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Preface 

This work presents the exploration into the relationship between the mechanical impedance 

of the human ankle as a function of lower extremity muscle activation. The work was completed in 

the Human Interactive Robotics Laboratory at Michigan Technological University, under the 

advisement of Dr. Mo Rastgaar. In addition, the research presented was completed by the author 

in collaboration with Dr. Mo Rastgaar, Dr. Evandro Ficanha, Dr. Houman Dallali, Guilherme A. 

Ribeiro, and Leslie Castillo.  All work was supported by the National Science Foundation, under 

grant numbers 1350154 and 1830460.  

This dissertation is divided into five chapters. A summary of each chapter is shown below:  

• Chapter 1.  Provides an introduction and background information on established methods for 

estimating ankle impedance, using electromyography to understand muscle function, and 

implications for this work.  

• Chapter 2. A novel method that applies Artificial Neural Networks (ANN) to relate the non-

loaded, multi-directional ankle impedance to lower-leg muscle co-contraction levels in the DP, 

IE, and ML directions. The materials in this chapter were published in two journal articles in the 

International Journal of Intelligent Robotics and Applications.  

• Chapter 3. The work presented expands upon the results from the previous chapter to explore 

the ankle impedance and muscle co-contraction activity during standing. The work in this 

chapter was presented in four conference publications; including the 1) Design of Medical 

Devices (2018), 2) International Conference on NeuroRehabilitation (2018), 3) 7th IEEE 

International Conference on Biomedical Robotics and Biomechatronics (2018), and 4) Design of 

Medical Devices (2019).  

• Chapter 4. The methods used in Chapter 2 and Chapter 3 are used to further explore the 

relationship between standing ankle impedance and muscle activity at varying levels of the 

center of pressure and ankle angle.  

• Chapter 5. This final chapter summarizes the main conclusions and contributions of this work 

and describes future implications for modeling an EMG – ankle impedance relationship and 

applications in control of robotic medical devices 
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Abstract 

The purpose of this research is to investigate the relationship between the mechanical 

impedance of the human ankle and the corresponding lower extremity muscle activity. Three 

experimental studies were performed to measure the ankle impedance about multiple degrees of 

freedom (DOF), while the ankle was subjected to different loading conditions and different levels 

of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, 

frontal, and transverse anatomical planes while the ankle was suspended above the ground. The 

subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured 

using electromyography (EMG). An Artificial Neural Network (ANN) was implemented to 

characterize the relationship between the EMG and non-loaded ankle impedance in 3-DOF. The 

next two studies determined the ankle impedance and muscle activity during standing, while the 

foot and ankle were subjected to ground perturbations in the sagittal and frontal planes. These 

studies investigate the performance of subject-dependent models, aggregated models, and the 

feasibility of a generic, subject-independent model to predict ankle impedance based on the 

muscle activity of any person. Several regression models, including Least Square, Support Vector 

Machine, Gaussian Process Regression, and ANN, and EMG feature extraction techniques were 

explored.  The resulting subject-dependent and aggregated models were able to predict ankle 

impedance with reasonable accuracy. Furthermore, preliminary efforts toward a subject-

independent model showed promising results for the design of an EMG-impedance model that can 

predict ankle impedance using new subjects. This work contributes to understanding the 

relationship between the lower extremity muscles and the mechanical impedance of the ankle in 

multiple DOF. Applications of this work could be used to improve user intent recognition for the 

control of active ankle-foot prostheses.   

 

 

 

 

 



13 

1 Introduction  

 Motivation  
The role of the human ankle is imperative to performing tasks such as balance, gait, and other 

activities of daily living (ADLs) [1].  With the help of the muscles synergy of the lower leg, the ankle 

is capable of absorbing shock as the foot comes in contact with the ground, accelerating the body 

forward during locomotion, changing speed and direction during gait maneuvers, and maintaining 

a stable balance to prevent from falling. An able-bodied person has the ability to control their ankle 

angles and torques by contracting and relaxing the antagonistic and agonistic muscles of the lower 

leg, resulting in a desired ankle motion.   

Unfortunately, many individuals are afflicted by a disability, such as lower-leg amputation, 

stroke, musculoskeletal diseases, or other neurological injuries, that has prevented normal ankle 

function. It is estimated that 2 million people in the United States have undergone limb amputation, 

resulting in approximately 185,000 amputations performed each year [2]. Roughly 60 - 70% (nearly 

1.2 million people) of these amputations were performed on the lower-limb, with the majority 

being below-knee, transtibial amputation [3]. The leading causes of lower-limb amputations are 

due to diabetes mellitus and other diseases associated with it, such as peripheral vascular disease, 

cardiovascular disease, and obesity [3]–[5]. It is estimated that the number of amputations caused 

by these vascular diseases could double by the year 2050  [2]. Other reasons for lower-limb and 

transtibial amputation include, but are not limited to, traumatic accidents, cancer, and congenital 

limb defects [6], [7].  

Consequently, lower-limb amputation has an immense impact on the quality of life, both 

physically and emotionally, because the individual has lost some degree of mobility to be able to 

perform ADLs.  The use of conventional passive prostheses provides a simple and relatively low-

cost solution to recover lost mobility; however, the amount of metabolic energy required by a 

transtibial amputee using a passive prosthesis increases up to 30% when compared to a healthy 

person walking at the same speed [8], [9]. Likewise, the preferred walking speed of the amputees 

are typically 30-40% slower than that of a non-amputee [4], [8].  Transtibial amputees usually have 

an altered gait strategy or compensatory mechanism to account for the loss of mobility and 

mechanical power at the ankle [10]–[14]. Often this leads to secondary musculoskeletal injuries, 
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such as chronic disorders of the lower back, hips, and knees on both the amputated and non-

amputated limbs [15], [16].   

Recent advancements in active lower extremity prostheses and assistive devices have 

demonstrated the ability to generate mechanical power during the push-off phase of gait, which is 

comparable to the power generated by the healthy ankle. Several state-of-the-art active 

prostheses, including both transtibial and transfemoral, have been designed, clinically tested, or 

have become commercially available within the past 20 years [17]–[21].  These prostheses can 

actuate the foot and knee joints to help restore power loss in the sagittal plane of motion; which 

is something that is advantageous during the push-off phase of straight walk, ascending or 

descending stairs, or walking up and down a sloped surface [22]–[25].  In fact, one study showed 

that the use of a single-degree-of-freedom (DOF) active prosthesis decreased metabolic cost during 

straight, level walking by approximately 14% when compared to a traditional passive prosthesis 

[26].  

However, the ankle range of motion (ROM) is not limited to rotations only in the sagittal plane. 

The ankle modulates about multiple degrees of freedom during ADLs [27]–[29]. Active transtibial 

prostheses that are capable of generating motion in the frontal and transverse planes are currently 

being researched and can contribute to a more natural ankle function.  Ficanha et al. developed a 

2-DOF active prosthesis that is actuated in the sagittal and frontal planes, corresponding to ankle 

motion in dorsi-plantarflexion (DP) and inversion-eversion (IE), respectively [30], [31]. In addition, 

Olson and Klute designed a transtibial prosthesis with active control in the transverse plane, 

corresponding to medial-lateral (ML) ankle rotation (also referred to as External-Internal rotation), 

to aid turning steps and reducing shear stress acting on the socket during locomotion [32]. The 

ability to actuate multiple DOF may better resemble the biomechanical features of the ankle, when 

compared to the single-DOF active designs, and can facilitate turning maneuvers or walking on 

uneven ground. 

While the mechanical design and development of active ankle-foot prostheses can provide 

substantial benefits to an amputee during ADLs, there are still many obstacles regarding how to 

control the device to include the biomimetic properties of a healthy ankle and how these devices 

interface with the user’s motion intentions [9], [14]. Understanding how the human ankle functions 

via an individual’s neuromuscular system is necessary for addressing these challenges. One 
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technique used to quantify ankle dynamics is the study of the mechanical impedance of the ankle. 

This property can be defined mathematically as a transfer function relating the ankle reaction 

torque to an input ankle perturbation, and has been shown to resemble a linear, second-order 

system [33]. By quantifying the ankle impedance parameters, we can improve the design and 

control of ankle-foot prostheses.  

This chapter includes the following: Section 1.2 describes the anatomy and function of the 

ankle, including the ankle axes of rotation and the surrounding muscles. Next, Section 1.3, Section 

1.4, and Section 1.5 provide a description of previous work that quantified the mechanical 

impedance of the ankle during non-loaded, standing, and walking scenarios. Section 1.6 explains 

the use of electromyography (EMG) to study muscle activity. Lastly, Section 1.7 describes the 

applications of EMG for user intent recognition in prostheses control.   

 Human Ankle Behavior 

The dynamic capabilities of the human ankle and the corresponding neural control and muscle 

activity have been widely studied within the fields of engineering and kinesiology. Understanding 

the kinematic, kinetic, and musculoskeletal information of the ankle provides essential information 

for improving the design of several medical devices; including passive and powered ankle-foot 

prostheses, exoskeletons, orthoses, and other assistive devices.  The following section explains the 

ankle anatomy and the function of the musculoskeletal system surrounding the ankle.   

The ankle joint complex is comprised of the talocrural, subtalar, and talocalcaneonavicular 

joints that are interconnected by a variety of tendons and ligaments and are actuated by 

surrounding muscles [1]. The geometry and orientation of each joint create oblique axes of 

rotation, which allow the ankle to rotate in multiple directions. The combined function of these 

joints provide stability and allow for motion in the sagittal, frontal, and transverse anatomical 

planes, shown in Figure 1-1. The subtalar joint is the largest of the three joints and allows for the 

majority of the ankle motion in inversion-eversion (IE) [1], [34]. The primary role of the talocrural 

joint contributes to movement in dorsiflexion and plantarflexion (DP) and, because of its unique 

geometry, also provides stability to motion in eversion [1], [34]. Lastly, the talocalcaneonavicular, 

which shares the same axes of rotation with the subtalar joint, also contributes to inversion and 
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eversion (IE) rotation of the ankle.  Medial-lateral (ML) motion in the transverse plane is generated 

from a combination of rotation axes about the talocrural and subtalar joints [34], [35].  

   

Figure 1-1. Foot and ankle rotation schematic in the sagittal, frontal, and transverse planes. (a) 
Ankle rotation in dorsi-plantarflexion (DP), (b) Ankle rotation in inversion-eversion (IE), and (c) 
Ankle rotation in the medial-lateral (ML) directions. The red circle denotes the ankle center of 

rotation. 

The lower-leg muscles are used to control ankle motion in DP, IE, and ML directions [1].  Five 

of the 13 muscles in the lower leg are referenced throughout this paper due to their contribution 

to ankle motion and superficial location. These muscles include: 1) Tibialis Anterior (TA), which 

contributes to movement in dorsiflexion and inversion of the foot; 2) Peroneus Longus (PL), which 

contributes to plantarflexion and eversion of the foot; and the 3) Soleus (SOL) and 4) 

Gastrocnemius Medial (GAM) and Lateral (GAL), which all contribute to plantarflexion [36], [37].  

Majority of the research to study the ankle and muscle contribution to ankle motion has focused 

on DP rotation; however, quantifying the ankle dynamics in DP, IE, and ML is essential be better 

understand the interdependence of ankle dynamics. 

 Non-loaded Ankle Impedance 

Early work by Hunter and Kearney [38], [39] and Weiss et al. [40]–[42] quantified the passive 

and active ankle impedance in the DP direction using a stochastic system identification approach. 

To estimate the impedance parameters, they applied perturbations to the ankle and measured the 

resulting reaction torques and muscle activity of the TA and GA muscles. A notable conclusion 

drawn from these works was that the impedance parameters increased as the mean ankle torque 

and muscle activity increased, regardless of the ankle angle [38], [41], [42].  The stiffness and mean 

ankle torque are dependent on the size of the ankle perturbation and decreased as the amplitude 

of the angular perturbation increased [39]. Additionally, the damping and stiffness increased as the 
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ankle was rotated away from its neutral angle; resulting in the maximum impedance at the limits 

of the DP range of motion [40], [42].  Lastly, the inertia remained relatively constant across all 

experiments.  

As a continuation of these studies, it was determined that the total impedance is equal to the 

summation of the intrinsic response of the muscles and tendons and the reflexive response of the 

neuromuscular system, as measured by Sinkjaer [43] and Kearney [44]–[46]. The reflex 

contribution to ankle torque was determined to have a transport delay of approximately 40-50 ms 

from the start of the muscle stretch due to a perturbation. The resulting reflex ankle impedance 

values were described using more complex dynamics, where the parameters were dependent on 

the velocity, amplitude, and contraction level of the stretch perturbation; while the intrinsic ankle 

impedance parameters more closely resembled a linear, second-order system. Together, the 

intrinsic and reflexive components are used to describe the total ankle impedance [44]. While many 

studies have separated the intrinsic and reflexive components of the impedance, the work 

presented in this dissertation studied the total impedance, without dividing it into two parts.  

Furthermore, the multi-variable ankle impedance was determined with passive and active 

muscle activity in DP, IE, and ML while the ankle was not loaded [47]–[54]. Anklebot, a wearable 

robotic device designed for stroke rehabilitation, was repurposed to estimate the multi-variable 

ankle impedance. This device is composed of two hydraulic linear actuators that apply stochastic 

perturbations to the foot. Depending on the orientation of the actuators, ankle motion was 

generated in the sagittal, frontal, or transverse planes and the resulting ankle torque and angle due 

to perturbations were measured. The ankle impedance was determined during static and dynamic 

perturbation conditions while subjects were seated with their ankle and foot raised above the 

ground, as described in the following paragraphs.  

Using the Anklebot, the ankle impedance in DP and IE were determined simultaneously by 

applying perturbations in both the sagittal and frontals planes. The Anklebot actuators were placed 

parallel the shin of the subject and were actuated in phase or out of phase with one another to 

generate a torque DP and IE, respectively. Using quasi-static perturbations in the sagittal and 

frontal planes, the multi-variable static ankle impedance was determined while muscles were 

completely relaxed [47]. It was determined that the ankle torque-angle relation is direction-

dependent, showing higher impedance in the sagittal plane than in the frontal plane. This study 
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was repeated while the lower-extremity muscles were co-contracted, and the resulting static 

impedance increased with muscle activity [48]. Expanding upon the quasi-static experiments, the 

dynamic ankle impedance was measured using a stochastic frequency-domain system 

identification methods for both relaxed and actively contracted muscles [49], [50].  These studies 

determined that the ankle impedance was greater in DP than IE, and both directions increased 

when muscles were actively contracted.  

To study the ankle impedance in ML, Anklebot was perpendicular to the shin so that it 

generated motion in the frontal plane [51], [52]. Similar to the DP/IE experiments, the subjects 

were in a seated position with their foot suspended above the ground and leg fixed in place. Quasi-

static and stochastic perturbations were applied to the ankle in the ML direction, and the ankle 

angles and torques were measured. The resulting impedance also showed behavior that closely 

resembled a linear, second-order system and was slightly smaller than the ankle impedance 

parameters determined for DP and IE directions.   

 Standing Ankle Impedance 

Next, the mechanical impedance of the ankle during quiet standing has been investigated in 

DP and IE directions. These works contribute to understanding the ankle mechanisms used to 

maintain an upright balance.  Early work focused on determining the critical stiffness of the ankle, 

which is the stiffness required to maintain a stable upright posture and is based on a ‘human 

inverted pendulum’ model [55], [56]. The ankle stiffness was determined by measuring the ankle 

angles and torques resulting from either the small perturbation due to the sway of the body’s 

center of mass (COM) or by small external perturbations applied to the ankle in the DP direction 

[55]–[59]. These works determined that the intrinsic ankle stiffness (due to inherent properties of 

the muscle, tendon, and other tissues surrounding the ankle) is not enough to maintain a stable 

balance and additional contributions from surrounding neuromuscular modulation are required 

[60]–[65].   

Furthermore, the intrinsic ankle impedance was also studied as a function of the body’s natural 

sway using the center of pressure (COP) in the DP direction. Sakanaka et al. asked subjects to 

consciously shift their COP forwards or backward by modulating their ankle torque against a force 

plate while standing with parallel feet [66].  It was determined that intrinsic ankle impedance 
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significantly changed when the COP moved forward or behind the neural COP position.  Similarly, 

the muscular activity of the TA and GA muscles changed depending on the location of the person’s 

COP. Similar results were presented by Kearney et al., who found that the intrinsic impedance and 

GA muscle activity increased as the subject’s COP moved forward during standing sway [67].   

The influence of ankle stiffness and impedance in the IE direction has been studied, mainly to 

understand how a person maintains a stable balance during standing. The study of this DOF is 

essential because it has the most number of reported ankle injuries due to lack of stability [68], 

[69].  Zinder et al. quantified the ankle stiffness in IE by applying perturbations with a swaying cradle 

device [68]. Additionally, other studies found that ankle stiffness increased when the ankle was 

inverted or everted (IE) using a wedged platform [70], [71].  

To estimate impedance in both DP and IE, Ficanha et al. developed a 2-DOF instrumented 

platform [72]–[75]. This platform consisted of two linear actuators connected to a force plate 

module via Bowden cables and surrounded by a motion capture camera system. The actuators 

applied a torque perturbation to the subject’s foot in both DP and IE. The resulting ankle rotations 

and torques were measured, and a variety of system identification methods have been developed 

to estimate the ankle impedance [72], [75], [76].  Similar to the non-loaded impedance, the 

stiffness and damping parameters were more significant in the sagittal plane than in the frontal 

plane during standing.  

 Time-Varying Ankle Impedance during Gait 
Last, the study of the ankle mechanical impedance was analyzed during walking scenarios. 

The gait cycle is divided into the stance phase, which includes heel-strike, mid-stance, terminal-

stance, and toe-off, and the swing phase, which includes initial swing, mid-swing, and terminal 

swing. A few groups have looked to quantify how the impedance modulates throughout the stance 

and swing phases of the gait cycle during straight walk and turning maneuvers. Initial work by Lee 

et al. quantified the impedance during the swing phase with the use of the Anklebot and found 

that the stiffness and damping in both DP and IE increased just before heel-strike and decreased 

around the toe-off and initial swing stages [77]. During the stance phase, various vibrating 

platforms were used to perturb the ankle and estimate the ankle impedance [78]–[82]. Rouse et 

al. determined that impedance in DP increased linearly between 20% - 70% of the stance phase 
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[78]. Using the 2-DOF instrumented platform described in the previous section, Ficanha et al. 

estimated the time-varying impedance in both the sagittal and frontal planes during the stance 

phase of straight walk and a turning maneuver [72], [80], [81], [83]. Similar changes in the ankle 

impedance were found throughout the gait cycle in both DP and IE directions. Additionally, there 

were notable differences in the stiffness and damping when comparing the straight walk and 

turning steps. These works provide a characterization of how the impedance changes throughout 

the gait cycle and provide the foundation for improving the control of active ankle-foot prostheses 

during ADLs.  

 Electromyography and Joint Dynamics 
In addition to studying the mechanical impedance of the ankle, it is also essential to 

understand how the lower extremity muscle signals reflect the mechanisms surrounding the ankle.  

Electromyography has been studied for more than a century. Much of the research has focused on 

either 1) explaining the underlying structure and neuromuscular properties that cause the muscle 

to flex and extend, or 2) studying ways to utilize the muscle signals, such as in movement analysis, 

disease diagnoses, ergonomics, rehabilitation, and for use in the control of prostheses, 

exoskeletons and other orthopedic devices [84]. The work presented in this paper focuses on the 

latter.  

It is common to describe a muscle as a collection of motor units (MU), which are composed 

of motor neurons connected to the spinal cord and the corresponding muscle fibers. The MUs are 

considered the smallest functional unit within a muscle that allows for its contraction [85]. The 

number of MUs found in a muscle is dependent on its size, and the amount of force the muscle can 

generate [86].  Early work determined that as the number of recruited MUs increased, there were 

also increasing trends in the resulting EMG signal amplitude, power spectrum, mean frequency, 

and generated force by the muscle [87], [88].  One study showed that as subjects increased their 

biceps muscle contraction level from rest to 80% of the Maximum Voluntary Contraction (MVC) 

the EMG amplitude and mean power frequency significantly increased, supporting the idea that 

EMG signals can provide information about the relative change in muscle force generation [87]. 

Furthermore, the effects of muscle fatigue, individual muscle fiber potential, and muscle synergies 

have also been shown to impact the EMG signal measurement [89]–[91]. 
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The relationship between the muscle activation amplitude and the corresponding muscle 

force and joint torques has been widely studied. Both invasive and non-invasive techniques are 

used to understand how muscle force relates to musculoskeletal loading and joint dynamics. 

Preliminary work predicted the muscle forces generated by the biceps brachii (elbow flexion) and 

triceps brachii (elbow extension) using surface EMG measurements during isometric, static 

contractions [85], [92]–[94]. Similarly, EMG signals were used to model the relationship between 

the upper extremity muscles activity and the corresponding joint kinematics and kinetics. 

Numerous studies have developed linear and nonlinear models to relate surface EMG signals to 

the torques and positions of the elbow [95]–[98], wrist [99]–[101], and fingers [102]. In a similar 

way, models relating the lower extremity muscle activity to the ankle kinematics and kinetics have 

also been studied; however, not as extensively as the upper extremity. Early work determined the 

relationship between EMG and ankle torque using a second-order least-squares fit [103], [104]. 

More recent work developed a model using wavelet neural networks to predict ankle torque during 

walking when provided with the EMG and ground impact force information [105]. 

Less commonly, understanding the neuromuscular activity as a function of joint impedance 

has been studied. This idea differs from the relationship between EMG and joint torque because, 

unlike from the torque modulation, the impedance can be modulated by co-contracting the 

muscles surrounding the joint [106].  Recent work by Dai et al. developed a model to relate EMG 

of the biceps and triceps muscles to the corresponding impedance of the elbow across a range of 

joint torques [106]. In addition, the ankle impedance and corresponding muscle contraction of the 

lower extremity muscles has been studied. Early work used stochastic system identification 

methods to determine the ankle impedance in DP over a range of muscle contraction level from 

resting to MVC [38], [39]. These studies used linear regression to fit the ankle stiffness and damping 

properties to EMG as the mean ankle torque increased. The linear regression showed correlation 

values ranging between 0.39 and 0.99 across five subjects [38]. More recent work implemented 

nonlinear models to relate the isometric contraction of the ankle plantar flexor muscles and non-

parametric ankle impedance while subjects were lying in a supine position [107]. The models were 

able to determine the intrinsic and reflexive contributions of the muscle between 0% and 40% MVC 

and could predict ankle torque based on EMG with 92 ± 3% variance accounted for (VAF) across 

five subjects.  
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The relationship between EMG and ankle impedance provides a new perspective in 

understanding the function of the human neuromuscular system. However, the relationship 

between EMG and ankle impedance has only been quantified in the DP direction during non-loaded 

activities, while subjects were either lying flat on their back or placed in a seated position. Likewise, 

the muscle activation measurements were typically from isometric contractions of a single muscle. 

Little work has been done to explore the relationship between ankle impedance and muscle co-

contractions of the agonistic and antagonistic muscles surrounding the ankle, especially during 

weight-bearing activities such as standing and walking.  To address some of these gaps, the work 

presented in this paper explored the development of EMG-impedance models that can predict 

ankle impedance in DP, IE, and ML directions [108], [109]. Additionally, these models use predictors 

from multiple muscles of the lower extremity, as opposed to a single muscle, and examine both 

non-loaded and various standing scenarios [110], [111]. Lastly, implications toward a generalized 

model that can predict ankle impedance from any subject were tested [111].  

 User Intent Recognition 

To further enhance the control of active prostheses, the prostheses must generate the 

necessary power at the correct time and be able to adapt to the user’s motion intentions. 

