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images are sole authority of the respective authors and none have been reproduced in this 

study by any means. Due credit of the original articles has been provided as citations and 

official permission has been taken beforehand for each image to be referred in this thesis.   
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Abstract 
Phase-change heat transfer through pool boiling process offers a promising thermal 

management solution in applications wherein conventional air or single-phase liquid-based 

cooling methods prove inefficient such as for high-power electronics. Pool boiling process, 

which utilizes the latent heat of evaporation, provides a robust and efficient way to 

efficiently dissipate the excessive heat generated in a small footprint area in particular as 

seen in CPUs (Central Processing Units), GPUs (Graphics Processing Units), LEDs (Light 

Emitting Diodes), radars, and other demanding computing, sensing and surveillance 

electronics. Although boiling process has been studied for over five decades, it has not 

been yet adapted for widespread deployment. This is mainly due to the lack of a reliable 

high-performance boiling surface with exceptional heat dissipation potential. Boiling heat 

transfer is fundamentally limited by CHF (Critical Heat Flux), which is the maximum heat 

flux a given boiling surface can dissipate. At this point, a vapor layer covers the boiling 

surface causing surface temperature overshoot with a potential catastrophic failure. 

Deploying various active and passive methods, researchers have proposed different 

strategies to push further the CHF values, and thus widen the safe operating limits of a 

system. In this study, we propose a unique, passive surface topology to enhance heat 

transfer by altering three distinctive surface properties: augmented roughness, out-of-plane 

capillary wicking and separate liquid vapor pathways. 

Firstly, a porous surface medium is introduced onto the boiling surface using copper mesh 

and diffusion bonding process. These bonded coppers meshes institutes a complex porous 

matrix structure which amplifies nucleation site density.  The intertwined copper meshes 



xv 

stacked and bonded atop each other forms guideways which provided preferential, out-of-

plane capillary wicking supplementing liquid to the heater surface, in addition to in plane 

wicking. In addition, the copper meshes are machined into pillars which serves as a 

separate liquid-vapor pathway reducing the vapor escape resistance aiding in delaying 

CHF. Two surfaces with different number of coppers meshes were diffusion bonded and 

machined to study the effect of altered surface topology and out-of-plane capillary wicking 

length scale effect on heat transfer process.   

Secondly, to further enhance heat transfer, the samples were chemically treated to grow 

nanowires on them. With the introduction of nanowire, hierarchical structures were 

prepared and studied for heat transfer performance enhancement. The best performing 

sample resulted into a record Critical Heat Flux of 475 W/cm2 and heat transfer coefficient 

70.8 W/cm2K. These are about 3.7 times and about 14 times higher in heat flux and heat 

transfer coefficient as compared to a plain copper surface, respectively. 
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1 Introduction 
Pool boiling is a heat transfer process which involves phase change at the liquid-vapor 

interface occurring at saturation temperature. Because boiling involves phase change heat 

transfer, it utilizes the latent heat of a fluid and thus is considered one of the most efficient 

heat transfer process. Boiling plays a very critical role in processes involving very high 

heat flux generation and extraction from a small area, such as electronic devices of very 

high-power density [1-4], servers/data centers [5-8], satellite and spacecraft avionics [9-

11] and  hybrid electric vehicle battery thermal management [12-14]. Conventional heat 

transfer mediums prove incapable of extracting such vast quantities of heat. Pool boiling 

establishes a very cost effective, passive cooling strategy as it involves no moving parts. 

In a general term, heat transfer coefficient (HTC) is an indication of how effectively heat 

is being transferred from a medium. Figure 1.1 shown below summarizes the HTC of 

different mediums highlighting how HTC for boiling is almost two orders of magnitude 

more as compared to air.    
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Figure 1.1: Plot indicating typical HTC for different cooling mediums [15] 

  

Pool boiling is a type of phase change process wherein heat transfer occurs on the heater 

surface, via bubble formation, which is submerged in large pool of stagnant liquid. 

Although, the heat transfer for pool boiling is almost two orders of magnitude higher than 

the conventional cooling methods, it is still limited by Critical Heat Flux of about 100-150 

W/cm2 depending on the type of surface [16]. Critical heat flux is the maximum amount of 

heat flux a surface can transfer to liquid before a vapor layer covers the surface shooting 

its temperature to a very high value [17]. With increasing technological advancements, 

there is a growing demand to push the CHF limit to higher values [18]. Different research 

groups  proposed various  strategies to enhance boiling heat transfer performance [19].   
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1.1 Boiling Curve 

Boiling heat transfer mechanism can be better explained with the help of boiling curve. 

Boiling curve is a plot of heat flux vs. wall superheat. Heat flux is the amount of heat 

extracted per unit area. Wall superheat is the difference between the surface temperature 

and liquid pool temperature, which is the saturation temperature of the fluid at the given 

operating pressure. Boiling curve was extensively studied and introduced by Nukiyama 

[20] in 1934. Nukiyama conducted a number of experiments with Nichrome wire and water 

as the working fluid and was first to come up with the boiling curve. A boiling curve 

facilitates proper understanding of different boiling regimes, and mechanisms affecting 

heat transfer performance of the system under study. It also aids in developing heat transfer 

models, and depicting critical parameters affecting heat transfer. A boiling curve can either 

be achieved by controlling the heat flux or controlling the wall superheat, which further 

dictates what happens to the boiling curve after it reaches to CHF. Figure 1.2 shows the 

boiling curve achieved using heat flux-controlled methodology. 
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Figure 1.2: Typical Pool boiling curve 

A typical boiling curve is divided into multiple regimes depicted by changes in trends of 

boiling curve due to the nature of bubble generation, its frequency and departure motion. 

Typically, boiling curve has the following four distinct regimes [21, 22].  

1. Single phase natural convection 

2. Nucleate boiling 

3. Transition boiling 

4. Film boiling 

As shown in Figure 1.2, up until the point A where the heater surface temperature is below 

the saturation temperature of the fluid, heat transfer is governed by single phase natural 

convection. Heat transfer is mainly by natural convection and therefore is linear in nature. 
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As the heat flux to the heater increases, the surface temperature rises and crosses the 

saturation temperature of the liquid pool. Only after the heater surface temperature passes 

a certain amount of superheat, one can see bubbles forming on the heater surface. This 

point A is known as Onset of Nucleate Boiling (ONB) and is governed by the size and 

number of cavities present on the surface.  Nucleate boiling regime is further divided into 

three regimes, partial nucleate boiling (isolated bubble) regime, transition nucleate boiling 

(jets/column) regime and fully developed nucleate boiling regime. As heat flux increases, 

isolated bubble formation aids in extracting the excess heat flux resulting in increase in the 

slope of the graph.  

Further increase in heat flux, beyond point B, activates more nucleation sites leading to an 

increase in bubble frequency which then coalescence to form jets and columns. After point 

C, due to increase in bubble generation frequency and resistance in vertical direction to 

vapor escape, bubbles expand and merge laterally leading to formation of vapor layer 

periodically covering the heater surface. The heat flux right before the vapor layer cover 

the heater surface entirely, is the maximum heat flux and is known as Critical Heat Flux 

(CHF) denoted by point D. Heat flux, beyond point D known as transition boiling, 

decreases as the HTC from vapor film is very less as compared to that of a liquid layer. It 

reaches a minimum value, known as Leidenfrost point E. After point E, a permanent vapor 

layer entirely covers the heater surface and heat flux increases beyond this point owing to 

radiation heat transfer mechanism dominating the cooling process.  
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1.2 Bubble Nucleation 

Boiling occurs because of formation of bubble which is dependent on the size of the cavity. 

Cavities entrap air which serves as a starting nucleation point for bubbles to form, expand 

and then depart. For a bubble to expand and thus contribute towards heat transfer, the vapor 

pressure inside the bubble should be greater than the liquid pressure surrounding it. This 

difference in pressure is accounted by excess temperature of the heater surface from the 

saturation temperature of the pool of liquid.  Figure 1.3 depicts the air entrapped in the 

cavity of size R.  

 
Figure 1.3: Vapor bubble in a cavity of size R depicting vapor/liquid pressure across it. 

The vapor pressure inside the air entrapped bubble is given by 

 
𝑃𝑃𝑣𝑣 = 𝑃𝑃𝑙𝑙 +

2σ
𝑅𝑅

 

 
(1) 

where, 𝑃𝑃𝑣𝑣 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

            𝑃𝑃𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
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             σ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

              𝑅𝑅 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Equation (1) specifies that the vapor (1) pressure is inversely proportional to the bubble 

radius. It gives the relationship between the cavity size and bubble nucleation. It also 

indicates that for a given wall superheat, in correspondence to heat flux, only a particular 

range of nuclei cavities gets activated [23]. The Equation (2) gives the range of radii 

activated for a given wall superheat. 

 

 

(2) 

If the superheat value decreases, the term inside the square root tends to zero and the above 

equation leads to Rc,min = Rc,max leading to Equation (3) of critical radius value given by 

[23].  

 

 

(3) 

Equation (3) implies that for a given wall superheat, only a particular size of cavity gets 

activated for nucleation. In general, for a wall superheat of 15 – 20 ° C, the range of critical 

radius cavities that gets activated is between ~ 1 μm and ~ 100 μm [24]. Therefore, to 

enhance the heat transfer by enhancing the nucleation site density, it is imperative to 

introduce cavities in the range of critical radius as depicted by the Equation (3) . The size 

and porosity of copper meshes were thus selected accordingly to introduce cavities within 

this desired range.  
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1.3 Heat Transfer Model 

To better understand the heat transfer from the surface to the liquid and to conceptualize 

the parameters affecting the heat transfer, various models have been developed and put 

forth by researchers till date [25-31]. As discussed in the boiling curve, there are two 

prominent phenomena occurring during pool boiling, nucleate boiling and the occurrence 

of CHF. Therefore, to understand the physics behind the occurrence of nucleate boiling, 

factors affecting heat transfer and conditions leading to CHF can be better understood by 

these models [32]. 

In the nucleate boiling regime, heat transfer takes place through various mechanisms and 

correspondingly, each mechanism has its contribution to overall heat transfer. Figure 1.4 

depicts the four prominent heat transfer mechanisms, transient conduction, micro-

convection (qmc), microlayer evaporation (qml) and thin film/contact line evaporation (qcl) 

in addition to natural convection (qnc) [31].  

 
Figure 1.4: Different heat transfer mechanism during a) bubble nucleation b) bubble departure (Copyright 

of Kim et al. [33]).  
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The transient conduction assumes a pure conduction occurring because of rewetting of hot 

surface by the cool liquid replacing the departing bubble. Micro convection assumes heat 

transfer via bubble growth and departure incurred because of liquid motion induced by the 

wake of departing bubble. Micro-layer evaporation proposes the heat transfer occurs 

because of evaporation of microlayer on the surface. Lastly, the thin film evaporation or 

contact line evaporation, is the heat transfer because of evaporation of the thin liquid film 

at the three-phase contact line between the vapor bubble, liquid and the solid surface. It is 

postulated that the thin film evaporation dominates the nucleate boiling process [31]. 

