100] and [010] directions, as well as the absolute value of the misfit 

strain. For a domain wall to be compatible, the plane of the wall must pass through a zero-



14 

strain region of Figure 1.5c. This is only possible for the (110) and (1ത10) planes. Since the 

(1ത10) plane is not stray field free, this leaves only the (110) domain wall. 

To explore this idea further, the misfit strain for a 90° domain wall is plotted as a 

function of the angle Ψ. Figure 1.6 is a polar plot of the absolute value of the misfit strain 

on the plane of the domain wall. At Ψ = 90° there is no misfit strain. The mistfit strain 

increases continuously as the angle Ψ decreases from 90° to 0°. Assuming the anisotropy 

energy and exchange energy are equivalent throughout the wall thickness for any value of 

Ψ, the orientation will be chosen to minimize the elastic energy resulting from misfit strain. 

This is the classical view, with 90° domain walls always occurring on the (110)-type planes 

at 45° to the magnetization direction in a head-to-tail orientation. However, as will be 

discussed later for zigzag folding of 90° walls, the classical treatment is incorrect, and 

domain walls with values of Ψ other than 90° do occur. 

 

Figure 1.6: Plot of the absolute value of the misfit strain (in ppm) on a 90° domain wall in 

Fe86.8Ga13.2 for different wall angles, Ψ. The horizontal axis is always in the [1ത10] 

direction, but the orientation of the vertical axis depends on Ψ. 

The strain misfit approach is a crude first approximation, but good enough to 

describe the general behavior in 90° domain walls. In reality, the magnetoelastic energy 

represents a long-range effect like the magnetostatic energy. If a domain wall has a nonzero 
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misfit strain, the elastic incompatibility generates stresses even at long distances from the 

wall. In general, the magnetoelastic energy is orders of magnitude weaker than the 

magnetostatic energy. However, its effects are more significant in so-called giant 

magnetostrictive materials, like galfenol. Also, since it is a long-range volume effect, its 

influence cannot always be disregarded. 

The mathematical description of the magnetoelastic energy is quite complex. Eq. 

31 gives a general expression for the magnetoelastic energy, Eel, in the absence of an 

applied stress [14, 15]. 

 

Eq. 31 𝐸௘௟ ൌ ଵ

ଶ
׬ 𝐶௜௝௞௟ 𝜀௜௝

଴ ሺ𝑟ሻ𝜀௞௟
଴ ሺ𝑟ሻ𝑑ଷ𝑟 െ ଵ

ଶ௏
𝐶௜௝௞௟ ׬ 𝜀௜௝

଴ ሺ𝑟ሻ 𝑑ଷ𝑟 ׬ 𝜀௜௝
଴ ሺ𝑟ᇱሻ 𝑑ଷ𝑟′ 

െ
1
2

න
𝑑ଷ𝑘

ሺ2𝜋ሻଷ 𝑒௜ 𝛥𝜎෤௜௝
଴ሺ𝑘ሻ𝛺௝௞ሺ𝑒ሻ𝛥𝜎෤௞௟

଴ሺ𝑘ሻ∗𝑒௟ 

In this formulation Cijkl is a fourth rank tensor representing the elastic moduli, ε0
ij is a 

second rank tensor representing the spontaneous strain from magnetostriction, r is a real 

space position, k is a reciprocal space position, ei is a unit vector direction ki/|k| in reciprocal 

space, 𝜎෤0
ij is the Fourier transform of Cijklε0

ij, and Ωij is the Green function tensor inverse 

of the tensor Gik
-1(k) = Cijklkjkl. This expression must be solved numerically, and 

minimizing it is not a trivial task. It does, however, demonstrate the non-local quality of 

the magnetoelastic energy. 

The full form of the magnetoelastic energy will not be used in this work. Whenever 

possible, magnetoelastic effects will be considered qualitatively in terms of how they 

interact with other energy terms. Any quantitative approaches will be cursory and 

simplified, like the misfit strain on the 90° domain wall. As will be discussed later, the 

misfit strain is not the only contribution to the elastic energy. This idea will be explored in 

greater detail in the discussion of chain domain structures. 
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1.3.5 External Magnetic and Elastic Energy 

The final energy terms to consider are the energy created by external magnetic 

fields and external stresses. Energy from external magnetic fields is generally referred to 

as Zeeman energy, which takes the form of Eq. 32. 

Eq. 32 𝐸ு ൌ െ𝜇଴ ׬ 𝐻ሬሬ⃗ ௘௫ ∙ 𝑀ሬሬ⃗ 𝑑𝑉 

The Zeeman energy is lowest when the external field, Hex, is aligned with the 

magnetization. 

The external elastic energy, Eel-ext, is given by Eq. 33, where σij
appl is a second rank 

tensor representing the applied stress. 

 
Eq. 33 𝐸௘௟ି௘௫௧ ൌ െ𝜎௜௝

௔௣௣௟ ׬ 𝜀௜௝
଴ ሺ𝑟ሻ𝑑ଷ𝑟 

This energy is lowest when magnetic domains are aligned with tensile stresses.Consider 

the four domains in Figure 1.7. If a magnetic field is applied from left to right, domain 4 

has the lowest energy, domain 2 has the highest energy, and domains 1 and 3 have 

intermediate energies. In this field domain 4 would grow at the expense of the others. 

For a compressive stress applied along the horizontal direction, domains 1 and 3 

would have the lowest energy and domains 2 and 4 the highest energy. This is because the 

magnetostrictive strains in domains 1 and 3 are compressive in the horizontal direction, so 

they are more compatible with the applied stress. For a tensile stress the opposite behavior 

would be observed. 
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Figure 1.7: Response of magnetic domains to applied fields and stresses. For a magnetic 

field applied from left to right, domain 4 has the lowest energy and domain 2 has the highest 

energy. Domain 4 will grow at the expense of the others. If a compressive stress is applied 

on the horizontal direction, domains 1 and 3 have the lowest energy and grow at the 

expense of domains 1 and 3. 

1.3.6 Bloch Walls 

The simplest case of a domain wall is a 180° Bloch wall. In a Bloch wall the 

magnetization remains parallel to the domain wall while rotating from one domain to the 

other. This rotation mode results in zero divergence of the magnetization and a stray field 

free wall. This would be expected in the bulk of a material, far from any surfaces. Stray 

field effects at the surface can cause deviations from this behavior. The theoretical 

description of Bloch walls was first developed by Landau and Lifshitz [16]. They described 

the energy and magnetization distribution for a material of uniaxial anisotropy, having one 

easy axis of magnetization (e.g. hexagonal cobalt). This is the simplest case and the version 

of the derivation which will be discussed here. This concept will be expanded upon later 

when discussing more complex domain structures. The version of the derivation used here 

follows Hubert and Schafer [17], but is expanded to include more details. 
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Figure 1.8: Coordinate system for 180° Bloch wall. The domains are magnetized along the 

y-axis with a domain wall normal to the x-axis. For derivations in spherical coordinates x 

is the polar axis and z is the azimuthal axis. The polar angle is θ and the azimuthal angle is 

φ. 

To begin, consider a single domain wall in an infinite material, separating two 

domains of opposite magnetization. The x-axis lies normal to the surface of the wall. The 

two domains are magnetized along the positive and negative y-axis. The z-axis, which also 

lies in the plane of the wall, represents the hard direction. The magnetization rotates 

continuously from positive y to negative y, remaining parallel to the wall. This path is 

expected because it is the shortest path and is stray field free. The coordinate system is 

summarized in Figure 1.8. The magnetization angle is referenced in spherical coordinates. 

The polar axis and angle are x and θ respectively and the azimuthal axis and angle are y 

and φ respectively. 

For a material of uniaxial anisotropy, the anisotropy energy is given (to first order) by Eq. 

34 where θu is the angle between the magnetization and the easy axis. 

 

Eq. 34 𝑒௄ ൌ 𝐾௨ଵ sinଶ 𝜃௨ 

With the azimuthal axis as the hard axis, this can be rewritten in terms of φ. 

 

Eq. 35 𝑒௄ ൌ 𝐾௨ଵ cosଶ 𝜑 
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Since the magnetization only changes with respect to x, the exchange energy in Eq. 1 

reduces to 

 

Eq. 36 𝐸௫ ൌ 𝐴 ׬ 𝜑ᇱଶ𝑑𝑥
ஶ

ିஶ  

The quantity φ’ is a derivative with respect to x. If the anisotropy energy is also integrated 

over all x, Eq. 35 and Eq. 36 can be combined to form an expression for the Bloch wall 

energy, γw. 

 

Eq. 37 𝛾௪ ൌ ׬ ሾ𝐴𝜑ᇱଶ ൅ 𝐾௨ଵ cosଶ 𝜑ሿ𝑑𝑥
ஶ

ିஶ  

The boundary conditions are as follows: φ(െ∞) = െ గ

ଶ
, φ(∞) = 

గ

ଶ
, φ’(െ∞) = φ’(∞) = 0. The 

magnetization state far from the domain wall is constant and in either the positive or 

negative y direction. Given these boundary conditions, the energy and the magnetization 

distribution can be determined with variational calculus by taking a functional derivative 

and finding dx. 

 

Eq. 38 
ఋఊೢ

ఋఝ
ൌ െ2𝐾௨ଵ sin 𝜑 cos 𝜑 െ 2𝐴𝜑ᇱᇱ ൌ 0 

If Eq. 38 is multiplied by φ’, it can be integrated with respect to x. 

 

Eq. 39 ׬ሾെ2𝐾௨ଵ sin 𝜑 cos 𝜑 𝜑′ െ 2𝐴𝜑′𝜑ᇱᇱሿ 𝑑𝑥 ൌ 0 

 

Eq. 40 𝐾௨ଵ cosଶ 𝜑 െ 𝐴𝜑ᇱଶ ൌ 𝐶 

 

Inputting the boundary conditions φ(∞) = 
గ

ଶ
 and φ’(∞) = 0 gives C=0, and the result can 

be rewritten as 

 

Eq. 41 𝐾௨ଵ cosଶ 𝜑 ൌ 𝐴𝜑ᇱଶ 
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This can then be rearranged as follows to find dx: 

 

Eq. 42 𝜑ᇱ ൌ ௗఝ

ௗ௫
ൌ ට௄ೠభ

஺
cos φ 

 

Eq. 43 𝑑𝑥 ൌ ට
஺

௄ೠభ

ଵ

ୡ୭ୱ ఝ
 𝑑𝜑 

To find γw, combine Eq. 37, Eq. 41, and Eq. 43. 

