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Preface

This dissertation is a result of my research in pursuing a Ph.D. degree in Statistics

at Michigan Tech University. It includes previously published or ongoing papers in

Chapters 2-3.

Chapter 2 contains one paper published on Communications in Statistics-Theory and

Methods with Dr. Yeonwoo Rho. To test if the flat averaging is acceptable and

enough, we constructed a specification test for the flat averaging against the mixed

data sampling model. We illustrated a Durbin-Wu-Hausman type specification test

constructed upon a two stage least squares estimation and focused on the choice of

instrumental variables in the Durbin-Wu-Hausman type test. Details of the choice

of instruments are presented to demonstrate its theoretical consistency when the

frequency ratio is large enough.

Chapter 3 contains an ongoing paper with Dr. Yeonwoo Rho and Dr. Hie Joo Ahn. I

made contributions on the theoretical proofs and simulations with Dr. Yeonwoo Rho,

and incorporate with Dr. Hie Joo Ahn and Dr. Yeonwoo Rho on the application

analysis. To reduce the complexity of the nonparametric mixed data sampling models,

we introduced a nonparametric model with Fourier series expansion in the first part.

Monte Carlo simulations are included to show the performance of the nonparametric

xiii



models. Encouraged by the excellent performance with a single subject, we extended

the nonparametric model with Fourier approximation by introducing a clustering

approach with panel mixed sampling data. Simulation results, as well as a practical

application, are provided to show clustering performance of estimated weights using

Fourier approximation in practice.
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Abstract

The MIDAS models are developed to handle different sampling frequencies in one

regression model, preserving information in the higher sampling frequency. Time

averaging has been the traditional parametric approach to handle mixed sampling

frequencies. However, it ignores information potentially embedded in high frequency.

MIDAS regression models provide a concise way to utilize additional information

in HF variables. While a parametric MIDAS model provides a parsimonious way

to summarize information in HF data, nonparametric models would maintain more

flexibility at the expense of the computational complexity. Moreover, one parametric

form may not necessarily be appropriate for all cross-sectional subjects. This thesis

proposes two new methods designed for mixed frequency data.

First part of this thesis proposes a specification test to choose between time averag-

ing and MIDAS models. If time averaging is enough for given mixed frequency data,

there is no need to use complicated nonlinear mixed frequency models. In such case,

a specification test that justifies the use of the the simplest model, time averaging,

is useful. We propose a specification test revising from a DWH type test. In par-

ticular, a set of instrumental variables is proposed and theoretically validated when

the frequency ratio is large. As a result, our method tends to be more powerful than

existing methods, as reconfirmed through the simulations.

xix



The second part of the thesis provides a new way to identify groups in a panel data

setting involving mixed frequencies. A flexible MIDAS model is proposed using a

nonparametric approach. This nonparametric MIDAS model is further extended to a

panel setting using a penalized regression idea. The estimated parameters can then

be clustered using traditional clustering methods. The proposed clustering algorithm

delivers reasonable clustering results both in theory and in simulations, without re-

quiring prior knowledge about the true group membership information. An empirical

application is presented to examine the panel MIDAS model.
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Chapter 1

Introduction

Historically, time series data have been studied in numerous fields. Starting from

the 1920s, the theoretical development of time series analysis started with stochastic

processes. Later on, time series analysis has been developed rapidly. Various types

of times series models have been developed and researched for different purposes the-

oretically and empirically. One of the primary purposes of time series analysis is to

forecast future values of the interested response. Even though time series models can

mimic the shape of series for forecasting, among different time-dependent variables,

it is also important to measure their relationships, such as regression models. Nev-

ertheless, in classic regression models, it is common that all records are supposed to

to get a consistent sample size for all variables. While considering time-dependent
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variables, the observing periods may be inconsistent. Then, how about the regres-

sion models involving one or more time-dependent series as regressors comparing to

the single-variable regression model? Even more, what if the response is a variable

measured at a lower sampling frequency, but the regressors are measured at higher

frequencies? This thesis aims to answer questions related to mixed frequencies.

1.1 Mixed Sampling Problem and Conventional

Approaches

In recent years, datasets that involve different sampling frequencies have drawn sub-

stantial attention in various fields. In particular, sampling with different frequencies

often arises in economic data. For instance, GDP is one of the most critical indica-

tors of a country’s economic status. However, due to the complexity involved in the

measurement of GDP, it is only measured four times per year in the United States.

On the other hand, many other variables, such as weekly initial claims, daily stock

returns, etc., are available while one is waiting for the next release of GDP. In such

case, potentially additional information in the more frequently observed (high fre-

quency, HF) variables can be utilized in predicting the less frequently observed (low

frequency, LF) variables such as GDP.

Several methods were introduced to handle mixed-frequency variables in the same

2



regression model. These methods often transform the variables with higher observa-

tion frequency, matching the lowest frequency in the regression model and making the

frequencies of all variables consistent. One conventional approach is time averaging of

HF variables, where HF variables are aggregated using a predetermined fixed-weight

function. This approach has different names given the weight vector in time aver-

aging. For example, if the weight vector is chosen to be zero except for the end of

the period, it is called the end-of-period data sampling. Another example is the flat

aggregation, which uses flat weights to average HF records.

Although predetermined and fixed time averaging provides a simple solution to the

mixed frequency issue, it may ignore some useful information in the HF variable

if the predetermined weights are not properly chosen. On the contrary, the ADL

model uses all HF variables as regressors. This approach requires estimating all the

coefficients of regressors. Since the weights are determined by the data, allowing to

retain most information in the HF variables. However, this model may not be optimal

in forecasting, since the estimated weights may follow too closely to the data. Besides,

when the frequency ratio between the HF and LF variables is large, the ADL model

may require the estimation of too many parameters.

3



1.2 Innovative Approaches for Mixed-Frequency

Data

The MIDAS regression model [32] was proposed to balance the complexity and flex-

ibility of the time averaging and the ADL model. In MIDAS models, the weight

function is written as a nonlinear parametric function with only a few parameters.

The elements in its weight function do not move as freely as the ones in the ADL

model due to the parametric restrictions. They are still more flexible than those in

time averaging since data control parameters in the weight function. This idea of con-

cise yet data-driven reduction of information embedded in high sampling frequency

has driven a recent surge of interest in MIDAS models. Due to the robustness in

no small frequency ratio, the MIDAS models have been drawing a large amount of

attention recently. For example, Götz et al. [36] proposed a mixed frequency error

correction model based on MIDAS models focusing on possibly co-integrated non-

stationary processes with different sampling frequencies. Miller [58] introduced the

co-integrated MIDAS time averaging regression models which generalized the non-

linear MIDAS regression models, proposed a test strategy for such models against

the linear MIDAS regression models. Ghysels and Miller [29] showed the effects of

the mixed-frequency data as well as temporal aggregation on the size of the com-

mon co-integration tests. Ghysels et al. [34] introduced a Granger causality test with

4



mixed-frequency data. As noted earlier, MIDAS models involve nonlinear estimation.

Andreou et al. [1] explored an NLS estimator for the MIDAS regression model and

derived its asymptotic properties. The estimator is a so-called MIDAS-NLS estima-

tor. They also showed that, in the presence of the mixed frequency effect, the LS

estimator with a flat aggregation is asymptotically biased if the HF variable is serially

correlated. It was demonstrated that the MIDAS-NLS estimator is relatively more

efficient than the LS estimator as well.

Regression models that we have mentioned previously are parametric MIDAS models.

Even though parametric MIDAS indeed make regression models more flexible than

predetermined and fixed weights, it is still highly dependent on the weight function

and the number of parameters chosen in the weight. In case that the inappropriate

user-chosen components, for example, weight functions or the predetermined num-

ber of parameters, limit the flexibility in a way, a nonparametric MIDAS model was

proposed in 2015 [12]. Instead of estimating parameters in weight functions by min-

imizing the MSE, Breitung and Roling [12] introduced a tuning parameter which

penalizes the variability of aggregated weights. The objective function combines the

MSE and the smooth spline term so that it provides a trade-off between the goodness-

of-fit and the term which penalizes sharp changes of aggregated weights. It makes

the nonparametric MIDAS approach more helpful that users do not need to make an

appropriate decision of the number of parameters, or the weight function. However,

5



this approach requires to calculate the optimal tuning parameter to estimate all ag-

gregated weights. It means that the computation is more complicated compared to

the methods mentioned above. Another approach, semi-parametric MIDAS model,

which is proposed by Chen and Ghysels [15], provides volatility predicting combining

kernel-based nonparametric and lag polynomial parametric methods. Kernel-based

nonparametric approaches are applied to estimate news impact curves such as realized

volatility or HF returns of HF regressors. Lag polynomials embody the parametric

temporal dependence part. Semi-parametric models utilize lag polynomial to aggre-

gate information of HF variables. Whereas, the computational complexity remains a

fatal problem. As mentioned in Chen and Ghysels [15], it may take about 20 hours for

estimating, while parametric models may only take a few minutes. Refer to Ghysels

et al. [34] for more MIDAS approaches and their applications.

6



Chapter 2

Choice of IVs in Specification Test:

MIDAS vs Time Averaging

2.1 Specification Test for MIDAS Models

As we mentioned in the Introduction, the flat averaging seems to be the most straight-

forward approach to deal with the mixed-frequency problem given the computational

complexity. If the flat weight is enough to maintain adequate information of HF

variables, it is not necessary to go over parametric MIDAS, let alone nonparametric

MIDAS models. However, if the mixed frequency effect exists, the MIDAS model

should be chosen over a time averaging model. This motivates a specification test

7



that helps decide between the time averaging and the MIDAS models. There have

yet been only a handful of such tests. Andreou et al. [1] presented a DWH type test,

designed to see whether there is an omitted variable bias caused by overlooking the

MIDAS effect. Miller [59] presented two VAT statistics. In particular, the second

VAT statistic, called a modified VAT statistic, was designed for nonstationary HF

variables. The modified VAT statistic is robust to the MIDAS models with covariates

in deterministic and stochastic trends when the frequency ratio is large. Groenvik

and Rho [38] further extended Miller’s first VAT statistic using a self-normalized

approach.

The methods mentioned above rely on the choice of IVs or other types of user-chosen

parameters. In particular, Andreou et al. [1] briefly mentioned using all or part of HF

variables as IVs for the DWH test. However, with such choice of IVs , it is possible

that the 2SLS estimators may not be consistent when the chosen IVs are correlated

with the error process. Furthermore, existing a large number of possibly weak IVs may

also lead to the inconsistency of 2SLS estimators in the DWH test [14]. Therefore,

the choice of IVs in the specification test context should be carefully examined. In

Chapter 2, we shall further explore the DWH specification test introduced in Andreou

et al. [1]. More precisely, there has not yet been practical guidance so far for choosing

appropriate IVs in the DWH test. We shall propose a set of IVs that is suitable for

this test.

8



Some notations of Chapter 2 will be defined here. Others will be clarified correspond-

ing to the contents in this chapter. These notations are used in Appendix A.1 as

well. Let T be the sample size at low frequency, and m be the frequency ratio be-

tween the two sampling frequencies. jt is a T × 1 vector with the t-th element being

1 and the rest 0. j is a T × 1 vector of 1’s. In Chapter 2, symbols y = (y1, · · · ,

yT )′, xt =
(
xt, xt−1/m, · · · , xt−(m−1)/m

)′
and zt = (z1,t, · · · , zp,t)′ are reserved for the

LF variable and the HF variable , and p instrumental variables, respectively. We use

π = (π1, · · · , πm)′ to indicate an m×1 weight vector to aggregate the HF variable such

that πi ≥ 0 and
∑m

i=1 πi = 1. For matrix A, the matrix PA = A(A′A)−1A′ denotes

the projection matrix onto the space spanned by the columns of A, and MA = I−PA

where I or I· indicates the identity matrix. ut = [ut,1, · · · , ut,q]′ is defined as q addi-

tional LF covariates including the intercept at time t in MIDAS models in Chapter 3

and Appendix A.2. For convenience, we define the following matrices: X = [x1, · · · ,

xT ]′, Z = [z1, · · · , zT ]′, XA = [j, Xπ0] = [xA1 , · · · ,xAT ]′ and U = [u1, · · · ,uT ]′ where

xAt = (1, xAt )′ is the t-th row of XA and π0 is the predetermined weight vector.

2.2 Choice of IVs Based on the DWH Test

Consider a dataset with different sampling frequencies. Let {yt}Tt=1 and {xt}Tt=1 be

the variables observed at lower and higher sampling frequencies, respectively. The

9



MIDAS model is constructed, aiming to model the LF variable using HF variable:

yt+h = β0 + (j′tXπ(θ)) β1 + εt, t = 1, . . . , T. (2.1)

The error process {εt} is stationary and uncorrelated with {xt}. The vector π(θ) =

(π1(θ), . . . , πm(θ))′ consists of a function of a finite dimensional unknown parameter

θ such that πi(θ) ≥ 0 and
∑m

i=1 πi(θ) = 1. This vector dictates how much weight

would be assigned when aggregating the HF variable, xt.

In a time averaging model, π = π0 is a predetermined fixed-weight vector that does

not depend on any unknown parameter θ. Without loss of generality, let the number

of aggregated lags be the same as the frequency ratio m. Then the regression model

(2.1) becomes

yt = βA0 + (j′tXπ0) βA1 + εAt = βA0 + xAt β
A
1 + εAt . (2.2)

Consider the test between time averaging (2.2) and MIDAS aggregation (2.1), i.e. H0 :

π = π0 versus Ha : π = π(θ). The two commonly used weights for time averaging are

the flat aggregation π0 = (1/m, . . . , 1/m)′ and the end-of-period sampling π0 = (1,

0, . . . , 0)′. In this article, a more general scenario of the end-of-period sampling is

considered: a fixed number, n, of elements in π0 are assigned with positive values,

where n is independent of m. For brevity, we assign the first n elements and leave

the rest as zero, i.e. π0 = (π0,1, . . . , π0,n, 0, . . . , 0)′ where π0,i > 0 for i = 1, · · · , n and∑n
i=1 π0,i = 1. The LS principle can be applied to estimate the parameters βA0 and

10



βA1 in model (2.2) when the null hypothesis is true. We call this estimator, β̂
A

= (β̂A0 ,

β̂A1 )′ = (XA′XA)−1XA′y, the NULL-LS estimator. By comparing models (2.1) and

(2.2), the error process (2.2) can be rewritten as εAt = εt+ j′tX (π(θ)− π0) β1. Under

the null, εAt is uncorrelated with xAt since εAt = εt. However, under the alternative, εAt

is correlated with xAt due to the omitted variable. Therefore, testing whether π = π0

is equivalent to testing whether the NULL-LS estimator is consistent.

To test the consistency of the NULL-LS estimator using a DWH-type test, another

estimator that is consistent under both the null and the alternative is required. This

estimator may not be efficient under the null. See Lee [52], for example. The 2SLS

estimator with proper IVs could be such an estimator. Assume that the IVs zt are

correlated with xAt , but uncorrelated with εAt . Consider a two stage regression model:

the time-averaging model (2.2) and an auxiliary regression of the flat aggregated term

xAt on the IVs zt given as

yt = β0 + xAt β1 + εAt and xAt = z′tΓ + ε̃t, (2.3)

where E
(
ε̃t|xAt

)
= 0. The 2SLS estimator is β̂ = (XA′PZX

A)−1(XA′PZy). The bias

of the 2SLS estimator β̂ of β can be written as

β̂ − β = (XA′PZX
A)−1(XA′PZ)εA, (2.4)

11



where εA = (εA1 , . . . , ε
A
T )′. The following Assumption 2.1 is for the consistency of the

NULL-LS under the null and for the consistency of the 2SLS estimator under both

the null and the alternative.

Assumption 2.1. Consider the time-averaging model and the auxiliary regression in

(2.3).

(a) T−1XA′XA p−→ E
(
xAt xAt

′
)

= QXX for some positive definite matrix QXX ;

(b) T 1/2
(
T−1XA′εA − E

(
xAt ε

A
t

)) d−→ N(0,Ω) for some matrix Ω. Under the null,

E
(
xAt ε

A
t

)
= 0;

(c) Rank of Z is no less than the column rank of XA;

(d) T−1Z ′Z
p−→ E (ztz

′
t) = QZZ for some positive definite matrix QZZ;

(e) T−1XA′Z
p−→ E

(
xAt z′t

)
= QXZ for some positive definite matrix QXZ with rank

as the column rank of XA;

(f) T−1Z ′εA
p−→ E

(
ztε

A
t

)
= 0;

(g) T−1/2Z ′εA
d−→ N(0,ΣZε) for some positive definite matrix ΣZε.

Assumptions 2.1(a) and 2.1(b) ensure the consistency of the NULL-LS estimator.

Assumption 2.1(a) indicates that XA has full column rank. Assumption 2.1(b) im-

plies the relation between the time-averaging term XA and the error process εA, and

12



their product should be asymptotically normal. Under the null, XA and εA should

not be correlated, leading E
(
xAt ε

A
t

)
= 0. Under the alternative, XA and εA are

allowed to be correlated, i.e., E
(
xAt ε

A
t

)
6= 0. The variance-covariance matrix Ω in

Assumption 2.1(b) can be consistently estimated. This can be done, for example,

using heteroskedasticity and autocorrelation consistent (HAC) estimators [2, 61]. As-

sumptions 2.1(d)–(g) hold under both hypotheses. These ensure the consistency of

the 2SLS estimator. In particular, Assumption 2.1(d) requires that Z and εA should

be uncorrelated. The number of IVs should be greater than or equal to the rank of

XA. Refer to Ruud [66] for more details and explanations.

Now we derive our test statistic. If Assumption 2.1 holds, the asymptotic distributions

of β̂
A

under the null and β̂ under both hypotheses can be written as followings:

√
T (β̂

A
−β)

d−→ N(0, V A) under H0 and
√
T (β̂−β)

d−→ N(0, V ) under H0 and Ha,

(2.5)

where

V A = Q−1
XXΩQ−1

XX ,

and

V =
(
QXZQ

−1
ZZQ

′
XZ

)−1 (
QXZQ

−1
ZZΣZεQ

−1
ZZQ

′
XZ

) (
QXZQ

−1
ZZQ

′
XZ

)−1
.

Since both β̂
A

and β̂ are consistent under the null, the difference between the two

estimators, ∆̂ = β̂ − β̂
A

converges to zero in probability. The main idea of the
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DWH test is to test whether ∆̂ is significantly different from 0. This is equivalent to

test whether XA′PZMXAy is significantly different from 0, since ∆̂ can be written as

∆̂ = β̂ − β̂
A

= (XA′PZX
A)−1(XA′PZMXAy) and (XA′PZX

A)−1 is positive definite.

We can easily see that

PZZ = Z, MZZ = 0, MXAXπ0 = 0, j′MXAy = 0, and (2.6)

XA′PZMXAy = [j, Xπ0]′ PZMXAy = (0, (Xπ0)′PZMXAy)
′
. (2.7)

Thus, (Xπ0)′PZMXAy should be approximately zero under the null. Let ε̂ = MZXπ0

and ε̂A = MXAy indicate the fitted residuals from (2.3). Consider a regression model

ε̂A = XAα + ̂̃εδ + υ. Applying Frisch−Waugh−Lovell (FWL) theorem, the OLS

estimator δ̂ of δ is

δ̂ = {(MXAMZXπ0)′(MXAMZXπ0)}−1
(MXAMZXπ0)′MXA ε̂A. (2.8)

The latter part of δ̂ can be derived as (MXAMZXπ0)′MXA ε̂A = (Xπ0)′MXAy −

(Xπ0)′PZMXAy. Since the third relation shown in (2.6) indicates that

(Xπ0)′MXAy = 0, δ̂ = 0 is equivalent to (Xπ0)′PZMXAy = 0. Hence, testing
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whether ∆̂ approaches to zero in probability can be viewed as testing if the coeffi-

cient δ̂ is significantly different from zero. Consider the test statistic

λT = T δ̂′
(
b′(V̂ − V̂ A)b

)−1

δ̂, (2.9)

where b′ = − [(MXAMZXπ0)′(MXAMZXπ0)]−1 [(Xπ0)′PZX
A
]
, and V̂ and V̂ A are

consistent estimators of V and V A, respectively.

Theorem 2.1. Suppose Assumption 2.1 holds. Under the null hypothesis, λT
d−→ χ2

1.

The proof of Theorem 2.1 is presented in Appendix A.1.1. Assumption 1 holds only

when the IVs zt are chosen carefully. More specifically, zt should be correlated with

the time-averaging term, xAt , but uncorrelated with εAt . This is to ensure Assumptions

2.1(e) and 2.1(f). Otherwise, the consistency of the 2SLS estimator may not be

guaranteed. However, in practice, it is difficult to find such IVs. Andreou et al. [1]

suggested using all or part of HF variables as IVs. However, they did not provide any

practical guidance that is theoretically supported. In fact, with their suggested choice

of IVs, it is possible that the chosen IVs are correlated with the error process. In this

case, the 2SLS estimators would not be consistent, which may lower the power. In

what follows, we shall propose a set of IVs that is theoretically valid for the DWH-

type specification test. To derive theoretical properties, we assume the following

conditions on the IVs and the data generating process.

Assumption 2.2. Consider assumptions for k = 0, 1, · · · ,m− 1, t = 1, · · · , T ,
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(a) The HF processes {xt−k/m} and {εt−k/m} are independently, identically dis-

tributed (i.i.d.) or follow stationary AR(1) processes with finite second moment

respectively;

(b) {εt−k/m} is uncorrelated with {xt−k/m};

(c) Suppose εt,m = (εt, εt−1/m, · · · , εt−(m−1)/m)′ with mean zero and positive definite

covariance matrix, the error process {εt} is an aggregated term of εt,m with the

weight vector π(θ) = (π1(θ), · · · , πm(θ))′, i.e., εt = εt,m
′π(θ) where πj(θ) =

(2− j/m)4θ/
∑m

i=1(2− i/m)4θ.

Under Assumption 2.2, the LF response variable {yt} is viewed as an MIDAS aggre-

gation of the underlying HF true process {yt−k/m}, where yt−k/m = β0 + xt−k/mβ1 +

εt−k/m. Nevertheless {yt−k/m} is not observed in practice.

If we choose too many HF lags as IVs, it might lead to a problem of a large number of

weak IVs. As a consequence, the 2SLS estimator may be biased towards the NULL-

LS estimator. The bias tends to get worse when there is a more excessive number

of IVs compared to the number of endogenous regressors. A brief explanation is

presented by Greene [37]. Based on the number of the parameters in (2.3) and the

consideration on possibly weak IVs, we shall construct the number of IVs as p = 2,

zt = (z1,t, z2,t)
′, t = 1 · · · , T , as linear combinations of the HF regressor. Inspired by

Miller [59], we propose to choose weights of the IVs zt as the following two decreasing
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sequences:

Υ1 = (f1(1), f1(2), · · · , f1(m))′, where f1(j) =
0.9j−1∑m
i=1 0.9i−1

, and

Υ2 = (f2(1), f2(2), · · · , f2(m))′, where f2(j) =
m+ 1− j∑m
i=1(m+ 1− i)

.

(2.10)

These weights are designed to decrease exponentially and linearly fast. This is to

mimic the behaviors of the MIDAS weights with exponential Almon lag and beta

polynomials. Then the two IVs can be written in a vector form as z′t = xt
′Υ, where

Υ = [Υ1, Υ2]. The following theorem demonstrates that the proposed IVs are ap-

proximately valid when the frequency ratio is large.

Theorem 2.2. Let Zr = XΥr = (zr,1, · · · , zr,T )′ for r = 1, 2, where Υr be as presented

in (2.10), be the two IVs. Assume that Assumption 2.2 holds. Write Z = [Z1, Z2].

(a) Under the null hypothesis, Z satisfies Assumption 2.1.

(b) Under the alternative hypothesis, Z satisfies Assumptions 2.1(a)–(e). For any

sample size T , Assumptions 2.1(f) and (g) are fulfilled approximately, as the

frequency ratio m approaches infinity. In fact, E(zr,tε
A
t ) = O(m−1) for r = 1, 2.

The proof of Theorem 2.2 can be found in Appendix A.1.2. Under both the null and

the alternative, it is easy to see that zr,t is correlated with xAt . The main result of

Theorem 2.2 is that zr,t and εAt are asymptotically uncorrelated when the frequency

ratio is large, with the rate E(zr,tε
A
t ) = O(m−1). Hence, the 2SLS estimator using
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our choice of the IVs is consistent when the frequency ratio m is large. On the other

hand, when m is small, T−1Z ′εA converges, in probability, to a nonzero constant.

Thus, the DWH specification test with our choice of IVs would only work when m

is large enough. This explains the low power of our test in finite samples when m is

small in the next section.

2.3 Monte Carlo Simulations

To compare the performance of estimation, we examine finite sample sizes and powers

of our method and two other comparable methods in literature: the second test

presented in Andreou et al. [1] (AGK, hereafter) and the unmodified VAT test in

Miller [59]. The algorithms of the methods are briefly introduced as follows.

Algorithm 1: Our Method

Data: HF xt, LF yt

1. xAt = xt
′π0; IVs zt = xt

′Υ with Υ in (2.10).

2. Obtain fitted error: regress yt on xAt to get ε̂At ; regress xAt on zt to get ε̂t.

3. Regress ε̂At on xAt and ̂̃εt using ε̂At = α0 + xAt α + ̂̃εtδ + υt.

Result: Test if δ̂ is significantly different from 0 using a t test and a HAC estimator
[2, 61].

Remark 2.1. The AGK method can be implemented using Algorithm 1. To limit the

number of IVs, the first two regressors of the HF variable are used in our simulations.
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Algorithm 2: Miller’s Method

Data: HF xt, LF yt

1. xAt = xt
′π0; zt = xt

′Υ with Υ in (2.10).

2. Obtain fitted error: regress yt on xAt to get ε̂At .

3. Regress ε̂At on xAt and zt using ε̂At = α0 + xAt α + z′tφ+ υt.

Result: Test if φ̂ of φ is significantly different from 0 using a Wald statistic and a
HAC estimator [2, 61].

Remark 2.2. Our method and Miller’s unmodified VAT are similar. Both methods

utilize the two MIDAS-type aggregations, zt, of the HF variable. While our method

uses zt as IVs under the classical framework with omitted variables, Miller’s use of

zt is more direct. Miller’s method searches whether the elements of zt have any

significant effect on residual of yt after taking time averaging into account.

To make the results comparable, we use a simulation setting similar to the one pro-

posed by Miller [59]. At HF level, data are generated with yt−k/m = xt−k/mβ+ εt−k/m

for t = 1, . . . , T , k = 0, . . . ,m − 1. The HF processes {xt−k/m} and {εt−k/m} are

generated as stationary AR(1) processes given by εt−k/m = cεt−(k+1)/m + ηt−k/m

and xt−k/m = dxt−(k+1)/m + η̃t−k/m, where {ηt−k/m} and {η̃t−k/m} are i.i.d. N(0,

1). Let β = 10. Denote yt = (yt, yt−1/m, · · · , yt−(m−1)/m)′ and εt,m be the unobserved

HF response and the error process between time t − 1 and t. Let π0 = j/m and

π(θ) = (π1(θ), · · · , πm(θ)), where πj(θ) is defined in Assumption 2.2(c). The LF pro-

cesses are generated as yt = y′tπ(θ) and εt = ε′t,mπ(θ). Here, θ = θ0 = 0 indicates the

flat aggregation, which corresponds to the null. If θ 6= 0, the weights are no longer
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flat. Let θ = θ0 + k where k ∈ {0.1, 0.2, · · · , 1.9, 2.0} represent MIDAS-type alterna-

tives. The nominal level is 0.05. R = 2000 Monte Carlo replications are generated.

The sample sizes is T ∈ {125, 512}. The frequency ratio is m ∈ {4, 150, 365}.

