
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2019

The Solvation Energy of Ions in a Stockmayer Fluid The Solvation Energy of Ions in a Stockmayer Fluid

Cameron John Shock
Michigan Technological University, cjshock@mtu.edu

Copyright 2019 Cameron John Shock

Recommended Citation Recommended Citation
Shock, Cameron John, "The Solvation Energy of Ions in a Stockmayer Fluid", Open Access Master's
Thesis, Michigan Technological University, 2019.
https://doi.org/10.37099/mtu.dc.etdr/885

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Statistical, Nonlinear, and Soft Matter Physics Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/885
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F885&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1266?utm_source=digitalcommons.mtu.edu%2Fetdr%2F885&utm_medium=PDF&utm_campaign=PDFCoverPages

THE SOLVATION ENERGY OF IONS IN A STOCKMAYER FLUID

By

Cameron J. Shock

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Physics

MICHIGAN TECHNOLOGICAL UNIVERSITY

2019

© 2019 Cameron J. Shock

This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Physics.

Department of Physics

Thesis Advisor: Dr. Issei Nakamura

Committee Member: Dr. Ravindra Pandey

Committee Member: Dr. Jacek Borysow

Committee Member: Dr. Patricia Heiden

Department Chair: Dr. Ravindra Pandey

Dedication

I dedicate this work to all my past teachers. The work you did helped me grow and

succeed to get me to this point in my life. Your job is the most important job in the

world, and I cannot thank you enough.

Contents

List of Figures . xi

List of Tables . xv

Acknowledgments . xvii

Abstract . xix

1 Introduction . 1

2 Theory of Solvation . 5

2.1 Born Solvation Energy . 5

2.2 Onsager Theory . 8

2.2.1 Electronic Polarization . 11

2.2.2 Orientational Polarization 17

2.2.3 Reaction Field . 21

2.2.4 Onsager Equation . 25

2.3 Dielectric Saturation . 30

2.4 Local Structure . 33

vii

3 Molecular Dynamics . 35

3.1 Verlet Algorithm . 36

3.2 Interaction Potentials . 39

3.3 Boundary Conditions . 42

3.4 Thermostat . 45

3.5 LAMMPS . 46

4 Methods . 49

4.1 Stockmayer Fluid . 49

4.2 Simulation Goals . 52

4.3 Method . 54

4.3.1 System: Non-polymerized Solvent 55

4.3.2 System: Polymerized Solvent 56

4.3.3 System: Experimental Replication 57

4.4 Equipment Used . 59

5 Results and Analysis . 61

5.1 Radial Distribution Function . 61

5.2 System: Solvation Energy of Polymerized and Non-polymerized Sol-

vent . 63

5.3 System: Experimental Replication 72

6 Conclusions . 75

viii

References . 79

A Onsager Equation Algebra . 83

B Sample LAMMPS Script . 87

B.1 script simplelj.in . 87

B.2 atoms simplelj.txt . 89

C Atom Generation Script Ver. 1 . 95

C.1 generateDipolesCharge2typerandbondssolv.m 95

D Atom Generation Script Ver. 2 . 101

D.1 CreateAtoms.m . 101

D.2 MakePositions.m . 106

D.3 MakeMoments.m . 107

D.4 MakeBonds.m . 108

D.5 MakeFile.m . 109

D.6 myscript.m . 111

E Non-Polymer Example Script . 113

E.1 scriptSolvMono10ps400k 5 . 113

F Polymer Example Script . 117

F.1 scriptSolvMonoP16 1 . 117

G Experimental Replication Example Script 121

ix

G.1 scriptSolvLi+10ps400k . 121

x

List of Figures

2.1 Diagram of a parallel plate capacitor described in this section. . . . 8

2.2 Plot of Booth equation for an arbitrary charge as a function of an

arbitrary distance. 32

2.3 Plot of dielectric constant between two charges. The triangle line corre-

sponds to dislike charges and the circle line corresponds to like charges.

Retrieved from Ref.[1] . 32

2.4 Diagram showing solvation shell structures around an ion. 33

3.1 Graph of Lennard-Jones potential as a function of some arbitrary dis-

tance r from a particle vs arbitrary energy U. 40

3.2 2-D representation of periodic boundary conditions. Retrieved from

Ref.[2] . 42

4.1 Graph of Lennard-Jones potential but the red vertical line indicates

the cutoff distance for the WCA potential. 50

xi

4.2 Graph comparing the Born Equation, DSCFT, and experimental values

of solvation energy for ions of varying radius. The black dots are the

experimental values, the solid red line is the solvation energy calculated

by DSCFT, and the green dashed line is the Born Solvation energy. The

outer graph plots monovalent ions while the inset plots divalent ions.

Retrieved from Ref.[3] . 53

4.3 A computer model of a methanol molecule.Retrieved from Ref.[4] . 57

5.1 Example graph of the radial distribution function g(r) vs some nor-

malized distance. This shows examples of g(r) for solids, liquids, and

gasses.Retrieved from Ref.[5] . 62

5.2 Graph of the solvation energy of a monovalent ion in a dipolar solvent at

400K as function of dipole moment of solvent molecules. The blueish

downward sloping lines refer to the left-side y-axis and the reddish

upward sloping lines refer to the right-side y-axis. Non-polymer refers

to the case of the non-polymerized solvent, Polymer 16 refers to the

polymerized solvent (chainlength of 16 monomers), Born refers to the

predicted Born Solvation energy, and Born Max refers to the max value

the Born Solvation energy can have. 64

5.3 g(r) graphs for polymerized solvent comparing 2nd solvation shell. . 67

5.4 Solvation energy graphs for divalent and trivalent ions at 400K. De-

scription of elements and legend given by Figure 5.2. 68

xii

5.5 g(r) graphs for polymerized and non-polymerized solvent at 2.5D for

divalent ion case. 70

5.6 Graph showing that as compressibility of a solvent increases the solva-

tion energy decreases.Retrieved from Ref.[6] 72

5.7 Graph of the solvation energy of ions of varying radii in methanol.

The black squares refer to experimental results, the red line for the

larger radii methanol, the blue line for the smaller radii methanol and

the purple dashed line for DSCFT calculation. The outer graph shows

monovalent ions and the inset shows divalent ions. 73

xiii

List of Tables

4.1 Properties of ions for use in simulation. 58

xv

Acknowledgments

I would like to acknowledge my advisor, Dr. Issei Nakamura, for being an excellent

advisor and helping me learn to become a better researcher. I would also like to

acknowledge my fellow group members and graduate colleagues, as without their

support and friendship I would lose my mind. I would like to acknowledge Dr. Mark

Stevens and Dr. Amalie Frischknecht, whose assistance has been immensely helpful

for this work. And finally I’d like to acknowledge my parents for raising me the way

they did so I could find my way through the world and get to where I am today.

xvii

Abstract

The solvation of ions in polar solvents has been a long studied system since the early

twentieth century. A common technique to calculate the energy associated with ion

solvation is the Born Solvation energy equation. This equation assumes an ion is

placed in an incompressible, homogeneous dielectric, which is not necessarily repre-

sentative of a real system. In this work the Stockmayer Fluid Model is used in a

molecular dynamics simulation through the software LAMMPS to check the quan-

titative correctness of the Born equation. It is also shown how solvation energies

of ions placed in polymerized and non-polymerized solvents differ. It is shown that

solvation energies in non-polymerized solvents are less negative than the predicted

Born Solvation energy due to dielectric saturation effects, but are qualitatively sim-

ilar. Solvation energies of polymerized solvents differ greatly from non-polymerized

solvents and the predicted Born Solvation Energy. The reason for this is speculated

to be due to compressibility of the solvents or structural and dipolar effects from

polymer chains. It is also shown that the Stockmayer Fluid Model can be used to

accurately predict experimental results for non-polymeric solvents.

xix

Chapter 1

Introduction

The response of solvent molecules to the introduction of solutes is known as solvation.

A simple example would be dissolving salt in water. The nature of these interactions

has been studied in depth since the start of the twentieth century. In 1920, Max Born

proposed an equation for approximating the solvation energy[7]. Born’s equation ap-

proximates the change in free energy when moving an ion from a vacuum to a solvent,

and relates this energy to ion charge, ion size, and the dielectric constant of the sol-

vent. Nearly a decade later, Debye published his seminal book Polar Molecules [8],

in which he developed ideas about the microscopic nature of polar gasses and liquids

to predict macroscopic properties like the dielectric constant. He also discussed how

ions interact with surrounding solvent molecules, introducing the concept of dielec-

tric saturation where in the presence of high electric fields, solvent dipoles reorient

1

themselves in a way that results in a lowering of the dielectric constant. Later, Lars

Onsager read Debye’s book and noticed an error in his derivation for the dielectric

constant, publishing a correction himself[9]. F. Booth then utilized this corrected

theory to derive a new equation for the dielectric saturation effect[10]. Also around

this time, in the mid-twentieth century, scientists were understanding how solvent

complexes formed around ions, indicating solvation is a local effect in contrast to

Born’s original proposal[11]. In Chapter 2 these theories are discussed in more detail.

Today, with access to powerful supercomputers we can use computational techniques

to test these theories and probe aspects of solvation and dielectric effects we otherwise

could not. One such technique is molecular dynamics, where movements of molecules

or coarse-grained particles are simulated to predict kinetic and thermodynamic prop-

erties of systems. With this technique we can test our models to see how it compares

to our theories and experiment. This is discussed in Chapter 3.

This work focuses on the most basic of systems, the solvation of an individual ion into

a dipolar solvent. A series of molecular dynamics simulations, through the program

LAMMPS developed by Sandia National Laboratories[12], were employed to gain

insight on the nature of these interactions. The system is modeled using a Stockmayer

Fluid Model, wherein all molecules are treated as simple Lennard-Jones spheres with

point dipole moments and point charges[13]. The simulation methods are detailed in

Chapter 4.

2

We investigate how predictions made with the Born Solvation energy equation com-

pare with this model. We also look into how solvation energy is affected by the

polymerization of solvent molecules. Finally, preliminary results are given of work

done to determine the usefulness of the Stockmayer Fluid Model for predicting ex-

perimental results. The results of this work are discussed in Chapter 5.

3

Chapter 2

Theory of Solvation

2.1 Born Solvation Energy

The first equation for calculating solvation energy was introduced by Max Born[7].

Essentially the solvation energy is an estimation of the change in free energy when

moving an ion from a vacuum to a solvent with a continuous bulk dielectric constant,

εr. It can be derived as follows. First we can calculate the electrostatic energy of a

single ion of radius a in a vacuum.

U =
ε0
2

∫
outside

E2dV (2.1)

5

The electric field for an ion is given by

E =
q

4πε0r2
(2.2)

so our energy becomes

U =
q2

32π2ε0

∫
outside

1

r2
dV

=
q2

32π2ε0
4π

∫ ∞
a

1

r2
dr

Thus we find the energy of an ion in vacuum to be

U =
q2

8πε0a
(2.3)

Similarly we can do the same for an ion in a solvent with a bulk dielectric constant

to find

U =
q2

8πε0εra
(2.4)

6

Subtracting equations 2.4 and 2.3 gives us the change in energy in moving the ion

from the vacuum to the solvent, giving us the Born Solvation Energy for a single ion.

∆G = − q2

8πε0a
(1− 1

εr
) (2.5)

The variables to note here are the ionic charge q, ionic radius a, and dielectric constant

εr. The charge is limited to the valency of the ion, such as monovalent, divalent,

trivalent, etc. Ionic radius is determined by choice of ionic molecule. The most

interesting aspects of this equation come from the dielectric constant of the medium.

This is determined by the choice of solvent and depends on number density, dipole

moment of the solvent molecules, and temperature. This will be discussed in more

detail in the next section.

The Born Solvation Energy continues to be used by scientists to this day. Some

have shown it to be in good agreement with experimental data[14], others have found

it to be quite questionable[6]. One of the major aspects of this work has been to

determine the qualitative and quantitative validity of this equation, much of which

will be discussed in Chapter 5.

7

2.2 Onsager Theory

The dielectric constant is a macroscopic property of a material resulting from mi-

croscopic electronic interactions. A simple situation in which we observe a dielectric

constant is that of a parallel plate capacitor. The formulation given in this section

has mainly been worked out from Raju[15] based on the theories of Debye[8] and

Onsager[9], but has been reorganized to fit the needs of this work.

Charge on plate = Q Plate area = A

- -

E = V
d

+ +

d

Figure 2.1: Diagram of a parallel plate capacitor described in this section.

Let’s take a capacitor in a vacuum. Say we have two electrodes both with area A

spaced a distance d apart. When a potential difference of V exists between the plates,

the magnitude of the field at any point between them is E = V/d. We know that

the capacitance is proportional to the area of the plates divided by the distance, the

constant of proportionality being the vacuum permittivity ε0.

8

C0 =
ε0A

d
(2.6)

We also know that the capacitance is the charge on the plates divided by the potential

difference, thus we can find the charge on each plate is

Q0 = Aε0E (2.7)

Now if we instead place a dielectric material between the two electrodes, replacing

the vacuum, we obtain

Q = Aε0εrE (2.8)

meaning the charge on the plates is proportional to the charge in the case of a vacuum

but times some dielectric constant εr. The dielectric constant is always greater than

unity so the amount of charge on the plates has increased. This is due to the build

up of bound charges on the dielectric surface.