 

Eq. 44 𝛾௪ ൌ ׬ ሾ𝐾௨ଵ cosଶ 𝜑 ൅ 𝐾௨ଵ cosଶ 𝜑ሿට
஺

௄ೠభ

ଵ

ୡ୭ୱ ఝ
 𝑑𝜑

ഏ
మ

ିഏ
మ

 

 

Eq. 45 𝛾௪ ൌ ׬ ሾ2ඥ𝐴𝐾௨ଵcos 𝜑ሿ 𝑑𝜑
ഏ
మ

ିഏ
మ

 

 

Integrating Eq. 45 and solving gives an expression for the domain wall energy. 

 

Eq. 46 𝛾௪ ൌ ൣ2ඥ𝐴𝐾௨ଵ sin 𝜑൧

గ

ଶ

െ గ

ଶ

ൌ 4ඥ𝐴𝐾ଵ 

The magnetization distribution φ(x) can also be determined by integrating Eq. 43. 

 

Eq. 47 𝑥 ൌ ׬ ට
஺

௄ೠభ

ଵ

ୡ୭ୱ ఝ
 𝑑𝜑 

 

Eq. 48 𝑥 ൌ ට
஺

௄ೠభ
lnሺsec 𝜑 ൅ tan 𝜑ሻ ൅ 𝐶 

Applying an additional boundary condition, φ(0)=0, the integration constant, C, is found 

to be zero. 
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Eq. 49 𝑥 ൌ ට
஺

௄ೠభ
lnሺsec 𝜑 ൅ tan 𝜑ሻ 

Using the known identity that ln(secθ+tanθ) = tanh-1(sinθ), Eq. 49 can be simplified and 

rearranged to solve for φ. 

 

Eq. 50 𝑥 ൌ ට
஺

௄ೠభ
tanhିଵሺsin 𝜑ሻ 

 

Eq. 51 𝜑ሺ𝑥ሻ ൌ sinିଵሺtanhሺ ௫

ඥ஺/௄ೠభ
ሻሻ 

 

The magnetization profile φ can be used to define the domain wall thickness. The wall 

thickness definition preferred here is the one proposed by Lilley [18]. Draw a line tangent 

to φ at x=0 and extend this tangent line to meet the boundaries at φ = π/2 and φ = -π/2. 

These intersections define the boundary of the domain wall. This is demonstrated visually 

in Figure 1.9. Taking the derivative of Eq. 51 at x = 0 gives a slope of 
ଵ

ඥ஺/௄ೠభ 
 for the tangent 

line. Finding the intersections of the tangent line gives a domain wall thickness, W, of 

𝜋ඥ𝐴/𝐾௨ଵ . This definition can be applied similarly to domain walls with different 

magnetization profiles. 

Describing 180° Bloch walls in a cubic material is somewhat more complicated. 

For a material with cubic anisotropy and <100> easy directions, the z-axis in Figure 1.8 is 

an easy axis in addition to the y-axis. This means that there is an orientation of minimum 

anisotropy energy in the center of the 180° wall. If only anisotropy and exchange energy 

are considered, the 180° wall can split into 90° walls separated by any distance without 

changing the total wall energy. Thus, the 180° Bloch wall appears to be unstable in cubic 

materials. This problem is solved by considering magnetoelastic effects. As was shown in 

Figure 1.6, a 90° wall orientated with the (100) plane has a large misfit strain and is 

elastically incompatible. However, 180° domain walls are always elastically compatible. It 

is for this reason that 180° walls exist in cubic materials. 
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Figure 1.9: Plot of φ(x) vs. 
௫

ඥ஺/௄ೠభ 
 for a 180° Bloch wall in a uniaxial material. The tangent 

line at x=0 intersects with φ = π/2 and φ = -π/2 to define the wall thickness. 

1.3.7 Zigzag Folding of 90° Domain Walls 

Up to this point it has been assumed that all charge free 90° domain walls (those 

that satisfy Eq. 26) have equivalent wall energy unless elasticity is considered. However, 

when the wall energy is calculated this assumption is found to be incorrect. Utilizing the 

method laid out in section 1.3.6, the wall energy can be calculated for a 90° wall. The 

general method is the same. Define an integral for the wall energy, accounting for the 

exchange energy and the anisotropy energy, now using cubic anisotropy. The energy can 

be modified for walls of different angles, Ψ, but the path is defined such that the 

magnetization component perpendicular to the wall is always constant (an uncharged wall). 

Take a functional derivative to find an expression for dx (as in Eq. 43) and create an integral 

for the total wall energy (as in Eq. 45). For any arbitrary wall angle, Ψ, the integral must 

be solved numerically. 
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Figure 1.10: Plot of the normalized wall energy for 90° walls in iron with different 

orientations, Ψ. Different values of h represent applied fields in the [110] direction. The 

dashed lines represent deviations from stray field free paths. Zigzag folding causes an 

increase in wall area by 1/sinΨ. The curves of γw/sinΨ account for this area increase. From 

Hubert and Schafer with permission [17]. 

After performing this integration for multiple angles, the wall energy can be plotted 

as a function of Ψ. A plot of this type was given by Hubert and Schafer [17], presented 

here in Figure 1.10. The curves extending from the left axis to the right axis represent the 

normalized wall energy for different angles and different values of applied field, h, in the 

[110] direction. The wall energy is actually lowest for (001) oriented walls with Ψ = 0° and 

increases to a maximum at Ψ = 90°. This is because the magnetization path is longer for 

larger values of Ψ and comes closer to the [111] hard direction. 

This sets up a competition between the anisotropy energy, which tends to prefer 

(001) walls, and the magnetoelastic energy, which tends to prefer (110) walls. The lowest 

energy state then is a wall with some intermediate orientation. Chikazumi and Suzuki [19] 

performed an analysis of domain walls of this type. They observed zigzag-shaped domain 

walls on the surface of Fe-Si single crystals in the vicinity of scratches and other surface 

defects. These zigzag lines were in fact not domain walls but V-lines, lines formed on the 
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surface by the meeting of two subsurface 90° domain walls (see Figure 1.11). This 

geometry is necessary to ensure that surface domains are parallel to the surface and flux 

closure is accomplished. 

 

Figure 1.11: Subsurface structure of zigzag V-lines. The zigzag is formed by two 90° walls 

meeting at the surface. 

The zigzag shape is a result of 90° domain walls deviating from the (110)-type 

planes, the (011) and (01ത1) plane in the case of Figure 1.11. Figure 1.12 shows why this 

is the case. When the wall angle, Ψ, differs from 90°, the wall tips up towards the surface 

or down away from it, changing the angle of intersection. Chikazumi and Suzuki [19] 

define the angle between zigzag teeth as ω, so the angle shown is ω/2. 

 

 

Figure 1.12: Relationship between the angles Ψ and ω for a 90° domain wall. When Ψ=90° 

the wall is on (011) and the line on the surface is along [100], (a). When the angle is less 

than 90° (b), the domain wall tips up and the line on the surface tilts. 
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In the case of the V-lines forming flux closure at the surface, the 90° wall is fixed 

to a (110) orientation. To minimize energy, the wall folds into a zigzag shape, allowing it 

to maintain the same average angle while also reducing the anisotropy and exchange 

energy. The folding introduces an extra energy cost because of the increase of wall energy 

caused be the increase in total surface area. The assumption made by Chikazumi and 

Suzuki [19] is that this increase in surface area by a factor of 1/sinΨ is the dominant energy 

controlling the angle of the domain wall. When this extra energy term is added to the wall 

energy the shape of the γw vs. Ψ plot changes, as seen on the right side of Figure 1.10. The 

result is a clear energy minimum. Once the angle Ψ is determined, it can be converted to ω 

by Eq. 52. 

 

Eq. 52 tan ቀఠ

ଶ
ቁ ൌ ୲ୟ୬ అ

√ଶ
 

The authors calculated an angle of ω=106° and measured angles from 103° to 109°, 

in good agreement with their predictions. Different values of K1 and K2 change the energy 

landscape which defines the optimal magnetization path, while the exchange constant, A, 

controls the wall thickness.  

1.3.8 Effects of Elasticity on Zigzag Domain Structures 

Classical models of the zigzag folded 90° domain walls consider the role of the 

magnetoelastic energy in the formation of these walls, but stop short of considering how 

elasticity influences the structure of these walls. Qualitatively, the effect of elasticity on 

the angle ω is apparent. In the presence of large stresses of magnetostrictive origin, larger 

angles will be preferred because stresses on the domain wall are reduced at higher values 

of ω, and by association Ψ, reduce elastic mismatch. This effect will not be discussed at 

length. In this section, a new model will be presented for the effect of the magnetoelastic 

energy on the thickness of the zigzag wall. In this case thickness refers not to the domain 

wall classical thickness but to the amplitude of the zigzag wave. 
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Figure 1.13: Definitions of zigzag wall dimensions. L is the length of the zigzag line on the 

surface. W is the wall width and represents how deep into the bulk the domain wall extends, 

measured along the relevant <110> direction. The thickness of the wall is given by t, 

equivalent to twice the amplitude of the zigzag wave. 

This derivation treats the energy terms in a qualitative sense in order to determine 

a functional form of the influence of magnetostriction of the wall thickness. Figure 1.13 

gives definitions for the domain wall length, width, and thickness. The elastic energy will 

be defined by Eq. 53, where μ is an elastic modulus, and λ is some magnetostriction 

constant. 

 

Eq. 53 𝐸௘௟௔௦௧௜௖ ൌ 𝜇𝜆ଶ𝐿𝑊𝑡 

The elastically strained region is contained within the domain wall thickness, t. The surface 

energy is a function of the surface area, and is represented by Eq. 54. 

 

Eq. 54 𝐸௦௨௥௙௔௖௘ ൌ 𝛾௪
௅ௐ

ୱ୧୬ ሺఠ/ଶሻ
 

The third energy term is the gradient energy, associated with the sharp kinks in the domain 

wall. It is represented by Eq. 55, where β is the gradient energy per unit length of the kink 

line and N is the number of kinks in the wall. 