Classification, pattern recognition, regression, and other machine learning techniques have 

demonstrated the ability to transform EMG measurements into a functional signal to control  

prostheses  [112]–[114]. Tucker et al. divided these control methods into two generalized groups; 

including (1) activity mode recognition, which identifies finite behavioral states, such as walking or 

going upstairs, that are used to control discrete events, and (2) direct volitional control, where the 

user can freely modulate the kinematics or kinetics of the prosthetic device [9]. The main goal for 

active prostheses control is to use a combination of the activity mode recognition and volitional 

control; such that the device can observe the user’s motion intention, and respond accordingly in 

a way that mirrors the motion of a healthy, intact limb. The information from EMG signals has the 

potential to improve prostheses control based on a user’s intentions [115]. The following section 

includes an overview of these techniques for the control of upper and lower extremity active 

prostheses.  
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Activity mode recognition uses techniques such as classification and pattern recognition to 

detect a specific, discrete event in time. These techniques have been widely used to classify joint 

motion and in prostheses control, especially for powered upper extremity prostheses. Numerous 

studies have used pattern recognitions techniques to classify movement of the elbow, wrist, and 

thumbs to control prostheses [116]–[118]. Furthermore, a surgical procedure called targeted 

muscle reinnervation (TMR) has been used to improve the EMG signal measurements of upper 

extremity amputees [119], [120]. The resulting EMG signals after TMR surgery has shown to 

improve the classification accuracy of shoulder, elbow, wrist, or hand motions, which can be used 

to enhance the control of powered prostheses.   

Furthermore, pattern recognition and classification techniques have also been used for the 

control of lower extremity prostheses, specifically during locomotion. Huang et al. used EMG and 

pattern recognition to identify seven different locomotion modes throughout the gait cycle, 

including level walking, avoiding an obstacle, stair ascent, and descent, turning, and standing [121]. 

The classification accuracy ranged between 75% - 100%, depending on the task performed. Other 

studies have looked to use lower extremity EMG to classify ramp ascent and descent, and terrain 

identification during walking for above-knee amputees [122]–[124]. However, for these techniques 

to be used in practical applications, the classification error and update time needs to be improved 

in order to create safe prostheses.  

Volitional and proportional control techniques of prosthetic devices using surface EMG have 

been studied since the 1960s [112]. In some cases, these methods of control have shown to 

perform better than pattern recognition counterparts [125]. Wang et al. used proportional control 

to activate the DP motion of an active ankle-foot prosthesis using the residual muscle of an 

amputee [126]. In this study, the amputee was able to control the push-off angle and the 

prostheses power generation at varying speeds of walking by modulating the EMG activity of their 

calf muscle. Other related work has implemented proportional control using EMG to control a 

powered ankle-foot orthosis and additional types of active prostheses [25], [127], [128].  

Some volitional control techniques have utilized complex musculoskeletal dynamic models 

to relate the muscle signal information to the desired prosthesis motion [129]. These models often 

make many assumptions about the muscle’s dynamic properties.  To avoid the need for a complex 

dynamic model of the system, linear and nonlinear regression models have also been studied for 
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prostheses control. Smith et al. used linear regression to improve the volitional control for upper 

extremity hand and wrist prosthesis [130]–[132]. These studies determined that a combination of 

linear and nonlinear regression methods can improve the control of wrist motion in a single-DOF, 

as well as multiple-DOFs simultaneously. 

This chapter reviews the current methods used to quantify the multivariable mechanical 

impedance of the healthy human ankle in the sagittal, frontal, and transverse planes and how it is 

related to muscle function. The use of surface EMG has potential to predict the ankle torque and 

impedance requirements for a given locomotion task. Limited work has been done to explore lower 

extremity muscle activity as a function of ankle impedance. The purpose of the work described in 

this dissertation is to investigate the relationship between the mechanical impedance of the human 

ankle in multiple DOF based on lower extremity muscle activity during non-weight bearing and 

weight-bearing ADLs. 
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2 Relationship between Muscle Co-Contraction and Unloaded 
Ankle Impedance in three Degrees-of-Freedom 

 Motivation  
This chapter describes the non-loaded ankle impedance in DP, IE, and ML directions as a 

function of increasing levels of muscle co-contraction. Previous work used the wearable 

rehabilitation robot called Anklebot to characterize the mechanical impedance of the ankle during 

quasi-static and dynamic conditions while subjects were seated and their leg was suspended above 

the ground [47]–[50], [52], [53]. The resulting impedance was defined as a function of the ankle 

angle and torque due to an applied input perturbation. Frequency domain analysis techniques 

were used to quantify the impedance, which closely resembled the response of a second-order 

dynamic system for all three directions. In addition, these works investigated the influence of 

increased levels of lower extremity muscle activity on the impedance parameters in the DP and IE 

directions. The experimental results showed that the stiffness and damping parameters of the 

ankle impedance increased with muscle activity. The relationship between muscle activation of the 

TA and SOL muscles with the corresponding ankle impedance could be described using two 

separate linear models, with 𝑅𝑅2 values close to one for some subjects [50]. However, this was not 

the case for all subjects. Other subjects from these trials exhibited relationships that could not be 

described using linear regression; suggesting that modeling techniques to account for nonlinear 

dynamics and the effects of more than two of the lower-extremity muscles should be explored.  

This chapter examines the influence of using artificial neural networks (ANN) to account for 

both linear and nonlinear models of ankle dynamics. There are four sections: Section 2.2 provides 

an overview of the Anklebot, used for experiments in DP, IE, and ML, Section 2.3 describes the 

characterization of ankle impedance in DP and IE as a function varied muscle activation levels using 

ANN, and Section 2.4 expands upon the process to create a model for the ML DOF. To our 

knowledge, the ankle impedance in ML as a function of muscle activity has not been studied 

previously. Last, Section 2.5 includes concluding remarks from both experimental studies. This 

work is important in understanding the ankle dynamics, and has the potential to be used for 

rehabilitation, injury prevention, and the improved control of ankle-foot prostheses. The results 

presented in this chapter have been published previously [109],[108].  
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 Anklebot Description  
An in-depth description of the Anklebot mechanical design specifications is described in Roy 

et al [133]. As shown in Figure 2-1, the orientation of Anklebot was placed either parallel to the 

subject’s shin (DP/IE) or perpendicular to the shin (ML). Anklebot is designed with two, back-

drivable linear actuators that are positioned nearly-parallel to each other. The ends of each 

actuator are fixed to a custom shoe bracket, on both sides of the ankle, and the weight of the 

device is suspended by a custom knee brace, supporting straps, and a frame. With the Anklebot 

orientation in Figure 2-1a, a DP torque was produced when the actuators moved in the same 

directions, and an IE torque was produced when the actuators moved in opposite directions. To 

generate torque in ML, Anklebot was placed parallel to the ground (Figure 2-1b), and the actuators 

moved in different directions with equal amplitudes.  

 

Figure 2-1 Experimental setup, including Anklebot and EMG sensor placement, to estimate ankle 
impedance in a) DP/IE and b) ML directions. 

The maximum torques capable of being generated in DP, IE, and ML were 23 Nm, 15 Nm, 

and 15 Nm, respectively. The root-mean-squared (RMS) of the angles during the experiment were 

2.48°, 2.70°, and 3.72° for DP, IE, and ML, respectively. In addition, the motor torques and actuator 

positions were measured with current sensors (Burr-Brown 1NA117P) and linear encoders 

(Reinshaw), respectively. The resolution of the torque measurements are 2.59 x 10-6 Nm, and the 

linear encoders have a resolution of 5x10-6 m.  
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To prevent the displacement of the actuators from drifting, an active impedance control was 

used with an active stiffness gain of 10 Nm/rad and 12.8 Nm/rad for the DP/IE and ML tests, 

respectively, and zero damping for all tests. At the beginning of an experiment, the ankle angle was 

placed such that the foot and shank formed approximately 90°, and the neutral position for each 

actuator was defined. The controller gains were determined previously through trial and error so 

that the ankle remained within the neutral position for the duration of the experiment [51], [53]. 

During the ML experiments, a shin brace (Figure 2-1b) was also used to prevent the knee from 

translating in the transverse plane. 

 DP/IE Experiment 

All subjects had no previously reported musculoskeletal injury to the ankle and gave written 

consent of participation through the Michigan Technological University Institutional Review Board. 

The following biometric information for all subjects is presented in Table 2-1.  

Table 2-1. Subject biometric information for DP/IE Anklebot experiments 
Gender Age* Mass (kg)* Height (cm)* 

9 males 24.4 ± 1.1 74.1 ± 16.7 174.7 ± 8.2 

* mean ± standard deviation across population 

2.3.1 Procedure 

First, EMG sensors (Delsys Trigno Wireless System) were placed on the TA, PL, SOL, and GAL 

muscles to measure muscle activity and provide visual feedback of the subject’s EMG signal from 

the TA muscle during the test, as shown in Figure 2-1a.  Before placing the sensors, the skin was 

cleaned with rubbing alcohol, and excess hair was removed. All EMG signals were sampled at 1925 

Hz, and the Delsys software used motion artifact suppression to reduce the effects of low 

frequency noise throughout the experiment. The first step during the experiment was to determine 

the subject’s maximum voluntary contraction (MVC). The subjects were instructed to co-contract 

all four muscles to their maximum level without moving the ankle, and the highest voltages were 

determined. The maximum voltage of the TA muscle was recorded and used as a reference for the 

remainder of the experiment. 

The experimental procedure for ankle impedance estimation was similar to the methods 

used in [50]. Anklebot applied pseudo-random torque perturbations to the ankle for 70 seconds 
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with a frequency bandwidth up to 100 Hz. As the perturbations were applied, the ankle reaction 

torques and angles were recorded with a sampling rate of 200 Hz. There were a total of 15 trials, 

where the subjects controlled their muscles to be relaxed or maintained at a constant muscle co-

contraction of 10% MVC or 20% MVC for the duration of the trial. Each activation level was 

repeated five times. Real-time visual feedback of the TA EMG signal and the desired voltage level 

were provided so that the subject could adjust their activation level accordingly. Afterward, the 

initial 10 seconds of data were removed to reduce the transient effects present at the beginning 

of each trial.  

2.3.2 System Identification of DP/IE Ankle Impedance 

The previously proposed method of stochastic system identification was used to estimate 

the ankle impedance in [49], [50], [53]. First, the mechanical admittance of the ankle (defined as 𝑌𝑌) 

is described as the ratio between the measured output rotational angles, Θ, and the applied input 

torque, Τ. This can be expressed in the frequency domain (𝑓𝑓) as:  

 Θ = 𝑌𝑌(𝑓𝑓)Τ. 2.1 

Assuming that the perturbations generated a small ankle angle and the system was linear and time-

invariant (LTI), the mechanical impedance is calculated as the inverse of the mechanical 

admittance:  

 Τ =  𝑌𝑌−1(𝑓𝑓)Θ = 𝑍𝑍(𝑓𝑓)Θ 2.2 

where 𝑍𝑍 denotes the ankle impedance. Because the Anklebot excited the ankle in the DP and IE 

DOF simultaneously, a matrix is defined to relate the input ankles and output torques in DP, IE, and 

any coupling between the two DOF. The following matrix is used to describe the impedance 

calculation:  

 �Τ𝐷𝐷𝐷𝐷Τ𝐼𝐼𝐼𝐼
� = �

𝑍𝑍𝐷𝐷𝐷𝐷(𝑓𝑓) 𝑍𝑍𝐷𝐷𝐷𝐷,𝐼𝐼𝐼𝐼(𝑓𝑓)
𝑍𝑍𝐼𝐼𝐼𝐼,𝐷𝐷𝐷𝐷(𝑓𝑓) 𝑍𝑍𝐼𝐼𝐼𝐼(𝑓𝑓) � �Θ𝐷𝐷𝐷𝐷Θ𝐼𝐼𝐼𝐼

� 2.3 

where the torque and ankle measurements in DP and IE are Τ𝐷𝐷𝐷𝐷, Τ𝐼𝐼𝐼𝐼, Θ𝐷𝐷𝐷𝐷, and Θ𝐼𝐼𝐼𝐼, in the 

frequency domain, respectively. When solving for 𝑍𝑍, the influence of the Anklebot impedance 

controller must be removed from the estimate. Because the human ankle and the Anklebot form 

a closed-loop system, the active control stiffness can be subtracted from the total impedance. The 

resulting impedance is equivalent to:  
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 𝑍𝑍𝑖𝑖  (𝑓𝑓) =  
Τ𝑖𝑖(𝑓𝑓)
Θ𝑖𝑖(𝑓𝑓)

− 𝑘𝑘𝑖𝑖 2.4 

where the controller stiffness 𝑘𝑘 is defined as a diagonal gain matrix of the Anklebot controller, 

where 𝑖𝑖 = {𝐷𝐷𝐷𝐷, 𝐼𝐼𝐼𝐼}. The resulting impedance can be substituted Eq. 2.3 to solve for  𝑍𝑍𝐷𝐷𝐷𝐷 and 𝑍𝑍𝐼𝐼𝐼𝐼 . 

Next, the foot and shoe shared the same motion during perturbations. As a result, the 

torques used in Eq. 2.3 and Eq. 2.4 are equal to the torque of the human ankle impedance plus the 

torque due to the dynamics of the Anklebot and the acceleration of the shoe inertia. An additional 

test was performed using only the Anklebot and shoe to estimate the combined impedance of the 

Anklebot and shoe (𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑠𝑠ℎ𝐴𝐴𝐴𝐴).  Accordingly, the impedance of the ankle is equal to the total 

impedance of the system (𝑍𝑍𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑠𝑠ℎ𝐴𝐴𝐴𝐴) minus the combined impedance of the Anklebot 

and shoe (Eq. 2.5).  

 𝑍𝑍𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑍𝑍𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑠𝑠ℎ𝐴𝐴𝐴𝐴 − 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑠𝑠ℎ𝐴𝐴𝐴𝐴 2.5 

For this analysis, the impedance 𝑍𝑍𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 was described as the magnitude and phase across a desired 

frequency range. These results were later used as the target data to generate an ANN model.   

Last, the impedance was estimated using the tfestimate function in MATLAB. This method 

implemented the Welch’s averaged, modified periodogram algorithm to calculate the auto-power 

and cross-power spectral densities between the ankle angle and ankle torque for the DP and IE 

directions. The parameters included a 512 length Hamming window, 50% overlap, sampling 

frequency of 200 Hz, and an FFT length of 1024 samples. The partial coherence of the transfer 

function estimates were also determined using the MATLAB mscohere function. The partial 

coherences were used to justify that the torque perturbations added enough energy to the ankle 

to perform system identification, after removing the effects of the other input directions. 

Additional information about the impedance transfer function matrices and partial coherence 

calculations can be found in [53], [134].  

2.3.3 Ankle Impedance in DP and IE  

For each subject, the ankle impedance was estimated in DP and IE directions across 15 trials. 

Figure 2-2 shows the DP and IE Bode plots for the ankle mechanical impedance of a representative 

subject at the muscle co-contraction levels of relaxed, 10% MVC, and 20% MVC within the 

frequency range of 0.78 – 8 Hz. Each muscle activation level was averaged across five trials, and 
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the standard deviation is shown by the shaded regions. The frequency region was selected to be 

approximately less than the break frequency of the second-order system, where the magnitude 

remains relatively constant, and the effects of the inertia are minimal [53]. This bandwidth range 

will be used for the ANN models, as described in the next section. Additionally, Table 2-2 shows the 

magnitude averaged across five trials and frequency for each muscle activation level. The standard 

deviation was calculated across the frequency range of 0.7 – 8 Hz.  

For all of the trials, the resulting magnitude in DP was greater than in IE at all frequencies 

for their respective muscle activation levels. This is consistent with previous work where the 

stiffness in the DP direction was greater than the stiffness in IE by at least a factor 2 [53].  The 

average magnitudes and standard deviation across nine subjects were 24.6 ± 13.2 Nm/rad, 61.5 ± 

32.9 Nm/rad, and 74.0 ± 27.6 Nm/rad for the relaxed, 10% MVC, and 20% MVC in the DP direction, 

and 12.3 ± 6.1 Nm/rad, 20.0 ± 11.2 Nm/rad, and 25.2 ± 12.0 Nm/rad for the relaxed, 10% MVC, 

and 20% MVC in the IE direction, respectively (Table 2-2). Interestingly, Subject 4 in Table 2-2 did 

not show an increase in the average magnitude from 10% MVC to 20% MVC, but rather the 

magnitude remained relatively the same. 

 

Table 2-2. Average DP and IE impedance magnitudes ± standard deviation with relaxed muscles, 
10% MVC, and 20% MVC. Total mean and standard deviation across nine subjects are included.    

 DP  IE 

Subject Relaxed 
[Nm/rad] 

10% MVC 
[Nm/rad] 

20% MVC 
[Nm/rad]  Relaxed 

[Nm/rad] 
10% MVC 
[Nm/rad] 

20% MVC 
[Nm/rad] 

1 13.5 ± 8.6 29.4 ± 15.1 40.9 ± 23.4  6.4 ± 2.1 8.0 ± 2.7 10.2 ± 3.1 

2 13.9 ± 5.8 45.7 ± 13.2 61.6 ± 18.3  10.1 ± 2.3 18.0 ± 3.0 24.2 ± 3.7 

3 40.9 ± 12.5 114.2 ± 25.5 121.7 ± 28.6  18.9 ± 4.6 39.3 ± 7.5 48.0 ± 9.5 

4 51.6 ± 14.4 118.1 ± 44.9 117.7 ± 37.2  25.5 ± 7.7 36.8 ± 8.7 40.0 ± 9.1 

5 15.7 ± 3.5 42.5 ± 7.6 64.1 ± 11.0  8.9 ± 2.6 13.4 ± 3.9 19.4 ± 5.2 

6 24.6 ± 10.9 41.2 ± 16.5 74.7 ± 38.4  8.8 ± 2.4 11.5 ± 3.0 17.1 ± 3.9 

7 15.5 ± 4.4 38.7 ± 10.1 56.7 ± 12.6  9.1 ± 2.8 11.3 ± 2.8 16.3 ± 3.6 

8 23.1 ± 6.4 55.2 ± 37.7 57.5 ± 37.0  11.0 ± 3.0 19.9 ± 5.8 26.6 ± 8.7 
9 22.4 ± 6.2 68.3 ± 15.8 71.4 ± 17.3  11.5 ± 3.3 22.1 ± 5.2 24.6 ± 6.3 
Mean 24.6 61.5 74.0  12.3 20.0 25.2 
stdev 13.2 32.9 27.6  6.1 11.2 12.0 
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Figure 2-2 Average (solid line) ± standard deviation (shaded) of the ankle impedance magnitude 
[dB] and phase [°] for a representative subject (#5).  The blue, red, and green lines correspond to 
relaxed, 10% MVC, and 20% MVC trials, respectively. (a) and (b) show the average magnitude in 

DP and IE. (c) and (d) shows the average phase in DP and IE, respectively.  

The partial coherences for each muscle activation level were determined to validate that 

the selected system identification method can estimate the impedance between the selected 

frequency bandwidth of 0.7 to 8 Hz. Figure 2-3 shows the partial coherences between joint angles, 

Θ and joint torques, Τ for the Anklebot plus shoe plus ankle between 0.5 to 30 Hz for each muscle 

activation level. The diagonal components show the coherence in the sagittal (Figure 2-3a) and 

frontal (Figure 2-3d) planes, independent from one another. The averaged partial coherence for 

the representative subject was 0.91 in DP and 0.92 in IE, validating the impedance results in these 

directions. Furthermore, the coherences in the off-diagonal components (Figure 2-3 b & c) were 

on average less than 0.27, indicating that minimal coupling occurred between DP and IE DOF. The 

average partial coherence for the diagonal components across nine subjects was always greater 

than 0.89, as shown in Table 2-3.  
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Table 2-3. Average (± standard deviation) partial coherence across the total population for each 
muscle activation level in the DP and IE between 0.7 – 8 Hz. 

 0% MVC 10% MVC 20% MVC 

DP 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.01 

IE 0.90 ± 0.01 0.90 ± 0.02 0.89 ± 0.01 

 

Figure 2-3. Partial coherence for the Anklebot + ankle +shoe system for a representative subject 
(#5) at relaxed, 10% MVC, and 20% MVC. The diagonal elements correspond to the DP (a) and IE 

(d) directions, respectively. The shaded region shows the standard deviation across five trials. 

2.3.4 EMG Analysis 

The EMG signals were recorded while the subject’s lower-leg muscles were relaxed, or co-

contracted to 10% MVC and 20% MVC. The RMS of the resulting EMG signals were calculated 

across each 60-second trial. In addition, all muscle signals were normalized with respect to the RMS 

value of the relaxed muscle trials. Normalization increased the scale of the EMG signal and was 

used to construct the input for the ANN models. The averaged EMG RMS across all subjects is 

presented in Figure 2-4 for each muscle and activation level. An increasing trend across all four 

muscles is shown between relaxed, 10% MVC, and 20% MVC co-contraction levels. The standard 

error was calculated using  

 𝑆𝑆𝐼𝐼 =
𝜎𝜎
√𝑁𝑁

 2.6 
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where 𝜎𝜎 is the standard deviation across the subjects and 𝑁𝑁 is the total number of subjects.   

 

Figure 2-4. Average (± standard error) normalized RMS across nine subjects for the TA, PL, SOL, 
and GAL muscles.  

2.3.5 Artificial Neural Network Design 

A feedforward ANN was selected for regression, and used the EMG signals of four muscles 

to predict the ankle impedance in the DP and IE. The model design consists of five input neurons, 

a single hidden layer with 50 neurons, and an output layer of neurons that generate the magnitude 

and phase of the ankle impedance in either DP or IE.  As shown in Figure 2-5 and Eq. 2.7, the neural 

network model is described as the linear combination of the inputs (𝑥𝑥) and a series of weights (𝑤𝑤), 

biases (𝑏𝑏, 𝑏𝑏′), nonlinear sigmoid activation functions (𝜑𝜑), and linear activation functions (𝛽𝛽); all 

resulting in the model output (𝑦𝑦). 

 
𝑦𝑦𝐴𝐴(𝒙𝒙,𝒘𝒘,𝒃𝒃,𝒃𝒃′) = 𝛽𝛽��𝑤𝑤𝐴𝐴𝑘𝑘 𝜑𝜑

50

𝑘𝑘=1

��𝑤𝑤𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘

5

𝑖𝑖=1

� + 𝑏𝑏𝐴𝐴′ � 2.7 

The input matrix in Eq. 2.7 contains 𝑥𝑥𝑖𝑖 neurons, where 𝑖𝑖 = 1: 5; including the four RMS 

EMG signals across 15 trials and the select frequency range, 𝑓𝑓 across all subjects. The input neurons 

are connected to all neurons in the hidden layer by a series of weights, 𝑤𝑤𝑘𝑘𝑖𝑖 and biases, 𝑏𝑏𝑘𝑘, where  

 𝑗𝑗 = 1, … , 50. The number of hidden layer neurons was selected by initially testing the 

performance of the ANN models with a hidden layer size between 10 – 200 neurons. The models 

with the smallest error between the target and predicted impedance had 50 neurons. The 

summation at each of the hidden layer neurons is transformed by a tan-sigmoid activation 

function 𝜑𝜑, which is a  commonly used activation function from the MATLAB Neural Network 

toolbox [135]. Next, the resulting values from the 50 hidden layer neurons are again summed 

together at each of the output neurons 𝑦𝑦𝐴𝐴  where 𝑘𝑘 = 1, 2. Each operation is multiplied by weights 
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𝑤𝑤𝐴𝐴𝑘𝑘 summed by a bias 𝑏𝑏𝐴𝐴′  and again are transformed by the linear activation function 𝛽𝛽. An 

illustration of this process can be found in Figure 2-5. 

  

Figure 2-5. The feedforward ANN design, composed of five inputs, 50 hidden layer neurons, and 
two outputs.  

 Input matrix design  

The input matrix contains the normalized RMS of the EMG signals across 15 trials. 

Additionally, the desired frequency range of 0.7 – 8 Hz the impedance magnitude and phase were 

used as input. This frequency vector contained a total of 38 frequencies points, so the RMS of each 

EMG signal was reshaped to a vector of size 1x38. The resulting input matrix 𝑟𝑟𝑚𝑚 for an individual 

trial took the form:  

 𝑟𝑟𝑚𝑚 = [𝑥𝑥0(𝑇𝑇𝑇𝑇); 𝑥𝑥1(𝐷𝐷𝑃𝑃); 𝑥𝑥2(𝑆𝑆𝑆𝑆𝑃𝑃); 𝑥𝑥3(𝐺𝐺𝑇𝑇); 𝑥𝑥4(𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓)]5𝑥𝑥38 2.8 

Where 𝑚𝑚 = 1, … , 15, corresponding to 15 trials per subject. All the trials were concatenated into 

a single overall input matrix, resulting in a matrix with size 5x570 to be used for both the DP and IE 

models, as described in Eq. 2.9.  