Therefore, in order to enhance heat transfer, it is vital to understand and imply 

methodologies to improve thin film evaporation.   
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2 Literature Review 

2.1 Heat Transfer enhancement strategies in Pool Boiling 

In flow boiling, increase in flow velocity helps in sweeping bubble away from the surface 

thus delaying their coalescence and ultimately CHF. In contrast to flow boiling, pool 

boiling incorporates weak fluidic motion which is induced by buoyancy and bubble 

agitation. This weak motion is random and often uncontrolled.  Therefore, enhancing heat 

transfer in pool boiling is limited by either modifying the fluid or the heating surface. 

Altering heating surface geometry/topology is an easy, passive, cost-effective and robust 

technique to enhance heat transfer. It can be accomplished on macro, micro or nanoscale 

and aims at amplifying the nucleation site density, wettability or capillary wicking [34]. 

Surface enhancement can be categorized into three groups i) structured surface 

enhancement ii) Unstructured or porous surface enhancement iii) Hybrid surface 

enhancement. 

2.1.1 Structured surfaces  

Revising surface geometry by fabricating structured and ordered surfaces has always been 

an easy and favored technique to enhance heat transfer. Structured surfaces consolidate 

fabricating channels, fins and pins on the heater surfaces. These structured surfaces help in 

understanding the relationship between surface parameters (fin height, thickness, spacing, 

etc.) and heat transfer as these parameters can be measured and remodeled in a controllable 

fashion. Rise in digital technology and invention of ultra-precise, automated mechanical 

machining techniques enabled various researchers to design complex geometries and to 

study their effect on heat transfer.  
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Guglielmini et al. [35] first utilized the potential of macro structures by fabricating twelve 

copper structured surface with square pin fin cross section. They varied the height (3 and 

6mm) and width (0.4-1mm) of fins, forming three different configurations of uniform and 

non-uniform spaced fins. Conducting pool boiling test under different saturated pressure 

(0.5, 1 and 2 bar) for FC-72, they observed that with increasing fin height and decreasing 

fin width, the HTC increases but with negligible increase in heat flux. The negligible 

increase in heat transfer for dense fins with increased surface area was off-set by the better 

wetting of boiling surface for scattered fins. On a much smaller length scale, Wei and 

Honda [36] tested six squared pin-fin arrays on silicon chip under subcooled FC-72 tests 

with altering thickness (30 and 50 μm) and height (60, 120, 200 and 270 μm), as shown in 

Figure 2.1. They fabricated pins using dry etch method while keeping the pin pitch, as 

twice that of pin thickness, constant. They observed increasing trends in HTC and heat flux 

values with increasing fin height and reported approximately 4.2 times increase in heat flux 

over that of a smooth silicon chip. The higher heat transfer efficiency was observed due to 

an increased wetted surface area provided by taller fins.  Zhang and Lian [37] conducted 

experiments with pin-fin structured nickel surface with fixed 200 μm fin width, 35 μm fin 

height and varying the fin spacing from 200-1000 μm, as shown in Figure 2.2. They 

fabricated the pins using a modified lithography technique and conducted pool boiling test 

with de-ionized water under atmospheric condition. They conducted optimization tests for 

fin spacing concluding 200 μm spaced sample as the best performing configuration. The 

pins added surface area and their effect on vapor evolution process was a prominent factor 

in heat transfer enhancement.  
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Figure 2.1: SEM images of three different micro-pin 
structures with increasing height. (Copyright of Wei and 
Honda [36]). 

 
Figure 2.2: SEM images of differently 
spaced square pin-fins with magnified view 
(Copyright of Zhang & Lian [37]). 

 

More recently, Chu et al. [38] performed extensive study on effect of micro structures on 

pool boiling experiments. Different micropillar configurations were fabricated on silicon 

substrate using etching technique by varying the height (10, 20 μm), spacing (5, 10, 15 μm) 

and diameter (5,10 μm), as shown in Figure 2.3. They reported about 160% enhancement 

(about 208 W/cm2) in CHF over that of plain silicon surface. Highlighting the importance 

of roughness augmented capillary wicking, they modified the CHF model, based on an 

analytical force balance approach, to include the effect of capillary wicking. On similar 

grounds with Chu et al., Kim et al. [39] created twelve micro-pillared surfaces with number 

of length scales (5-40 μm) on silicon chip samples using micro electromechanical systems 

(MEMS) techniques, depicted in Figure 2.4,  and conducted pool boiling experiments in 

atmospheric conditions. They achieved about 3.5 and 3 times increase in CHF and HTC, 

respectively. The improvement was credited to the extended surface area and inflow of 
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liquid due to capillary wicking. Additionally, they developed a model to predict the 

capillary wicking limit to CHF while determining the optimum pin spacing as 10-20 μm.  

Finally, to conceptualize the effect of micro structures and the triggering mechanisms for 

CHF, Kim et al. [40] proposed a new model encompassing a unique mechanism which 

triggers CHF in micro structured surfaces. This model predicts the CHF to be triggered by 

the imbalance in coalesced bubble escape frequency and the liquid inflow to the triple phase 

contact line due to capillary wicking. They stated that the microstructures altered the thin 

film evaporation at the triple phase contact line, resulting in change in bubble departure 

frequency thus affecting CHF.  

 
Figure 2.3: SEM images of six different 
configurations of silicon etched micropillars 
(Copyright of Chu et al. [38]). 

 
Figure 2.4: Differently spaced SEM images of 
micro-pin-fin silicon chip (Copyright of Kim et al. 
[39]). 

 
Figure 2.5: 3D profiler image of the simulated micro 
pillared sampled surface (Copyright of Kim et al. 
[40]). 
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2.1.2 Porous Structures 

Introducing porosity is an alternative method in which a surface can be modified to enhance 

heat transfer. Porous surfaces are lightweight, can be easily applied to most of the surfaces, 

cost-effective and have a much larger impact on enhancing heat transfer efficiency as 

compared to solid surface. Porous structures serve three-fold purposes. First, their complex 

interwoven matrix has pores of multitude dimensions providing additional nucleation sites 

for boiling inception and growth. Second, because of their complex matrix and porosity, 

they assist in liquid delivery due to capillary wicking improving surface wickability. 

Lastly, some porous structures have pores which provide different guideways for liquid 

and vapor to travel thus reducing the flow resistance and enhancing flow efficiency. There 

are various techniques to introduce porosity onto a surface such as i) Coating ii) Chemical 

treatment iii) bonding and iv) nanowires 

2.1.2.1 Coating 

Forrest et al. [41] coated thin film of polymer/SiO2 nanoparticles on 0.01 inch diameter 

Nickle wires and stainless steel plates with different coating thickness (300, 600, 1000 μm) 

fabricated using layer by layer deposition methodology. They reported up to 100% increase 

in HTC and CHF for pool boiling tests. They postulated that the increased surface 

wettability caused by the nano-porous coating along with the coatings chemical 

constituency affected the heat transfer process. Like Forrest et al., Feng et al [42] coated 

platinum nano wires (diameter = 127 μm) with alumina nano coating ranging up to 20 nm 

thickness. They reported a twofold enhancement in CHF owing to super wetting 

phenomena of alumina coating.  The amorphous coating greatly enhanced the surface 
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wettability leading to rewetting of dry spots. Lastly, Ali and Genk [43] conducted nucleate 

boiling test under PF-5060 dielectric fluid with 80 μm and 197 μm thick porous coper 

layers coated surfaces. They studied the effect on surface inclination on these surfaces and 

reported approximately 5 fold increase in CHF for zero degree inclination (upward facing) 

orientation as compared to plain surface.  

 
Figure 2.6: SEM image of 0.01 inch diameter 
nickel wire coated with 40 bilayers of 
polymer/SiO2 (Copyright of Forrest et al. [41]). 

 
Figure 2.7: SEM images of Platinum wire with 20 
nm alumina coating with scale bar as 2 μm 
(Copyright of Feng et al. [42]). 
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2.1.2.2 Chemical Treatment 

Another popular porous fabricating technique is chemical treatment wherein the substrate 

is template with module and chemically treated to acquire a desired shape.  Li et al. [44] 

fabricated 3D complex porous matrix structures on copper substrate using electrochemical 

deposition process, as represented in Figure 2.8, and conducted pool boiling experiments 

with R134a. Their complex, interconnected pores were a result of coalescence of hydrogen 

bubbles formed during electro deposition, forming natural low resistance pathways which 

serves as a vapor escape route during boiling aiding in heat transfer enhancement. At a heat 

flux of 1 W/cm2, they achieved about 17 times increase in heat flux compared to that of 

plain copper surface. Zhang et al. [45] fabricated a sponge like hybrid alumina porous 

structure consisting of about 100 nm smaller pore size and about 500nm larger pore size, 

as shown in Figure 2.9. For lower heat flux value (20 – 40 kW/m2), they obtained 

approximately 200% increase in HTC and about 175% increase for higher heat flux values 

(40 - 100 kW/m2).  In this study, the added surface area and re-entrant pores offered by the 

interconnected, three-dimensional porous matrix demonstrated the ability of porous 

structures to enhance heat transfer rate.   In line with Zhang et al, Ahn el al. [46] achieved 

a 3D foam like porous structure using reduced graphene oxide suspended in water on 

silicon oxide substrate. Because of the presence of porous structures, they observed a 

gradual increase in wall temperature at CHF as compared to rapid increase in temperature 

typically observed at CHF, reporting about 200% increase in CHF over that of plain 

surface. The amplified thermal conductivity of porous structures along with its low 

resistance vapor escape route proved beneficial in reinforcing heat transfer efficiency. 
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Figure 2.8: SEM images of Cu dendritic growth 
forming microporous surfaces with HR-SEM 
and TEM images (bottom two) of the Cu 
deposition peeled off from the surface 
(Copyright of Li et al. [44]). 

 
Figure 2.9: Alumina porous structure formed at two 
different electrolytic voltage (left) with their cross 
sectional view (right) (Copyright of Zhang et al. [45]). 

 
Figure 2.10: (a) SEM image of the self assembled 3D 
porous structure formed via reduced graphene (b) 
schematic representing the porous structure layering 
(Copyright of Ahn et al. [46]). 

 

2.1.2.3 Sintering 

Bonding pre-fabricated, porous structures with known porosity is yet another simple and 

cost-effective methodology to implement porous structure on a given surface. Chen and 

Peterson [47] sintered isotropic copper wire screens, with three different wire diameters 

(56, 114 and 191 μm), onto copper foil and conducted pool boiling experiments with water, 

under atmospheric conditions. They fabricated ten test articles to study effect of variation 

in porosity, pore size, coating thickness and surface condition on pool boiling. A stable, 

low wall superheat (< 12°C) was observed over wide range of heat flux (0-210 W/cm2) 

owing to increased wetted area, nucleation sites, capillary wicking and thin film 



18 

evaporation on copper wires. Yang et al. [48] welded copper foam covers with 0.88 and 

0.95 porosity onto the experimental heater surface. The copper foam had open celled 

dodecahedron cells with 12 to 14 pentagonal or hexagonal shapes. They conducted pool 

boiling tests with water and performed optimization study to report 60 ppi foam cover and 

4 mm thickness as optimum value. They reported a decrease of 13K in temperature for 

onset of nucleate boiling and over 2-3 times increase in HTC for copper foam covered 

surfaces.    