Table 2.1
Empirical Sizes and Powers of our method (new), AGK, and Miller’s

method in the Representative Simulation Model

T m c k 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

125

4

0.0

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5 0 0 0 10 66 97 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0.8

Miller 7 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.2 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.3 4 1 4 14 46 81 97 100 100 100 100 100 100 100 100 100 100 100 100 100

150

0.0

Miller 6.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6 26 39 46 51 56 60 63 67 70 72 74 76 77 79 90 81 82 83 84 84
New 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0.8

Miller 5.7 72 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 8 13 20 28 35 40 45 51 56 60 64 66 69 71 73 75 76 77 79 80
New 5.7 73 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

365

0.0

Miller 6.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.8 14 18 20 23 25 27 30 33 35 37 39 41 43 45 47 49 52 54 55 56
New 4.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0.
8

Miller 6.5 70 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.8 7 9 12 15 16 18 21 23 27 28 30 32 35 37 39 41 43 45 47 48
New 4.6 76 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

512

4

0.0

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.4 6 5 3 1 0 0 0 0 1 3 14 42 79 96 99 100 100 100 100 100

0.8

Miller 5.6 62 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.1 61 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.4 6 6 5 4 3 2 3 4 5 9 14 24 40 57 75 88 96 99 100 100

150

0.0

Miller 6.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.5 22 53 75 85 90 93 94 95 96 96 97 97 97 98 98 98 98 98 98 98
New 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0.8

Miller 6.1 23 71 97 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.1 6 8 12 17 24 31 38 46 53 60 67 72 77 80 84 86 89 90 91 92
New 5.4 25 73 97 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

365

0.0

Miller 5.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 4.7 10 23 35 45 52 56 59 62 65 67 69 70 71 73 73 74 75 76 77 78
New 5.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0.8

Miller 5.6 24 71 97 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 4.7 5 5 7 8 11 12 16 19 23 26 30 33 36 40 42 45 47 51 53 55
New 5.3 29 78 98 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

All values are shown as percentage. The nominal level is 0.05. Monte Carlo replication 2000. Bold numbers for
k = 0.0 represent the rejection rates closest to 0.05 under the null. Bold cells for k 6= 0.0 indicate the rejection
rates less than 0.90 under the local alternatives.
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Table 1 presents the empirical sizes and the powers of our method, the AGK method

and Miller’s method when c ∈ {0, 0.8} and d = 0. The results of more comprehensive

settings are presented in Appendix B.1, which are consistent with what we observe

in Table 1. When k = 0, sizes closest to 0.05 are presented in boldface. In all our

simulation settings, all methods seem to have reasonable sizes. Our and the AGK

method tend to have more cases in which sizes are closer to the nominal level, while

Miller’s unmodified VAT tends to slightly over-reject.

When k 6= 0, empirical rejection rates represent the powers of the tests. Powers less

than 0.9 are shown in boldface. When m is small, our method is not as powerful

as the AGK method or Miller’s unmodified VAT. These two methods have much

better performance under all alternatives. For T = 125, when the HF error is AR(1),

our method is less powerful when the effect size is small (k ≤ 0.6), whether the

HF error is i.i.d. or not. When T = 512, the power of our method is not very

large when the effect size is not large enough. This observation is consistent with

Theorem 2.2. When m is small, the 2SLS estimator would not be consistent using

the chosen instruments. If m = 4, the two weighted functions in constructing the

instruments are almost identical. Therefore, when m is small, m = 4, the AGK

method seems to be good enough by choosing the most recent two HF variables (out

of four). Miller’s unmodified VAT is another attractive alternative when m is small

since it is as powerful as the AGK method.
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However, when m is large, the effect of a careful choice of instruments is more visible.

When m is 150, the power of the AGK method never exceeds 0.90 for all alternatives.

In the meantime, our method tends to have higher power under almost all alternatives.

Miller’s unmodified VAT tends to be just a little less powerful than our method for

small effective sizes. Additionally, as the sample size increases (T = 512), the AGK

method becomes more powerful for large local alternatives, while all three methods

reduce the power when the effective sizes are small. Except for a few small effect sizes

with the AR(1) HF error process, our method has the highest power for most cases.

Similar conclusions can be drawn for m = 365.

Remark 2.3. When our method works, i.e., when 1/m is small enough, our method

and Miller’s method have similar finite sample performance, though our test tends to

have slightly better sizes and powers. Given their similar formulation, as mentioned

in Remark 3.3, this similarity is somewhat expected. If one is interested in the

comparison between the two methods, it would be interesting to consider more than

one regressors. In this case, our method calls for more than two instruments, zt would

be different, making it easier to see the difference between the two methods. However,

this is out of the scope of this chapter. We leave it as future work.
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Chapter 3

Panel Nonparametric MIDAS

3.1 Nonparametric MIDAS and Its Extension

with Panel Data

Except for focusing on the test for parametric models, we would concentrate on

the nonparametric MIDAS as well. When the frequency ratio between HF and LF

variables is relatively large, the nonparametric MIDAS proposed by Breitung and

Roling [12] takes a long time to handle the complex computation. Inspired by the

versatility of Fourier approximation, we shall control the frequency ratio to reduce

the complexity of the nonparametric MIDAS by introducing Fourier series expansion.
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Fourier approximation has been successfully applied in many aspects of macroeco-

nomics and finance since Gallant [27]. In particular, many researchers have demon-

strated a remarkable performance to capture a nonlinear trend. Becker et al. [6]

introduced a test using a likelihood ratio approach to identify time variation in co-

efficients. These coefficients are parameterized using the Fourier expansion. Later,

Becker et al. [7] modified the standard KPSS test proposed by Kwiatkowski et al. [49]

for stationarity against a unit root. They used Fourier approximation for the deter-

ministic trends in regression models to make the model more general than the one in

the standard KPSS test. Moreover, Enders and Lee [20] proposed a Lagrange Mul-

tiplier unit root test relying on the availability of Fourier approximation on a series

with several smooth structural breaks. Rodrigues and Taylor [65] generalized the pro-

cedure of the unit root test on local generalized least squares (GLS) de-trending and

applied a Fourier approximation on the unknown deterministic trend. Later, Güriş

[41] eliminated the tendency of nonstationary in structural breaks and nonlinearity

in traditional unit root tests using Fourier expansion. These work demonstrated that

Fourier approximation is capable of approximating most functions to any degree of

accuracy as long as we use a sufficient number of parameters. In addition, HF regres-

sors are linearly transformed using polynomials and trigonometric terms in a Fourier

transformation. This makes our approach computationally efficient as it only requires

OLS estimation rather than nonlinear estimation in the parametric MIDAS models.
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It is also faster than Breitung and Roling [12]’s method, where a panelized optimiza-

tion has to be conducted. In finite sample simulation, we compare the performance of

our new nonparametric MIDAS model using Fourier transformation with the penal-

ized nonparametric MIDAS introduced by Breitung and Roling [12] using the MSE

of weight functions.

Tracing back to 1960s, Okun [62] analyzed the relationship between the deviation

of the unemployment rate and the growth rate of GDP empirically. Later, Okun’s

law has been widely recognized in economics as a tool for short-run trend analysis.

The data were measured quarterly for both the response and the regressor. In re-

cent years, Economou and Psarianos [18], Guisinger et al. [40], Micallef [57], as well as

some other literature, applied Okun’s law to examine the labor market on the dataset

from different countries. Moreover, Ball et al. [4] pointed out that the breakdowns

in the law are exaggerated or flawed. However, even Okun’s law is used extensively,

the measuring frequencies are consistent for the unemployment rate and GDP. Apart

from the consistent-frequency variables, it is reasonable to include more related re-

gressors with higher frequencies, for instance, initial claims which could capture the

size of layoffs in the labor market. Initial Claims have been known to be the most

timely indicator of joblessness among professional forecasters. It is a report filed by

individuals who are seeking to receive jobless benefits. As an informative indicator, it

is usually measured weekly rather than quarterly. To maintain as much information

in Okun’s law using the weekly measured claims, introducing a MIDAS model in the
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law could be a wise and proper choice. Furthermore, according to Ball et al. [4], the

significance of the variables of more flexible labor markets across states could be var-

ious depending on different aspects, such as geographical location, education, labor

structure, etc. A recent study by Guisinger et al. [39] showed that the relationships in

Okun’s law are diverse across states. Guisinger et al. [39] argued that the difference

in estimated coefficients is likely to represent heterogeneity in the functioning of the

labor market. Such heterogeneity can be accounted for by the industry composition,

union power, demographic characteristics, educational attainment, and so on. Since

it requires more work to fit Okun’s law state by state, clustering all state-level data

as a whole panel data is worthy of study.

Encouraged by the performance of Fourier approximation in nonparametric MIDAS

models, we extend such nonparametric MIDAS by introducing a clustering approach

with panel MIDAS data for such empirical application. Clustering algorithms are

widely used to visualize the impact of relations between subjects and modified not

specifically only for mixed-frequency data. Su et al. [67] modified the traditional

Lasso penalty in regression models into C-Lasso to penalize the difference between

the estimated parameters in subjects and the estimated group-average parameters.

C-Lasso requires a predetermined maximum of the group number and a choice of

the tuning parameter. By minimizing the IC that they proposed in their paper,

users can determine a value for the tuning parameter. However, it is crucial that

it requires a user-chosen number of clusters. When the number of subjects is large,
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the possible number of clusters may vary a lot. Setting the maximum group number

as the number of subjects would result in a relatively long-time computation. Ma

and Huang [55] introduced a penalized method on the regression model for subjects

and applied concave penalty functions to divide subjects into groups based on their

intercepts. The penalty functions that they used are the MCP [73] and the SCAD [22],

which not only share the sparsity properties like Lasso but also are asymptotically

unbiased. Later on, Ma and Huang [54] extended their work on the intercepts to

cluster subjects based on the part of the regressors instead of the intercepts only.

Zhu and Qu [74] modified the regression model by introducing subject-wise B-spline

smoothing functions to approximate covariates. Rather than exploring the patterns of

parameters directly, they focused more on investigating the longitudinal trajectories

over time. Casarin et al. [13] considers a more general situation where the parameters

can change over time as the regime changes, using a Bayesian Markov switching model.

After introducing a new MIDAS model, we focus on a panel MIDAS regression model

where the HF regressors are aggregated using nonparametric weight functions. Given

the advantages of Fourier transformation and the concave penalties introduced in the

clustering algorithm, we then extend our nonparametric model with Fourier trans-

formation to include more subjects for clustering performance. In the first step, the

MIDAS weights and other coefficients are chosen with incentives to have almost the

same if two subjects would have similar estimated coefficients. This part is handled

using the idea of the feature selection. In particular, we use the MCP penalty as it is
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well known to provide unbiased estimations. The only major assumption that we need

is the sparsity assumption, which requires the number of groups to be much smaller

than the number of subjects. We apply the nonparametric MIDAS weights with

Fourier expansion as introduced above to handle the HF part, as different subjects

may have different forms of weights. What more, with the help of Fourier approx-

imation, the number of parameters in distinct periods can be unified. In the next

step, the estimated coefficients are clustered using conventional clustering methods

such as K-means clustering. This would work reasonably well as the coefficients that

are already chosen to be very close to each other in the first step, presumably if they

are in the same group. To the best of our knowledge, there has been only a couple

of research articles that handle panel MIDAS models. An unpublished article [48]

proposes a GMM approach for panel data with parametric MIDAS models. Coffey

et al. [16] proposed a regression model for time-course gene expression data. They

extend the linear mixed effects and P-spline smoothing model for clustering multiple

gene expression profiles. Without knowing the true clusters of profiles, profiles are

randomly assigned to a predetermined number of clusters. After estimating param-

eters multiple times using the EM algorithm and changing the starting points, the

AIC or the BIC can be used to determine the number of clusters properly among

user-chosen candidates. Similarly to Su et al. [67], this method also requires a prede-

termined number of clusters and to find a proper value of clusters, users have to go

through many, even all possible candidates to compare their performance based on
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the AIC or BIC. All technical proofs and full simulation results can be found in the

appendix.

The rest of this chapter is organized as follows. In Section 3.2, we focus on applying

a Fourier series approximation to estimate the coefficients of HF regressors in the

MIDAS model. We show that Fourier expansion provides an accurate estimation of

aggregated weights theoretically and empirically. In particular, in Section 3.2.2, the

median RMSEs of parameter estimation and the one-step-ahead forecast are chosen

to present the performance of our method compared to the nonparametric approach

proposed by Breitung and Roling [12]. In Section 3.3, we introduce a more general

model with panel data and other LF covariates. Simulation results are provided

to show clustering performance of estimated weights using Fourier approximation

empirically. Besides, We provide conditions for the proposed estimator. Section 3.4

provides an empirical application of our clustering method by revisiting Okun’s law.

We analyze the importance of the HF initial claims on predicting the unemployment

rate across states. Heterogeneity in the functioning of the labor market is examined,

and states are clustered based on the predicted behavior of the unemployment rate

as well as the initial claims.

Apart from the notations defined in Chapter 2, some notations are defined throughout

this Chapter additionally. Others will be clarified with respect to contents. The

following notations are used in Appendix A.2 as well. For an m×n matrix A with its
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(i, j)th element being aij, ||A||p to indicate p-norm induced by corresponding vector

norms, that is, ||A||p =
supx 6=0 ||Ax||p

||x||p . In particular, ||A||1 = maxj=1,...,n

∑m
i=1 |aij| and

||A||∞ = maxi=1,...,m

∑n
j=1 |aij|. For a symmetric and positive definite matrix A, let

λmin(A) and λmax(A) indicate the smallest and largest eigenvalues of A, respectively.

In this case, ||A||2 = λmax(A). Ip is an identity matrix of size p and ⊗ denotes the

Kronecker product. For any real number x, bxc denotes the largest integer that is

smaller than or equal to x.

3.2 Nonparametric MIDAS for Single Subject

3.2.1 Nonparametric MIDAS with Fourier Expansion

Consider the following one-HF-variable MIDAS model with the lead h ≥ 0:

yt+h =

q∑
i=1

αiut,i +
m−1∑
j=0

β∗jxt,j + εt+h = u′tα+ xt
′β∗ + εt+h, (3.1)

for t = 1, · · · , T . Here, αi be the corresponding coefficient. xt = (xt,0, · · · , xt,m−1)′ is

the HF variable and β∗ = (β∗0 , · · · , β∗m−1)′ is the weight that aggregates xt to the LF.

εt+h is the error process. To introduce Fourier approximation in (3.1), consider the

following Dirichlet condition for a periodic function f(·).
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1. The function is periodic on the whole real values R, i.e. f(x) = f(x + P ) for

x ∈ R where P is the period of function f(x);

2. f(x) has a finite number of maxima and minima;

3. f(x) has an at most finite number of discontinuous points in one period;

4. f(x) is integrable over the period.

Any non-periodic function defined on a finite interval can be viewed to be extended

on R. Hence, there exists a Fourier series expansion for such non-periodic function.

In the subsequent argument, we assume that there is an underlying weight function

β∗(·) defined on [0, 1] which satisfies the Dirichlet condition. The weight function β∗j

in MIDAS regression model (3.1) are viewed as a realization from this function β∗(·),

β∗j = β∗(j/m) for j = 0, · · · ,m − 1. Since β∗(·) satisfies the Dirichlet condition, it

can be approximated with appropriately chosen orders in Fourier expansion.

Formally, we assume the following condition for the weights β∗j :

Assumption 3.1. For any r ∈ [0, 1], β∗brmc → β∗(r) as m → ∞. Here, β∗(·) is

defined over [0, 1], has a finite number of maxima and minima, has a finite number

of discontinuous points, and is integrable over [0, 1].
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For large enough L and K,

β∗j ≈ β∗(j/m) ≈
L∑
l=0

βl(j/m)l+
K∑
k=1

(β1,k sin(2πk · j/m) + β2,k cos(2πk · j/m)) . (3.2)

Consequently, the MIDAS model (3.1) with Fourier approximation of the parameters

becomes

yt+h ≈
q∑
i=1

αiut,i + εt+h

m−1∑
j=0

(
L∑
l=0

βl

(
j

m

)l
xt,j +

K∑
k=1

(
β1,k

j sin(2πk)

m
xt,j + β2,k

j cos(2πk)

m
xt,j

))
,

(3.3)

where x̃t,l, x̃
(s)
t,k and x̃

(c)
t,k are transformed HF data for l = 0, · · · , L and k = 1, · · · , K,

x̃t,l = (j/m)lxt,j, x̃
(s)
t,k = sin(2πk · j/m)xt,j, x̃

(c)
t,k = cos(2πk · j/m)xt,j.
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Denote the transformation matrix M as the following:

M =



(0/m)0 (1/m)0 · · · ((m− 1)/m)0

...
...

...

(0/m)L (1/m)L · · · ((m− 1)/m)L

sin(2π · 1 · 0/m) sin(2π · 1 · 1/m) · · · sin(2π · 1 · (m− 1)/m)

cos(2π · 1 · 0/m) cos(2π · 1 · 1/m) 0 · · · cos(2π · 1 · (m− 1)/m)

...
...

...

sin(2π ·K · 0/m) sin(2π ·K · 1/m) · · · sin(2π ·K · (m− 1)/m)

cos(2π ·K · 0/m) cos(2π ·K · 1/m) · · · cos(2π ·K · (m− 1)/m)


(3.4)

then the transformed data becomes X̃ = XM ′, where X̃ = [x̃1, · · · , x̃T ]′. The vector

x̃t is defined as (x̃t,0, x̃t,1, · · · , x̃t,L, x̃(s)
t,1 , x̃

(c)
t,1 , · · · , x̃

(s)
t,K , x̃

(c)
t,K)′, . The MIDAS model with

Fourier expansion in (3.3) can be written as

y = Uα+Xβ∗ + ε ≈ Uα+ X̃β + ε. (3.5)

Denote W = (U, X̃) to be the new dataset. The model becomes

y ≈ Wγ + ε.
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Using β∗ ≈M ′β, the OLS estimator, β̂∗, of β∗ can be derived as

β̂∗ = M ′Csγ̂ = M ′Cs(W
′W )−1W ′y = M ′Cs(W

′W )−1W ′(Wγ + ε)

= M ′Cs(γ + (W ′W )−1W ′ε) = β∗ +M ′Cs(W
′W )−1W ′ε

= β∗ +M ′Cs

(
1

T
W ′W ′

)−1(
1

T
W ′ε

)
,

(3.6)

where Cs =
[
0(l+1+2K)×q, IL+1+2K

]
is a (L + 1 + 2K) × (q + L + 1 + 2K) matrix.

To show that β can be estimated consistently via the OLS estimator β̂∗, we assume

some regular conditions.

Assumption 3.2. Consider T ×m regressors X, T ×1 vector y and T ×q covariates

U . M is the transformation matrix for xt.

1. y = Uα+Xβ∗ + ε where ε is the error process vector.

2. The regressors ut, xt are orthogonal to εt, i.e. E (utεt) = 0, E (xtεt) = 0.

3. T−1X ′X, T−1U ′U is positive definite with finite samples. Moreover,

T−1X ′X
p−−−→

T→∞
E(xtx

′
t) =: ΣXX , T−1U ′X

p−−−→
T→∞

E(utx
′
t) =: ΣUX ,

T−1X ′U
p−−−→

T→∞
E(xtu

′
t) =: ΣXU , T−1U ′U

p−−−→
T→∞

E(utu
′
t) =: ΣUU .

4. The process {xtεt} and {utεt} are martingale difference sequences with finite a

second moment.
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In classical linear regression models, the error term is assumed to be identically and

independently normally distributed. Whereas, in economic fields, it may be too nar-

row to assume i.i.d. error term. The assumptions shown above are better suited. In

deriving the asymptotic distribution of the OLS estimator, the distributional assump-

tion is not specified in the above assumptions. See Section 2.3 in Hayashi [44] for

more details. Given the assumptions listed above, β∗ can be consistently estimated

by the OLS estimator β̂. The asymptotic distribution of β̂∗ is

√
T
(
β̂∗ − β∗

)
d−−−→

T→∞
N
(
0m,M

′CsQ
−1
W QWεQ

−1
W C ′sM

)
, (3.7)

where

QW =

 ΣUU ΣUXM
′

MΣXU MΣXXM
′

 , QWε =

 E(utεtεtu
′
t) E(utεtεtx

′
t)M

′

ME(xtεtεtu
′
t) ME(xtεtεtx

′
t)M

′

 .

For inference, a consistent estimator Q̂Wε of QWε can be used, for instance, using the

HAC estimation [2].

3.2.2 Simulation: Nonparmetric MIDAS

Given the nonparametric MIDAS with one subject, our method is compared with the

nonparametric MIDAS approach proposed by Breitung and Roling [12]. The data is
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generated as the following. For j = 0, · · · ,m− 1, t = 1, · · · , T ,

yt+h = α0 +
m−1∑
j=0

β∗jxt,j + εt+h, xt,j = c+ dxt,j−1 + ε̃t,j, (3.8)

where εt+h ∼ i.i.d.N(0, 0.125), ε̃t,j ∼ i.i.d.N(0, 1), α0 = 0.5, β∗j = α1ωj(θ). α1 are

chosen from {0.2, 0.3, 0.4}, T ∈ {100, 200, 400} and the frequency ratio m ∈ {20, 40,

60, 150, 365}. For the AR(1) HF regressor, c = 0.5, d = 0.9.

Remark 3.1. In the current framework, we are absorbed in showing the performance

of Fourier approximation in MIDAS regression models. More complicated settings,

such as including LF variables in the model, are acceptable to use our nonparametric

MIDAS. Fourier approximation is only required for HF variables to reduce and unify

the frequency ratio.

To show that our method has a satisfactory performance on estimating various shapes

of weights in the MIDAS regression model, we consider five different shapes for ωj(θ).

The first four are generated discretely by four functions suggested in Breitung and

Roling [12]. The last one is typically the weight of an end-of-period sampling. The

following weight functions satisfy the Dirichlet conditions, then the Fourier series

expansion exists for each functions. However, since the value of parameter K and L

are predetermined, we choose K = 3, L = 2 in the following Monte Carlo simulation.

1. Exponential Decline: ωj(θ1, θ2) =
exp{θ1j + θ2j

2}∑m
i=1 exp{θ1i+ θ2i2}

, θ1 = 7 × 10−4, θ2 =
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−6× 10−3;

2. Hump-Shaped: ωj(θ1, θ2) =
exp{θ1j − θ2j

2}∑m
i=1 exp{θ1i− θ2i2}

, θ1 = 0.08, θ2 = θ1/10,

θ1/20, θ1/30;

3. Linear Decline: ωj(θ0, θ1) =
θ0 + θ1(j − 1)

θ0(m) + θ1(m)(m+ 1)/2
, θ1 = 1, θ2 = 0.05;

4. : ωj(θ1, θ2) =
θ1

m

(
sin

(
θ2 + 2π

j

m− 1

))
, θ2 = 0.01, θ1 = 5, 5/2, 5/3;

5. Discrete: ωj = (0, 0, · · · , 0, 5/m, · · · , 5/m) where we assign value 5/m to the last

one fifth elements and 0 to the rest.

The first weight function is also known as the Exponential Almon Lag proposed by

Ghysels et al. [33], which is able to mimic various shapes with a few parameters. The

formula that we concentrate on is designed by two parameters. The cyclical weight

and the end-of-sampling weight illustrate the flexibility of our methods. All weights

are positive and normalized, to sum up to one.

To compare our method with the nonparametric approach proposed by Breitung and

Roling [12], we present the median RMSE of parameters β∗· ’s among all replications

in Table 3.1 and the one-step-ahead forecast of the response in Table 3.2, correspond-

ingly. RMSE of estimated β̂∗ is calculated as

RMSE =

√√√√ 1

n

n∑
i=1

∥∥∥M ′β̂ − β∗
∥∥∥2

2
.
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In consideration of the computational complexity, the number of replications is set

to be 1000 for RMSE of β∗· ’s and 250 for RMSE of the one-step-ahead forecast. In

particular, the one-step-ahead forecast is calculated via the following steps.

1. Obtain the estimated β̂
∗

in the regression model yt+h = xt
′β∗ + εt+h for t = 1,

· · · , T/2. Denote the estimated parameter as β̂∗.

2. Get the predicted response ŷT/2+h+1 by using the estimated parameter β̂
∗
T/2 and

one-step-ahead regressor xT/2+1, i.e. ŷT/2+h+1 = xT/2+1
′β̂
∗
T/2.

3. Repeat step 1-2 by using one more step ahead of the regressor and the response

to get the estimated response ŷT/2+h+k for k = 2, · · · , T/2. Especially, in k-th

repeated process, use the observations xt+k−1 and yt+h+k−1 for t = 1, · · · , T/2

to get the estimator β̂
∗
T/2+k−1. Obtain the estimated yT/2+h+k by using xT/2+k

and the estimated parameter β̂
∗
T/2+k−1.

4. After calculating the estimated response ŷt+h for t = T/2+1, · · · , T , we compare

the estimated responses with the observed responses and calculate the RMSE

of the predicted variable.

RMSE =

√√√√ 1

T/2

T/2∑
k=1

(ŷT/2+h+k − yT/2+h+k)2.

We present the main idea of the nonparametric MIDAS proposed in Breitung and

Roling [12] as well to have a more intuitive understanding of the advantage of Fourier
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transformation in MIDAS. The nonparametric MIDAS in Breitung and Roling [12]

takes advantage of the cubic smooth spline. The least-squares objective function is

penalized by the sum of the second difference of weights to balance the goodness of

fit and the smoothness of weights. Suppose that the MIDAS model is shown in (3.1).

The penalized least-squares objective function is

QBR =
T∑
t=1

(
yt+h − α0 −

m−1∑
i=0

xt,iβ
∗
i

)2

+ λBR

m∑
i=2

(
52β∗i

)2
,

where 52β∗i = (β∗i −2β∗i−1 +β∗i−2) indicates the second difference of weights. The SLS

estimator [12] becomes

β̂
∗
BR = arg min

β∗

(
‖y −Xβ∗‖2

2 + λBR ‖Dβ∗‖2
2

)
,

where

D(m−2)×(m+1) =



0 1 −2 1 0 · · · 0

0 0 1 −2 1 · · · 0

...
...

...
...

...
...

...

0 0 0 · · · 1 −2 1


.

In such nonparametric MIDAS model, λBR is a tuning parameter which has to be

predetermined. Breitung and Roling [12] minimized the modified AIC to choose λ.

They introduced a peudo-dimension sλBR , which can be treated as the dimension of
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spanned space of estimated parameters.

AICλBR = log
(
‖y − ŷBR‖2

2

)
+

2(sλBR + 1)

T − sλBR + 2
,

where ŷBR = X(X ′X + λBRD
′D)−1X ′y. Except for common sense that the pseudo-

dimension sλBR is supposed to be an integer, it is also allowed to be any real value

in [2,m− 1). It results in estimated parameters to be more smooth expectantly. In

addition, they proposed a way to minimize AIC by solving the first-order condition.

More details can be found in Breitung and Roling [12].
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In general, Fourier approximation presents a better performance in both RMSE of the

parameter and the one-step-ahead forecast. First, in Table 3.1, estimation accuracy

increases as the frequency ratio become larger using either approach. In exponen-

tial decline, hump-shaped and linear decline cases, Fourier approximation improves

accuracy compared with the nonparametric method substantially. The improvement

is similar in exponential Almon lag and hump-shaped cases and becomes consider-

able when the sample size or the frequency ratio is enlarged. Fourier approximation

captures the flexibility of two-parameter exponential Almon lag more precisely than

the nonparametric approach. Expectantly, in the linear decline case, Fourier approx-

imation provides a much more accurate estimation with enlarged frequency ratios.

Fourier approximation contains a linear term so that it could estimate the linear

pattern better. However, in the cyclical case, Fourier expansion keeps performing

similar median RMSE with different sample sizes. The nonparametric approach out-

performs Fourier approximation and provides more accurate estimations when the

sample size increases. Even though Fourier approximation contains trigonometric

terms, the number of parameters in Fourier expansion may have an impact on the

estimation accuracy. An appropriate choice of the number of parameters is crucial.

Second, in Table 3.2, we present the median RMSE of the one-step-ahead forecast.

Even though both two methods perform more accurate forecast as the sample size or

the frequency ratio increases in all five cases, Fourier approximation is still superior

to the nonparametric estimation slightly. Among five cases, Fourier approximation
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provides a much more precise forecast in linear decline case with large frequency

ratios.

3.3 Panel Nonparametric MIDAS

In Section 3.2.1, we have introduced Fourier approximation in MIDAS models. The

overall performance of Fourier approximation is laudable in general. Given the com-

plexity of panel data, Fourier approximation could be a wise choice, especially when

frequency ratios of distinct subjects are not consistent, or the ratios are significantly

large, for example, 365 for daily vs yearly data. Fourier approximation transforms

inconsistent frequency ratios to a fixed, predetermined small number, which could re-

duce the computational complexity efficiently. Given the performance of introducing

Fourier series expansion in MIDAS models presented in Section 3.2, we extend the

nonparametric model to a cross-subsectional data.

3.3.1 Panel MIDAS with Fourier Transformation

Suppose there are n subjects. For simplicity, we assume that all subjects have the

same sample size T and frequency ratio m. The arguments in this chapter should

still be suitable with different sample sizes and frequency ratios for different subjects
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at the expense of more complicated notations and slight changes in the results. See

Remark 3.2.