 𝑅𝑅 = [𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟15]5𝑥𝑥570 2.9 

‘ 
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 Target matrix design 

The target matrix is used during ANN supervised learning and consists of the desired ankle 

impedance values that were determined experimentally in Section 2.3.3. Similar to the input 

matrix, the target matrix for a single trial took the form:  

 𝑦𝑦𝑚𝑚 =  �
𝑀𝑀𝑔𝑔𝑖𝑖
𝐷𝐷ℎ𝑖𝑖

�
2𝑥𝑥38

 2.10 

where 𝑀𝑀𝑔𝑔𝑚𝑚 and 𝐷𝐷ℎ𝑚𝑚 are the impedance magnitude and phase within the select frequency range 

for 15 trials. Each submatrix was concatenated to create the overall target matrix 𝑌𝑌 used to train 

the ANN models. A single matrix of size 2 x 570 was generated for the ankle impedance results in 

DP, and another for the ankle impedance in IE.  

 𝑌𝑌 = [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦15]2𝑥𝑥570 2.11 

 ANN Supervised Learning   

The input and target matrices were used during a process called supervised learning to 

train and validate each ANN model. This process ensures the proper weights and biases were 

selected so that the model does not overfit to the training data.  First, the input and target matrices 

are divided randomly into three groups: 1) 70% training, 2) 15% validation, and 3) 15% testing. The 

training dataset is used to update the weights and biases between each of the network neurons 

using the Levenberg-Marquardt algorithm. To check that appropriate model weights were chosen, 

the validation dataset, which does not contain data used during training, determines the mean-

squared-error (mse) between the validation target and output data. The iterative process of using 

the training data to update weights and the validation data to determine the mse continues until 

the mse converges to a minimum. Next, the remaining 15% of the data is used to test the overall 

performance of the ANN model. If the performance was desirable, the model was saved and used 

for future analysis.  

2.3.6 ANN Performance   

After training, it was necessary to verify that the supervised learning process was able to 

successfully generate a model that explains the relationship between the inputs and outputs. Two 

techniques were used to assess the training, validation, and testing performance of each ANN 

model. The first technique was to check that the mse of each model converged to a minimum value 
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and never showed any increasing trends throughout the learning process. If the mse for the 

validation or testing datasets increased, it is likely that the weights and biases were overfitting to 

the training data and the model was not used for analysis. The mse for all the models selected for 

this analysis converged to a minimum value.  

The second technique determined the correlation coefficient 𝑅𝑅 between the target and 

output impedance for the training, validation, and testing datasets. The correlation coefficient is a 

measure of the linear dependence between the target and predicted impedance, with 𝑅𝑅 = 1 being 

a perfect correlation. If any of the groups showed substantially lower 𝑅𝑅 values, it is again likely that 

the model overfits to the data, and the model was not selected. Table 2-4 shows the 𝑅𝑅 values for 

the training, validation, and testing performance between the target and output data in DP and IE 

for all the subject models. The 𝑅𝑅 values ranged between 0.945 and 0.997 for the DP direction and 

0.895 and 0.980 for the IE direction. The high performance across training, validation, and testing 

confirmed that the selected models were successfully trained.    

Table 2-4. Training, Validation, and Testing correlation coefficients (𝑅𝑅) for each ANN models 
during supervised learning. The overall average ± standard deviation across subjects is included.  

 DP  IE 
Subject Training Validation Testing  Training Validation Testing 
1 0.946 0.945 0.959  0.942 0.942 0.916 
2 0.961 0.963 0.956  0.944 0.950 0.938 
3 0.997 0.994 0.993  0.979 0.980 0.971 
4 0.995 0.991 0.991  0.977 0.958 0.952 
5 0.969 0.963 0.970  0.951 0.936 0.941 
6 0.993 0.976 0.978  0.916 0.913 0.895 
7 0.964 0.961 0.965  0.960 0.951 0.937 
8 0.994 0.991 0.990  0.975 0.945 0.964 
9 0.988 0.974 0.977  0.967 0.960 0.950 
Mean 
(Stdev) 

0.979 
(0.02) 

0.973 
(0.02) 

0.975 
(0.01)  

 0.957 
(0.02) 

0.948 
(0.02) 

0.940 
(0.02)  

2.3.7 ANN Impedance Prediction Accuracy 

Figure 2-6 describes the average impedance predicted by the DP and IE ANN models for 

the representative subject, indicated by the dashed line. The target impedance used to train the 

models is also included in the figure for visual comparison, and is shown by the solid line. The 

average relative error for the subject (Figure 2-6) across all trials and frequencies was 5.0 ± 5.4% 

for the DP model and 4.9 ± 4.4% for the IE model, respectively. One observation from Figure 2-6 is 
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that the ANN predicted impedance had a smoother response than the target impedance for the 

selected frequency range. This also supports the claim that the ANN models did not overfit to noise 

in the experiment, which could be useful for future implications such as model generalization 

across subjects or for prostheses control.  

In addition, the boxplots in Figure 2-7 show the range of errors between the target and 

predicted impedance magnitude for all subjects. The average errors for the magnitude and phase 

across all subjects were 2.6 ± 0.5 Nm/rad and 4.3 ± 1.4° for the DP models and 1.1 ± 0.2 Nm/rad 

and 3.3 ± 0.9° for the IE models, respectively. When compared to the range of the magnitude and 

phase, the errors were very small.  

 
Figure 2-6. Average target (solid) and predicted (dashed) impedance for a representative subject 

(#5) with relaxed muscles (blue), and co-contraction at 10% MVC (red) and 20% MVC (green). The 
average magnitudes are presented in (a) and (b), and the average phases are shown in (c) and (d).  
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Figure 2-7. The error between the predicted and target impedance magnitude for each subject. 
The results for DP are shown in (a) and IE in (b). As reference, the average impedance was 53.4 

Nm/rad and 19.1 Nm/rad for DP and IE, respectively.  

 ML Experiment 

In addition to the study of ankle impedance and muscle activity in DP and IE, these methods 

were expanded to the transverse plane to examine the ML direction. The following section 

describes the experimental procedure, ankle impedance characterization, the ANN model design, 

and ANN results in the ML direction. Analysis of this DOF provides additional insights into how the 

lower extremity muscles influence the ankle dynamics, something that has not been studied before 

to the author’s knowledge. Altogether, the exploration of the ML direction allows for comparison 

and conclusions about all three anatomical DOF of the ankle.  The experimental setup, procedure, 

and model design are mirrored from the previous section in DP and IE, with the minimal differences 

explained below.  

For the ML experiments, a new subject database was recruited. The subjects had no 

previously reported musculoskeletal injuries and gave written consent to participation as approved 

by the Michigan Technological University Institutional Review Board. The biometric information for 

the ML experiment subjects can be found in Table 2-5. The experimental procedure was repeated 

from the DP/IE experiments (Section 2.3.1); however, the Anklebot apparatus was rotated so that 

the actuators were perpendicular to the shin, as shown in Figure 2-1b. 
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Table 2-5. Subject biometric information for ML Anklebot experiments 
Gender Age* Mass (kg)* Height (cm)* 

5 male, 5 female 25.2 ± 4.7 71.9 ± 18.2 172.7 ± 8.8 

* mean ± standard deviation across population 

2.4.1 Procedure 

First, four EMG sensors were placed on the TA, PL, SOL, and GA muscles and the TA muscle 

signal was used as visual feedback to the subject during each trial. The MVC was determined while 

the subject co-contracted their lower-leg muscles, and the maximum TA signal was used as the 

reference voltage. Next, 15 trials were performed while the subject kept their muscles relaxed, or 

actively co-contracted their muscles to 10% MVC and 20% MVC. Each activation level was repeated 

five times. During each 70-second trial, Anklebot applied pseudo-random perturbations to the 

ankle in the transverse plane, and the resultant ankle angles and ankle torques were measured.  

The first 10 seconds of each trial were removed to reduce the transient effects, and the data was 

used to estimate the ankle impedance in the ML direction.   

2.4.2 System Identification of ML Ankle Impedance 

Based on Eq. 2.1 and Eq. 2.2, the impedance in ML, 𝑍𝑍𝑀𝑀𝑀𝑀 is determined using the measured 

ankle torques and angles in the transverse plane. Assuming an LTI system, this relationship can be 

described as 

 Τ𝑀𝑀𝑀𝑀 = 𝑍𝑍𝑀𝑀𝑀𝑀(𝑓𝑓)Θ𝑀𝑀𝑀𝑀 2.12 

where Τ𝑀𝑀𝑀𝑀 and Θ𝑀𝑀𝑀𝑀 are the respective ankle torques and angles across the frequency range, 𝑓𝑓.  

The same system identification procedure from the DP/IE experiment was used, except the 

transfer function matrix only contained a single-DOF. The tfestimate function implemented 

Welch’s averaged-modified periodogram algorithm. The parameters selected to estimate the 

transfer function were: a 512 length Hamming window, 50% overlap, sampling frequency of 200 

Hz, and an FFT length of 1024 samples.  The coherence was also determined across all trials to 

confirm that the assumption of a linear relation between ankle torques and angles were valid.  

The active stiffness from the Anklebot controller was subtracted from the impedance as in 

Eq. 2.13, where the stiffness 𝑘𝑘 = 12.8 Nm/rad. 
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 𝑍𝑍𝑀𝑀𝑀𝑀  (𝑓𝑓) =  
Τ𝑀𝑀𝑀𝑀(𝑓𝑓)
Θ𝑀𝑀𝑀𝑀(𝑓𝑓)

− 𝑘𝑘𝑀𝑀𝑀𝑀 2.13 

Additionally, when the actuators were applying perturbations, the shoe and the ankle shared the 

same motion. The resulting impedance of the Anklebot and ankle were in parallel, and the 

impedance of the Anklebot and shoe could be subtracted from the total impedance.  The resulting 

impedance of only the ankle, as described in Eq. 2.14, was used in the target matrix to train the 

ANN models.  

 𝑍𝑍𝑀𝑀𝑀𝑀,𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑍𝑍𝑀𝑀𝑀𝑀,𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑠𝑠ℎ𝐴𝐴𝐴𝐴 − 𝑍𝑍𝑀𝑀𝑀𝑀,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑠𝑠ℎ𝐴𝐴𝐴𝐴 2.14 

2.4.3 Ankle Impedance in ML  

The upper frequency range selected to train the ANN models was determined to be 4.1 Hz 

for all subjects, which is less than the average break frequency of the ankle in the ML direction [51]. 

In addition, the low-frequency components (< 0.5 Hz) were also not selected due to low coherence. 

The resulting bandwidth chosen for this analysis was 0.7 – 4.1 Hz and contained 18 samples for 

each trial.  

The impedance results for a representative subject can be found in Figure 2-8.  The mean 

and standard deviation (shaded regions) of the magnitude and phase at each frequency were 

determined across five trials. Coinciding with the results in DP and IE, the magnitude of the 

impedance in ML increased with muscle activation level. Table 2-6 shows the average magnitude 

at each muscle activation level for the rest of the subjects. The overall mean and standard deviation 

of the magnitude across the total population was 5.1 ± 1.9 Nm/rad, 15.1 ± 4.6 Nm/rad, and 19.8 ± 

6.3 Nm/rad for the relaxed, 10% MVC, and 20% MVC trials, respectively.   

The resulting ankle impedance in ML was comparable to the results presented in previous 

work, where the ML ankle impedance was determined for relaxed muscles [52]. These results 

found an average impedance magnitude to be 6.0 ± 0.9 Nm/rad (< 4.4 Hz) for relaxed muscles. In 

addition, previous work determined the average impedance magnitude for co-contraction at 10% 

MVC to be approximately 27 Nm/rad (< 9.1 Hz) [51]. The slight increases from the magnitude 

presented in the literature for both relaxed and 10% MVC experiments are likely because the 

average was determined over a larger bandwidth. Last, the impedance magnitude at 20% MVC has 

not been reported in the literature.  
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Table 2-6. Average magnitude ± standard deviation for the relaxed, 10% MVC and 20% MVC  
Co-contraction levels across all subjects 

Subject 0% MVC 
[Nm/rad] 

10% MVC 
[Nm/rad] 

20% MVC 
[Nm/rad] 

1 2.4 ± 0.9 9.4 ± 1.1 14.1 ± 1.7 
2 2.4 ± 0.5 14.3 ± 1.5 22.1 ± 2.6 
3 6.0 ± 0.8 16.3 ± 1.1 23.5 ± 3.0 
4 5.5 ± 0.7 12.4 ± 0.7 14.9 ± 0.5 
5 6.2 ± 2.3 15.9 ± 2.7 19.0 ± 4.2 
6 4.5 ± 0.6 16.2 ± 0.7 17.8 ± 0.9 
7 7.1 ± 3.3 17.9 ± 3.3 20.8 ± 2.5 
8 8.2 ± 0.6 25.6 ± 1.7 35.1 ± 2.7 
9 4.7 ± 0.4 10.5 ± 0.6 14.8 ± 0.7 
10 4.2 ± 0.8 13.2 ± 1.4 15.3 ± 2.0 

Mean 5.1 15.1 19.8 
Stdev 1.9 4.6 6.3 

 

 

Figure 2-8. Average ankle impedance magnitude [dB] and phase [°] in the ML direction for a 
representative subject (#8). The muscle activation levels are denoted by the blue (relaxed), red 

(10% MVC), and green (20% MVC) curves. The shaded regions show the standard deviation.  

Furthermore, the coherences were determined for all trials using the mscohere function in 

MATLAB. Table 2-7 shows that the average coherence of the whole system (Anklebot + shoe + 
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ankle) across the total population was always greater than 0.88 for all trials, with the maximum 

average coherence reaching 0.91. The high coherence verifies that the system identification 

method could accurately estimate the ankle impedance in the ML direction. 

Table 2-7. Average and  standard deviation coherence across the 10 subjects for each muscle 
activation level in the ML direction between 0.7 – 4.1 Hz. 

 0% MVC 10% MVC 20% MVC 

Mean 0.89 0.89 0.88 

Stdev 0.009 0.01 0.03 

2.4.4 EMG Analysis 

The RMS of the EMG for four muscles was determined across each 60 second trial. Each 

set of three trials (relaxed, 10% MVC, and 20% MVC) were normalized by the passive trial of that 

set. Figure 2-9 shows the average of the normalized RMS EMG signals across all subjects. An 

increasing trend across all the muscles for the three levels.  

 

Figure 2-9. Average (± standard error) normalized RMS across all trials for the TA, PL, SOL, and GA 
muscles for ML experiment. 

2.4.5 ANN Design  

An in-depth description of the ANN model parameters and training and validation 

techniques used for this experiment can be found in Section 2.3.5. As depicted in Figure 2-5, the 

ANN models had five input neurons, containing the normalized EMG RMS for each contraction level 

and a frequency value, 60 hidden layer neurons, and two output layer neurons for the predicted 

ankle impedance.  Furthermore, the models were trained using the same supervised learning cross-

validation techniques. The input and target matrices were divided randomly into training, 

validation, and testing datasets, and the model weights and biases were updated until the highest 
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performance was achieved. A brief description of the input matrix and the target matrix design 

used to generate a model for each subject can be found in this section.  

 Input matrix design  

The input matrix contains the RMS of the EMG signals that were normalized by the passive 

trials and a vector of the desired frequency range between 0.7 – 4.1 Hz. The size of the vector for 

each trial was 18 samples. Equation 2.16 explains the input matrix 𝑟𝑟𝑚𝑚 for an individual trial:  

 𝑟𝑟𝑚𝑚 = [𝑥𝑥0(𝑇𝑇𝑇𝑇); 𝑥𝑥1(𝐷𝐷𝑃𝑃); 𝑥𝑥2(𝑆𝑆𝑆𝑆𝑃𝑃); 𝑥𝑥3(𝐺𝐺𝑇𝑇); 𝑥𝑥4(𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓)]5𝑥𝑥18 2.15 

where 𝑚𝑚 = 1, … , 15,  for the 15 trials. All the trials were concatenated into a single overall input 

matrix of size 5 x 270 and was used for the ML model training, as described in Eq. 2.16.   

 𝑅𝑅 = [𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟15]5𝑥𝑥270 2.16 

 Target matrix design 

The target matrix was composed of the desired ankle impedance values for each 

frequency. The target matrix for a single trial took the form:  

 𝑦𝑦𝑚𝑚 =  �𝑅𝑅𝑓𝑓𝑚𝑚𝐼𝐼𝑚𝑚𝑚𝑚
�
2𝑥𝑥18

 2.17 

Where 𝑅𝑅𝑓𝑓𝑚𝑚 and 𝐼𝐼𝑚𝑚𝑚𝑚 are the real and imaginary components of the impedance in the complex 

form and 𝑚𝑚 = {1, 2, … , 15}. Unlike the DP and IE models where the magnitude and phase of the 

ankle impedance were used to populate the target matrix, the complex form of the impedance 

resulted in higher model performance for the ML direction. For analysis purposes, the ANN models 

predicted the complex impedance, and the results were transformed back to the magnitude and 

phase in the frequency domain. The overall target matrix 𝑌𝑌 was created by concatenating each 

submatrix, 𝑦𝑦𝑚𝑚.  The total matrix was used to train the ANN models for the ML ankle impedance.   

 𝑌𝑌 = [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦15]2𝑥𝑥270 2.18 

2.4.6 ANN Performance  

To determine if the ANN models were adequately trained it was necessary to determine 

that the mse for the training, validation, and testing datasets decreased during model training and 

that the regression performance between the target and predicted impedance for each dataset 

was high. This process is used to verify that the model weights did not overfit or underfit to the 
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selected dataset. When overfitting occurs, the model does not respond well to new or unseen input 

data. If any of these three training, validation, or testing steps performed poorly, the model training 

process was repeated with new parameters. The best performing models were selected for this 

analysis.  

Table 2-8 contains the correlation coefficient 𝑅𝑅 values for each of the three steps during 

model cross-validation. For 10 subjects, the correlation coefficients were always greater than 0.980 

for the training, validation, and testing datasets. The high 𝑅𝑅  across all datasets demonstrates that 

the models can predict ankle impedance based on new input data that was not used to train the 

models. During the cross-validation, the mse for the training, validation, and testing datasets 

always decreased for each iteration until a minimum error was achieved. This also supports the 

claim that none of the models overfit to the data during training, and the models can be used to 

predict ankle impedance based on the EMG signal information.  

Table 2-8.  The correlation coefficient (𝑅𝑅) for the Training, Validation, and Testing datasets during 
supervised learning for all subject models. The overall average ± standard deviation across all 

subjects is provided.  
 ML 
Subject Training Validation Testing 
1 0.993 0.989 0.984 
2 0.998 0.991 0.989 
3 0.996 0.991 0.984 
4 0.992 0.983 0.985 
5 0.997 0.991 0.989 
6 0.996 0.991 0.983 
7 0.998 0.989 0.984 
8 0.996 0.989 0.990 
9 0.995 0.980 0.981 
10 0.995 0.991 0.986 
Mean (stdev) 0.996 ± 0.002 0.989 ± 0.004 0.986 ± 0.003 

2.4.7 ANN Impedance Prediction Accuracy 

Figure 2-10 displays the average impedance magnitude and phase predicted from the ANN 

model (dashed) and the corresponding target (solid) impedance for a representative subject. The 

average relative errors between the target and predicted impedance magnitude for the 

representative subject (Figure 2-10) were 7.0 ± 10.2%, 2.5 ± 3.2%, and 2.3 ± 2.5% for the 0% MVC, 

10% MVC, and 20% MVC trials, respectively. Similar to the observation of the ANN impedance 
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prediction in the DP and IE directions (Section 2.3.7), the predicted impedance typically followed a 

smoother curve than the experimentally determined impedance. 

The range of errors between the target and ANN predicted impedance across the ten 

subjects are presented with boxplots in Figure 2-11. The average error for the magnitude and phase 

across all subjects were 0.47 ± 0.1 Nm/rad and 4.7 ± 2.5°, respectively. The small error is 

acceptable, considering the range of the magnitude and phase across the three levels of muscle 

activation. Interestingly, the representative subject impedance, shown in Figure 2-8 and Figure 

2-10, had the highest error across all subjects with a maximum amount of 2.5 Nm/rad. The larger 

error can be justified by the fact that this subject also had the highest average impedance 

magnitude across all subjects, with a value of 35.1 Nm/rad.   

 
Figure 2-10. Average target (solid) and predicted (dashed) impedance from the ANN model for a 
representative subject (#8) with relaxed muscles (blue), and co-activation at 10% MVC (red) and 

20% MVC (green). 
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Figure 2-11. The range of error between the predicted and target impedance magnitude  

across all trials for ten subjects. As reference, the average impedance was 13.4 Nm/rad for ML.  
 

 Discussion 

The goal of this study was to model the relationship between the non-loaded ankle impedance 

in the DP, IE, and ML directions with lower extremity muscle co-contraction using ANN. The DP/IE 

and ML experiments were performed during two separate studies. Using Anklebot, the ankle 

impedance was determined with an established stochastic identification method. During all trials, 

subjects maintained their muscles relaxed or co-contracted to 10% and 20% MVC. The relationship 

between muscle activity and ankle impedance was determined by training the ANN model for each 

subject.  

Comparing the ankle impedance results for the DP, IE, and ML directions, the DP direction had 

the highest overall magnitude, with an overall average value of 53.4 ± 25.7 Nm/rad, followed by 

the IE direction, which had an average of 19.1 ± 6.5 Nm/rad, and then ML, with a mean of 13.4 ± 

7.5 Nm/rad. These results agree with the findings in the literature, which used the Anklebot to 

study ankle impedance in DP and IE [47]–[50]. Furthermore, the impedance magnitude for all three 

directions with the level of muscle activation, which is also in agreement with previous findings 

[38], [41], [48], [50]. 

In addition, the individual models for each subject could accurately predict the ankle 

impedance, when presented with EMG information. The average relative errors across the subjects 
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for the DP, IE, and ML directions were 7.9 ± 16.8%, 7.5 ± 8.1%, and 6.6 ± 13.1%, respectively. The 

predicted impedance almost always had a smoother response compared to the experimentally 

estimated impedance, possibly removing noise that was present during estimation process. This 

model property could be useful for the possibility of implementation into a control system.  

One limitation of this study is that a separate ANN model is required to predict a subject’s ankle 

impedance in DP, IE, and ML. Not only does this require valuable time to train three separate 

models, but the models can only predict the impedance of that individual subject. Preliminary tests 

showed that using the EMG information from a different subject would not perform well in 

predicting ankle impedance. To eliminate the need to experimentally determine a subject’s ankle 

impedance and train an ANN model for them, a subject-independent or a “generalized” model may 

be considered. Once developed, this model has the potential to predict impedance solely from the 

measurements of muscle activity.  

Using EMG to estimate a user’s motion intention has shown to be promising in recent years. 

To the author's knowledge, a model relating the ankle impedance in 3-DOF to lower extremity co-

contraction levels has not been determined. The results of this study provide preliminary models 

that can accurately use EMG data to predict ankle impedance. However, these experiments explore 

this relationship while the ankle is not bearing any weight. To determine a model potentially more 

suitable in predicting a user’s motion intention for active ankle-foot prostheses, a better 

understanding of how the muscle activity relates to ankle impedance during weight-bearing 

activities, such as standing and walking, is required. This work provides a “proof-of-concept” model 

toward the work described in proceeding chapters.    
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3 Relationship between Muscle Co-Contraction and 2-DOF Standing 
Ankle Impedance 

 Motivation  

The work presented in this chapter expands upon the techniques used in Chapter 2 to 

investigate the EMG-ankle impedance relationship during standing. Previous work determined that 

the ankle impedance varies during quiet standing while a person maintains an upright posture [55]. 

The standing ankle impedance differs from the non-loaded ankle impedance because the ankle 

must compensate for the weight of the subject and external ground reactions.    

Additionally, the lower extremity muscle activities play a key role in the control of ankle 

impedance modulation during standing [63]. One group suggested that the agonistic and 

antagonistic muscles of the lower extremity use a ballistic-like position control to prevent a person 

from falling using both intrinsic and active contractions [61]–[63]. Furthermore, similar 

observations of ballistic-like muscle activation patterns were measured from the residual ankle 

muscles of transtibial amputees [128]. As a result of these findings, a model that relates the EMG 

and standing ankle impedance may be significant for applications in the control and design of ankle-

foot prostheses.  