 
Figure 2.11: Images of unit cell representation (top) 
and fabricated copper foam matrices with different 
porosity (bottom) (Copyright of Wong & Leong [49]). 

 

Recently, Wong and Leong [49] performed saturated pool boiling experiments for FC-72 

using porous lattice structures manufactured by selective manufacturing technique. The 

substrates had repeated octet-truss geometry with varied unit cell size (2, 3 and 5 mm) and 



19 

height (2.5, 5 and 10 mm), as represented in Figure 2.11. Their best performing substrates, 

3 mm unit cell with 5 mm height, reported 2.81 times more HTC and 5mm unit cell and 5 

mm height, reported 6.11 times more CHF, as compared to a plain surface. Just like Chen 

and Peterson, they attributed the enhancement to increased nucleation sites and constant 

replenishment of liquid to the heated surface because of capillary wicking.  

2.1.2.4 Nanowires 

Forming porous structure on nanometer scale by growing or deposition nanowires is 

another practice implemented by researchers to enhance boiling heat flux. Chen et al. [50] 

fabricated arrays of Si and Cu nanowires by electro-less etching and electroplating 

technology respectively. The Si nanowires had 20-300 nm range diameters and were about 

40-50 μm long whereas Cu nanowires had approximately 200 nm diameter and were 40-

50 μm long, as shown in Figure 2.12. They observed two-fold enhancement in CHF and 

HTC attributing the enhancement to heterogeneous nucleation in between nanowires, super 

hydrophilicity offered by the nanowire arrays increasing surface wettability and capillary 

wicking. Similar to Chen, Yao et al. [51] developed a new electrochemical deposition 

technique to grow Cu nanowires on Si substrate with varying nanowire height (2, 5, 10 and 

20 μm) while conducting pool boiling test with water as the working fluid. Their best 

performing sample reported almost 3 times enhancement in heat flux owing to enhanced 

capillary forces with added liquid delivery to hot spots.  
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Figure 2.12: SEM images of top view (left) and cross sectional view (right) of Silicon (top) and 

Copper (bottom) nanowires respectively (Copyright of Chen et al. [50]).  

More recently, Kumar et al. [52] electrodeposited Cu and Ag nanowires with alumina-

based template methodology with template having diameter of 200 nm and different inter-

pore distance (260, 320 and 360 nm). They conducted pool boiling experiments using FC-

72 as working fluid. The improved surface nucleation density offered added surface area 

and liquid replenishment resulted into increased HTC, heat flux in addition to decrease in 

the boiling inception temperature.  
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Figure 2.13: FESEM images of nanowires indicating top view, diameter and height (left to right) for 

Copper (top) and Silver (bottom) respectively (Copyright of Kumar et al. [52]). 

 

2.1.3 Hybrid Structures 

Researchers long realized the potential of combining surface features to further enhance 

the overall heat transfer process. With the added benefits of the surface modifications being 

combined, these hybrid structures proved highly effective in enhancing heat transfer. 

Depending upon the combination of surface enhancement strategies, there are two common 

structure that are fabricated i) Modulated structure (Porous + micro-structures) ii) 

Hierarchical structure (micro-structures + nanowires).  

2.1.3.1 Modulated Structures  

Deng et al. [53] fabricated porous structures with reentrant cavities microstructure surfaces  

using copper powder (50-75 μm sized) via sintering method, as shown in Figure 2.14(I). 

They conducted subcooled (3-30 °C) pool boiling experiments with water and ethanol. 

They observed significant reduction in ONB and about 3, 5.3 times enhancement in HTC 

with water and ethanol, respectively. The enlarged surface area offering additional 



22 

nucleation sites along with improvement in liquid replenishment yielded the amplified 

boiling characteristics.  Liter and Kaviany [54] fabricated modulated porous coating of 

copper for enhancing pool boiling heat transfer. They deposited a layer of copper powder 

(200 μm sized spherical particles) with periodically, non-uniform thickness representing 

inverted cone like porous structures, depicted in Figure 2.14(II). This design was intended 

to create separated liquid vapor pathways with the porous structures providing preferential 

liquid suction like thermosiphons. They reported a substantial decrease in ONB with 3 

times increase in CHF as compared to plain surface. Similar to Liter and Kaviany, Li et al.  

[55] fabricated modulated hybrid porous structures varying the base and pillar particles 

size and conducted pool boiling experiments with deionized water. Their best performing 

sample was base and pillar consisting of 250 μm sized particles, reporting 3 times increase 

in CHF and HTC over plain surface. 
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Figure 2.14: SEM images of modulated hybrid structures by three different research groups. 
(I) Geometric representation of porous structures with re-entrant cavities at three different 
magnification from left to right (Copyright of Deng et al. [53]). (II) SEM images of porous 
modulated structures fabricated from spherical copper particles indicating side view, top view and 
perspective view from left to right respectively (Copyright of Liter and Kaviany [54]). (III) SEM 
images of modulated porous structures of 500 µm thickness and 250µm particle size (Copyright of 
Li et al.[55]). 

  

2.1.3.2 Hierarchical structure  

Chu et al. [56] in advancement to their previous work [38], deposited silica nanoparticles 

and copper oxide on silicon and copper micro-structured surfaces, respectively, as shown 

in Figure 2.15. They conducted pool boiling with different roughness factor to study the 

importance of roughness on overall heat transfer process. They argued that the increased 

roughness amplified the surfaces capillary forces which aids in delaying CHF and achieved 

about 200% increase in CHF as compared to plain surface. On similar grounds with Chu, 
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Rahman [57] bio templated Tobacco Mosaic Virus on silicon micro structures creating 

super hydrophilic surfaces, shown in Figure 2.16. These viruses greatly influenced the 

surface morphologies, creating nanowires on them, inducing additional wickability. This 

further stressed the important role of wickabilty on overall heat transfer process. They 

reported about two times increase in CHF with water as fluid in pool boiling tests. Lastly, 

Dhillon et al. [58] conducted studies with different surface nano-textured, micro pillared 

surface to study and develop a thermal- hydraulic coupled CHF model. They grew 

nanograss on Si chip and observed that the CHF can be enhanced via microstructure 

facilitated liquid transport to the hot dry spot. They observed an optimum gravity driven 

capillary wicking spacing between pillars as 200 μm stating that with further decrease in 

spacing, to 10-20 μm, viscous pressure dominates capillary wicking ceasing additional 

CHF enhancement. 
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Figure 2.15: SEM images of Silicon (top) and Copper 
oxide (bottom) based hierarchical surfaces with 
magnified view from left to right (Copyright of Chu et 
al.[56]). 

 
Figure 2.16: SEM images of the four different 
microstructure samples (left to right) with 
hierarchical surfaces grown on them. Each columns 
indicating three different magnifications levels 
(Copyright of Rahman et al. [57]). 

 
Figure 2.17: SEM images of  (a) micro textured surface 
with plain square micropillar (b) nano textured 
micropillar covered with nanograss (Copyright of 
Dhillon et al. [58]). 
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3 Objective and Concept of this research  
Majority of modern heat transfer systems rely on boiling phenomena for very large heat 

flux removal capability. These systems operate in nucleate boiling regime which is limited 

by CHF. There is an ever increasing demand for enhanced phase-change heat transfer rate, 

via passive strategies, to further exploit the advantages of boiling. Delaying CHF expands 

the amplitude of heat of a given boiling systems, and thus broadening its application range. 

Also enhancing HTC is highly desirable because large amount of heat can be extracted 

without much rise in surface temperature.  

 
Figure 3.1: Graph indicating the objective of the research to enhance CHF while simultaneously reducing 

the excess temperature. 
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Delaying CHF while increasing the heat transfer coefficient can be ensured via introducing 

surfaces modifications on the heater surface, as shown in Figure 3.1. Surface modifications 

alters active nucleation site density, wetted surface area, surface roughness, wettability and 

wickability. These are some of very critical parameters which highly affects the heat 

transfer and have been extensively studied by researchers over past decades. Lately, the 

importance of combining these surface enhancements has seen great exposure by 

researchers worldwide.  

Research done till date have been to enhance and optimize wickability in a plane which is 

parallel to the heater surface. This in-plane wickability is greatly hampered once we reach 

closer to the CHF. At CHF, a vapor cushion covers the heater surface, there is minimal in 

plane wickability and the heat transfer is thus greatly affected because of lack of liquid for 

heat transfer. With this study, we are advancing the current research exploration in 

wickability by introducing a novel matrix structure which offers out of plane capillary 

wicking capability, in addition to in plane wickability. The interwoven matrix structure 

introduced offers preferential pathways in a direction perpendicular to heater surface. 

These preferential pathways offer out-of-plane capillary wicking, in addition to in plane 

wickability. Out of plane capillary wicking is vital during CHF as it offers additional liquid 

supplement for further enhanced thin film evaporation. The first objective of the study is 

to explore the effect of this out-of-plane capillary length scale on overall heat transfer 

performance. 

Secondly, to further optimize the out of plane capillary wicking, we focus on decoupling 

the viscous drag losses from the capillary wicking pressure by growing nanowires on them. 
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The chemical treatment utilized to introduce nanowires changes the wettability and 

roughness of the surface. The nanowires provide the enhancement in generating the 

capillary pressure as well as the preferential pathways of the matrix offers low viscous drag 

resistance pathways for liquid supply. This decoupling of the capillary pressure from the 

viscous drag losses is a major contributor is optimizing the in/out of plane capillary 

wicking. 

In this study, we attempt to combine microstructure porous surface enhancement 

methodologies to test and understand their combined effect on overall heat transfer process. 

Here we introduce a novel, 3D porous, pillared, micro-structure surfaces to enhance the 

rate of heat transfer. The 3D porous pillars forms intended guideways to the heater surface. 

These guideways offer preferential, out-of-plane liquid supplement to the heater surface. 

This is done by introducing augmented roughness, facilitating continuous supply of liquid 

to the heater surface by in/out of plane capillary wicking and decoupling the liquid and 

vapor pathways. These are further elaborated in the subsequent discussions. 
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Figure 3.2:  Test sample surface geometry schematic of the designed surface topology 

 
Figure 3.3: Test sample surface geometry Image of the actual fabricated test sample with dimensions 
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Figure 3.4: Schematic representation of top: sample under test before CHF and bottom: sample under test 

during CHF. 

 

3.1 Augmented Roughness 

The effect of augmented roughness on heat transfer can be better described by its three 

characteristics: increased nucleation site density, increased wetted area and elongated 

contact line. Roughness introduced by micro/nano, gaps of the proposed porous structures 

introduces additional cavities, increasing nucleation sites, and thus further initiating boiling 

at these locations. Also, to have cavities activated and thus contributing to overall heat 

transfer, the size of these cavities should correspond to the critical cavity size for the desired 

wall superheat region. Additionally, these structures enlarge the wetted surface area, and 
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thus expanding the solid-liquid contact. Lastly, as introduced in the heat transfer model, 

heat transfer is dominated by thin film evaporation occurring at the solid-liquid-vapor 

contact line. Stretching the contact line amplifies the thin film evaporation mode of heat 

transfer, and thereby augmenting heat transfer. 

The cavities formed by proposed porous structures and nanowires grown on them 

correspond to the critical radii of surface cavities for the desired wall superheat (10 – 20 

°C). The wire mesh provides additional surface area along its periphery for added liquid-

solid contact. Also, the wire are woven in such a way that the porosity introduced induces 

wicking as well as thin film evaporation. 