For the i-th subject, let ui,t be the q-vector of covariates including the intercept at

time t, t = 1, . . . , T , and αi be the corresponding coefficient. Consider the following

MIDAS model with the lead h ≥ 0:

yi,t+h = u′i,tαi + x′i,tβ
∗
i + εi,t+h, t = 1, . . . , T, i = 1, . . . , n, (3.9)

or

yi = Uiαi +Xiβ
∗
i + εi, i = 1, . . . , n, (3.10)

where yi = (yi,1+h, . . . , yi,T+h)
′, εi = (εi,1+h, . . . , εi,T+h)

′, β∗i = (β∗i,0, . . . , β
∗
i,m−1)′.

εi,t+h is the error process for the i-th subject. Xi is a T × m matrix with the t-th

row being x′i,t = (xi,t,0, xi,t,1, . . . , xi,t,m−1), and Ui is a T × q matrix with the t-th row

being u′i,t = (ui,t,1, . . . , ui,t,q). With basically the same formulation of single-subject

MIDAS model, the MIDAS model (3.10) is an extension of (3.1) with panel data.

Consider smoothing the MIDAS weight vector β∗i using the Fourier approximation.

For each subject i = 1, . . . , n, define Fourier transformed HF variables X̃i = XiM
′,

where M is the same as the transformation matrix in Section 3.2.1. For all i, Xiβ
∗
i ≈

X̃iβi, as along as L and K are large enough and the underlying MIDAS weight

functions β∗i (·) satisfy the Dirichlet conditions.
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Let Wi = (Ui, X̃i) and γi = (α′i,β
′
i)
′. The equation (3.10) can be rewritten as

yi = (Ui, Xi)

αi
β∗i

+ εi ≈ (Ui, X̃i)

αi
βi

+ εi = Wiγi + εi (3.11)

Concatenating yi in (3.11) into y, a vector of length nT ,

y ≈ Wγ + ε, (3.12)

where y = (y′1, . . . ,y
′
n)′, W = diag(W1, . . . ,Wn), γ = (γ ′1, . . . ,γ

′
n)′, and ε = (ε′1, . . . ,

ε′n)′. Let p = q + 2K + L+ 1. In our formulation, γi is a vector of length p and γ is

of length np.

Remark 3.2. Allowing different sample sizes and frequency ratios for different sub-

jects can be done at the expense of complicity in notations. The major complication

arises from the need to use different Mi for each i in X̃i = XiM
′
i , where mi replaces

m in (3.4) for the i-th state. y is a vector of length
∑n

i=1 Ti rather than nT . As this

makes the notations for the subsequent proofs more complicated without adding fun-

damental differences, we do not pursue this generalization at the current stage. On

the other hand, we should use the same L and K for all subjects i = 1, . . . , n, unlike

the case for T or m. This is because it is necessary to compare βi and βj directly and

their dimensions need to be matched. It can be interpreted that although different

subjects may have different degrees of HF information, they need to be eventually
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matched after smoothing to compare different subjects.

Now, we introduce the estimation of parameters in (3.12) if the subjects can be

separated into a small number of groups. Denote the number of groups as G. The

advantage of the proposed procedure is that it does not require any prior knowledge

of group information or the number of groups. The only information required is to

identify group-specific parameters. Here, we focus on the case where all elements in

γi are the same within a group. It is possible to relax this assumption by letting

some of γi be individual-specific, rather than assuming all parameters are strongly

tied with groups. It is also possible to extend the model further by allowing for more

than one HF variables. See Remark 3.3 for a brief discussion on these two extensions.

The OLS solution of (3.12) is γ that minimizes

1

2
||y −Wγ||22. (3.13)

However, the OLS estimator of γ would not reflect the relevant group information.

We propose a panelized regression method to force all elements in γi to have similar

values within a group. Our method is based on the observation that if two subjects

i and j belong to the same group, the difference of their group-specific parameter

would be zero, i.e., ηij = γi − γj = 0. Under the circumstances, the OLS estimator

of ηij would also be somewhat close to a zero vector, though it would not be exactly
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zero. Nevertheless, since subject i and j are in the same group, ηij should better

estimated to be exactly zero, rather than somewhat close to zero. This can be forced

by imposing a penalty for small values of ηij. In particular, if the number of groups

N is much smaller than the number of subjects n, only a small number of ηij would

be nonzero. Therefore, we consider the following penalized objective function:

Q(γ) =
1

2
||y −Wγ||22 +

∑
1≤i<j≤n

ρ(γi − γj, λ1), (3.14)

where ρ(·, ·) is an appropriate penalty function and λ1 is the tuning parameter. By

introducing ηij = γi − γj, minimizing (3.14) is equivalent to minimizing

Q(γ,η) =
1

2
||y −Wγ||22 +

∑
1≤i<j≤n

ρ(ηij, λ1) subject to ηij = γi − γj, (3.15)

where η = (η′12, . . . ,η
′
n−1,n)′. Following Boyd et al. [10], we solve this constrained

optimization problem using a variant of the augmented Lagrangian

Qλ2(γ,η, ξ) =
1

2
||y −Wγ||22 +

∑
i<j

ρ(ηij, λ1)

+
λ2

2

∑
i<j

||γi − γj − ηij||22 +
∑
i<j

ξ′ij(γi − γj − ηij),
(3.16)

where ξ = (ξ′12, ξ
′
13, . . . , ξ

′
n−1,n)′ and ξij are p-vectors of Lagrangian multipliers. As

proposed in Boyd et al. [10], the optimazition problem in (3.16) can be solved using

the ADMM algorithm.
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Refer to the algorithm, at the (s + 1)-th step, estimated parameters γs+1, ηs+1 and

ξs+1 should be updated as



γs+1 = arg min
γ
Qλ2(γ,η

s, ξs),

ηs+1 = arg min
η
Qλ2(γ

s+1,η, ξs),

ξs+1
ij = ξsij + λ2(ηs+1

ij − γs+1
i + γs+1

j ),

(3.17)

where ηs and ξs are the estimates in the s-th iteration.

By gathering terms only related to γ, the first function in (3.17) is equivalent to

minimizing

Qγλ2(γ,η, ξ) =
1

2
‖y −Wγ‖2

2 +
λ2

2
‖Dγ − (η + ξ/λ2)‖2

2, (3.18)

where Dij = (ei − ej)′ ⊗ Ip and D = (D′12, D
′
13, · · · , D′n−1,n)′. ei is an n-dimension

vector with the i-th element as one and the rest as zeros. Ip is an identity matrix

with rank p. Therefore, γs+1 = (W ′W + λ2D
′D)−1 (W ′y + λ2D

′(ηs + ξs/λ2)).

The MCP is shown to be nearly unbiased and is applicable here to update ηs+1 [74].

The penalty function of the MCP is ρ(γi − γj, λ1) = ρθ(‖γi − γj‖2, λ1) where ρθ(a,

b) = b
∫ a

0
(1 − u

θb
)+du. As a consequence, when the MCP is selected, ηs+1

ij can be
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updated by

ηs+1
ij =


η̃s+1
ij , if ‖η̃s+1

ij ‖2 ≥ θλ1,

θλ2

θλ2 − 1

(
1− λ1/λ2

‖η̃s+1
ij ‖2

)
+

η̃s+1
ij , if ‖η̃s+1

ij ‖2 < θλ1,
(3.19)

where η̃s+1
ij = γs+1

i −γs+1
j −ξ

s
ij/λ2 and θ > 1/λ2 for the global convexity of the second

minimization function in (3.17) [69].

If the minimization function of ηs+1 is non-convex, assigning appropriate initial values

becomes essential. A proper start leads to an ideal solution. Inspired by Zhu and Qu

[74], we would summarize the whole algorithm in Algorithm 3.

Algorithm 3: The Clustering Algorithm: Fourier Transformed Data

Initialization:
ξ0 = 0, γ0 = (W ′W )−1 (W ′y) , η0 = arg minη Qλ2(γ,η, ξ), where λ2 and θ > 1/λ2

are fixed.
for s = 0, 1, 2, · · · do

γs+1 = (W ′W + λ2D
′D)−1 (W ′y + λ2D

′η̃s).
ηs+1 = arg minη Qλ2(γ

s+1,η, ξs),
ξs+1
ij = ξsij + λ2(ηs+1

ij − γs+1
i + γs+1

j ), for all 1 ≤ i < j ≤ n.

if the stopping criteria are true then
Break

end

end

The tuning parameter λ1 is chosen by minimizing

BICλ1 = log

(
‖y −W γ̂‖2

2

n

)
+

log(n) ·
(
Ĝp
)

n
. (3.20)

The estimated number of groups, Ĝ, can be obtained by η. We expected to have
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γi and γj in the same cluster if γ̂i = γ̂j. However, as a penalty ηij has been

imposed in the clustering algorithm, the equality of two estimated parameters are

not achievable. As a result, the MCP penalty is utilized on η̂ij. Two parameters γi

and γj are clustered in the same group if η̂ij = 0. Only if the tuning parameter λ1 is

given, Ĝ and the estimated coefficients γ̂ can be evaluated. Hence, we assign different

values to λ1 and calculate the corresponding BIC’s shown in (3.20). λ1 is selected

when BIC reaches the minimum.

In Algorithm 3, let κs+1
ij = γs+1

i − γs+1
j − ηs+1

ij , κ = (κ′12, · · · ,κ′n−1,n)′ and τ s+1
k =

−λ2

(∑
i=k(η

s+1
ij − ηsij)−

∑
j=k(η

s+1
ij − ηsij)

)
, τ = (τ 1, · · · , τ n)′. At any step s∗, if

for some small values εκ and ετ , ‖κs∗‖2 ≤ εκ and ‖τ s∗‖2 ≤ ετ , the algorithm stops.

According to Zhu and Qu [74], εκ and ετ are defined as

εκ =
√
npεabs + εrel‖D′ξs∗‖2, ετ =

√
|I|pεabs + εrel max{‖Dηs∗‖2, ‖ηs

∗‖2},

where I = {(i, j) : 1 ≤ i < j ≤ n}, |I| indicates the cardinality of I. εabs and εrel are

predetermined small values.

Theorem 3.1. The clustering algorithm ensures convergence, s.t.

‖κs+1‖2
2 → 0 and ‖τ s+1‖2

2 → 0,

as s→∞.
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The proof of Theorem 3.1 can be found in Appendix A.2.1. Theorem 3.1 demonstrates

that the clustering algorithm is convergent as the number of iteration, s, approaches

infinity. The stopping criteria can be satisfied at some step eventually.

Remark 3.3. It is possible to extend the setting to allow for more than one HF

variables and subject-specific variables. All coefficients in (3.12) are group-specific. If

there are subject-specific coefficients, a similar argument would still work, although

some rates and conditions would change. In particular, the number of coefficients

that are subject-specific should be added following a similar argument in Ma and

Huang [54, 55]. If there are more than one group-specific HF variables, it is enough

to stack all corresponding coefficients in γ.

Next, we show some theoretical properties of the estimators solving the optimization

problem in (3.14). Suppose the true group memberships are known. Let the number

of groups be G. For g = 1, . . . , G, let Gg be the set of subject indices that corresponds

to the g-th group. Assume G1, . . . ,GG are mutually exclusive and G1 ∪ . . .∪ GG = {1,

. . . , n}. This means that each subject belongs to exactly one group. Denote |Gg| to

be the number of elements in Gg for g = 1, . . . , G. Define gmin = ming=1,...,G |Gg| and

gmax = maxg=1,...,G |Gg|.

Let the true parameter of the i-th subject as γ0
i , and ϕ0

g is the true common vector

for group Gg. Take γ0 = (γ0
1
′
, · · · ,γ0

n
′
)′ and ϕ0 = (ϕ0

1
′
, · · · ,ϕ0

G
′
)′. Each γi is the

individual-specific coefficient. Let ϕg be the common value for the γi’s from group
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Gg, then γi = ϕg for all i ∈ Gg and any g = 1, · · · , G. In other words, ϕg indicates

the g-th panel-specific parameter. ϕ = (ϕ′1, · · · ,ϕ′G)′. γ̂ is the estimated parameters

of all subjects, and the estimated panel effects ϕ̂1, · · · , ϕ̂Ĝ are the distinct values of

γ̂ where Ĝ is the estimated number of panels. So denote the estimated group as

Ĝg := {i : γ̂i = ϕ̂g, 1 ≤ i ≤ n} for 1 ≤ g ≤ Ĝ. According to Ma and Huang

[55], the clustering algorithm allows to get η̂ij = 0. Then, ϕ̂g would eventually be

ϕ̂g = |Ĝg|−1
∑

i∈Ĝg γ̂i for the g-th group.

Let Π be a n×G matrix with the (i, g)-th element being 1 if i-th subject belongs to

g-th group, and 0 otherwise. Then

γ = (Π⊗ Ip)ϕ = Γϕ, (3.21)

where Γ = (Π⊗ Ip). Consider an estimator γ̂or of γ0. By (3.21), we define an oracle

estimator γ̂or = (Π ⊗ Ip)ϕ̂
or. We call this an oracle estimator since it utilizes the

knowledge of the true group memberships in Π, which is infeasible in practice.

For the oracle estimator, We use the OLS estimator γ̂or of γ0

γ̂or = (W ′W )−1W ′y, ϕ̂or = (Γ′W ′WΓ)−1Γ′W ′y, (3.22)

assuming that Γ′W ′WΓ is invertible. This is the case as we assume n � G. Using
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this OLS estimator and (3.21), the oracle estimator of γ is

γ̂or = Γϕ̂or = Γ(Γ′W ′WΓ)−1Γ′W ′y. (3.23)

Before introducing the theoretical properties, we formally organize the assumptions.

Assumption 3.3. There are G distinct functions β∗g(·) that satisfy the conditions in

Assumption 3.1. In particular, for any r ∈ [0, 1], β∗i,brmc → β∗g(r) as m → ∞ for all

i ∈ Gg.

Assumption 3.4. We also assume that the number of clusters is much smaller than

the number of subjects, i.e., G� n.

Assumption 3.5. Assume λmin(
∑

i∈Gg W
′
iWi) ≥ c|Gg|T , λmax(

∑
i∈Gg W

′
iWi) ≤ c′nT ,

max1≤i≤n λmax(W ′
iWi) ≤ c′′T and λmax(Γ′W ′WΓ) ≤ c∗|Gg|T for some constant c, c′,

c′′ and c∗ that does not depend on g = 1, . . . , G. In addition, We further assume that

for any ε > 0, there exist 0 < M1, . . . ,M4 <∞ such that

P

(
sup

i=1,...,n
‖U ′iUi‖∞ >

√
qTM1

)
< ε, P

(
sup

i=1,...,n
‖X ′iXi‖∞ >

√
mTM2

)
< ε,

P

(
sup

i=1,...,n
‖U ′iXi‖∞ >

√
mTM3

)
< ε, P

(
sup

i=1,...,n
‖X ′iUi‖∞ >

√
qTM4

)
< ε.

Assumption 3.6. The penalty function ρ(t, λ) is a symmetric, nondecreasing, and

concave in t for t ∈ [0,∞). Let ρ(t) = λ−1ρθ(t, λ). There exists a constant 0 < cρ <∞

such that ρ(t) is a constant for all t ≥ aλ. ρ(t) is differentiable and ρ′(t) is continuous
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except for a finite number of t. ρ(0) = 0 and ρ′(0+) = 1.

Assumption 3.7. There exists c̃ > 0 such that

E

{
exp

(
n∑
i=1

T∑
t=1

νi,tεi,t

)}
≤ exp

(
c̃

n∑
i=1

T∑
t=1

ν2
i,t

)

for any real numbers νi,t for i = 1, . . . , n and t = 1, . . . , T . Furthermore, assume that

V ar(εi,t) = O(c̃) which is independent to n, G and T .

Assumption 3.3 is required for the feature selection technique that we use in (3.14),

as the methods require sparsity. Assumption 3.5 is reasonable considering the usual

assumption that the smallest eigenvalue of W ′
iWi is bounded by cT where T is the

sample size and c is some constant. This condition can be relaxed allowing different

cg for different groups. In such case, our results would not hold if the number of

clusters G grows to infinity. It would still work as long as G is finite by choosing c =

ming=1,...,G cg in the statement of Theorem 3.2. Moreover, Assumption 3.5 is stated for

heterogeneous case. For homogenous model, the only difference that we should assume

is that λmin(
∑

i∈Gg W
′
iWi) ≥ cnT , and λmax(Γ′W ′WΓ) ≤ c∗nT for some constant c

and c∗ that does not depend on g = 1, . . . , G since max |Gg| = n. Assumption 3.6 is

are adapted from Ma and Huang [55] and is conventional in literature. Assumption

3.7 holds for independent subgaussian vector ε, which is commonly assumed in high

dimensional settings. The variance of the sub-Gaussian process is bounded by the

parameter c̃. The following theorem provides conditions for the convergence of the
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oracle estimator γ̂or.

Theorem 3.2. If Assumptions 3.3–3.7 hold, then

P (||γ̂or − γ0||∞ ≤ φn,T,G,ζ) ≥ 1− e−ι,

where φn,T,G,ζ =

√
2c̃

c
B

1/2
q,m

(mM̃gmax)1/2(Gp)3/4

gminT 3/4
(Gp+2

√
Gp
√
ζ+2ζ)1/2. Bq,m = [q1/2+

m1/2(L + 1 + 2K)]1/2, M̃ = max{M1,M2,M3,M4}, ι = min{ζ,− log(ε)} − log(2)

for ε defined in Assumption 3.5.

Furthermore, for any vector cn ∈ RGp such that ‖cn‖2 = 1, following the Lindeberg-

Feller Central Limit Theorem, the asymptotic distribution of γ̂or is

c′n(γ̂or − γ0)→ N(0, σ2
γ),

where σ2
γ = V ar(γ̂or − γ0).

With an appropriate choice of ζn,T,G, we can show that the conditions of convergence

of the oracle estimator. Note that we fix the frequency ratio m and the number of

transformed parameters p for simplification. gmin < n/G in all cases in Theorem 3.2,

Corollary 3.1 and Theorem 3.3.

Corollary 3.1. The oracle estimator γ̂or converges to the true parameter γ0 in prob-

ability under one of the following conditions:
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1. n is fixed. Let ζ = o(T 3/2) as T →∞;

2. n→∞. Whether T is fixed or T →∞,

(a) when G is fixed, gmin = O(n1/2+α̃0) for some constant α̃0 < 1/2, ζ =

o(n2α̃0T 3/2) approaches to infinity;

(b) when G→∞,

i. suppose gmin = O(n7/9+α̃1) for some constant α̃1 < 2/9, ζ = O(G)

approaches to infinity;

ii. suppose gmin = O(n5/7+α̃2) for some constant α̃2 < 2/7, ζ =

o(n7α̃2/2T 3/2)� G approaches to infinity.

Corollary 3.1 lists the convergent conditions of the oracle estimator for a large enough

ζn,T,G with respect to different conditions of n, T and G. The following theorem

indicates that the our estimator γ̂ of parameter γ converges to the oracle estimator

in probability, which further demonstrates that our estimator converges to the true

parameter.

Assumption 3.8. The minimal difference of the common values between two panels

is

bn,T,G = min
i∈Gg ,j∈Gg′ ,g 6=g′

‖γ0
i − γ0

j‖2 = min
g 6=g′
‖ϕ0

g −ϕ0
g′‖2 > aλ1 + 2pφn,T,G,

for some constant a > 0.
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Assumption 3.8 limits the minimum difference between the averages of parameters

of all groups. In other words, the clustering works appropriately when the difference

of pairwise groups is large enough. The following theorem shows that our estimator

enjoys oracle property without prior knowledge of true group memberships. ζ∗ is a

parameter introduced in the proof of Theorem 3.3.

Theorem 3.3. Suppose Assumption 3.8 holds. Consider the following conditions:

1. As n → ∞ with T fixed, suppose that conditions in Theorem 2 are satisfied,

gmin � (p+ 2
√
p+ 2)1/2 max(n, ζ∗)1/2. Let ζ∗ →∞.

2. As T, n→∞. Consider gmin � (p+2
√
p+2)1/2 max(n, ζ∗)1/2T 1/4. Let ζ∗ →∞.

(a) Consider G→∞. Let n7/13

T 1/13 � gmin < n/G, ζ ≤ G and ζ →∞.

(b) When G� ζ →∞

i. When G is fixed, let gmin = O(n1/4+α̃3) for some positive constant

α̃3 < 3/4 and ζ = o(n4α̃3T 1/2), ζ →∞.

ii. When G → ∞, for some positive constant α̃4 < 6/11, let gmin =

O(n5/11+α̃4) and G ≤ n/gmin, ζ = o(n11α̃4/2T 1/2) and ζ →∞.

Under one of these conditions, for λ1 � pφn,T,G where φn,T,G is given in Theorem

3.2, the local minimizer γ̂ of (3.14) is almost surely the same as the oracle estimator

γ̂or, that is,

P (γ̂ = γ̂or)→ 1
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as nT →∞.

Theorem 3.3 focuses on the second level of convergence. Considering additional con-

ditions except for those listed in Corollary 3.1, our estimator γ̂ converges to the oracle

estimator γ̂or in probability one.

Corollary 3.2. Suppose that Assumption 3.3–3.7 and Assumption 3.8 hold. Then γ̂

converges to γ in distribution given any case of the following conditions:

1. as n→∞ with T fixed, consider the conditions in Corollary 3.1 under the same

circumstance, when (p+2
√
p+2)1/2(max(n, ζ∗))1/2 � gmin = O(n7/9+α̃0) ≤ n/2,

let ζ∗ →∞.

2. as n, T →∞,

(a) when G is fixed, gmin = O(n1/2+α̃4) for some constant α̃4 < 1/2, let ζ =

o(min(n1+4α̃4T 1/2, n2α̃4T 3/2)) approach to infinity, ζ∗ →∞.

(b) when G→∞,

i. suppose max
(
n7/13

T 1/13 , (p+ 2
√
p+ 2)1/2 max(n, ζ∗)1/2

)
� gmin =

O(n7/9+α̃3) for some constant α3 < 2/9, let ζ = O(G) approach to

infinity, ζ∗ →∞;

ii. suppose gmin = O(n5/7+α̃5) for some constant α̃5 < 2/7, let ζ =

o(min(n10/7+11/2α̃5T 1/2, n7α̃5/2T 3/2)).
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Throughout two steps of convergence, with adequately chosen values of parameters,

our estimator is shown to be consistent under different circumstances. As T → ∞

with other parameters fixed, the convergence of our estimator to the oracle estimator

cannot be guaranteed. The proof of Theorem 3.3 with the heterogeneous case is

shown in Appendix A.2.2.2. We present the proof as well as the required conditions

of the homogeneous case in Appendix A.2.2.3. So far, we have shown that under some

conditions, our estimator converges to the oracle estimator, and the oracle estimator

converges to the true parameter as well theoretically. More simulation results will

be presented in the following to show the performance empirically and illustrate the

robustness of our method compared with other clustering methods.

3.3.2 Simulation: Panel MIDAS

Except for the nonparametric MIDAS that we introduced, we shall consider two more

clustering approaches as a comparison. One is the cross-sectional extension of the

nonparametric MIDAS proposed in Breitung and Roling [12]. The other is proposed

in Su et al. [67]. We would present the models and algorithms of their approaches in

advance.
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3.3.2.1 Comparable Clustering Method

1. Breitung and Roling [12]: Nonparametric MIDAS

In (3.10), the MIDAS regression model without Fourier transformation of each subject

is

yi = Uiαi +Xiβ
∗
i + εi, i = 1, · · · , n.

For more than one subject, we can write the penal MIDAS as

yi = (Ui, Xi)

αi
β∗i

 = W̃iγ
∗
i , or y = W̃γ∗ + ε,

where W̃i = (Ui, Xi) is the raw observations, γ∗i = (αi
′,β∗

i
′)′, γ∗ = (γ∗1

′, · · · , γ∗n′)′.

Refer to the main idea of Breitung and Roling [12], we consider to introduce the

cubic smoothing spline penalty which rejects too sharped changes of parameters when

estimating the parameter γ∗ of the raw data. Then, the penalized objective function

will be given as

Q(γ∗) =
1

2
‖y − W̃γ∗‖2

2 +
1

2
θγ∗γ

∗′Aγ∗, (3.24)

where θγ∗ is the predetermined smoothing parameter, A = In ⊗ (A′A). A is defined
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as

A(m−2)×m =



1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

...
...

...
...

...
...

0 0 · · · 1 −2 1


.

According to Zhu and Qu [74], solve the constrained optimization function

Qλ2(γ
∗,η, ξ) = Q(γ∗)+

∑
i<j

ρ(ηij, λ1)+
λ2

2

∑
i<j

||γ∗i−γ∗j−ηij||22+
∑
i<j

ξ′ij(γ
∗
i−γ∗j−ηij).

(3.25)

The clustering algorithm of (3.25) is similar to Algorithm 3.

Algorithm 4: The Clustering Algorithm: Raw Data And Smooth Penalty

Initialization:

ξ0 = 0, γ0 =
(
W̃ ′W̃ + θγ∗A

)−1 (
W̃ ′y

)
, η0 = arg minη Qλ2(γ,η, ξ), where λ2 and

θ > 1/λ2 are fixed.
for s = 0, 1, 2, · · · do

γs+1 = (W ′W + λ2D
′D + θγ∗A)−1 (W ′y + λ2D

′η̃s).
ηs+1 = arg minη Qλ2(γ

s+1,η, ξs),
ξs+1
ij = ξsij + λ2(ηs+1

ij − γs+1
i + γs+1

j ), for all 1 ≤ i < j ≤ n.

if the stopping criteria are true then
Break

end

end

Algorithm 4 follows the same idea of Zhu and Qu [74]. However, in Zhu and Qu [74],

the model introduces B-splines to approximate observations, while Algorithm 4 uses

all HF regressors. Moreover, an additional tuning parameter, θγ∗ , is required to be

62



predetermined. Refer to Breitung and Roling [12], Zhu and Qu [74], we select θγ∗ by

minimizing the AIC given by

AICθγ∗ =
n∑
i=1

(
log

(
‖yi −Wiγ̂i‖2

2

T

)
+

2dfi
T

)
,

where dfi = tr{Wi(W
′
iWi + θγ∗A

′A)−1W ′
i}. The selection of λ1 here, is by minimizing

BICλ1 = log

(
‖y −W γ̂‖2

2

n

)
+

log(n)
(
Ĝ+ 1

n

∑n
i=1 dfi

)
n

.

With fixed λ1, we can obtain AICθγ∗ for different values of θγ∗ . Then, fix θγ∗ with

the minimum BIC, we can calculate BICλ1 based on the determined θγ∗ .

2. Su et al. [67]: PPL Estimation

As mentioned in the introduction, Su et al. [67] introduced C-Lasso for clusters to

identify relatively significant differences between parameters and group averages. The

PPL function mentioned in Su et al. [67] is

Q(γ∗) =
1

nT

n∑
i=1

T∑
t=1

φ(wit;γ
∗
i , µ̂i(γ

∗
i )). (3.26)

By introducing the group Lasso penalty, the PPL criterion function becomes

QG,λPPL = Q(γ∗) +
λPPL
G

N∑
i=1

G0∏
g=1

‖βi −αg‖2, (3.27)
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where λPPL is a tuning parameter. The C-Lasso estimation γ̂ and α̂, respectively.

Without any prior knowledge of the true clusters, the PPL C-Lasso estimation re-

quires a predetermination of reasonable maximum value, G0, of groups. An appropri-

ate choice of (λPPL, G0) can be found by minimizing IC based on all possible values of

clusters less than G0 as long as predetermined values of λPPL. To start the algorithm,

Su et al. [67] suggested a natural initial value as α̂(0)
g = 0 for all g = 1, · · · , G0 and

γ̂∗(0) as the QMLE of γ∗i in each subjects. More details can be found in Su et al. [67].