Furthermore, the experiments from Ch. 2 developed user-specific models that were 

dependent on the inherent properties of each subject. Only a few groups have looked into the 

feasibility of developing a generalized, or subject-independent, model that can use new or unseen 

subject EMG data to predict ankle impedance. Recently, Pan et al. developed a subject-

independent model that could predict the motion of the wrist and fingers from both able-bodied 

and amputee subjects using EMG signals [136]. This work used a musculoskeletal dynamic model 

of the wrist and hand and showed that the subject-independent model had comparable results 

with a user-specific model. In particular, the subject-independent model reported fewer 

overshoots across three target positions. The work presented in this chapter explores the feasibility 

of a subject-independent model that can predict standing ankle impedance based on different 

levels of muscle co-contraction. In addition, this work proposes to characterize this relationship 

using a regression-based model, without the need for a complex musculoskeletal dynamic model 

of the ankle, as described previously.   
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This chapter is organized as follows: Section 3.2 and Section 3.3 describe the experimental 

procedure and results to determine the standing ankle impedance in DP and IE at varying levels of 

muscle co-contraction. Section 3.4 explores the correlation between the EMG from four muscles 

to the corresponding impedance parameters. The motivation for studying a simple linear 

correlation was to determine if there was a need for more robust regression techniques, such as 

ANN.  Section 3.5 implements ANN to model the relationship between EMG and ankle impedance 

for individual subject models and an aggregated model.  Section 3.6 expands upon these results to 

examine the feasibility of creating a subject-independent predictor for standing ankle impedance 

using the EMG measurements. Lastly, Section 3.7 provides concluding remarks, limitations, and 

future implications for the results found in this study. The results presented in this chapter are 

published in [76], [110], [111], [137].  

 Experimental Study  

3.2.1 Setup 

A total of 15 male subjects were recruited for the standing experiments with muscle co-

contraction. All subjects had no history of musculoskeletal injuries or disorders, and gave written 

consent to participate in the study approved by the Michigan Technological University Institutional 

Review Board. Three subjects during the experiments were removed due to sensor issues and 

failure to complete the procedure requirements. The biometric information for the 12 inlier 

subjects is available in Table 3-1.  

Table 3-1. Subject biometric information for standing co-contraction experiment 
Age* Mass (kg)* Height (cm)* 

27.9 ± 3.5 92.3 ± 27.6 180.3 ± 6.7 

* mean ± standard deviation across population 

The experiment employed an instrumented platform designed to estimate the ankle 

impedance in the sagittal and frontal planes while standing or walking. The platform consisted of a 

vibrating force plate (Kistler 9260AA3) module and a motion capture camera system (eight cameras 

- Optitrack Prime 17W) that were used to measure the kinetics and kinematics of the subject’s 

ankle.  A description of the vibrating force plate module can be found in [72]–[75].  
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Additionally, four wireless EMG sensors (Delsys Trigno Wireless System) were placed on 

the subject’s TA, PL, SOL, and GAL muscles to measure muscle activities (Figure 3-1). Proper 

procedures were implemented to clean the surface of the skin before placing the sensor; including 

shaving excess leg hair and wiping the skin with rubbing alcohol to remove body oils. Muscle 

palpation was used to carefully place the sensor on the belly of each muscle. After placing the EMG 

sensors, a test was performed to make sure a signal was generated when each of the four muscles 

were contracted.   

 
Figure 3-1. Experimental setup while subjects stood (a) with their heading oriented w.r.t the x-axis 
and (b) with their heading aligned with the z-axis. The setup included a vibrating platform, force 

plate, motion capture camera system, and four EMG sensors. 

3.2.2 Procedure  

At the beginning of each experiment, the MVC of the muscles were determined while the 

subjects were in a normal standing position. The subjects co-contracted their muscles to the 

maximum level in approximately 1-second bursts. They repeated the bursts between 5 to 10 times, 

and the highest voltage of the TA muscle was selected to be the reference MVC. During the trials, 

subjects were asked to maintain, to the best of their abilities, a constant muscle co-contraction at 

a percentage of the MVC voltage.  

During a trial, the vibrating platform applied pseudorandom perturbations with a bandwidth 

up to 33 Hz to the right ankle in both DP and IE directions, simultaneously, for 70 seconds. While 

the ankle was being perturbed the subjects performed one of five tasks: stand normally with no 

active contraction of the lower extremity muscles (this is often referred to as ‘relaxed’ or ‘0% MVC’) 
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or stand with muscles actively co-contracted to 10%, 20%, 30%, and 40% MVC. To maintain a 

constant co-contraction level, real-time visual feedback of the subject’s TA EMG voltage and the 

target EMG voltage were provided. For visualization purposes, this signal was displayed as the root-

mean-square (RMS) of a moving 20-milliseconds window. For the duration of the 70-second trial, 

the subject controlled their muscles to maintain a constant voltage around the target voltage level. 

The five contraction levels (relaxed, 10%, 20%, 30%, and 40% MVC) were performed once 

while the foot was oriented parallel to the x-axis coordinate frame (Figure 3-1a) and once while the 

foot was rotated to be parallel to the z-axis (Figure 3-1b): for a total of 10 trials per subject. To 

reduce the effects of muscle fatigue the order of the trials were selected randomly, and the 

subjects were required to rest between each trial. The purpose of repeating the trials with two 

heading orientations was to validate the ankle impedance estimation; however, the trials in which 

the heading was parallel to the z-axis were not considered for this study. The analysis in this chapter 

focused solely on the five trials where the heading oriented parallel to the x-axis of the force plate.  

3.2.3 Data Acquisition  

The kinematic and kinetic data were collected with a sampling rate of 350 Hz, and were 

bandpass filtered at 1-40 Hz, using a 501st order finite impulse response filter. An example of the 

external torques and the ankle angle measurements in both DP and IE can be found in Figure 3-2. 

The maximum ranges of the external torques and ankle rotations generated from the pseudo-

random input were ± 21.4 Nm and ± 3.9° in the DP direction and ± 3.1 Nm and ± 1.8° in the IE 

direction, respectively. The resulting ground reaction forces, ground reaction torques, and the 

ankle rotations were used to estimate the standing ankle impedance in DP and IE.   

All EMG data were recorded with a sampling rate of 2000 Hz and were synchronized to the 

kinematic and kinetic data. An example of a raw TA EMG measurement from a representative 

subject is presented in Figure 3-3. This figure shows how the amplitude and frequency content of 

the EMG signal increased as the muscle co-contraction level increased. In addition, the solid black 

line indicates the moving RMS with a window size of 20 milliseconds across the time frame. This 

line is an example of the visual feedback of the EMG signal that was provided to the subjects during 

each trial.  
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Figure 3-2. External torque (blue) applied to the foot by the force plate module and the resulting 
ankle angle (red) from a sample trial. The upper plot a) shows the measurements in DP and b) 

shows the measurements in the IE direction, respectively. 

 

Figure 3-3. TA EMG signal of representative subject for 0% - 40% MVC co-contraction levels (a – 
e).  The solid black line on each figure shows the moving 20 ms RMS window, which represents the 

signal that was visible to the subject during each trial.   
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The EMG signals were bandpass filtered between 65 – 150 Hz using a 2000th order, finite 

impulse response filter. This filter bandwidth was selected because the most dominant and energy-

rich region of the signal is between 50-150 Hz [138]. Additionally, this filter removed the lower 

frequency artifacts caused by the human and vibrating force plate (0 – 33 Hz), instability in the 

signal (0 – 20 Hz), and ambient noise (60 Hz).  

Next, the first and last five seconds of each trial were cropped to remove any transient data. 

The collected data, including the kinematic, kinetic, and EMG data, were then separated into 5-

second windows with 4.9 seconds overlap. The corresponding ankle impedance and RMS of the 

EMG for all muscle channels were determined for each window, resulting in a total of 24060 

samples across the 12-subject population. Before being used for analysis, the RMS of the EMG 

muscle signals were z-score normalized using  

 �̅�𝑥𝑖𝑖 =
𝑥𝑥𝑖𝑖 −  𝜇𝜇𝑥𝑥𝑖𝑖
𝜎𝜎𝑥𝑥𝑖𝑖

 3.1 

where 𝑥𝑥𝑖𝑖  is the subject data for each muscle 𝑖𝑖 = {𝑇𝑇𝑇𝑇,𝐷𝐷𝑃𝑃, 𝑆𝑆𝑆𝑆𝑃𝑃,𝐺𝐺𝑇𝑇𝑃𝑃}, and 𝜇𝜇𝑥𝑥𝑖𝑖 and 𝜎𝜎𝑥𝑥𝑖𝑖are the mean 

and standard deviation across five trials for each particular muscle, respectively. Normalization of 

EMG signals is necessary when using the change in amplitude to compare across other muscles 

and the EMG signals of different subjects. An example of the z-score normalization of the EMG 

signals across four muscles and five co-contraction levels is shown in Figure 3-4 for a representative 

subject.   

 

Figure 3-4. The z-score normalized RMS EMG of the TA, PL, SOL, and GAL muscles across five 
muscle contraction levels for a representative subject #5. 
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 Standing Ankle impedance  

The first method for calculating the standing ankle impedance used an ordinary least 

squares optimization to solve for each impedance parameter. This model assumed the shank and 

the foot are connected via a revolute joint with a spring and damper. In addition, only the inertial 

properties of the foot and force plate were accounted for because 1) the actuator dynamics could 

be disregarded due to the platform design [72], and 2) the dynamics above the ankle can be 

accounted for by the ankle angle deflection. To solve for the impedance parameters, the sum of 

the external torques acting on the ankle 𝜏𝜏, determined from the experimental data, were set equal 

to the sum of the internal torques. Equation 3.2 describes the external ground reaction torques 𝑇𝑇𝐹𝐹 

and forces 𝐹𝐹𝐹𝐹 of the foot, measured by the force plate, and the average moment arm between the 

center of the force plate and the ankle center  𝑟𝑟𝐷𝐷𝐴𝐴����� , measured by the motion capture system. 

Equation 3.3 describes the internal ankle torque, where the parameters 𝐾𝐾, 𝐵𝐵, 𝐽𝐽𝐹𝐹, and 𝐽𝐽𝐷𝐷 are the 

ankle stiffness, ankle damping, foot inertia, and the force plate inertia, respectively.  

 𝜏𝜏(𝑡𝑡) = 𝑇𝑇𝐹𝐹(𝑡𝑡) +  𝑟𝑟𝐷𝐷𝐴𝐴����  × 𝐹𝐹𝐹𝐹(𝑡𝑡) 3.2 

 𝜏𝜏(𝑡𝑡) = 𝐾𝐾𝜃𝜃𝐴𝐴(𝑡𝑡) + 𝐵𝐵�̇�𝜃𝐴𝐴(𝑡𝑡) + 𝐽𝐽𝐹𝐹�̈�𝜃𝐹𝐹(𝑡𝑡) + 𝐽𝐽𝐷𝐷�̈�𝜃𝐷𝐷(𝑡𝑡) 3.3 

The variables 𝜃𝜃𝐴𝐴(𝑡𝑡), �̇�𝜃𝐴𝐴(𝑡𝑡), �̈�𝜃𝐹𝐹(𝑡𝑡), and �̈�𝜃𝐷𝐷(𝑡𝑡) correspond to the ankle angle, ankle angular velocity, 

foot angular acceleration, and the force plate angular acceleration. The derivatives of the angle 

measurements were calculated using a Savitzky-Golay 15th order filter and an 11th order 

polynomial. Lastly, the unknown ankle impedance parameters in both DP and IE directions were 

estimated using an ordinary least squares optimization to minimize the residual of the Equation 

3.3:   

 (𝐾𝐾,𝐵𝐵, 𝐽𝐽𝐹𝐹 , 𝐽𝐽𝐷𝐷) =  argmin(𝐾𝐾,𝐵𝐵,𝐽𝐽𝐹𝐹,𝐽𝐽𝑃𝑃)�𝐾𝐾𝜃𝜃𝐴𝐴 + 𝐵𝐵�̇�𝜃𝐴𝐴 + 𝐽𝐽𝐹𝐹�̈�𝜃𝐹𝐹 + 𝐽𝐽𝐷𝐷�̈�𝜃𝐷𝐷 −  𝜏𝜏 �. 3.4 

This method for estimating the ankle impedance eliminated the need to solve for the dynamics 

above the ankle, including the effects of the shank and upper body.  

 The results from the least-square optimization of the ankle impedance parameter 

estimations are described in Figure 3-5. The results show the average (± standard deviation) of the 

a) stiffness, b) damping, c) foot inertia, and d) % NMSE across 12 subjects for the five co-contraction 

levels. This figure shows that the stiffness in DP and IE had increasing trends as the muscle 
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activation levels increased. Additionally, the damping in DP also had a slight increase with muscle 

activity; however, the damping in IE remained relatively constant across the trials. The overall 

average stiffness and damping in DP were 258.2 ± 83.0 Nm/rad and 0.79 ± 0.10 Nms/rad, 

respectively, and in IE were 126.3 ± 22.9 Nm/rad and 0.31 ± 0.07 Nms/rad. Additionally, the inertia 

remained relatively small throughout all trials, as expected, with average values of 8.7 x 10-3 ± 2.9 

x 10-3 kgm2 and 4.6 x 10-3 ± 1.1 x 10-3 kgm2 in the DP and IE directions, respectively. Last, the percent 

Normalized Mean Squared Error (NMSE) of the impedance estimation had average values between 

77% - 92% in DP and 72% - 83% in IE across all muscle levels and subjects. The large NMSE across 

all trials verifies that the optimization method was able to estimate the impedance parameters 

sufficiently. 

 

Figure 3-5. Average (± standard deviation) ankle a) stiffness, b) damping, and c) inertia across five 
muscle co-contraction levels. The results in d) show the average NMSE across all the 12 subjects. 
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 Correlation between Standing Ankle Impedance and EMG signals  

3.4.1 Linear Correlation 

A linear model was developed to relate the EMG signals with the ankle stiffness and damping 

parameters. First, the median of the ankle impedance parameters 𝑍𝑍𝑖𝑖  and normalized RMS of the 

muscle signals 𝐼𝐼𝑀𝑀𝐺𝐺𝑘𝑘  were calculated for each trial, where 𝑖𝑖 = {𝐾𝐾𝐷𝐷𝐷𝐷,𝐾𝐾𝐼𝐼𝐼𝐼 ,𝐵𝐵𝐷𝐷𝐷𝐷 ,𝐵𝐵𝐼𝐼𝐼𝐼} and 𝑗𝑗 =

{𝑇𝑇𝑇𝑇,𝐷𝐷𝑃𝑃, 𝑆𝑆𝑆𝑆𝑃𝑃,𝐺𝐺𝑇𝑇}. As shown in Eq. 3.5, all combinations 𝑖𝑖 and  𝑗𝑗 samples were fitted with the linear 

model  

 𝑍𝑍𝑖𝑖 =  𝛽𝛽1𝐼𝐼𝑀𝑀𝐺𝐺𝑘𝑘 + 𝛽𝛽0. 3.5 

This was repeated to fit 16 equations for every subject. The significance of the slope coefficient 𝛽𝛽1 

was determined for every fit equation using Analysis of Variance (ANOVA) for linear models. A 

linear correlation was determined with p-values less than or equal to 0.05.   

Figure 3-6 shows an example of the fit equation for two representative subjects that 

explored the correlation between the DP stiffness and the SOL muscle. The small filled and unfilled 

circles represent the inlier data, within 10 and 90 percentiles, and the outlier data, respectively. 

Additionally, the center of the larger circles denotes the median for the corresponding impedance 

and EMG parameters across the five co-contraction levels. The colors represent 0% MVC (relaxed 

muscles) up to 40% MVC, as shown by the legend. The size of the larger circles is fixed to the same 

size for all trials, with the center of the large circle placed at the median.  
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Figure 3-6. Example of linear fit between the ankle stiffness in DP and the normalized RMS of the 
SOL muscle for two subjects (#3 and #4). The colored circles denote the median for the 0% (blue), 
10% (red), 20% (yellow), 30% (purple), and 40% (green) MVC. The fit equation and p-values of the 

slope coefficients are shown on each figure. 

Figure 3-6a is an example of a fitted equation that did not display a linear correlation. The 

resulting p-value was equal to 0.4152, showing no significant linear correlation between the SOL 

and stiffness in DP. While there is no linear correlation, this does not imply that no relationship 

exists. It is possible that nonlinear or higher-order models could describe this relationship. 

Conversely, Figure 3-6b is an example of a subject that exhibited a linear relationship between the 

impedance and EMG parameters. The resulting p-value for the slope coefficient was equal to 

0.0038, which shows that the parameters were significantly linearly correlated to one another.   

Similar trends resembling the results in both Figure 3-6a and Figure 3-6b were determined 

across all subjects. Interestingly, most subjects showed linear correlation for some combinations 

of parameters but not for other combinations. Other subjects did not show any linear correlation 

across all 16 fitted equations. Table 3-2 describes the percentage across 12 subjects that exhibited 

a significant linear correlation (p-value ≤ 0.05) between the impedance and EMG signal parameters. 

The acronyms KDP, KIE, BDP, and BIE correspond to the stiffness and damping in DP and IE, 

respectively.   
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Table 3-2. Percentage of subjects with a significant correlation (p < 0.05) between the ankle 
impedance parameter and EMG for each muscle. As the number of subjects showing a significant 

correlation increased, the color of the box became darker in color.  

 KDP KIE BDP BIE 

EM
G

 

TA 50% 33% 25% 17% 

PL 33% 17% 8% 8% 

SOL 42% 17% 25% 8% 

GAL 33% 17% 17% 8% 

 

3.4.2 Discussion  

In some cases, a significant correlation existed between the ankle impedance parameters 

and the EMG signals; however, these relations were not consistent across the subjects. The 

impedance parameter that was most correlated to the EMG signals was the ankle stiffness in DP. 

Table 3-2 shows that 50% of the subjects had a significant correlation between the TA muscle and 

the stiffness in DP (KDP). Conversely, the damping in the IE had the least number of subjects that 

exhibited a linear correlation; especially between damping in IE (BIE) and the PL, SOL, and GAL 

muscles. Similar trends were determined while studying the correlation between the muscles 

surrounding the knee and the torque about the knee for 28 subjects [139]. This study concluded 

that while significant correlations do exist, there are many inconsistencies across the results. The 

resulting regression model could only estimate knee torques with up to 50% Variance Accounted 

For (VAF) [139].  

The results of this study aimed to assess if the relationship between ankle impedance and 

muscle co-contraction could be represented by a linear model. From the results shown in Table 

3-2, only 20% of the total fit equations could be explained with a significant linear correlation. For 

the remaining 80%, additional methods can explore ways to select the appropriate regression 

models, improve EMG feature selection, and improve the ankle impedance estimation. These 

methods will be discussed throughout the remainder of this chapter.  

 Using ANN to model EMG-Impedance Relationship for Standing Subjects 

To further examine the relationship between the lower extremity muscle co-contraction and 

the standing ankle impedance in DP and IE, a similar approach to Chapter 2 was implemented. The 
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function-approximation capabilities of ANN were used to address the experimental trials that did 

not exhibit a significant correlation between the input and output data.  The following section 

describes the ANN model designs, feature extraction techniques, and standing ankle impedance 

prediction results using this technique. The findings of this study provide the next steps toward an 

EMG-Ankle Impedance model during standing.   

3.5.1 ANN Procedure 

Before training the ANN models, the data was pre-processed. First, all impedance samples 

with a NMSE less than 0.6 were removed from the dataset, as well as the corresponding EMG 

samples. This accounted for approximately 10% of total data. Next, the ankle impedance 

parameters were normalized by the mass of each subject. Then,  the impedance and the RMS EMG 

data were z-score normalized using Eq. 3.1, where 𝑖𝑖 =

{𝐾𝐾𝐷𝐷𝐷𝐷,𝐵𝐵𝐷𝐷𝐷𝐷, 𝐽𝐽𝐷𝐷𝐷𝐷,𝐾𝐾𝐼𝐼𝐼𝐼,𝐵𝐵𝐼𝐼𝐼𝐼, 𝐽𝐽𝐼𝐼𝐼𝐼,𝑇𝑇𝑇𝑇,𝐷𝐷𝑃𝑃, 𝑆𝑆𝑆𝑆𝑃𝑃,𝐺𝐺𝑇𝑇𝑃𝑃}, within each subject. The process of z-score 

normalization assigns a normally distributed score across all data points. The standard score can 

more easily be compared across subjects because the data are distributed on a similar scale. The 

normalized data were used to train the ANN models.  

 Next, two approaches investigated the prediction accuracy of 1) individual ANN models 

optimized for each subject, and 2) an “aggregated” ANN model that was trained with the data of 

all subjects.  A feedforward ANN model was selected for both approaches, using the MATLAB 

Neural Network Toolbox. The same cross-validation techniques used in Chapter 2 were chosen for 

this analysis. The input and target matrices of each model were divided into training (70%), 

validation (15%), and testing (15%) groups. The weights and biases of each model were updated 

using a log-sigmoid activation function and the Levenberg-Marquardt algorithm until a minimum 

mean squared error (mse) was achieved.  

 The performances of each model were determined by how well the model was able to 

predict ankle impedance using the testing (15%) dataset. The metrics used to quantify the 

performances included the goodness of fit between the predicted and actual ankle impedance, 

which used the normalized mean squared error (NMSE) cost function, as shown in Eq. 3.6 as  

 
𝑁𝑁𝑀𝑀𝑆𝑆𝐼𝐼 = 1 −  

�𝑧𝑧�̅�𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝑖𝑖𝑝𝑝𝐴𝐴𝐴𝐴𝑝𝑝 − 𝑧𝑧�̅�𝑎𝑝𝑝𝐴𝐴𝑎𝑎𝑎𝑎𝐴𝐴  �
2

‖𝑧𝑧�̅�𝑎𝑝𝑝𝐴𝐴𝑎𝑎𝑎𝑎𝐴𝐴 − 𝑚𝑚𝑓𝑓𝑚𝑚𝑚𝑚(𝑧𝑧�̅�𝑎𝑝𝑝𝐴𝐴𝑎𝑎𝑎𝑎𝐴𝐴) ‖2
 

3.6 
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where ∥ denotes the 2-norm, 𝑧𝑧�̅�𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝑖𝑖𝑝𝑝𝐴𝐴𝐴𝐴𝑝𝑝 is the array of predicted ankle impedance (stiffness, 

damping, and inertia) in DP and IE from the ANN model, and 𝑧𝑧�̅�𝑎𝑝𝑝𝐴𝐴𝑎𝑎𝑎𝑎𝐴𝐴 is the array of ankle impedance 

estimated from the parameter estimation in Section 3.3. A perfect fit between the predicted and 

actual impedance would result in a NMSE = 1.0. In addition, the mean absolute error (MAE) was 

selected as another metric, which used the mean and absolute values of the difference between 

the predicted and actual impedance, as  

 𝑀𝑀𝑇𝑇𝐼𝐼 = 𝑚𝑚𝑓𝑓𝑚𝑚𝑚𝑚��𝑧𝑧�̅�𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝑖𝑖𝑝𝑝𝐴𝐴𝐴𝐴𝑝𝑝 − 𝑧𝑧�̅�𝑎𝑝𝑝𝐴𝐴𝑎𝑎𝑎𝑎𝐴𝐴�� 
3.7 

The MAE results are presented in the standard impedance units by reversing the z-score 

normalization and multiplying by the respective subject masses.  This metric provides a perspective 

of the model error with respect to the actual ankle impedance range. The following sections 

describe additional training parameters selected for both modeling approaches, as well as the 

resulting model performance.    

3.5.2 Individual ANN Models  

The individual ANN models used the z-score normalized RMS EMG signals as the input 

matrix to the model, and six normalized ankle impedance parameters as the target matrix for cross-

validation. The optimal number of hidden layer neurons for this model type was 40 neurons, 

determined through trial and error. The weights and biases for each neuron were optimized using 

cross-validation. The ANN model performances across all subjects can be found in Table 3-3. The 

stiffness in the DP impedance parameter has the highest overall performance, with an average 

NMSE of 0.98 ± 0.02. The lowest average NMSE reported was 0.93 ± 0.03 for the IE damping 

parameter.  Interestingly, these results coincide with the parameters that had the highest and 

lowest number of significantly correlated EMG to impedance parameters, respectively (Table 3-2). 

However, even though the IE damping parameter had the weakest overall performance, the NMSE 

still showed that the ANN model could predict this impedance parameter with high accuracy. The 

total average NMSE error across all impedance parameter and all subjects is 0.96 ± 0.03. 

Furthermore, the average MAE across all subject models is also presented in Table 3-3. When 

compared to the range of the results shown in Figure 3-5, the error between the predicted and 

actual impedance was relatively small.  
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Table 3-3. Average (± standard deviation) NMSE and MAE results of the standing ankle impedance 
predictions from the individual subject ANN models.  