 
Figure 3.5: Schematic indicating additional nucleation because of formation of micro-pores due to meshed 

structures 

 

3.2 Promoted liquid supply 

Surface wettability and wickabiltiy is crucial in ensuring adequate supply is facilitated to 

the heater surface. Improving surface wettability reduces the drag force along the liquid 
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flow path to the heated region or dry spot. Wettability can be substantially improved by 

making the surface super hydrophilic. Hydrophilicity can be introduced by micro/ nano 

structured, porous surfaces or hierarchical surfaces. Wickability is the capillary pumping 

force which induces micro inflows to the heater surface. The narrow gaps introduced by 

microstructure spacing or pore size generate micro inflows. The micro inflow is the force 

due to intermolecular forces between the liquid and the surrounding solid spacing and is a 

balance between the capillary pressure force and viscous losses. 

The pillar spacing in our study ensures macro in plane wicking of liquid to the heater 

surface. The porosity introduced by layering mesh over each other ensures the out of plane 

capillary wicking of liquid to the heater surface. This out of plane wicking contrasts with 

the macro pillar induced, in-plane wicking and provides additional assistance in promoting 

liquid to the heater surface. Also, with this additional liquid supply, CHF can be further 

delayed as well. 

3.3 Decoupled liquid/vapor pathways 

CHF is the formation of a vapor layer when the resistance for bubble motion inhibits bubble 

escape. To enhance CHF, the bubble motion dynamic can be altered by providing separate 

pathways for liquid and vapor flows. For pool boiling process on a plain surface, 

evaporation pulls the liquid-vapor interface and the bubble expands in all direction due to 

symmetry. As shown in Figure 3.6 , in case of channels and fins, a bubble grows on the 

edge of channel or fin. However, due to absence of one of the momentum force 

components, the bubble is targeted away from the heater surface. This motion of bubble 



33 

induces bulk liquid motion over the channel or fin, and thus separating the liquid vapor 

pathways.  

The pillar-structured surface, in this study, is introduced with the idea of separating the 

liquid, and vapor pathways, reducing vapor escape resistances, inducing adequate liquid 

supply to the heater surface and delaying CHF.  

 
Figure 3.6: Schematic showing the momentum forces acting on bubble on (a) plain surface  (b) corner of 

channel and (c) flow of liquid across a fin (Copyright of Kandlikar et al. [59])  
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Figure 3.7: Schematic representation liquid pathway through the mesh while vapor escaping from the sides 

of the meshed structures. 
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4 Fabrication 

4.1 Fabrication of test samples 

4.1.1 Diffusion bonding  

Diffusion bonding is a direct metal to metal, joining process which happens at the solid- 

solid interface. It usually occurs at very high temperature and high pressure force [60]. 

Diffusion bonding takes place in three stages [60]. 

1. At high temperature and pressure force, defects present on the two meeting surfaces 

plastically deform, interlink with one another and form an interface 

2. Elevated temperature and pressure lead to creep and change of grain boundaries 

forming isolated pores. At elevated temperature, exchange of electrons and bond. 

Describe diffusion bonding. 

3. Lastly, molecules of the two metals diffuse across the interface, mixing and forming 

a bond.  

Diffusion bonding performed for this study is done under vacuum to avoid any impurity 

contamination and oxidation on the surfaces at elevated temperature.   

The wicking structure were fabricated using high vacuum, high temperature diffusion 

bonding process. The substrate onto which the copper meshes are diffused was cut from a 

quarter inch copper bar into 30 mm × 40 mm × 6.25mm in size (length × width × thickness). 

A hole of 1.5mm was drilled at the center of the substrate to a depth of 15 mm. This hole 

was drilled to insert a k-type thermocouple for measuring temperature. The substrate was 

polished using 1000 grade sand paper to prepare a smooth surface to facilitate diffusion. 
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After polishing, the surface was cleaned with acetone wipe and blown dry to produce a 

highly smooth surface to facilitate proper diffusion. The copper mesh was cut into 20 mm 

× 20 mm pieces and was cleaned under DI water, IPA, acetone and was blown dry using 

dry compressed air.  

 
Figure 4.1: Image showing the copper substrate and the copper meshed after cleaning them, ready for 

diffusion bonding 

A custom-made diffusion bonding setup was designed and used to facilitate high 

temperature and high clamping force necessary for effective diffusion bonding. After 

several trial and error, a robust, reliable operating parameters was deduced which produced 

consistent and strong diffusion bonding sample.  
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Table 4.1: Specification of the inter-woven copper meshed onto the substrate 

Sample H1 H2 

Opening (mm) 0.2794 0.2794 

Wire diameter (mm) 0.2286 0.2286 

Number of Layers 6 12 

Total Mesh Thickness (before bonding) 2.91 mm 5.82 mm 

Total Mesh Thickness (after bonding) 1.4 mm 2.6 mm 

 
Figure 4.2: Sample after diffusion bonding 

4.1.2 Machining of Test samples 

The bonded sample is removed from the bonding setup and cleaned with water, acetone 

and blown dry with air. The total height of the diffused copper mesh is measured. To further 

incorporate pillars into the wicking structure, the sample was machined with high precision 

CNC machining process. Depending upon the height of the pillars, a 3D CAD model was 

prepared in Solidworks which was then used to produce a G-code in NX Unigraphics to 

automate the CNC process. CNC milling was necessary as the feed rate, depth of cut must 
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be precise to avoid any damage or de-bonding of the surface. As the spacing between the 

pillars was 800 μm, the tool used for the machining was a 1/32th inch (~793 μm) with a 

feed rate of 0.5 ipm and at 2000 rpm. The final fabricated porous, pillar-structured samples 

is shown below in Figure 4.3.  

 
Figure 4.3: Final machined test sample 
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Figure 4.4: Microscopic images of the test sample with top: cross sectional view and bottom: plan view 

with enlarged pillar image  
 

4.1.3 Acid Cleaning 

To remove any contamination/impurities and any oxide build up, an acid cleanup was done 

on the surface using 15% by weight nitric acid solution. The sample was placed in the acid 

solution with a stirrer for 20 minutes and then was rinsed with DI water and blown dry with 

air.  

4.1.4 Nanowire growth 

Based on the chemical treatment procedure prescribed by Huang et al. [61], the following 

procedure was undertaken to successfully grow nanowires on the copper meshes.  
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4.1.4.1 Acid Washing 

To facilitate the growth of copper oxide nanowires on the mesh wire, it was necessary to 

free the wire from nascent oxide layer naturally present on the wires. To do so, sample was 

acid cleaned. The sample was immersed in 30% by weight nitric acid solution and was 

stirred for about 15 minutes. The sample was removed from the solution and repeatedly 

cleaned with DI water and blown dry with compressed air to remove any acid solution left 

in the pores. Finally, the sample was kept on a hot plate at 60°C for 10 minutes to evaporate 

excess water in it. 

4.1.4.2 Chemical Treatment. 

The next step after acid cleaning was to insert the sample into 30% by weight hydrogen 

peroxide solution for another 40 minutes. The sample was constantly stirred to ensure 

proper mixing after which it was removed and cleaned with DI water and blown dry with 

air. It was finally placed on the hot plate at 60°C for 10 minutes for complete drying.  

The appearance and the color of the copper changed which indicated the growth of 

nanowires. A water droplet was placed on the copper mesh to see the effect of copper 

nanowires on contact angle and wettability. The water droplet immediately was wicked 

inside the pores. When the droplet was placed on the copper substrate, it showed almost 0° 

contact angle indicating the change of surface to superhydrophillic.  

SEM images, as shown in Figure 4.5, depicts the formation of copper nanowires on the 

surface of the interwoven copper mesh. Cracks appearing on the surface can be attributed 
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to the thermal stresses developing on the curvature of wire leading to rupture of the surface, 

forming micro cavities. 

  

  

Figure 4.5: SEM images of the micro-structured pillar at different magnification level. 

 

4.2 Fabrication of the experimental setup 

4.2.1 Heating block and 1D column 

The heat flux into the sample was transferred using a heat exchanger designed to support 

1D heat flux to the porous samples. The heat exchanger consists of a heating block and a 
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1D column. The heating block was machined out of a stock copper block to required 

dimensions of width 45 mm, length 50 mm and height 25mm.  Three holes, 7/16 inch  

(11.12mm) in diameter were drilled into the heating block for provision to accommodate  

cartridge heater. The cartridge heater was used as a heating source which would provide 

the necessary heat energy to generate heat flux. Two cartridge heaters (9.5 mm, 50mm 

length) was used which provided 400W of power for heating.   

The 1D column was 25 mm long with 10 mm × 10 mm cross sectional area. Three holes 

of 2.4 mm in diameter and 5 mm deep were drilled at 10 mm equidistant apart from each 

other. Since the length and width of 1D column is comparably smaller than its height, later 

heat transfer was negligible, and heat was conducted only along the height of the 1D 

column. K-type thermocouples were inserted into the equidistant holes for real time heat 

flux measurement. By measuring the temperature difference between these thermocouples, 

the heat flux to the sample can be easily calculated. The 1D column was then brazed to the 

heating block orthogonally and the final assembly is as shown in Figure 4.6.    
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Figure 4.6: 3D CAD model representing the heating block with 1D column. 

4.2.2 Acrylic Tube and O rings 

To bind the pool of liquid on to the sample surface and to promote visualization, transparent 

acrylic tube (HYGARD ®) of 44.45 mm diameter, about 3 mm thickness and 150 mm in 

length was used. To prevent any leakages from the ends of the tube, two O-rings (44 mm 

diameter) were inserted into the slots in the mounting plate. The ends of the tube were 

pressed against the O-ring to have a leak proof system.  

4.2.3 Mounting Plates 

The mounting plates, top and bottom, as show in Figure 4.7 and Figure 4.8, were designed 

to fit the acrylic tube, heat exchanger and the steel pipe. The top plate was made of cooper 

with 60 mm × 60 mm × 6.35 mm width, length and thickness respectively. The top plate 

had provisions for inlet/outlet pipe for heat exchanger and steel pipe with holes drilled. The 
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heat exchanger and the steel pipe were inserted into the provisions provided in the top plate 

and was brazed to their respective positions. 

The bottom plate had a slot of 11 mm × 11 mm to expose the desire mesh area to a pool of 

liquid. Surrounding the 11 mm × 11 mm slot, trenches were drilled to accommodate the 

acrylic tube and an O-ring. Holes of 6.4 mm were drilled to assemble the entire 

experimental setup and secure the test setup onto the test bench. A bottom mounting plate 

was used to secure the entire setup to the table via sandwich the test sample in between the 

heating block and the test setup as shown in the Figure 4.11. A silicone rubber (1.5mm 

thick) with a slot of 11 mm x 11mm, was used which served dual purpose. Firstly, it 

insulated the sample and prevented any heat flux to be transferred from the non-meshed 

area of the sample. Secondly, it prevented any leakages from the sample and mounting 

plate interface.  

 
Figure 4.7: 3D CAD model of Bottom mounting plate. 
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Figure 4.8: 3D CAD model of Top mounting plate. 