Algorithm 5: PPL Algorithm Given G0 and λPPL

Initialization: α̂(0) = (α̂
(0)
1 , · · · , α̂(0)

G0
)
′
, γ̂∗

(0)

= (γ̂∗
(0)

1 , · · · , γ̂∗
(0)

n )
′

s.t.∑n
i=1 ‖γ̂

∗(0)
i − α̂(0)

g ‖ 6= 0 for all g = 2, · · · , G0.

for s = 1, 2, · · · do
for g = 1, 2, · · ·G0 do

Obtain the estimator (γ̂∗
(s,G)

, α̂(s)
g ) of (γ∗,αg) by minimizing the following

objective function Q
(s,g)
G,λPPL

(γ∗,αg).

if g = 1 then

Q
(s,g)
G,λPPL

(γ∗,αg) = Q(γ∗)+
λPPL
N

∑N
i=1 ‖γ∗i −αg‖

∏G
k=2 ‖γi∗

(s−1,k)−α(s−1)
k ‖

;

else if g 6= G then

Q
(s,g)
G,λPPL

(γ∗,αg) = Q(γ∗) +
λPPL
N

∑N
i=1 ‖γ∗i −αg‖

∏g−1
j=1 ‖γ̂

∗(s,j)
i −

α
(s)
j ‖

∏G
k=g+1 ‖γi∗(s−1,k) −α(s−1)

k ‖;
else

Q
(s,g)
G,λPPL

(γ∗,αg) = Q(γ∗) +
λPPL
N

∑N
i=1 ‖γ∗i −αg‖

∏G−1
k=1 ‖γ̂

∗(s,k)
i −α(s)

k ‖ ;

end

end
if the stopping criteria are true then

Break
end

end

Su et al. [67] provided a stopping criteria for the algorithm in the supplementary
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material.

Q̂
(s−1)
G,λPPL

− Q̂(s)
G,λPPL

≤ εtl and

∑G
g=1

∥∥∥α̂(s)
g − α̂

(s−1)
g

∥∥∥2

∑G
g=1

∥∥∥α̂(s−1)
g

∥∥∥2

+ 10−4

≤ εtl, (3.28)

where εtl is a predetermined small value indicating the tolerance level.

3.3.2.2 Comparing Criteria and Settings

To show the performance of clustering results, we present the estimated number of

groups Ĝ and the Rand index [64]. The Rand index is designed to check if two

subjects from the same group are still assigned to the same group, while two from

different groups are separated. Define true positives (TP), true negatives (TN), false

positives (FP) and false negatives (FN) as in Table 3.3 for any subject indices i and

j, 1 ≤ i < j ≤ n. For example, TP indicates the number of pairs of indices (i, j)

Table 3.3
Confusion Matrix for Clustering

Actual
i, j ∈ Gg i ∈ Gg, j /∈ Gg

Predict
i, j ∈ Ĝg TP FP

i ∈ Ĝg, j /∈ Ĝg FN TN

that are in the same group and predicted to be in the same group. The Rand index
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is defined as

Rand =
TP + TN

TP + TN + FP + FN
.

However, even though we expect to have a good clustering performance when the

Rand index is approaching 1, random labeling independently is still a problem. When

the number of clusters in each group is large, it is quite possible to get a large Rand

index. For example, if each group contains 100 samples, 99 different clusters are

generated in one group and 98 different clusters in another group. TN would be large

with different assigned clusters index so that the Rand index increases. In such case,

when the number of clusters increases, the Rand index can get close to 1 regardless

of the quality of clusters [26]. Nevertheless, such random label assignments would

lead to an ARI close to zero or even negative. As a result, we consider the ARI [46]

to eliminate the effect of the independent clustering. The adjusted Rand index is

defined as

ARI =
Rand− E(Rand)

max(Rand)− E(Rand)
.

Since the ARI is the normalized difference between the Rand index and its expecta-

tion, the ARI is expected to be zero for the independent clustering case. The Jaccard

Index is also considered as a measure of the accuracy of clustering:

Jaccard =
TP

TP + FP + FN
.
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As shown in Algorithm 3, λ2 and θ are two parameters that controls the performance

of clustering besides λ1. In the code example provided by Zhu and Qu [74], λ2 = 1

while θ = 2 guarantee the update formula of ηs+1 in (3.17) being a convex function

with respect to ηij for all combinations of i and j. To compare the effect of param-

eters on the performance of clustering, we restrict two clusters constructed by the

exponential decline and the cyclical function presented in subsection 3.2.2. In each

cluster, 15 data processes are generated. So, 30 coefficient vectors are clustered, and

two groups are expected after clustering. Each data process follows (3.8) shown in

subsection 3.2.2. λ2 = 1, θ ∈ {2, 2.5}, λ1 ∈ {1, · · · , 4.5}, β0 = 0, T ∈ {100, 200, 400},

m = {20, 40} and α1 ∈ {0.2, 0.3, 0.4} in this section. Since when θ exceeds 2.5, most

of the clustering performances are almost the same based on the results that we cal-

culated, then we only present results for θ = 2 and 2.5. 200 samples are generated to

evaluate the average performance due to the computational complexity of the non-

parametric MIDAS in Breitung and Roling [12]. The clustering algorithm was forced

to stop at the 5,000-th iterations if the stopping conditions cannot be satisfied before

the final iteration. Median RMSE of estimated γ̂ is chosen to present the estimation

performance. RMSE of estimated γ̂ is calculated as the following:

RMSE =

√√√√ 1

n

n∑
i=1

‖γ̂i − γi‖2
2.
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3.3.2.3 Clustering Performance

As we previously highlighted, the nonparametric MIDAS proposed by Breitung and

Roling [12] (B&R’s method) along with the clustering algorithm requires more tuning

parameters. Due to the sensitivity of the clustering results with respect to the chosen

values of tuning parameters, it is quite crucial to make appropriate choices. However,

in this section, it does take a long time to find an appropriate θγ∗ because of the

complexity of calculation and more combinations of tuning parameters. Furthermore,

refer to the simulation results presented by Breitung and Roling [12], the choice of θγ∗

is sensitive to the sample size, it is hard to determine a proper range of θγ∗ . Based on

the range of θγ∗ set in Section 3.2.2, we choose the value within the range [0, 100] using

the AIC. Besides, all three indexes, as well as the number of clusters and RMSE’s,

are the average values of all 200 samples.

In Table 3.4, we set T = 100, m = 20, α1 = 0.4. When θ = 2, even though B&R’s

method shows better clustering performance than our method, the RMSE indicates

that the estimation of parameters is much worse using B&R nonparametric MIDAS

generally. Focusing on our method, we can tell that even the performance becomes

better as λ1 increases, three indexes keep showing that the performance is not good

enough. B&R’s method shows better clustering performance as λ1 keeps increasing,

expecially when λ1 exceeds 2.5. Moreover, with the BIC chosen λ1, small values of the
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Table 3.4
Clustering Performance with Different Settings of θ and λ1: 200 MC

Samples, T = 100, α1 = 0.4, m = 20

θ λ1 Method Rand ARI Jaccard Clusters RMSE(∗10−2)

2

1
Our 0.531 0.030 0.026 26.45 0.5246
B&R 0.530 0.756 0.027 27.05 0.4270

1.5
Our 0.545 0.057 0.059 23.62 0.5741
B&R 0.950 0.899 0.899 3.57 0.5984

2
Our 0.526 0.020 0.021 26.32 0.6197
B&R 0.950 0.899 0.899 3.63 0.7630

2.5
Our 0.483 0.000 0.483 1.00 0.6620
B&R 0.995 0.989 0.989 2.17 0.8954

3
Our 0.517 0.007 0.517 1.07 0.6937
B&R 0.998 0.996 0.996 2.05 1.0139

3.5
Our 0.483 0.000 0.483 1.00 0.7408
B&R 0.999 0.998 0.998 2.01 1.1296

4
Our 0.483 0.000 0.480 1.20 0.7676
B&R 0.995 0.989 0.989 2.12 1.2880

4.5
Our 0.483 0.000 0.483 1.00 0.8055
B&R 0.984 0.967 0.966 2.47 1.3130

λ1,BIC
Our=3.157 0.498 0.029 0.497 1.06 0.7094
B&R=2.226 0.951 0.905 0.931 2.51 0.8385

2.5

1
Our 0.671 0.326 0.319 13.52 0.5308
B&R 0.962 0.924 0.922 3.19 0.4368

1.5
Our 0.906 0.810 0.805 5.43 0.5789
B&R 0.985 0.983 0.966 2.13 0.6120

2
Our 0.968 0.935 0.933 3.00 0.6321
B&R 0.998 0.996 0.995 2.06 0.7533

2.5
Our 0.999 0.998 0.998 2.01 0.6618
B&R 1.000 1.000 1.000 2.00 0.8597

3
Our 1.000 1.000 1.000 2.00 0.6897
B&R 1.000 1.000 1.000 2.00 0.9593

3.5
Our 1.000 1.000 1.000 2.00 0.7325
B&R 1.000 1.000 1.000 2.00 1.0465

4
Our 1.000 1.000 1.000 2.00 0.7736
B&R 1.000 1.000 1.000 2.00 1.1210

4.5
Our 1.000 1.000 1.000 2.00 0.8146
B&R 1.000 1.000 1.000 2.00 1.1837

λ1,BIC
Our= 2.190 0.998 0.996 0.996 2.05 0.6534
B&R= 1.107 0.994 0.987 0.987 2.18 0.4388
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adjusted Rand index illustrate the lousy performance of clustering with our method.

Nevertheless, since all indexes are close to 1, B&R’s method outperforms our method

when θ ≥ 2.

However, when θ = 2.5, with a proper choice of tuning parameter λ1, our and B&R’s

method seems to have similar clustering performance when λ1 exceeds 2.5. First

of all, the RMSE of estimated parameters with our method is much better than

B&R’s method, which coincides with the conclusion when λ1 = 2. Then, compare

the average of clusters and three indexes. With small values of λ1 (λ1 < 2), our

clustering performance is not good based on the adjusted Rand index, even though

the performance becomes better as λ1 increases. However, as λ1 exceeds 1.5, all three

indexes show that the performance becomes remarkable, especially when λ1 > 2, the

number of clusters are really close to the true number of panels. In the meantime,

B&R’s method shows better performance when λ1 is small because of the choice

of θγ∗ . However, it is hard to set the range for appropriate θγ∗ which is required

additionally in B&R’s method. Third, comparing to the clustering performance with

B&R’s method, even though B&R’s method has better clustering results when λ1 ≤

2.5, our method with the BIC chosen λ1 has much better clustering performance. It

indicates that the BIC chosen λ1 is an appropriate way to choose tuning parameters

and our method outperforms B&R’s method. Finally, since our method reduces the

frequency ratio between HF and LF variables, it is much faster than B&R’s method,

especially when m becomes large, such as m = 40. According to our simulation
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experience, our method becomes significantly fast when m exceeds 60. In addition,

comparing to the estimating performance with single subject shown in Table 3.1, both

two methods have similar performance on the RMSE of the estimated parameter.

Therefore, with an appropriate choice of θ, our method works much better than

B&R’s method, based on no matter whether the computational complexity or the

number of required tuning parameters given the similar clustering performance.

Apart from the results of one setting in Table 3.4, Table 3.5 shows the clustering

performance of all three approaches with respect to different settings. To compare the

performance of the estimation, we further include the linear regression (lm) subject

by subject. The median RMSE of β̂ is calculated with the case θ = 2.5 for our and

B&R method, as it intends to result in better grouping results. The frequency ratios

m selected in Table 3.5 are 20 and 40 to save workload on B&R’s method. Other than

that, the sample size T and the scale α1 of weights are the same as what is considered

in Section 3.2.2. Su’s method is included as an alternative for the comparison of

the estimation accuracy. In Su’s method, we fix the max number of groups as two

for the grid search to save the calculation load since we have prior knowledge of

the true number of clusters. However, in practice, it could be a problem with an

improperly chosen number. In general, all three clustering methods have correct

clustering results with the BIC chosen tuning parameters, so the grouping information

is not presented in the table. The accuracy of estimation by two nonparametric

methods outperforms Su’s clustering approach or the subject-level linear regression,
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Table 3.5
Median RMSE of Overall Performance for Different Settings: θ = 2.5

T
m α1 method 100 200 400

20

0.2

our 0.4031 0.3466 0.3059
B&R 0.3945 0.3279 0.2261
Su 9.6804 8.4929 7.9253
lm∗ 8.2571 5.5480 3.7683

0.3

our 0.5163 0.4691 0.4315
B&R 0.4306 0.3531 0.2404
Su 7.4175 6.8505 6.2241
lm 8.2573 5.5478 3.7685

0.4

our 0.6392 0.5966 0.5558
B&R 0.4496 0.3663 0.2482
Su 5.8207 5.4699 5.1157
lm 8.2573 5.5478 3.7685

40

0.2

our 0.1587 0.1442 0.1304
B&R 0.1487 0.1103 0.1005
Su 8.8707 7.5578 6.2652
lm 13.7938 8.4324 5.5765

0.3

our 0.2152 0.2012 0.1828
B&R 0.1670 0.1221 0.0922
Su 7.2194 5.8779 4.3612
lm 13.7938 8.3948 5.5765

0.4

our 0.2744 0.2603 0.2145
B&R 0.1789 0.1364 0.0959
Su 5.8455 4.8590 4.6615
lm 13.7938 8.3948 5.5765

All RMSE are the presented value times 10−2.

* method without clustering.

even though Su’s method and the linear regression tend to become more accurate

as the sample size increases. B&R’s nonparametric MIDAS seems to have the best

performance for all settings. It is reasonable that B&R’s method outperforms our

method since applying Fourier approximation results in a two-layer estimation of

parameters. It may reduce the estimating accuracy in a way. Though our method is
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not better than B&R’s approach comparing the values directly, the accuracy is still

acceptable and remarkable.

As the scale α1 is enlarged, the accuracy of estimation by the panel MIDAS with

Fourier approximation is decreased. However, as the sample size T or the frequency

ratio m increases, our approach tends to have a more accurate estimation on the

weights. Same circumstances occur on B&R’s and Su’s method. Overall, the im-

provement is more significant for our and B&R’s method comparing to their original

scale of RMSE. Even though Su’s approach would not perform better on the accuracy

aspect, it is notable that our nonparametric and Su’s method have similar computing

time, while B&R’s method tends to run triple or even much longer. As a balance

of the computing time and estimated accuracy, our approach seems to be the best

choice among all three approaches.

3.3.2.4 One-Step-Ahead Forecast with Clustering

In reality, grouping subjects with respect to their weight function may not be the

only thing that we are interested in. Apart from the clustering performance and

the estimation of parameters, it is also interesting to explore the performance of

one-step-ahead forecast with the help of clustering. To see more general behavior of

the forecast with clustering, we shall consider all possible pairs of weight functions

introduced in subsection 3.2.2. Given the computational complexity of the forecast
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along with the clustering algorithm, we only generate 250 samples in MC simulation.

Furthermore, all possible settings are included in this subsection, i.e. p ∈ {20, 40},

T ∈ {100, 200, 400} and α1 ∈ {0.2, 0.3, 0.4}. The RMSE of the predicted variable is

calculated by

RMSE =

√√√√ 1

nT/2

T/2∑
k=1

n∑
j=1

(ŷj,T/2+h+k − yj,T/2+h+k)2.

Moreover, the linear regression (lm) is included in the forecast as well, calculating

subject by subject. Similarly to what we have done in the previous part, the following

table will present the median of all RMSE of 250 samples.

Table 3.6 shows the one-step-ahead forecast performance of all three clustering meth-

ods and linear regression calculated subject by subject. For our and B&R’s method,

θ = 2.5 is set for comparison. Sample sizes, frequency ratios and the scale λ1 are cho-

sen in the same way as in Section 3.3.2.3. It is notable that the subject-level linear

regression method outperforms all the clustering approaches. The estimated param-

eters may contain possible group information after grouping using these clustering

approaches. When comparing the median RMSE of one-step-ahead forecast, the lin-

ear regression does not require the group information which may affect the estimated

parameters. It may be the reason that the subject-level linear regression has more

accurate prediction on the one-step-ahead forecast. Comparing the accuracy among

clustering approaches generally, our method tends to have more accurate forecasting
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Table 3.6
Overall One-Step-Ahead Forecast for Different Settings: θ = 2.5

T
m α1 method 100 200 400

20

0.2

our 0.7700 0.7437 0.7164
B&R 0.9942 0.7925 0.7214
Su 2.5779 2.6228 2.7425
lm∗ 0.1619 0.1401 0.1319

0.3

our 0.7911 0.7591 0.7192
B&R 0.9937 0.8214 0.7197
Su 2.4774 2.4952 2.5131
lm 0.1619 0.1401 0.1319

0.4

our 0.8072 0.7722 0.7290
B&R 1.0281 0.8336 0.7289
Su 2.2377 2.2315 2.2493
lm 0.1619 0.1401 0.1319

40

0.2

our 0.7591 0.7173 0.7081
B&R 0.7781 0.7336 0.7139
Su 2.6582 2.5276 2.4786
lm 0.2916 0.1617 0.1398

0.3

our 0.7836 0.7150 0.7051
B&R 0.8010 0.7243 0.7144
Su 2.5103 2.3803 2.3066
lm 0.2916 0.1621 0.1398

0.4

our 0.8058 0.7252 0.7176
B&R 0.8166 0.7277 0.7257
Su 2.2844 2.1698 2.0982
lm 0.2916 0.1621 0.1398

* method without clustering.

performance.

As sample size T or the frequency ratio m is enlarged, the forecast accuracy of our

method is improved, while the forecast tends to be worse as the scale α1 increases.

The change of the forecasting accuracy is not significant when m changes. B&R’s

method shares similar circumstances. Su’s method has much worse accuracy on the
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one-step-ahead forecasting for all settings. In the meantime, Su’s method also requires

a prior knowledge of the true number of groups. It may not be a preferable method

among all three methods in our framework.

Broadly speaking, our method has more accurate forecast than B&R’s method. Both

two alternatives present more accurate forecast as the sample size T or the frequency

ratio m increases, while the forecasting accuracy becomes worse when the scale α1

increases. When the sample size T is not large enough, for example, T < 400, our

method is better than B&R’s with all different values of other parameters. The

difference is quite significant for small sample sizes and frequency ratios. As the

sample size T = 400, both two methods have similar one-step-ahead forecasting

accuracy. Balancing the accuracy of forecast, the estimation of parameters and the

computing time, our method could be a wise choice in such panel MIDAS model.

3.3.3 Selection of Tuning Parameters

According to the clustering performance shown above, choosing the tuning param-

eters, λ2, θ and λ1 is an essential task which can affect the clustering performance

significantly. The choice of λ1 depends on the predetermination of θ. In other words,

it is crucial for users to make a wise choice of θ. As tables are shown above, the Rand

index, the ARI and the Jaccard index are three approaches to compare the clustering
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performance and to select the tuning parameters. It is required to know the true

clusters at first. However, in practice, we may not know the true clusters of panels.

The main method to determine θ and λ1 is the BIC. However, selecting θ and λ1

based on the BIC may not be appropriate if the initial values are not assigned prop-

erly. Here, we shall propose guidance to select the tuning parameters θ by calculating

the globally convex interval introduced in [73]. When θ lies in such an interval, the

convexity of the objective function (3.16) would be ensured to use (3.19).

In this section, we will give a brief introduction of the guidance choosing tuning pa-

rameters. More details can be found in [73]. Consider the convergence of the objective

function Qλ2(γ,η, ξ). Qλ2(γ,η, ξ) is supposed to converge to a global coordinate-wise

minimum shown in (3.17). However, if the second minimization function is not con-

vex, it is hard to guarantee the convergence of Qλ2(γ,η, ξ). Then, let c∗(λ1) be the

minimal eigenvalue of W (Π⊗ Ip)/n = WΓ/n where Π and Γ are introduced in (3.21),

the objective function Qλ2(γ,η, ξ) with MCP is convex if θ > 1/c∗(λ1). Refer to [11],

we define the globally convex interval of λ1 to be (λ∗1,∞) where

λ∗1 = inf{λ1 : θ > 1/c∗(λ1)}. (3.29)

Then, given a value of θ, the solution can be found by

1. Select λ1 using BIC;
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2. Determine the globally convex interval of λ1;

3. Reduce θ if λ1 lies inside the globally convex interval. The convexity can be

guaranteed as well. Otherwise, enlarge θ to make the objective function more

convex.

To illustrate the performance of choosing the tuning parameters θ and λ1, we shall

take two samples in MC simulation for example.

Table 3.7
Selection of λ1 given θ

Sample θ = 2 θ > 2

λ1 by BIC
4 4.5 3.5
5 5.0 4.0

c∗(λ1)
4 0.1452 0.0681
5 0.1420 0.0694

Globally Convex Interval
4 (6.89,∞) (14.69,∞)
5 (7.04,∞) (14.41,∞)

Take sample 4 as an example. We start to examine the globally convex interval from

θ = 2. BIC chosen λ1 is 4.5, and following the guidance, the globally convex interval

for θ is calculated to be (6.89,∞). To make the objective function more convex, we

enlarge θ. In the simulation, we set θ from 2.1 to 16. Since the clustering performance

keeps the same with different θ’s, according to the way that we construct the design

matrix, the convex intervals are the same as well. Then, we present the results of

all settings in one column. The interval (14.68,∞) implies that θ is expected to be

around 15 to guarantee the convexity of the objective function. According to the

clustering performance, the guidance does offer an appropriate value for θ. However,
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since we examine more settings of θ and it results in the same globally convex interval,

we would suggest that in our framework, choosing any value greater than 2 is proper

as well. We can draw a similar conclusion on choosing θ when we focus on sample 5.

In general, when knowing the true panels, we can compare the clustering performance

with different values of tuning parameters, and such guidance can give us an idea of

properly chosen values. However, in reality, we may not have prior knowledge of the

true panels most of the time. In such a case, this approach provides a guide to find

appropriate values of parameters efficiently.

3.4 Okun’s Law: Countrywide Unemployment-

Losses Relation

Except for the simulation performance, we shall present an empirical application to

cluster states based on the behavior related to the labor markets. To have a general

idea of how different the relations could be across states between the unemployment

rate, the initial unemployment claims and the growth rate of GPD, we consider the

mixed-frequency panel data in practice.
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3.4.1 Labor Market Panel Data and Model Description

Nowadays, Okun’s law is famous in the prediction of labor markets. It is a negative

correlation between output growth and unemployment rate, which is named after the

economist Arthur Okun. Okun [62] first documented that for each 1 percent-point

in real GNP growth rate is accompanied by the 0.3 percentage-point decrease in the

unemployment rate. Meanwhile, economists have observed that Okun’s law model

might have limitation to capture the sudden and abrupt rise in unemployment rate due

to a spike in job loss during economic downturns, though the model’s performance in

predicting the unemployment rate, in the long run, is robust (e.g., Karg [47], Lee [51],

Moazzami and Dadgostar [60]). To take the nonlinear trend in the unemployment-

rate dynamics, we include the weekly initial unemployment claims in the Okun’s

law model except for the quarterly observed unemployment rate. The weekly initial

claims capture the job loss in the economy and have the highest frequency among the

variables measuring the labor market slack. Once we measure how much the weekly

initial claims help to predict the quarterly unemployment rate, we can utilize the

correlation coefficient to predict the unemployment rate on a weekly basis.

To analyze the recent U.S. labor markets, we focus on digging the relationship among

three variables based on an extension of Okun’s law and identify states that share

similar characteristics from the lens of our extended Okun’s law framework. Including
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the quarterly observed GDP, all three variables are collected from 2005 Q2 (the second

quarter) to 2018 Q2. The response, the growth rate of GDP as well as the LF

regressor, the unemployment rate, are measured quarterly, while the HF regressor is

the initial claims observed weekly. There are 51 states in the panel data. Missing

initial claims are imputed by the average of records collected in the same week. The

data that we construct for i-th state is

ui,t =
GDPi,t −GDPi,t−1

GDPi,t−1

,

xi,t,j = initial claimsi,t,j,

yi,t = unemployi,t − unemployi,t−1,

(3.30)

where t is the index of the quarter and j is the index of the week in the t-th quarter.

The intercept is included in the LF regressor term ui,t. Therefore, Okun’s law can be

modified as

yi,t = ui,tαi + x′i,tβ
∗
i + εi,t,

where xi,t = (xi,t,1, · · · , xi,t,mt)′. β∗ is hard to define since the number of weeks

mi,t,mt could be different with respect to the quarter t. It ranges from 12 to 14, so

the regression model cannot be simply constructed. Then, Fourier approximation

outperforms other approaches mentioned previously at this point.

Given the transformed HF to be x̃i,t = Mixi,t, the nonparametric MIDAS with Fourier
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approximation is

yi,t = ui,tαi + x̃′i,tβi + εi,t, (3.31)

where βi = (βi,1, · · · , βi,L+2K+1)′ for L and K being the number of parameters in

Fourier approximation. (αi,β
′
i) are forced to have the similar values if they belong to

the same group. The difference in estimated coefficients across states could represent

heterogeneity in the functioning of the labor market.

3.4.2 Clustering Analysis on the US Labor Markets

According to the algorithm for panel nonparametric MIDAS with Fourier expansion,

we set θ = 3 and λ1 = 21 chosen by the BIC. Except for θ = 3, we tried different

values such as θ = 2, 5, 8, 10. With small values of θ, for example, θ = 2, 3, 5, with

BIC chosen λ1, the clustering results are quite similar. The only significant change

is whether some individual states are clustered in the same group or separated. A

few states would be isolated to become a single-subject group with different θ. States

are eventually divided into 10 groups in Figure 3.1. These groups contain one ma-

jor group, four moderate groups as well as several single-subject groups, which are

shaded in the same color. About half of the states (22 states) share similar rela-

tionships among the unemployment rate, initial claims and output growth. In other

moderate clusters, there are 3-9 states. In either major or moderate groups, states
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are clustered regionally. With the chosen value, states which are close to each other

tend to share similar correlation among labor market variables and the growth of

GDP. Geographical proximity seems to be an essential factor in determining a cluster

or in determining the intrinsic characteristics of a states labor market. For exam-

ple, Minnesota, Iowa, Missouri, and Arkansas are vertically connected, and Nebraska

is right next to Iowa. California, Arizona, New Mexico, Texas are connected and

most of the northeastern states are collected in the major group. At the same time,

it is notable that states that belong to the same cluster are scattered. States that

belong to the major cluster, Cluster 3, are observed in the southwest as well as in

the northeast, though these two subgroups are disconnected. Besides, Oregon and

Nevada, Tennessee and Alabama are observed to belong in the same group. Having

that said, states that are geographically close to each other might share the similar

characteristics in their functioning of labor markets, but this result suggests that it

is not the necessary condition to determine a cluster. Such finding is consistent with

the conclusion in Guisinger et al. [39] that states within the same geographical region

can have heterogeneous business cycle experiences. Nonetheless, the observation that

states close to each other tend to share similar correlation among labor market vari-

ables and output growth suggests that some economic information of adjacent states

can help to predict a states labor market outcome.

Although states in the same cluster share the similarity in the attributes of labor

markets by state, there still exists difference within each group. For example, in
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Figure 3.1: Labor Market Heterogeneity by State

Cluster 3 the states that are located in the west including California, Texas, and

New Mexico, are mostly oil-producing states, while most of the states in the east

including Michigan, Ohio, Kentucky and Indiana tend to have a high share of man-

ufacturing employment. According to Hamilton and Owyang [42], oil-producing

states and manufacturing-intensive states tend to have quite different business cy-

cles. Though they might have different cyclical characteristics, our result suggests

that oil-producing states in the southwest and manufacturing-intensive states in the

northeast might share similar attributes in the labor market functioning. In fact,

Guisinger et al. [39] claims that there are multiple factors that determine the co-

efficients of Okuns law such as industrial composition, labor-market regulation, the
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demographic composition of the population and so on. This finding implies that

whether states belong to the same group or not is not determined by a single struc-

tural characteristic of a states economy.

In general, the clustering results imply that expansionary policies are likely to have

quite different effects on the labor market outcomes at the state level. Given that

estimating the effect of policy on a state’s labor market in real time is challenging,

understanding how much weekly initial claims help to predict the unemployment rate

in the state level will be able to guide policymakers to adjust their policy implemen-

tation in a timely manner.
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Chapter 4

Conclusion

4.1 Summary of Results

The last more than a decade has witnessed the dramatic developments of approaches

to coping with the mixed-frequency sampling problem in the regression models. Con-

ventionally, HF variables are aggregated by predetermined and fixed weights. MIDAS

models were proposed to assign more flexibility on the weights to maintain more in-

formation in HF variables. Compared to parametric models, nonparametric models

were introduced to gain more flexibility of the fitted weights at the expense of the

computation complexity.
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4.1.1 On the Choice of IVs

In Chapter 2, we considered a DWH test to choose between the time-averaging models

and MIDAS models. For the DWH test, the instruments need to be carefully chosen

to avoid the problems involved with weak instruments and correlation with the error

terms. However, there had not yet been rigorous work regarding the proper choice of

instruments.