 



27 

Eq. 55 𝐸௚௥௔ௗ௜௘௡௧ ൌ 𝛽𝑁𝑊 

 

The number of kinks is given by Eq. 56. 

 

Eq. 56 𝑁 ൌ ௅

௧ ୲ୟ୬ሺఠ/ଶሻ
 

Adding together all energy terms gives Eq. 57. 

 

Eq. 57 𝐸௧௢௧௔௟ ൌ 𝐸௘௟௔௦௧௜௖ ൅ 𝐸௦௨௥௙௔௖௘ ൅ 𝐸௚௥௔ௗ௜௘௡௧ 

ൌ 𝜇𝜆ଶ𝐿𝑊𝑡 ൅ 𝛾௪
𝐿𝑊

sin ሺ𝜔/2ሻ
൅

𝛽𝑊𝐿
𝑡 tanሺ𝜔/2ሻ

 

This expression is then differentiated with respect to t. 

 

Eq. 58 
ௗா೟೚೟ೌ೗

ௗ௧
ൌ 𝜇𝜆ଶ𝐿𝑊 െ ఉௐ௅

௧మ ୲ୟ୬ቀഘ
మ

ቁ
ൌ 0 

This is then solved for t. 

 

Eq. 59 𝜇𝜆ଶ ൌ ఉ

௧మ ୲ୟ୬ቀഘ
మ

ቁ
 

 

Eq. 60 𝑡ଶ ൌ ఉ

ఓఒమ ୲ୟ୬ቀഘ
మ

ቁ
 

 

Eq. 61 𝑡 ൌ ଵ

ఒ ට
ఉ

ఓ ୲ୟ୬ቀഘ
మ

ቁ
 

The final result gives 𝑡 ∝ 1/𝜆, which is to say that materials with stronger 

magnetostriction will have thinner zigzag lines. This interpretation makes sense physically. 

When the 90° wall folds in alternating directions, the strain mismatch also alternates. At 

long distances from the wall there is an averaging effect and the magnetoelastic energy 

tends to zero. Only at small distances near the wall are the magnetoelastic effects felt 
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strongly. This averaging effect is more effective as the wavelength (and by association the 

thickness) of the zigzag becomes smaller. The shape of the zigzag line is then essentially a 

competition between elastic energy, which tends to prefer a thin, finely toothed line, and 

the gradient energy, which prefers to minimize the number of sharp corners. For strongly 

magnetostrictive materials the elastic energy has a stronger influence. 

Note that this model is not at all effective at quantifying the energy state of the 

domain walls. Its value comes only in predicting the dependence of the geometry of the 

zigzag line of the magnetostrictive constants. 

1.4 Structure and Properties of Galfenol 

The remainder of this chapter will be dedicated to issues specifically relating to 

galfenol. Topics discussed will include the phase structure of Fe-Ga alloys, the origin of 

large magnetostriction, and a review of the known magnetic domain structures in this 

material. 

1.4.1 Influence of Ga Concentration on Magnetostriction 

Sufficient additions of Ga can increase the magnetostriction in Fe by a factor of ten, 

from 40 ppm for pure Fe to 400 ppm for annealed and quenched Fe80.9Ga19.1 [1]. The reason 

for this large increase is not understood, but a few hypotheses have been proposed. The 

influence of Ga concentration on magnetostriction must first be considered. Galfenol 

displays an intriguing composition dependence of the magnetostriction constants. Clark et 

al. measured the magnetostriction at a range of Ga concentrations from 0 to 35 at% Ga. 

Their results are summarized in Figure 1.14, which shows the tetragonal magnetostrictive 

constant, (3/2)λ100, as a function of Ga concentration [1]. 

A few key observations were made from this data. There are two peaks in 

magnetostriction at about 17 and 27 at% Ga with a drop in magnetostriction in between. 

Also of interest, the magnetostriction is significantly enhanced by annealing and 

quenching, as compared so slow cooling. This shifts the first peak from 17 at% Ga to about 
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19 at% Ga. At 400 ppm, this is the highest magnetostrictive strain observed for these alloys.  

The first peak coincides with the peak in magnetoelastic coupling constant b1=-

(3/2)λ100(c11-c12). The authors attribute the second peak to the softening of the elastic 

constant c11-c12, which decreases over the entire composition range [1]. 

 

Figure 1.14: (3/2)λ100 as a function of Ga concentration for Fe100-xGax. Data from Clark et 

al. [1]. 

It is helpful to consider the phase distribution in galfenol. The Fe-Ga equilibrium 

phase diagram by Ikeda et al. is shown in Figure 1.15 [20]. The iron BCC phase, A2, exists 

at low Ga concentrations. At higher concentrations a eutectoid equilibrium is formed 

between A2 and L12, an ordered FCC phase. However, D03, an ordered BCC phase, has 

significant metastability and will precipitate prior to L12 [20]. For this reason, it is more 

useful to consider the metastable phase D03. Figure 1.16 gives the metastable phase Fe-Ga 

phase diagram by Ikeda et al. [20]. Lograsso and Summers used X-ray diffraction to 

measure the phase fractions of A2 and D03 phases in quenched and slow cooled alloys with 

19.5 and 22 at% Ga. They found that at 19.5 at% Ga resulted in single phase A2 when 

quenched, but formed 33% D03 when slow cooled. The 22 at% Ga alloy formed 60% D03 

when quenched and single phase D03 when slow cooled [21]. This suggests that the drop 

in magnetostriction after 19 at% Ga is associated with the formation of the ordered D03 
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phase. Between 24 and 29 at% Ga the magnetostriction increases again, which corresponds 

to single phase D03 in the metastable phase diagram. 

 

Figure 1.15: Equilibrium Fe-Ga phase diagram. From Ikeda et al. with permission [20], 

with data from Okamoto [22]. 

 

Figure 1.16: Metastable Fe-Ga phase diagram. From Ikeda et al. with permission [20], with 

data from Kawamiya et al. [23] and Wagini [24]. 
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Xing et al. performed TEM studies of quenched and slow cooled alloys at a range 

of Ga concentrations [25]. For slow cooled alloys, single phase A2 existed up to the first 

peak. Formation of D03 was associated with a drop in magnetostriction. Single phase D03 

increased in magnetostriction with increasing Ga content until the second peak. At 

compositions above the second peak, precipitates of another phase begin to form, 

associated with a drop in magnetostriction. The behavior was similar for the quenched 

alloys, except that samples with 25 and 29.9 at% Ga had a mixture of A2, B2, and D03. In 

general, it appears that the drop in magnetostriction after each peak is associated with the 

formation of a second phase, while magnetostriction increases with Ga content in single 

phase regions. 

1.4.2 Mechanisms for Large Magnetostriction in Galfenol 

The mechanism behind the exceptional magnetostriction in galfenol has not been 

confirmed, but there are two competing hypotheses. One possible explanation is short 

range ordering of Ga in the form of Ga-Ga atom pairs in the <100> directions. Cullen et al. 

suggest that the increase in magnetostriction is caused by short range ordering resulting in 

elastic softening [26]. Several authors have explored this idea in detail. First principles 

simulations by Wu et al. found that when some Ga atoms were removed from ordered 

regions, producing nonuniform distribution of Ga atoms, the magnetostriction increased 

[27]. Paduani and Bormio-Nunez used first principles calculations with density functional 

theory to show that the presence of <100> aligned Ga-Ga pairs produced an increase in 

magnetostriction [28]. Pascarelli et al. performed X-ray studies on galfenol to analyze short 

range ordering and found some evidence of Ga-Ga pairing in the structure but no evidence 

of clustering [29]. First principles calculations by Wang et al. were able to reproduce the 

elastic softening observed by Clark et al. and attributes it to weakening of Fe-Fe bonds in 

<100> due to separation by an Fe-Ga mixed layer [30]. In general, good experimental data 

is difficult to produce. Even with the x-ray techniques it is difficult to measure the effects 

of short-range ordering. Only a few techniques are capable of directly measuring the atomic 



32 

positions. Atom probe tomography and high resolution transmission electron microscopy 

are some of the few techniques capable of taking measurements on the appropriate scale. 

Khatchaturyan and Viehland proposed an alternative mechanism for increase 

magnetostriction in galfenol [31]. They suggest that D03 formation is stabilized in part of 

the single phase A2 region by absorption of quenched-in vacancies, forming a dispersion 

of nanoprecipitates. The D03 precipitates distort to form a face centered tetragonal (FCT) 

phase. In this case the large magnetostriction is a result of magnetically induced 

reorientation of twin variants in the FCT precipitates [32]. The drop in magnetostriction 

with D03 formation is explained by the rapid growth of D03 allowed in the stable region. 

The growth of large particles of D03 prevents the formation of FCT nanoprecipitates. 

1.4.3 Domain Structures in Galfenol 

Regarding magnetic domains in galfenol, little work has been done to investigate 

the full range of domain structures. Existing studies usually examine domains for one 

composition, and on one crystallographic plane. Bai et al. demonstrated a series of stripe 

or maze domain structures in galfenol alloys with a size of a few microns [33, 34]. Many 

other authors [35-44] have reported similar structures. These observations account for the 

bulk of the literature on magnetic domains in galfenol. More detailed analysis by 

Mudivarthi et al. [45] showed that these maze domains were not the true domain structure. 

They were caused by surface stresses induced by mechanical damage from surface 

polishing. After adding an additional polishing step with colloidal silica or etching with 

10% Nital, the domains changed to a stair step structure with regular 90° and 180° domain 

walls and a domain size of tens of microns. These were traditional flux closure domain 

structures. This effect was observed for single crystals of Fe82.5Ga17.5 under slow cooled 

and quenched conditions and Fe81Ga19 under a quenched condition. 

In actuality, the maze domain structures seen by many authors were not dissimilar 

to the zigzag structures seen in Fe-Si alloys by Chikazumi and Suzuki [19]. They observed 

maze-like structures on surfaces with induced surface stresses from polishing. They 
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showed that electropolishing could remove the surface layer and reveal flux closure domain 

structures with 90° and 180° domain walls. It was also observed that the concentration of 

the ferrofluid was critical in observing the zigzag shape of the domain walls. If the 

ferrofluid was not diluted sufficiently, excessive buildup of particles would smooth out the 

features of the domain wall, giving maze-like structures with apparently smooth walls. 