Now a dipole is defined as a pair of opposite charges with charge q separated by some

distance d, and knowing this we can define a quantity known as the dipole moment,

9

µ = qd (2.9)

In the case of the parallel plate capacitor, if we take the charge on the plates to be

the difference in charge from the vacuum to that introduced by adding the dielectric

we can obtain its dipole moment as

µ = AEε0(εr − 1)d (2.10)

Now we’ll also define a quantity known as the polarization P , which is the dipole

moment per unit volume. In the case of the capacitor we have

P =
µ

Ad
= Eε0(εr − 1) (2.11)

Polarization in dielectrics results from various mechanisms. In particular we are

going to look at electronic polarization and orientational polarization, which are im-

portant for understanding Onsager’s Theory for dielectrics. Electronic polarization

comes from the introduction of an external field and how the charge distributions

are affected. Orientational polarization arises from the change in direction of polar

molecules in response to an external field.

10

2.2.1 Electronic Polarization

To discuss electronic polarization let us first start with a spherically symmetric atom

with radius R. If we introduce an external electric field then a dipole moment can be

induced

µe = (4πε0R
3)E (2.12)

What may be noticed here is that the term in the parentheses is constant, so the

induced dipole moment is proportional to the external electric field. From here we

can define yet another term, the electronic polarizability αe, which is the dipole

moment induced per electric field strength. So in a dielectric, the polarizability can

be shown to be

~P = Nαe ~E (2.13)

where N is the number of atoms per unit volume. Now relating this with equation

11

2.11 we obtain

Nαe ~E = ~Eε0(εr − 1)

εr =
Nαe
ε0

+ 1

Now replacing αe with µe/E using µe we found in equation 2.12 we obtain

εr = 4πNR3 + 1 (2.14)

So here we have the beginnings of formulating the dielectric constant in terms of the

number density N and the radius of a particle R. However, this assumes that the

neighboring molecules do not influence the polarization, which is quite the assumption

to make! Thus we need to take this into account to formulate a more encompassing

theory.

For this we need to introduce the concept of the internal field Ei. This is the electric

field experienced by a molecule from the polarization of the surrounding molecules.

Using this idea, the dipole moment of a molecule induced by electronic polarization

becomes

12

µe = αe ~Ei (2.15)

To calculate the internal field we can use the following technique. We will assume our

molecule lies inside a spherical cavity, so we wish to calculate the field at the center.

To do this we need to add up all of the fields that contribute to this field. These fields

are: ~E1, the electric field from the free charges on the electrodes of the capacitor;

~E2, the field from the bound charges of the dielectric; ~E3, the field from the charges

on the inner wall of the cavity; ~E4, the field from the atoms inside the cavity. The

internal field is then

~Ei = ~E1 + ~E2 + ~E3 + ~E4 (2.16)

Firstly, what one can notice is that fields ~E1 and ~E2 come from outside the cavity,

thus they are simply the external field.

~E = ~E1 + ~E2 (2.17)

To calculate ~E3 we will consider a small area dA on the surface of the cavity. We also

have an angle θ which is the angle between the directions of the external field ~E and

13

the normal component of the polarization ~Pn.

~Pn = ~P cos θ (2.18)

So the charge on the small area dA is

dq = P cos θdA (2.19)

We then find the electric field at the center of the cavity due to the charge dq is

~dE ′3 =
~P cos θ

4πε0r2
dA (2.20)

But we want the part of the field parallel to the applied external field. Thus

~dE3 = ~dE ′3 cos θ =
~P cos2 θ

4πε0r2
dA (2.21)

Now we note that all the surface elements that make an angle θ with ~E have some

~dE3. The area of this being

14

dA = 2πr2 sin θdθ (2.22)

The total area of this gives a ring such that

~dE3 =
~P cos2 θ

4πε0r2
∗ 2πr2 sin θdθ (2.23)

Thus we can find the total to be

~E3 =

∫ π

0

~P cos2 θ

2ε0
sin θdθ =

~P

3ε0
(2.24)

For ~E4, we find that due to symmetry of the dipole moments inside the cavity that

~E4 = 0. Thus the internal field is found to be

~Ei = ~E +
~P

3ε0
(2.25)

This is also known as the Lorentz Field. Now if we substitute from equation 2.11 we

obtain

15

~Ei = ~E

(
2 + εr

3

)
(2.26)

Now combining equations 2.13 and 2.11 and doing some algebra we can come up with

εr − 1

εr + 2
=
NAαe
3ε0V

(2.27)

Here NA is Avagadro’s number and V is molar volume. The relation is as follows

NA =
N ×M

ρ
= N × V (2.28)

where M is the number of moles and ρ is the density. Substituting this into equation

2.27 we obtain

εr − 1

εr + 2

M

ρ
=
NAαe
3ε0

= R (2.29)

This equation is known as the Claussius-Mossotti equation. R is known as the molar

polarizability. This equation is only applicable to small densities because we made

the assumption that neighboring molecules do not influence polarizability.

16

One other thing to mention is the relation found by Maxwell that εr = n2 so using

this we can come up with the Lorentz-Lorenz equation.

εr − 1

εr + 2
=
n2 − 1

n2 + 2
(2.30)

2.2.2 Orientational Polarization

In the previous section we assumed our cavity surrounded a non-polar molecule. But

now let us consider the case of a molecule with some permanent dipole moment. In

this case the polarization in the absence of an applied electric field is zero because

the molecules will rotate in random directions giving no preferred angle. However,

when an electric field is applied the number of dipoles confined to a solid angle dΩ is

n(θ) = Ae−ν/kBTdΩ (2.31)

where ν is the potential energy of the dipole and A is a constant that depends on

the number of dipoles. Next, we know the surface area on the cavity sphere between

angles θ and θ + dθ is given by equation 2.22 and the solid angle is defined as dA/r2

so between those angles

17

dΩ = 2π sin θdθ (2.32)

Now we note that the potential energy of a dipole is

ν = −µE (2.33)

but since they’re at angle θ they are reduced to

ν = −µE cos θ (2.34)

So we can rewrite equation 2.31 as

n(θ) = Ae−µE cos θ/kBT ∗ 2π sin θdθ (2.35)

What we can then find is that the contribution to the dipole moment by all the dipoles

confined to dΩ is

µ(θ) = n(θ)µ cos θ (2.36)

18

From this we can find the average moment per dipole in the direction of the applied

field. To do so we take the dipole moment of all the dipoles divided by all of the

dipoles.

µ0 =

∫ π
0
n(θ)µ cos θdθ∫ π
0
n(θ)dθ

=

∫ π
0
AeµE cos θ/kBT ∗ 2π sin θ ∗ µ cos θdθ∫ π

0
AeµE cos θ/kBT ∗ 2π sin θdθ

(2.37)

To simplify solving this we’ll take the following substitutions

x =
µE

kBT

y = cos θ

to obtain

µ0

µ
=

∫ −1
1

yexydy∫ −1
1

exydy
(2.38)

Solving the integrals and simplifying gives us the following

19

µ0

µ
= cothx− 1

x
= L(x) (2.39)

which is known as the Langevin function. Now taking the Taylor Series expansion we

find

L(x) = coth x− 1

x
=

1

x

(
x2

3
− x4

45
+ ...

)
(2.40)

So in the case of low electric fields we can use the following approximation

L(x) ≈ x

3
=

µE

3kBT
(2.41)

Thus we find

µ0 =
µ2E

3kBT
(2.42)

giving us the following polarizability

α0 =
µ0

E
=

µ2

3kBT
(2.43)

20

So from this we find the polarization due to the orientation of the dipoles to be

~P = Nα0
~E =

Nµ2 ~E

3kBT
(2.44)

The total polarization from both the electronic and orientational polarizations is then

~P = N ~E

(
αe +

µ2

3kBT

)
(2.45)

The previous formulation was based on the work done by Debye, known best for his

extensive work on polar molecules. Now while this formulation takes into account the

orientational aspects of the dipoles, it only works well for low polar gasses. It fails

for polar liquids because it does not take into account a change in the electric field

known as the reaction field.

2.2.3 Reaction Field

By having a system in which a dipole is encased in a spherical cavity we must take

into account how the dipole interacts with itself. To do this we invoke the concept of

a reaction field.

21

The reaction field is essentially an increase of the field in the cavity. To calculate it

we need to look at the boundary conditions of our system. We will consider φ1 to be

the potential in the dielectric outside the spherical cavity, and φ2 to be the potential

inside the spherical cavity. Since we know the dipoles influence dies down as we move

away from it we can say our first boundary condition is (φ1)r→∞ = 0.

Also we’ll take note that from the Laplace Equation

∇2φ = 0 (2.46)

the general solution comes out to be

φ =

(
Ar +

B

r2

)
cos θ (2.47)

so we will say for outside and inside the cavity we have

φ1 =

(
A1r +

B1

r2

)
cos θ (2.48)

φ2 =

(
A2r +

B2

r2

)
cos θ (2.49)

However, due to our first boundary condition we find that A1 = 0.

22

The next boundary condition we must take into account is that the potentials on the

surface of the sphere from inside and outside must be the same, (φ1)r=R = (φ2)r=R.

Using this boundary condition with equations 2.48 and 2.49 we obtain

B1 = A2R
3 +B2 (2.50)

The next boundary condition also deals with the surface of the cavity, the normal

component of the flux density across it is continuous,
(
∂φ2
∂r

)
r=R

= εr
(
∂φ1
∂r

)
r=R

. From

this boundary condition we can find that

A2 =
2

R3
(B2 −B1εr) (2.51)

Our final boundary condition is if the boundary is moved very far away from the

center, R→∞, then the potential inside is given by

(φ2)R→∞ =
µ cos θ

4πε0r2
(2.52)

From here we see that B2 = µ
4πε0

. So now we can plug what we’ve found for A1 and

B2 into equations 2.50 and 2.51 to find

23

A2 =
2µ

4πε0R3

(1− εr)
(1 + 2εr)

B1 =
µ

4πε0

(
3

1 + 2εr

)

Thus we find the potentials to be

φ1 =
µ cos θ

4πε0r2

(
3

2εr + 1

)
(2.53)

φ2 =
µ cos θ

4πε0

[
1

r2
+

2r(1− εr)
R3(2εr + 1)

]
(2.54)

Now we will define φr to be the potential at some position r due to a dipole in a

vacuum, φr = µ cos θ
4πε0r2

. Using this, we find the change in potential by the introduction

of our spherical cavity to be

∆φ1 = φ1 − φr =
2(1− εr)
(2εr + 1)

µ cos θ

4πε0r2
(2.55)

∆φ2 = φ2 − φr =
2(1− εr)
(2εr + 1)

µr cos θ

4πε0R3
(2.56)

24

∆φ2 shows that there is an increase of the field in the cavity. This increase is the

reaction field.

~R =
2(εr − 1)µ

4πε0R3(2εr + 1)
(2.57)

2.2.4 Onsager Equation

In Debye’s formulation for orientational polarization he neglected the effect from the

reaction field. Onsager claimed that the field that acts on the molecule in the cavity

is made up of the cavity field and the reaction field. The reaction field does not

cause torque on the molecule so the electric field calculated by Onsager is lower than

that of Debye by an amount equal to the reaction field. So in this formulation our

spherical cavity contains a dipole moment µ at the center and has the same radius as

our molecule.

First we must calculate the field, which consists of the external electric field in the z

direction, the field from the polarization of the dielectric material, and the reaction

field from the molecular dipole itself. When combined together we obtain the Lorentz

field ~Ei.

25

~Ei = ~E

(
2 + εr

3

)
(2.58)

Now we will make the assumption that the dielectric constant inside the cavity is

ε2 = 1, so reaction field takes the form of the equation 2.57. From that equation we’ll

also define a constant value to make the calculation easier.

f =
2(εr − 1)

4πε0r3(2εr + 1)
(2.59)

The previous calculations assumed that the dipole moment was constant on a rigid

molecule, but the reaction field increases the dipole moment by αR, so we’ll denote

the new increased reaction field as Rm.

~Rm = f(~µ+ α ~Rm)

=
f~µ

1− f~µ

=
2(εr − 1)~µ

4πε0r3(2εr + 1)− 2~µ(εr − 1)

(2.60)

Next we will take the Claussius-Mossotti equation 2.29, equation 2.28, and we’ll use

Maxwell’s relation to replace εr = n2 to solve for α as

26

α =
3ε0
N

(
n2 − 1

n2 + 2

)
(2.61)

Also note that 4
3
πNr3 = 1. Substituting these into equation 2.60 we find

~Rm =
2N(εr − 1)(n2 + 2)~µ

9ε0(n2 + 2εr)
(2.62)

Thus we obtain the modified dipole moment to be

µm = µ+ αRm

=
µ

1− fα
=

2εr + 1

3(2εr + n2)
(n2 + 2)µ

(2.63)

Now when directed by an external electric field the average value of the reaction field

in the direction of ~E is ~Rm〈cos θ〉, assuming the reaction field follows the molecular

dipole moment µ instantaneously. Since ~Rm is always in the same direction as ~µ,

~Rm〈cos θ〉 does not contribute to the torque. So then the contribution to the internal

field is

E = Ei −Rm〈cos θ〉 (2.64)

27

We already know from equations 2.38 and 2.41 that at low field strengths we have

〈cos θ〉 =
µ0

µ
=

µE

3kBT
(2.65)

from which we can see

E =
3kBT 〈cos θ〉

µ
(2.66)

which when plugged into equation 2.64 gives

3kBT 〈cos θ〉
µ

= Ei −Rm〈cos θ〉 (2.67)

which can be reorganized to obtain

〈cos θ〉 =
µEi

µRm + 3kBT
(2.68)

Thus we can see that

28

µ0 =
µ2Ei

µRm + 3kBT
(2.69)

and since we know α0 = µ0/Ei we find that the orientational polarizability when

taking the reaction field into account is

α0 =
µ2

µRm + 3kBT
(2.70)

So the total polarization is then

P = NE(αe + α0) = NE

(
αe +

µ2

µRm + 3kBT

)
(2.71)

Now after substituting equation 2.62 into this and some lengthy algebra (detailed in

Appendix A) we finally obtain the Onsager Equation.