The main contribution of Chapter 2 is that a set of instruments has been proposed

with a theoretical validation. In particular, the proposed instruments would only work

when the frequency ratio is large enough. The Monte Carlo simulations reconfirm our

theoretical findings. The DWH test with our proposed instruments is more potent in

finite samples compared to the one with a less careful choice of instruments. However,

this is only the case when the frequency ratio is large enough. Therefore, our proposed

specification test would be useful when handling two extremely different sampling

frequencies, such as monthly versus hourly observations. On the other hand, if the

frequency ratio is very small, taking a few most recent HF variables as the instruments

or taking Miller’s approach would be better.

The primary purpose of Chapter 2 is to provide an insight into the proper choice

of instruments. To keep the exposition concise, we limited the scope of Chapter
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2 using somewhat strong assumptions. Now that we understand the behavior of

the instruments better, an extension of Chapter 2 to accommodate more than one

regressors and general data generating process is underway.

4.1.2 Panel MIDAS with Nonparametric Approach

We introduced Fourier expansion approximation into MIDAS models to estimate the

weight function in Chapter 3. With properly predetermined numbers of polynomial

terms as well as trigonometric terms, we showed that Fourier expansion would be an

appropriate approach theoretically and empirically. Comparing to the nonparametric

approach in MIDAS models, Fourier expansion approximation could be more effective

along with precise estimations. By using the MC simulation, empirical MSE, and one

step ahead prediction indicate that Fourier expansion in MIDAS models outperforms

nonparametric method in our framework in general. On the other hand, in some cases,

the nonparametric approach would have slightly better performance. Considering the

workload of the nonparametric approach, it remains a crucial problem to balance the

complexity of calculation and the accuracy of estimation.

As considering a more general model with panel data, we proposed a clustering algo-

rithm to stratify the estimated weights with Fourier expansion approximation. With

an accurate estimation of weight functions, the algorithm provided a clear path to
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get convergent clustering. When the true clusters are known at first, the clustering

performance is evaluated by three indexes as well as the number of clusters. We

present how the tuning parameter λ1 controls the performance of clustering of two

panels. Moreover, we demonstrated the effect of another parameter θ in the clustering

algorithm on clustering using MC simulations.

In practice, the true clusters may be unknown before clustering. The BIC would

not choose the tuning parameters appropriately if the initial values are not correctly

assigned. As a result, we propose an approach to select the tuning parameters θ and

λ1. Simulated examples indicate that the approach shows an optimal path to select

parameters. Furthermore, the results of such guidance explain the reason of lousy

clustering performance with some values of tuning parameters. US labor market is

analyzed by digging the relationship between the quarterly unemployment rate, the

weekly initial claims, and the quarterly GDP growth. Clustering the relationships

by state, we observe that the groups are regionally related. Apart from the regional

impact, other factors may also affect the clustering of the state-level behavior of the

labor market.
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4.2 Discussion and Future Research

While this thesis presents a few new approaches for MIDAS models, there still are

more opportunities to extend the current work. The first possible future direction

is exploring a wider variety of IVs in the specification test. As we mentioned in the

DWH type test, the choice of IVs could be in other forms. The only two IVs examined

in Chapter 2 are inspired by Miller [59]. However, the construction of IVs could be

highly data-related. Except for the data, the user-determined shape of IVs could also

be a crucial factor that affects the performance of the MIDAS model. It is worth

exploring other kinds of IVs in the DWH type test. Leaving the choice of IVs alone,

more general models could be taken into consideration, such as allowing the error to

be a random walk or including more regressors in the MIDAS model, etc.

The second compelling direction for extending this thesis work is applying the speci-

fication tests to real data. In particular, the research on the MIDAS methods related

to the US labor markets in Chapter 3 could be worth discussing using our choice of

instruments. Our specification test may not have enough power for this data because

the frequency ratio for our labor market example in our empirical analysis in Chapter

3 is around 13. Such frequency ratio is too small for our specification test to have

enough power to judge the necessity of the MIDAS model. Nonetheless, finding out

whether the flat aggregation would be enough for all states would still be an appealing
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topic. This direction may also involve other difficulties such as the consideration of

the financial crisis of 2007 - 2008. We shall explore the details in future work.

The third future work is refining our empirical analysis in Chapter 3. For example,

mentioned above, the data between 2007 and 2008 may require adjustment. Some

variables may have better performance on the MIDAS models using different transfor-

mations, such as taking logarithm, scaling data state by state or of all states together

and so on. Models including intercepts or other possibly related variables that we did

not consider in the exploration of the US labor markets could be useful alternatives.

All these modifications would be considered in our next step.

The fourth direction is refining the theory in Chapter 3. We have demonstrated the

clustering method in the panel MIDAS model theoretically and empirically. In our

method, all parameters are considered in the algorithm, including the HF variable as

well as additional LF covariates. However, it is possible that some LF covariates may

contribute significantly when we intend to measure the proximity of panels based on

the similarity of the MIDAS coefficients, or more generally, some of the coefficients.

The substantial contribution from these variables could be eliminated if we exclude

them in the clustering algorithm. For example, in the investigation of the US labor

markets, the difference of weekly initial claims and the quarterly GDP between sub-

jects are aggregated to measure the distinction of panels. To avoid the potentially

significant effect from GDP, clustering only the initial claims may be more reasonable

92



to some extent. Such a topic would involve a more general discussion of our method.

More in-depth exploration may help to gain a clearer and direct thought about such

distinction.

Last but not least is applying our proposed methods outside of econometrics and

finance. The MIDAS models are developed for better forecast mainly in finance and

economics area and have demonstrated its potential in providing a more accurate

forecast. However, these areas are not the only options that care about the quality

of the forecast.

As one such application utilizing the forecasting ability of MIDAS models, we are

considering an example related to power grids and electricity demand forecast. In the

electricity demand forecasting, it is known that variables such as temperature, natural

gas price, renewable fuels productivity, and time trend are considerable. It would be

interesting to find out the form of how these variables affect electricity demand using

a MIDAS model. These variables are related not only to the personal usage but also

to the electricity demand from enterprises, such as the locally seasonal temperature,

industrial structure, the use of reverse cycle air conditioning, etc. Since temperature

can be collected at a high sampling frequency such as hourly or daily, whereas the

electricity demand can be measured based on the monthly bill, it would be interesting

to find whether a MIDAS approach would increase accuracy in electricity demand

forecasting. Our choice of instruments could be helpful in forecasting the electricity
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demand, which could further affect the electricity price in marketing. Moreover, it

points out some directions to investigate the significance of some parameters, for

example, renewable fuels, in different seasons or in different regions.

The above mentioned application of our MIDAS model to the power grid may also

extend to determining insurance premium for power grids. In particular, in recent

decades, the rise of cyber threats has drawn substantial attention. Malicious cyber

attacks could lead to massive economic loss. To avoid comparatively huge loss in

each cyber attack, introducing the ecosystem with cyberinsurance on power grid

would promote the technological development protecting the critical infrastructure.

For instance, a proper forecast of the electricity demand can help to determine the

potential loss more accurately, which is essential to formulate the premium of the

cyber insurance on power grid reasonably. In the power system, the substations and

utilities are closely connected. As a result, regional or enterprise-level clustering may

offer a more integral and acceptable determination of the electricity demand as well

as possibly the insurance premium. Based on the findings that we have for the labor

market, our method is likely to be useful for clustering the effect of related parameters

on the power-use to understand more thoroughly about the power system and plays

an influential role on the prediction of electricity demands. We presented a brief

discussion on how the panel MIDAS could be useful in the cyber insurance based on

the power grid. However, this application still requires more detailed discussion and

data collection, which is out of the scope of this dissertation. We leave it as future
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work.
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Appendix A

Theoretical Proofs

A.1 Proof of Theorems in Chapter 2

A.1.1 Test Statistic λT and Asymptotic Distribution

Proof of Theorem 2.1. It is easy to see that under the null, the asymptotic distribu-

tion of β̂
A

is
√
T
(
β̂
A
− β

)
d−→ N(0, V A). Under both the null and the alternative,

the asymptotic distribution β̂ is
√
T
(
β̂ − β

)
d−→ N(0, V ). Moreover, for some ma-

trix V ∗, we are able to derive
√
T (β̂ − β̂

A
)

d−→ N(0, V ∗). Following the argument in
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Section 5.1 of [52], the asymptotic distribution of ∆̂ = β̂ − β̂
A

can be derived as

T∆̂
′ (
V̂ − V̂ A

)−1

∆̂
d−→ χ2

rank(V−V A). (A.1)

By noting that (Xπ0)′PZMXAy = (0, 1)
(
XA′PZX

A
)

∆̂ and (Xπ0)′MXAy = 0, δ̂

can be rewritten as

δ̂ = [(MXAMZXπ0)′(MXAMZXπ0)]
−1

(−(Xπ0)′PZMXAy)

= − [(MXAMZXπ0)′(MXAMZXπ0)]
−1

(0, 1)
(
XA′PZX

A
)

∆̂

= − [(MXAMZXπ0)′(MXAMZXπ0)]
−1 (

(Xπ0)′PZX
A
)

∆̂

= b′∆̂.

(A.2)

where b′ = − [(MXAMZXπ0)′(MXAMZXπ0)]−1 ((Xπ0)′PZX
A
)
. Thus,

√
T δ̂ =

√
Tb′δ̂ =

√
T
[
b′
(
β̂ − β

)
− b′

(
β̂
A
− β

)]
. (A.3)

The asymptotic distribution of b′β̂
A

is
√
Tb′

(
β̂
A
− β

)
d−→ N(0,b′V Ab) under the

null. The asymptotic distribution of b′β̂ is
√
Tb′

(
β̂ − β

)
d−→ N(0,b′V b) under

both the null and the alternative. Since the estimator b′β̂
A

is still consistent and

efficient under the null, while the estimator b′β̂ is consistent under the null and the

alternative, then

T
[
b′
(
β̂ − β̂

A
)]′ (

b′V̂ b− b′V̂ Ab
)−1 [

b′
(
β̂ − β̂

A
)]

d−→ χ2
rank(b′(V−V A)b). (A.4)
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Therefore,

T δ̂′
(
b′(V̂ − V̂ A)b

)−1

δ̂
d−→ χ2

rank(b′(V−V A)b). (A.5)

Note that under our settings, b is a column vector with two elements. The rank of

b′(V − V A)b is one. Hence, the degree of freedom of χ2 distribution is one.

A.1.2 Theoretical Verification of the Chosen Set of Instru-

ments

Proof of Theorem 2.2. It is obvious that our choice of IVs follows Assumption 2.1(c).

Following Slutsky’s theorem, it is straightforward to show that our choice of IVs

satisfies Assumption 2.1(d) and 2.1(e). So, the main part is to show that our choice

of IVs satisfies Assumption 2.1(f), i.e., E(Z ′εA) is zero or approximates to zero as

the frequency ratio m approaches infinity. Assumption 2.1(g) follows.

Under the null hypothesis, β̂
A

is consistent to estimate β, then the error process {εt}

is exactly {εAt } in (2.2). Therefore, following Assumption 2.2(b), εAt = εt = εt,m
′π(θ),

zt
′ = xt

′Υ,

T−1Z ′εA = T−1Z ′ε = T−1

T∑
t=1

ztεt = T−1

T∑
t=1

Υ′xtεt,m
′π(θ)

p−→ 0.
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It follows that the asymptotic distribution is T−1/2Z ′εA
d−→ N(0,ΣZε) for some matrix

ΣZε.

Under the alternative hypothesis, β̂
A

is not consistent, the true model is the MIDAS

model in (2.1), i.e. y = X(θ)β + ε, where X(θ) = [j, Xπ(θ)]. Recall that XA = [j,

Xπ0]. Let xAt
′

and xt(θ)
′ be t-th row of XA and X(θ), respectively. Comparing the

MIDAS model with the regression model in (2.2), y = XAβA + εA, it is easy to show

that βA can be written as βA =
{
E
(
xAt xAt

′
)}−1 {

E
(
xAt xt(θ)

′)} β, then

εAt = yt − xAt
′
βA = yt − xAt

′
{
E
(
xAt xAt

′
)}−1 {

E
(
xAt xt(θ)

′)}β
=

(
xt(θ)

′ − xAt
′
{
E
(
xAt xAt

′
)}−1 {

E
(
xAt xt(θ)

′)})β + εt

= Aβ + εt,

(A.6)

where A = xt(θ)
′ − xAt

′
{
E
(
xAt xAt

′
)}−1 {

E
(
xAt xt(θ)

′)}. Let Jm = jj′ be a all-ones

matrix with dimension m. According to the property of π0 and π(θ), we have π′0j = 1

and π(θ)′j = 1.

Since the HF processes {xt−k/m} and {εt−k/m} are assumed to be i.i.d. or follow

stationary AR(1) processes with finite second moment, respectively, for k = 0, 1, · · · ,

m − 1, t = 1, · · · , T and
∑m

i=1 πi = 1, denote the variance-covariance matrix of xt as
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Φ = E (xtxt
′)− E (xt)E (xt)

′, then E (xt) = µj, E (xtxt
′) = Φ + µ2Jm.

A =

(
1 xt

′π(θ)

)
−
(

1 xt
′π0

){
E
(
xAt xAt

′
)}−1 {

E
(
xAt xt(θ)

′)}

where

E
(
xAt xAt

′
)

=

 1 π′0E (xt)

π′0E (xt) π′0E (xtxt
′)π0

 =

1 µ

µ π′0(Φ + µ2Jm)π0

 ,

E
(
xAt xt(θ)

′) =

 1 π(θ)′E (xt)

π′0E (xt) π′0E (xtxt
′)π(θ)

 =

1 µ

µ π′0(Φ + µ2Jm)π(θ)

 .

Assuming that E
(
xAt xAt

′
)

is invertible (if E
(
xAt xAt

′
)

is not invertible, we can get the

generalized inverse), then we can derive

{
E
(
xAt xAt

′
)}−1 {

E
(
xAt xt(θ)

′)} =

1 (π′0Φπ0)−1µπ′0(Φ + µ2Jm)(π0 − π(θ))

0 (π′0Φπ0)−1π′0Φπ(θ)

 ,
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Therefore,

A =

(
1 xt

′π(θ)

)
−
(

1 xt
′π0

){
E
(
xAt xAt

′
)}−1 {

E
(
xAt xt(θ)

′)}
=

(
1 xt

′π(θ)

)
−
(

1 (π′0Φπ0)−1 {µπ′0(Φ + µ2Jm)(π0 − π(θ)) + xt
′π0π

′
0Φπ(θ)}

)
=

(
0 xt

′π(θ)− (π′0Φπ0)−1 {µπ′0(Φ + µ2Jm)(π0 − π(θ)) + xt
′π0π

′
0Φπ(θ)}

)
.

(A.7)

Next, calculate E
(
ztε

A
t

)
where z′t = xt

′Υ,

E
(
ztε

A
t

)
= E (zt(Aβ + εt)) = E (ztAβ) = E

ztA

β0

β1


 . (A.8)

Combine (A.7) with (A.8), then

E
(
ztε

A
t

)
= β1E

(
zt
(
xt
′π(θ)− (π′0Φπ0)−1

{
µπ′0(Φ + µ2Jm)(π0 − π(θ)) + xt

′π0π
′
0Φπ(θ)

}))
= β1E

(
Υ′xt

(
xt
′π(θ)− (π′0Φπ0)−1

{
µπ′0(Φ + µ2Jm)(π0 − π(θ)) + xt

′π0π
′
0Φπ(θ)

}))
= β1Υ′

{
(Φ + µ2Jm)π(θ)− (π′0Φπ0)−1µπ′0(Φ + µ2Jm)(π0 − π(θ))µj

−(π′0Φπ0)−1(Φ + µ2Jm)π0π
′
0Φπ(θ)

}
.

(A.9)
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After simplification, (A.9) becomes

E
(
ztε

A
t

)
= β1Υ′

(
Φπ(θ)− (π′0Φπ0)−1π′0Φπ(θ)Φπ0

)
. (A.10)

Note that let π0,i be the i-th element of π0, (Φπ0)k be the j-th element of Φπ0 for

k = 1, · · · ,m, σ2
x be the variance of xt−j/m for any t = 1, · · · , T , j = 0, · · · ,m − 1.

Suppose the parameter in the HF AR(1) process is d such that 0 < |d| < 1 (for i.i.d.

case, let d = 0 and define 00 = 1), then we have

π′0Φπ(θ) =
m∑
j=1

m∑
i=1

π0,iφi,jπj(θ) =
m∑
j=1

m∑
i=1

π0id
|i−j|σ2

xπj(θ),

π′0Φπ0 =
m∑
j=1

m∑
i=1

π0,iφi,jπ0,j =
m∑
j=1

m∑
i=1

π0id
|i−j|σ2

xπ0j,

(Φπ0)k =
m∑
j=1

d|k−j|σ2
xπ0,j.

(A.11)

As we mentioned above, the weighted matrix Υ = [Υ1 Υ2] is defined in (2.10). Let

Sπ =
∑m

i=1(2 − i/m)4θ, SΥ1 =
∑m

i=1 0.9i−1, SΥ2 =
∑m

i=1(m + 1 − i). π(θ) = (π1(θ),

· · · , πm(θ))′, here πj(θ) = (2− j/m)4θ/
∑m

i=1(2− i/m)4θ for j = 1, 2, · · · ,m. Consider

two cases separately: (i) xt is an i.i.d. sequence (Φ = σ2
xI where I is the identity

matrix); (ii) xt is an AR(1) process with parameter d where 0 < |d| < 1.

(i) When xt is an i.i.d. sequence, then we can easily derive the following equations
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from (A.39).

E
(
ztε

A
t

)
= β1σ

2
xΥ
′
(
π(θ)− π

′
0π(θ)

π′0π0

π0

)
= β1σ

2
xΥ
′π(θ)− β1σ

2
x

(
π′0π(θ)

π′0π0

Υ′π0

)
.

(A.12)

Since Υ′rπ(θ) does not depend on the null π0, then we consider the first term for

both the flat aggregation and the general case of end-of-period sampling. Since θ > 0,

Sπ = O(m) and 1 ≤ (2− i/m)4θ ≤ 24θ for i = 1, · · · ,m, then

Υ′rπ(θ) = (SπSΥ1)
−1

m∑
i=1

ai,r(2− i/m)4θ ∈ [(Sπ)−1, 24θ(Sπ)−1] = O(m−1). (A.13)

Consider the time-averaging weights π0 with two cases respectively: (a) the flat

aggregation weights π0 = (1/m, · · · , 1/m)′; (b) π0 = (π0,1, · · · , π0,n, 0, · · · , 0)′ for

any fixed integer n ∈ [0,m) independent of m such that π0,i is positive constants

independent of m for all i = 1, · · · , n and
∑n

i=1 π0,i = 1. In particular, when n = 1, it

is the end-of-period sampling. Note that for case (b), we can assumed that π0 = (0,

· · · , 0, π0,m−n+1, · · · , π0,m)′ or any fixed n element with positive values of π0 with

the property
∑m

i=1 π0,i = 1. The proof will be straightforward by following similar

processes shown below. Without loss of generality, we only show the proof with the

aggregating weight as π0 = (π0,1, · · · , π0,n, 0, · · · , 0)′.
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For case (a),

π′0π(θ)

π′0π0

=

∑m
i=1 π0,iπ(θ)∑m
i=1 π

2
0,i

=
1/m

∑m
i=1 π(θ)

m · (1/m2)
= 1, Υ′rπ0 = 1/m, for r = 1, 2. (A.14)

Then, it follows that the second term
π′0π(θ)

π′0π0

Υ′rπ0 = O(m−1).

Hence, E
(
ztε

A
t

)
= (O(m−1), O(m−1))

′∗.

For case (b),

π′0π(θ)

π′0π0

=

∑n
i=1 π0,iπ(θ)∑n
i=1 π

2
0,i

≤ (2− 1/m)4θ
∑n

i=1 π0,i

Sπ
∑n

i=1 π
2
0,i

= O(m−1). (A.15)

|Υ′1π0| ≤ σ2
x

∑n
i=1 0.9i−1

SΥ1

max
1≤i≤n

(π0,i) ≤ σ2
x

1− 0.9n

1− 0.9m
≤ 0.1σ2

x = O(1),

|Υ′2π0| ≤ σ2
x

(m+m+ 1− n)n

(m+ 1)m
max
1≤i≤n

(π0,i) ≤
(2m+ 1− n)n

(m+ 1)m
σ2
x = O(m−1).

(A.16)

It implies that the second term follows

∣∣∣∣π′0π(θ)

π′0π0

Υ′1π0

∣∣∣∣ = O(m−1),

∣∣∣∣π′0π(θ)

π′0π0

Υ′2π0

∣∣∣∣ = O(m−2). (A.17)

Since the first term dominantly determine the order of E
(
ztε

A
t

)
, then we can derive

that E
(
ztε

A
t

)
= (O(m−1), O(m−1))

′
.

∗The notation
(
O(m−1), O(m−1)

)′
indicates that each element of this vector is equal to O(m−1).
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We have proved that with the i.i.d. HF regressor, our choice of IVs satisfies

Assumption 2.1(f) asymptotically in case (i). In case (ii) where the HF regressor is

an AR(1) process, similar results can be drawn with either the flat aggregation or

the end-of-period sampling in the more general scenario.

(ii) When xt is an AR(1) sequence with the parameter |d| ∈ (0, 1), recall (A.39),

E
(
ztε

A
t

)
= β1Υ′

(
Φπ(θ)− (π′0Φπ0)−1π′0Φπ(θ)Φπ0

)
= β1Υ′Φπ(θ)− β1Υ′

(
π′0Φπ(θ)

π′0Φπ0

Φπ0

)
.

(A.18)

Similar to the i.i.d. case, the first term Φπ(θ) does not depend on the form of π0,

then let (Φπ(θ))k be the k-th element Φπ(θ) for k = 1, · · · ,m,

(Φπ(θ))k = σ2
x

m∑
j=1

d|k−j|πj = σ2
x

(
m∑
i=k

di−kπi +
k−1∑
j=1

dk−jπj
†

)
. (A.19)

Note that when k = 1, let
∑k−1

j=1 d
jπk−j = 0.

Recall that in (2.10), we define Υ1 and Υ2 as

Υ1 = (f1(1), f1(2), · · · , f1(m))′, where f1(j) = 0.9j−1/

m∑
i=1

0.9i−1,

Υ2 = (f2(1), f2(2), · · · , f2(m))′, where f2(j) = 2(m+ 1− j)/{m(m+ 1)},

(A.20)

†To simplify the notation, we will use πj as j-th element of π(θ) instead of πj(θ).
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for j = 1, · · · ,m.

Since Sπ =
∑m

i=1 πi =
∑m

i=1(2− i/m)4θ ∈ [m, 24θm], for r = 1, 2,

|Υ′rΦπ(θ)| = σ2
x

∣∣∣∣∣
m∑
k=1

fr(k)(Φπ(θ))k

∣∣∣∣∣ = σ2
x

∣∣∣∣∣
m∑
k=1

fr(k)

(
m∑
i=k

di−kπi +
k−1∑
j=1

dk−jπj

)∣∣∣∣∣
≤ σ2

x

m∑
k=1

fr(k)
24θ

Sπ

(
m∑
i=k

|d|i−k +
k−1∑
j=1

|d|k−j
)

= σ2
x ·

24θ

Sπ
·
∑m

k=1 fr(k)
(
1 + |d| − |d|m−k+1 − |d|k

)
1− |d|

< σ2
x ·

24θ

Sπ
·
∑m

k=1 fr(k) (1 + |d|)
1− |d|

≤ m−1σ2
xC1(d, θ),

(A.21)

where C1(d, θ) =
24θ(1 + |d|)

1− |d|
depends on d and θ, but is independent of m. Therefore,

the first term Υ′rΦπ(θ) = O(m−1) for r = 1, 2.

Consider case (a) and (b) mentioned above.

For case (a),

π′0Φπ0 = σ2
x

m(1− d2)− 2d+ 2dm+1

m2(1− d)2
,

π′0Φπ(θ) = σ2
x

(1 + d)−
∑m

i=1(di + dm+1−i)πi
m(1− d)

,

(Φπ0)k = σ2
x

1 + d− dm−k+1 − dk

m(1− d)
,

(A.22)

where (Φπ0)k is the k-th element of Φπ0.
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Based on (A.22), the second term of (A.18) follows

∣∣Υ′r(π′0Φπ0)−1π′0Φπ(θ)Φπ0

∣∣ = |(π′0Φπ0)−1‖π′0Φπ(θ)‖Υ′rΦπ0|

=
σ2
x

m(1− d2)− 2d+ 2dm+1

∣∣∣∣∣(1 + d)−
m∑
i=1

(di + dm+1−i)πi

∣∣∣∣∣∣∣∣∣∣
m∑
k=1

(1 + d− dm−k+1 − dk)fr(k)

∣∣∣∣∣
≤ σ2

x

|m(1− d2)− 2d|

(
1 + |d|+

∣∣∣∣∣
m∑
i=1

(di + dm+1−i)πi

∣∣∣∣∣
)

(
m∑
k=1

(1 + |d|+ |d|m−k+1 + |d|k)fr(k)

)

≤ σ2
x

m(1− d2)− 2|d|

(
1 + |d|+ (|d|+ |d|)

m∑
i=1

πi

)(
(1 + |d|+ |d|+ |d|)

m∑
k=1

fr(k)

)

≤ σ2
x(1 + 3|d|)2

m(1− d2)− 2|d|
= O(m−1). (A.23)

Hence, both the first term and the second term of (A.18) are O(m−1) for two IVs. It

follows that E(ztε
A
t ) = (O(m−1), O(m−1))

′
.

Now, consider case (b), the general case of the end-of-period sampling. We still

assume that π0 = (π0,1, · · · , π0,n, 0, · · · , 0)′ for any integer n ∈ [0,m) independent

of m such that π0,i is positive constants independent of m for all i = 1, · · · , n and∑n
i=1 π0,i = 1. Since we assume that only the first n elements can be assigned with
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positive values which are no greater than 1, then the k-th element of π′0Φ is

(π′0Φ)k =


σ2
x

(∑n
i=k π0,id

i−k +
∑k−1

j=1 π0,jd
j
)
, 1 ≤ k ≤ n,

σ2
xd

k−n∑n
p=1 d

n−pπ0,p, n < k ≤ m.

(A.24)

Then, similar to the i.i.d. case, we can derive the followings for r = 1, 2.

π′0Φπ0 =σ2
x

n∑
k=1

(
n∑
i=k

π0,id
i−k +

k−1∑
j=1

π0,jd
j

)
π0,k = σ2

xD0(d, n;π0),

π′0Φπ(θ) =σ2
x

n∑
k=1

(
n∑
i=k

π0,id
i−k +

k−1∑
j=1

π0,jd
j

)
πk

+ σ2
x

m∑
k=n+1

(
dk−n

n∑
p=1

dn−pπ0,p

)
πk

≤σ2
x

24θ

Sπ

(
D1(d, n;π0) +

(
m∑

k=n+1

dk−nπk ·
n∑
p=1

dn−pπ0,p

))

≤σ2
x

24θ

Sπ

(
D1(d, n;π0) +

1− dm−n+1

1− d
D2(d, n;π0)

)
,

Υ′rΦπ0 =σ2
x

n∑
k=1

(
n∑
i=k

π0,id
i−k +

k−1∑
j=1

π0,jd
j

)
fr(k)

+ σ2
x

m∑
k=n+1

(
dk−n

n∑
p=1

dn−pπ0,p

)
fr(k)

≤σ2
x max

1≤k≤m
fr(k) ·

(
D1(d, n;π0) +

1− dm−n+1

1− d
D2(d, n;π0)

)
, (A.25)

where D1(d, n;π0) =
∑n

k=1

(∑n
i=k π0,id

i−k +
∑k−1

j=1 π0,jd
j
)

and D2(d, n;π0) =
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∑n
p=1 d

n−pπ0,p relies on d, n and π0. Therefore, we can derive that

∣∣Υ′r(π′0Φπ0)−1π′0Φπ(θ)Φπ0

∣∣
≤ σ2

x ·max1≤k≤m fr(k)

|D0(d, n;π0)|
· 24θ

Sπ
·
(
D1(d, n;π0) +

1− dm−n+1

1− d
D2(d, n;π0)

)2

= O(m−1).

(A.26)

Hence, both the first term and the second term of (A.18) are O(m−1) for two IVs. It

follows that E(ztε
A
t ) = (O(m−1), O(m−1))

′
.

Therefore, for either the i.i.d. or the AR(1) HF regressor, E(zr,tε
A
t ) = O(m−1) for

r = 1, 2 can be satisfied with either the flat aggregation π0 = (1/m, · · · , 1/m)′ or the

general case of the end-of-period sampling π0 = (π0,1, · · · , π0,n, 0, · · · , 0)′.