In general, zigzag lines are the result of some sort of stress. Chikazumi and Suzuki 

[19, 46], as well as Bates and Carey [47] observed a maze of zigzag lines on surfaces with 

polishing induced stresses. Hubert and Schafer [17] reported on zigzag lines on a crystal 

of Fe-Si under the influence of a compressive planar stress. This structure is preferred by 

compressive stresses as a result of magnetostriction. Domains magnetized along the axis 

of the compressive stress are not favored because they tend to expand along that direction. 

Alternatively, the magnetoelastic energy can be reduced by magnetizing perpendicular to 

the surface, since this results in contraction along the compressive stress direction. The 

stress effectively induces a uniaxial anisotropy. However, the surface cannot tolerate this 

perpendicular magnetization due to production of stray fields. Zigzag V-lines are necessary 

to complete flux closure of the perpendicularly magnetized domains below. 

Mudivarthi et al. were not the only ones to observe charge-free 90° and 180° 

domain walls in galfenol. Asano et al. observed similar domains on a (001) plane of single 

crystal Fe83.9Ga16.1 and documented their motion under applied fields [48]. The 180° 

domain walls were observed to move first, and the 90° domain walls, associated with 

magnetostriction, moved second. Stair step domains were also observed by He et al. [49]. 

Raghunath and Flatau overserved domains on the (001) plane of single crystal Fe84.2Ga15.8 

and saw parallel bar domains with 180° domain walls [50]. Near the sample edge, closure 

domains with 90° and 180° domain walls were observed. 

Some work has been done on domain structures under applied stress. Song et al. 

observed domains in polycrystals of Fe81Ga19 and found that the domains aligned 

perpendicular to an applied uniaxial compressive stress [38]. Raghunath et al. observed 

parallel bar domains with 180° domain walls in galfenol whiskers. The domains rotated 
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under applied bending stresses, specifically in areas that were under compression [51]. 

Parkes et al. were able to cause a 90° rotation in the magnetization of a galfenol thin film 

through the application of tensile stresses [52]. 

Of particular interest are the fascinating domain structures observed by Chopra and 

Wuttig in the (001) plane of annealed and quenched Fe73.9Ga26.1 [11]. It contained what 

they referred to as a cellular structure, bands of rectangular “cells” with highly regular 

dimensions and long-range periodicity. Each cell was surrounded by zigzag lines and was 

divided into four sections. The authors interpreted each cell as containing a closure loop. 

Their interpretation is recreated in Figure 1.17. They appeared similar to typical closure 

domains with 90° and 180° domain walls forming a closed loop, but such a structure with 

zigzag walls is unusual. This choice of interpretation is interesting given that the classical 

model of Chikazumi and Suzuki [19], and its reproduction by Hubert and Schafer [17], 

neatly describe these types of structures as V-lines. The bands of cells reorient by 90° when 

a field is applied parallel to the band such that these bands are always perpendicular to the 

applied field. 

 

Figure 1.17: “Cellular” magnetic domains as interpreted by Chopra and Wuttig [11]. Each 

“cell” was interpreted as a closure loop with the magnetization always parallel to the zigzag 

lines. 

The authors suggest that the magnetization is not uniform within the cells and that 

the periodicity results from strain modulation originating from charge density waves. In 

this interpretation the magnetization varies so that, locally, it is somewhat parallel to the 

edges of the zigzag teeth. They claim that magnetostriction in certain galfenol alloys is not 
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volume conserving and that the modulated strain state is the cause. This non volume 

conserving property contradicts the classical observation by Joule [53] that volume is 

constant with magnetostriction, leading to the term “non-Joulian magnetostriction.” 

Chopra also demonstrated in a slow cooled sample of Fe73.9Ga26.1 that the domain 

structure formed a perfect mirror image across the whole sample with a bisector moving 

down the centerline [54]. This sample demonstrated volume conserving magnetostriction. 

The authors believe the non-volume conserving property depends on long range periodicity 

which they only observed in quenched samples. The same non-volume conserving 

behavior was observed in Fe-Ge and Fe-Al alloys [55]. 

Dabade et al. [56] were able to create a complex micromagnetic model of the 

periodic magnetic and elastic state proposed by Chopra. He et al. [49, 57] attempted to 

confirm Chopra’s claims of non-Joulian magnetostriction. They measured 

magnetostriction in quenched and slow cooled Fe83Ga17 and could not reproduce the non-

volume conserving magnetostriction. In reference [57] the volume was measured directly 

by placing the galfenol crystal in a flask of alcohol connected to a capillary tube and 

measuring the level of the liquid while applying magnetic fields. 

While the promising work of Chopra shows that there are rich magnetic domain 

structures to be explored in galfenol, few authors have explored anything but simple, stress-

induced maze domains. The goal of the experiments presented in this work will be to more 

fully explore the available domain structure in these alloys, and also to better explain the 

complex and poorly understood cellular structure. As a note, for the rest of this work the 

so-called cellular domain structure will be referred to as chain domains. As will be 

discussed more fully in Chapter 5, this name is preferred because it was used in older works 

to describe similar structures in Fe-Si alloys. 
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2 Experimental Methods and Instrumentation 

2.1 Introduction 

This chapter will briefly discuss the surface preparation methods employed, the 

relevant domain observation techniques, and the development of electromagnet coils for 

the application of in situ magnetic fields. 

2.2 Surface Preparation 

Care must be taken during polishing to ensure that the surface is stress free and has 

minimal scratching. There are many surface preparation routes which could be taken. 

Mudivarthi et al. [45] and Chopra and Wuttig [11] had effective methods for preparing 

galfenol single crystals for domain observation. The methods used here will differ from 

those used by other authors, but they were found to produce a surface of exceptional quality 

when applied with patience. The approach will be described briefly, but the interested 

reader can find a more detailed standard operating procedure in Appendix A. 

Polishing was performed with an Allied High Tech LaboPol-1 autopolisher. Samples 

were mounted in Allied High Tech EpoxySet epoxy (but another slow setting, high 

hardness epoxy will suffice). The following materials were used: 

- PSA backed SiC paper discs, 600 and 800 grit (8 inch) 

- Allied High Tech White Label Flexible Back Magnetic 8 inch disc 

- Allied High Tech Imperial Flexible Back Magnetic 8 inch disc 

- Buehler Microclotch Magnetic 8 inch disc 

- Allied High Tech 1 μm Monocrystalline Diamond Compound 

- Allied High Tech 0.04 μm Colloidal Silica Suspension 

- Allied High Tech RedLube 

Galfenol single crystals were first mounted in epoxy. A neodymium disc magnet was 

placed below the mount cup to hold the sample flat. The top surface of the mount cup base 
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was flattened on a grinding wheel to produce sample mounts with a flat surface. These 

steps were taken to minimize the epoxy that needed to be removed before reaching the 

sample surface. Without these steps, longer polishing times will be required on the first 

polishing step and the surface may be polished at a slight angle. 

The sample was then polished using the following steps with a pressure of 15 N: 

1. 600 grit SiC with continuous water lubrication 

2. 800 grit SiC with continuous water lubrication 

3. 1 μm monocrystalline diamond on Buehler Microcloth with RedLube 

4. 0.04 μm colloidal silica on Allied High Tech White Label pad 

5. 0.04 μm colloidal silica on Allied High Tech Imperial pad 

The pads and polishing compound used here were found to be effective, but 

substitutions can be made for equivalent abrasives and pads with similar textures. 

It is worth noting that electropolishing could be a better method of surface 

preparation. Electropolishing was not attempted in this work for fear of excessive material 

removal on precious single crystals. However, with proper expertise and the appropriate 

methods, electropolishing could produce a stress-free surface of the highest quality. 

2.3 Instrumentation 

The experiments in this work necessitated the development of electromagnet coils 

for application of in-situ magnetic fields under an optical microscope. This section will 

discuss some of the important considerations to be taken when designing electromagnets 

and which designs were selected for this work. 

An electromagnet is a combination of a conductor (usually copper wire) wrapped 

around a ferromagnetic core (usually iron). The magnetic field, H, generated by a solenoid 

coil (with no core) is given by Eq. 62 [58]. 
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The current is given by i. The number of wire turns is n. The length and average diameter 

of the coil are L and D respectively. The field is given at a distance x from the center of 

the coil, measured along its centerline. This equation presents many of the variables to be 

considered in electromagnet design. Increasing the current or the number of turns will 

increase the field. Increasing the length or diameter decreases the field if the current and 

turns are held constant. However, the number of turns is not independent of the coil 

dimensions. They are linked through another important variable: the wire diameter. For a 

given wire diameter, the length or diameter increase with the number of turns. 

Another factor to consider is the resistance of the coil. The coil resistance will affect 

the voltage required to produce a given current. It also influences the heat generated by the 

coil. Coils with more resistance produce less current for a given voltage and heat up more 

quickly. Coils with more turns (more total wire length) and with smaller wire diameters 

will have more resistance. 

One more factor to consider, possibly the most important, is the iron core. The core 

is magnetized by the field from the coil, multiplying the magnetic field. The effectiveness 

of the core is very sensitive to geometry as a result of the demagnetizing field (stray field). 

Cylinders with large faces are difficult to magnetize because they produce large magnetic 

poles, and thus large demagnetizing fields. Longer cylinders are easier to magnetize 

because of volume effects. The demagnetizing field, Hd, can be determined by simplifying 

these effects into a demagnetizing factor, Nd, as shown in Eq. 63, where M is the 

magnetization. 

 

Eq. 63 𝐻ௗ ൌ െ𝑁ௗ𝑀 

Demagnetizing factors for cylinders with different aspect ratios were compiled by Chen et 

al. [59], but in general, longer and thinner cores are more easily magnetized and produce 

larger magnetic fields. Thinner core material is always preferred as long as a uniform field 

can be maintained. 
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The design of electromagnets is then a complex process of maximizing magnetic 

field while optimizing a series of geometrically interrelated variables: coil length, coil 

diameter, core length, core diameter, wire diameter, number of turns, current, and 

resistance. This problem is simplified by applying a series of constraints. There were two 

major constraints for this application. The first was geometric. The coil and a galfenol 

single crystal sample had to fit in the working space beneath the microscope. This limited 

the coil length to about 7 cm. The second constraint came from the power supply, which 

could only supply 10 V. 