Metric DOF K �𝑵𝑵𝑵𝑵
𝒓𝒓𝒓𝒓𝒓𝒓

� B �𝑵𝑵𝑵𝑵𝑵𝑵
𝒓𝒓𝒓𝒓𝒓𝒓

� J ( 𝒌𝒌𝒌𝒌.𝑵𝑵𝟐𝟐) 

NMSE (R2) 
DP 0.983 ± 0.02 0.954 ± 0.02 0.956 ± 0.02 

IE 0.963 ± 0.03 0.931 ± 0.03 0.959 ± 0.03 

MAE 
DP 6.7 ± 1.3 (36.6 ± 11.3) × 10-3 (0.8 ± 2.2) × 10-3 

IE 3.6 ± 1.3 (40.4 ± 13.9) × 10-3 (4.2 ± 2.0) × 10-3 

 

The results of this study improved slightly when compared to the results obtained in 

Chapter 2. Using the same ANN model technique, the non-loaded ankle impedance could be 

predicted with an average NMSE of 0.95 ± 0.05 in DP and 0.86 ± 0.11 in IE. For both non-loaded 

and loaded ankle impedance, the results of training an ANN model for each subject can predict 

ankle impedance with very high accuracy. One likely reason for the high performance is that the 

testing data was from the same subject as the training data, even though it was not used during 

the model training process. Additionally, the data used to train and test the model performance 

were collected from the same experiment. If the normalized RMS EMG data from a different 

subject were evaluated by the trained model, the performance of the impedance prediction 

decreased. To improve the performance of a model to unseen data, additional techniques were 

explored in the following sections.     

3.5.3 Aggregated ANN Model 

This approach tested if a single model could be trained with the data of all subjects. Even 

though the muscle activation and impedance parameters varied across subjects, the goal was to 

determine if the model could still maintain a high prediction performance. A single model, referred 

to as an aggregated model, was developed using the experimental data collected from 12 subjects.  

Two types of input matrices were tested using this model. The first input matrix was similar 

to the individual models and used the z-score normalized RMS EMG data from the four muscles of 

all subjects. The second input matrix used the subjects’ biometric information, including age, 

height, and weight, in addition to the normalized RMS EMG data, resulting in an input matrix with 

seven channels. The biometric data were z-score normalized across the population.   
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The target matrix for both input matrices used four normalized impedance parameters 

across all subjects, including the stiffness and damping in DP and IE. The inertia parameters were 

removed from the model training because it remained relatively constant and did not change with 

muscle activation. Next, using a trial and error technique, a model containing 100 neurons had the 

highest overall performance and was selected for analysis. Last, 70% of every trial was randomly 

selected to be the training matrix, 15% was selected for validation, and the remaining 15% was 

selected for testing. This ensured that all the muscle co-contraction trials and every subject were 

represented in each group.   

Table 3-4 shows the NMSE and MAE performance from a single Aggregated ANN model in 

predicting the ankle impedance across the entire population. Also, the table includes the results 

from both types of input matrices. The results showed that the input matrix containing both the 

EMG and subject biometric information performed better than the input matrix with only the 

normalized RMS EMG information of all the subjects. The overall average NMSE was 0.79 for the 

“EMG only” input and 0.91 for the “EMG + Biometric” input, respectively. The latter regression 

model has a higher fitness likely because it accounts for the subjectivity in the EMG measurements. 

By adding additional input information that was dependent on each subject, the model could better 

predict the ankle impedance for each subject. Thus, adding other biometric variables, such as foot 

length, shank length, percent muscle mass, or percent body fat, could improve the estimation 

further.  

 

Table 3-4. NMSE and MAE (± standard deviation) results of the standing ankle impedance 
predictions from the Aggregated ANN models.  

 EMG Input Only EMG + Biometric Input  

Metric DOF K �𝑵𝑵𝑵𝑵
𝒓𝒓𝒓𝒓𝒓𝒓

� B �𝑵𝑵𝑵𝑵𝑵𝑵
𝒓𝒓𝒓𝒓𝒓𝒓

� K �𝑵𝑵𝑵𝑵
𝒓𝒓𝒓𝒓𝒓𝒓

� B �𝑵𝑵𝑵𝑵𝑵𝑵
𝒓𝒓𝒓𝒓𝒓𝒓

� 

NMSE (R2) 
DP 0.896 0.763 0.955 0.897 

IE 0.810 0.688 0.917 0.874 

MAE 
DP 19.4 ± 4.5 0.09 ± 0.03 12.4 ± 3.6 0.06 ± 0.02 

IE 9.6 ± 4.0 0.10 ± 0.05 5.7 ± 2.1 0.06 ± 0.03 
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For the EMG and biometric data input model, the highest performance across the 

impedance parameters was the stiffness in DP, with a NMSE of 0.96 and a MAE of 12.4 ± 3.6 

Nm/rad.  The lowest-performing parameter, with a NMSE of 0.87 and MAE of 0.06 ± 0.03 Nms/rad, 

was again the damping in IE. The maximum difference between the average NMSE from the 

individual models, and the NMSE from the aggregated model was 0.06 for both the damping 

parameters in DP and IE, respectively. While the model performance was high, the aggregated 

model performance decreased slightly from the individual models. One explanation for the 

decreased performance is that there was noise in the ankle impedance estimation process and the 

RMS EMG signals across the subjects. It is possible that the aggregated model overfitted to some 

of the noise present in the impedance, which in turn impacted the model’s ability to predict ankle 

impedance from unseen input data.  

Overall, the performance of the aggregated ANN model showed that a single model, 

containing data from a range of subjects, can accurately predict multi-directional ankle impedance 

based on varying levels of muscle co-contraction. Additional measures to reduce the variance in 

the ankle impedance estimation and noise in the EMG signal could further improve the model 

performance. However, the performance of this model is still tested with data from the same 

subjects that were used during the training process. While the aggregated model can generalize to 

a wider variety of subject data, it is still unknown how such model would perform when a new 

subject is presented.   

 Investigation toward Subject-Independent Model  

The results from the aggregated model prompted new questions toward the idea of 

generating a “subject-independent” model that is general and can accurately predict the ankle 

impedance of new subjects. A few of the main questions included: How many subjects are needed 

to train a model that can predict ankle impedance with a reasonable accuracy using unseen subject 

data? Will additional EMG features improve the generalizability of a model? Should biometric 

information about the subject be included? Is ANN the best regression option to use for a subject-

independent model? The following section investigates some potential solutions to these 

questions.  
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3.6.1 Preliminary Investigation: Leave-one-subject-out Cross Validation 

The individual and aggregated ANN models described in Section 3.5 tested the prediction 

accuracy of the model using the EMG data of subjects also used for training. Alternatively, the 

leave-one-subject-out technique reported in this section tested the prediction accuracy on 

subjects that were not used during training (unseen subjects). Specifically, the goal of this approach 

was (1) to determine if an ANN model can accurately predict ankle impedance using the muscle 

activity of an unseen subject and (2) to investigate how the model generalization improves with an 

increasing number of subjects used for training. The details of this process are described in 

Algorithm 3-1. 

Algorithm 3-1: “Leave-one-subject- out” Technique for Varied ANN Model Sizes 

 
 

First, the total number of subjects used for this process 𝑁𝑁𝑠𝑠𝑎𝑎𝐴𝐴𝑘𝑘 was defined as 12 (line 1). 

Then, the number of subjects used to train an ANN model, defined as 𝑇𝑇𝑁𝑁𝑁𝑁𝑚𝑚𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑚𝑚𝐴𝐴, was selected 
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to range from 2 subjects to 11 subjects (line 2). Within each model size, a second loop iterated 

through the leave-one-subject-out method (lines 3- 17), which sets aside the data of a single 

subject 𝑆𝑆𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴 from the entire population set, ℙ (line 4). The  𝑆𝑆𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴  subject is later used as an unseen 

test subject for the ANN models. Next, the other 11 subjects of set ℙ are used to determine all 

subset combinations of subjects with the size 𝑇𝑇𝑁𝑁𝑁𝑁𝑚𝑚𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑚𝑚𝐴𝐴 (line 5). For example, 

for 𝑇𝑇𝑁𝑁𝑁𝑁𝑚𝑚𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑚𝑚𝐴𝐴 = 2 the total number of subset combinations of subjects from set ℙ is equal 

to �11
2 � = 165. If the total number of subset combinations (𝑟𝑟𝑝𝑝𝐴𝐴𝑚𝑚𝐴𝐴𝐴𝐴) is less than 30, the existing 

subsets are repeated until a total of 30 subsets are generated (lines 6-7). If the total number of 

subset combinations (𝑟𝑟𝑝𝑝𝐴𝐴𝑚𝑚𝐴𝐴𝐴𝐴) is greater than 30, 30 subsets are randomly selected (lines 8-10). 

Next, an ANN model was generated for each of the 30 selected subject combinations 

(𝑟𝑟𝑝𝑝𝐴𝐴𝑚𝑚𝐴𝐴𝐴𝐴) (lines 11 – 15). Each ANN model was composed of four input neurons (normalized RMS 

EMG), a single hidden layer neuron, and four output neurons (stiffness and damping). The purpose 

of selecting only 30 subsets was to limit computational requirements (line 12).  Additionally, a single 

hidden layer neuron was selected because it had the highest performance. Cross-validation was 

performed by dividing the selected subset data (out of the 30 subsets) into 70% training, 15% 

validation, and 15% testing (line 13). The resulting model was tested against the input EMG of the 

subject that was set aside (𝑆𝑆𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴). Last, the resulting overall NMSE was determined between the 

predicted and actual impedance for each model size and was saved for further analysis. This 

process was repeated for all 10 model sizes (1 vs. 2, 1 vs. 3, …, 1 vs. 11). 
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Figure 3-7. Average ± standard error NMSE for models with a subject-size between 2 to 11 
subjects and unseen testing data. Results taken across 12 subjects.    

Figure 3-7 shows the average NMSE for the ANN model sizes between 2 subjects up to 11 

subjects, while each of the 12 subjects was used as the unseen testing data. The error bars 

represent the standard error of the 12 subjects. As the number of subjects used for model training 

grew, the average NMSE increased. Overall, the models that contained 11 subjects had the highest 

overall average NMSE. These models had an average (± standard deviation) of 0.69 ± 0.04 for KDP, 

0.23 ± 0.05 for KIE, 0.19 ± 0.03 for BDP, and -0.10 ± 0.05 for BIE. A negative NMSE means that no 

relationship was determined between the EMG and ankle impedance.  

 When compared to the results from the individual and aggregated models, the average 

NMSE for the leave-one-subject-out technique decreased overall. However, as suggested by the 

increasing trend in Figure 3-7, the performance of the subject-independent models increased as 

more subjects were used during training. In fact, a few subjects reported NMSE values greater than 

0.987 for the stiffness in DP and 0.814 for the stiffness in IE. These results suggest that if more 

subject data (> 12 subjects) were used to create a model, the prediction accuracy may continue to 

increase. The subject-independent model could have the potential to predict the ankle impedance 

from EMG measurements of subjects that did not have their ankle impedance experimentally 

characterized in a prior test.   
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Noticeably, the NMSE results for the damping parameters were less than the stiffness 

parameter results; with a poor NMSE overall. However, the damping parameters had very high 

NMSE for the individual and aggregated ANN models. A few reasons for the decreased 

performance could be that the change in damping parameters with muscle activity had very 

different trends across subjects. For example, some subjects had an increasing trend in the 

damping in IE with muscle activation level, while others had a decreasing or constant trend. 

Additionally, the ranges for the non-normalized damping parameters across all subjects were only 

0.94 Nms/rad and 1.64 Nms/rad for the DP and IE directions, respectively. It is possible that the 

damping parameters in DP and IE did not change enough in amplitude, making it difficult for the 

model to differentiate changes in impedance using contraction levels. Last, the RMS features 

extracted from the EMG might not have been able to explain the damping parameters.   

The results of the leave-one-subject-out tests showed potential for improvements in the 

EMG-impedance model. Other methods, in addition to ANN, should be considered to explore the 

feasibility of developing a generalized relationship between EMG and ankle impedance. Next, this 

chapter will explore the effects of additional EMG feature selections and examine additional 

regression modeling algorithms.  

3.6.2 Feature Extraction and Regression   

The signal processing techniques were updated from the methods described in Section 

3.2.3. First, approximately 10% of the data were removed as outliers. As opposed to removing 

outliers based on only the impedance estimation performance, the outliers were selected based 

on both the EMG and impedance data for each trial. As described in Eq. 3.14, the standard 

deviation and mean of the EMG signals for each window of data were selected, as well as the 

corresponding impedance parameters. All vectors of 𝑚𝑚𝑖𝑖 were z-score normalized to remove the 

mean value, and the distance squared of each row was determined (Eq. 3.15). Last, 10% of the 

rows with the largest distance squared within each trial 𝑖𝑖 were removed.    

 𝑚𝑚𝑖𝑖 = �𝐼𝐼𝑀𝑀𝐺𝐺𝑆𝑆𝑇𝑇𝐷𝐷1−4,𝐼𝐼𝑀𝑀𝐺𝐺𝑇𝑇𝐸𝐸𝐼𝐼1−4,  𝐾𝐾𝐷𝐷𝐷𝐷,𝐼𝐼𝐼𝐼 ,  𝐵𝐵𝐷𝐷𝐷𝐷,𝐼𝐼𝐼𝐼�401𝑥𝑥12  3.8 

 
(𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖)2 =  ��

𝑚𝑚𝑖𝑖 −  𝜇𝜇𝑚𝑚𝑖𝑖

𝜎𝜎𝑚𝑚𝑖𝑖

�
2

 3.9 
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 EMG Feature Selection 

Next, the EMG features were extracted from each EMG channel. In the previous section, 

the RMS of the EMG signals were the only feature selected to train each ANN model. It is possible 

that the RMS does not contain all the relevant information within the EMG signal. This section 

investigated additional features, and determined if the model prediction accuracy could improve 

for a subject-independent model. Selecting the most relevant features has been known to simplify 

the dimensionality of the model, improve training time, increase generalization, and prevent the 

model from overfitting to the training data [135].  

 

Table 3-5. The mathematical definitions of each EMG feature. 

Feature Equation 

Mean (AVE) 𝜇𝜇 =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 3.10 

Standard Deviation 
(STD) 𝜎𝜎 = �

1
𝑁𝑁 − 1

�|𝑥𝑥𝑖𝑖 −  𝜇𝜇|2
𝑁𝑁

𝑖𝑖=1

 3.11 

Mean Absolute 
Value (MAV) �̅�𝑥 =  

1
𝑁𝑁
�|𝑥𝑥𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 3.12 

Zero Crossings (ZC) 

Number of occurrences where  

({𝑥𝑥𝑖𝑖 > 0 & 𝑥𝑥𝑖𝑖+1 < 0} or {𝑥𝑥𝑖𝑖 < 0 & 𝑥𝑥𝑖𝑖+1 > 0}) and 

 |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1| ≥ 1𝑓𝑓 − 6 

3.13 

Number of Slope 
Sign Changes (SSC) 

Number of occurrences where 

({𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑖𝑖−1 & 𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑖𝑖+1} or {𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑖𝑖−1 & 𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑖𝑖+1}) 
and |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1| ≥ 1𝑓𝑓 − 6  and  |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1| ≥ 1𝑓𝑓 − 6 

3.14 

Cumulative Signal 
Length (CL)  𝑙𝑙𝑓𝑓𝑚𝑚 =  �|𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1|

𝑁𝑁

𝑖𝑖=1

 3.15 

* Where 𝒙𝒙𝒊𝒊 is the 𝒊𝒊𝒕𝒕𝒕𝒕 sample of the original EMG signal and 𝑵𝑵 is the number of 
samples per window. 

Six time-domain (TD) EMG features were selected to determine if their characteristics 

contained relevant information about the signal. The features chosen for this study include the 
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mean (AVE), standard deviation (STD), mean absolute value (MAV), number of zero crossings (ZC), 

number of slope sign changes (SSC), and the cumulative length of the signal (CL). These features 

are commonly used for EMG analysis [114], [116], [140]–[142]. Extraction of these features 

provides information about both the amplitude and frequency content of the EMG signals and 

could improve the ability of the model to distinguish the varying levels of muscle co-contraction. 

Table 3-6 contains the mathematical expression used to calculate each feature vector, where the 

EMG signal for each muscle is expressed as 𝑥𝑥.  

Lastly, after the outliers were removed and the input feature vectors were generated, the 

EMG and ankle impedance were z-score normalized within each subject. The resulting input and 

output vectors for each subject had 1800 samples. When all the subjects were combined into a 

single matrix, the resulting dataset had 21600 samples for each feature.    

 Regression Algorithm Selection  

In addition to the ANN model, the performance of additional regression techniques were 

explored. The purpose of this study was to determine if the prediction accuracy of the ankle 

impedance using the EMG signals from an unseen subject would perform better than the ANN 

results presented in Figure 3-7. The models ranged from simple, parametric least-squares linear 

regression to more complex, nonparametric models, such as Gaussian Process Regression. In 

addition, the ANN performance was also re-examined to understand the effects of the added EMG 

features. This work utilized the MATLAB Regression Learner App, fitrlinear function, and the Neural 

Network Fitting App to train and test the models across 12 subjects. The five regression models 

selected for this study included:   

1. Least Squares Linear Regression (LSQ) 

2. Least Squares linear regression with Lasso Regularization (LSQ + Reg)  

3. Medium Gaussian Support Vector Machine (SVM) 

4. Gaussian Process Regression with Matern 5/8 Kernel (GPR) 

5. Artificial Neural Network with 40 hidden layer neurons (ANN40) 
 Performance Evaluation  

To understand the effects of the EMG features selection and the regression models, two 

tests were performed. First, the sensitivity of the model performance to the number of EMG 

feature vectors was examined. Four different sized input vectors were tested, including:   4 – STD 
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features, 8 – STD + AVE features, 16 – MAV + ZC + SSC + CL features, and 24 – STD + MEAN + MAV 

+ ZC + SSC + CL features. Each feature was extracted four times, once for each muscle channel. 

Furthermore, the second test used the input vectors containing 4, 8, 16, and 24 features to test 

the performance of the five regression models (LSQ, LSQ + Reg, SVM, GPR, and ANN40).  To limit 

the computational expense, the input and target matrices were down sampled by a factor of 10 to 

train the GPR models.  

Both the feature extraction and regression model selection tests were implemented using 

the aggregated and Leave-one-subject-out validation techniques. For the aggregated model, 5-fold 

cross validation was performed across the data of the entire population. This process randomly 

selected 80% of the data to train a regression model and 20% to test the performance. Next, this 

process was repeated five times. Additionally, for the Leave-one-subject-out technique the models 

were generated using the data of 11 out of 12 subjects.  The 12th subject was used to test the model 

performance. A total of 12 models for each regression algorithm were generated so that all the 

subjects were used as the unseen input. The performance for each model was quantified using the 

NMSE between the predicted and experimentally determined impedance across the entire 

population. Additionally, the MAE was also determined for each individual subject. 

3.6.3 Model Performance  

 Aggregated Regression Models  

Figure 3-8 presents the MAE ± standard deviation and NMSE between predicted and actual 

ankle impedance for an aggregated regression model. The x-axis of each subplot contains the 

results for each input matrix size, where the Roman numeral I denotes 4 features, II denotes 8 

features, III denotes 16 features, and IV denotes 24 features. As a reference for the MAE, the 

average and standard deviation across all five activation levels and across all subjects were 258.2 

± 83.0 Nm/rad for KDP, 126.3 ± 22.9 Nm/rad for KIE, 0.79 ± 0.10 Nms/rad for BDP, and 0.31 ± 0.07 

Nms/rad for BIE, respectively. 



71 

 

Figure 3-8. The MAE ± standard deviation (a – d) and NMSE (e – h) performances of the 
aggregated regression models for varied number of EMG feature inputs and regression models. 

The Roman numerals I – IV correspond to input matrices of size 4 – 24.  

First, as the number of the TD input feature vectors grew, the performance of the 

regression algorithms generally improved. The model input matrix containing 24 vectors (4 muscles 

x 6 TD features) had the highest overall performance for the SVM model, with NMSE of 0.98, 0.95, 

0.92, and 0.88 for the KDP, KIE, BDP, and BIE predictions, respectively. In addition, this model 

reported the smallest MAE with values of 7.9 ± 7.4 Nm/rad, 4.1 ± 4.3 Nm/rad , 0.05 ± 0.05 Nms/rad 

and 0.05 ± 0.06 Nms/rad for the KDP, KIE, BDP, and BIE parameters, respectively.  
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Additionally, the results from the GPR and ANN algorithms performed similar to the SVM 

algorithm, where the performance increased as the input matrix used more EMG features. Due to 

extensive training time requirements, the GPR model was trained with a down sampled dataset. It 

is possible that the performance of this method could increase further when trained with the total 

dataset. Furthermore, the ANN model, trained with a hidden layer with 40 neurons, showed 

increased performance from the preliminary tests found in Section 3.6.3.1. When compared to the 

RMS EMG input matrix results, all four impedance parameters showed an increase in NMSE.  

The algorithms with the worst overall performances were LSQ and LSQ + Reg. While these 

models did show an increasing performance as the input matrix added more features, the highest 

NMSE for these features were only 0.84 for KDP, 0.47 for KIE, 0.39 for BDP, and 0.18 for BIE, 

respectively. The performance for KDP was reasonably high; however, the ability for the models to 

predict the stiffness in IE, and damping parameters were not as successful. For these parameters, 

the LSQ and LSQ + Reg were not able to find a strong relationship with varying levels of muscle co-

contraction. Similar to the results from the linear correlation test, it is possible that a more complex 

regression model is needed to determine the relationship between impedance and muscle co-

contraction, when presented with the data of multiple subjects.  

 Leave-one-subject-out Regression Models  

Next, the resulting NMSE and MAE for each regression algorithm using the Leave-one-

subject-out training technique is presented in Figure 3-9. This method used 12-fold cross validation, 

where each subject was used as the testing dataset, and was repeated for all the regression 

algorithms. Interestingly, the highest NMSE for all impedance parameters was found using the 

Least Squares with Lasso Regularization model, even though this model showed the worst 

performance for the Aggregated model. A NMSE of 0.78 and a MAE of 29.1 ± 23.3 Nm/rad were 

reported for the KDP direction. These results were slightly higher than the performance of the LSQ 

for KDP, with a NMSE of 0.77.  When compared to the preliminary leave-one-subject-out test from 

Figure 3-7, the NMSE performance improved by an increase of almost 0.1.  Furthermore, for the 

KDP impedance parameter, all five regression algorithms increased the NMSE and decreased the 

MAE as the number of EMG features increased from 4 features to 24 features; suggesting that the 

additional features improved the generalizability for this particular parameter.  



73 

Surprisingly, the model performance for the KDP was the only parameter to show a 

relatively high NMSE across the four inputs. The other parameters showed very poor performance 

for the leave-one-subject-out method, with a NMSE less than 0.25 for KIE, and less than or equal 

to zero for both damping parameters. The low performance could be explained by differences in 

the way that the impedance parameters changed with muscle activity across subjects. When new 

subject information was entered to the model, it was not able to accurately predict the impedance. 

Another possible reason for the low performance is that these ankle impedance parameters did 

not vary enough with muscle activity for some subjects, and the model was not able to predict the 

unchanging or small trends.  

Last, the ANN model performance was lower than the other algorithms. When compared 

to the ANN results presented in Figure 3-7, the NMSE for the stiffness in DP decreased slightly, with 

a maximum NMSE of 0.66 for the 16 input features model.  It could be possible that the ANN 

models were too complex, resulting in a model overfitting to the training data. When the model is 

presented with new subject data, the prediction accuracy of the model decreases. For this reason, 

it is possible that the least-squares algorithm was advantageous because it was not able to fit the 

additional noise.   
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Figure 3-9. The MAE (a – d) and NMSE (e – h) performances of the leave-one-subject-out models 
for varied number of EMG feature inputs and regression models. 
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 Discussion 

This chapter presented the results of a novel experiment that quantified the multi-directional 

ankle impedance while subjects were standing and actively co-contracting the muscles of their 

lower extremity. The purpose of this study was to quantify the relationship between the level of 

muscle activation and the ankle impedance, described by the ankle stiffness and damping 

parameters, using regression modeling techniques. First, this study determined the linear 

correlation between each of the four muscles and the corresponding ankle impedance parameters. 

It was determined that less than 20% of the EMG to impedance parameter combinations showed 

a significant linear correlation.  