A.2 Proof of Theorems in Chapter 3

A.2.1 Convergence of the Clustering Algorithm

Proof of Theorem 3.1. The proof of Theorem 3.1 can be separated into two parts.

‖κs+1‖2
2

s→∞−−−→ 0 can be shown similarly to the proof of Proposition 1 in Ma and

Huang [55].
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Refer to the proof of Theorem 3.1 in Zhu and Qu [74], the proof of ‖τ s+1‖2
2

s→∞−−−→ 0

can be done by simply ignoring the penalty term in the objective function. The rest

of the proof will be similar.

A.2.2 Convergence of the Estimators

Before we start the proof of Theorem 3.2 and 3.3, we shall prove some lemmas in

advance.

Lemma A.1. Suppose a random vector ε = (ε1,1, ε1,2, . . . , εn,T )′ of length nT as

in (3.12) satisfies Assumption 3.7. Let A ∈ Ra×nT be a nonrandom matrix with a

positive integer a ≤ nT . Let Σ = A′A. For any ζ > 0,

P
[
‖Aε‖2

2 > 2c̃{tr(Σ) + 2
√

tr(Σ2)ζ + 2‖Σ‖2ζ}
]
≤ e−ζ .

Proof of Lemma A.1. When a = nT , this lemma is a special case of Theorem 2.1

in [45]. This can be easily seen by recognizing their µ, σ2, and α are 0, 2c̃, and

(ν1,1, ν1,2, . . . , νn,T )′, respectively.

If a < nT , a similar argument can still be used. Consider a singular value decom-

position of A = USV ′, where U and V are a× a and nT × nT orthogonal matrices,

respectively. Let ρ = (ρ1, . . . , ρa)
′ denote the nonzero eigenvalues of A′A and AA′. S
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is an a × nT matrix, where its diagonal elements are equal to
√
ρi for i = 1, . . . , a

and all other entries are zero. Let z be a vector of a independent standard Gaussian

random variables. Since U is orthogonal, y = U ′z is also an a×1 vector of a indepen-

dent standard Gaussian random variables. Let y = (y1, . . . , ya)
′. Applying Lemma

2.4 of [45] on ‖A′z‖2 = z′AA′z = z′USV ′V S ′U ′z = ySS ′y′ =
∑a

i=1 ρiy
2
i , we have

E
{

exp
(
γ‖A′z‖2

)}
≤ exp

(
‖ρ‖1γ +

‖ρ‖2
2γ

2

1− 2‖ρ‖∞γ

)
(A.27)

for any 0 ≤ γ < 1/(2‖ρ‖∞). For any λ ∈ R and δ ≥ 0, using a similar argument in

(2.3) and (2.4) of [45], Assumption 3.7, and (A.27),

P (‖Aε‖2 > δ) ≤ exp

(
−λ

2δ

2

)
exp

{
‖ρ‖1(λ2c̃) +

‖ρ‖2
2(λ2c̃)2

1− 2‖ρ‖∞(λ2c̃)

}
.

Let δ = 2c̃(‖ρ‖1 + τ), λ2 = 1
c̃

1
2‖ρ‖∞

(
1−

√
‖ρ‖22

‖ρ‖22+2‖ρ‖∞τ

)
, and τ = 2

√
‖ρ‖2

2ζ + 2‖ρ‖∞ζ.

The desired proof is concluded by using similar arguments as [45] and observing

‖ρ‖1 =
∑a

i=1 ρi = tr(Σ), ‖ρ‖2
2 =

∑a
i=1 ρ

2
i = tr(Σ2), and ‖ρ‖∞ = maxi ρi = ‖Σ‖2.

Lemma A.2. Suppose Assumptions 3.5 and 3.7 hold. Then given any matrix W ,

ζ∗ > 0 and ζ > 0,

P
[
‖W ′ε‖2

2 > 2c̃(np+ 2
√
npζ∗ + 2ζ∗)‖W ′W‖2

∣∣∣ W] ≤ e−ζ
∗
,

P
[
‖Γ′W ′ε‖2

2 > 2c̃(Gp+ 2
√
Gpζ + 2ζ)‖Γ′W ′WΓ‖2

∣∣∣ W] ≤ e−ζ .

Proof of Lemma A.2. Given any matrix W with the conditions in Lemma A.1, for
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any ζ∗ > 0, by Theorem 2.1 in Hsu et al. [45],

P
[
‖W ′ε‖2

2 > 2c̃(tr(WW ′) + 2
√

tr((WW ′)2)ζ∗ + 2‖WW ′‖2ζ
∗)
∣∣ W] ≤ e−ζ

∗
,

P
[
‖Γ′W ′ε‖2

2 > 2c̃(tr(ΓWW ′Γ′) + 2
√

tr((ΓWW ′Γ′)2)ζ + 2‖ΓWW ′Γ′‖2ζ)
∣∣ W] ≤ e−ζ .

Since ‖WW ′‖2 is the maximum eigenvalue of WW ′ and using the fact that WW ′ is

symmetric and positive definite with rank np, then λmax(WW ′) = λmax(W
′W ), and

‖WW ′‖2 = ‖W ′W‖2 = ‖diag(W ′
1W1, · · · ,W ′

nWn)‖2 ≤ max
i
‖W ′

iWi‖2,

tr(WW ′) = tr(W ′W ) ≤ np‖W ′W‖2, tr((WW ′)2) = tr((W ′W )2) ≤ np‖W ′W‖2
2,

then

tr(WW ′) + 2
√

tr[(WW ′)2]ζ∗ + 2‖WW ′‖2ζ
∗ ≤ (np+ 2

√
npζ∗ + 2ζ∗)‖W ′W‖2.

Similarly, ‖WΓΓ′W ′‖2 = ‖Γ′W ′WΓ‖2, and

tr(WΓΓ′W ′) = tr(Γ′W ′WΓ) ≤ Gpλmax(Γ′W ′WΓ) = Gp‖Γ′W ′WΓ‖2, (A.28)

tr{(WΓΓ′W ′)2} = tr{(Γ′W ′WΓ)2} ≤ Gp{λmax(Γ′W ′WΓ)}2 = Gp‖Γ′W ′WΓ‖2
2.

(A.29)
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Therefore we have for any ζ > 0,

tr(Γ′W ′WΓ) + 2
√

tr{(Γ′W ′WΓ)2}
√
ζ + 2‖Γ′W ′WΓ‖2ζ

≤(Gp+ 2
√
Gpζ + 2ζ)‖Γ′W ′WΓ‖2.

(A.30)

As a result, we have shown the inequalities in the statement given any matrix W .

Lemma A.3. Suppose Assumptions 3.5 and 3.7 hold, let

Sζ :=2c̃(Gp+ 2
√
Gpζ + 2ζ)gmaxmM̃

√
GpTBq,m,

Sζ∗ :=2c̃(np+ 2
√
npζ∗ + 2ζ∗)mM̃

√
T
√
pBq,m,

where Bq,m = (q1/2 + m1/2(L + 1 + 2K)), p = q + L + 1 + 2K, M̃ = max(M1,

M2,M3,M4) and c̃ given in Assumption 3.5 and 3.7, then P [‖W ′ε‖2
2 > Sζ∗ ] ≤ e−ι

∗

and P [‖Γ′W ′ε‖2
2 > Sζ ] ≤ e−ι where ι = min(ζ,− log(ε)) − log(2) and ι∗ = min(ζ∗,

− log(ε))− log(2) for any ζ and ζ∗ in Lemma A.2.

Proof of Lemma A.3. Based on the iteration expectation, we have

E
[
P
(
‖W ′ε‖2

2 > Sζ∗
∣∣ W)] = P [‖W ′ε‖2 > Sζ∗ ]

=E
[
I{‖W ′ε‖22>Sζ∗}

∣∣ ‖WW ′‖2 ≤M∗
]
P (‖WW ′‖2 ≤M∗)

+ E
[
I{‖W ′ε‖22>Sζ∗}

∣∣ ‖WW ′‖2 > M∗
]
P (‖WW ′‖2 > M∗)

=P
[
‖W ′ε‖2

2 > Sζ∗
∣∣ ‖WW ′‖2 ≤M∗]P (‖WW ′‖2 ≤M∗)

+ P
[
‖W ′ε‖2

2 > Sζ∗
∣∣ ‖WW ′‖2 > M

]
P (‖WW ′‖2 > M∗).
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Since ‖M‖∞ ≤ m and ‖M ′‖∞ ≤ L + 1 + 2K as all elements of M in (3.4) smaller

than 1 in magnitude, then for any ε > 0 defined in Assumption 3.5, with probability

at least 1− ε,

∥∥∥∥∥∥
∑
i∈Gg

U ′iUi

∥∥∥∥∥∥
∞

=
∑
i∈Gg

‖U ′iUi‖∞ ≤M1|Gg|
√
qT ,

∥∥∥∥∥∥
∑
i∈Gg

U ′iX̃i

∥∥∥∥∥∥
∞

≤
∑
i∈Gg

‖U ′iXi‖∞ ‖M
′‖∞ ≤M3|Gg|

√
mT (L+ 1 + 2K),

∥∥∥∥∥∥
∑
i∈Gg

X̃ ′iUi

∥∥∥∥∥∥
∞

≤ ‖M‖∞
∑
i∈Gg

‖U ′iXi‖∞ ≤M4|Gg|m
√
qT ,

∥∥∥∥∥∥
∑
i∈Gg

X̃ ′iX̃i

∥∥∥∥∥∥
∞

≤ ‖M‖∞
∑
i∈Gg

‖X ′iXi‖∞ ‖M
′‖∞ ≤M2|Gg|m

√
mT (L+ 1 + 2K).

(A.31)

The inequalities further imply that with probability at least 1−ε, take M̃ = max{M1,

M2,M3,M4},

∥∥∥∥∥∥
∑
i∈Gg

U ′iUi

∥∥∥∥∥∥
∞

≤ M̃ |Gg|
√
qT ,

∥∥∥∥∥∥
∑
i∈Gg

U ′iX̃i

∥∥∥∥∥∥
∞

≤ M̃ |Gg|
√
mT (L+ 1 + 2K),

∥∥∥∥∥∥
∑
i∈Gg

X̃ ′iUi

∥∥∥∥∥∥
∞

≤ M̃ |Gg|m
√
qT ,

∥∥∥∥∥∥
∑
i∈Gg

X̃ ′iX̃i

∥∥∥∥∥∥
∞

≤ M̃ |Gg|m
√
mT (L+ 1 + 2K).
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Therefore, with probability at most 1− ε,

‖WW ′‖2 = ‖W ′W‖2 = ‖diag(W ′
1W1, · · · ,W ′

nWn)‖2 ≤ sup
i
‖W ′

iWi‖2

≤ √p sup
i
‖W ′

iWi‖∞ =
√
p sup

i

∥∥∥∥∥∥∥∥
U ′iUi U ′iX̃i

X̃ ′iUi X̃ ′iX̃i

∥∥∥∥∥∥∥∥
∞

≤ M̃m
√
TBq,m

√
p,

and we have

tr(WW ′) = tr(W ′W ) ≤ np‖W ′W‖2, tr((WW ′)2) = tr((W ′W )2) ≤ np‖W ′W‖2
2.

As a result,

tr(WW ′) + 2
√
tr[(WW ′)2]ζ∗ + 2‖WW ′‖2ζ

∗ ≤ (np+ 2
√
npζ∗ + 2ζ∗)‖WW ′‖2

Since for any ε > 0, there exists some M∗ = M̃m
√
TBq,m

√
p such that P [‖WW ′‖2 >

M∗] ≤ ε, then

P
[
‖W ′ε‖2

2 > Sζ∗
∣∣ W, ‖WW ′‖2 ≤M∗] ≤ e−ζ

∗
, 1− ε < P (‖WW ′‖2 ≤M∗) ≤ 1,

P
[
‖W ′ε‖2

2 > Sζ∗
∣∣ W, ‖WW ′‖2 > M∗] ≤ 1, P (‖WW ′‖2 > M∗) ≤ ε.

Therefore, P [‖W ′ε‖2
2 > Sζ∗ ] ≤ e−ζ

∗
+ ε where Sζ∗ = 2c̃(np+ 2

√
npζ∗ + 2ζ∗)M∗.
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Without loss of generality, for large ζ∗ > 1 as well as ε ≤ 1, let ζ̃∗ = min{ζ∗,− log(ε)},

then

e−ζ
∗

+ ε = e−ζ
∗

+ elog(ε) = e−ζ̃
∗
(1 + e−|ζ

∗+log(ε)|) ≤ 2e−ζ̃
∗

= elog(2)−ζ̃∗ .

Take ι∗ = ζ̃∗ − log(2), then P [‖W ′ε‖2
2 > Sζ∗ ] ≤ e−ι

∗
. For large enough ζ̃∗, log(2) is

negligible. Similarly, we can find Sζ in P [‖Γ′W ′ε‖2
2 > Sζ ] ≤ e−ι as the following.

A straightforward calculation derives that

Γ′W ′WΓ = diag

(∑
i∈G1

W ′
iWi, . . . ,

∑
i∈GG

W ′
iWi

)
.

It follows that, with probability 1− ε,

‖Γ′W ′WΓ‖∞ = max
1≤g≤G

∥∥∥∥∥∥
∑
i∈Gg

W ′
iWi

∥∥∥∥∥∥
∞

≤ max
1≤g≤G

∑
i∈Gg

‖W ′
iWi‖∞ ≤ gmax sup

1≤i≤n
‖W ′

iWi‖∞

≤ gmaxmM̃
√
TBq,m,

and therefore,

‖Γ′W ′WΓ‖2 ≤
√
Gp‖Γ′W ′WΓ‖∞ ≤ gmaxmM̃

√
GpTBq,m. (A.32)

For any ε > 0, there exists some M = gmaxmM̃
√
TBq,m, such that P [‖WΓΓ′W ′‖2 >
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M ] ≤ ε, then

P
[
‖Γ′W ′ε‖2

2 > Sζ
∣∣ W, ‖WΓΓ′W ′‖2

2 ≤M
]
≤ e−ζ , 1− ε < P (‖WΓΓ′W ′‖2 ≤M) ≤ 1,

P
[
‖W ′ε‖2 > Sζ

∣∣ W, ‖WΓΓ′W ′‖2 > M
]
≤ 1, P (‖WΓΓ′W ′‖2 > M) ≤ ε.

Therefore, P [‖Γ′W ′ε‖2
2 > Sζ ] ≤ e−ζ+ε where Sζ = 2c̃(Gp+2

√
Gpζ+2ζ)M . Similarly,

take ι = min{ζ,− log(ε)} − log(2), then P [‖Γ′W ′ε‖2
2 > Sι] ≤ e−ι.

A.2.2.1 Convergence of the Oracle Estimator

With the help of Lemma A.1 – Lemma A.3, we further prove Theorem 3.2.

Proof of Theorem 3.2. The definition of Γ and y = Wγor + ε lead to

γ̂or − γ0 = Γ(Γ′W ′WΓ)−1Γ′W ′ε

= Γ
{

diag
(∑

i∈G1 W
′
iWi, . . . ,

∑
i∈GGW

′
iWi

)}−1


∑

i∈G1 W
′
iεi

...∑
i∈GGW

′
iεi

 ,

where for any g ∈ {1, . . . , G},

∑
i∈Gg

W ′
iWi =


∑

i∈Gg U
′
iUi (

∑
i∈Gg U

′
iXi)M

′

M(
∑

i∈Gg X
′
iUi) M(

∑
i∈Gg X

′
iXi)M

′


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and ∑
i∈Gg

W ′
iεi =


∑

i∈Gg U
′
iεi

M(
∑

i∈Gg X
′
iεi)

 .

Assumption 3.5 implies that

λmin(Γ′W ′WΓ) ≥ cgminT,

so that

‖(Γ′W ′WΓ)−1‖∞ ≤
√
Gp‖(Γ′W ′WΓ)−1‖2 ≤

√
Gp(cgminT )−1. (A.33)

For all p-norms, ‖A⊗B‖ = ‖A‖‖B‖ holds (for example, see p. 433 of Langville and

Stewart [50]),

‖Γ‖∞ ≤ ‖Π‖∞‖Ip‖∞ = 1. (A.34)

Lemma A.3, equations (A.33) and (A.34), and the triangle inequality imply that for

any ι > 0,

‖γ̂or − γ0‖∞ ≤ ‖Γ‖∞‖(Γ′W ′WΓ)−1‖∞‖Γ′W ′ε‖∞

≤ (Gp)1/2(cgminT )−1‖Γ′W ′ε‖2 ≤ (Gp)1/2(cgminT )−1S
1/2
ζ ,

with probability at least 1− eι.
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It results in

φn,T,G,ζ :=

√
2c̃

c

(mM̃gmax)1/2(Gp)3/4

gminT 3/4
B1/2
q,m(Gp+ 2

√
Gp
√
ζ + 2ζ)1/2, (A.35)

where Bq,m is defined in Lemma A.3. Therefore, with probability at least 1− e−ι,

‖γ̂or − γ0‖∞ ≤ φn,T,G,ζ .

In the following proof, let m and q be fixed for simplification. It further indicates

that p is fixed. Let Cq,m =
√

2c̃
c
m1/2p3/4B

1/2
q,m, (A.35) can be simplified as

φn,T,G = Cq,m
g

1/2
maxG3/4

gminT 3/4
(Gp+ 2

√
Gp
√
ζ + 2ζ)1/2. (A.36)

1. Consider T →∞ with n fixed. Let ζ →∞ and ζ = o(T 3/2). Since G ≤ n� ζ,

then (Gp+ 2
√
Gp
√
ζ + 2ζ)1/2 = O(2ζ1/2). Therefore,

φn,T,G = C1T
−3/4O(ζ1/2)

T→∞−→ 0,

where C1 = 2Cq,m
g
1/2
maxG

3/4

gmin
, which is free of T .

In other cases that we presented as the following, the inequalities of φn,T,G are

derived as a result of gmax ≤ n and G ≤ n/gmin.

2. Consider n→∞ with T fixed.
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(a) Consider G� ζ →∞.

i. When G is fixed, then (Gp+ 2
√
Gp
√
ζ + 2ζ)1/2 = O(2ζ1/2). For some

constant α̃0 < 1/2, let gmin = O(n1/2+α̃0), ζ = o(n2α̃0) and ζ → ∞,

then

φn,T,G ≤ C3
n1/2

gmin
O(ζ1/2)

n→∞−→ 0,

where C3 = 2Cq,m
G3/4

T 3/4 , which is free of n.

ii. When G → ∞, for some constant α̃2 < 2/7, let gmin = O(n5/7+α̃2),

ζ = o(n7α̃2/2) and ζ →∞, then (Gp+2
√
Gpζ+2ζ)1/2 = O((p+2

√
p+

2)1/2ζ1/2). Since G ≤ n/gmin, then

φn,T,G ≤ C4
n1/2G3/4

gmin
O(ζ1/2) ≤ C4

n5/4

g
7/4
min

O(ζ1/2)
n,G→∞−→ 0,

where C4 = Cq,m
1

T 3/4 (p+ 2
√
p+ 2)1/2, which is free of n and G.

(b) Consider G → ∞. Let gmin = O(n7/9+α̃1) for some α̃1 < 2/9, ζ = O(G)

and ζ → ∞, then Gp + 2
√
Gp
√
ζ + 2ζ = O((p + 2

√
p + 2)G) = O(G).

Therefore,

φn,T,G ≤ C2
n1/2G3/4

gmin
O(G1/2)

n→∞−→ 0,

where C2 = Cq,m
1

T 3/4 (p+ 2
√
p+ 2)1/2, which is free of n.

3. Consider T, n→∞.

(a) Consider G� ζ →∞,
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i. When G is fixed, then (Gp+ 2
√
Gpζ + 2ζ)1/2 = O(2ζ1/2). Let gmin =

O(n1/2+α̃0) for some positive constant α̃0 < 1/2 and ζ = o(n2α̃0T 3/2),

ζ →∞, then

φn,T,G ≤ C6
n1/2

gminT 3/4
O(ζ1/2)

n,T→∞−→ 0,

where C6 = 2Cq,mG
3/4.

ii. When G → ∞, for some positive constant α̃2 < 2/7, let gmin =

O(n5/7+α̃2) and G ≤ n/gmin, ζ = o(n7α̃2/2T 3/2) and ζ → ∞, then

(Gp+ 2
√
Gpζ + 2ζ)1/2 = O((p+ 2

√
p+ 2)1/2ζ1/2). Since G ≤ n/gmin,

then

φn,T,G ≤ C7
n1/2G3/4

gminT 3/4
O(ζ1/2) ≤ C7

n5/4

g
7/4
minT

3/4
O(ζ1/2)

n,T,G→∞−→ 0,

where C7 = Cq,m(p+ 2
√
p+ 2)1/2, which is freen of n, T and G.

(b) Consider G → ∞. Let gmin = O(n7/9+α̃1) for some constant α̃1 < 2/9,

ζ = O(G) and ζ →∞, then Gp+2
√
Gpζ+2ζ = O((p+2

√
p+2)G) = O(G).

Since G ≤ n/gmin,

φn,T,G ≤ C5
n1/2G3/4

gminT 3/4
O(G1/2) ≤ C5

n7/4

g
9/4
minT

3/4
O(1)

n,T,G→∞−→ 0,

where C5 = Cq,m(p+ 2
√
p+ 2p)1/2, which is free from n, T and G.
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Let Vi = Wi(Πi· ⊗ Ip) be a T ×Gp matrix, where Πi· is the i-th row of the matrix Π,

V = WΓ = (V ′1 , · · · , V ′n)′. Then, for any cn ∈ RGp with ‖cn‖2 = 1,

c′n(γ̂or − γ0) =
n∑
i=1

c′n(V ′V )−1V ′i εi =
n∑
i=1

c′n(V ′V )−1

T∑
t=1

v′itεit. (A.37)

Since {εi} is assumed to be an i.i.d. subgaussian distributed sequence with mean 0

and variance proxy 2c̃, then E(εi) = 0. Hence,

E
[
c′n(γ̂or − γ0)

]
= 0.

Suppose that Assumption 3.5 and 3.7 hold where λmax(V ′V ) = λmax(Γ′W ′WΓ) ≤

c∗|Gg|T ≤ c∗gmaxT and V ar(εit) = O(2c̃), then

σ2
γ := V ar[c′n(γ̂or − γ0)] ≥ V ar(εit)

c∗gmaxT
. (A.38)
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Moreover, for any ε > 0, applying Cauchy-Schwarz inequality, we have

n∑
i=1

E
(
(c′n(V ′V )−1V ′i εi)

21{|c′n(V ′V )−1Viεi| > εσγ}
)

≤
n∑
i=1

{
E(c′n(V ′V )−1V ′i εi)

4
}1/2 {

E
(
1{|c′n(V ′V )−1V ′i εi| > εσγ}2

)}1/2

=
n∑
i=1

{
E(c′n(V ′V )−1V ′i εi)

4
}1/2 {

E
(
1{|c′n(V ′V )−1V ′i εi| > εσγ}

)}1/2

=
n∑
i=1

{
E(c′n(V ′V )−1V ′i εi)

4
}1/2 {

P (|c′n(V ′V )−1V ′i εi| > εσγ)
}1/2

.

(A.39)

The first term can be derived as

[
E(c′n(V ′V )−1V ′i εi)

4
]1/2

=
[
E(c′n(V ′V )−1V ′i εiε

′
iV
′
i (V

′V )−1cn)2
]1/2

=
[
{c′n(V ′V )−1Vi}2E(εiε

′
i)

2{V ′i (V ′V )−1cn
}2

]1/2

= c′n(V ′V )−1Vi[E(εiε
′
i)

2]1/2V ′i (V
′V )−1cn

≤ ‖c′n(V ′V )−1Vi‖2
2

∥∥E(εiε
′
i)

2
∥∥1/2

2
.

(A.40)

For any n×n matrix A, ‖A‖2 ≤
√
n‖A‖∞. Since E(εkit) ≤ (2σ2)k/2kΓ(k/2) for k ≥ 1,

then

∥∥E(εiε
′
i)

2
∥∥

2
≤
√
T
∥∥E(εiε

′
i)

2
∥∥
∞

=
√
T max
τ=1,···,T

E

(
εiτ

T∑
t=1

εit

T∑
t=1

ε2
it

)
≤
√
T (16 + T )4c̃2.

(A.41)
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According to Assumption 5, ‖Vi‖∞ is bounded and let the upper bound be some con-

stant c2, then ‖Vi‖2 ≤
√
Gpc2. Following Assmuption 5, ‖(V ′V )−1‖2 ≥ (cgminT )−1,

we have

{
E(c′n(V ′V )−1Viεit)

4
}1/2 ≤ ‖c′n‖2

2‖(V ′V )−1‖2
2‖Vi‖2

2T
1/4(16 + T )1/22c̃2

≤ c2
2Gp(16 + T )1/22c̃

c2g2
minT

3/4
.

(A.42)

Then, by Chebyshev’s inequality, the second term of (A.39) can be derived as

P (|c′n(V ′V )−1Viεi| > εσγ) ≤
E[c′n(V ′V )−1Viεi]

2

ε2σ2
γ

, (A.43)

where

E(c′n(V ′V )−1Viεi)
2 = E(c′n(V ′V )−1Viεiε

′
iV
′
i (V

′V )−1cn)

≤ ‖cn‖2
2‖(V ′V )−1‖2

2‖Vi‖2
2‖E(εiε

′
i)‖2 ≤

c2
2Gp2c̃

c2g2
minT

2
,

(A.44)

then, (A.43) becomes

P (|c′n(V ′V )−1Viεi| > εσγ) ≤
c2

2Gp2c̃

c2g2
minT

2ε2σ2
γ

. (A.45)
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Therefore, we have

σ−2
γ

n∑
i=1

E
(
(c′n(V ′V )−1Viεi)

21{|c′n(V ′V )−1Viεi| > εσγ}
)

≤σ−2
γ

n∑
i=1

c2
2Gp(16 + T )1/22c̃

c2g2
minT

3/4

c2(Gp)1/2
√

2c̃

cgminTεσϕ
=
c3

2p
3/2(2c̃)3/2G3/2(16 + T )1/2n

c3εg3
minT

7/4σ3
γ

≤C (2c̃)3/2(n/gmin)3/2n(16 + T )1/2

σ3
γg

3
minT

7/4
= C

c̃3n5/2(16 + T )1/2

σ3
ϕg

9/2
minT

7/4

=C
n5/2(16 + T )1/2c∗

3/2
g

3/2
maxT 3/2

g
9/2
minT

7/4
= O

(
g

3/2
maxn5/2T 1/4

g
9/2
min

)
.

(A.46)

Suppose that
g3

min

gmax

� n5/3T 1/6, then (A.46) further implies that

σ−2
γ

n∑
i=1

E
(
(c′n(V ′V )−1Viεi)

21{|c′n(V ′V )−1Viεi| > εσγ}
)

= O(1).

Following LindebergFeller Central Limit Theorem,

c′n(γ̂or − γ0)→ N(0, σ2
γ).
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A.2.2.2 Convergence of the Calculated Estimator for Heterogeneous

Model

Proof of Theorem 3.3. This can be done similarly to the proof of Theorem 4.2 in [54].

Define MG := {γ ∈ Rnp : γi = γj,∀i, j ∈ Gg, g = 1, · · · , G} and the least-squares

objective function and the penalty function

Ln(γ) =
1

2
‖y −Wγ‖2

2, Pn(γ) = λ1

∑
i<j

ρ(‖γi − γj‖2)

LGn(ϕ) =
1

2
‖y −WΓϕ‖2

2, P Gn (ϕ) = λ1

∑
g<g′

|Gg‖Gg′|ρ(‖ϕg −ϕg′‖2).

(A.47)

Let Qn(γ) = Ln(γ) + Pn(γ), QGn(ϕ) = LGn(ϕ) + P Gn (ϕ). and define

� F :MG → RGp, g-th vector component of F (γ) equals to the common value of

γi for i ∈ Gg.

� F ∗ : Rnp → RGp, F ∗(γ) = {|Gg|−1
∑

i∈Gg γ
′
i, g = 1, · · · , G}′, average of each

cluster vectors.