These constraints helped limit the design space. An iron rod with a diameter of 10 

mm was used as the core, just over twice the size of the 4 mm long samples. A spool was 

3D-printed from PLA to wrap the coil around. It was 7 cm long with a 1 cm hole through 

the center to accommodate the core. After some initial screening tests, three coils were 

made using wire thicknesses of 18 AWG, 20 AWG, and 22 AWG. The 18 AWG wire was 

the thickest and produced a large coil for a small number of turns. This coil, 70 mm in 

diameter with 786 turns, produced a 2300 G field but was too bulky to be practical. The 20 

AWG coil produced a similar field, 2200 G, using less material. It was 40 mm in diameter 

with 1210 turns. The 22 AWG coil was 40mm in diameter with 1782 turns. It produced the 

strongest field of all of the coils, but it became so hot that there was risk of melting the 

PLA with extended use. The coil made with 20 AWG wire was selected for use. Figure 2.1 

shows an image of this coil before insulation was added. 
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Figure 2.1: Electromagnet coil made with 20 AWG copper wire. 

2.4 Imaging Methods 

Imaging was performed using the classic Bitter technique, developed by Francis 

Bitter [60] for the first observation of magnetic domains. A ferrofluid, a suspension of 

magnetite nanoparticles, was placed on the sample surface and then covered with a thin 

glass coverslip. The particles are drawn to the domain walls by stray fields produced at the 

intersection of domain walls with the surface. To enhance the visibility of the domain walls, 

interference contrast (IC) microscopy was used. A Nomarski prism enhances any height 

contrast from surface features on the sample. This makes domain walls more clearly visible 

by improving the visibility of magnetite particles built up at the wall. For this work, 

Ferrotec EMG707 water-based ferrofluid with a particle size of 10 nm was used. A 30:1 

dilution with distilled water was found to produce good contrast in most cases. 

When out-of-plane magnetic fields were required, the sample, mounted in epoxy, 

was placed on top of the electromagnet coil. The DC power supply was automated to ramp 

up the current linearly. To measure the field, three calibration curves were first collected. 

A gaussmeter probe was placed on top of the sample and the field was ramped up to 

maximum while a data acquisition system simultaneously measured the current and the 

magnetic field. The data was used to generate curves of magnetic field vs. current. 
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To observe domain evolution under applied fields, the gaussmeter was removed and 

videos were recorded while the field was automatically ramped up and down and the 

current was simultaneously measured. The calibration curves were used to convert the 

measured current into a magnetic field. The LAS-EZ software used for imaging was limited 

to collecting 30 seconds of video at a time. When slower ramp times were required, the 

field was ramped up in multiple steps. It would be increased for 30 seconds while collecting 

video and then held constant before being increased again for another video. This 

sometimes produced some discontinuities where two videos meet due to the relaxation 

time, but this did not affect the quality or value of the data in most cases. 

Imaging was performed on the (100) plane of several single crystal samples including 

as-grown Fe91Ga8.5, as-grown and quenched Fe85Ga15, as-grown Fe82.9Ga17.1, and as-grown 

Fe78.1Ga21.9. 
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3 Closure Domains 

3.1 Introduction 

This chapter will explore structures of charge-free closure domains in galfenol single 

crystals. 

3.2 Results and Discussion 

The easiest domain structures to interpret were those seen on the (001) surface of as-

grown crystals of Fe85Ga15. As shown in Figure 3.1, all of the domain walls have (100)- 

and (110)-type orientations, as would be expected with charge free 180° and 90° domain 

walls respectively. The relative domain orientations can be inferred from the wall 

orientations as illustrated. The charge free domain walls can combine in a variety of ways 

to form more complex structures, like the diamond-shaped structure seen in Figure 3.2. 

The relative domain orientations of these more complex structures can be analyzed in a 

similar fashion. 

These domains are of the type reported by Mudivarthi et al. [45] (and other authors 

discussed earlier) after modifying polishing procedures to remove polishing induced 

surface stresses. While there is nothing remarkable about the interpretation of these domain 

structures, their presence is a good sign of proper surface preparation. Good surface quality 

can be achieved by silica polishing alone, without the need for an etchant. This is because 

the silica has a high pH, causing a chemical attack of the surface during polishing. This 

results in a mild chemical polishing effect in addition to mechanical polishing. 
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Figure 3.1: Head to tail flux closure domain structure with charge free 90° and 180° domain 

walls on a (001) surface of a single crystal of Fe85Ga15 in the as-grown state. 

 

Figure 3.2: Complex structures of charge free 90° and 180° domain walls on a (001) surface 

of a single crystal of Fe85Ga15 in the as-grown state. 
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3.3 Conclusions 

A series of polishing steps was selected for single crystals of galfenol. This method 

produced high quality surfaces for Bitter method imaging. The observation of simple 

stairstep-like closure domains made by Mudivarthi et al. [45] was repeated here, 

demonstrating that the a final polish with colloidal silica is sufficient to remove the stressed 

surface layer and prevent the formation of maze domains. 
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4 Charged Domain Walls 

4.1 Introduction 

In some cases, domain walls with a net magnetic charge are preferred by the material 

despite the increased magnetostatic energy. Several such structures occur in galfenol. 

Domain walls like this can form at the surface of the material as a result of surface effects. 

These include 90° and 180° domain walls with “head-to-head” and “tail-to-tail” 

orientations. This chapter will discuss the magnetization state of these domain patterns and 

the complex three-dimensional structures that they form. 

4.2 Results and Discussion 

4.2.1 Zigzag Domain Walls 

One structure that occurs frequently in galfenol is the zigzag domain wall. Figure 

4.1 shows a mixture of typical domain walls and zigzag domain walls. If the uncharged 

90° and 180° domain walls are interpreted as usual, it can be shown that the zigzag walls 

at the top of the image are 180° walls with head-to-head and tail-to-tail orientations. This 

unusual orientation can be explained, as discussed in section 1.3.7, by interpreting the head-

to-head and tail-to-tail domains as providing flux closure for subsurface domains with 

magnetizations perpendicular to the surface. This is illustrated schematically in Figure 4.2. 

The zigzag line is formed by the meeting of two subsurface 90° domain walls meeting at 

the surface to form a “V-line.” This orientation prevents the formation or surface domains 

with magnetizations perpendicular to the surface. The zigzag V-lines are formed at the 

meeting of three domains and there is always an imbalance between magnetizations 

pointing toward the line and magnetizations pointing away from the line. This means that 

the lines at the surface always have a small net magnetic charge. However, the 90° domain 

walls that form the V-line are uncharged, with the charge being limited to a narrow region 
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at the surface. The energy associated with the charged line is insignificant compared to the 

energy savings afforded by the closure domains.  

 

Figure 4.1: (001) surface of Fe91.5Ga8.5 with a mixture of charged zigzag domain walls and 

uncharged 90° and 180° domain walls. 

 

Figure 4.2: Diagram of a zigzag V-line. Zigzag lines are formed by the meeting of two 

subsurface 90° domain walls, producing a “V-line.” The surface domains provide flux 

closure for subsurface domains magnetized perpendicular to the surface. 
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Figure 4.3: Response of zigzag V-lines to an out-of-plane magnetic field. At zero magnetic 

field (a) there are 3 zigzag lines visible. Applying a small field causes every other zigzag 

line to disappear. At higher fields (c) the invisible lines reappear and the remaining line 

gets darker. The lines which reappeared also become darker with increasing field (d). 

Determining the orientations of the domains at the bottom of Figure 4.1 is made 

more complicated by the presence of an apparent 90° zigzag wall at the base of the 

pentagonal structure. More clarity can be provided by observing how this structure 

responds to magnetic fields applied out of plane. One clue can be found in the way these 

out-of-plane field affect zigzag V-lines, as seen in Figure 4.3. A small applied field causes 

every other zigzag line to disappear in an alternating pattern, while the remaining lines get 

darker. The invisible lines reappear at higher magnetic fields, and also get darker with 

increasing field. This behavior can be understood by examining the internal structure of 

the domain wall itself. Figure 4.4a and b show a cross section of two different V-lines at 

the surface. When an out-of-plane field is applied, domain walls with out-of-plane 

orientations become wider as the field applies an upward torque on the magnetic moments 

within the wall. Domain walls oriented into the plane have the opposite response and get 

narrower. This asymmetric response causes differences in the stray field distribution 
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around the zigzag lines, which also affects the response of the ferrofluid. When the applied 

field becomes large, regions of the narrowed wall begin to magnetize out of plane and the 

line gets wider again. 

 

Figure 4.4: Response of V-lines to applied magnetic field. With no field applied, V-lines 

have structures like in (a) and (b). When a field is applied out of plane, domain walls with 

out-of-plane orientations become wider (c), but domain walls oriented into the plane 

become narrower (d). At high fields (e) the narrower wall becomes wide again as it begins 

to rotate out of plane. 

When the direction of the field is reversed, the response of the zigzag lines is also 

reversed. The lines which previously remained visible disappear under a reversed field, and 

the lines which previously disappeared remain visible. This shows more clearly that 

orientation of the domain wall influences which lines disappear and which ones remain. 

This fact can be used to determine the orientations of the domains at the bottom of Figure 

4.1. Figure 4.5 shows a lower magnification image of this structure with a small field 

applied out of plane. The zigzag V-lines above and below the pentagonal domains 

disappear in pairs, suggesting they have the same orientations. This supports the 

interpretation given in Figure 4.1 with the domains at the top and bottom of the image 

having the same orientations. The base of the pentagon structure is a zigzag 90° domain 

wall. This wall is unlike the 180° zigzag V-lines, despite its similar appearance. One unique 

feature of the 90° zigzag wall is that only one side of each zigzag tooth is clearly visible, 

while the other half is faint or invisible. This is a feature which will be elaborated upon in 

section 4.2.3. 
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Figure 4.5: Low magnification view of pentagonal domain structures with an out-of-plane 

field of 140G. Zigzag lines above and below the pentagonal structures disappear as pairs. 