(εr − n2)(2εr + n2)

εr(n2 + 2)2
=

Nµ2

9ε0kBT
(2.72)

With this we can use just the number density and permanent dipole moment of

our solvent molecules and the temperature of the system to predict the dielectric

constant of the solvent. This equation was used in this work to predict the dielectric

29

constant for use in the Born Solvation Energy equation. Hopefully going through this

derivation can help us better understand the nature of ion solvation in polar liquids.

2.3 Dielectric Saturation

When an ion is introduced to a solvent the local solvent dipoles reorient themselves in

response to its electric field. This results in an overall lowering of the local dielectric

constant around the ion. This effect is known as dielectric saturation.

The idea was first published by Debye in 1929[8], but as we saw in the previous section

Debye’s formulation for the dielectric constant needed some corrections by Onsager.

Onsager never published anything on the effect of dielectric saturation himself but

F. Booth was able to successfully use Onsager’s method to describe it, as well as

Kirkwood’s method (not utilized for this work)[10].

Booth formulated the idea as follows. First we note that due to electronic polarization

in some field E our dielectric constant is given by

εr = 1 +
4πM̄E

V E
(2.73)

where M̄E is the mean dipole moment of some volume V due to the dipoles induced

30

by the external field. This mean dipole moment can be written as

M̄E = Nµ〈cos θ〉 (2.74)

and we know from equations 2.65 and 2.38 that in the high field limit we obtain

〈cos θ〉 = L

(
3Eµ

2kBT

)
(2.75)

where L(x) is the Langevin Function given in equation 2.39. Now if we take the case

of just a single molecule then

εr = 1 +
4πN0µ

E
L

(
3µE

2kBT

)
(2.76)

where N0 is the number of molecules per unit volume. This is known as the Booth

Equation. It is known that the saturation effect becomes important for electric fields

greater than 107 volts per cm[8, 10, 16]. When plotted for a single ion as a function

of distance you can see the effect, as shown in Figure 2.2.

Figure 2.3 is from a paper by Gong and Freed[1] showing their calculated dielectric

constant as a function of the distance between two charges, plotted for like and unlike

31

Figure 2.2: Plot of Booth equation for an arbitrary charge as a function of
an arbitrary distance.

Figure 2.3: Plot of dielectric constant between two charges. The triangle
line corresponds to dislike charges and the circle line corresponds to like
charges. Retrieved from Ref.[1]

32

charges. This displays the importance of taking into account the dielectric saturation

effect when discussing the solvation of ions (Note how Born Solvation Energy doesn’t

utilize this).

2.4 Local Structure

In the previous sections we utilized the idea of spherical cavities surrounding our

molecules and ions. But how is this idea justified? It comes about from the structure

formed around the ion by the surrounding solvent molecules. As is shown in Figure

2.4 a series of complexes surrounds the ion in the local vicinity.

+

εr = 1 εsat

εbulk

Figure 2.4: Diagram showing solvation shell structures around an ion.

Solvation shells have been discussed since the mid twentieth century, particularly

hydration shells involved with aqueous electrolytic solutions[11]. We can consider an

33

ion contained in a spherical cavity with some dielectric constant εr = 1. Outside is

a monolayer of solvent molecules surrounding this cavity in a state where dielectric

saturation is reached. Outside of that is another layer of solvent molecules, lesser in

density, compressed due to electrostriction. This can be modeled as multiple layers

depending on the strength of the ion’s electric field (based on its valency). Outside

these layers we can consider the solvent as a bulk dielectric material[17].

Because of this structure and the effects of charge screening, only the local effects

around the ion are important to consider in ion solvation. It should be noted that

the ideas of these last several sections counter that of the Born Solvation Energy

introduced at the start of the chapter. Since only the local structure matters, the

bulk dielectric constant, εr, is not sufficient in fully describing the dielectric effects

on the free energy. Current approaches to calculating solvation energy involve self-

consistent mean field theories, but the goal of this work is to show that even a simple

computational model may be enough to accurately describe ion solvation.

34

Chapter 3

Molecular Dynamics

Molecular dynamics(MD) is a computational technique used to model the mechanics

and thermodynamics of particles on the atomic and mesoscopic scales. Simulations

can be atomistic, meaning all atoms of a molecule are explicitly modeled, or coarse-

grained, where sets of atoms or molecules can be grouped up and treated as a single

particle. Classical MD integrates over Newton’s equations of motion to simulate the

dynamics of molecular systems. The following sections will go into detail about how

this is done, other techniques required to prevent errors, and what software can be

used.

35

3.1 Verlet Algorithm

The Verlet Algorithm is a kind of leap-frog method for integrating Newton’s equations

of motion. It was originally conceived by Delambre and later rediscovered by Loup

Verlet. It has a simple derivation and is preferable to most other integration methods.

This is because the computational cost is low (only a single calculation per time-step)

and it is better at energy conservation for Lennard-Jones(LJ) type potentials than

higher-order methods[2].

It can be derived as follows. Assuming we’re given initial conditions for positions

and velocities of particles, then we wish to find the position of a particle at the next

time step, x(t + h) where h ≡ ∆t and t is the current time. We can take a Taylor

expansion of x(t+ h) about t to get

x(t+ h) = x(t) + ẋ(t)(t+ h− t) + ẍ(t)
(t+ h− t)2

2
+O(h3)

= x(t) + hẋ(t) +
h2

2
ẍ(t) +O(h3)

(3.1)

where we have a truncation error of order O(h3). We can do the same for x(t− h)

36

x(t− h) = x(t)− hẋ(t) +
h2

2
ẍ(t)−O(h3) (3.2)

Now adding equations 3.1 and 3.2 together we get

x(t+ h) + x(t− h) = 2x(t) + h2ẍ(t) +O(h4) (3.3)

which can be re-arranged to

x(t+ h) = 2x(t)− x(t− h) + h2ẍ(t) +O(h4) (3.4)

So we can get the next position from the current position and the last position. ẍ(t)

is known from the force calculations from the potentials of the system[2]. This will

be discussed in the next section. Now the velocity is not required for this calculation

but can be gotten from

ẋ(t) = [x(t+ h)− x(t− h)]/2h+O(h2) (3.5)

Since we need the current and last positions to predict the next position this method

is not self-starting. Also the current velocity must be calculated separately. There is

37

a form of the Verlet algorithm known as the Velocity Verlet that solves both of those

issues. We can get it by first rearranging equation 3.5 to solve for x(t− h),

x(t− h) = x(t+ h)− 2hẋ(t) (3.6)

now substituting this into equation 3.4 we get

x(t+ h) = x(t) + hẋ(t) +
1

2
h2ẍ(t) +O(h4) (3.7)

This is how the next position is calculated for the Velocity Verlet algorithm. However,

this is now dependent on the current velocity, so we need to calculate the velocity at

the next step when we calculate the position at the next step. To do so we’ll take

equation 3.5 to write

ẋ(t+ h) = [x(t+ 2h)− x(t)]/2h (3.8)

Now using equation 3.4 in the case for x(t+ 2h) and substituting in we get

ẋ(t+ h) = [x(t+ h)− x(t)]/h+
1

2
hẍ(t+ h) (3.9)

38

Next, equation 3.7 is substituted in and we finally get

ẋ(t+ h) = ẋ(t) +
1

2
h(ẍ(t+ h) + ẍ(t)) +O(h2) (3.10)

So now we have a self-starting algorithm that calculates both the position and velocity

and is mathematically equivalent to the original Verlet algorithm[18].

3.2 Interaction Potentials

As mentioned in the last section we can get the next position of a particle from

equation 3.7. In this equation we are required to know ẍ(t). This is the force on

the particle from the interactions in the system. These interactions are modeled by

various potentials, and in this work the potentials are interactions between particles.

One of the most common potentials used in MD simulations is the Lennard-Jones

potential, given by

U =

4ε

[(
σ
r

)12
−
(
σ
r

)6]
r < rc

0 r ≥ rc

(3.11)

39

Figure 3.1: Graph of Lennard-Jones potential as a function of some arbi-
trary distance r from a particle vs arbitrary energy U.

This potential was initially determined empirically to describe the mechanics of liquid

Argon[2], but has been found to work well for many liquid systems. σ refers to

the diameter of the particle and ε determines the well depth. The first term, the

twelfth power term, gives particles a hard-core nature. This comes about from the

Pauli-Exclusion Principle[19] since the particles are distinguishable and cannot occupy

the same states. The second term, the sixth power term, refers to the Van der

Waals interactions between particles. As can be seen in Figure 3.1, this results in an

attractive tail. rc refers to the cutoff distance of the potential. As seen in Figure 3.1

it approaches zero fairly quickly as it is a short-range potential. A cutoff distance is

40

introduced so particles outside this range do not interact, decreasing time needed to

compute the interactions.

There are many potentials that can be used, like the Coulomb potential, ion-dipole

interactions, bead-spring potentials, etc. Potentials can also be constructed based

on empirical findings or from quantum calculations. The potentials chosen almost

completely define the simulation and systems can be very sensitive to the nature of

the interactions.

For a given potential, the force can be calculated by

F = −∇U (3.12)

so for our example of the Lennard-Jones potential

F =

(
48ε

σ2

)[(σ
r

)14
− 1

2

(σ
r

)8]
r (3.13)

thus this divided by mass would be plugged into equation 3.7 for ẍ(t).

41

3.3 Boundary Conditions

Due to the finiteness of computers, MD simulations are limited in the number of par-

ticles, time to run simulations, and how large a system can be, due to computational

cost and storage. It is impossible to simulate an infinite system of particles, or is it?

Figure 3.2: 2-D representation of periodic boundary conditions. Retrieved
from Ref.[2]

Boundary conditions determine how the edges of a simulation box acts. They can

be closed, like a solid wall that nothing is allowed to pass. It may transfer energy or

heat to the system. Or the system can be periodic, meaning when a particle passes

through the edge of the box it reemerges on the other side. It can either be thought of

42

like a game of Pac-man, or visualized as an infinite series of identical boxes extending

on all sides of the simulation box as pictured in Figure 3.2. With this condition we

can get closer to simulating bulk systems and better take into account the effects

of long-range interactions. However, dealing with long-range interactions is actually

more tricky than simply applying periodic boundaries. For example, when dealing

with the long-range Coulomb interaction we must apply a technique known as an

Ewald Summation.

The Ewald Summation technique attempts to calculate the total interaction energy

from the contributions of all the periodic systems. For Nm charged atoms the total

interaction energy for charges is

Uqq =
1

2

∑′

~n

Nm∑
i=1

Nm∑
j=1

qiqj
~rij + L~n

(3.14)

where ~n are the integer vectors, and the primed sum that sums over them omits terms

where i = j when |~n| = 0 so self-interaction doesn’t occur. It will interact with its

images in the replica boxes however. L is the length of a side of the simulation box.

The Ewald Summation changes this sum over the replicas into a sum over concentric

spherical shells, given by

43

Uqq =
∑

i<j≤Nm

qiqj

[∑′

~n

erfc(α| ~rij + L~n|)
| ~rij + L~n|

+
1

πL

∑
~n6=0

1

n2
exp

(
− π2n2

α2L2
+

2πi

L
~n · ~rij

)]

+
1

2

[∑
~n6=0

(
erfc(αLn)

Ln
+

1

πLn2
exp

(
− π2n2

α2L2

))
− 2α√

π

] Nm∑
j=1

q2j

+
2π

3L3

∣∣∣∣ Nm∑
j=1

qj ~rj

∣∣∣∣2
(3.15)

where the complementary error function is

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt (3.16)

Here, α is a parameter that is determined to maximize the accuracy of the sum. α can

be chosen such that the terms of order exp(−α2L2) are negligable so the real space

terms become short-range allowing a cutoff distance of rc < L/2 to be used along

with period boundary conditions. The Ewald Summation can be used for dipoles as

well. For more information on its formulation, The Art of Molecular Dynamics by

D.C. Rapaport is an excellent resource[2].

44

3.4 Thermostat

Another issue stemming from limitations in computational storage is that of energy

conservation in MD simulations. Computers cannot hold numbers of infinite precision

so at some point there must be a cutoff or rounding. If done a couple of times

it wouldn’t be much of an issue, but when dealing with hundreds or thousands of

particles for millions or more time steps the errors can accumulate greatly. This

can result in runaway temperature or energy. To combat this issue we introduce

a thermostat which regulates energy, temperature, pressure, volume, or any other

quantities that need to be held at a near constant value.