4.2.4 Condenser, chiller and rope heaters 

The condenser used to condense the evaporated water back to the pool of liquid was made 

of copper tubing and designed into helical shape. The design and the number of turns were 

estimated from the energy balance into the experimental setup. Cold water at around 25°C, 

from the chiller, was constantly flowing through the coil to ensure efficient condensation. 

To assure that the pool of liquid is maintained close to the saturation temperature, auxiliary 

rope heaters (136 W/m, 4.31 mm thickness, 1m in length,) were wound around the acrylic 

tube and heated to provide auxiliary heating.  

4.2.5 Electrical devices 

The power to the cartridge heater was transferred from the high voltage variac and 

multimeter were attached to it to measure the current and voltage supplied. The cartridge 

heaters were connected in series. Agilent data logger was used to measure and log the 

temperature value and to see the whether the setup has reached a steady state or not.  
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Figure 4.9: Power source for cartridge 
heater, VARIAC 

 
Figure 4.10: Agilent DAQ system 
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Figure 4.11: Exploded view of the final assembled 3D CAD model of the experimental test setup. 
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Figure 4.12: Schematic of Test setup with different sub components. 
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5 Experimental setup and data analysis 

5.1 Experimental procedure 

The objective of the research was to see the trend/nature of heat flux against the excess 

temperature in addition to finding the critical heat flux values for the samples under 

consideration. A constant heat flux in steps was supplied to the experimental setup and the 

pool boiling graph is then plotted for evaluation. Test sample was placed onto the heating 

column and a thermal epoxy was used in between to reduce any contact resistance. Also, 

to prevent any heat loss from the experimental setup and to ensure 1D heat flux criteria, 

the heat block assembly, 1D column and samples were insulated using mineral wool. The 

testing protocol is described below. 

• Mount the test sample onto the 1D column and assemble it as shown in the Figure 

4.12. 

• Insert the thermocouples into their respective holes in 1D column and in the sample. 

Insulate the heating block, 1D column and the sample using mineral wool. 

• Fill in the acrylic tube with measure 50 milliliter quantity of DI water. 

• Make all the electrical and electronic connections to the variac, multimeter and the 

data logger. Switch on the auxiliary heater to degas the liquid pool. 

• Turn on the main supply from variac and start initial heating. 

• Wait for steady state to be condition and record the temperature readings. Calculate 

the heat flux and the excess temperature while simultaneously plotting the boiling 

curve.  
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• Increase the supply voltage. Repeat the process until the system reaches closer to 

the CHF. 

• When the system is closer to the CHF, reduce the step voltage and constantly 

monitor the temperature. 

• When the surface temperature overshoot, it indicates CHF has been reached. 

Immediately cut off the supply power from the variac and insert cold water into the 

system to bring down the temperature. 

 

Figure 5.1: Image of the assembled test setup. 
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5.2 Data Analysis 

The heat flux, surface temperature and heat transfer coefficient are interpolated using the 

four thermocouple data from the 1D column and sample holes, as shown in Figure 5.2.  

The 1D column assumes a linear heat flux transfer towards the sample. Accordingly, by 

Fourier 1st law of 1D conduction, the heat flux through 1D column into the sample is given 

by Equation (4) , as shown below 

 
Figure 5.2: Thermocouple location in the 1D column. 

 

 𝑞𝑞" =  −𝑘𝑘𝐶𝐶𝐶𝐶  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (4) 

where,  

  𝑘𝑘𝐶𝐶𝐶𝐶 = Conductivity of copper 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
= temperature gradient in along 1D column, calculated using three-point 

backward space Taylor series approximation 

 = 
3𝑇𝑇1 – 4𝑇𝑇2 + 𝑇𝑇3 

2𝛥𝛥𝛥𝛥
 

𝛥𝛥𝛥𝛥 = distance between the center of the thermocouple holes 

The Equation (5) for surface temperature is  

 𝑇𝑇𝑠𝑠 = 𝑇𝑇4 −
𝑞𝑞" 𝑑𝑑𝑑𝑑
𝑘𝑘𝑐𝑐𝑐𝑐

 (5) 

Lastly, the heat transfer coefficient is given by Equation (6)  

 ℎ =
𝑞𝑞" 
𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

 (6) 

where,  

𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = Tsurface - Tsat 

 

5.3 Uncertainty Analysis 

Every experiment has certain amount of uncertainty associated with it. These uncertainties 

further propagate to parameters depending on measured quantities. Therefore, it is 

important to take this uncertainty into account for results and analysis. The uncertainty of 

a system is given by Equation (7) 
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 𝐸𝐸𝑦𝑦  = �𝑆𝑆𝑦𝑦2 + 𝑅𝑅𝑦𝑦2 (7) 

Uncertainty has two error components in it, systematic error (or bias error, 𝑆𝑆𝑦𝑦) and random 

error (or precision error, 𝑅𝑅𝑦𝑦). The systematic error can be accounted to human error or fault 

in the calibration of instruments. Random error accounts to uncontrolled variables in the 

measurement process.  

The uncertainty in this study is related to indirect measurement of heat flux and surface 

temperature. These parameters are interpolated using three parameters: temperature, 

lengths and conductivity of copper. For a k-type thermocouple, the uncertainty in 

temperature measurement was within ±0.1 °C. Second source of uncertainty is in the 

thermal conductivity of copper as temperature changes, which was not provided by the 

manufacturer, thus taken to be constant. Lastly, the uncertainty in the measurement of 

lengths i.e. the spacing between the thermocouple is 1% which was determined via 

resolution of the measurement device used for measurement. The summary of uncertainty 

is shown in Table 5.1 
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Table 5.1: Values of uncertainties in various parameters 

Parameter Units Parameter 
value 

Uncertainty % 
Uncertainty 

Uncertainty 
value 

kcu W/m-K 390.88 Ek NA NA 

Δx m 0.01 EΔx 1 0.0001 

T1 °C Varies ET1 NA 0.2 

T2 °C Varies ET2 NA 0.2 

T3 °C Varies ET3 NA 0.2 

T4 °C Varies ET4 NA 0.2 

These uncertainties might be small but when combined to evaluate other parameters, these 

can propagate to higher values. The two derived parameters in this study are heat flux and 

surface temperature. The heat flux and the surface temperature is affected by uncertainty 

in temperature, length and thermal conductivity of copper.  The uncertainty propagated is 

given by rule of partial sums given Equation (8). 

 𝐸𝐸𝑝𝑝  = �∑�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

𝐸𝐸𝛼𝛼2 (8) 

where,  

      𝑝𝑝 = parameter to be calculated 

𝛼𝛼 = measured parameter 

𝐸𝐸𝛼𝛼 = Uncertainty in the measured parameter 
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The uncertainty in the heat flux value can then be calculated by deriving the equation from 

Equation (7) and using Equation (8). Dividing by heat flux yields the percentage 

uncertainty in the heat flux which is given by Equation (9) 

The percentage uncertainty associated with heat flux measurement can be modified into 

Equation (9): 

𝐸𝐸𝑞𝑞"  

𝑞𝑞"
 = ��

𝐸𝐸𝑘𝑘  

𝑘𝑘
�
2

+ �
3𝐸𝐸𝑇𝑇1 ∗ 𝑘𝑘𝑐𝑐𝑐𝑐   
Δx ∗ q"

�
2

+ �
4𝐸𝐸𝑇𝑇2 ∗ 𝑘𝑘𝑐𝑐𝑐𝑐   
Δx ∗ q"

�
2

+ �
𝐸𝐸𝑇𝑇3 ∗ 𝑘𝑘𝑐𝑐𝑐𝑐   
Δx ∗ q"

�
2

+ �
𝐸𝐸Δx  

Δx
�
2

 

  (9) 

The percentage uncertainty in the calculation of wall superheat is given by Equation (10): 

 
𝐸𝐸𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠  

𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
 = ��

𝐸𝐸𝑇𝑇4  

𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
�
2

+  �
Δx ∗ 𝐸𝐸𝑞𝑞"  

𝑘𝑘𝑐𝑐𝑐𝑐 ∗ 𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
�
2

+ �
𝑞𝑞" ∗ 𝐸𝐸Δx  

𝑘𝑘𝑐𝑐𝑐𝑐 ∗ 𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
�
2

 (10) 

 

The percentage uncertainty in the calculation of heat transfer coefficient is given by 

Equation (11): 

 
𝐸𝐸ℎ  

ℎ
 = ��

𝐸𝐸𝑞𝑞"  

𝑞𝑞"
�
2

+ �
𝐸𝐸ΔT  
ΔT

�
2

 (11) 
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Figure 5.3: Graph indicating the percentage uncertainty at different heat flux values. 

As seen from the Figure 5.3 , the uncertainties in reported heat flux range are within 5% 
uncertainty. 
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6 Results and Discussion 

6.1 Effect of out-of-plane capillary wicking length scale on heat 
transfer performance. 

To evaluate the performance of the test samples under study, pool boiling tests were 

conducted with de-ionized water under atmospheric pressure. Accordingly, performance 

of the test sample H1 (equivalent to a height 1.4 mm) and H2 (equivalent to a height 2.6 

mm) were evaluated. Resultant plots of heat flux and heat transfer coefficient were plotted 

to see the trend in the boiling curve and overall heat transfer performance.  
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6.1.1 Effect of out-of-plane capillary wicking length scale on heat flux. 

 
Figure 6.1: Heat flux as a function of wall superheat at different out-of-plane capillary wicking length 

scales. 

The experimentally measured heat flux as a function of wall superheat for different test 

samples are shown in Figure 6.1. The baseline plain surface showed a CHF of 127.3 W/cm2 

at 25.3°C wall superheat. The experimental results for heat flux on plain copper surface is 

shown in dotted line with Rohsenow’s heat flux model predictions, calculations for which 

are given in Appendix A.1. The experimental value of CHF for a plain copper surface lies 

between the predicted value of Kutateladze and Zuber, calculations for which are given in 

Appendiz A.2. The figure clearly indicates the multi-scale capillary-assisted test surfaces 

of H1 and H2 outperform the plain surface with considerable higher measured heat fluxes 

at a given wall superheat. This can be attributed to the augmented active nucleation sites 
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and enhanced surface area that are offered by the structured porous matrix surfaces. Also, 

the complex porous matrix structures offer preferential out-of-plane wicking flow towards 

to the heater surface, which ensures additional liquid supply to the hotspots. Also, the 

structured pillar surfaces introduce separate vapor and liquid pathways, and thus reducing 

resistance for the formed vapor bubbles to escape from the bottom heated surface.  

The effect of height is also clearly visible on the performance of the test samples. Test 

sample H2 has a higher height as compared to the test sample H1. The higher height offers 

the potential to augment active micro nucleation sites for bubble formation and heat 

transfer area, boosting the heat transfer process indicated by higher HTC and heat flux 

values. In addition, the test surface having a higher height can wick liquid from further far-

field distance, and thus bridging thicker vapor films formed in the vicinity of CHF limit. 

This, subsequently, results in higher CHF values. At a wall superheat of 12.5°C, the heat 

flux enhancement offered by sample H2 is approximately 90 percent over test sample H1 

and about 390 percent over the plain surface. Additionally, the highest heat flux was 

reported by the test sample H2 is 325.3 W/cm2 at 16.3 °C wall superheat. This is about 1.2 

times and about 2.5 times enhancement in the CHF value over sample H1 and plain surface 

respectively.   
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6.1.2 Effect of out-of-plane capillary wicking length scale on heat transfer 
coefficient. 