A variation on the pentagonal domains can be seen in Figure 4.6. Instead of 

pentagons with 180° domain walls, simple triangle structures are formed. These structures 

are separated from each other so that the domains with horizontal [100] magnetizations are 

continuous from top to bottom. On the right side of the image a transitional structure can 

be seen. When the triangular domains come close enough to touch, a vertical 180° domain 

wall is formed, more like the pattern seen in Figure 4.1. 
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Figure 4.6: (001) surface of Fe91.5Ga8.5 with triangular domains. When the triangular 

domains grow close enough to touch, they can merge to form pentagons. 

4.2.2 Domains formed under applied fields 

When a magnetic field is applied perpendicular to the sample surface, spike and fir 

tree domains are formed. An analysis of these domain structures can help in determining 

useful information about the magnetization state of the basic domain structure. Figure 4.7 

shows domains formed on the Fe91.5Ga8.5 with a magnetic field applied out of plane. These 

domains have a variety of structures with varying degrees of complexity. Figure 4.8 (a-d) 

shows a range of possible structures, from single spikes, to branched spikes, to fir tree 

domains with branches growing from a “trunk.” The spikes form as a result of domains 

magnetized perpendicular to the surface, which nucleate as a result of the applied field. 

The spikes seen on the surface form flux closure, to ensure that the surface magnetization 

remains in plane. Figure 4.8e and f are interpretations of the subsurface structure shown in 

a and b, respectively, if they were cross sectioned through the dashed line. The domain 

walls of the spikes form angles that deviate slightly from the charge free (110) orientations, 

resulting in a surface charge. This charge is minimized by spreading out into a thin spike 

to approximate a 45° angle. 
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Figure 4.7: Spike and fir tree domains formed on a (001) surface of Fe91.5Ga8.5 with a 625G 

magnetic field applied perpendicular to the surface in the [001] direction 

 

Figure 4.8: Domains formed under an out-of-plane field. The domains range in complexity 

from single spikes (a), to paired spikes (b), to branched spikes (c), and fir tree domains 

with a trunk and branches (d). The schematics in (e) and (f) show a cross section through 

the dashed line in (a) and (b) respectively. 
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Figure 4.9: Possible orientations of spike domains. The possible orientations depend on the 

direction of the domain they grow from and the direction of the applied field. Structures 

(a-d) are favored when a field is applied out of plane and (e-h) are preferred when the field 

is applied into the plane. 

Because the spikes form to accommodate domains with out-of-plane 

magnetizations, they occur at predictable angles. They always form in an orientation that 

will guide the flux out from the subsurface domain. The spikes can only point in two 

directions, and those directions are controlled by the magnetization of the domain that they 

grow from. Spike orientation is function only of the parent domain magnetization and the 

direction of the applied field. All of these possible orientations are shown in Figure 4.9. If 

the field is applied out of the plane in the [001] direction, the spike orientations in Figure 

4.9a-d are favored. For a field applied into the plane in the [001ത] direction, the orientations 

in Figure 4.9e-h are preferred. 
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Figure 4.10: Dependence of pike domain orientation on the direction of applied magnetic 

field. A basic domain structure with no applied field is shown in (a). In (b) and (d) a 

magnetic field was applied out of the plane and in (c) and (e) a field was applied into the 

plane. Reversing the direction of the applied field reverses the direction of the spikes. 

 



54 

To test the effects of different field orientations on the formation of spike domains, 

the single crystal of Fe91.5Ga8.5 was subjected to large magnetic fields both out of plane and 

into plane. The results are summarized in Figure 4.10. The initial state is shown in Figure 

4.10a, with positive magnetic fields shown in b and d, and negative magnetic fields shown 

in c and e. The results are consistent with expectations. When the sign of the magnetic field 

is reversed, the orientation of the spikes in each domain is also reversed. Since the spike 

and fir tree domains form with predictable orientations, they can be used to determine the 

true magnetization directions of any basic domain structure that they form in. For example, 

the magnetizations given in Figure 4.1 can be confirmed by applying a magnetic field. The 

spike domains in Figure 4.7 show that the analysis is consistent. The spike orientations 

above and below the pentagon structures are the same, confirming that these domains have 

the same magnetization state. This technique will be useful for analyzing other unique 

domain structures in this material. 

4.2.3 Charged 90° domain walls 

In some cases, domain walls are present but do not collect any ferrofluid. These 

walls are invisible under normal viewing conditions. This results in unusual structures, 

with domain walls that come to a stop abruptly in the middle of the material. One such 

pattern can be seen in Figure 4.11a. The zigzag V-lines come a stop at some points, with 

the domains appearing to wrap all around the domain wall. When a field is applied out of 

plane in Figure 4.11b half of the zigzag lines disappear. At higher fields the invisible lines 

begin to appear. They can be seen in Figure 4.11c and d, appearing at approximately 45° 

angles as would be expected for 90° domain walls. Large out-of-plane magnetic fields can 

be used to nucleate the spike domains seen in Figure 4.11e and f. Using the technique 

discussed in Section 4.2.2, the spike domains can be used to determine the domain 

orientations. To clarify the faint spike domains, a schematic representation is shown in 

Figure 4.12. Figure 4.12a represents the right side of Figure 4.11e and Figure 4.12b 

represents the left side of Figure 4.11f. Using Figure 4.9a-d and a knowledge of zigzag V-

lines, the domain magnetization directions were established. 
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Figure 4.11: Effect of applied field on invisible domain walls. Domain patterns on (001) 

surface of Fe91.5Ga8.5 have some invisible domain walls (a). With increasing magnetic field 

applied out of plane some zigzag lines disappear (b). Invisible walls become visible in (c). 

More invisible walls appear in (d) and zigzag lines reappear. Spike domains form in (e) 

and (f) which can be used to determine domain orientation. 
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Figure 4.12: Schematics clarifying the faint domain structures in Figure 4.11e and f. The 

right side of Figure 4.11e is drawn in (a) and the left side of Figure 4.11f is drawn in (b). 

Using the orientation of the spike domains, it can be shown that the invisible domain walls 

were actually 90° walls with head-to-head and tail-to-tail orientations. 

From this analysis it can be shown that the initially invisible domain walls are 

charged 90° domain walls with head-to-head and tail-to tail orientations. It is unclear why 

this domain orientation results in walls that do not collect ferrofluid. However, it is 

consistent with the observations of 90° zigzag walls where half of each zigzag tooth was 

faint or invisible. The faint or invisible segments (for example in Figure 4.1) were 

magnetically charged, with head-to-head and tail-to-tail orientations just like the invisible 

walls in Figure 4.11a.  

The charged 90° domain walls were seen in other compositions of Fe-Ga as well. 

Figure 4.13a shows domains on an as-grown crystal of Fe85Ga15. A schematic 

representation is show in Figure 4.13c. Regular bands of zigzag V-lines are interrupted by 

domains enclosed by invisible charged 90° walls, with domain orientations flipped on 

either side of the break. In an annealed and quenched crystal of Fe85Ga15 (Figure 4.13b and 

d) the zigzag V-lines form a labyrinthine structure with faint or invisible 90° walls 

separating the corners. In general, the charged 90° walls were always associated with 

zigzag lines. The reason for the formation of these charged walls will be explored further 

in Chapter 5. 
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Figure 4.13: Structures with invisible domain walls. On a (001) surface of an as-grown 

crystal of Fe85Ga15 (a), zigzag V-lines are separated by invisible 90° walls. On a (001) 

surface of an annealed and quenched crystal of Fe85Ga15 (b), zigzag V-lines for a 

labyrinthine structure with the corners filled in by invisible or faintly visible 90° walls. The 

schematics in (c) and (d) show portions of (a) and (b), respectively, with their 

magnetizations. The faint or invisible 90° walls are shown in gray. 

4.2.4 Measurements of Zigzag Lines 

In Section 1.3.8 it was predicted that the thickness of the zigzag lines, defined here 

as twice the zigzag wave amplitude, would be proportional to the reciprocal of the 

magnetostrictive constant. To test this prediction, the thickness was measured for four 

different galfenol samples. In addition, measurements were taken from images of Fe92.5Si7.5 

published by Chikazumi and Suzuki [19] and Fe73.9Ga26.1 published by Chopra and Wuttig 

[11]. The magnetonstrictive constant λ100 was determined by performing linear 
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interpolations on the data of Clark et al. [1] for Fe-Ga and the data of Hall [61] for Fe-Si. 

The results are summarized in Figure 4.14. 

 

Figure 4.14: Measurements of the thickness (twice the amplitude) of zigzag lines in single 

crystals Fe-Ga and Fe-Si as a function of λ100. For Fe92.5Si7.5 and Fe73.9Ga26.1 were taken 

from Chikazumi and Suzuki [19] and Chopra and Wuttig [11] respectively. The trendline 

shows the best fit of thickness as a function of 1/λ100. 

The trend of thickness, t, proportional to 1/λ100 does not fit the data. There could be 

a few reasons for this discrepancy. First, λ100 is not the only property that influences the 

thickness. It is also influenced by the anisotropy and exchange constants (which affect the 

zigzag angle, ω, and the gradient energy constant, β) so that materials containing different 

phases will exhibit different behavior. Also, surface stresses may be induced by quenching 

(as will be discussed more later) which could influence the magnetoelastic energy which 

controls the thickness.  
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4.3 Conclusions 

A variety of magnetically charged domain structures were explored here. A 

pentagonal domain structure, never before see in galfenol, was described for the first time 

here. Two methods of determining the magnetization of basic domain structures by the 

application of out-of-plane fields were described and formalized. One used the alternating 

disappearance of zigzag lines. The other utilized the orientation of spike and fir tree 

domains. Both methods were combined to show that the pentagonal domain structures 

contained a new type of zigzag wall, a charged 90° zigzag wall, which is unlike the familiar 

zigzag V-lines. The spike domains were also used to demonstrate that invisible or faintly 

visible domain walls were charged 90° domain walls with head-to-head and tail-to-tail 

orientations. 
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5 Chain Domains 

5.1 Introduction 

The tools developed in Chapter 4 will be helpful in analyzing the magnetization state 

of the chain (cellular) domain structure. In this chapter, a new interpretation of the chain 

domain structure will be presented. Chain domains in galfenol are compared with similar 

structures in Fe-Si alloys to help understand the role of elasticity in their formation. 