To expand upon these results, additional regression modeling techniques were explored. First, 

ANN was used to generate 1) individual models for each subject and 2) an aggregated model 

containing data from the entire subject population. The model performance for both techniques 

showed average NMSE greater than 0.93 for the individual models and 0.87 for the aggregated 

model. These NMSE scores demonstrated that both model types could predict the ankle 

impedance for a given subject with high accuracy. However, when presented with EMG 

information from subjects not used during the model training, these models did not perform well.  

Implications toward a subject-independent model were also investigated. Various regression 

models were tested to determine if they could predict ankle impedance using the EMG information 

of a subject not used in the training of the model. Factors such as the number of subjects included 

during the training process, EMG feature selection, and the regression algorithms were explored 

in this study. It was determined that model prediction improved when the data of more subjects 

was used to generate a model, with the highest prediction accuracy being a model size of 11 

subjects. Additionally, using more features extracted from the EMG signals also improved model 

performance. Last, this study determined that simpler models, such a Least Squares linear 

regression with regularization, might be able to generalize better to new subject inputs.    

The major advantage of generating a subject-independent model is that the ankle impedance 

could be predicted within a reasonable accuracy without needing to perform time-expensive 

experiments that require specialized equipment. In an ideal scenario, an accurate model could 

predict the ankle impedance in DP and IE, using only the EMG measurements. This idea has the 
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potential to determine a user’s intent to improve the control of active prostheses.  However, as 

shown by the results presented in this paper, there are still many challenges that need to be 

overcome to achieve this goal.  

One limiting factor in the generalized model performance is that there is variability in both the 

ankle impedance and muscle activation levels across the subjects. As an example, the performance 

for the KIE, BDP, and BIE parameters from the leave-one-subject-out method showed low NMSE. 

A closer look showed that some subjects had damping parameters that increased with muscle 

activity, while others showed decreasing or constant trends. The different trends could make it 

difficult for the model to generalize across subjects.  Additionally, this study was limited to 

exploring model performance using the data of only 12 subjects. A few questions pertaining to 

model accuracy improvements include: Will the model accuracy improve if more subjects are used 

during model training? How many subjects are needed for improvements?  

 Future implications will look to improve the generalization abilities for a subject-

independent model that can relate lower extremity muscle activation. In addition, this study was 

performed during a stationary standing procedure, where muscles were co-contracted. 

Applications of the specific models generated by this study would lay the groundwork toward a 

more complex and realistic scenario, such as relating the muscle activity and ankle impedance 

dynamic walking and other time-varying maneuvers. With this goal in mind, the next chapter 

describes the next steps toward achieving this goal using a new experiment.   
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4 Variation of Ankle Impedance and Muscle Activity with the Center 
of Pressure during Standing  

 Motivation  

The work presented in this dissertation thus far has focused on the study of ankle impedance 

while the lower extremity muscles were co-contracted to different activation levels. As the muscle 

activity changed, the corresponding ankle impedance also varied. However, during these studies, 

the mean ankle angle remained relatively constant while small perturbations were applied. Moving 

forward, the work presented in this chapter explores how both ankle impedance and muscle 

activity adapts to different mean ankle angles and ankle torques. For this experiment, the subjects 

were not asked to actively co-contract their muscles; but rather maintain a constant ankle torque 

while standing in various poses. The resulting muscle activity and impedance were determined 

while the subjects maintained their balance in the stationary pose. The subject’s center of pressure 

(COP) location, with respect to the length of their foot, was used as a visual reference in order to 

sustain a constant ankle torque.   

Previous work that has studied the ankle impedance as a function of the COP of the foot 

were focused on understanding how the body maintains an upright, stable posture. One study 

analyzed the ankle impedance while the subjects shifted their COP away from the neutral position 

during standing [66]. They determined that the ankle stiffness increased when the ankle angle 

moved away from the neutral position and when there was an active increase in ankle torque [66]. 

Another study determined that the ankle stiffness increased linearly as the COP location moved 

from the heel of the foot closer to the toes [67]. Furthermore, the muscle activity of the TA and GA 

muscles varied as perturbations were applied and the COP moved forward during standing. 

Similar to the changing ankle impedance caused by standing sway, the ankle impedance also 

varies across the gait cycle [78], [79], [83]. Typically, the gait cycle is divided into two phases: 1) the 

stance phase, which includes the initial contact of the foot with the ground, mid-stance, and 

terminal stance, and 2) the swing phase, which is also divided into initial, mid, and terminal swing 

sub-phases. During straight walk, the ankle impedance typically has lower stiffness and damping 

parameters during the swing phase, but the parameters drastically increase throughout the stance 
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phase [79]. The purpose of this study was to explore the tonic muscle activity and the ankle 

impedance of unimpaired subjects while they stood in poses that resembled the stages within the 

stance phase of the gait cycle. 

This chapter is organized as follows: Section 4.2 describes the experimental setup, 

procedure, and data acquisition techniques. Section 4.3 provides analytical explanations of the 

measured muscle activity, ankle kinematics, and ankle kinetic data. Section 4.4 describes the 

standing ankle impedance estimation technique, which was developed further from previous 

methods. Last, Section 4.5 explains how the results of this work are comparable to walking 

scenarios.  

 Experimental Study  

A total of 15 male subjects were recruited for this study. All subjects had no self-reported 

previous musculoskeletal injuries and gave written consent to participate as approved by the 

Michigan Technological University Institutional Review Board (IRB). Table 4-1 includes the 

physiological data across the subject population; including the age, mass, height, and foot length. 

Table 4-1. Subject physiological data for the standing experiment. 

Age Mass (kg) Height (cm) Foot Length (cm) 

28.0 ± 4.3 79.0 ± 10.7 178.0 ± 7.7 26.5 ± 1.4 

4.2.1 Set-up 

The experimental setup used to determine the standing ankle impedance and measure 

lower extremity muscle activity was the same as the setup described in Chapter 3. A developed 

instrumented walkway consisting of motion capture cameras (8 – Optitrack 17W) and a force plate 

(Kistler 9260AA3) mounted on a vibrating platform were used. During an experiment, the subject 

stood with one foot on top of the force plate, and the vibrating platform applied perturbations to 

the ankle in both the sagittal (DP) and frontal (IE) anatomical planes. The motion capture cameras 

and force plate systems recorded data with sampling rates of 350 Hz.  

Additionally, the experiment measured the muscle activity of five muscle that surround the 

ankle using wireless EMG sensors (Delsys Trigno wireless).  The muscles selected for this study 

included the tibialis anterior (TA), peroneus longus (PL), soleus (SOL), gastrocnemius lateral (GAL), 
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and gastrocnemius medial (GAM). The muscles selected differed slightly from the procedure in 

Chapter 3 to include measurements from both heads of the gastrocnemius. While both the GAL 

and GAM muscles typically work together to plantarflex the ankle, this study aimed to investigate 

the contribution of each muscle head throughout the standing experiments. In addition, it was 

hypothesized that additional muscle data from the EMG activity could improve an EMG-ankle 

impedance model. All EMG data were recorded with a sampling rate of 2000 Hz.  

4.2.2 Procedure  

The experiment consisted of 12 trials, where subjects stood in one out of four poses. As 

shown in Figure 4-1, the four poses analyzed in the study were Flat Foot (FF), Midstance (MS), Post-

Mid-Stance (MS+), and Terminal Stance (TS). These stationary standing poses varied the subject’s 

ankle angle and COP of the foot, as shown by the red dot, and resembled different stages within 

the stance phase of walking. Three trials were performed for each pose, and the trials were 

selected in random order. The duration of each trial lasted 30 seconds, and adequate rest (> 1 min) 

was given in between each trial.  

 

Figure 4-1. Four stationary poses that resembled stages within the stance phase of the gait cycle, 
including 1) Flatfoot (FF), 2) Mid-stance (MS), 3) Post-Mid-Stance (MS+), and 4) Terminal Stance 

(TS). The red dot represents the varying COP. 

To maintain consistency across the trials, the foot location, COP position, and weight 

distribution between feet were observed. The placement of the subject’s right foot was marked on 

the force plate to ensure that the foot was positioned in the same location for every trial. In 

addition, the stance length, defined by the anterior-posterior distance between the left and right 

feet, was determined to be 40% of the subject’s height. For the FF and TS poses, the stance length 

of the subject determined the placement of the left foot with respect to the right foot on the force 

plate. Last, the subjects were provided with real-time feedback of their COP on a monitor. The 

feedback included the target COP location, actual COP location, and the subject’s weight 
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distribution between their left and right feet. The target COP locations for the FF, MS, MS+, and TS 

poses were 30.6%, 40.5%, 53.0%, and 63.6% of the subject’s foot length, respectively.  

During each trial, the vibrating platform applied perturbations to the right foot, and the 

resulting ground reaction torques, ground reaction forces, ankle angles, and EMG activity were 

recorded. The perturbations were in the form of random pulse trains that varied in frequency (5 – 

33 Hz) and axis of rotation (0 – 360°). In addition, the duration and the time in between pulse trains 

varied between 0.9 – 1.1 seconds. The use of random time durations and pauses were intended to 

prevent the subjects from predicting when the next perturbations would occur, which could cause 

overcompensation of their muscles. An example of the measured ankle torque and ankle angle for 

the TS pose in response to the pulse train perturbations in DP and IE directions is shown in Figure 

4-2. This figure cropped the period of time in between pulse trains for visualization purposes.  

 

Figure 4-2. The (a) ankle torque and (b) ankle angle measurements from an example trial in IE 
(blue) and DP (red).  

4.2.3 Data Acquisition  

To estimate the ankle impedance, the ankle torque and ankle angle measurements were 

band-pass filtered between 3-35 Hz using a 5th order Butterworth filter. This filter was selected to 

remove the effects of the low-frequency ankle torque, due to the body sway, and higher-frequency 

measurement noise. For every pulse train, the first 0.8 seconds of data were selected from the 

start of the perturbation for the identification of ankle impedance. Additionally, the numerical 
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derivatives of the motion capture data were determined using the Savitzky-Golay filter, with a 5th 

order polynomial and 0.04-second windows. The ankle impedance estimation method is described 

in the following section.  

In addition, the COP for each pose along the anterior-posterior direction (defined by the x-

axis) was determined from the forces 𝐹𝐹𝐷𝐷𝑌𝑌 acting in the vertical direction (along y – axis) and the 

torques 𝑇𝑇𝐷𝐷𝑍𝑍 generated about the z-axis, which correspond to dorsi-plantarflexion (DP). These forces 

and torques were measured from the force plate, respectively, and are described in Eq. 4.1.  

 𝐶𝐶𝑆𝑆𝐷𝐷𝑥𝑥 = (𝑇𝑇𝐷𝐷𝑍𝑍/𝐹𝐹𝐷𝐷𝑌𝑌 − 𝑟𝑟𝐷𝐷.ℎ𝐴𝐴𝐴𝐴𝐴𝐴) /𝑃𝑃𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 4.1 

where 𝑟𝑟𝐷𝐷,ℎ𝐴𝐴𝐴𝐴𝐴𝐴is the distance from the heel to the center of the force plate and 𝑃𝑃𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴  is the length 

of the subject’s foot. This parameter was provided as feedback to the subject during each trial. The 

visual COP measurements ensured that each subject maintained a constant ankle torque within 

each of the four poses and that the torques remained consistent across repeated trials.   

The EMG data were also divided into windows, corresponding to the beginning of a pulse 

train and the ankle torque and angle measurements. Similar to the previous chapters, each window 

of the EMG signals was bandpass filtered between 65 and 200 Hz using a 500th order FIR filter. 

Next, the EMG signals were z-score normalized within the subject to remove the mean and 

standardize the signal scale. Both time domain and frequency domain analyses were performed to 

understand how the muscle activity changed according to the standing pose.  

 EMG and Ankle Response vs. Standing Pose 

The average COP positions across all subjects for the FF, MS, MS+, and TS standing poses 

were 28.1 ± 1.6%, 40.7 ± 1.2%, 52.7 ± 2.0%, and 64.9 ± 2.9% of the foot length, respectively, and 

were within the target COP positions of 30.6%, 40.5%, 53.0%, and 63.6%, respectively.  

Additionally, the small standard deviations of the COP showed that the trials were repeatable 

across all subjects.    

As the COP position moved forward, the ankle angle and ankle torque in the DP direction 

increased, as shown in Figure 4-3a. Across all subjects, the ankle torque in DP, shown by the blue 

boxplots, monotonically increased with mean ankle torque values of 4.8 ± 3.1 Nm, 19.7 ± 3.3 Nm, 

31.4 ± 6.0 Nm, 47.5 ± 8.9 Nm for the FF, MS, MS+, and TS poses, respectively. Additionally, the DP 
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ankle angle, represented by the orange boxplots, shows the ankle angle for each pose with respect 

to the angle of the ankle during neutral standing. The resulting average angles across the 

population were -11.9 ± 3.4° (FF), 0.54 ± 3.0° (MS), 1.8 ± 3.7° (MS+), and 10.8 ±2.8° (TS).  For the 

MS and MS+ poses, the ankle angles remained relatively constant and close to the neutral angle, 

even though the torques increased. During MS+ pose, the subjects stood in the same position as 

the MS pose, but actively shifted their COP forward toward their toes.  

  

Figure 4-3. The boxplots of the (a) the average ankle angle (orange) and ankle torque (blue) in DP 
across subjects for each standing pose and (b) the normalized RMS of the EMG signals for the TA 

(green), PL (light blue ), SOL (blue), GAL (purple), and GAM (red) muscles across all subjects. 

Furthermore, Figure 4-3b shows the boxplots containing the RMS of the z-score normalized 

EMG signals for the TA, PL, SOL, GAL, and GAM muscles across all subjects. The SOL, GAL, and GAM 

muscles showed increasing trends as the COP was shifted forward for each pose. Additionally, the 

range of the muscle signals across subjects grew substantially as the COP moved toward the TS 

pose. The PL muscle contractions remained relatively constant for the FF and MS poses, and then 

increased as the COP moved forward for the MS+ and TS poses. Interestingly, the TA showed the 

opposite trend, where the highest TA measurements were recorded during the FF pose and 

became very small for the other three poses.  
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To further explore the differences in muscle activity across the poses, the average power 

spectral densities (PSD) of each muscle and subject were determined. All the pulse trains from a 

single subject and a single pose were selected. The Welch’s power spectral density function was 

used to determine the PSD of the normalized EMG signals for each pose. The parameters selected 

for this method included a Hanning window with a size of 1000 samples and no overlap. Once the 

PSD was determined, the magnitude of the curve at 100 Hz was selected for analysis. This 

frequency was selected because of its large and consistent magnitude across all subjects. This 

process was repeated for each subject (15), pose (4), and muscle (5); resulting in a total of 300 

samples from the magnitude at 100 Hz. All trials were multiplied by the average magnitude across 

the population to remain in units of volts. 

Next, Figure 4-4 shows the average and standard deviation of the PSD magnitudes at 100 

Hz, across the population. Similarly, the average amplitudes and standard deviations for each 

muscle followed similar trends to the RMS boxplots in Figure 4-3b. The TA muscle had the highest 

average magnitude for the FF pose. The PL muscle was also active during the FF pose, and reduced 

in activity for the MS pose. However, the PL then increased for the MS+ and TS poses. The average 

PSD for the other three muscles, including the SOL, GAL, and GAM, increased as the COP shifted 

forward.  

A one-way Analysis of Variance (ANOVA) test was performed for each muscle to determine 

if significant differences (p-value < 0.01) existed across the four poses. Significant differences, 

denoted by the asterisk, were determined between the first pose (FF) of the TA muscle and all the 

other the MS, MS+ and TS poses (p-value < 0.001).  Additionally, a significant difference was 

determined across all poses for the SOL muscle (p-value < 0.0001). Last, the PL, GAL, and GAM 

muscles showed some significant differences across the four poses.  
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Figure 4-4. Average PSD at 100 Hz across all subjects for the four poses: FF, MS, MS+, and TS. 

Significant different in EMG activity across poses (p < 0.01) are denoted by *. 

 The EMG muscle activity presented in Figure 4-3 and Figure 4-4 resembled patterns similar 

to the muscle activation patterns across the gait cycle  [143], [144]. During the early stance phase 

of the gait cycle, which corresponds to the FF pose, the TA muscle reported to have the highest 

amount of activity, followed by a continuous decrease in activity throughout the rest of the stance 

phase. Additionally, during the swing phase and early stance, the plantar flexor muscles (PL, SOL, 

GAL, and GAM) have very little activity, which is similar to the results presented in this chapter for 

the stationary poses. During the mid-stance and terminal phases of walking, which correspond to 

the MS, MS+, and TS poses, the activity of the plantar flexor muscles increased until the foot pushed 

off from the ground.  
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 Standing Ankle Impedance Estimation 

To estimate the standing ankle impedance, the system identification technique was 

performed in two stages. First, the inertia of the force plate was determined using a dynamic model 

of the system. A test was performed with only the force plate module, where stochastic 

perturbations were applied to the force plate, and the resulting force plate angles, forces, and 

torques were recorded. The measured torques were used to fit a nonlinear model and to estimate 

the inertia of the vibrating force plate system.  

Next, the resulting compensated external torques were used with the linear model of the 

ankle, where the predictors of this equation were ankle angle, ankle velocity, ankle acceleration, 

and the kinematics of the foot. The corresponding ankle impedance parameters, including the 

ankle stiffness and damping in DP and IE, were solved using least squares optimization method. A 

single impedance parameter was determined for each pose for the DP and IE directions.  

Additionally, for this study only the pulse trains aligned with DP or IE directions were selected to 

be used in the impedance estimation. Future work will look to quantify the anisotropic ankle 

impedance about all perturbation axes (0 - 360°).   

Figure 4-5 shows the resulting average ankle stiffness, damping, inertia, and % VAF across 

all subjects for four standing poses. The stiffness in DP increased linearly as the COP shifted 

forward. Additionally, the standard deviation for both the DP and IE stiffness were relatively small 

across subjects. The other parameters, including stiffness in IE, and damping in DP and IE did not 

show an increasing trend with COP position. This is likely because the majority of the torque and 

angle changes were in the DP direction. Some of the damping and inertia parameters resulted in 

negative values, suggesting the presence of more complex ankle dynamics, including both the 

intrinsic (passive) and reflexive (active) components of the impedance. 
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Figure 4-5. Average (± standard deviation) ankle a) stiffness, b) damping and c) inertia across four 
standing poses. The results in d) show the average VAF across all the 15 subjects. 

Last, the VAF of the impedance estimation was high across the four poses, with average 

values for DP and IE of 86.6 ± 8.9%, 92.8 ± 4.0%, 93.9 ± 3.3%, and 90.4 ± 6.8% for the FF, MS, MS+, 

and TS poses, respectively. The VAF was slightly lower for the first pose (FF) for both the DP and IE 

estimates. The decrease in prediction accuracy could be because this pose was more difficult for 

the subject to maintain a constant COP. The less stable pose might have added variance to the 

ankle impedance estimation.  

 Discussion 

The purpose of this study was to understand how the ankle impedance and muscle activity 

change during different standing poses, with varied ankle angles and angle torques. The stationary 

standing poses were selected to resemble the ankle angle during the stance phase of the gait cycle; 

including the early stance phase, where the foot comes in contact with the ground (FF), mid stance 

(MS), post mid stance (MS+), and terminal stance (TS) – just before the foot pushes off from the 

ground. The study determined that the ankle torque and ankle stiffness increased monotonically 

as the COP was shifted from the FF pose to the TS pose. In addition, the muscle activity of the TA, 
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PL, SOL, GAL, and GAM muscle significantly changed throughout difference poses. Interestingly, 

the muscle activity in each pose closely resembled the activation pattern during the stance phase 

of the gait cycle.  

In this study, the COP moved along the anterior-posterior direction, in parallel to the sagittal 

plane. The resulting ankle torque and ankle impedance showed strong correlations in this direction. 

However, the resulting ankle impedance in IE remained relatively constant throughout the 

experiment. During the development of the experimental procedure, shifting the COP of the foot 

along the frontal plane during standing was found to be a difficult task for the subjects. It would 

not have been easily repeatable throughout the trials, so this study focused only on varying the 

COP in the anterior-posterior direction. Future work will look for more consistent and reproducible 

protocols to move the COP in the lateral directions and to understand how the ankle and lower 

extremity muscles behave.  

Additionally, a model of the ankle impedance and EMG activity was not determined during 

this study. Future work will analyze the ankle impedance and EMG for the pulse train perturbations 

that perturbed a combination of the DP and IE ankle directions.   
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5 Conclusion & Future Work 

 Overview 

The presented work investigates the relationship between the lower extremity muscle 

activities to the mechanical impedance of the ankle. This relationship was studied about multiple 

degrees-of-freedom of the ankle in the sagittal, frontal, and transverse anatomical planes. 

Numerous regression modeling techniques relating the lower extremity muscle activity to multi-

directional ankle impedance were studied. The resulting models may have the potential to improve 

a user’s control of a robotic device, including powered ankle-foot prostheses, exoskeletons, 

orthoses, and other medical devices.  

Four experiments were performed with able-bodied subjects to characterize the ankle 

impedance during activities with both non-loaded and loaded ankle. Additionally, these studies 

explored how the ankle impedance changes as a function of the co-contraction of agonistic and 

antagonistic muscles and as a function of tonic contractions during stationary standing poses.  

Using regression and machine learning techniques, subject-dependent models, aggregate 

models, and subject-independent models were generated. The subject-dependent models 

resulted in the highest overall performance, followed by the aggregated model. These models 

could accurately predict ankle impedance when presented with the muscle activation 

measurements. These models were tested with information from the same subjects that were used 

to train. This work explored the capabilities of a subject-independent model. The results of the 

current study suggest the mechanical impedance of the ankle can be predicted using the 

corresponding lower extremity muscle activity.  

 Challenges  

There were several challenges throughout the experiments. First, the methods for 

processing the EMG measurements assumed that the experiments were performed while the 

muscles did not fatigue throughout the trials. For all experiments, the subjects were required to 

rest in between trials to minimize the onset of fatigue; however, it is likely that some effects of 

fatigue occur. In addition, the effects caused by changes in the EMG signal over time were not 
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explored. All experiments were performed within the same day. It is unknown how the effects of 

EMG measurements from different testing days would affect the model prediction performance.  

Additionally, in an effort to determine a subject-independent model a diverse population is 

likely needed. Using experimental data from both male and female subjects, with a range of ages, 

athletic abilities, and body sizes could improve generalizability. The subject populations recruited 

for the studies presented in this paper were limited to mostly male subjects with ages between 20-

35 years.  

 Future Work  

The models created throughout this study explained the relationship between muscle co-

contraction and activation during stationary conditions. The goal of future work is to expand upon 

these results to create models for dynamic movements and maneuvers that result in the time-

varying impedance of the ankle. Additionally, exploring ways to estimate ankle impedance using 

real-time EMG information would be useful for implementation in prostheses controllers.  

Furthermore, all subjects within this experiment were able-bodied, with no previous 

musculoskeletal injuries. However, it is unknown how the residual muscles of an amputee would 

perform using a regression model similar to the ones developed in this work. Future work can look 

to expand these ideas for such applications.  
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	The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about m...

	1 Introduction
	1.1 Motivation
	The role of the human ankle is imperative to performing tasks such as balance, gait, and other activities of daily living (ADLs) [1].  With the help of the muscles synergy of the lower leg, the ankle is capable of absorbing shock as the foot comes in ...
	Unfortunately, many individuals are afflicted by a disability, such as lower-leg amputation, stroke, musculoskeletal diseases, or other neurological injuries, that has prevented normal ankle function. It is estimated that 2 million people in the Unite...
	Consequently, lower-limb amputation has an immense impact on the quality of life, both physically and emotionally, because the individual has lost some degree of mobility to be able to perform ADLs.  The use of conventional passive prostheses provides...
	Recent advancements in active lower extremity prostheses and assistive devices have demonstrated the ability to generate mechanical power during the push-off phase of gait, which is comparable to the power generated by the healthy ankle. Several state...
	However, the ankle range of motion (ROM) is not limited to rotations only in the sagittal plane. The ankle modulates about multiple degrees of freedom during ADLs [27]–[29]. Active transtibial prostheses that are capable of generating motion in the fr...
	While the mechanical design and development of active ankle-foot prostheses can provide substantial benefits to an amputee during ADLs, there are still many obstacles regarding how to control the device to include the biomimetic properties of a health...
	This chapter includes the following: Section 1.2 describes the anatomy and function of the ankle, including the ankle axes of rotation and the surrounding muscles. Next, Section 1.3, Section 1.4, and Section 1.5 provide a description of previous work ...