It results in that F (γ) = F ∗(γ) if γ ∈ MG. For every γ ∈ MG, Pn(γ) = P Gn (F (γ)),
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for every ϕ ∈ RGp, Pn(F−1(ϕ)) = P Gn (ϕ). Hence,

Qn(γ) = QGn(F (γ)), QGn(ϕ) = Qn(F−1(ϕ)). (A.48)

Theorem 3.2 results in

P (sup
i
‖γ̂ori − γ0

i ‖2 ≤ p sup
i
‖γ̂ori − γ0

i ‖∞ = p‖γ̂or − γ0‖∞ ≤ pφn,T,G,ζ) ≥ 1− eι,

there exists an event E1 in which supi ‖γ̂
or
i − γ0

i ‖2 ≤ pφn,T,G = φ̃n,T,G, and P (EC
1 ) ≤

e−ι. supi ‖γ̂
or
i − γ0

i ‖2 ≤ φn,T,G, and P (EC
1 ) ≤ e−ι.

Consider the neighborhood of the true parameter γ0,

Θ := {γ ∈ Rnp : sup
i
‖γi − γ0

i ‖2 ≤ φ̃n,T,G}.

It implies that γ̂or ∈ Θ on the event E1. For any γ ∈ Rnp, let γ∗ = F−1(F ∗(γ)),

then γ∗i = 1
|Gg |
∑

i∈Gg γi which implies that γ∗ is a vector with duplicated group

average of γi. Through two steps as the following, we can show that with probability

approximating to 1, γ̂or is a strictly local minimizer of the objective function.

i. In E1, Qn(γ∗) > Qn(γ̂or) for any γ ∈ Θ and γ∗ 6= γ̂or. This indicates that the

oracle estimator γ̂or is the minimizer over all duplicated group average γ∗.
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ii. There exists an event E2 such that for large enough ι∗, P (EC
2 ) ≤ e−ι

∗
. In

E1 ∩ E2, there exists a neighborhood Θn of γ̂or such that Qn(γ) ≥ Qn(γ∗) for

all γ∗ ∈ Θn ∩Θ for sufficiently large n. It means that for all γ, the duplicated

group average γ∗ is the minimizer.

Then, it results in Qn(γ) > Qn(γ̂or) for any γ ∈ Θn ∩ Θ and γ 6= γ̂or in E1 ∩ E2.

Hence, for large enough n, γ̂or is a strictly local minimizer of Qn(γ) over E1 ∩ E2

with P (E1 ∩ E2) ≥ 1− e−ι − e−ι∗ .

First, show P Gn (F ∗(γ)) = Cn for any γ ∈ Θ, where Cn is a constant which does not

depend on γ. It means that when γ is close enough to the true parameter γ0, the

penalty term won’t affect the objective function with respect to different values of γ.

Let F ∗(γ) = ϕ. It suffices to show that ‖ϕg − ϕg′‖2 > aλ for all g 6= g′ and some

constant a > 0. Then by Assumption 6, ρ(‖ϕg −ϕg′‖2) is a constant, and as a result

P Gn (F ∗(ϕ)) is a constant.

Consider the triangular inequality ‖ϕg − ϕg′‖2 ≥ ‖ϕ0
g − ϕ0

g′‖2 − 2 supg ‖ϕg − ϕ0
g‖2.
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Since γ ∈ Θ, then

sup
g
‖ϕg −ϕ0

g‖2
2 = sup

g

∥∥∥∥∥∥Gg|−1
∑
i∈Gg

γi −ϕ0
g

∥∥∥∥∥∥
2

2

= sup
g

∥∥∥∥∥∥Gg|−1
∑
i∈Gg

(γi − γ0
i )

∥∥∥∥∥∥
2

2

= sup
g
|Gg|−2

∥∥∥∥∥∥
∑
i∈Gg

(γi − γ0
i )

∥∥∥∥∥∥
2

2

≤|Gg|−1 sup
g

∑
i∈Gg

∥∥(γi − γ0
i )
∥∥2

2
≤ sup

i

∥∥(γi − γ0
i )
∥∥2

2
≤ φ̃2

n,T,G,

(A.49)

Since bn,T,G := ming 6=g′ ‖ϕ0
g − ϕ0

g′‖, then for all g 6= g′ and bn,T,G > aλ + 2φ̃n,T,G, we

have

‖ϕ0
g −ϕ0

g′‖2 ≥ ‖ϕ0
g −ϕ0

g′‖2 − 2 sup
g
‖ϕg −ϕ0

g‖2 ≥ bn,T,G − 2φ̃n,T,G > aλ.

Therefore, P Gn (F ∗(γ)) = Cn, and hence QGn(F ∗(γ)) = LGn(T ∗(γ)) + Cn for all γ ∈ Θ.

Since ϕ̂or is the unique global minimizer of LGn(ϕ), then LGn(T ∗(γ)) > LGn(ϕ̂or) for all

T ∗(γ) 6= ϕ̂or and hence QGn(T ∗(γ)) > QGn(ϕ̂or) for all T ∗(γ) 6= ϕ̂or.

By the property of the clustering algorithm, for the g-th group, ϕ̂org =

|Gg|−1
∑

i∈Gg γ̂
or
i . Along with the definition of operation T , it implies that ϕ̂org equals

to the g-th component of T (γ̂or) for all i ≤ g ≤ G. Then, by (A.48)

QGn(ϕ̂or) = QGn(T (γ̂or)) = Qn(γ̂or).
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Furthermore, we can easily derive that QGn(T ∗(γ)) = Qn(T−1(T ∗(γ))) = Qn(γ∗).

Therefore, Qn(γ∗) > Qn(γ̂or) for all γ∗ 6= γ̂or. The result in step i. is proved.

Second, for a positive sequence tn, let Θn := {γi : supi ‖γi − γ̂
or
i ‖2 ≤ tn}. For

γ ∈ Θn ∩Θ, by the first order Taylor’s expansion,

Qn(γ)−Qn(γ∗) =
dQn(γm)

dγ ′
(γ − γ∗) =

dLn(γm)

dγ ′
(γ − γ∗) +

n∑
i=1

∂Pn(γm)

∂γ ′i
(γ − γ∗),

and let S1 =
dLn(γm)

dγ ′
(γ − γ∗) and S2 =

∑n
i=1

∂Pn(γm)

∂γ ′i
(γ − γ∗).

Since
dLn(γ)

γi
=

1

2
(−2y′W + 2γ ′W ′W ) = −(y′ − γ ′W )W,

∂Pn(γ)

∂γi
= λ1

n∑
i=1

ρ′(‖γi − γj‖2)
1

2‖γi − γj‖2

2(γi − γj)

= λ1

n∑
i=1

ρ′(‖γi − γj‖2)
γi − γj
‖γi − γj‖2

then

S1 = −(y′ − γm′W )W (γ − γ∗), S2 =
n∑
i=1

∂Pn(γm)

∂γ ′i
(γi − γ∗i ).

143



Let γm = ϑγ + (1− ϑ)γ∗ for some constant ϑ ∈ (0, 1).

S2 =λ1

∑
i<j

ρ′(‖γmi − γmj ‖2)‖γmi − γmj ‖−1
2 (γmi − γmj )′(γi − γ∗i )

+ λ1

∑
i>j

ρ′(‖γmi − γmj ‖2)‖γmi − γmj ‖−1
2 (γmi − γmj )′(γi − γ∗i )

=λ1

∑
i<j

ρ′(‖γmi − γmj ‖2)‖γmi − γmj ‖−1
2 (γmi − γmj )′(γi − γ∗i )

+ λ1

∑
i<j

ρ′(‖γmj − γmi ‖2)‖γmj − γmi ‖−1
2 (γmj − γmi )′(γj − γ∗j)

=λ1

∑
i<j

ρ′(‖γmi − γmj ‖2)‖γmi − γmj ‖−1
2 (γmi − γmj )′[(γi − γ∗i )− (γj − γ∗j)].

(A.50)

Consider to separate S2 into two parts, i, j ∈ Gg, and i ∈ Gg, j ∈ Gg′ for g 6= g′. When

i, j ∈ Gg, since γ∗ = T−1(T ∗(γ)) ∈ MG, then γ∗i = γ∗j . Thus, the RHS of (A.50)

becomes S2 = λ1(S21 + S22) where

S21 =
G∑
g=1

∑
i,j∈G,i<j

ρ′(‖γmi − γmj ‖2)‖γmi − γmj ‖−1
2 (γmi − γmj )′(γi − γj),

S22 =
∑
g<g′

∑
i∈Gg ,j∈Gg′

ρ′(‖γmi − γmj ‖2)‖γmi − γmj ‖−1
2 (γmi − γmj )′[(γi − γ∗i )− (γj − γ∗j)].

(A.51)

Moreover, by (A.49), for any γ ∈ Θn ∩ Θ, since F ∗(γ) = ϕ, then for all i ∈ Gg,

γ∗i = ϕg. So we have

sup
i
‖γ∗i − γ0

i ‖2
2 = sup

g
‖ϕg −ϕ0

g‖2
2 ≤ φ̃2

n,T,G, (A.52)
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and the inequality of (A.52) is obtained by (A.49).

Since γmi = ϑγi + (1− ϑ)γ∗i and the triangular inequality,

sup
i
‖γmi − γ0

i ‖2 = sup
i
‖ϑγi + (1− ϑ)γ∗i − γ0

i ‖2

= sup
i
‖ϑγi + (1− ϑ)γ∗i − (ϑ+ 1− ϑ)γ0

i ‖2

≤ ϑ sup
i
‖γi − γ0

i ‖2 + (1− ϑ) sup
i
‖γ∗i − γ0

i ‖2

≤ ϑφ̃n,T,G + (1− ϑ)φ̃n,T,G = φ̃n,T,G. (A.53)

Hence, for g 6= g′, i ∈ Gg, j ∈ Gg′ ,

‖γmi − γmj ‖2 = ‖γmi − γ0
i − γmj + γ0

j‖2 ≥ ‖γ0
i − γ0

j‖2 − 2 max
1≤k≤n

‖γmk − γ0
k‖2

≥ min
i∈Gg ,j′∈Gg′

‖γ0
i − γ0

j‖2 − 2 max
1≤k≤n

‖γmk − γ0
k‖2 ≥ bn,T,G − 2φ̃n,T,G > aλ.

Since ρ(x) is constant for all x ≥ aλ, then ρ′(‖γmi − γmj ‖2) = 0. Therefore, following

γmi − γmj = ϑ(γi − γj) for i, j ∈ Gg, (A.51) becomes

S2 =λ1

G∑
g=1

∑
i,j∈G,i<j

ρ′(‖γmi − γmj ‖2)

‖γmi − γmj ‖2

(γmi − γmj )′(γi − γj)

+ λ1

∑
g<g′

∑
i∈Gg ,j∈Gg′

ρ′(‖γmi − γmj ‖2)

‖γmi − γmj ‖2

(γmi − γmj )′[(γi − γ∗i )− (γj − γ∗j)]

=λ1

G∑
g=1

∑
i,j∈Gg ,i<j

ρ′(‖γmi − γmj ‖2)

‖γmi − γmj ‖2

(γmi − γmj )′(γi − γj)
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=λ1

G∑
g=1

∑
i,j∈Gg ,i<j

ρ′(‖γmi − γmj ‖2)

‖ϑ(γi − γj)‖2

ϑ(γi − γj)′(γi − γj)

=λ1

G∑
g=1

∑
i,j∈Gg ,i<j

ρ′(‖γmi − γmj ‖2)‖γi − γj‖2 (A.54)

.

Furthermore, by the same reasoning as (A.49) and for all i ∈ Gg, γ∗i = ϕg,

sup
i
‖γ∗i − γ̂

or
i ‖2

2 = sup
g
‖ϕg − ϕ̂

or
g ‖2

2 ≤ sup
i
‖γi − γ̂

or
i ‖2

2. (A.55)

Then, since γ∗i = γ∗j ,

sup
i
‖γmi − γmj ‖2 = sup

i
‖γmi − γ∗i − γmj + γ∗j‖2

≤ ‖γ∗i − γ∗j‖2 + 2 sup
i
‖γmi − γ∗i ‖2 ≤ 2 sup

i
‖γmi − γ∗i ‖2

= 2 sup
i
‖ϑγi + (1− ϑ)γ∗i − γ∗i ‖2

= 2ϑ sup
i
‖γi − γ∗i ‖2 ≤ 2 sup

i
‖γi − γ∗i ‖2

≤ 2(sup
i
‖γi − γ̂

or
i ‖2 + sup

i
‖γ∗i − γ̂

or
i ‖2)

≤ 4 sup
i
‖γi − γ̂

or
i ‖2 ≤ 4tn. (A.56)
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Hence, ρ′(‖γmi − γmj ‖2) ≥ ρ′(4tn) since ρ(x) is nondecreasing and concave. Then,

S2 ≥ λ1

G∑
g=1

∑
i,j∈Gk,i<j

ρ′(4tn)‖γi − γj‖2. (A.57)

Let Q = (Q′1, · · · , Q′n)′ = [(y −Wγm)′W ]′, then

S1 =−Q′(γ − γ∗) = −(Q′1, · · · , Q′n)′



γ1 − γ∗1

γ2 − γ∗2
...

γn − γ∗n


=−

n∑
i=1

Q′i(γi − γ∗i )

=−
G∑
g=1

∑
i∈Gg

1

|Gg|
Q′i

|Gg|γi −∑
j∈Gg

γj


=−

G∑
g=1

∑
i∈Gg

1

|Gg|
Q′i
∑
j∈Gg

(
γi − γj

)
= −

G∑
g=1

∑
i,j∈Gg

Q′i(γi − γj)
|Gg|

=−
G∑
g=1

∑
i,j∈Gg

Q′i(γi − γj)
2|Gg|

+
G∑
g=1

∑
i,j∈Gg

Q′j(γi − γj)
2|Gg|

=−
G∑
g=1

∑
i,j∈Gg

(Qj −Qi)
′(γj − γi)

2|Gg|

=−
G∑
g=1

∑
i,j∈Gg ,i<j

(Qj −Qi)
′(γj − γi)
|Gg|

. (A.58)
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Moreover,

Qi = W ′
i (yi −Wiγ

m
i ) = W ′

i (Wiγ
0
i + εi −Wiγ

m
i ) = W ′

i (εi +Wi(γ
0
i − γmi )),

and then,

sup
i
‖Qi‖2 ≤ sup

i
{‖W ′

i (εi +Wi(γ
0
i − γmi ))‖2}

≤ sup
i
{‖W ′

iεi‖2 + ‖W ′
iWi(γ

0
i − γmi )‖2}

≤ sup
i
‖W ′

iεi‖2 + sup
i
‖W ′

iWi‖2‖(γ0
i − γmi )‖2

≤ sup
i
‖W ′

iεi‖2 + sup
i

√
p‖W ′

iWi‖∞φ̃n,T,G

≤ sup
i
‖W ′

iεi‖2 +m
√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

≤ sup
i

√
p‖W ′

iεi‖∞ +m
√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

≤ √p‖W ′ε‖2 +m
√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

=
√
p‖W ′ε‖2 +m

√
pTBq,mφ̃n,T,G, (A.59)

where Bq,m = (q1/2 +m1/2(L+ 1 + 2K)).

By Lemma A.3, P
[
‖W ′ε‖2

2 > 2c̃(np+ 2
√
npζ∗ + 2ζ∗)mM̃

√
TBq,m

√
p
]
≤ e−ι

∗
, where

Bq,m = (q1/2 + m1/2(L + 1 + 2K)), p = q + L + 1 + 2K, M̃ = max(M1,M2,M3,M4)

and c̃ given in 3.5 and 3.7. ι∗ is defined in Lemma A.3.
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Then, over the event E2,

∣∣∣∣(Qj −Qi)
′(γj − γi)
|Gg|

∣∣∣∣ ≤ g−1
min‖Qj −Qi‖2‖γj − γi‖2 ≤ g−1

min2 sup
i
‖Qi‖2‖γi − γj‖2

≤2g−1
minT

1/4(mp)1/2‖γi − γj‖2(
p1/4B̃1/2

q,m(np+ 2
√
npζ∗ + 2ζ∗)1/2 + T 1/4m1/2Bq,mφ̃n,T,G

)
(A.60)

Therefore, by (A.57), (A.58) and (A.60),

Qn(γ)−Qn(γ∗)

≥
G∑
g=1

∑
i,j∈Gg ,i<j

‖γi − γj‖2

{
λρ′(4tn)− 2g−1

minT
1/4(mp)1/2(p1/4B̃1/2

q,m(np+ 2
√
npζ∗ + 2ζ∗)1/2

+T 1/4m1/2Bq,mφ̃n,T,G)
}

≥
G∑
g=1

∑
i,j∈Gg ,i<j

‖γi − γj‖2

{
λρ′(4tn)−B1g

−1
minT

1/4(np+ 2
√
npζ∗ + 2ζ∗)1/2 −B2g

−1
minT

1/2φ̃n,T,G

}
, (A.61)

where B1 = 2(mpB̃q,m)1/2p1/4 and B2 = 2mp1/2Bq,m.

Let tn = o(1), then ρ′(4tn) → 1. Suppose that the following condition is true over
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the event E1 ∩ E2,

B1g
−1
min(np+ 2

√
npζ∗ + 2ζ∗)1/2T 1/4 → 0, B2pg

−1
minT

1/2φn,T,G → 0, (A.62)

then P (Qn(γ)−Qn(γ∗) ≥ 0) ≥ 1− eι − eι∗ . Once (A.62) holds, Qn(γ)−Qn(∗) ≥ 0

with probability approaching to 1 as n→∞.

Now we show (A.62). In the following context, we focus on deriving the conditions

only for Theorem 3. To show that our estimator converges to the oracle estimator,

which converges to the true parameter as well, we need to consider the conditions in

both Theorem 2 and Theorem 3.

1. As T → ∞ with n fixed, our estimator cannot be proved to converge to the

oracle estimator.

2. As n→∞ with T fixed, when conditions in Theorem 2 are satisfied, the second

part of (A.62) is true. So, here we discuss about the conditions for first part of

(A.62).

(a) Consider ζ∗ ≤ n and gmin � (p + 2
√
p + 2)1/2n1/2. Let ζ∗ → ∞, since

(np+ 2
√
npζ∗ + 2ζ∗)1/2 = (p+ 2

√
p+ 2)1/2O(n1/2), then

B1g
−1
min(np+ 2

√
npζ∗ + 2ζ∗)1/2T 1/4

≤B1T
1/4g−1

min(p+ 2
√
p+ 2)1/2O(n1/2)→ 0.
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(b) Consider ζ∗ > n and gmin � (p+ 2
√
p+ 2)1/2ζ∗1/2 > (p+ 2

√
p+ 2)1/2n1/2.

Let ζ∗ → ∞, since (np + 2
√
npζ∗ + 2ζ∗)1/2 = (p + 2

√
p + 2)1/2O(ζ∗1/2),

then

B1g
−1
min(np+ 2

√
npζ∗ + 2ζ∗)1/2T 1/4

≤B1T
1/4g−1

min(p+ 2
√
p+ 2)1/2O(ζ∗1/2)→ 0.

3. As T, n→∞. Consider the first part of (A.62).

(a) Consider ζ∗ ≤ n and gmin � (p+ 2
√
p+ 2)1/2n1/2T 1/4. Let ζ∗ →∞, then

B1g
−1
min(np+ 2

√
npζ∗ + 2ζ∗)1/2T 1/4

≤B1g
−1
min(p+ 2

√
p+ 2)1/2n1/2T 1/4 → 0.

(b) Consider ζ∗ ≥ n and (p+2
√
p+2)1/2n1/2T 1/4 ≤ (p+2

√
p+2)1/2ζ∗1/2T 1/4 �

gmin ≤ n. Let ζ∗ →∞, then

B1g
−1
min(np+ 2

√
npζ∗ + 2ζ∗)1/2T 1/4

≤B1g
−1
min(p+ 2

√
p+ 2)1/2ζ∗1/2T 1/4 → 0.

Now, consider the second part of (A.62) as n, T →∞.

(a) Consider G → ∞. Let n7/13

T 1/13 � gmin < n/G, ζ ≤ G and ζ → ∞, then

G � T 1/13

n6/13 and Gp + 2
√
Gpζ + 2ζ ≤ (p + 2

√
p + 2)G = O(G). Since
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G ≤ n/gmin,

B2pg
−1
minT

1/2φn,T,G ≤ B2pC5
n1/2G3/4T 1/2

g2
minT

3/4
O(G1/2)

≤ B2pC5
n7/4

g
13/4
min T

1/4
O(1)

n,T,G→∞−→ 0,

where C5 = Cq,m(p+ 2
√
p+ 2p)1/2, which is free from n, T and G.

(b) When G� ζ →∞

i. When G is fixed, then (Gp+ 2
√
Gpζ + 2ζ)1/2 = O(2ζ1/2). Let gmin =

O(n1/4+α̃1) for some positive constant α̃1 < 3/4 and ζ = o(n4α̃1T 1/2),

ζ →∞, then

B2pg
−1
minT

1/2φn,T,G ≤ B2pC6
n1/2

g2
minT

1/4
O(ζ1/2)

n,T→∞−→ 0,

where C6 = 2Cq,mG
3/4.

ii. When G → ∞, for some positive constant α̃2 < 6/11, let gmin =

O(n5/11+α̃2) and G ≤ n/gmin, ζ = o(n11α̃2/2T 1/2) and ζ → ∞, then

(Gp+ 2
√
Gpζ + 2ζ)1/2 = O((p+ 2

√
p+ 2)1/2ζ1/2). Since G ≤ n/gmin,

then

B2pg
−1
minT

1/2φn,T,G ≤ B2pC7
n5/4

g
11/4
min T

1/4
O(ζ1/2)

n,T,G→∞−→ 0,

where C7 = Cq,m(p+ 2
√
p+ 2)1/2, which is freen of n, T and G.
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A.2.2.3 Convergence of the Calculated Estimator for Homogenous Model

The proof of the homogenous model is similar to the proof of Theorem 3.3. We shall

present the whole process.

Proof. When the true model only contains only one group, then model (11) becomes

y ≈ W ∗ϕ+ ε,

where y = (y′1, · · · ,y′n)′, W ∗ = (W ′
1, · · · ,W ′

n)′ and ε = (ε′1, · · · , ε′n). We also have

γ1 = · · · = γn = ϕ and G = 1. The estimator γ̂ of γ = (γ ′1, · · · ,γ ′n)′ also has the

oracle property. Define the oracle estimator of γ as

ϕ̂or = argminϕ∈Rp
1

2
‖y −W ∗ϕ‖2

2 = (W ∗′W ∗)−1W ∗′y. (A.63)

Let γ̂or = (γ̂or1
′, · · · , γ̂orn ′)′ where γ̂or1 = · · · = γ̂orn = ϕ̂or.

Define M := {γ ∈ Rnp : γ1 = · · · = γn}. For any γ ∈ M, γi = α for all i. Take the

least-squares objective function and the penalty function.
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Ln(γ) =
1

2
‖y −Wγ‖2

2, Pn(γ) = λ
∑
i<j

ρ(‖γi − γj‖2)

LGn(ϕ) =
1

2
‖y −W ∗ϕ‖2

2, P Gn (ϕ) = λ
∑
g<g′

|Gg‖Gg′|ρ(‖ϕg −ϕg′‖2).

Let Qn(γ) = Ln(γ) + Pn(γ), QGn(ϕ) = LGn(ϕ) + P Gn (ϕ) and

� F :M→ Rp, g-th vector component of T (γ) equals to the common value of γi

for i ∈ Gg.

� F ∗ : Rnp → Rp, T ∗(γ) = {|Gg|−1
∑

i∈Gg γ
′
i, g = 1, · · · , G}′, average of each

cluster vectors.

For every γ ∈MG, Pn(γ) = P Gn (T (γ)) and for every ϕ ∈ RGp, Pn(F−1(ϕ)) = P Gn (ϕ).

Hence,

Qn(γ) = QGn(F (γ)), QGn(ϕ) = Qn(F−1(ϕ)). (A.64)

By Theorem 3.2,

P (sup
i
‖γ̂ori − γ0

i ‖2 ≤ p sup
i
‖γ̂ori − γ0

i ‖∞ = p‖γ̂or − γ0‖∞ ≤ pφn,T,G,ζ) ≥ 1− eι,

there exists an event E1 in which supi ‖γ̂
or
i − γ0

i ‖2 ≤ pφn,T,G = φ̃n,T,G, and P (EC
1 ) ≤

e−ι. supi ‖γ̂
or
i − γ0

i ‖2 ≤ φn,T,G, and P (EC
1 ) ≤ e−ι.
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Consider the neighborhood of the true parameter γ0,

Θ := {γ ∈ Rnp : sup
i
‖γi − γ0

i ‖2 ≤ φ̃n,T,G}.

It implies that γ̂or ∈ Θ on the event E1. For any γ ∈ Rnp, let γ∗ = F−1(F ∗(γ)),

then γ∗i = 1
n

∑
i∈n γi which implies that γ∗ is a vector with duplicated group average

of γi. So, γ∗1 = · · · = γ∗n. Through two steps as the following, we can show that

with probability approximating to 1, γ̂or is a strictly local minimizer of the objective

function.

i. In E1, Qn(γ∗) > Qn(γ̂or) for any γ ∈ Θ and γ∗ 6= γ̂or. This indicates that the

oracle estimator γ̂or is the minimizer over all duplicated group average γ∗.

ii. There is an event E2 such that P (EC
2 ) ≤ e−ζ

∗
for large enough ι∗. In E1 ∩ E2,

there is a neighborhood of γ̂or denoted by Θn such that Qn(γ) ≥ Qn(γ∗) for

any γ∗ ∈ Θn ∩Θ for sufficiently large n. It means that for all γ, the duplicated

group average γ∗ is the minimizer.

Then, it results in Qn(γ) > Qn(γ̂or) for any γ ∈ Θn∩Θ and γ 6= γ̂or in E1∩E2, hence

γ̂or is a strictly local minimizer of Qn(γ) over E1∩E2 with P (E1∩E2) ≥ 1−e−ζ−e−ζ∗

for large enough n.

First, we show the result in step i.. By definition of γ̂or, we have 1
2
‖y −Wγ∗‖2

2 ≥
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1
2
‖y −W γ̂or‖2

2 for any γ ∈ Θ and γ∗ 6= γ̂or. Moreover, since γ∗1 = · · · = γ∗n and

γ̂or1 = · · · = γ̂orn , then ργ(‖γ̂ori − γ̂
or
j ‖2, λ) = ργ(‖γ̂∗i − γ̂

∗
j‖2, λ) = 0 for all i, j. So,

Qn(γ∗) =
1

2
‖y −Wγ∗‖2

2 ≥
1

2
‖y −W γ̂or‖2

2 = Qn(γ̂or).

Therefore, Qn(γ∗) ≥ Qn(γ̂or).

Second, we focus on the result in step ii.. For a positive sequence tn, let Θn := {γi :

supi ‖γi − γ̂
or
i ‖2 ≤ tn}. For γ ∈ Θn ∩Θ, by the first order Taylor’s expansion,

Qn(γ)−Qn(γ∗) =
dQn(γm)

dγ ′
(γ − γ∗) =

dLn(γm)

dγ ′
(γ − γ∗) +

n∑
i=1

∂Pn(γm)

∂γ ′i
(γ − γ∗),

and let S1 =
dLn(γm)

dγ ′
(γ − γ∗) and S2 =

∑n
i=1

∂Pn(γm)

∂γ ′i
(γ − γ∗).

Since
dLn(γ)

γi
=

1

2
(−2y′W + 2γ ′W ′W ) = −(y′ − γ ′W )W,

∂Pn(γ)

∂γi
= λ1

n∑
i=1

ρ′(‖γi − γj‖2)
1

2‖γi − γj‖2

2(γi − γj)

= λ1

n∑
i=1

ρ′(‖γi − γj‖2)
γi − γj
‖γi − γj‖2

then

S1 = −(y′ − γm′W )W (γ − γ∗), S2 =
n∑
i=1

∂Pn(γm)

∂γ ′i
(γi − γ∗i ).
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Let γm = ϑγ + (1− ϑ)γ∗ for some constant ϑ ∈ (0, 1). Since γ∗i = γ∗j , then

γmi − γmj = ϑγi + (1− ϑ)γ∗i − ϑγj − (1− ϑ)γ∗j = ϑ(γi − γj).

Therefore,

S2 =λ1

∑
i<j

ρ′(‖γmi − γmj ‖2)‖γmi − γmj ‖−1
2 (γmi − γmj )′[(γi − γ∗i )− (γj − γ∗j)]

=λ1

∑
i<j

ρ′(‖γmi − γmj ‖2)‖ϑ(γi − γj)‖−1
2 ϑ(γi − γj)′(γi − γj)

=λ1

∑
i<j

ρ′(‖γmi − γmj ‖2)‖γi − γj‖2.