5.2 Results and Discussion 

Interesting domain structures were found on an annealed and quenched single crystal 

of Fe85Ga15. Zigzag V-lines come together to form regular chains of rectangular units 

(Figure 5.1). Inside of each rectangular unit there is a fifth zigzag line running parallel to 

the long axis but not touching the edges of the rectangle. It is assumed that the centerline 

connects to the corners of each unit by unseen charged 90° walls, much like the rectangular 

shape in the center of Figure 4.13d. Domains of this form were previously reported by 

Chopra [11], who referred to them as cellular domains. In this work they will be referred 

to as chain domains. 

The chain structure does not always form rectangles with square corners. Figure 5.2 

shows how the chain domains can vary. They can be somewhat rounded and they can be 

very rounded, narrowing to a point on the end. In transitionary structures like at the top of 

the figure, the individual units grow out from a zigzag V-line, forming a structure like a 

beaded string. These “beads” can be very small, like those seen in Figure 4.13b. 
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Figure 5.1: Chain-like domain structure seen on (001) surface of annealed and quenched 

single crystal of Fe85Ga15. The borders of each chain link and the line through the center 

are zigzag V-lines. Charged 90°domain walls connect to centerline to the corners. 

 

Figure 5.2: Variable chain domain structure seen on (001) surface of annealed and 

quenched single crystal of Fe85Ga15. The shape of the chains can vary, with chains of square 

links, chains of rounded links, or beaded string structures with the domains growing from 

zigzag V-lines. 
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Figure 5.3: Effects of applied field on chain domains. Chains domains were seen on the 

(001) surface of an annealed and quenched single crystal of Fe85Ga15 (a). When an out-of-

plane field was applied (b) the outer edges of some chain links disappeared and the 

centerline of neighboring chains disappeared. In a reversed field (c) the alternating pattern 

is reversed. 

To clarify the magnetization directions within the chains, a magnetic field was 

applied perpendicular to the surface. The initial state is shown in Figure 5.3a. Figure 5.3b 

and c show positive and negative fields, respectively. Under an applied field the outer walls 

of every other chain disappear, leaving only the centerline visible. In the neighboring 

chains this behavior is reversed, with the centerline disappearing and the outer walls 

remaining visible. This indicates that all of the zigzag lines forming the boundaries of the 

chain links have the same orientation. They either all point inwards or all point outwards, 

with the centerline having the opposite orientation. This is illustrated in Figure 5.4. The 

convergence of so many V-lines in a narrow area creates a complex three-dimensional 

geometry beneath the surface. A three-dimensional model of the chain domains is given in 

Figure 5.5. For simplicity, the zigzag folding of the 90° domain walls is ignored in this 
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model. Each chain link results from a subsurface domain magnetized perpendicular to the 

surface, represented as rectangles in Figure 5.5b. This magnetization meets the surface at 

the centerline of the chain link and then spreads out in four directions. 

 

Figure 5.4: Magnetization state of chain domains. Alternating chains have opposite 

orientations. 

 
Figure 5.5: Three-dimensional model of the chain domain structure as viewed from above 

(a) and below (b). 

In general, the subsurface domains forming these chain links are not expected to 

penetrate deep into the bulk. The domain wall energy can be reduced by a branched 

structure, with many small domains near the surface coming together to form larger 

domains within the bulk. Evidence of domain branching was seen on a single crystal of 

Fe83Ga17, shown in Figure 5.6. Near the free surface on the left side there are many small 

domain branches. Deep in the material these branches merge together to form coarse 

domain structures to reduce domain wall energy. 
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Figure 5.6: Evidence of domain branching on a (001) surface of Fe83Ga17. Domains are 

fine near the free surface, but become coarse at large depths. The thick vertical line at the 

left of the image is a scratch. 

It can be shown that the magnetoelastic energy is reduced by splitting into four 

domains instead of two. This requires considering a component of the elasticity that was 

previously ignored. Figure 5.7a shows a cross section through two zigzag lines in an 

imaginary strain free state. The zigzag folded 90° walls have an elastic energy component 

caused by the strain mismatch on the domain wall. The extra component of elastic energy 

results from geometric incompatibility. In Figure 5.7b, the domains are isolated from each 

other and allowed to experience strain from magnetostriction. After elongating along the 

magnetization direction, the domains no longer fit together. Since the domains are forced 

to fit together, a compressive stress is generated as a result of the incompatibility. 
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Figure 5.7: Strain state zigzag domain wall structures. In (a) the unstrained state is shown 

with the magnetization vectors. The strained state is shown in (b) where the arrows 

represent the magnetostrictive strain. There is a stress caused by the shape incompatibility. 

A periodic arrangement like the chain structure can help to mitigate the stress 

caused by strain mismatch. To understand this, consider the cross section of the chain 

domains in Figure 5.8. On the (100) cross section in Figure 5.8a, the long primary surface 

domains can be seen. These domains apply a compressive stress on the underlying domains 

along the [010] axis. The (010) cross section in Figure 5.8b shows the effect of the 

secondary triangular domains. These secondary domains exert a stress on the [100] axis, 

but contract along the [010] axis. This contraction counteracts some of the stress induced 

by the primary domains. By alternating magnetization axes in a periodic arrangement, the 

average stress can be reduced. This provides a potential driving force for the preference 

towards long range ordering in the domain structure. 
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Figure 5.8: Reduction of magnetoealastic energy in chain domains. Zigzag lines are drawn 

straight for simplicity. The long primary domains (a) exert a compressive stress on the 

subsurface domains on the [010] axis. The secondary triangular domains exert a stress on 

the [100] axis. The associated contraction of the secondary domains on the [010] axis 

relieves some stress. 

The variation in chain domain structure must also be considered. A few of the 

possible chain structures are given in Figure 5.9.The chains can be square or rounded to a 

narrow tip. Some chains branch to form smaller chains, and some can even form small 

chains on the walls of larger chains to create a nested structure. Different shapes must be 

interpreted somewhat differently. For example, the beaded string geometry seen at the top 

of Figure 5.2. These domains narrow all the way to a point, leaving no space for 90° domain 

walls at the end. These structures contain only two domains instead of the typical four. This 

is illustrated in Figure 5.10. The links with curved walls are intermediate structures. The 

narrowing of the boundaries results in smaller domains on the ends. 
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Figure 5.9: Examples of variation in chain domains on (001) surface of annealed and 

quenched single crystal of Fe85Ga15. Domain can form regular parallel chains (a), they can 

be rounded to a narrow point and split into smaller chains (b), and the form nested 

structures with chains on chains (c). 

 

Figure 5.10: Different chain domain geometries. Chain links that narrow to a point have 

only two internal domains instead of four. 
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5.3 Comparison Between Domain Structures in Fe-Ga and Fe-Si 

Despite large differences in magnetoelastic properties, Fe-Si alloys have many 

interesting structures that are analogous to structures in galfenol. This includes some 

structures of interest in this work, like zigzag V-lines and chain domains. For this reason, 

it is worth comparing and contrasting the structures seen in both alloys and the mechanisms 

that are responsible for their formation. 

The so-called cellular structure observed by Chopra in galfenol [11, 54] is 

fascinating, but not the first observation of such structures. Carey [62] observed a so-called 

band structure in (100) textured sheets of Fe-Si (unknown composition). The structure 

consisted of a series of parallel zigzag lines, but the same term was used to refer to chain-

like structures of rectangular links. The author appears not to have recognized the 

significance of this difference, and did not comment on it. They supposed that the structure 

was a result of residual compressive stressed from rolling which caused a preference for 

out of plane magnetization. The addition of a tensile stress in the plane caused this structure 

to disappear. 

 Chikazumi and Suzuki [46] created compressive surface stresses in a single crystal 

with 4 wt%Si by dropping a ball-point pen on a (100) surface. They polished the indent 

completely off and observed what they called chain-like domains in the area of the indent. 

The image is once again not of sufficient quality to resolve internal structure, but they are 

chain-like in appearance. 

The most significant work on chain domains was done by Stephan, who took high 

quality images of these structures on a (100) surface of a quenched Fe-Si single crystal 

[63]. Like the domains seen in galfenol, the chain links had four zigzag edges and a fifth 

zigzag line running through the center. It also contained charged head-to-head and tail-to-

tail 90° domain walls, which were invisible to the ferrofluid. Stephan determined the 

domain orientations in the same way as for galfenol, by applying an out-of-plane field and 
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noting that the centerlines disappeared in every other chain while the outer edges 

disappeared in the other chains. 

Stephan attributed the formation of the chain structure to residual compressive 

stresses caused by the quenching of the crystal. The severity of the quenching altered the 

form of the chains [64]. More aggressive quenching resulted in nested chain structures, 

with chains growing from the walls of other chain links. When these were subjected to a 

tensile stress, the complexity of the structure was reduced. Starting with a nested chain 

structure, increases in stress caused the secondary chain links to disappear. Then the square 

links became round and lost the triangular secondary domains at their ends. With sufficient 

applied stress, the compressive stresses were removed and the chain structure disappeared. 

Stephan had a good grasp on the interpretation of the chain structure, but could not explain 

what role the elasticity played in the formation of secondary triangular domains in the cells. 

The periodic structure of the chain domains and their intimate relationship with stress 

can leave no doubt their formation is driven by elasticity. Like the simpler zigzag domain 

structures, a compressive stress will favor domain orientations perpendicular to the surface. 

This naturally promotes any structure containing V-lines at the surface. Indeed, whenever 

chain domains have been seen on a (100) surface of Fe-Si, some form of compressive plane 

stress was present. 
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Figure 5.11: Chain domains on (100) surface of as-grown crystal of Fe82.9Ga17.1. 

 

Figure 5.12: Chain domains on (100) surface of as-grown crystal of Fe78.1Ga21.9. 

The influence of quenching-induced surface stress may play some part in the 

observation of chain domains in galfenol as well. The chain domains shown in Chapter 5 

were from a quenched crystal of Fe85Ga15. However, chain domains were also observed on 

as-grown crystals of Fe82.9Ga17.1 (Figure 5.11) and Fe78.1Ga21.9 (Figure 5.12). Chopra et al. 