	1.2 Human Ankle Behavior
	The dynamic capabilities of the human ankle and the corresponding neural control and muscle activity have been widely studied within the fields of engineering and kinesiology. Understanding the kinematic, kinetic, and musculoskeletal information of th...
	The ankle joint complex is comprised of the talocrural, subtalar, and talocalcaneonavicular joints that are interconnected by a variety of tendons and ligaments and are actuated by surrounding muscles [1]. The geometry and orientation of each joint cr...
	Figure 1-1. Foot and ankle rotation schematic in the sagittal, frontal, and transverse planes. (a) Ankle rotation in dorsi-plantarflexion (DP), (b) Ankle rotation in inversion-eversion (IE), and (c) Ankle rotation in the medial-lateral (ML) directions...
	The lower-leg muscles are used to control ankle motion in DP, IE, and ML directions [1].  Five of the 13 muscles in the lower leg are referenced throughout this paper due to their contribution to ankle motion and superficial location. These muscles in...

	1.3 Non-loaded Ankle Impedance
	Early work by Hunter and Kearney [38], [39] and Weiss et al. [40]–[42] quantified the passive and active ankle impedance in the DP direction using a stochastic system identification approach. To estimate the impedance parameters, they applied perturba...
	As a continuation of these studies, it was determined that the total impedance is equal to the summation of the intrinsic response of the muscles and tendons and the reflexive response of the neuromuscular system, as measured by Sinkjaer [43] and Kear...
	Furthermore, the multi-variable ankle impedance was determined with passive and active muscle activity in DP, IE, and ML while the ankle was not loaded [47]–[54]. Anklebot, a wearable robotic device designed for stroke rehabilitation, was repurposed t...
	Using the Anklebot, the ankle impedance in DP and IE were determined simultaneously by applying perturbations in both the sagittal and frontals planes. The Anklebot actuators were placed parallel the shin of the subject and were actuated in phase or o...
	To study the ankle impedance in ML, Anklebot was perpendicular to the shin so that it generated motion in the frontal plane [51], [52]. Similar to the DP/IE experiments, the subjects were in a seated position with their foot suspended above the ground...

	1.4 Standing Ankle Impedance
	Next, the mechanical impedance of the ankle during quiet standing has been investigated in DP and IE directions. These works contribute to understanding the ankle mechanisms used to maintain an upright balance.  Early work focused on determining the c...
	Furthermore, the intrinsic ankle impedance was also studied as a function of the body’s natural sway using the center of pressure (COP) in the DP direction. Sakanaka et al. asked subjects to consciously shift their COP forwards or backward by modulati...
	The influence of ankle stiffness and impedance in the IE direction has been studied, mainly to understand how a person maintains a stable balance during standing. The study of this DOF is essential because it has the most number of reported ankle inju...
	To estimate impedance in both DP and IE, Ficanha et al. developed a 2-DOF instrumented platform [72]–[75]. This platform consisted of two linear actuators connected to a force plate module via Bowden cables and surrounded by a motion capture camera sy...

	1.5 Time-Varying Ankle Impedance during Gait
	Last, the study of the ankle mechanical impedance was analyzed during walking scenarios. The gait cycle is divided into the stance phase, which includes heel-strike, mid-stance, terminal-stance, and toe-off, and the swing phase, which includes initial...

	1.6 Electromyography and Joint Dynamics
	In addition to studying the mechanical impedance of the ankle, it is also essential to understand how the lower extremity muscle signals reflect the mechanisms surrounding the ankle.  Electromyography has been studied for more than a century. Much of ...
	It is common to describe a muscle as a collection of motor units (MU), which are composed of motor neurons connected to the spinal cord and the corresponding muscle fibers. The MUs are considered the smallest functional unit within a muscle that allow...
	The relationship between the muscle activation amplitude and the corresponding muscle force and joint torques has been widely studied. Both invasive and non-invasive techniques are used to understand how muscle force relates to musculoskeletal loading...
	Less commonly, understanding the neuromuscular activity as a function of joint impedance has been studied. This idea differs from the relationship between EMG and joint torque because, unlike from the torque modulation, the impedance can be modulated ...
	The relationship between EMG and ankle impedance provides a new perspective in understanding the function of the human neuromuscular system. However, the relationship between EMG and ankle impedance has only been quantified in the DP direction during ...

	1.7 User Intent Recognition
	To further enhance the control of active prostheses, the prostheses must generate the necessary power at the correct time and be able to adapt to the user’s motion intentions. Classification, pattern recognition, regression, and other machine learning...
	Activity mode recognition uses techniques such as classification and pattern recognition to detect a specific, discrete event in time. These techniques have been widely used to classify joint motion and in prostheses control, especially for powered up...
	Furthermore, pattern recognition and classification techniques have also been used for the control of lower extremity prostheses, specifically during locomotion. Huang et al. used EMG and pattern recognition to identify seven different locomotion mode...
	Volitional and proportional control techniques of prosthetic devices using surface EMG have been studied since the 1960s [112]. In some cases, these methods of control have shown to perform better than pattern recognition counterparts [125]. Wang et a...
	Some volitional control techniques have utilized complex musculoskeletal dynamic models to relate the muscle signal information to the desired prosthesis motion [129]. These models often make many assumptions about the muscle’s dynamic properties.  To...
	This chapter reviews the current methods used to quantify the multivariable mechanical impedance of the healthy human ankle in the sagittal, frontal, and transverse planes and how it is related to muscle function. The use of surface EMG has potential ...


	2 Relationship between Muscle Co-Contraction and Unloaded Ankle Impedance in three Degrees-of-Freedom
	2.1 Motivation
	This chapter describes the non-loaded ankle impedance in DP, IE, and ML directions as a function of increasing levels of muscle co-contraction. Previous work used the wearable rehabilitation robot called Anklebot to characterize the mechanical impedan...
	This chapter examines the influence of using artificial neural networks (ANN) to account for both linear and nonlinear models of ankle dynamics. There are four sections: Section 2.2 provides an overview of the Anklebot, used for experiments in DP, IE,...

	2.2 Anklebot Description
	An in-depth description of the Anklebot mechanical design specifications is described in Roy et al [133]. As shown in Figure 2-1, the orientation of Anklebot was placed either parallel to the subject’s shin (DP/IE) or perpendicular to the shin (ML). A...
	Figure 2-1 Experimental setup, including Anklebot and EMG sensor placement, to estimate ankle impedance in a) DP/IE and b) ML directions.
	The maximum torques capable of being generated in DP, IE, and ML were 23 Nm, 15 Nm, and 15 Nm, respectively. The root-mean-squared (RMS) of the angles during the experiment were 2.48 , 2.70 , and 3.72  for DP, IE, and ML, respectively. In addition, th...
	To prevent the displacement of the actuators from drifting, an active impedance control was used with an active stiffness gain of 10 Nm/rad and 12.8 Nm/rad for the DP/IE and ML tests, respectively, and zero damping for all tests. At the beginning of a...

	2.3 DP/IE Experiment
	All subjects had no previously reported musculoskeletal injury to the ankle and gave written consent of participation through the Michigan Technological University Institutional Review Board. The following biometric information for all subjects is pre...
	Table 2-1. Subject biometric information for DP/IE Anklebot experiments
	2.3.1 Procedure
	First, EMG sensors (Delsys Trigno Wireless System) were placed on the TA, PL, SOL, and GAL muscles to measure muscle activity and provide visual feedback of the subject’s EMG signal from the TA muscle during the test, as shown in Figure 2-1a.  Before ...
	The experimental procedure for ankle impedance estimation was similar to the methods used in [50]. Anklebot applied pseudo-random torque perturbations to the ankle for 70 seconds with a frequency bandwidth up to 100 Hz. As the perturbations were appli...

	2.3.2 System Identification of DP/IE Ankle Impedance
	The previously proposed method of stochastic system identification was used to estimate the ankle impedance in [49], [50], [53]. First, the mechanical admittance of the ankle (defined as 𝑌) is described as the ratio between the measured output rotati...
	Assuming that the perturbations generated a small ankle angle and the system was linear and time-invariant (LTI), the mechanical impedance is calculated as the inverse of the mechanical admittance:
	where 𝑍 denotes the ankle impedance. Because the Anklebot excited the ankle in the DP and IE DOF simultaneously, a matrix is defined to relate the input ankles and output torques in DP, IE, and any coupling between the two DOF. The following matrix i...
	where the torque and ankle measurements in DP and IE are ,Τ-𝐷𝑃., ,Τ-𝐼𝐸., ,Θ-𝐷𝑃., and ,Θ-𝐼𝐸., in the frequency domain, respectively. When solving for 𝑍, the influence of the Anklebot impedance controller must be removed from the estimate. Beca...
	where the controller stiffness 𝑘 is defined as a diagonal gain matrix of the Anklebot controller, where 𝑖={𝐷𝑃, 𝐼𝐸}. The resulting impedance can be substituted Eq. 2.3 to solve for  ,𝑍-𝐷𝑃. and, 𝑍-𝐼𝐸..
	Next, the foot and shoe shared the same motion during perturbations. As a result, the torques used in Eq. 2.3 and Eq. 2.4 are equal to the torque of the human ankle impedance plus the torque due to the dynamics of the Anklebot and the acceleration of ...
	For this analysis, the impedance ,𝑍-𝑎𝑛𝑘𝑙𝑒. was described as the magnitude and phase across a desired frequency range. These results were later used as the target data to generate an ANN model.
	Last, the impedance was estimated using the tfestimate function in MATLAB. This method implemented the Welch’s averaged, modified periodogram algorithm to calculate the auto-power and cross-power spectral densities between the ankle angle and ankle to...

	2.3.3 Ankle Impedance in DP and IE
	For each subject, the ankle impedance was estimated in DP and IE directions across 15 trials. Figure 2-2 shows the DP and IE Bode plots for the ankle mechanical impedance of a representative subject at the muscle co-contraction levels of relaxed, 10% ...
	For all of the trials, the resulting magnitude in DP was greater than in IE at all frequencies for their respective muscle activation levels. This is consistent with previous work where the stiffness in the DP direction was greater than the stiffness ...
	Table 2-2. Average DP and IE impedance magnitudes ± standard deviation with relaxed muscles, 10% MVC, and 20% MVC. Total mean and standard deviation across nine subjects are included.
	Figure 2-2 Average (solid line) ± standard deviation (shaded) of the ankle impedance magnitude [dB] and phase [ ] for a representative subject (#5).  The blue, red, and green lines correspond to relaxed, 10% MVC, and 20% MVC trials, respectively. (a) ...
	The partial coherences for each muscle activation level were determined to validate that the selected system identification method can estimate the impedance between the selected frequency bandwidth of 0.7 to 8 Hz. Figure 2-3 shows the partial coheren...
	Table 2-3. Average (± standard deviation) partial coherence across the total population for each muscle activation level in the DP and IE between 0.7 – 8 Hz.
	Figure 2-3. Partial coherence for the Anklebot + ankle +shoe system for a representative subject (#5) at relaxed, 10% MVC, and 20% MVC. The diagonal elements correspond to the DP (a) and IE (d) directions, respectively. The shaded region shows the sta...

	2.3.4 EMG Analysis
	The EMG signals were recorded while the subject’s lower-leg muscles were relaxed, or co-contracted to 10% MVC and 20% MVC. The RMS of the resulting EMG signals were calculated across each 60-second trial. In addition, all muscle signals were normalize...
	where 𝜎 is the standard deviation across the subjects and 𝑁 is the total number of subjects.
	Figure 2-4. Average (± standard error) normalized RMS across nine subjects for the TA, PL, SOL, and GAL muscles.

	2.3.5 Artificial Neural Network Design
	A feedforward ANN was selected for regression, and used the EMG signals of four muscles to predict the ankle impedance in the DP and IE. The model design consists of five input neurons, a single hidden layer with 50 neurons, and an output layer of neu...
	The input matrix in Eq. 2.7 contains ,𝑥-𝑖. neurons, where 𝑖=1:5; including the four RMS EMG signals across 15 trials and the select frequency range, 𝑓 across all subjects. The input neurons are connected to all neurons in the hidden layer by a ser...
	Figure 2-5. The feedforward ANN design, composed of five inputs, 50 hidden layer neurons, and two outputs.
	2.3.5.1 Input matrix design
	The input matrix contains the normalized RMS of the EMG signals across 15 trials. Additionally, the desired frequency range of 0.7 – 8 Hz the impedance magnitude and phase were used as input. This frequency vector contained a total of 38 frequencies p...
	Where 𝑚=1, …, 15, corresponding to 15 trials per subject. All the trials were concatenated into a single overall input matrix, resulting in a matrix with size 5x570 to be used for both the DP and IE models, as described in Eq. 2.9.
	2.3.5.2 Target matrix design
	The target matrix is used during ANN supervised learning and consists of the desired ankle impedance values that were determined experimentally in Section 2.3.3. Similar to the input matrix, the target matrix for a single trial took the form:
	where 𝑀,𝑔-𝑚. and 𝑃,ℎ-𝑚. are the impedance magnitude and phase within the select frequency range for 15 trials. Each submatrix was concatenated to create the overall target matrix 𝑌 used to train the ANN models. A single matrix of size 2 x 570 wa...
	2.3.5.3 ANN Supervised Learning
	The input and target matrices were used during a process called supervised learning to train and validate each ANN model. This process ensures the proper weights and biases were selected so that the model does not overfit to the training data.  First,...

	2.3.6 ANN Performance
	After training, it was necessary to verify that the supervised learning process was able to successfully generate a model that explains the relationship between the inputs and outputs. Two techniques were used to assess the training, validation, and t...
	The second technique determined the correlation coefficient 𝑅 between the target and output impedance for the training, validation, and testing datasets. The correlation coefficient is a measure of the linear dependence between the target and predict...
	Table 2-4. Training, Validation, and Testing correlation coefficients (𝑅) for each ANN models during supervised learning. The overall average ± standard deviation across subjects is included.

	2.3.7 ANN Impedance Prediction Accuracy
	Figure 2-6 describes the average impedance predicted by the DP and IE ANN models for the representative subject, indicated by the dashed line. The target impedance used to train the models is also included in the figure for visual comparison, and is s...
	In addition, the boxplots in Figure 2-7 show the range of errors between the target and predicted impedance magnitude for all subjects. The average errors for the magnitude and phase across all subjects were 2.6 ± 0.5 Nm/rad and 4.3 ± 1.4  for the DP ...
	Figure 2-6. Average target (solid) and predicted (dashed) impedance for a representative subject (#5) with relaxed muscles (blue), and co-contraction at 10% MVC (red) and 20% MVC (green). The average magnitudes are presented in (a) and (b), and the av...
	Figure 2-7. The error between the predicted and target impedance magnitude for each subject. The results for DP are shown in (a) and IE in (b). As reference, the average impedance was 53.4 Nm/rad and 19.1 Nm/rad for DP and IE, respectively.


	2.4 ML Experiment
	In addition to the study of ankle impedance and muscle activity in DP and IE, these methods were expanded to the transverse plane to examine the ML direction. The following section describes the experimental procedure, ankle impedance characterization...
	For the ML experiments, a new subject database was recruited. The subjects had no previously reported musculoskeletal injuries and gave written consent to participation as approved by the Michigan Technological University Institutional Review Board. T...
	Table 2-5. Subject biometric information for ML Anklebot experiments
	2.4.1 Procedure
	First, four EMG sensors were placed on the TA, PL, SOL, and GA muscles and the TA muscle signal was used as visual feedback to the subject during each trial. The MVC was determined while the subject co-contracted their lower-leg muscles, and the maxim...

	2.4.2 System Identification of ML Ankle Impedance
	Based on Eq. 2.1 and Eq. 2.2, the impedance in ML, ,𝑍-𝑀𝐿. is determined using the measured ankle torques and angles in the transverse plane. Assuming an LTI system, this relationship can be described as
	where ,Τ-𝑀𝐿. and ,Θ-𝑀𝐿. are the respective ankle torques and angles across the frequency range, 𝑓.
	The same system identification procedure from the DP/IE experiment was used, except the transfer function matrix only contained a single-DOF. The tfestimate function implemented Welch’s averaged-modified periodogram algorithm. The parameters selected ...
	The active stiffness from the Anklebot controller was subtracted from the impedance as in Eq. 2.13, where the stiffness 𝑘=12.8 Nm/rad.
	Additionally, when the actuators were applying perturbations, the shoe and the ankle shared the same motion. The resulting impedance of the Anklebot and ankle were in parallel, and the impedance of the Anklebot and shoe could be subtracted from the to...

	2.4.3 Ankle Impedance in ML
	The upper frequency range selected to train the ANN models was determined to be 4.1 Hz for all subjects, which is less than the average break frequency of the ankle in the ML direction [51]. In addition, the low-frequency components (< 0.5 Hz) were al...
	The impedance results for a representative subject can be found in Figure 2-8.  The mean and standard deviation (shaded regions) of the magnitude and phase at each frequency were determined across five trials. Coinciding with the results in DP and IE,...
	The resulting ankle impedance in ML was comparable to the results presented in previous work, where the ML ankle impedance was determined for relaxed muscles [52]. These results found an average impedance magnitude to be 6.0 ± 0.9 Nm/rad (< 4.4 Hz) fo...
	Table 2-6. Average magnitude ± standard deviation for the relaxed, 10% MVC and 20% MVC
	Co-contraction levels across all subjects
	Figure 2-8. Average ankle impedance magnitude [dB] and phase [ ] in the ML direction for a representative subject (#8). The muscle activation levels are denoted by the blue (relaxed), red (10% MVC), and green (20% MVC) curves. The shaded regions show ...
	Furthermore, the coherences were determined for all trials using the mscohere function in MATLAB. Table 2-7 shows that the average coherence of the whole system (Anklebot + shoe + ankle) across the total population was always greater than 0.88 for all...
	Table 2-7. Average and  standard deviation coherence across the 10 subjects for each muscle activation level in the ML direction between 0.7 – 4.1 Hz.

	2.4.4 EMG Analysis
	The RMS of the EMG for four muscles was determined across each 60 second trial. Each set of three trials (relaxed, 10% MVC, and 20% MVC) were normalized by the passive trial of that set. Figure 2-9 shows the average of the normalized RMS EMG signals a...
	Figure 2-9. Average (± standard error) normalized RMS across all trials for the TA, PL, SOL, and GA muscles for ML experiment.

	2.4.5 ANN Design
	An in-depth description of the ANN model parameters and training and validation techniques used for this experiment can be found in Section 2.3.5. As depicted in Figure 2-5, the ANN models had five input neurons, containing the normalized EMG RMS for ...
	2.4.5.1 Input matrix design
	The input matrix contains the RMS of the EMG signals that were normalized by the passive trials and a vector of the desired frequency range between 0.7 – 4.1 Hz. The size of the vector for each trial was 18 samples. Equation 2.16 explains the input ma...
	where 𝑚=1, …, 15,  for the 15 trials. All the trials were concatenated into a single overall input matrix of size 5 x 270 and was used for the ML model training, as described in Eq. 2.16.
	2.4.5.2 Target matrix design
	The target matrix was composed of the desired ankle impedance values for each frequency. The target matrix for a single trial took the form:
	Where 𝑅,𝑒-𝑚. and ,𝐼𝑚-𝑚. are the real and imaginary components of the impedance in the complex form and 𝑚={1, 2, …, 15}. Unlike the DP and IE models where the magnitude and phase of the ankle impedance were used to populate the target matrix, th...

	2.4.6 ANN Performance
	To determine if the ANN models were adequately trained it was necessary to determine that the mse for the training, validation, and testing datasets decreased during model training and that the regression performance between the target and predicted i...
	Table 2-8 contains the correlation coefficient 𝑅 values for each of the three steps during model cross-validation. For 10 subjects, the correlation coefficients were always greater than 0.980 for the training, validation, and testing datasets. The hi...
	Table 2-8.  The correlation coefficient (𝑅) for the Training, Validation, and Testing datasets during supervised learning for all subject models. The overall average ± standard deviation across all subjects is provided.

	2.4.7 ANN Impedance Prediction Accuracy
	Figure 2-10 displays the average impedance magnitude and phase predicted from the ANN model (dashed) and the corresponding target (solid) impedance for a representative subject. The average relative errors between the target and predicted impedance ma...
	The range of errors between the target and ANN predicted impedance across the ten subjects are presented with boxplots in Figure 2-11. The average error for the magnitude and phase across all subjects were 0.47 ± 0.1 Nm/rad and 4.7 ± 2.5 , respectivel...
	Figure 2-10. Average target (solid) and predicted (dashed) impedance from the ANN model for a representative subject (#8) with relaxed muscles (blue), and co-activation at 10% MVC (red) and 20% MVC (green).
	Figure 2-11. The range of error between the predicted and target impedance magnitude
	across all trials for ten subjects. As reference, the average impedance was 13.4 Nm/rad for ML.


	2.5 Discussion
	The goal of this study was to model the relationship between the non-loaded ankle impedance in the DP, IE, and ML directions with lower extremity muscle co-contraction using ANN. The DP/IE and ML experiments were performed during two separate studies....
	Comparing the ankle impedance results for the DP, IE, and ML directions, the DP direction had the highest overall magnitude, with an overall average value of 53.4 ± 25.7 Nm/rad, followed by the IE direction, which had an average of 19.1 ± 6.5 Nm/rad, ...
	In addition, the individual models for each subject could accurately predict the ankle impedance, when presented with EMG information. The average relative errors across the subjects for the DP, IE, and ML directions were 7.9 ± 16.8%, 7.5 ± 8.1%, and ...
	One limitation of this study is that a separate ANN model is required to predict a subject’s ankle impedance in DP, IE, and ML. Not only does this require valuable time to train three separate models, but the models can only predict the impedance of t...
	Using EMG to estimate a user’s motion intention has shown to be promising in recent years. To the author's knowledge, a model relating the ankle impedance in 3-DOF to lower extremity co-contraction levels has not been determined. The results of this s...
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	3 Relationship between Muscle Co-Contraction and 2-DOF Standing Ankle Impedance
	3.1 Motivation
	The work presented in this chapter expands upon the techniques used in Chapter 2 to investigate the EMG-ankle impedance relationship during standing. Previous work determined that the ankle impedance varies during quiet standing while a person maintai...
	Additionally, the lower extremity muscle activities play a key role in the control of ankle impedance modulation during standing [63]. One group suggested that the agonistic and antagonistic muscles of the lower extremity use a ballistic-like position...
	Furthermore, the experiments from Ch. 2 developed user-specific models that were dependent on the inherent properties of each subject. Only a few groups have looked into the feasibility of developing a generalized, or subject-independent, model that c...
	This chapter is organized as follows: Section 3.2 and Section 3.3 describe the experimental procedure and results to determine the standing ankle impedance in DP and IE at varying levels of muscle co-contraction. Section 3.4 explores the correlation b...

	3.2 Experimental Study
	3.2.1 Setup
	A total of 15 male subjects were recruited for the standing experiments with muscle co-contraction. All subjects had no history of musculoskeletal injuries or disorders, and gave written consent to participate in the study approved by the Michigan Tec...
	Table 3-1. Subject biometric information for standing co-contraction experiment
	The experiment employed an instrumented platform designed to estimate the ankle impedance in the sagittal and frontal planes while standing or walking. The platform consisted of a vibrating force plate (Kistler 9260AA3) module and a motion capture cam...
	Additionally, four wireless EMG sensors (Delsys Trigno Wireless System) were placed on the subject’s TA, PL, SOL, and GAL muscles to measure muscle activities (Figure 3-1). Proper procedures were implemented to clean the surface of the skin before pla...
	Figure 3-1. Experimental setup while subjects stood (a) with their heading oriented w.r.t the x-axis and (b) with their heading aligned with the z-axis. The setup included a vibrating platform, force plate, motion capture camera system, and four EMG s...

	3.2.2 Procedure
	At the beginning of each experiment, the MVC of the muscles were determined while the subjects were in a normal standing position. The subjects co-contracted their muscles to the maximum level in approximately 1-second bursts. They repeated the bursts...
	During a trial, the vibrating platform applied pseudorandom perturbations with a bandwidth up to 33 Hz to the right ankle in both DP and IE directions, simultaneously, for 70 seconds. While the ankle was being perturbed the subjects performed one of f...
	The five contraction levels (relaxed, 10%, 20%, 30%, and 40% MVC) were performed once while the foot was oriented parallel to the x-axis coordinate frame (Figure 3-1a) and once while the foot was rotated to be parallel to the z-axis (Figure 3-1b): for...