 
Figure 6.2: Heat transfer coefficient versus wall superheat for the test samples H1 and H2. 

Second critical indicator of surface thermal performance is the heat transfer coefficient. 

Figure 6.2 indicates a plot of HTC against heat flux. The highest HTC was reported by the 

test sample H2 as 70.8 W/cm2-K. The high HTC values at the beginning is accounted by 

the presence of very small wall superheats. At higher wall superheats, number of active 

bubble nucleation sites increases. If heat flux linearly increases at higher wall superheats, 

then the HTC remains constant. This trend can be seen at higher wall superheats.  
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6.2 Effect of growth of hierarchical structures on heat transfer 
performance.  

The next step in this study was to grow nanowires on the structured copper meshes to form 

hierarchical surfaces. As discussed in the experimental section, the nanowires were grown 

via a chemical treatment on the test samples, and subsequently pool boiling experiments 

were carried out. The test samples H1, NW and H2, NW represent hierarchical boiling surfaces 

of the test samples H1 and H2, respectively.  

6.2.1 Effect of test sample H1 and H1, NW with and without nanowires on 
heat flux. 

 
Figure 6.3: Heat flux as a function of wall superheat for the test samples H1 and H1, NW. 
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The effect of nanowire growth on overall heat transfer performance is clearly visible in 

Figure 6.3. Nanowire-grown capillary-assisted surfaces provide a higher wickability, 

extending duration of thin film evaporation mode of heat transfer during bubble growth 

and rewetting stages. Liquid wicked by the nanowires also stretch the complex three-phase 

solid-liquid-vapor contact line around the periphery of the bubble, thereby further 

augmenting thin film evaporation mode of heat transfer. In addition, nanowires alter 

surface wettability by reducing the liquid contact angle. A reduced contact angle leads to a 

thinner micro layer formed around bubble boundary on the solid surface, and thus 

amplifying thin film evaporation mechanism. As thin film evaporation is proposed to be a 

dominating heat transfer mechanism, its amplification leads to the observed enhancement 

in the heat transfer performance. At a wall superheat of 12.5 °C, the enhancement in the 

heat flux by the test sample H1, NW is about 46 percent over the test sample H1 and about 

280 percent over the plain surface. Also, the CHF observed by the test sample H1, NW is 

439.5 W/cm2, which is about 1.6 times and 3.4 times enhancement in heat flux values of 

the test sample H1 and plain surfaces, respectively.  
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6.2.2 Effect of test sample H2 and H2, NW  with and without nanowires on 
heat flux. 

 

Figure 6.4a: Heat flux versus wall superheat for the test sample H2, H2, NW, and plain surfaces. 
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Figure 6.4b: Heat flux versus wall superheat for the test sample H1, NW, H2, NW, and plain surfaces. 

Figure 6.4 a and b represent the effect of nanowire growth on the overall heat transfer 

performance for the test sample H2. Similar to the H1 and H1, NW test surfaces, the H2 and 

H2,NW test samples demonstrate a considerable improvement in heat transfer as compared 

to the plain surface. However, at a much increased height, surface heat flux is highly 

amplified compared to the test surface H1, NW. This can be attributed to the possibility of 

more active nucleation sites and added surface area at a higher height. This is in contrast 

to a solid pillar structure where its thermal efficiency significantly drops at higher heights. 

Here, the out-of-plane capillary wicking helps to maintain a high thermal performance at 

higher heights as evident in Figure 6.4 a and 6.4 b. At a wall superheat of 12.5°C, the 

enhancement in the heat flux by the test sample H2, NW is approximately 20 percent over 
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the test sample H2 and 500 percent over the plain surface. This resulted in highest CHF 

reported in this study for the test sample H2, NW  as 475 W/cm2 at 22.2 °C wall superheat. 

For comparison, the CHF value reported by the test sample H2, NW is about 1.46 times and 

3.7 times over the test sample H2 and plain surfaces, respectively.  
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6.2.3 Effect of test sample H1, NW and H2, NW on heat transfer coefficient. 

 
Figure 6.5: Heat transfer coefficient versus wall superheat for the test samples with nanowires H1, NW and 

H2, NW. 

The HTC graph for the nanowire grown structures is represented in Figure 6.5. As shown, 

the test surface H2, NW has a higher heat transfer coefficient compared to the test sample 

H1,NW. This is attributed to a higher heat flux associated with the test sample H2,NW owing 

to its added surface area and potential present of more active nucleation sites augmented 

with efficient out-of-plane capillary wicking.  
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7 Conclusion  
In conclusion, this work represents results of pool boiling experiments on sintered copper 

porous surfaces. Pool boiling tests were conducted to study effect of out-of-plane capillary 

wicking length scale on overall heat transfer rate. In addition, nanowires were grown on 

the test samples via a chemical treatment process to elucidate the effect of micro-nano 

hierarchical structures on boiling process. Following are key observations made during this 

study: 

1. Sintered, porous hybrid structures were successfully fabricated using copper meshes 

sintered via a custom-made diffusion bonding setup. Two samples with 6-layers (i.e 

equivalent to a height of 1.4 mm) and 12 layers (i.e., a height of 2.6 mm) were diffusion 

bonded and machined to form structured micro-pillar surfaces. Additionally, nanowires 

were grown on these porous structures using a chemical treatment process which 

transformed the surfaces into superhydrophilic surfaces. 

2. Pool boiling experiments were conducted using de-ionized water as a working fluid and 

boiling curve were predicted for the samples to study the performance of these surfaces. 

Both CHF and HTC were greatly affected by the introduction of porous surfaces. The best 

samples reported 475 W/cm2 CHF and 70.8 W/cm2-K HTC.  

3. The enhancement can be attributed to: a) augmented roughness increasing nucleation 

site densities and wetted surface area, b) capillary pumping aiding in supplemental liquid 

supply by in and out-of-plane capillary wicking, and c) structured micro-pillars providing 

separate reduced-resistance pathways for liquid and vapor phases.  



68 

8 Future Scope 
The test samples evaluated for this study prove the importance of out-of-plane capillary 

wicking in addition to nucleation site density, wettability and in-plane wickability offered 

by different surface enhancements. We are yet to exploit the huge potential might be 

offered by these surface enhancements to augment the overall pool boiling heat transfer 

performance. Further optimization of the surface topology and development of a 

characteristic model can aid in understanding the effect of each parameter in more details. 

Future experiments can be conducted with varying pore sizes of the copper meshes, 

material and number of layers. The dimensions of the features such as width, spacing and 

height can also be altered to better understand their effect on the performance. 
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A Calculations 
The calculation used for predicting the heat flux and CHF for plain surface are provided 
in the subsequent section 

A.1 Calculation of Heat flux as predicted by Rohsenov 
model 

The calculations of heat flux for a polished, plain copper surface is given by Rohsenow’s  

[25] heat flux prediction model. For comparison with experimental results, the surface: 

fluid combination is taken as water as the working fluid and plain copper substrate as the 

surface. All properties are evaluated at saturation temperature (100°C) for atmospheric 

pressure. The equation for heat flux in relation to various thermos-physical properties of 

water and water vapor is given by 

 

A.2 Calculation of maximum heat flux as predicted by 
Kutateladze and Zuber 

Based on the hydrodynamic instability model theory, the equation for Critical heat flux 

prediction is given by   

 

The value of constant K = 0.16, given by Kutateladze [62] and  K = 0.131, given by Zuber 

[63]. The calculations of heat flux and CHF are done in Engineering Equation Solver (EES, 

Version 10.450, #1614) and is as shown below: 
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	Abstract

	Phase-change heat transfer through pool boiling process offers a promising thermal management solution in applications wherein conventional air or single-phase liquid-based cooling methods prove inefficient such as for high-power electronics. Pool boi...
	Firstly, a porous surface medium is introduced onto the boiling surface using copper mesh and diffusion bonding process. These bonded coppers meshes institutes a complex porous matrix structure which amplifies nucleation site density.  The intertwined...
	Secondly, to further enhance heat transfer, the samples were chemically treated to grow nanowires on them. With the introduction of nanowire, hierarchical structures were prepared and studied for heat transfer performance enhancement. The best perform...

	1 Introduction
	Pool boiling is a heat transfer process which involves phase change at the liquid-vapor interface occurring at saturation temperature. Because boiling involves phase change heat transfer, it utilizes the latent heat of a fluid and thus is considered o...
	Figure 1.1: Plot indicating typical HTC for different cooling mediums [15]
	Pool boiling is a type of phase change process wherein heat transfer occurs on the heater surface, via bubble formation, which is submerged in large pool of stagnant liquid. Although, the heat transfer for pool boiling is almost two orders of magnitud...
	1.1 Boiling Curve
	Boiling heat transfer mechanism can be better explained with the help of boiling curve. Boiling curve is a plot of heat flux vs. wall superheat. Heat flux is the amount of heat extracted per unit area. Wall superheat is the difference between the surf...
	Figure 1.2: Typical Pool boiling curve
	A typical boiling curve is divided into multiple regimes depicted by changes in trends of boiling curve due to the nature of bubble generation, its frequency and departure motion. Typically, boiling curve has the following four distinct regimes [21, 2...
	As shown in Figure 1.2, up until the point A where the heater surface temperature is below the saturation temperature of the fluid, heat transfer is governed by single phase natural convection. Heat transfer is mainly by natural convection and therefo...
	Further increase in heat flux, beyond point B, activates more nucleation sites leading to an increase in bubble frequency which then coalescence to form jets and columns. After point C, due to increase in bubble generation frequency and resistance in ...

	1.2 Bubble Nucleation
	Boiling occurs because of formation of bubble which is dependent on the size of the cavity. Cavities entrap air which serves as a starting nucleation point for bubbles to form, expand and then depart. For a bubble to expand and thus contribute towards...
	Figure 1.3: Vapor bubble in a cavity of size R depicting vapor/liquid pressure across it.
	The vapor pressure inside the air entrapped bubble is given by
	where, ,𝑃-𝑣.=𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑢𝑏𝑏𝑙𝑒
	,𝑃-𝑙.=𝑙𝑖𝑞𝑢𝑖𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑏𝑢𝑏𝑏𝑙𝑒
	σ=𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑝𝑜𝑟
	𝑅=𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑣𝑖𝑡𝑦
	Equation (1) specifies that the vapor (1) pressure is inversely proportional to the bubble radius. It gives the relationship between the cavity size and bubble nucleation. It also indicates that for a given wall superheat, in correspondence to heat fl...
	If the superheat value decreases, the term inside the square root tends to zero and the above equation leads to Rc,min = Rc,max leading to Equation (3) of critical radius value given by [23].
	Equation (3) implies that for a given wall superheat, only a particular size of cavity gets activated for nucleation. In general, for a wall superheat of 15 – 20   C, the range of critical radius cavities that gets activated is between ~ 1 μm and ~ 10...