71 

also observed complex chain domain structures on slow cooled crystals of Fe73.9Ga26.1. It 

appears that surface stresses from quenching are capable of producing chain domain 

structures, but they are not necessary in galfenol where they are seen on stress-free surfaces 

of unquenched samples. 

The reason stress is needed to form chain domains in Fe-Si stems from the 

difference in magnetostriction as compared with galfenol. In general, additions of Ga 

increase magnetostriction in Fe, while additions of Si decrease magnetostriction.This effect 

is summarized in Figure 5.13, a plot of 
ଷ

ଶ
𝜆ଵ଴଴ vs. composition for Fe-Ga and Fe-Si. 

Magnetostriction data was taken from Clark et al. [1] and Hall [61]. 

Structures with regularly spaced zigzag lines have been seen in stress-free crystals 

of both galfenol (e.g. Figure 4.1) and Fe-Si [47]. The driving force for the transition from 

simple zigzag lines to a chain structures is a reduction in magnetoelastic energy. This 

reduction must be great enough to overcome the additional domain wall energy. The 

reduction in magnetoelastic energy becomes greater with increasing magnetostriction, 

while the energy cost remains constant. For a highly magnetostrictive alloy like galfenol, 

the energy reductions caused by the formation of the chain structure outweigh the costs. 

This is not the case for Fe-Si, which has an order of magnitude less magnetostriction. For 

low magnetostrictive Fe-Si alloys, the addition of compressive residual stresses must 

provide some additional driving force for the formation of chain domains. 
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Figure 5.13: Plot of 
ଷ

ଶ
𝜆ଵ଴଴ vs. at% Ga and at% Si in Fe. Adding Ga causes a strong increase 

in magnetostriction, while adding Si decreases magnetostriction. 

5.4 Conclusions 

The chain domain structure, first described in galfenol by Chopra and Wuttig [11], 

was thoroughly characterized and reevaluated. The response of zigzag lines to out-of-plane 

fields was used to determine the magnetization state of the chains, which differed from the 

interpretation presented by Chopra and Wuttig. The chains can be seen as a more complex 

version of zigzag lines. The zigzag V-lines form to ensure flux closure and minimize the 

magnetostatic energy. The chain structure forms to reduced the magnetoelastic energy 

created by the geometric incompatibility of strains in the surface domains. For highly 

magnetostrictive materials, the magnetostatic energy incurred by the formations charged 

90° domain walls is offset by a reduction in magnetoelastic energy afforded by the 

alternation of surface domain orientations. These chain domains can form in both quenched 

and slow cooled crystals, so they cannot be explained by the influence of quench induced 

compressive surface stresses alone. 
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6 Summary of Conclusions 

Galfenol has drawn a great deal of interest because of its attractive combination of 

properties, including large magnetostriction of up to 400 ppm and good ductility and 

machineability. Despite this interest, little characterization has been done on the true 

domains structures in this promising material. The domain studies that have been 

performed generally only consider one composition and one domain structure. Of these, 

many only show maze domain structures of zigzag walls which are caused by polishing 

induced surface stresses, and do not represent the true domain structure. Removing this 

stress by careful surface preparation, a few authors have reported on simple closure domain 

structure. Finally, a few works reported on a cellular or chain domain structure. A more 

comprehensive study was necessary to more fully explore the possible magnetic domain 

structure in galfenol and to better explain the poorly understood chain domain structure. 

In this work, several new domain structures are presented which were never seen 

before in galfenol, and methods were developed for the interpretation of these domain 

structures. A magnetic field applied perpendicular to the surface can be used to determine 

the relative orientation of zigzag V-lines, which preferentially disappear in Bitter images 

depending on the magnetization of surrounding domains. Stronger fields can be used to 

induce spike and fir tree domains, whose orientation is uniquely defined by the 

magnetization of the parent domains and the direction of the applied fields. 

A new pentagonal arrangement of domain walls was described in galfenol. This 

structure was periodic over long distances and contained a new type of zigzag domain wall. 

These 90° charged zigzag walls have not been described in galfenol previously.  Applied 

fields were also used to demonstrate the existence of 90° walls with head-to-head and tail-

to-tail orientations. 

Through a thorough investigation of domain phenomena physically meaningful and 

self-consistent interpretation of the chain domains was developed. The magnetization 

points either outward in all four domains or inward in all four domains. Each chain link 
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contains five zigzag V-lines and four charged 90° walls. The secondary triangular domains 

at the end of each chain link help to reduced the magnetoelastic energy by distributing 

stresses along two different axes. This interpretation provides a better explanation for the 

zigzag walls and provides a simpler mechanism for the elastic interactions, without 

resorting to magnetizations which deviate from the easy axes, as other authors have done. 
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7 Future Work 

In this work, only domain structures on the (100) plane were considered, but another 

class of domain structures exist on (110) surfaces of galfenol. These structures have been 

characterized to a small extent but were not included here. Figure 7.1 shows an example of 

a domain structure on a (110) surface of Fe89.3Ga10.7. These structures are difficult to 

analyze because there is only one easy direction in the plane of the sample. More work 

needs to be done to understand these complex structures. Some of the walls appear chain-

like, but since they occur on a (110) plane the mechanisms for their formation must be 

different. Similar structures have also been observed in Fe-Si by Corner and Mason [65], 

Bates and Hart [66], and Stephan [64]. 

 

Figure 7.1: Domain structure on a (110) surface of Fe89.3Ga10.7. 
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A Standard Operating Procedure for Surface 

Preparation of Galfenol Single Crystals 

This appendix will discuss the surface preparation process used in this work in the 

greatest detail possible, with consideration for sample cleanliness, polishing times, and 

some problems which may arise. 

All polishing steps were performed on an Allied High Tech LaboPol-1 

autopolisher. The full list of consumable materials used is as follows: 

 

-PSA backed SiC paper discs, 600 and 800 grit (8 inch) 

-Allied High Tech White Label Flexible Back Magnetic 8 inch disc 

-Allied High Tech Imperial Flexible Back Magnetic 8 inch disc 

-Buehler Microcloth Magnetic 8 inch disc 

-Allied High Tech 1 µm Monocrystalline Diamond Compound 

-Allied High Tech 0.04 µm Colloidal Silica Suspension 

-Allied High Tech Red Lube 

-Cotton balls 

-Ethanol (190 proof) 

-Nitrile gloves 

-Dawn dish soap 

-Clean paper towels 

After acquiring the above materials, obey the following steps to achieve best results: 

1. Use wet paper towels to wipe down all of the surfaces of the polishing head and 

polishing wheel to remove any leftover abrasive. Dry the wheel thoroughly before 

applying any polishing pads. 

2. Apply a 600 grit SiC pad. With water running, polish at 15N of pressure until the 

epoxy is removed from the sample surface, 30-90 seconds. 
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3. Clean the sample with water and soap using a cotton ball to gently clean the surface. 

Spray the surface with ethanol and dry with a hair dryer. Place cotton balls in a 

small beaker and fill with ethanol. Place the sample face down on the cotton balls 

and place in ultrasonic cleaner for 1-2 minutes. 

4. Repeat step 1. 

5. Apply an 800 grit SiC pad. With water running, polish at 15N of pressure until the 

600 grit scratches are removed, 2-6 minutes. 

6. Repeat step 3. 

7. Unscrew the bottom plate of the polishing head. Wash the plate thoroughly with 

soap and water. Clean the screws ultrasonically in the ethanol beaker for 1-2 

minutes. At the same time, place the bottom plate of the polishing head in the water 

bath of the ultrasonic cleaner. Before reattaching the plate, thoroughly clean the rest 

of the polishing head with wet paper towels. Wear gloves while reassembling the 

autopolisher head. 

8. Ensure that the polishing head is completely dry. While still wearing gloves, apply 

the Microcloth diamond pad. Place the sample on the pad to check for lubrication. 

If the pad is sufficiently lubricated, the sample surface should be wet with red lube. 

If the surface is too dry, apply Red Lube to the pad a few drops at a time until it is 

sufficiently lubricated. 

9. Polish at 15N of pressure until the 800 grit scratches are removed and replaced with 

scratches which are thin and faint under 100X magnification, 3-6 minutes. 

10. Repeat steps 3 and 7. 

11. While still wearing gloves, apply the White Label pad. Without placing the sample 

on the pad, turn on the wheel and wet the pad thoroughly with colloidal silica. 

Polish at 15N of pressure until the largest scratches are removed, 4-6 minutes. 

Apply silica liberally while polishing, never allowing the pad to dry out. After 

removing the sample from the polisher, run water over the pad to prevent drying.  

There will still be some visible scratches. 

12. Rinse the White Label pad thoroughly before storing. 

13. Repeat steps 3 and 7. 
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14. While still wearing gloves, apply the Imperial pad. If the pad is dry, soak it with 

water before beginning. Periodically applying silica, polish at 15N of pressure until 

all scratches are gone, 5-50 minutes. Keep the pad from drying completely, 

applying a few drops of silica every 20-60 seconds. Listen for a knocking solid 

from the polishing head and adjust lubrication to minimize the sound. Whenever 

removing the sample for cleaning, immediately spray it with ethanol to cease any 

chemical reactions. 

15. Repeat steps 3 and 1. 

Some addition considerations should be taken during specific steps to maximize the 

effectiveness of the process. 

During diamond polishing, the diamond paste can be washed from the pad very easily. Any 

water or lubricant that touches the pad will tend to remove abrasive. This pad should be 

lubricated very sparingly and only when necessary. This will reduce how often diamond 

paste must be reapplied 

The White Label pad dries out more easily than the Imperial pad. It should be kept wet at 

all times to prevent drying of the silica. If silica dries onto the pad it can cake up and cause 

large scratches during polishing. This can also happen on the Imperial pad, but it dries more 

slowly so less care is required. 

During the final stage in the process, when polishing on the Imperial pad, the scratches 

may become very small and shallow, making them difficult to see. To ensure that polishing 

is complete, ferrofluid must be applied to the sample. The ferrofluid tends to build up 

around invisible scratches to reveal them. Continue polishing until the surface quality is 

satisfactory even with the ferrofluid applied. 
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