An example of a very basic thermostat is the velocity re-scaling technique. This

technique works by keeping track of the temperature by averaging the velocities of

the particles. When the temperature begins to diverge from whatever preset value

was chosen, it randomly picks particles and re-scales their velocities in order to correct

the temperature. While simple, this technique is not necessarily the most efficient

and does not allow for temperature fluctuations like that of a canonical ensemble.

Another thermostat commonly used is the Nose-Hoover thermostat. This thermostat

treats the system as though it has a heat bath. With this heat bath an extra degree

of freedom is introduced by means of an artificial variable associated with a mass and

45

velocity. The mass determines the coupling of the heat bath with the system to affect

the fluctuations in temperature. The main purpose of this thermostat is to treat the

system as a canonical ensemble, as by creation MD simulations are microcanonical[20].

Another technique is to use Langevin dynamics. A simple explanation for this tech-

nique is to occasionally apply random forces to particles. This simulates stochastic

interactions with particles, a kind of Brownian dynamics. In this work this technique

was used in tandem with the Nose-Hoover thermostat.

3.5 LAMMPS

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator. It

is a classical molecular dynamics simulation software developed by Sandia National

Laboratories. Development began in the mid 1990s, originally written in Fortran. It’s

modern incarnation is a C++ rewrite that began in 2004 as a free and open-source

project[21]. It is easy to use and has been utilized successfully in many scientific

publications[22].

LAMMPS uses the velocity-verlet algorithm given in equations 3.7 and 3.10. It has

many thermostats available, from the Nose-Hoover thermostat or Langevin, etc.[23]

It also contains many potentials for use in solid-state physics, soft-matter, polymer

46

physics, etc.[24] A basic example script is given in Appendix B that uses a Lennard-

Jones potential in a simulation box with periodic boundary conditions and uses the

Nose-Hoover thermostat.

When writing a LAMMPS script a choice of units must be given. Molecular Dynamics

simulations generally have some kind of unitless values for use in calculations. Since

simulations are done on the atomic/mesoscopic scales unit values can be very small

and very large(e.g. 10−30 to 1030). As mentioned ealier, computers have finite pre-

cision and these kinds of values are challenging to store without rounding or cutoffs.

In order to make numbers more easily handled, a conversion of units can be done to

keep numbers around unity. In this work, the LAMMPS lj units were utilized.

LJ units are designed to set the fundamental quantities to one. Four quantities are set

to be normalized, and these are used to define the values for the remaining quantities.

The fundamental quantities are mass m, σ, ε, and the Boltzmann constant kB. It

works best like this, first pick a common value for these units and set them to one. For

example, if many of the particles in a simulation are 4.5Å in diameter then σ = 4.5Å.

Now when implementing into the simulation we convert values using this fundamental

unit into a reduced unit. So all particles have σ∗ = 4.5Å/σ = 1. If another particle

with diameter 3Å was introduced for example, then it’s diameter in reduced units is

σ∗ = 3Å/σ = 0.6666... The full conversion list is on the LAMMPS documentation

website at https://lammps.sandia.gov/doc/units.html.

47

https://lammps.sandia.gov/doc/units.html

LAMMPS is a parallel MD simulator, this means it can utilize multiple CPU cores at

once to do its calculations. This allows it to be much faster than conventional single

core MD simulations. LAMMPS is able to calculate the forces on many particles

simultaneously, reducing computational time significantly. A spatial decomposition

algorithm is used that divides the simulation box into multiple domains, each for use

by a different processor[12].

LAMMPS is an excellent classical MD simulation program for its vast amount of fea-

tures and ease of use. It continues to be in development, and being open-source allows

users to implement their own modifications. If a feature is not currently built into

the official release, user projects and libraries can be created and added to LAMMPS

with ease. This makes it a great choice for use as an MD simulation software.

48

Chapter 4

Methods

4.1 Stockmayer Fluid

The Stockmayer Fluid Model is a system consisting of Lennard-Jones spheres em-

bedded with point dipole moments and/or point charges. This model was originally

conceived by W.H. Stockmayer [13] and has been applied to computational simula-

tions looking at dielectric properties of polar liquids[25, 26].

The interactions in a Stockmayer Fluid consists of a Lennard-Jones potential, dipole-

dipole interactions, ion-dipole interactions, and ion-ion interactions. For this work the

Lennard-Jones potential, given by equation 3.11, has a cutoff distance of rc = 21/6σ.

This substitution is called the WCA Potential, shown below in Figure 4.1. We only

49

wish for the hard-core nature of the spheres to be used, since the attractive tail of

the LJ potential comes from the Van der Waals forces which ultimately arise from

dipole-dipole interactions which we will take into account explicitly.

Figure 4.1: Graph of Lennard-Jones potential but the red vertical line
indicates the cutoff distance for the WCA potential.

The dipole-dipole interaction potential is given by

Uµµ =
1

r3
(~µi · ~µj)−

3

r5
(~µi · ~r)(~µj · ~r) (4.1)

the ion-dipole interaction is given by

50

Uqµ =
q

r3
(~µ · ~r) (4.2)

and finally the ion-ion interaction is simply the Coulomb potential

Uqq =
qiqj
r

(4.3)

and these are all provided by the LAMMPS documentation[27].

Now while not done in the original inception of the Stockmayer Fluid Model, for

this work we included polymerization of solvent particles. To model this we used the

FENE potential given by

UFENE = −0.5KR2
0 ln

[
1−

(
r

R0

)2]
(4.4)

This potential is essentially a bead-spring system, where two spheres are connected by

a simple 1-D spring. K refers to the spring constant and R0 is the cutoff radius of the

spring. A value for K that’s considered realistic is K = 30εLJ/σ
2, and R0 = 1.5σ[28].

51

4.2 Simulation Goals

The ultimate goal of this work has been to determine the efficacy of the Stockmayer

Fluid Model for predicting solvation energies and comparing with the Born Solvation

energy. As was shown in Chapter 2, the Born Solvation energy is a simple approx-

imation that relies on treating the surrounding solvent molecules as a homogeneous

dielectric material with some dielectric constant εr. Later the concept of dielectric

saturation was introduced showing that in the near vicinity of the ions there is a

lowering of the dielectric constant, distinct from that of the bulk value of the solvent.

Next, the solvation shells surrounding the ion was also discussed, indicating that

solvation energy relies nearly solely on the local structure of the dipolar molecules

surrounding the ion. Thus because Born’s equation doesn’t take these effects into

account it’s bound to give quantitatively incorrect results. However, since the major

underlying concepts are similar it may be qualitatively okay. This has been known

for some time and there has been work on constructing a better theory.

One such construction is a dipolar self-consistent mean field theory (DSCFT) devel-

oped by Nakamura et al.[3] The specifics of the theory are beyond the scope of this

work, but of notable importance is that when taking into account the local effects near

the ion there is a raising of the solvation energy as compared to the Born Solvation

energy, as shown in Figure 4.2.

52

Figure 4.2: Graph comparing the Born Equation, DSCFT, and experi-
mental values of solvation energy for ions of varying radius. The black dots
are the experimental values, the solid red line is the solvation energy calcu-
lated by DSCFT, and the green dashed line is the Born Solvation energy.
The outer graph plots monovalent ions while the inset plots divalent ions.
Retrieved from Ref.[3]

So when simulated using a Stockmayer Fluid Model would the Born Solvation energy

be seen or will the saturation effects be captured? What happens when the solvent is

polymerized? And can experimental results be replicated with such a simple model?

These are some of the questions that were asked as motivation for this work.

53

4.3 Method

This work was originally based on simulations constructed by Lijun Liu, a former

member of Dr. Nakamura’s research group[29]. Lijun created his own Molecular

Dynamics program whereas for this work LAMMPS was used. For this work three

separate sets of simulations were developed. The first was calculating the solvation

energy of ions in a non-polymerized dipolar solvent with varying dipole moments.

The second being the same simulation but with a polymerized solvent. Thirdly, the

solvation energy for particular solvents and ions were calculated and compared to

experimental results and DSCFT calculations.

While these simulations tested different systems, the underlying method was the

same. A simulation box consisting solely of solvent dipoles was constructed and the

total electrostatic energy was recorded over a period corresponding to 100ns. Next

the same system but with the introduction of a single ion was ran, and again the

energy was recorded. To calculate the solvation energy the average energy for the

ion-containg system was subtracted from the average energy of the ion-free system.

This is how the solvation energy was calculated for all systems.

To populate the simulation box with particles a Matlab script was written that would

give particles random positions and random dipole orientations, as well as imbuing

54

them with their other properties (mass, density, etc.). The script used for the first two

systems is provided in Appendix C, and for the third system the script in Appendix

D was used.

Minimization was done by giving all particles a soft potential and running for 1-2ns.

A soft potential is similar to a Lennard-Jones potential in that the particles have a

repulsive core, but there is a long gradual slope making the particle“soft” instead

of hard-cored. This is done since the particles are given random initial conditions

and could be placed inside of other particles. If the simulation was ran given all

normal interactions the forces could be immensely large and in LAMMPS this leads

to particles being lost. Thus the soft potential lets the particles slide off each other

gradually and move some distance away before the real interactions of the system

begin. A more detailed explanation of the soft potential is given by the LAMMPS

documentation[30].

4.3.1 System: Non-polymerized Solvent

This system consisted of 512 solvent dipoles in a box of size 45Å× 45Å× 45Å. The

diameter of the solvent was 4.5Å and for the ion 3Å. Both particles were given the

same mass of 18 amu and the same WCA well depth of εLJ = 5.27 × 10−21J. The

system temperature was set to 400K using the Nose-Hoover thermostat. For the time

55

step, ∆t = 2fs.

Ten systems in total were simulated, with solvent dipole moments from 0.5D to 5D in

increments of 0.5D. The ions were simply given a point charge and a dipole moment

of zero. The charge given to the ions were dependent on the type of ion tested.

Monovalent, divalent, and trivalent ions were simulated, with charges of 1e, 2e, and

3e respectively. A set of example scripts are given in Appendix E.

4.3.2 System: Polymerized Solvent

This system is very similar to the previous, but now the solvent molecules are poly-

merized. The polymer chains have a chainlength of 16 monomers, giving a total of

32 polymer chains in the system. There is a caveat to polymerizing in LAMMPS

however. Dipole rotation is independent of monomer rotation. This means that the

dipoles moment of a particle can rotate freely and its rotation has no effect on the

physical rotation of the particle itself. Another way to visualize would be to say that

if the dipole were in a fixed direction, the monomer could still have a torque and

rotate, and vice versa. This is important when discussing the polymerized solvent

because the dipole moments can freely rotate along the polymer backbone. This is

not realistic, but as of the moment of writing dipole-monomer rotation coupling is

not implemented in LAMMPS. So this drawback must be taken into account when

56

the results are discussed. A set of example scripts are given in Appendix F.

4.3.3 System: Experimental Replication

This set of simulations is currently a work in progress. Using the coarse-grained

Stockmayer Fluid Model an attempt at recreating experimental data is being made.

The following monovalent ions are being tested: Li+, Na+, Ag+, K+, Rb+, Cs+, Cl-,

Br-, I-, ClO4-, Me4N+, and Et4N+. The following divalent ions are being tested as

well: Cu2+, Zn2+, Mg2+, Mn2+, Cd2+, Ca2+, Pb2+, Sr2+, and Ba2+. The radii

of the ions and masses used in this study were consistent with those from Refs.[31]

and [3] and are listed in Table 4.1. Currently the ions are placed in a coarse-grained

methanol solvent. The dipole moment of the methanol is 1.69D[32] and two different

coarse-grained sizes were used.

Figure 4.3: A computer model of a methanol molecule.Retrieved from
Ref.[4]

The first size was determined by utilizing the program Gaussian. With Gaussian,

57

Species Radius[Å] Mass[a.m.u.]

Li+ 0.78 7
Na+ 0.98 23
Ag+ 1.15 108
K+ 1.33 39
Rb+ 1.49 85.5
Cs+ 1.65 133
Cl- 1.81 71
Br- 1.96 80
I- 2.2 114.8
ClO4- 2.4 99.5
Me4N+ 2.58 109.6
Et4N+ 3.1 147.26
Cu2+ 0.73 63.5
Zn2+ 0.74 65.4
Mg2+ 0.78 24.3
Mn2+ 0.91 54.9
Cd2+ 0.95 112.4
Ca2+ 1.06 40.1
Pb2+ 1.19 207.2
Sr2+ 1.27 87.6
Ba2+ 1.43 137.3

Table 4.1
Properties of ions for use in simulation.

the methanol molecule was constructed and then optimized using the B3LYP DFT

method. To determine diameter, the distance between the two farthest atoms was

found. This was the distance between the two farthest hydrogen atoms, which was

found to be 2.9Å. Rigor was not of importance here because the purpose was to get

a rough estimate of size, not to perfectly encapsulate the features of methanol. This

method resulted in a fairly large sphere size, since as can be seen in Figure 4.3 if

the molecule were encased in a sphere there would be quite a bit of empty space.

To account for this a second size was selected that was slightly smaller, 2.6Å was

decided. A set of example scripts are given in Appendix G.

58

4.4 Equipment Used

The equipment used to run these simulations mainly consisted of the Sky Bridge

supercomputer cluster from Sandia National Laboratories. Sky Bridge nodes con-

tain 64GB of RAM and two 2.6 GHz Intel Sandy Bridge 8-Core processors supplied

by Cray[33]. Also used was the Superior Supercomputer from Michigan Technolog-

ical University. The specifications for Superior are available on the MTU website,

https://hpc.mtu.edu/boilerplate/. For testing purposes a workstation was used

consisting of a 2.2 GHz Intel Xeon E5-2699 44-Core CPU with 32GB of RAM gra-

ciously supplied by Dr. Issei Nakamura.