	3.2.3 Data Acquisition
	The kinematic and kinetic data were collected with a sampling rate of 350 Hz, and were bandpass filtered at 1-40 Hz, using a 501st order finite impulse response filter. An example of the external torques and the ankle angle measurements in both DP and...
	All EMG data were recorded with a sampling rate of 2000 Hz and were synchronized to the kinematic and kinetic data. An example of a raw TA EMG measurement from a representative subject is presented in Figure 3-3. This figure shows how the amplitude an...
	Figure 3-2. External torque (blue) applied to the foot by the force plate module and the resulting ankle angle (red) from a sample trial. The upper plot a) shows the measurements in DP and b) shows the measurements in the IE direction, respectively.
	Figure 3-3. TA EMG signal of representative subject for 0% - 40% MVC co-contraction levels (a – e).  The solid black line on each figure shows the moving 20 ms RMS window, which represents the signal that was visible to the subject during each trial.
	The EMG signals were bandpass filtered between 65 – 150 Hz using a 2000th order, finite impulse response filter. This filter bandwidth was selected because the most dominant and energy-rich region of the signal is between 50-150 Hz [138]. Additionally...
	Next, the first and last five seconds of each trial were cropped to remove any transient data. The collected data, including the kinematic, kinetic, and EMG data, were then separated into 5-second windows with 4.9 seconds overlap. The corresponding an...
	where ,𝑥-𝑖. is the subject data for each muscle 𝑖={𝑇𝐴, 𝑃𝐿, 𝑆𝑂𝐿, 𝐺𝐴𝐿}, and ,𝜇-,𝑥-𝑖.. and ,𝜎-,𝑥-𝑖..are the mean and standard deviation across five trials for each particular muscle, respectively. Normalization of EMG signals is necess...
	Figure 3-4. The z-score normalized RMS EMG of the TA, PL, SOL, and GAL muscles across five muscle contraction levels for a representative subject #5.


	3.3 Standing Ankle impedance
	The first method for calculating the standing ankle impedance used an ordinary least squares optimization to solve for each impedance parameter. This model assumed the shank and the foot are connected via a revolute joint with a spring and damper. In ...
	The variables ,𝜃-𝐴.(𝑡), ,,𝜃.-𝐴.(𝑡), ,,𝜃.-𝐹.(𝑡), and ,,𝜃.-𝑃.(𝑡) correspond to the ankle angle, ankle angular velocity, foot angular acceleration, and the force plate angular acceleration. The derivatives of the angle measurements were calcu...
	This method for estimating the ankle impedance eliminated the need to solve for the dynamics above the ankle, including the effects of the shank and upper body.
	The results from the least-square optimization of the ankle impedance parameter estimations are described in Figure 3-5. The results show the average (± standard deviation) of the a) stiffness, b) damping, c) foot inertia, and d) % NMSE across 12 sub...
	Figure 3-5. Average (± standard deviation) ankle a) stiffness, b) damping, and c) inertia across five muscle co-contraction levels. The results in d) show the average NMSE across all the 12 subjects.

	3.4 Correlation between Standing Ankle Impedance and EMG signals
	3.4.1 Linear Correlation
	A linear model was developed to relate the EMG signals with the ankle stiffness and damping parameters. First, the median of the ankle impedance parameters ,𝑍-𝑖. and normalized RMS of the muscle signals 𝐸𝑀,𝐺-𝑗. were calculated for each trial, wh...
	This was repeated to fit 16 equations for every subject. The significance of the slope coefficient ,𝛽-1. was determined for every fit equation using Analysis of Variance (ANOVA) for linear models. A linear correlation was determined with p-values les...
	Figure 3-6 shows an example of the fit equation for two representative subjects that explored the correlation between the DP stiffness and the SOL muscle. The small filled and unfilled circles represent the inlier data, within 10 and 90 percentiles, a...
	Figure 3-6. Example of linear fit between the ankle stiffness in DP and the normalized RMS of the SOL muscle for two subjects (#3 and #4). The colored circles denote the median for the 0% (blue), 10% (red), 20% (yellow), 30% (purple), and 40% (green) ...
	Figure 3-6a is an example of a fitted equation that did not display a linear correlation. The resulting p-value was equal to 0.4152, showing no significant linear correlation between the SOL and stiffness in DP. While there is no linear correlation, t...
	Similar trends resembling the results in both Figure 3-6a and Figure 3-6b were determined across all subjects. Interestingly, most subjects showed linear correlation for some combinations of parameters but not for other combinations. Other subjects di...
	Table 3-2. Percentage of subjects with a significant correlation (p < 0.05) between the ankle impedance parameter and EMG for each muscle. As the number of subjects showing a significant correlation increased, the color of the box became darker in col...

	3.4.2 Discussion
	In some cases, a significant correlation existed between the ankle impedance parameters and the EMG signals; however, these relations were not consistent across the subjects. The impedance parameter that was most correlated to the EMG signals was the ...
	The results of this study aimed to assess if the relationship between ankle impedance and muscle co-contraction could be represented by a linear model. From the results shown in Table 3-2, only 20% of the total fit equations could be explained with a ...


	3.5 Using ANN to model EMG-Impedance Relationship for Standing Subjects
	To further examine the relationship between the lower extremity muscle co-contraction and the standing ankle impedance in DP and IE, a similar approach to Chapter 2 was implemented. The function-approximation capabilities of ANN were used to address t...
	3.5.1 ANN Procedure
	Before training the ANN models, the data was pre-processed. First, all impedance samples with a NMSE less than 0.6 were removed from the dataset, as well as the corresponding EMG samples. This accounted for approximately 10% of total data. Next, the a...
	Next, two approaches investigated the prediction accuracy of 1) individual ANN models optimized for each subject, and 2) an “aggregated” ANN model that was trained with the data of all subjects.  A feedforward ANN model was selected for both approach...
	The performances of each model were determined by how well the model was able to predict ankle impedance using the testing (15%) dataset. The metrics used to quantify the performances included the goodness of fit between the predicted and actual ankl...
	where ∥ denotes the 2-norm, ,,𝑧.-𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. is the array of predicted ankle impedance (stiffness, damping, and inertia) in DP and IE from the ANN model, and ,,𝑧.-𝑎𝑐𝑡𝑢𝑎𝑙. is the array of ankle impedance estimated from the parameter est...
	The MAE results are presented in the standard impedance units by reversing the z-score normalization and multiplying by the respective subject masses.  This metric provides a perspective of the model error with respect to the actual ankle impedance ra...

	3.5.2 Individual ANN Models
	The individual ANN models used the z-score normalized RMS EMG signals as the input matrix to the model, and six normalized ankle impedance parameters as the target matrix for cross-validation. The optimal number of hidden layer neurons for this model ...
	Table 3-3. Average (± standard deviation) NMSE and MAE results of the standing ankle impedance predictions from the individual subject ANN models.
	The results of this study improved slightly when compared to the results obtained in Chapter 2. Using the same ANN model technique, the non-loaded ankle impedance could be predicted with an average NMSE of 0.95 ± 0.05 in DP and 0.86 ± 0.11 in IE. For ...

	3.5.3 Aggregated ANN Model
	This approach tested if a single model could be trained with the data of all subjects. Even though the muscle activation and impedance parameters varied across subjects, the goal was to determine if the model could still maintain a high prediction per...
	Two types of input matrices were tested using this model. The first input matrix was similar to the individual models and used the z-score normalized RMS EMG data from the four muscles of all subjects. The second input matrix used the subjects’ biomet...
	The target matrix for both input matrices used four normalized impedance parameters across all subjects, including the stiffness and damping in DP and IE. The inertia parameters were removed from the model training because it remained relatively const...
	Table 3-4 shows the NMSE and MAE performance from a single Aggregated ANN model in predicting the ankle impedance across the entire population. Also, the table includes the results from both types of input matrices. The results showed that the input m...
	Table 3-4. NMSE and MAE (± standard deviation) results of the standing ankle impedance predictions from the Aggregated ANN models.
	For the EMG and biometric data input model, the highest performance across the impedance parameters was the stiffness in DP, with a NMSE of 0.96 and a MAE of 12.4 ± 3.6 Nm/rad.  The lowest-performing parameter, with a NMSE of 0.87 and MAE of 0.06 ± 0....
	Overall, the performance of the aggregated ANN model showed that a single model, containing data from a range of subjects, can accurately predict multi-directional ankle impedance based on varying levels of muscle co-contraction. Additional measures t...


	3.6 Investigation toward Subject-Independent Model
	The results from the aggregated model prompted new questions toward the idea of generating a “subject-independent” model that is general and can accurately predict the ankle impedance of new subjects. A few of the main questions included: How many sub...
	3.6.1 Preliminary Investigation: Leave-one-subject-out Cross Validation
	The individual and aggregated ANN models described in Section 3.5 tested the prediction accuracy of the model using the EMG data of subjects also used for training. Alternatively, the leave-one-subject-out technique reported in this section tested the...
	Algorithm 3-1: “Leave-one-subject- out” Technique for Varied ANN Model Sizes
	First, the total number of subjects used for this process ,𝑁-𝑠𝑢𝑏𝑗. was defined as 12 (line 1). Then, the number of subjects used to train an ANN model, defined as 𝐴𝑁,𝑁-𝑚𝑜𝑑𝑒𝑙𝑠𝑖𝑧𝑒., was selected to range from 2 subjects to 11 subjects (...
	Next, an ANN model was generated for each of the 30 selected subject combinations (,𝑟-𝑐𝑜𝑚𝑏𝑜.) (lines 11 – 15). Each ANN model was composed of four input neurons (normalized RMS EMG), a single hidden layer neuron, and four output neurons (stiffne...
	Figure 3-7. Average ± standard error NMSE for models with a subject-size between 2 to 11 subjects and unseen testing data. Results taken across 12 subjects.
	Figure 3-7 shows the average NMSE for the ANN model sizes between 2 subjects up to 11 subjects, while each of the 12 subjects was used as the unseen testing data. The error bars represent the standard error of the 12 subjects. As the number of subject...
	When compared to the results from the individual and aggregated models, the average NMSE for the leave-one-subject-out technique decreased overall. However, as suggested by the increasing trend in Figure 3-7, the performance of the subject-independen...
	Noticeably, the NMSE results for the damping parameters were less than the stiffness parameter results; with a poor NMSE overall. However, the damping parameters had very high NMSE for the individual and aggregated ANN models. A few reasons for the de...
	The results of the leave-one-subject-out tests showed potential for improvements in the EMG-impedance model. Other methods, in addition to ANN, should be considered to explore the feasibility of developing a generalized relationship between EMG and an...

	3.6.2 Feature Extraction and Regression
	The signal processing techniques were updated from the methods described in Section 3.2.3. First, approximately 10% of the data were removed as outliers. As opposed to removing outliers based on only the impedance estimation performance, the outliers ...
	3.6.2.1 EMG Feature Selection
	Next, the EMG features were extracted from each EMG channel. In the previous section, the RMS of the EMG signals were the only feature selected to train each ANN model. It is possible that the RMS does not contain all the relevant information within t...
	Table 3-5. The mathematical definitions of each EMG feature.
	Six time-domain (TD) EMG features were selected to determine if their characteristics contained relevant information about the signal. The features chosen for this study include the mean (AVE), standard deviation (STD), mean absolute value (MAV), numb...
	Lastly, after the outliers were removed and the input feature vectors were generated, the EMG and ankle impedance were z-score normalized within each subject. The resulting input and output vectors for each subject had 1800 samples. When all the subje...
	3.6.2.2 Regression Algorithm Selection
	In addition to the ANN model, the performance of additional regression techniques were explored. The purpose of this study was to determine if the prediction accuracy of the ankle impedance using the EMG signals from an unseen subject would perform be...
	1. Least Squares Linear Regression (LSQ)
	2. Least Squares linear regression with Lasso Regularization (LSQ + Reg)
	3. Medium Gaussian Support Vector Machine (SVM)
	4. Gaussian Process Regression with Matern 5/8 Kernel (GPR)
	5. Artificial Neural Network with 40 hidden layer neurons (ANN40)
	3.6.2.3 Performance Evaluation
	To understand the effects of the EMG features selection and the regression models, two tests were performed. First, the sensitivity of the model performance to the number of EMG feature vectors was examined. Four different sized input vectors were tes...
	Both the feature extraction and regression model selection tests were implemented using the aggregated and Leave-one-subject-out validation techniques. For the aggregated model, 5-fold cross validation was performed across the data of the entire popul...

	3.6.3 Model Performance
	3.6.3.1 Aggregated Regression Models
	Figure 3-8 presents the MAE ± standard deviation and NMSE between predicted and actual ankle impedance for an aggregated regression model. The x-axis of each subplot contains the results for each input matrix size, where the Roman numeral I denotes 4 ...
	Figure 3-8. The MAE ± standard deviation (a – d) and NMSE (e – h) performances of the aggregated regression models for varied number of EMG feature inputs and regression models. The Roman numerals I – IV correspond to input matrices of size 4 – 24.
	First, as the number of the TD input feature vectors grew, the performance of the regression algorithms generally improved. The model input matrix containing 24 vectors (4 muscles x 6 TD features) had the highest overall performance for the SVM model,...
	Additionally, the results from the GPR and ANN algorithms performed similar to the SVM algorithm, where the performance increased as the input matrix used more EMG features. Due to extensive training time requirements, the GPR model was trained with a...
	The algorithms with the worst overall performances were LSQ and LSQ + Reg. While these models did show an increasing performance as the input matrix added more features, the highest NMSE for these features were only 0.84 for KDP, 0.47 for KIE, 0.39 fo...
	3.6.3.2 Leave-one-subject-out Regression Models
	Next, the resulting NMSE and MAE for each regression algorithm using the Leave-one-subject-out training technique is presented in Figure 3-9. This method used 12-fold cross validation, where each subject was used as the testing dataset, and was repeat...
	Surprisingly, the model performance for the KDP was the only parameter to show a relatively high NMSE across the four inputs. The other parameters showed very poor performance for the leave-one-subject-out method, with a NMSE less than 0.25 for KIE, a...
	Last, the ANN model performance was lower than the other algorithms. When compared to the ANN results presented in Figure 3-7, the NMSE for the stiffness in DP decreased slightly, with a maximum NMSE of 0.66 for the 16 input features model.  It could ...
	Figure 3-9. The MAE (a – d) and NMSE (e – h) performances of the leave-one-subject-out models for varied number of EMG feature inputs and regression models.


	3.7 Discussion
	This chapter presented the results of a novel experiment that quantified the multi-directional ankle impedance while subjects were standing and actively co-contracting the muscles of their lower extremity. The purpose of this study was to quantify the...
	To expand upon these results, additional regression modeling techniques were explored. First, ANN was used to generate 1) individual models for each subject and 2) an aggregated model containing data from the entire subject population. The model perfo...
	Implications toward a subject-independent model were also investigated. Various regression models were tested to determine if they could predict ankle impedance using the EMG information of a subject not used in the training of the model. Factors such...
	The major advantage of generating a subject-independent model is that the ankle impedance could be predicted within a reasonable accuracy without needing to perform time-expensive experiments that require specialized equipment. In an ideal scenario, a...
	One limiting factor in the generalized model performance is that there is variability in both the ankle impedance and muscle activation levels across the subjects. As an example, the performance for the KIE, BDP, and BIE parameters from the leave-one-...
	Future implications will look to improve the generalization abilities for a subject-independent model that can relate lower extremity muscle activation. In addition, this study was performed during a stationary standing procedure, where muscles were ...


	4 Variation of Ankle Impedance and Muscle Activity with the Center of Pressure during Standing
	4.1 Motivation
	The work presented in this dissertation thus far has focused on the study of ankle impedance while the lower extremity muscles were co-contracted to different activation levels. As the muscle activity changed, the corresponding ankle impedance also va...
	Previous work that has studied the ankle impedance as a function of the COP of the foot were focused on understanding how the body maintains an upright, stable posture. One study analyzed the ankle impedance while the subjects shifted their COP away f...
	Similar to the changing ankle impedance caused by standing sway, the ankle impedance also varies across the gait cycle [78], [79], [83]. Typically, the gait cycle is divided into two phases: 1) the stance phase, which includes the initial contact of t...
	This chapter is organized as follows: Section 4.2 describes the experimental setup, procedure, and data acquisition techniques. Section 4.3 provides analytical explanations of the measured muscle activity, ankle kinematics, and ankle kinetic data. Sec...

	4.2 Experimental Study
	A total of 15 male subjects were recruited for this study. All subjects had no self-reported previous musculoskeletal injuries and gave written consent to participate as approved by the Michigan Technological University Institutional Review Board (IRB...
	Table 4-1. Subject physiological data for the standing experiment.
	4.2.1 Set-up
	The experimental setup used to determine the standing ankle impedance and measure lower extremity muscle activity was the same as the setup described in Chapter 3. A developed instrumented walkway consisting of motion capture cameras (8 – Optitrack 17...
	Additionally, the experiment measured the muscle activity of five muscle that surround the ankle using wireless EMG sensors (Delsys Trigno wireless).  The muscles selected for this study included the tibialis anterior (TA), peroneus longus (PL), soleu...

	4.2.2 Procedure
	The experiment consisted of 12 trials, where subjects stood in one out of four poses. As shown in Figure 4-1, the four poses analyzed in the study were Flat Foot (FF), Midstance (MS), Post-Mid-Stance (MS+), and Terminal Stance (TS). These stationary s...
	Figure 4-1. Four stationary poses that resembled stages within the stance phase of the gait cycle, including 1) Flatfoot (FF), 2) Mid-stance (MS), 3) Post-Mid-Stance (MS+), and 4) Terminal Stance (TS). The red dot represents the varying COP.
	To maintain consistency across the trials, the foot location, COP position, and weight distribution between feet were observed. The placement of the subject’s right foot was marked on the force plate to ensure that the foot was positioned in the same ...
	During each trial, the vibrating platform applied perturbations to the right foot, and the resulting ground reaction torques, ground reaction forces, ankle angles, and EMG activity were recorded. The perturbations were in the form of random pulse trai...
	Figure 4-2. The (a) ankle torque and (b) ankle angle measurements from an example trial in IE (blue) and DP (red).

	4.2.3 Data Acquisition
	To estimate the ankle impedance, the ankle torque and ankle angle measurements were band-pass filtered between 3-35 Hz using a 5th order Butterworth filter. This filter was selected to remove the effects of the low-frequency ankle torque, due to the b...
	In addition, the COP for each pose along the anterior-posterior direction (defined by the x-axis) was determined from the forces ,𝐹-𝑃-𝑌. acting in the vertical direction (along y – axis) and the torques ,𝑇-𝑃-𝑍. generated about the z-axis, which ...
	where ,𝑟-𝑃,ℎ𝑒𝑒𝑙.is the distance from the heel to the center of the force plate and ,𝐿-𝑓𝑜𝑜𝑡. is the length of the subject’s foot. This parameter was provided as feedback to the subject during each trial. The visual COP measurements ensured th...
	The EMG data were also divided into windows, corresponding to the beginning of a pulse train and the ankle torque and angle measurements. Similar to the previous chapters, each window of the EMG signals was bandpass filtered between 65 and 200 Hz usin...


	4.3 EMG and Ankle Response vs. Standing Pose
	The average COP positions across all subjects for the FF, MS, MS+, and TS standing poses were 28.1 ± 1.6%, 40.7 ± 1.2%, 52.7 ± 2.0%, and 64.9 ± 2.9% of the foot length, respectively, and were within the target COP positions of 30.6%, 40.5%, 53.0%, and...
	As the COP position moved forward, the ankle angle and ankle torque in the DP direction increased, as shown in Figure 4-3a. Across all subjects, the ankle torque in DP, shown by the blue boxplots, monotonically increased with mean ankle torque values ...
	Figure 4-3. The boxplots of the (a) the average ankle angle (orange) and ankle torque (blue) in DP across subjects for each standing pose and (b) the normalized RMS of the EMG signals for the TA (green), PL (light blue ), SOL (blue), GAL (purple), and...
	Furthermore, Figure 4-3b shows the boxplots containing the RMS of the z-score normalized EMG signals for the TA, PL, SOL, GAL, and GAM muscles across all subjects. The SOL, GAL, and GAM muscles showed increasing trends as the COP was shifted forward f...
	To further explore the differences in muscle activity across the poses, the average power spectral densities (PSD) of each muscle and subject were determined. All the pulse trains from a single subject and a single pose were selected. The Welch’s powe...
	Next, Figure 4-4 shows the average and standard deviation of the PSD magnitudes at 100 Hz, across the population. Similarly, the average amplitudes and standard deviations for each muscle followed similar trends to the RMS boxplots in Figure 4-3b. The...
	A one-way Analysis of Variance (ANOVA) test was performed for each muscle to determine if significant differences (p-value < 0.01) existed across the four poses. Significant differences, denoted by the asterisk, were determined between the first pose ...
	Figure 4-4. Average PSD at 100 Hz across all subjects for the four poses: FF, MS, MS+, and TS. Significant different in EMG activity across poses (p < 0.01) are denoted by *.
	The EMG muscle activity presented in Figure 4-3 and Figure 4-4 resembled patterns similar to the muscle activation patterns across the gait cycle  [143], [144]. During the early stance phase of the gait cycle, which corresponds to the FF pose, the TA...

	4.4 Standing Ankle Impedance Estimation
	To estimate the standing ankle impedance, the system identification technique was performed in two stages. First, the inertia of the force plate was determined using a dynamic model of the system. A test was performed with only the force plate module,...
	Next, the resulting compensated external torques were used with the linear model of the ankle, where the predictors of this equation were ankle angle, ankle velocity, ankle acceleration, and the kinematics of the foot. The corresponding ankle impedanc...
	Figure 4-5 shows the resulting average ankle stiffness, damping, inertia, and % VAF across all subjects for four standing poses. The stiffness in DP increased linearly as the COP shifted forward. Additionally, the standard deviation for both the DP an...
	Figure 4-5. Average (± standard deviation) ankle a) stiffness, b) damping and c) inertia across four standing poses. The results in d) show the average VAF across all the 15 subjects.
	Last, the VAF of the impedance estimation was high across the four poses, with average values for DP and IE of 86.6 ± 8.9%, 92.8 ± 4.0%, 93.9 ± 3.3%, and 90.4 ± 6.8% for the FF, MS, MS+, and TS poses, respectively. The VAF was slightly lower for the f...

	4.5 Discussion
	The purpose of this study was to understand how the ankle impedance and muscle activity change during different standing poses, with varied ankle angles and angle torques. The stationary standing poses were selected to resemble the ankle angle during ...
	In this study, the COP moved along the anterior-posterior direction, in parallel to the sagittal plane. The resulting ankle torque and ankle impedance showed strong correlations in this direction. However, the resulting ankle impedance in IE remained ...
	Additionally, a model of the ankle impedance and EMG activity was not determined during this study. Future work will analyze the ankle impedance and EMG for the pulse train perturbations that perturbed a combination of the DP and IE ankle directions.


	5 Conclusion & Future Work
	5.1 Overview
	The presented work investigates the relationship between the lower extremity muscle activities to the mechanical impedance of the ankle. This relationship was studied about multiple degrees-of-freedom of the ankle in the sagittal, frontal, and transve...
	Four experiments were performed with able-bodied subjects to characterize the ankle impedance during activities with both non-loaded and loaded ankle. Additionally, these studies explored how the ankle impedance changes as a function of the co-contrac...
	Using regression and machine learning techniques, subject-dependent models, aggregate models, and subject-independent models were generated. The subject-dependent models resulted in the highest overall performance, followed by the aggregated model. Th...

	5.2 Challenges
	There were several challenges throughout the experiments. First, the methods for processing the EMG measurements assumed that the experiments were performed while the muscles did not fatigue throughout the trials. For all experiments, the subjects wer...
	Additionally, in an effort to determine a subject-independent model a diverse population is likely needed. Using experimental data from both male and female subjects, with a range of ages, athletic abilities, and body sizes could improve generalizabil...

	5.3 Future Work
	The models created throughout this study explained the relationship between muscle co-contraction and activation during stationary conditions. The goal of future work is to expand upon these results to create models for dynamic movements and maneuvers...
	Furthermore, all subjects within this experiment were able-bodied, with no previous musculoskeletal injuries. However, it is unknown how the residual muscles of an amputee would perform using a regression model similar to the ones developed in this wo...
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