(A.65)

Since γ ∈ Θ, then

‖ϕ−ϕ0‖2
2 =

∥∥∥∥∥n−1
∑
i∈n

γi −ϕ0

∥∥∥∥∥
2

2

=

∥∥∥∥∥n−1
∑
i∈n

(γi − γ0
i )

∥∥∥∥∥
2

2

= n−2

∥∥∥∥∥∑
i∈n

(γi − γ0
i )

∥∥∥∥∥
2

2

≤n−1
∑
i∈n

∥∥(γi − γ0
i )
∥∥2

2
≤ sup

i

∥∥(γi − γ0
i )
∥∥2

2
≤ φ̃2

n,T,G.

(A.66)

Thus, for any γ ∈ Θn ∩Θ, since F ∗(γ) = ϕ, then for all i, γ∗i = ϕ. So we have

sup
i
‖γ∗i − γ0

i ‖2
2 = ‖ϕ−ϕ0‖2

2 ≤ sup
i

∥∥γi − γ0
i

∥∥2

2
≤ φ̃2

n,T,G. (A.67)
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Since γmi = ϑγi + (1− ϑ)γ∗i and the triangular inequality,

sup
i
‖γmi − γ0

i ‖2 = sup
i
‖ϑγi + (1− ϑ)γ∗i − γ0

i ‖2

= sup
i
‖ϑγi + (1− ϑ)γ∗i − (ϑ+ 1− ϑ)γ0

i ‖2

≤ ϑ sup
i
‖γi − γ0

i ‖2 + (1− ϑ) sup
i
‖γ∗i − γ0

i ‖2

≤ sup
i

∥∥(γi − γ0
i )
∥∥2

2
≤ φ̃2

n,T,G. (A.68)

Furthermore, by the same reasoning as (A.78) and for all i, γ∗i = ϕ,

‖γ∗i − γ̂
or
i ‖2

2 = ‖ϕ− ϕ̂or‖2
2 ≤ sup

i
‖γi − γ̂

or
i ‖2

2. (A.69)

Then, since γ∗i = γ∗j ,

sup
i
‖γmi − γmj ‖2 = sup

i
‖γmi − γ∗i − γmj + γ∗j‖2

≤ ‖γ∗i − γ∗j‖2 + 2 sup
i
‖γmi − γ∗i ‖2 ≤ 2 sup

i
‖γmi − γ∗i ‖2

= 2 sup
i
‖ϑγi + (1− ϑ)γ∗i − γ∗i ‖2

= 2ϑ sup
i
‖γi − γ∗i ‖2 ≤ 2 sup

i
‖γi − γ∗i ‖2

≤ 2(sup
i
‖γi − γ̂

or
i ‖2 + sup

i
‖γ∗i − γ̂

or
i ‖2)

≤ 4 sup
i
‖γi − γ̂

or
i ‖2 ≤ 4tn. (A.70)
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Hence, ρ′(‖γmi − γmj ‖2) ≥ ρ′(4tn) since ρ(x) is nondecreasing and concave. Then,

S2 ≥ λ
∑
i<j

ρ′(4tn)‖γi − γj‖2. (A.71)

Let Q = (Q′1, · · · , Q′n)′ = [(y −Wγm)′W]′, then

S1 =−Q′(γ − γ∗) = −(Q′1, · · · , Q′n)′



γ1 − γ∗1

γ2 − γ∗2
...

γn − γ∗n


=−

n∑
i=1

Q′i(γi − γ∗i )

=−
n∑
i=1

1

n
Q′i

(
nγi −

n∑
j=1

γj

)

=−
n∑
i=1

1

n
Q′i

n∑
j=1

(
γi − γj

)
= −

n∑
i=1

n∑
j=1

Q′i(γi − γj)
n

=−
n∑
i=1

n∑
j=1

Q′i(γi − γj)
2n

+
n∑
i=1

n∑
j=1

Q′j(γi − γj)
2n

=−
n∑
i=1

n∑
j=1

(Qj −Qi)
′(γj − γi)

2n

=−
∑
i<j

(Qj −Qi)
′(γj − γi)
n

. (A.72)
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Moreover,

Qi = W ′
i (yi −Wiγ

m
i ) = W ′

i (Wiγ
0
i + εi −Wiγ

m
i ) = W ′

i (εi +Wi(γ
0
i − γmi )),

and then,

sup
i
‖Qi‖2 ≤ sup

i
{‖W ′

i (εi +Wi(γ
0
i − γmi ))‖2}

≤ sup
i
{‖W ′

iεi‖2 + ‖W ′
iWi(γ

0
i − γmi )‖2}

≤ sup
i
‖W ′

iεi‖2 + sup
i
‖W ′

iWi‖2‖(γ0
i − γmi )‖2

≤ sup
i
‖W ′

iεi‖2 + sup
i

√
p‖W ′

iWi‖∞φ̃n,T,G

≤ sup
i
‖W ′

iεi‖2 +m
√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

≤ sup
i

√
p‖W ′

iεi‖∞ +m
√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

≤ √p‖W ′ε‖2 +m
√
pT (q1/2 +m1/2(L+ 1 + 2K))φ̃n,T,G

=
√
p‖W ′ε‖2 +m

√
pTBq,mφ̃n,T,G, (A.73)

where Bq,m = (q1/2 +m1/2(L+ 1 + 2K)).

By Lemma A.3, P
[
‖W ′ε‖2

2 > 2c̃(np+ 2
√
npζ∗ + 2ζ∗)mM̃

√
TBq,m

√
p
]
≤ e−ι

∗
, where

Bq,m = (q1/2 + m1/2(L + 1 + 2K)), p = q + L + 1 + 2K, M̃ = max(M1,M2,M3,M4)
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and c̃ given in 3.5 and 3.7. ι∗ is defined in Lemma A.3. Then, over the event E2,

∣∣∣∣(Qj −Qi)
′(γj − γi)
n

∣∣∣∣ (A.74)

≤n−1‖Qj −Qi‖2‖γj − γi‖2 ≤ n−12 sup
i
‖Qi‖2‖γi − γj‖2

≤2n−1T 1/4(mp)1/2‖γi − γj‖2(
p1/4B̃1/2

q,m(np+ 2
√
npζ∗ + 2ζ∗)1/2 + T 1/4m1/2Bq,mφ̃n,T,G

)
. (A.75)

Therefore, by (A.71), (A.72) and (A.75),

Qn(γ)−Qn(γ∗)

≥
∑
i<j

‖γi − γj‖2

{
λρ′(4tn)− 2n−1T 1/4(mp)1/2(p1/4B̃1/2

q,m(np+ 2
√
npζ∗ + 2ζ∗)1/2

+T 1/4m1/2Bq,mφ̃n,T,G)
}

≥
∑
i<j

‖γi − γj‖2

{
λρ′(4tn)−B1n

−1T 1/4(np+ 2
√
npζ∗ + 2ζ∗)1/2 −B2n

−1T 1/2φ̃n,T,G

}
, (A.76)

where B1 = 2(mpB̃q,m)1/2p1/4 and B2 = 2mp1/2Bq,m.

Let tn = o(1), then ρ′(4tn) → 1. Suppose that the following condition is true over
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the event E1 ∩ E2,

B1n
−1T 1/4(np+ 2

√
npζ∗ + 2ζ∗)1/2 → 0, B2pn

−1T 1/2φn,T,G → 0, (A.77)

then P (Qn(γ)−Qn(γ∗) ≥ 0) ≥ 1− eι − eι∗ . Once (A.77) holds, Qn(γ)−Qn(∗) ≥ 0

with probability approaching to 1 as n→∞.

Now we show (A.77). Note that in this case, gmin = gmax = n and G = 1, then

φn,T,G = Cq,m
g

1/2
maxG3/4

gminT 3/4
(Gp+ 2

√
Gp
√
ζ + 2ζ)1/2 = Cq,m

1

n1/2T 3/4
(p+ 2

√
p
√
ζ + 2ζ)1/2.

(A.78)

We further derive the second part of (A.77) as

B2pn
−1T 1/2φn,T,G = B2pCq,m

1

n3/2T 1/4
(p+ 2

√
p
√
ζ + 2ζ)1/2. (A.79)

As ζ →∞, (p+ 2
√
p
√
ζ + 2ζ)1/2 = O(2ζ1/2).

1. As n→∞ with T fixed. Consider the first part of (A.77).

(a) Consider ζ∗ = O(n). Let ζ∗ → ∞, since (np + 2
√
npζ∗ + 2ζ∗)1/2 = (p +

2
√
p+ 2)1/2O(n1/2), then

B1n
−1(np+2

√
npζ∗+2ζ∗)1/2T 1/4 ≤ B1T

1/4n−1(p+2
√
p+2)1/2O(n1/2)→ 0.
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(b) Consider ζ∗ � n and ζ∗ = o(n2). Let ζ∗ →∞, then

B1n
−1(np+2

√
npζ∗+2ζ∗)1/2T 1/4 ≤ B1T

1/4n−1(p+2
√
p+2)1/2O(ζ∗1/2)→ 0.

Now, consider the second part of (A.77) as n→∞. Let ζ = o(n3) and ζ →∞,

then

B2pn
−1T 1/2φn,T,G = C̃1

1

n3/2
O(ζ1/2)

n→∞−→ 0,

where C̃1 = 2B2pT
−1/4Cq,m.

2. As T, n→∞. Consider the first part of (A.77).

(a) Consider ζ∗ = O(n). Let ζ∗ → ∞ and T = o(n2). Since (np + 2
√
npζ∗ +

2ζ∗)1/2 = (p+ 2
√
p+ 2)1/2O(n1/2), then

B1n
−1(np+2

√
npζ∗+2ζ∗)1/2T 1/4 ≤ B1(p+2

√
p+2)1/2T 1/4n−1O(n1/2)→ 0.

(b) Consider n� ζ∗ = o(n2/T 1/2). Let ζ∗ →∞, then T = o(n4), and

B1n
−1(np+2

√
npζ∗+2ζ∗)1/2T 1/4 ≤ B1(p+2

√
p+2)1/2T 1/4n−1O(ζ∗1/2)→ 0.

Now, consider the second part of (A.77) as n, t → ∞. Let ζ = o(n3T 1/2) and
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ζ →∞, then

B2pn
−1T 1/2φn,T,G = C̃2

1

n3/2T 1/4
O(ζ1/2)

n→∞−→ 0,

where C̃1 = 2B2pCq,m.
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Appendix B

Full Simulation Results

B.1 On the Choice of IVs

All three methods perform similar sizes close to 0.05. By choosing our choice of in-

struments, larger powers are presented generally for large frequency ratios. However,

our method does not perform larger powers for small frequency ratio, especially with

small alternatives.
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Table B.1
Empirical Sizes and Powers for the Simulation Model: T = 125, m = 4

d c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
-0
.5

-0
.5

Miller 6.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.5 0.1 0 0.4 22 83.1 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.8 0.4 0.1 0.8 22.6 80.1 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5 0.8 0.2 1.5 22.7 76.9 98.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.9 1.5 0.6 2.7 22.6 72.4 97.7 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 7.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.9 95.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.6 3.1 1.8 4.4 18.9 56.7 89.5 99.1 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

-0
.5

Miller 5.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.5 0.1 0 0.3 9 67.6 97.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5 0.3 0 0.4 9.9 65.8 96.5 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.5 0.9 0.1 0.7 10.6 60.9 95.7 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.6 1.2 0.2 0.9 11.9 58 93.5 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 7 99.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.2 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.3 3.5 1.3 3.8 13.8 45.5 81.3 97.4 99.9 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

-0.5

Miller 6.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.5 0 0 0 0.2 7.5 47 86.5 97.8 99.8 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.9 0.2 0 0 0.4 7.8 46.5 85.7 97.7 99.7 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.1 0.4 0 0.1 0.6 8.5 45.9 84.1 97.1 99.6 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 5.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.8 0.8 0.1 0.1 0.9 9.8 43.9 81.6 96.4 99.4 99.9 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 3.7 99.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 6.5 3.4 1.2 1.7 3.8 12.6 37.3 70.4 90.4 98.4 99.5 99.8 100 100 100 100 100 100 100 100 100
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Table B.2
Empirical Sizes and Powers for the Simulation Model: T = 125, m = 150

d c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

-0
.5

-0
.5

Miller 6.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 31.4 45.3 52.4 58.7 62.1 66.2 69.5 73 76.1 78.2 79.8 81 82.4 83.5 83.9 84.8 85.3 85.7 86.4 86.9
New 5.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 23.1 39.4 49.3 56.5 60.7 65 68.4 71.9 75.5 77.7 79.2 81.1 81.9 82.7 83.6 84.1 85 85.6 86.1 86.5
New 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 16.6 32.6 43.7 52.4 58 62.4 66.9 70.3 73.3 76.2 78.4 80 81.4 82.2 82.9 83.7 84.4 85.2 85.6 86
New 5.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6 98 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.4 12.4 24.8 36.2 45.3 52.9 58.6 63.3 67.2 71.1 73.8 76.6 78.5 80.3 81.2 82.1 83 83.7 84.1 85 85.6
New 5.6 98.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 5.7 40.8 91.7 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.1 6.5 10.8 15.2 20.9 27.7 33.2 39.2 44.8 49.3 53.4 58.3 62.8 66.3 69.5 72.6 74.2 75.7 77.1 78.2 79.6
New 5.5 41.4 90.3 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

-0
.5

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6 32.2 41.5 47.4 52.3 57.2 61 64.1 67.2 70.1 73 74.7 76.6 77.8 79 80 81 81.9 82.8 83.6 84.1
New 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6 26.4 39.1 45.9 51.2 55.8 60 63.1 66.8 69.7 72.3 74.4 76 77.3 78.8 79.9 80.6 82 82.9 83.8 84.2
New 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.4 21.5 34.6 43.3 49.1 54.4 58.6 62.3 66.2 68.8 71.6 73.7 75.3 77 78.5 79.5 80.2 81.6 82.7 83.4 84.1
New 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6 15 28.7 38.5 45.7 51.2 56.1 60.4 64.6 67.5 70.4 72.7 74.3 76.2 77.5 79 79.9 81 82.3 83.1 83.5
New 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller5.7 72.1 99.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 8.4 12.9 19.8 27.7 34.7 40 45.2 50.5 55.5 59.6 63.6 65.9 68.9 71 72.8 74.8 76.1 77.4 78.9 80.1
New 5.7 73.1 99.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

-0
.5

Miller 6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.6 44.1 49.5 54.2 58.8 63.1 66 70.6 73.9 75.9 78.1 80 81.7 82.9 84.1 84.9 85.5 86.2 86.9 87.4 87.8
New 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.6 41.5 48.5 53.5 58.6 62.9 66 70.4 73.7 75.7 78.3 80 81.5 82.8 84.1 84.8 85.5 86.2 86.7 87.3 87.7
New 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.8 37.6 47.6 52.9 58.3 62.4 65.9 70.3 73.5 75.9 78.2 80 81.3 82.9 84.2 84.8 85.3 86.3 86.7 87.4 87.7
New 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 32.5 45.3 52.1 56.8 61.8 65.5 69.2 73.3 75.9 77.8 79.9 81.4 82.8 83.9 84.7 85.2 86 86.7 87.2 87.8
New 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 5.4 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 15.2 29.8 40.9 49.3 55 60.5 64.6 68.2 71.6 75.2 77 79.2 81.2 82.5 83.5 84.5 85.3 85.9 86.5 87
New 5.7 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table B.3
Empirical Sizes and Powers for the Simulation Model: T = 125, m = 365

d c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

-0
.5

-0
.5

Miller 7.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.7 15.5 19.6 23.1 26.8 30 33.2 36.1 39.1 41.4 43 45.2 47.8 50.1 51.6 54 55.9 57.5 59.3 60.8 61.5
New 4.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 7.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.5 13 17.7 21.1 25.1 28.7 32.6 35 38 40.7 42.5 44.6 46.8 49.5 51.5 53.4 55.6 57.1 58.8 60.1 61.1
New 4.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 7.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.6 11.1 15.4 19 22.8 26.8 30.2 33.1 36.2 38.8 41.4 43.4 46 48.4 50.4 52.3 54.7 56.4 58 59.2 60.5
New 4.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 7.2 98.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.7 8.8 13.5 17.2 20.2 23.7 27.4 30.7 33 36.3 39 41.5 44 46.8 48.5 50.6 52.7 54.2 56 57.9 59.3
New 4.7 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 7 39.9 89.7 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.8 7.5 8.6 9.8 11.7 13.9 16.3 18.1 20.3 22.7 25.1 27.8 30.1 32 34.3 35.9 37.7 39 40.4 42.7 44.5
New 4.6 44.8 91.5 99.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

-0
.5

Miller 6.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 15.2 19 20.5 22.6 24.9 27.3 30.1 33.3 35 37.3 39.5 41.3 43.8 46.2 48 50.2 52.3 53.7 55.1 56.4
New 4.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.8 13.8 17.8 20.4 22.6 24.5 27 29.7 32.7 35.2 37.3 39.2 41 42.9 45.3 47.4 49.4 51.7 53.5 54.8 56.1
New 4.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.9 11.8 16.1 19.3 22.3 23.9 26.4 29 31.8 34.3 36.8 38.4 40.8 42.8 44.6 46.9 48.9 51 52.4 54.1 55.7
New 4.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6 9.5 15 18 20.7 23 25.7 27.9 30.4 33.3 35.4 37.5 39.7 41.6 43.7 46 48.2 50.3 51.5 53.1 54.4
New 4.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 6.5 70 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.8 7 9.2 11.5 14.5 16.4 18.4 20.7 23.2 26.5 28.3 30 32.3 34.9 36.9 38.6 40.9 42.6 44.8 46.9 48.4
New 4.6 75.9 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

-0
.5

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.1 20.7 23.8 25.1 27.7 30.7 33.2 35.7 38.5 41.3 43.4 45.7 48.1 50.2 51.9 54.2 56.4 58 59.2 61.1 62.6
New 4.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6 19.8 23.8 25.6 27.6 30.3 33.2 35.5 38.5 41.2 43.6 45.9 47.9 50.3 51.9 54.2 56.3 57.9 59.5 61.1 62.3
New 4.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6 18.9 23 25.7 28.1 30.3 33 35.8 38.5 41 43.8 45.7 47.9 50.3 51.8 54 56.1 57.8 59.7 61 62.4
New 4.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.9 16.1 21.5 25.3 27.6 30.1 32.9 35.6 38.2 40.6 43 45.5 47.8 50 51.8 54 56.2 57.6 59.7 60.8 62
New 4.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 6 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.8 9.3 15.1 19.4 24 27.5 29.8 32.9 36.3 38.6 41.3 43.8 45.8 48.3 50.2 52.8 54.7 56.4 58.2 59.2 60.4
New 4.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table B.4
Empirical Sizes and Powers for the Simulation Model: T = 512, m = 4

d c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

-0
.5

-0
.5

Miller 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.4 6.2 4.4 1.3 0.1 0 0 0.1 0.2 0.5 5.2 27.1 71.5 96.1 100 100 100 100 100 100 100

0
.0

Miller 6.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.9 5.4 4.5 2.2 0.6 0.1 0.1 0.1 0.5 1.4 7.7 27 64.8 92.4 99.2 100 100 100 100 100 100

0
.3

Miller 6.6 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 99.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.2 5.1 4.5 3 1.3 0.4 0.1 0.2 0.9 2.7 9.7 26.4 56.5 85.8 97.7 99.7 100 100 100 100 100

0
.5

Miller 7.1 97.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 93.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.7 5 4.5 3.7 2 0.9 0.4 0.6 1.5 3.7 10.6 24.6 48.8 76.6 94.1 98.7 99.9 100 100 100 100

0
.8

Miller 6.9 57.2 98.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 6.3 49.8 96.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.3 4.6 4.5 3.9 3.1 2.5 1.9 2 2.6 4.5 9.4 17.1 29.8 48.6 70.3 86 95.1 98.5 99.9 100 100

0
.0

-0
.5

Miller 6.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.9 6.7 3.9 1.1 0 0 0 0 0 0.1 1.8 11.1 45.5 84.6 98.4 100 100 100 100 100 100

0
.0

Miller 6.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.4 5.7 4.6 2.6 0.5 0 0 0.1 0.3 0.8 3 13.7 42.4 78.6 96.2 99.4 100 100 100 100 100

0
.3

Miller 6.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.6 5.1 4.7 3.3 1.2 0.4 0.2 0.3 0.5 1.6 5.3 14.8 39.2 70.4 91.1 98.2 99.9 100 100 100 100

0
.5

Miller 6.1 98.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 97.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.2 5.9 5.4 3.9 2.1 1.1 0.5 0.6 1.1 3 7.1 15.6 35.3 61.6 83.9 95.5 99 99.9 100 100 100

0
.8

Miller 5.6 61.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.1 60.6 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.4 5.5 5.6 4.6 3.8 3.1 2.2 2.8 3.6 5.4 8.6 14.4 23.9 39.6 57.4 75 88.4 96 98.9 99.7 100

0
.5

-0
.5

Miller 6.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 4.8 4.6 2 0.2 0 0 0 0 0 0 0 0.1 1 8.7 32.8 68.9 92.7 99.2 100 100 100

0
.0

Miller 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.1 4.9 3.1 1 0.1 0 0 0 0 0 0.1 0.4 2.2 10.7 33.5 64.9 89.2 97.9 99.9 100 100

0
.3

Miller 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.3 5.3 3.7 1.9 0.8 0.1 0.1 0.1 0.1 0.1 0.4 1.6 3.5 13.6 33 59 83 94.9 99.2 99.9 100

0
.5

Miller4.8 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 4.8 99.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.9 5.8 4.7 3.2 1.2 0.6 0.2 0.2 0.3 0.7 1.4 2.5 5.8 15.1 31.5 52.9 75.8 90.8 97.1 99.6 100

0
.8

Miller4.3 77.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 3.8 74.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
New 5.9 5.8 5.6 4.7 3.6 2.9 2.4 2.2 2.4 3.1 4.3 6.7 10.9 16.1 25.9 39.3 53.5 69.2 83.1 91.9 97.1
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Table B.5
Empirical Sizes and Powers for the Simulation Model: T = 512, m = 150

d c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

-0
.5

-0
.5

Miller 6.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 23.9 61.2 81.7 90.5 94.8 96.2 97.3 98 98.2 98.4 98.4 98.5 98.5 98.7 98.7 98.7 98.9 98.9 98.9 99
New 5.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.6 98.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 13.2 37.5 62.578.286.6 92.2 94.9 96.1 97.1 97.8 98.1 98.3 98.5 98.5 98.6 98.6 98.7 98.9 98.9 98.9
New 5.8 98.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6.8 85.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 9.7 22.1 40.658.672.8 81.9 87.4 91.8 94.2 95.6 96.7 97.3 97.9 98.2 98.3 98.6 98.6 98.7 98.7 98.8
New 5.9 86.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6.6 55 98.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 7.3 13.6 25 39 52.5 65.3 74.381.185.889.5 92.3 94.3 95.9 96.5 97.3 97.8 98 98.2 98.4 98.6
New 5.9 58.5 98.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 5.9 12.9 37.8 72.0 92.2 98.2 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 5.5 6.3 8.6 11.114.2 18.9 23.730.136.142.7 48.9 54.4 60.266.2 70.4 74.7 78 81.183.986.1
New 5.5 14.9 40.8 73.9 93 98.1 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

-0
.5

Miller 6.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 37.1 73.986.9 91.3 93.5 95 95.8 96.3 96.6 97 97.1 97.4 97.6 97.8 97.9 98 98.1 98.2 98.3 98.3
New 5.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.5 21.8 52.9 75.385.1 90.3 92.5 94.3 95.4 95.9 96.4 96.7 97.1 97.3 97.5 97.6 98 98.1 98.1 98.2 98.3
New 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 13.6 34.156.673.5 83 87.8 91.1 93 94.2 95.5 96 96.5 96.9 97.3 97.5 97.7 97.7 98 98 98.1
New 5.5 99.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6.2 89 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 9.4 22.5 38.555.368.2 78.3 84.387.8 90.8 92.4 93.8 95.1 96 96.4 96.7 97 97.4 97.7 97.7 97.9
New 5.4 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 6.1 23.4 71.3 96.5 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.1 5.5 7.6 12.117.224.1 31 37.845.653.260.1 66.5 72 76.8 80.3 83.785.988.589.9 91.3 92.2
New 5.4 25.4 72.6 96.5 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

-0
.5

Miller 6.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 79.9 94.6 96.8 97.4 97.5 98 98.1 98.4 98.5 98.7 98.9 99 99.1 99.1 99.2 99.2 99.2 99.2 99.2 99.2
New 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 6.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.7 59.6 89.3 95 96.7 97.5 97.7 98 98.1 98.4 98.6 98.8 98.9 99 99.1 99.1 99.2 99.2 99.2 99.2 99.2
New 5.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.5 38.8 78.4 90.7 95 96.6 97.4 97.8 98 98.2 98.4 98.7 98.9 98.9 99 99.1 99.1 99.2 99.2 99.3 99.3
New 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 6.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.5 23.5 60.8 82 90.7 94 95.9 97.1 97.7 98 98.2 98.4 98.7 98.8 98.9 99 99.1 99.1 99.1 99.2 99.3
New 5.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 5.8 69.6 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.4 8.9 18.5 33 49.264.3 74.4 82.887.9 91.2 93.1 94.9 96.2 97.1 97.7 97.9 98.2 98.6 98.8 98.9 98.9
New 5.4 72.1 99.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table B.6
Empirical Sizes and Powers for the Simulation Model: T = 512, m = 365

d c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
-0
.5

-0
.5

Miller 5.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.4 11 25.1 40.350.557.1 62.4 66.568.570.773.374.776.9 78.2 79.580.381.5 82.2 83 83.884.7
New 5.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 5.9 98.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 8.1 15.3 25.7 36.645.2 52.1 57.762.365.568.670.773.1 75.1 77 78.479.9 81 81.9 82.783.3
New 5.1 99.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 5.8 84.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 6.3 10.5 16.7 24.432.1 40 46.651.956.460.364.2 67 69.9 72.574.275.9 77.6 78.7 80.481.3
New 5.2 89.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 5.8 54.7 98.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.1 5.4 8.2 11.4 15.921.7 27.533.539.644.849.453.157.4 60.6 63.766.768.8 71.6 73.875.376.6
New 5.3 63.2 99.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 5.7 14.3 38.6 71.9 92.1 98.9 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5 5.1 5.4 5.9 7.3 8.4 9.7 11.3 13 15 17.219.722.4 25.2 28.631.533.9 36.8 38.8 41.444.1
New 5.5 16 45 77.8 94.4 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

-0
.5

Miller 5.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 4.7 15.5 34.3 47.6 54 57.6 61 63.265.567.869.170.471.6 72.5 73.3 74 74.8 75.5 76.5 77.478.5
New 5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 5.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 4.7 9.7 22.8 35.3 44.851.6 55.6 59 61.764.5 67 68.570.1 71.2 72.5 73 74.2 74.7 75.6 76.677.8
New 5.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 5.7 99.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 4.6 7.2 14.6 24.8 33.741.6 47.7 52.956.559.562.564.867.1 68.6 70.171.372.6 73.5 74.4 75.476.9
New 5.2 99.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 5.7 88.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 4.6 6.2 9.9 16.5 23.830.7 37.5 43.148.2 52 56.158.961.7 63.9 66 67.969.3 71.2 72.4 73.4 75
New 5.4 92 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 5.6 23.6 71.3 96.8 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 4.7 4.9 5.4 6.6 8.2 10.5 12.3 15.8 19 22.626.2 30 32.8 35.7 39.541.844.8 47.3 50.6 53.355.3
New 5.3 29.3 77.9 97.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

-0
.5

Miller 5.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 38.2 57.6 64.2 68.570.4 72.3 74.175.176.177.478.3 79 79.9 81 81.682.3 82.9 83.4 84.785.5
New 5.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.0

Miller 5.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.2 24.8 49.1 58.8 64.968.3 70.4 72.374.475.876.8 78 78.8 79.5 80.381.4 82 82.4 83.4 84.385.3
New 5.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.3

Miller 5.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 15.6 36.6 52 58.764.4 67.7 70.572.474.3 76 77.178.2 79 79.980.881.4 82.3 83.1 83.9 85
New 5.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.5

Miller 5.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5.3 11.1 25.4 40.551.657.8 62.1 66.869.171.573.375.676.9 78.1 79 80 80.7 81.6 82.6 83.584.2
New 5.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0
.8

Miller 5.4 70.9 99.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AGK 5 6.7 8.9 14 19.926.9 33.7 41.347.4 52 56.7 60 63.2 66.6 69.3 71 72.8 74.7 76.4 78.379.5
New 5.2 78 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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