The version of LAMMPS used was the 22 August stable release. Matlab Version

9.4.0.813654 (R2018a) was used to code the initial condition scripts. Python Version

2.7.5 was used for programs to conduct analysis.

59

https://hpc.mtu.edu/boilerplate/

Chapter 5

Results and Analysis

5.1 Radial Distribution Function

Before beginning the analysis of the results an analysis technique used in this work

needs to be introduced. The radial distribution function, g(r), is a function that

measures the probability of finding particles radially outward from some chosen par-

ticle, or averaged over many particles. This can give a picture of the distribution of

particles in the system as well as changes in density. The local density of a system

can be calculated using the radial distribution function as

ρ(r) = ρbulkg(r) (5.1)

61

Figure 5.1: Example graph of the radial distribution function g(r) vs some
normalized distance. This shows examples of g(r) for solids, liquids, and
gasses.Retrieved from Ref.[5]

To calculate the number of particles at some distance r′ then

n(r′) = 4πρ

∫ r′

0

g(r)r2dr (5.2)

[34]

Figure 5.1 shows an example of a g(r) graph for solids, liquids, and gasses. A solid

usually consists of a crystal or regular lattice so it’s expected that the g(r) graph

62

shows a periodic pattern. For a liquid we have the various shells surrounding the

molecule so we witness several bumps before reaching g(r) = 1 for the bulk state.

And for a gas the bulk state is reached quickly as generally gas particles don’t interact.

5.2 System: Solvation Energy of Polymerized and

Non-polymerized Solvent

The first two systems mentioned in Chapter 4 were done together and compared. The

purpose was to see how well the Born Solvation energy could describe the Stockmayer

Fluid. Also, since Born Solvation energy doesn’t discriminate between a polymerized

or non-polymerized system, would both give the same energy or would there be a

discrepancy? The Born Solvation energy was calculated by equation 2.5 using εr

calculated from Onsager’s Equation, given by equation 2.72, using the properties of

the dipolar solvent for each simulation. Figure 5.2 shows the results for a monovalent

ion.

As can be seen from the graph, at low dipole moments the solvation energies for the

polymerized and non-polymerized solvents are nearly the same. However, the Born

Solvation energy is much lower. This is to be expected due to dielectric saturation

effect which the Born Solvation energy does not take into account. Since dielectric

saturation causes a decrease in the dielectric constant near the ion an increase in the

63

Figure 5.2: Graph of the solvation energy of a monovalent ion in a dipolar
solvent at 400K as function of dipole moment of solvent molecules. The
blueish downward sloping lines refer to the left-side y-axis and the reddish
upward sloping lines refer to the right-side y-axis. Non-polymer refers to the
case of the non-polymerized solvent, Polymer 16 refers to the polymerized
solvent (chainlength of 16 monomers), Born refers to the predicted Born
Solvation energy, and Born Max refers to the max value the Born Solvation
energy can have.

solvation energy is expected. Of note here is that in the non-polymerized case, the

solvation energy and the Born Solvation energy follow a similar trend. Toward higher

dipole moments the simulated solvation energy approaches the predicted Born energy.

As is expected, the trends are similar in that the energies decrease with increasing

dipole moment(e.g. higher dielectric constant). The limit such that εr →∞ is plotted

as the black horizontal line, and its importance will be discussed later in this chapter.

64

Of particular interest is that the trend for the polymeric solvent is quite unlike that for

the predicted Born energy or non-polymeric solvent, exhibiting linear behavior instead

of approaching some limit. As of current all that can be offered for explanation is

just speculation, as more work would need to be done to determine precisely what is

the reason. The current thought is that since the monomers are chained together, the

dipoles are forced near each other. This results in more dipoles being aligned than

in the case of the non-polymerized solvent. Next, the severe drop in the large dipole

moment regime is very puzzling. It is currently believed to be the result of either poor

statistical convergence of the simulation, or is the result of highly correlated dipoles

extending beyond the simulation box. Perhaps a larger box size would reduce this

drop. As was mentioned, more work needs to be done in order to determine which of

these outcomes is truly the case.

What cannot be overlooked is the upward trend of the peak value of the radial distri-

bution function g(r). In the lower dipole regimes (µ ≤ 3.5) this clearly corroborates

what is occuring with the solvation energies. Increasing peak g(r) means more solvent

dipoles surrounding the ion in the first solvation shell, resulting in a higher dielectric

constant thus decreasing the solvation energy. Also it can be seen that the peak values

of g(r) diverge for the polymeric and non-polymeric solvents which is what would be

expected of diverging solvation energies. It also makes sense that the non-polymeric

solvent peak value of g(r) would be less than that of the polymeric solvent since

the solvation energy is higher. Again what is odd is what is seen at the high dipole

65

moment regime for the polymeric solvent. From the drastic drop in solvation energy

we would expect a drastic increase in g(r), but this is not seen. It was thought that

perhaps the first solvation shell was saturated and this increase was the result of an

increase of particles in the second solvation shell. However, as can be seen in Figure

5.3 there is no drastic increase, so this further reaffirms the belief that the decrease

is due to some error or a long range orientational order of dipoles.

As mentioned in Chapter 4, divalent and trivalent ions were also simulated. Their

results are provided in Figure 5.4.

There are obvious similarities between these graphs and that of the monovalent ion,

but also some noticeable and some subtle differences. Most clear is that again the

solvation energy for the non-polymerized solvent is above the Born Solvation energy

due to dielectric saturation. Also, both seem to be approaching the same value and

exhibit qualitative similarities. However, as expected, the values of the solvation

energy are different, significantly lower in fact, in comparison to the monovalent ion.

This is from the increase in ion charge and also its effect on the surrounding solvent

dipoles.

With regards to the differences, it can be seen that in the low dipole moment regime

the polymeric solvent and the non-polymeric solvent are now significantly different.

This is very interesting and was quite unexpected. What makes it particularly fas-

cinating is when looking at the peak values of g(r) in this region. The values for

66

[g(r) at 4.0D]

[g(r) at 5.0D]

Figure 5.3: g(r) graphs for polymerized solvent comparing 2nd solvation
shell.

the polymeric and non-polymeric cases are very similar to each other indicating they

have a similar number of particles in the first solvation shell. Because of this it would

be expected to see a similar value in solvation energy, not a divergence. Though as

mentioned earlier, this may be due to the chaining of monomers forcing dipoles near

each other, thus increasing the correlation of dipole orientation. And again it is seen

67

[Solvation Energy of Divalent Ion]

[Solvation Energy of Trivalent Ion]

Figure 5.4: Solvation energy graphs for divalent and trivalent ions at 400K.
Description of elements and legend given by Figure 5.2.

68

that the polymeric solvent exhibits a linearly negative slope, at odds with that of the

non-polymeric solvent and predicted Born Solvation energy.

Now another interesting aspect of the divalent and trivalent graphs is the “swapping”

of the peak values of g(r) between 2.5D and 3D of the polymeric and non-polymeric

solvents. In both cases there seems to be a dramatic increase in solvent particles in

the first solvation shell for the non-polymeric solvent. With this dramatic jump it

would be expected to see some noticeable effect on the solvation energy, however there

is no such effect seen. The reason for this sudden increase is still currently unknown,

more work needs to be done to determine its cause. What can be commented on is

a proposed reason as to why the non-polymeric solvent would exhibit this behavior

and is absent for the polymeric case. The current idea is that since the monomers in

the polymeric solvent are chained up they are restricted in their movement, making

it harder for other monomers to get near to the ion. The non-polymeric solvent does

not have these structural restrictions allowing freer movement and allowing for more

dipoles near the ion. As to why this is not seen in the monovalent ion case may be

because the force is not as great. The force from the divalent ion is 4x greater so it

could be argued the monovalent ion simply isn’t strong enough to show this behavior.

What makes the polymeric case even more interesting is to focus on the max value

for the Born Solvation energy mentioned earlier. This is when εr → ∞ indicating

the lowest possible value the Born Solvation energy could have for a given ion charge

69

[g(r) Non-Polymer]

[g(r) Polymer]

Figure 5.5: g(r) graphs for polymerized and non-polymerized solvent at
2.5D for divalent ion case.

and size. One question that arose from this project was whether it was the Born

Solvation energy that was incorrect, or whether Onsager may have been at fault.

Could all of the important physics be captured by a correct understanding of the

dielectric constant? Perhaps using a dielectric function would be more apt, so as to

account for the dielectric saturation effect. The case for the polymeric solvent seems

to show this is not the case, and that the Born Solvation energy may be missing

70

something. Since in the higher dipole moment regimes of the monovalent, divalent,

and trivalent cases it is seen that the polymeric solvent falls below this max value.

Therefore there are effects not explained by changes in the dielectric constant. If

looking solely at the Born Solvation energy, the only things that could account for

this is an increased charge or a smaller ion size. Increased charge is out of the question

since that is held constant due to the ion being the only charge. The ion size could

be the culprit here. Perhaps the dipoles are closing in on the ion more-so in the

polymeric case than the non-polymeric case, resulting in an effectively smaller cavity,

smaller ion. Looking at the comparisons of g(r) in Figure 5.5 however indicate no

significant change in distance from the ion. Thus something not accounted for in the

Born Solvation energy is occurring. One thought is that the compressibility of the

solvent could play a part. A paper published by Nakamura shows that with increasing

compressibility the solvation energy lowers, shown in Figure 5.6[6].

Born Solvation energy assumes an incompressible liquid, so taking compressibility

into account could lower the energy, but as seen in the figure this change is small

so there may be something else at play. As was mentioned in Chapter 4, there are

caveats to the implementation of polymerization in LAMMPS and this behavior could

simply be a result of the model. Perhaps if monomer rotation and dipole orientation

were coupled something different would be seen. At the moment there are people

at Sandia National Laboratories working to implement this feature, so when that is

completed we can compare.

71

Figure 5.6: Graph showing that as compressibility of a solvent increases
the solvation energy decreases.Retrieved from Ref.[6]

5.3 System: Experimental Replication

As mentioned in Chapter 4, a series of varyingly sized ions were solvated in methanol.

Two different sizes for the coarse-grained methanol were used, 2.9Å and 2.6Å. The

results were plotted in Figure 5.7 along with experimental results[35, 36, 37, 38] and

DSCFT calculations for divalent ions.

As can be seen, both sizes closely match experimental data. There exists a couple

of outliers but otherwise this model explains the data very well. This result was

very surprising given it was a preliminary trial that matched the data so closely.

Because of this we can make several statements about the veracity of the Stockmayer

72

Figure 5.7: Graph of the solvation energy of ions of varying radii in
methanol. The black squares refer to experimental results, the red line
for the larger radii methanol, the blue line for the smaller radii methanol
and the purple dashed line for DSCFT calculation. The outer graph shows
monovalent ions and the inset shows divalent ions.

Fluid model with regards to solvation energy of ions. First, this shows that we can

accurately explain solvation energy only in terms of ionic charge, size of molecules, and

orientational polarization of permanent dipole moments. It appears that electronic

polarization does not play much of a role, at least for monovalent ions. Looking

at the divalent ions it may need to be considered, especially since the forces are 4x

greater than that of a monovalent ion. Also this lends credence to the idea that

the Stockmayer Fluid Model is a reasonable tool for modeling solvation of ions in

dipolar solvents. This has not been shown before, and will be a good tool for the

73

future, as the Stockmayer Fluid Model is a fairly simple model that is computationally

faster to simulate than a full atomistic simulation. This also helps us reinforce and

better understand the fundamental aspects of solvation, particularly what electronic

properties matter most.

Now one simulated model is not enough to back up all those claims. Currently we are

working to simulate many other solvents including ethanol, acetone, etc. As of writing

we have received promising results, but those are to be talked about in another paper.

The purpose of writing this here is to paint a picture of this method’s application

and that this model can actually tell us something about the world.

74

Chapter 6

Conclusions

The solvation of ions in solvents has been long studied and discussed. It could be

argued that its behavior has been mostly understood since the mid-twentieth century.

However, there are still many systems that have yet to be looked at and as has been

shown in this work, much of what’s understood may be qualitatively correct but

quantitatively suffers. Scientists still invoke the Born Solvation energy to this day, yet

we have shown that it has many shortcomings. Debye took great strides in improving

our understanding of the nature of polar molecules, but he had to be corrected by

Onsager, who has since been corrected by Kirkwood. Dielectric saturation has been

understood since Debye and it is well known that the solvation energy is dependant

almost entirely on the solvation shells surrounding an ion. Yet with the introduction

of modern techniques like molecular dynamics we can better probe these theories and

75

find in what situations they succeed and fail.

We showed that the Born Solvation energy doesn’t take into account the dielectric

saturation effect or invoke the idea of solvation shells. It assumes an incompressible

homogeneous dielectric material, a very idealized situation which does not reflect the

actual nature of the system. Through molecular dynamics using a simple Stockmayer

Fluid Model we were able to demonstrate these effects and show that the Born Solva-

tion energy fails to quantitatively describe the systems it claims to. We also showed

that simply polymerizing solvent dipoles significantly changes solvation energy and

may reveal the need to introduce new parameters to explain the concept of solva-

tion energy. And finally, we showed from preliminary results that the Stockmayer

Fluid Model may be enough to accurately simulate the effects of ion solvation in

non-polymeric solvents.