	1.3 Heat Transfer Model
	To better understand the heat transfer from the surface to the liquid and to conceptualize the parameters affecting the heat transfer, various models have been developed and put forth by researchers till date [25-31]. As discussed in the boiling curve...
	In the nucleate boiling regime, heat transfer takes place through various mechanisms and correspondingly, each mechanism has its contribution to overall heat transfer. Figure 1.4 depicts the four prominent heat transfer mechanisms, transient conductio...
	Figure 1.4: Different heat transfer mechanism during a) bubble nucleation b) bubble departure (Copyright of Kim et al. [33]).
	The transient conduction assumes a pure conduction occurring because of rewetting of hot surface by the cool liquid replacing the departing bubble. Micro convection assumes heat transfer via bubble growth and departure incurred because of liquid motio...


	2 Literature Review
	2.1 Heat Transfer enhancement strategies in Pool Boiling
	In flow boiling, increase in flow velocity helps in sweeping bubble away from the surface thus delaying their coalescence and ultimately CHF. In contrast to flow boiling, pool boiling incorporates weak fluidic motion which is induced by buoyancy and b...
	2.1.1 Structured surfaces
	Revising surface geometry by fabricating structured and ordered surfaces has always been an easy and favored technique to enhance heat transfer. Structured surfaces consolidate fabricating channels, fins and pins on the heater surfaces. These structur...
	Guglielmini et al. [35] first utilized the potential of macro structures by fabricating twelve copper structured surface with square pin fin cross section. They varied the height (3 and 6mm) and width (0.4-1mm) of fins, forming three different configu...
	More recently, Chu et al. [38] performed extensive study on effect of micro structures on pool boiling experiments. Different micropillar configurations were fabricated on silicon substrate using etching technique by varying the height (10, 20 μm), sp...

	2.1.2 Porous Structures
	Introducing porosity is an alternative method in which a surface can be modified to enhance heat transfer. Porous surfaces are lightweight, can be easily applied to most of the surfaces, cost-effective and have a much larger impact on enhancing heat t...
	2.1.2.1 Coating
	Forrest et al. [41] coated thin film of polymer/SiO2 nanoparticles on 0.01 inch diameter Nickle wires and stainless steel plates with different coating thickness (300, 600, 1000 μm) fabricated using layer by layer deposition methodology. They reported...
	2.1.2.2 Chemical Treatment
	Another popular porous fabricating technique is chemical treatment wherein the substrate is template with module and chemically treated to acquire a desired shape.  Li et al. [44] fabricated 3D complex porous matrix structures on copper substrate usin...
	2.1.2.3 Sintering
	Bonding pre-fabricated, porous structures with known porosity is yet another simple and cost-effective methodology to implement porous structure on a given surface. Chen and Peterson [47] sintered isotropic copper wire screens, with three different wi...
	Recently, Wong and Leong [49] performed saturated pool boiling experiments for FC-72 using porous lattice structures manufactured by selective manufacturing technique. The substrates had repeated octet-truss geometry with varied unit cell size (2, 3 a...
	2.1.2.4 Nanowires
	Forming porous structure on nanometer scale by growing or deposition nanowires is another practice implemented by researchers to enhance boiling heat flux. Chen et al. [50] fabricated arrays of Si and Cu nanowires by electro-less etching and electropl...
	More recently, Kumar et al. [52] electrodeposited Cu and Ag nanowires with alumina-based template methodology with template having diameter of 200 nm and different inter-pore distance (260, 320 and 360 nm). They conducted pool boiling experiments usin...
	Figure 2.13: FESEM images of nanowires indicating top view, diameter and height (left to right) for Copper (top) and Silver (bottom) respectively (Copyright of Kumar et al. [52]).

	2.1.3 Hybrid Structures
	Researchers long realized the potential of combining surface features to further enhance the overall heat transfer process. With the added benefits of the surface modifications being combined, these hybrid structures proved highly effective in enhanci...
	2.1.3.1 Modulated Structures
	Deng et al. [53] fabricated porous structures with reentrant cavities microstructure surfaces  using copper powder (50-75 μm sized) via sintering method, as shown in Figure 2.14(I). They conducted subcooled (3-30  C) pool boiling experiments with wate...
	2.1.3.2 Hierarchical structure
	Chu et al. [56] in advancement to their previous work [38], deposited silica nanoparticles and copper oxide on silicon and copper micro-structured surfaces, respectively, as shown in Figure 2.15. They conducted pool boiling with different roughness fa...



	Figure 2.1: SEM images of three different micro-pin structures with increasing height. (Copyright of Wei and Honda [36]).
	Figure 2.2: SEM images of differently spaced square pin-fins with magnified view (Copyright of Zhang & Lian [37]).
	Figure 2.4: Differently spaced SEM images of micro-pin-fin silicon chip (Copyright of Kim et al. [39]).
	Figure 2.3: SEM images of six different configurations of silicon etched micropillars (Copyright of Chu et al. [38]).
	Figure 2.5: 3D profiler image of the simulated micro pillared sampled surface (Copyright of Kim et al. [40]).
	Figure 2.7: SEM images of Platinum wire with 20 nm alumina coating with scale bar as 2 μm (Copyright of Feng et al. [42]).
	Figure 2.6: SEM image of 0.01 inch diameter nickel wire coated with 40 bilayers of polymer/SiO2 (Copyright of Forrest et al. [41]).
	Figure 2.9: Alumina porous structure formed at two different electrolytic voltage (left) with their cross sectional view (right) (Copyright of Zhang et al. [45]).
	Figure 2.8: SEM images of Cu dendritic growth forming microporous surfaces with HR-SEM and TEM images (bottom two) of the Cu deposition peeled off from the surface (Copyright of Li et al. [44]).
	Figure 2.10: (a) SEM image of the self assembled 3D porous structure formed via reduced graphene (b) schematic representing the porous structure layering (Copyright of Ahn et al. [46]).
	Figure 2.11: Images of unit cell representation (top) and fabricated copper foam matrices with different porosity (bottom) (Copyright of Wong & Leong [49]).
	Figure 2.15: SEM images of Silicon (top) and Copper oxide (bottom) based hierarchical surfaces with magnified view from left to right (Copyright of Chu et al.[56]).
	Figure 2.16: SEM images of the four different microstructure samples (left to right) with hierarchical surfaces grown on them. Each columns indicating three different magnifications levels (Copyright of Rahman et al. [57]).
	Figure 2.17: SEM images of  (a) micro textured surface with plain square micropillar (b) nano textured micropillar covered with nanograss (Copyright of Dhillon et al. [58]).
	3 Objective and Concept of this research
	Majority of modern heat transfer systems rely on boiling phenomena for very large heat flux removal capability. These systems operate in nucleate boiling regime which is limited by CHF. There is an ever increasing demand for enhanced phase-change heat...
	Figure 3.1: Graph indicating the objective of the research to enhance CHF while simultaneously reducing the excess temperature.
	Delaying CHF while increasing the heat transfer coefficient can be ensured via introducing surfaces modifications on the heater surface, as shown in Figure 3.1. Surface modifications alters active nucleation site density, wetted surface area, surface ...
	Research done till date have been to enhance and optimize wickability in a plane which is parallel to the heater surface. This in-plane wickability is greatly hampered once we reach closer to the CHF. At CHF, a vapor cushion covers the heater surface,...
	Secondly, to further optimize the out of plane capillary wicking, we focus on decoupling the viscous drag losses from the capillary wicking pressure by growing nanowires on them. The chemical treatment utilized to introduce nanowires changes the wetta...
	In this study, we attempt to combine microstructure porous surface enhancement methodologies to test and understand their combined effect on overall heat transfer process. Here we introduce a novel, 3D porous, pillared, micro-structure surfaces to enh...
	Figure 3.2:  Test sample surface geometry schematic of the designed surface topology
	Figure 3.3: Test sample surface geometry Image of the actual fabricated test sample with dimensions
	Figure 3.4: Schematic representation of top: sample under test before CHF and bottom: sample under test during CHF.
	3.1 Augmented Roughness
	The effect of augmented roughness on heat transfer can be better described by its three characteristics: increased nucleation site density, increased wetted area and elongated contact line. Roughness introduced by micro/nano, gaps of the proposed poro...
	The cavities formed by proposed porous structures and nanowires grown on them correspond to the critical radii of surface cavities for the desired wall superheat (10 – 20  C). The wire mesh provides additional surface area along its periphery for adde...
	Figure 3.5: Schematic indicating additional nucleation because of formation of micro-pores due to meshed structures

	3.2 Promoted liquid supply
	Surface wettability and wickabiltiy is crucial in ensuring adequate supply is facilitated to the heater surface. Improving surface wettability reduces the drag force along the liquid flow path to the heated region or dry spot. Wettability can be subst...
	The pillar spacing in our study ensures macro in plane wicking of liquid to the heater surface. The porosity introduced by layering mesh over each other ensures the out of plane capillary wicking of liquid to the heater surface. This out of plane wick...

	3.3 Decoupled liquid/vapor pathways
	CHF is the formation of a vapor layer when the resistance for bubble motion inhibits bubble escape. To enhance CHF, the bubble motion dynamic can be altered by providing separate pathways for liquid and vapor flows. For pool boiling process on a plain...
	The pillar-structured surface, in this study, is introduced with the idea of separating the liquid, and vapor pathways, reducing vapor escape resistances, inducing adequate liquid supply to the heater surface and delaying CHF.
	Figure 3.6: Schematic showing the momentum forces acting on bubble on (a) plain surface  (b) corner of channel and (c) flow of liquid across a fin (Copyright of Kandlikar et al. [59])
	Figure 3.7: Schematic representation liquid pathway through the mesh while vapor escaping from the sides of the meshed structures.


	4 Fabrication
	4.1 Fabrication of test samples
	4.1.1 Diffusion bonding
	Diffusion bonding is a direct metal to metal, joining process which happens at the solid- solid interface. It usually occurs at very high temperature and high pressure force [60]. Diffusion bonding takes place in three stages [60].
	Diffusion bonding performed for this study is done under vacuum to avoid any impurity contamination and oxidation on the surfaces at elevated temperature.
	The wicking structure were fabricated using high vacuum, high temperature diffusion bonding process. The substrate onto which the copper meshes are diffused was cut from a quarter inch copper bar into 30 mm × 40 mm × 6.25mm in size (length × width × t...
	Figure 4.1: Image showing the copper substrate and the copper meshed after cleaning them, ready for diffusion bonding
	A custom-made diffusion bonding setup was designed and used to facilitate high temperature and high clamping force necessary for effective diffusion bonding. After several trial and error, a robust, reliable operating parameters was deduced which prod...
	Table 4.1: Specification of the inter-woven copper meshed onto the substrate
	Figure 4.2: Sample after diffusion bonding

	4.1.2 Machining of Test samples
	The bonded sample is removed from the bonding setup and cleaned with water, acetone and blown dry with air. The total height of the diffused copper mesh is measured. To further incorporate pillars into the wicking structure, the sample was machined wi...
	Figure 4.3: Final machined test sample
	Figure 4.4: Microscopic images of the test sample with top: cross sectional view and bottom: plan view with enlarged pillar image

	4.1.3 Acid Cleaning
	To remove any contamination/impurities and any oxide build up, an acid cleanup was done on the surface using 15% by weight nitric acid solution. The sample was placed in the acid solution with a stirrer for 20 minutes and then was rinsed with DI water...