This work shows that while we may already understand much on the nature of ion

solvation, there is still more that needs to be worked out. What happens to the solva-

tion energy when dipole rotation is coupled with monomer rotation in a polymerized

solvent? Can the Stockmayer Fluid Model accurately predict solvation energies for

all systems? To what extent does the compressibility of a solvent effect the solvation

energy? Does the strength of the FENE potential have any influence on the solvation

energy? These are just some of the questions that can still be asked, as there is so

much we still don’t know. This is a topic that has been studied well for over 100

76

years, and it may still be for 100 more.

77

References

[1] Gong, H.; Freed, K. F. Physical review letters 2009, 102(5), 057603.

[2] Rapaport, D. C.; Rapaport, D. C. R. The art of molecular dynamics simulation;

Cambridge university press, 2004.

[3] Nakamura, I.; Shi, A.-C.; Wang, Z.-G. Physical review letters 2012, 109(25),

257802.

[4] Benjah-bmm27. Methanol-3D-balls.png;

https://commons.wikimedia.org/wiki/File:Methanol-3D-balls.png.

[5] Rowley, C. Simulated Radial Distribution Functions for Solid, Liquid, and

Gaseous Argon;

https://commons.wikimedia.org/wiki/File:Simulated_Radial_

Distribution_Functions_for_Solid,_Liquid,_and_Gaseous_Argon.svg.

[6] Nakamura, I. The Journal of Physical Chemistry B 2014, 118(21), 5787–5796.

[7] Von Born, M. Zeitschr. Physik 1920, 1, 45–48.

79

https://commons.wikimedia.org/wiki/File:Methanol-3D-balls.png
https://commons.wikimedia.org/wiki/File:Simulated_Radial_Distribution_Functions_for_Solid,_Liquid,_and_Gaseous_Argon.svg
https://commons.wikimedia.org/wiki/File:Simulated_Radial_Distribution_Functions_for_Solid,_Liquid,_and_Gaseous_Argon.svg

[8] Debye, P. Polar Molecules, by P. Debye.

[9] Onsager, L. Journal of the American Chemical Society 1936, 58(8), 1486–1493.

[10] Booth, F. The Journal of Chemical Physics 1951, 19(4), 391–394.

[11] Samoilov, O. Y. Izd. Akad. Nauk SSSR, Moscow 1957, pages 76–102.

[12] Plimpton, S. Journal of computational physics 1995, 117(1), 1–19.

[13] Stockmayer, W. The Journal of Chemical Physics 1941, 9(12), 863–870.

[14] Rashin, A. A.; Honig, B. The journal of physical chemistry 1985, 89(26), 5588–

5593.

[15] Raju, G. Dielectrics in Electric Fields, Power engineering; Taylor & Francis,

2003.

[16] Booth, F. The Journal of Chemical Physics 1955, 23(3), 453–457.

[17] Kuznetsov, V.; Usoltseva, N.; Zherdev, V. Russian Journal of Inorganic Chem-

istry 2014, 59(6), 637–642.

[18] Nikolic, B. Verlet Method; http://www.physics.udel.edu/~bnikolic/

teaching/phys660/numerical_ode/node5.html, 2003.

[19] Jones, R. A. Soft condensed matter, Vol. 6; Oxford University Press, 2002.

[20] Rühle, V. Am. J. Phys 2007.

80

http://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/node5.html
http://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/node5.html

[21] https://lammps.sandia.gov/.

[22] https://lammps.sandia.gov/papers.html.

[23] https://lammps.sandia.gov/doc/Howto_thermostat.html.

[24] https://lammps.sandia.gov/doc/pair_style.html.

[25] Stevens, M. J.; Grest, G. S. Physical Review E 1995, 51(6), 5976.

[26] Gao, G.; Zeng, X. C.; Wang, W. The Journal of chemical physics 1997, 106(8),

3311–3317.

[27] https://lammps.sandia.gov/doc/pair_dipole.html.

[28] https://lammps.sandia.gov/doc/bond_fene.html.

[29] Liu, L.; Nakamura, I. The Journal of Physical Chemistry B 2017, 121(14), 3142–

3150.

[30] https://lammps.sandia.gov/doc/pair_soft.html.

[31] Nakamura, I. The Journal of Physical Chemistry B 2018, 122(22), 6064–6071.

[32] https://en.wikipedia.org/wiki/Methanol.

[33] https://hpc.sandia.gov/platforms/index.html.

[34] Chandler, D. Introduction to Modern Statistical Mechanics, by David Chandler,

pp. 288. Foreword by David Chandler. Oxford University Press, Sep 1987. ISBN-

10: 0195042778. ISBN-13: 9780195042771 1987.

81

https://lammps.sandia.gov/
https://lammps.sandia.gov/papers.html
https://lammps.sandia.gov/doc/Howto_thermostat.html
https://lammps.sandia.gov/doc/pair_style.html
https://lammps.sandia.gov/doc/pair_dipole.html
https://lammps.sandia.gov/doc/bond_fene.html
https://lammps.sandia.gov/doc/pair_soft.html
https://en.wikipedia.org/wiki/Methanol
https://hpc.sandia.gov/platforms/index.html

[35] Burgess, J. Metal ions in solution; Halsted Press, 1978.

[36] Case, B.; Parsons, R. Transactions of the Faraday Society 1967, 63, 1224–1239.

[37] Abraham, M. H.; Liszi, J. Journal of the Chemical Society, Faraday Transactions

1: Physical Chemistry in Condensed Phases 1978, 74, 1604–1614.

[38] Bontha, J.; Pintauro, P. The Journal of Physical Chemistry 1992, 96(19), 7778–

7782.

82

Appendix A

Onsager Equation Algebra

When introducing the new polarization given by equation 2.71 to the Classius-

Mossotti equation 2.29, we get

εr − 1

εr + 2
=

N

3ε0

(
αe +

µ2

3kBT + µRm

)
(A.1)

Now by using equation 2.27 and the Lorentz-Lorenz equation 2.30 this can be rewrit-

ten as

εr − 1

εr + 2
− n2 − 1

n2 + 2
=

N

3ε0

(
µ2

3kBT + µRm

)
(A.2)

83

Plugging in the Reaction field from equation 2.62

εr − 1

εr + 2
− n2 − 1

n2 + 2
=

N

3ε0

(
µ2

3kBT + 2Nµ2

9ε0

(εr−1)(n2+2)
(n2+2εr)

)
(A.3)

Just looking at the right side, it can be reorganized to become

=
N

3ε0

(
µ2

27kBTε0(n2+2εr)+2Nµ2(εr−1)(n2+2)
9ε0(n2+2εr)

)

=
3Nµ2(n2 + 2εr)

27kBTε0(n2 + 2εr) + 2Nµ2(εr − 1)(n2 + 2)

(A.4)

Next, multiplying the denominator to the other side we get

[
27kBTε0(n

2+2εr)+2Nµ2(εr−1)(n2+2)
][εr − 1

εr + 2
−n

2 − 1

n2 + 2

]
= 3Nµ2(n2+2εr) (A.5)

Dividing by the right side gives

84

[
9kBTε0
Nµ2

+
2(εr − 1)(n2 + 2)

3(n2 + 2εr)

][
εr − 1

εr + 2
− n2 − 1

n2 + 2

]
= 1 (A.6)

Now we’ll divide by the second bracketed term and subtract the second term in the

first bracket to write

9kBTε0
Nµ2

=
1[

εr−1
εr+2
− n2−1

n2+2

] − 2(εr − 1)(n2 + 2)

3(n2 + 2εr)
(A.7)

For now we’ll look at just the right hand side. The first term can be rewritten as

1
(ε−1)(n2+2)−(n2−1)(εr+2)

(εr+2)(n2+2)

=
(εr + 2)(n2 + 2)

(εr − 1)(n2 + 2)− (n2 − 1)(εr + 2)

=
(εr + 2)(n2 + 2)

εrn2 + 2εr − n2 − 2− εrn2 − 2n2 + εr + 2

=
(εr + 2)(n2 + 2)

3(εr − n2)

(A.8)

The whole right hand side is now

=
(εr + 2)(n2 + 2)

3(εr − n2)
− 2(εr − 1)(n2 + 2)

3(n2 + 2εr)
(A.9)

85

Pulling out like terms

=
(n2 + 2)

3

(
εr + 2

εr − n2
− 2(εr − 1)

n2 + 2εr

)
=
n2 + 2

3

(
(εr + 2)(n2 + 2εr)− 2(εr − 1)(εr − n2

(εr − n2)(n2 + 2εr)

)
=

n2 + 2

3(εr − n2)(n2 + 2εr)

[
εrn

2 + 2ε2r + 2n2 + 4εr − 2ε22εrn
2 + 2εr − 2n2

]
=

n2 + 2

3(εr − n2)(n2
2εr)

(3εrn
2 + 6εr)

=
(n2 + 2)2

(εr − n2)(n2 + 2εr)

(A.10)

So now putting into the whole equation and taking the reciprocal of both sides gives

Nµ2

9kBTε0
=

(εr − n2)(n2 + 2εr)

(n2 + 2)2
(A.11)

and there we have the Onsager Equation.

86

Appendix B

Sample LAMMPS Script

A simple example script for LAMMPS treating particles as LJ spheres. First given

is the LAMMPS script, then the atom data file.

B.1 script simplelj.in

###

#

#

Filename: script.in

Author: Cameron Shock , 2018

#

Execute the script through:

87

lmp_exe < script.in

#

###

VARIABLES

variable fname index atoms_simplelj.txt

variable simname index simplelj

Initialization

units lj

boundary p p p

atom_style atomic

log log.${simname }.txt

read_data ${fname}

#Neighbor list info

neighbor 0.4 bin

neigh_modify every 10 one 10000

##

#Minimization

#Manual Minimization

pair_style soft 1.225

pair_coeff * * 60.0

velocity all create 0.7859 1231

fix 1 all nvt temp 0.7859 0.7859 1.0

thermo_style custom step temp etotal

thermo 10000

timestep 0.0028 #2fs

run 50000

unfix 1

88

#Built -in minimization

#min_style cg

#minimize 0.0 1.0e-10 1000000 1000000

###

Equilibration

pair_style lj/cut 1.225

pair_coeff * * 1.0 1.0

velocity all create 0.7859 1231

fix 1 all nvt temp 0.7859 0.7859 1.0

thermo_style custom step temp etotal ke

thermo 1000

timestep 0.0028 #2fs

run 1000000

unfix 1

print "All done"