	4.1.4 Nanowire growth
	Based on the chemical treatment procedure prescribed by Huang et al. [61], the following procedure was undertaken to successfully grow nanowires on the copper meshes.
	4.1.4.1 Acid Washing
	To facilitate the growth of copper oxide nanowires on the mesh wire, it was necessary to free the wire from nascent oxide layer naturally present on the wires. To do so, sample was acid cleaned. The sample was immersed in 30% by weight nitric acid sol...
	4.1.4.2 Chemical Treatment.
	The next step after acid cleaning was to insert the sample into 30% by weight hydrogen peroxide solution for another 40 minutes. The sample was constantly stirred to ensure proper mixing after which it was removed and cleaned with DI water and blown d...
	The appearance and the color of the copper changed which indicated the growth of nanowires. A water droplet was placed on the copper mesh to see the effect of copper nanowires on contact angle and wettability. The water droplet immediately was wicked ...
	SEM images, as shown in Figure 4.5, depicts the formation of copper nanowires on the surface of the interwoven copper mesh. Cracks appearing on the surface can be attributed to the thermal stresses developing on the curvature of wire leading to ruptur...
	Figure 4.5: SEM images of the micro-structured pillar at different magnification level.


	4.2 Fabrication of the experimental setup
	4.2.1 Heating block and 1D column
	The heat flux into the sample was transferred using a heat exchanger designed to support 1D heat flux to the porous samples. The heat exchanger consists of a heating block and a 1D column. The heating block was machined out of a stock copper block to ...
	The 1D column was 25 mm long with 10 mm × 10 mm cross sectional area. Three holes of 2.4 mm in diameter and 5 mm deep were drilled at 10 mm equidistant apart from each other. Since the length and width of 1D column is comparably smaller than its heigh...
	Figure 4.6: 3D CAD model representing the heating block with 1D column.

	4.2.2 Acrylic Tube and O rings
	To bind the pool of liquid on to the sample surface and to promote visualization, transparent acrylic tube (HYGARD ®) of 44.45 mm diameter, about 3 mm thickness and 150 mm in length was used. To prevent any leakages from the ends of the tube, two O-ri...

	4.2.3 Mounting Plates
	The mounting plates, top and bottom, as show in Figure 4.7 and Figure 4.8, were designed to fit the acrylic tube, heat exchanger and the steel pipe. The top plate was made of cooper with 60 mm × 60 mm × 6.35 mm width, length and thickness respectively...
	The bottom plate had a slot of 11 mm × 11 mm to expose the desire mesh area to a pool of liquid. Surrounding the 11 mm × 11 mm slot, trenches were drilled to accommodate the acrylic tube and an O-ring. Holes of 6.4 mm were drilled to assemble the enti...
	Figure 4.7: 3D CAD model of Bottom mounting plate.
	Figure 4.8: 3D CAD model of Top mounting plate.

	4.2.4 Condenser, chiller and rope heaters
	The condenser used to condense the evaporated water back to the pool of liquid was made of copper tubing and designed into helical shape. The design and the number of turns were estimated from the energy balance into the experimental setup. Cold water...

	4.2.5 Electrical devices
	The power to the cartridge heater was transferred from the high voltage variac and multimeter were attached to it to measure the current and voltage supplied. The cartridge heaters were connected in series. Agilent data logger was used to measure and ...
	Figure 4.11: Exploded view of the final assembled 3D CAD model of the experimental test setup.
	Figure 4.12: Schematic of Test setup with different sub components.



	5 Experimental setup and data analysis
	5.1 Experimental procedure
	The objective of the research was to see the trend/nature of heat flux against the excess temperature in addition to finding the critical heat flux values for the samples under consideration. A constant heat flux in steps was supplied to the experimen...
	 When the surface temperature overshoot, it indicates CHF has been reached. Immediately cut off the supply power from the variac and insert cold water into the system to bring down the temperature.
	Figure 5.1: Image of the assembled test setup.

	5.2 Data Analysis
	The heat flux, surface temperature and heat transfer coefficient are interpolated using the four thermocouple data from the 1D column and sample holes, as shown in Figure 5.2.  The 1D column assumes a linear heat flux transfer towards the sample. Acco...
	Figure 5.2: Thermocouple location in the 1D column.
	The Equation (5) for surface temperature is
	Lastly, the heat transfer coefficient is given by Equation (6)

	5.3 Uncertainty Analysis
	Every experiment has certain amount of uncertainty associated with it. These uncertainties further propagate to parameters depending on measured quantities. Therefore, it is important to take this uncertainty into account for results and analysis. The...
	Uncertainty has two error components in it, systematic error (or bias error, ,𝑆-𝑦.) and random error (or precision error, ,𝑅-𝑦.). The systematic error can be accounted to human error or fault in the calibration of instruments. Random error account...
	The uncertainty in this study is related to indirect measurement of heat flux and surface temperature. These parameters are interpolated using three parameters: temperature, lengths and conductivity of copper. For a k-type thermocouple, the uncertaint...
	Table 5.1: Values of uncertainties in various parameters
	These uncertainties might be small but when combined to evaluate other parameters, these can propagate to higher values. The two derived parameters in this study are heat flux and surface temperature. The heat flux and the surface temperature is affec...
	The uncertainty in the heat flux value can then be calculated by deriving the equation from Equation (7) and using Equation (8). Dividing by heat flux yields the percentage uncertainty in the heat flux which is given by Equation (9)
	The percentage uncertainty associated with heat flux measurement can be modified into Equation (9):
	,,𝐸-𝑞"  .-𝑞". =,,,,,𝐸-𝑘  .-𝑘..-2.+,,,,3,𝐸-,𝑇-1. .∗,𝑘-𝑐𝑢.-  .-Δx∗q"..-2.+,,,,4,𝐸-,𝑇-2. .∗,𝑘-𝑐𝑢.-  .-Δx∗q"..-2.+,,,,,𝐸-,𝑇-3. .∗,𝑘-𝑐𝑢.-  .-Δx∗q"..-2.+,,,,𝐸-Δx  .-Δx..-2..
	The percentage uncertainty in the calculation of wall superheat is given by Equation (10):
	The percentage uncertainty in the calculation of heat transfer coefficient is given by Equation (11):
	Figure 5.3: Graph indicating the percentage uncertainty at different heat flux values.
	As seen from the Figure 5.3 , the uncertainties in reported heat flux range are within 5% uncertainty.


	6 Results and Discussion
	6.1 Effect of out-of-plane capillary wicking length scale on heat transfer performance.
	To evaluate the performance of the test samples under study, pool boiling tests were conducted with de-ionized water under atmospheric pressure. Accordingly, performance of the test sample H1 (equivalent to a height 1.4 mm) and H2 (equivalent to a hei...
	6.1.1 Effect of out-of-plane capillary wicking length scale on heat flux.
	Figure 6.1: Heat flux as a function of wall superheat at different out-of-plane capillary wicking length scales.
	The experimentally measured heat flux as a function of wall superheat for different test samples are shown in Figure 6.1. The baseline plain surface showed a CHF of 127.3 W/cm2 at 25.3 C wall superheat. The experimental results for heat flux on plain ...
	The effect of height is also clearly visible on the performance of the test samples. Test sample H2 has a higher height as compared to the test sample H1. The higher height offers the potential to augment active micro nucleation sites for bubble forma...

	6.1.2 Effect of out-of-plane capillary wicking length scale on heat transfer coefficient.
	Figure 6.2: Heat transfer coefficient versus wall superheat for the test samples H1 and H2.
	Second critical indicator of surface thermal performance is the heat transfer coefficient. Figure 6.2 indicates a plot of HTC against heat flux. The highest HTC was reported by the test sample H2 as 70.8 W/cm2-K. The high HTC values at the beginning i...


	6.2 Effect of growth of hierarchical structures on heat transfer performance.
	The next step in this study was to grow nanowires on the structured copper meshes to form hierarchical surfaces. As discussed in the experimental section, the nanowires were grown via a chemical treatment on the test samples, and subsequently pool boi...
	6.2.1 Effect of test sample H1 and H1, NW with and without nanowires on heat flux.
	Figure 6.3: Heat flux as a function of wall superheat for the test samples H1 and H1, NW.
	The effect of nanowire growth on overall heat transfer performance is clearly visible in Figure 6.3. Nanowire-grown capillary-assisted surfaces provide a higher wickability, extending duration of thin film evaporation mode of heat transfer during bubb...

	6.2.2 Effect of test sample H2 and H2, NW  with and without nanowires on heat flux.
	Figure 6.4a: Heat flux versus wall superheat for the test sample H2, H2, NW, and plain surfaces.
	Figure 6.4b: Heat flux versus wall superheat for the test sample H1, NW, H2, NW, and plain surfaces.
	Figure 6.4 a and b represent the effect of nanowire growth on the overall heat transfer performance for the test sample H2. Similar to the H1 and H1, NW test surfaces, the H2 and H2,NW test samples demonstrate a considerable improvement in heat trans...

	6.2.3 Effect of test sample H1, NW and H2, NW on heat transfer coefficient.
	Figure 6.5: Heat transfer coefficient versus wall superheat for the test samples with nanowires H1, NW and H2, NW.
	The HTC graph for the nanowire grown structures is represented in Figure 6.5. As shown, the test surface H2, NW has a higher heat transfer coefficient compared to the test sample H1,NW. This is attributed to a higher heat flux associated with the test...



	7 Conclusion
	In conclusion, this work represents results of pool boiling experiments on sintered copper porous surfaces. Pool boiling tests were conducted to study effect of out-of-plane capillary wicking length scale on overall heat transfer rate. In addition, na...
	1. Sintered, porous hybrid structures were successfully fabricated using copper meshes sintered via a custom-made diffusion bonding setup. Two samples with 6-layers (i.e equivalent to a height of 1.4 mm) and 12 layers (i.e., a height of 2.6 mm) were d...
	2. Pool boiling experiments were conducted using de-ionized water as a working fluid and boiling curve were predicted for the samples to study the performance of these surfaces. Both CHF and HTC were greatly affected by the introduction of porous surf...
	3. The enhancement can be attributed to: a) augmented roughness increasing nucleation site densities and wetted surface area, b) capillary pumping aiding in supplemental liquid supply by in and out-of-plane capillary wicking, and c) structured micro-p...

	8 Future Scope
	The test samples evaluated for this study prove the importance of out-of-plane capillary wicking in addition to nucleation site density, wettability and in-plane wickability offered by different surface enhancements. We are yet to exploit the huge pot...
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	A Calculations

	The calculation used for predicting the heat flux and CHF for plain surface are provided in the subsequent section
	A.1 Calculation of Heat flux as predicted by Rohsenov model

	The calculations of heat flux for a polished, plain copper surface is given by Rohsenow’s  [25] heat flux prediction model. For comparison with experimental results, the surface: fluid combination is taken as water as the working fluid and plain coppe...
	A.2 Calculation of maximum heat flux as predicted by Kutateladze and Zuber

	Based on the hydrodynamic instability model theory, the equation for Critical heat flux prediction is given by
	The value of constant K = 0.16, given by Kutateladze [62] and  K = 0.131, given by Zuber [63]. The calculations of heat flux and CHF are done in Engineering Equation Solver (EES, Version 10.450, #1614) and is as shown below:
	B Copyright documentation
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