B.2 atoms simplelj.txt

Model for

100 atoms

1 atom types

0.000000 10.000000 xlo xhi

89

0.000000 10.000000 ylo yhi

0.000000 10.000000 zlo zhi

Masses

1 18.000000

Atoms

1 1 0.596189 6.819719 0.424311

2 1 0.714455 5.216498 0.967300

3 1 8.181486 8.175471 7.224396

4 1 1.498654 6.596053 5.185949

5 1 9.729746 6.489915 8.003306

6 1 4.537977 4.323915 8.253138

7 1 0.834698 1.331710 1.733886

8 1 3.909378 8.313797 8.033644

9 1 0.604712 3.992578 5.268758

10 1 4.167995 6.568599 6.279734

11 1 2.919841 4.316512 0.154871

12 1 9.840637 1.671684 1.062163

13 1 3.724097 1.981184 4.896876

14 1 3.394934 9.516305 9.203320

15 1 0.526770 7.378581 2.691194

16 1 4.228356 5.478709 9.427370

17 1 4.177441 9.830525 3.014549

18 1 7.010988 6.663389 5.391265

19 1 6.981055 6.665279 1.781325

20 1 1.280144 9.990804 1.711211

21 1 0.326008 5.611998 8.818665

22 1 6.691753 1.904333 3.689165

23 1 4.607259 9.816380 1.564050

90

24 1 8.555228 6.447645 3.762722

25 1 1.909237 4.282530 4.820221

26 1 1.206116 5.895075 2.261877

27 1 3.846191 5.829864 2.518061

28 1 2.904407 6.170909 2.652809

29 1 8.243763 9.826634 7.302488

30 1 3.438770 5.840693 1.077690

31 1 9.063082 8.796537 8.177606

32 1 2.607280 5.943563 0.225126

33 1 4.252593 3.127189 1.614847

34 1 1.787662 4.228857 0.942293

35 1 5.985237 4.709243 6.959493

36 1 6.998878 6.385308 0.336038

37 1 0.688061 3.195997 5.308643

38 1 6.544457 4.076192 8.199812

39 1 7.183589 9.686493 5.313339

40 1 3.251457 1.056292 6.109587

41 1 7.788022 4.234529 0.908233

42 1 2.664715 1.536567 2.810053

43 1 4.400851 5.271427 4.574244

44 1 8.753716 5.180521 9.436226

45 1 6.377091 9.576939 2.407070

46 1 6.761223 2.890646 6.718082

47 1 6.951405 0.679928 2.547902

48 1 2.240400 6.678327 8.443922

49 1 3.444624 7.805197 6.753321

50 1 0.067153 6.021705 3.867712

51 1 9.159912 0.011511 4.624492

52 1 4.243490 4.609164 7.701597

53 1 3.224718 7.847393 4.713572

54 1 0.357627 1.758744 7.217580

55 1 4.734860 1.527212 3.411246

56 1 6.073892 1.917453 7.384268

57 1 2.428496 9.174243 2.690616

91

58 1 7.655000 1.886620 2.874982

59 1 0.911135 5.762094 6.833632

60 1 5.465931 4.257288 6.444428

61 1 6.476176 6.790168 6.357867

62 1 9.451741 2.089349 7.092817

63 1 2.362306 1.193962 6.073039

64 1 4.501377 4.587255 6.619448

65 1 7.702855 3.502180 6.620096

66 1 4.161586 8.419292 8.329168

67 1 2.564410 6.134607 5.822492

68 1 5.407393 8.699410 2.647790

69 1 3.180741 1.192145 9.398295

70 1 6.455519 4.794632 6.393170

71 1 5.447161 6.473115 5.438859

72 1 7.210466 5.224953 9.937046

73 1 2.186766 1.057983 1.096975

74 1 0.635914 4.045800 4.483729

75 1 3.658162 7.635046 6.278964

76 1 7.719804 9.328536 9.727409

77 1 1.920283 1.388742 6.962663

78 1 0.938200 5.254044 5.303442

79 1 8.611398 4.848533 3.934564

80 1 6.714311 7.412579 5.200525

81 1 3.477127 1.499973 5.860921

82 1 2.621453 0.444541 7.549333

83 1 2.427854 4.424023 6.877961

84 1 3.592282 7.363401 3.947075

85 1 6.834159 7.040474 4.423054

86 1 0.195776 3.308579 4.243095

87 1 2.702704 1.970538 8.217212

88 1 4.299214 8.877710 3.911830

89 1 7.691144 3.967915 8.085141

90 1 7.550771 3.773955 2.160189

91 1 7.904072 9.493039 3.275654

92

92 1 6.712644 4.386450 8.335006

93 1 7.688543 1.672535 8.619805

94 1 9.898722 5.144235 8.842810

95 1 5.880261 1.547523 1.998628

96 1 4.069548 7.487057 8.255838

97 1 7.899630 3.185242 5.340641

98 1 0.899507 1.117057 1.362925

99 1 6.786523 4.951770 1.897104

100 1 4.950058 1.476082 0.549741

93

Appendix C

Atom Generation Script Ver. 1

This Matlab script was used to create atom data for the first two systems mentioned

in Chapter 4.

C.1 generateDipolesCharge2typerandbondssolv.m

clear

clc

atoms = 96; %# of particles

atomTypes = 2; %# of types

box = [0.0000 ,10.0000;0.0000 ,10.0000;0.0000 ,10.0000]; %←↩
box dimensions

95

masses = [18.00 ,18.00]; %the masses for each type of ←↩
particle

atomIdMatrix = (1: atoms) '; %matrix of id 's for each ←↩
particle

atomTypeMatrix = ones(atoms ,1);%create a 2 column matrix←↩
to store each type

atomChargeMatrix = ones(atoms ,1);

atomMomentMatrix = zeros(atoms ,3); %matrix for dipole ←↩
moments

atomDiameterMatrix = 2.3333.* ones(atoms ,1); %matrix for ←↩
diameter of particles

atomDensityMatrix = ones(atoms ,1); %matrix for density ←↩
of particles

moleculeMatrix =(1: atoms)';

offset = 0;

if(atomTypes == 2)

offset = 0;

end

%for each dipole moment

for m1 = 0.5:0.5:5.0

moment1 = m1 *0.838326;

%randomly generate direction for dipole moment of ←↩
cations

for p = 1:(atoms)

phi = 2*pi*rand();

theta = pi*rand();

x = moment1*sin(theta)*cos(phi);

y = moment1*sin(theta)*sin(phi);

z = moment1*cos(theta);

atomMomentMatrix(p,:) = [x,y,z];

end

96

%randomly generate particle positions

atomPos = ones(atoms ,3);

for n = 1:atoms

posX = box(1,2) * rand();

posY = box(2,2) * rand();

posZ = box(3,2) * rand();

atomPos(n,:) = [posX , posY , posZ];

end

%BONDS

chainlength = 16;

if chainlength ~= 0

bonds = (atoms -offset) / chainlength * (←↩
chainlength - 1);

bondTypes = 2;

bondIdMatrix = (1: bonds) ';

bondTypeMatrix = ones(bonds ,1);

bondTypeMatrix(bonds /2+1: bonds) = 2;

bondAtomMatrix = ones(bonds ,2);

moleculeMatrix = ones(atoms ,1);

molecule = 1;

missing = 0;

for n = 1:atoms -offset

if(mod(n,chainlength) ~= 0)

bondAtom1 = n;

bondAtom2 = n+1;

bondAtomMatrix(n-missing ,:) = [bondAtom1 ←↩
bondAtom2];

moleculeMatrix(n) = molecule;

else

moleculeMatrix(n) = molecule;

molecule = molecule + 1;

missing = missing + 1;

end

97

end

bondMatrix = [bondIdMatrix bondTypeMatrix ←↩
bondAtomMatrix];

else

bonds = 0;

bondTypes = 0;

end

if chainlength ~= 0

%random walk put together polymers

for n = 1:atoms -offset

if(n ~= 1 && mod(n-1, chainlength) ~= 0)

safe = 0;

while (safe == 0)

r = 1;

phi = 2*pi*rand();

theta = pi*rand();

x = r*sin(theta)*cos(phi);

y = r*sin(theta)*sin(phi);

z = r*cos(theta);

atomPos(n,:) = [atomPos(n-1,1)+x,←↩
atomPos(n-1,2)+y,atomPos(n-1,3)+z];

safe = 1;

if(atomPos(n,1) > box(1,2) || atomPos←↩
(n,2) > box(2,2) || atomPos(n,3) > ←↩
box(3,2) || atomPos(n,1) < box(1,1)←↩
|| atomPos(n,2) < box(2,1) || ←↩

atomPos(n,3) < box(3,1) || sqrt(x←↩
^2+y^2+z^2) > 1)

safe = 0;

end

end

end

98

end

end

%set type 2

if(atomTypes == 2)

atomTypeMatrix(atoms /2+1: atoms) = 2;

atomChargeMatrix (1: atoms /2) = 12.08;

atomChargeMatrix(atoms /2+1: atoms) = -12.08;

%atomMomentMatrix(atoms ,:) = [0,0,0];

atomDiameterMatrix (1: atoms /2) = 1.0;

moleculeMatrix(atoms) = moleculeMatrix(atoms -1)←↩
+1;

end

%put all matrices as a column in one large matrix ←↩
called atomMatrix

atomMatrix = [atomIdMatrix atomTypeMatrix atomPos ←↩
atomDiameterMatrix atomDensityMatrix ←↩
atomChargeMatrix atomMomentMatrix moleculeMatrix];

%generate file

fileID = fopen(['IonicLiquids/SolvationPolymer3A7C/←↩
atoms ' num2str(m1*10,'%02d') 'D1E.txt'],'w');

fprintf(fileID ,'# Model for \n\n');

fprintf(fileID ,'%d\tatoms\n', atoms);

fprintf(fileID ,'%d\tbonds\n\n', bonds);

fprintf(fileID ,'%d\tatom types\n', atomTypes);

fprintf(fileID ,'%d\tbond types\n\n', bondTypes);

fprintf(fileID ,'%f\t%f\txlo xhi\n',box(1,1),box(1,2)←↩
);

fprintf(fileID ,'%f\t%f\tylo yhi\n',box(2,1),box(2,2)←↩
);

99

fprintf(fileID ,'%f\t%f\tzlo zhi\n',box(3,1),box(3,2)←↩
);

fprintf(fileID ,'\n\nMasses\n\n');

fprintf(fileID ,'%d\t%f\n%d\t%f\n',1,masses (1,1) ,2,←↩
masses (1,2));

fprintf(fileID ,'\n\nAtoms\n\n');

for i = 1:atoms

fprintf(fileID ,'%d\t%d\t%d\t%f\t%f\t%f\t%f\t%f\t←↩
%f\t%f\t%f\t%d\n',atomMatrix(i,1),atomMatrix(i←↩
,2),atomMatrix(i,3),atomMatrix(i,4),atomMatrix←↩
(i,5),atomMatrix(i,6),atomMatrix(i,7),←↩
atomMatrix(i,8),atomMatrix(i,9),atomMatrix(i←↩
,10),atomMatrix(i,11),atomMatrix(i,12));

end

if(bonds > 0)

fprintf(fileID ,'\n\nBonds\n\n');

for i = 1:bonds

fprintf(fileID ,'%d\t%d\t%d\t%d\n',bondMatrix←↩
(i,1),bondMatrix(i,2),bondMatrix(i,3),←↩
bondMatrix(i,4));

end

end

fclose(fileID);

end

100

Appendix D

Atom Generation Script Ver. 2

This version of the atom generation script was also written in matlab and used to gen-

erate the atom data files for the 3rd system mentioned in Chapter 4. It is generalized

from the code given in Appendix C to allow for differing properties of particles to be

used without changing the code too much. The code can be accessed and downloaded

from https://github.com/Shockersify/CreateParticles.

D.1 CreateAtoms.m

% CreateAtoms.m

% Author: Cameron Shock

101

https://github.com/Shockersify/CreateParticles

% Description: Create atom data files for LAMMPS. Use ←↩
the myscript.m file

% or your own as an interface with this function. ←↩
Parameters required and

% properties are structs and filename is a string.

% required must contain: box , masses , polymers , ←↩
numOfPolymers , bondTypes.

% properties contains the properties of each particle ←↩
type.

function atoms = CreateAtoms(required ,properties ,←↩
filename)

% MAIN PART OF CODE DO NOT TOUCH←↩

bondType = 1;

atomTypes = max(cell2mat(required.polymers));

totalcolumns = numel(fieldnames(properties)) + 2;

if any(strcmp(fieldnames(properties),'position '))

totalcolumns = totalcolumns + 2;

end

if any(strcmp(fieldnames(properties),'moment '))

totalcolumns = totalcolumns + 2;

end

% start particle id sequence

atomMatrix = [];

bondMatrix = [];

id = 1;

lastID = 0;

offset = 0;

% for each polymer chain

102

for polymer = 1:numel(required.polymers)

% for the total number of this particular ←↩
polymer chain

for n = 1: required.numOfPolymers(polymer)

% initialize matrix holding polymer group ←↩
info

polymerGroupInfo = ones(numel(cell2mat(←↩
required.polymers(polymer))),totalcolumns)←↩
;

% for each element in this particular ←↩
polymer chain

for element = 1:numel(cell2mat(required.←↩
polymers(polymer)))

types = cell2mat(required.polymers(←↩
polymer));

%polymerGroupInfo(element ,:) = [id, ←↩
types(element)];

info = [id, types(element)];

propertyFields = (fieldnames(properties)←↩
);

propertyValues = struct2cell(properties)←↩
;

momentPosition = 0;

prop = 2;

for property = 1: numel(propertyFields)

prop = prop + 1;

pVal = cell2mat(propertyValues(←↩
property));

thing = pVal(types(element));

if isequal(cell2mat(propertyFields(←↩
property)), 'position ')

thing = [1,1,1];

positionPosition = prop;

103

prop = prop + 2;

end

if isequal(cell2mat(propertyFields(←↩
property)), 'moment ')

thing = [1,1,1];

momentPosition = prop;

prop = prop + 2;

end

if isequal(cell2mat(propertyFields(←↩
property)), 'molecule ')

thing = n+offset;

end

info = [info thing];

end

% create the polymer group info matrix ←↩
holding all information

% about each particle

polymerGroupInfo(element ,:) = info;

id = id + 1;

end

% randomly generate positions and moments ←↩
then create bond

% matrix

if isfield(properties ,'diameter ')

positions = MakePositions(←↩
polymerGroupInfo (: ,1:2), required.box ,←↩
properties.diameter);

else

positions = MakePositions(←↩
polymerGroupInfo (: ,1:2), required.box ,←↩
ones(atomTypes ,1));

104

end

polymerGroupInfo (:, positionPosition:←↩
positionPosition +2) = positions;

if momentPosition ~= 0

moments = MakeMoments(polymerGroupInfo←↩
(: ,1:2), properties.moment);

polymerGroupInfo (:, momentPosition:←↩
momentPosition +2) = moments;

end

bonds = MakeBonds(polymerGroupInfo (:,1), ←↩
bondType , lastID);

if size(bonds ,1) > 0

lastID = bonds(end ,1);

end

% replace initialization data in polymer ←↩
group info with actual

atomMatrix = [atomMatrix;polymerGroupInfo];

bondMatrix = [bondMatrix;bonds];

end

offset = offset + required.numOfPolymers(polymer←↩
);

end

MakeFile(atomMatrix ,bondMatrix ,atomTypes ,bondType ,←↩
required.masses ,required.box ,filename);

% END OF UNTOUCHABLE CODE←↩

end

105

D.2 MakePositions.m

% MakePositions.m

% Author: Cameron Shock

% Description: Given a matrix containg atom id 's and ←↩
types , a matrix of box

% size , and a matrix of particle diameters randomly ←↩
place the first

% particle of a polymer chain and use random walk to ←↩
create the rest.

function positions = MakePositions(atoms , box , diameter)

positions = ones(size(atoms ,1) ,3);

posX = box(1,2) * rand();

posY = box(2,2) * rand();

posZ = box(3,2) * rand();

positions (1,:) = [posX , posY , posZ];

for x = 1:size(atoms ,1)

% for first particle pick random x,y,z

if x == 1

posX = box(1,2) * rand();

posY = box(2,2) * rand();

posZ = box(3,2) * rand();

% for subsequent particles use 3D random walk

else

oldX = posX;

oldY = posY;

oldZ = posZ;

while 1

r = diameter(atoms(x,2));

phi = 2*pi*rand();

106

theta = pi*rand();

posX = posX + r*sin(theta)*cos(phi);

posY = posY + r*sin(theta)*sin(phi);

posZ = posZ + r*cos(theta);

% check that new position is within box

if(posX > box(1,1) && posY > box(2,1) &&←↩
posZ > box(3,1) && posX < box(1,2) &&←↩
posY < box(2,2) && posZ < box(3,2))

break

% if not reset position and try again

else

posX = oldX;

posY = oldY;

posZ = oldZ;

end

end

end

positions(x,:) = [posX , posY , posZ];

end

end

D.3 MakeMoments.m

% MakeMoments.m

% Author: Cameron Shock

% Description: Given a matrix of atom id 's and types and←↩
a matrix of the

107

% dipole moments for each type , create a matrix giving ←↩
random dipole moment

% directions to the atoms.

function moments = MakeMoments(atoms , moment)

moments = ones(size(atoms ,1) ,3);

for p = 1:size(atoms ,1)

phi = 2*pi*rand();

theta = pi*rand();

x = moment(atoms(p,2))*sin(theta)*cos(phi);

y = moment(atoms(p,2))*sin(theta)*sin(phi);

z = moment(atoms(p,2))*cos(theta);

moments(p,:) = [x,y,z];

end

end

D.4 MakeBonds.m

% MakeBonds.m

% Author: Cameron Shock

% Description: For a given matrix of atom id 's, int of ←↩
bondType , and int of

% last particle id, create a matrix of the bond ←↩
connection info for given

% atoms.

function bonds = MakeBonds(atoms , bondType , lastID)

bonds = [];

if size(atoms ,1) > 1

bonds = ones(size(atoms ,1) -1,4);

108

for x = 1:size(atoms ,1) -1

bonds(x,:) = [x+lastID , bondType , atoms(x), ←↩
atoms(x+1)];

end

end

end

D.5 MakeFile.m

% MakeFile.m

% Author: Cameron Shock

% Description: Given all of the matrices containg the ←↩
atom information and

% all other info (should hopefully be obvious) create ←↩
the atom data file

% for LAMMPS.

function file = MakeFile(atomMatrix , bondMatrix , ←↩
atomTypes , bondTypes , masses , box , filename)

%generate file

fileID = fopen(filename ,'w');

fprintf(fileID ,'# Model for \n\n');

fprintf(fileID ,'%d\tatoms\n', atomMatrix(end ,1));

if(size(bondMatrix ,1) > 0)

fprintf(fileID ,'%d\tbonds\n\n', bondMatrix(end←↩
,1));

else

fprintf(fileID ,'%d\tbonds\n\n', 0);

end

fprintf(fileID ,'%d\tatom types\n', atomTypes);

109

fprintf(fileID ,'%d\tbond types\n\n', bondTypes);

fprintf(fileID ,'%f\t%f\txlo xhi\n',box(1,1),box(1,2)←↩
);

fprintf(fileID ,'%f\t%f\tylo yhi\n',box(2,1),box(2,2)←↩
);

fprintf(fileID ,'%f\t%f\tzlo zhi\n',box(3,1),box(3,2)←↩
);

fprintf(fileID ,'\n\nMasses\n\n');

for i = 1:size(masses ,2)

fprintf(fileID ,'%d\t%f\n',i,masses(i));

end

fprintf(fileID ,'\n\nAtoms\n\n');

% for each atom

[m,n] = size(atomMatrix);

for i = 1:m

for j = 1:n

fprintf(fileID ,'%f\t',atomMatrix(i,j));

end

fprintf(fileID ,'\n');

end

% if bonds exist create the bonds section for each ←↩
bond

if(size(bondMatrix ,1) > 0)

fprintf(fileID ,'\n\nBonds\n\n');

for i = 1: bondMatrix(end ,1)

fprintf(fileID ,'%d\t%d\t%d\t%d\n',bondMatrix←↩
(i,1),bondMatrix(i,2),bondMatrix(i,3),←↩
bondMatrix(i,4));

end

end

fclose(fileID);

end

110

D.6 myscript.m

% myscript.m

% Author: Cameron Shock

% Description: Create atom data files for LAMMPS. First ←↩
construct the

% polymer cell matrix which consists of arrays of ←↩
whatever atom types you

% want. Next numOfPolymers determines the number of each←↩
polymer chain you

% want. The next section is defining all of properties ←↩
for each atom type

% (each column for each type).

% set size of the simulation box

box = [0.0000 ,10.0000;0.0000 ,10.0000;0.0000 ,10.0000]; %←↩
box dimensions

% info based on polymer sets

polymers = {{[1] ,[2]}}; % each matrix is a different ←↩
polymer chain , each element of a matrix is the atom ←↩
type of that particle

numOfPolymers = [278 ,1]; %number of each polymer chain

bondTypes = {[1]}; %ignore for now

for n = 1:numel(ions (:,1))

name = cell2mat(ions1(n));

if (name(end) == '-')

charge = -2;

111

else

charge = 2;

end

% info based on atom types (each element is value ←↩
for that type)

charge = [0,charge * 12.08];

moment = [1.391621 ,0];

diameter = [0.7666 , ions(n,1)];

density = [1,1];

masses = [46.1, ions(n,2)];

% do not touch

position = ones(numel(masses));

molecule = ones(numel(masses));

required = struct('box',box ,'masses ',masses ,'←↩
polymers ',polymers ,'numOfPolymers ',numOfPolymers ,'←↩
bondTypes ',bondTypes);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%ion = cell2mat(ions1(i));

filename = ['../ Sandia/SolvationExperimental/Eth2 .3/←↩
atomsEth ' cell2mat(ions1(n)) '.txt'];

% order and name of properties needed for this atom ←↩
type

properties = struct('position ',position ,'diameter ',←↩
diameter ,'density ',density ,'charge ',charge ,'moment←↩
',moment ,'molecule ',molecule);

CreateAtoms(required ,properties ,filename);

end

112

Appendix E

Non-Polymer Example Script

E.1 scriptSolvMono10ps400k 5

###

#

#

Filename: scriptSolvMono10ps400k_5

Author: Cameron Shock , 2018

#

Execute the script through:

lmp_exe < script.in

#

###

VARIABLES

113

variable fname index atoms25D -1E.txt

variable simname index 25D-1E

Initialization

units lj

boundary p p p

atom_style hybrid sphere dipole bond

log log.${simname }.txt

read_data ${fname}

Dreiding potential information

neighbor 0.4 bin

neigh_modify every 10 one 10000

##

#Minimization

pair_style soft 1.225

pair_coeff * * 60.0

velocity all create 1.048 1231

timestep 0.00187 #2fs

min_style cg

minimize 0.0 1.0e-10 1000000 1000000

###

Equilibration

pair_style lj/cut/dipole/long 1.225 5.0

pair_coeff 1 1 1.0 1.0

pair_coeff 2 2 1.0 0.666 0.748

pair_modify mix geometric

kspace_style ewald/disp 1e-4

special_bonds fene

#Collect MSD to calculate Diffusion Coefficient

group 2 type 2

114

compute myMSD 2 msd

fix 3 all ave/time 200 10 2000 c_myMSD [*] file ${simname←↩
}.msd mode vector

dump mf1 all custom 100 ${simname }.dump id type xs ys zs←↩
mux muy muz q

velocity all create 1.048 1231

fix 1 all nve/sphere update dipole

fix 2 all langevin 1.048 1.048 1.0 573456 omega ←↩
yes zero yes

thermo_style custom step temp etotal pe epair

thermo 5000

timestep 0.00187 #2fs

run 5100000

unfix 1

unfix 2

unfix 3

print "All done"

115

Appendix F

Polymer Example Script

F.1 scriptSolvMonoP16 1

###

#

#

Filename: script1D1E2.in

Author: Cameron Shock , 2018

#

Execute the script through:

lmp_exe < script.in

#

###

VARIABLES

117

variable fname index atoms05D -1E16P.txt

variable simname index 05D-1E16P

Initialization

units lj

boundary p p p

atom_style hybrid sphere dipole bond

log log.${simname }.txt

read_data ${fname}

Dreiding potential information

neighbor 0.4 bin

neigh_modify every 10 one 10000

##

#Minimization

pair_style soft 1.68369

pair_coeff * * 60.0

bond_style fene

bond_coeff * 15.556 2.25 1.0 1.5

special_bonds fene

velocity all create 1.048 1231

timestep 0.0028 #2fs

min_style cg

minimize 0.0 1.0e-10 1000000 1000000

###

Equilibration

pair_style lj/cut/dipole/long 1.68369 7.5

pair_coeff 1 1 1.0 1.5

pair_coeff 2 2 1.0 1.0 1.225

pair_modify mix geometric

kspace_style ewald/disp 1e-4

bond_style fene

118

bond_coeff * 15.556 2.25 1.0 1.5

special_bonds fene

#Collect MSD to calculate Diffusion Coefficient

group 2 type 2

compute myMSD 2 msd

fix 3 all ave/time 200 10 2000 c_myMSD [*] file ${simname←↩
}.msd mode vector

dump mf1 all custom 5000 ${simname }.dump id type xs ys ←↩
zs mux muy muz q

velocity all create 1.048 1231

fix 1 all nve/sphere update dipole

fix 2 all langevin 1.048 1.048 1.0 573456 omega ←↩
yes zero yes

thermo_style custom step temp etotal pe epair

thermo 5000

timestep 0.0028 #2fs

run 51000000

unfix 1

unfix 2

unfix 3

print "All done"

119

Appendix G

Experimental Replication Example

Script

G.1 scriptSolvLi+10ps400k

###

#

#

Filename: scriptSolvLi +10 ps400k.in

Author: Cameron Shock , 2019

#

Execute the script through:

lmp_exe < scriptSolvLi +10 ps400k.in

#

121

Purpose: Simulate a Li+ atom in a solvent of

methanol molecules using Stockmayer Fluid

model.

#

###

VARIABLES

variable fname index atomsMethLi +.txt

variable simname index MethLi+

Initialization

units lj

boundary p p p

atom_style hybrid sphere dipole bond

log log.${simname }.txt

read_data ${fname}

Dreiding potential information

neighbor 0.4 bin

neigh_modify every 10 one 10000

##

#Minimization

pair_style soft 1.225

pair_coeff * * 60.0

velocity all create 1.048 1231

timestep 0.0021 #2fs

min_style cg

minimize 0.0 1.0e-10 1000000 1000000

###

Equilibration

pair_style lj/cut/dipole/long 1.225 5.0

122

pair_coeff 1 1 1.0 0.8666 0.973 # methanol 2.6 ←↩
angstrom

pair_coeff 2 2 1.0 0.5200 0.5837 # lithium 0.78 ←↩
angstrom

pair_modify mix geometric

kspace_style ewald/disp 1e-4

special_bonds fene

#Collect MSD to calculate Diffusion Coefficient

group 2 type 2

compute myMSD 2 msd

fix 3 all ave/time 200 10 2000 c_myMSD [*] file ${simname←↩
}.msd mode vector

dump mf1 all custom 5000 ${simname }.dump id type xs ys ←↩
zs mux muy muz q

velocity all create 1.048 1231 # 400k

fix 1 all nve/sphere update dipole

fix 2 all langevin 1.048 1.048 1.0 573456 omega ←↩
yes zero yes

thermo_style custom step temp etotal pe epair

thermo 5000

timestep 0.0021 #2fs

run 51000000

unfix 1

unfix 2

unfix 3

print "All done"

123

	The Solvation Energy of Ions in a Stockmayer Fluid
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Theory of Solvation
	Born Solvation Energy
	Onsager Theory
	Electronic Polarization
	Orientational Polarization
	Reaction Field
	Onsager Equation

	Dielectric Saturation
	Local Structure

	Molecular Dynamics
	Verlet Algorithm
	Interaction Potentials
	Boundary Conditions
	Thermostat
	LAMMPS

	Methods
	Stockmayer Fluid
	Simulation Goals
	Method
	System: Non-polymerized Solvent
	System: Polymerized Solvent
	System: Experimental Replication

	Equipment Used

	Results and Analysis
	Radial Distribution Function
	System: Solvation Energy of Polymerized and Non-polymerized Solvent
	System: Experimental Replication

	Conclusions
	References
	Onsager Equation Algebra
	Sample LAMMPS Script
	script_simplelj.in
	atoms_simplelj.txt

	Atom Generation Script Ver. 1
	generateDipolesCharge2typerandbondssolv.m

	Atom Generation Script Ver. 2
	CreateAtoms.m
	MakePositions.m
	MakeMoments.m
	MakeBonds.m
	MakeFile.m
	myscript.m

	Non-Polymer Example Script
	scriptSolvMono10ps400k_5

	Polymer Example Script
	scriptSolvMonoP16_1

	Experimental Replication Example Script
	scriptSolvLi+10ps400k

