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Abstract

This dissertation consists of three distinct but related research projects. The first two

projects focus on objective Bayesian hypothesis testing and estimation for the intra-

class correlation coefficient in linear models. The third project deals with Bayesian

quantile inference for the semiparametric mixed-effects double regression models.

In the first project, we derive the Bayes factors based on the divergence-based priors

for testing the intraclass correlation coefficient (ICC). The hypothesis testing of the

ICC is used to test the uncorrelatedness in multilevel modeling, and it has not well

been studied from an objective Bayesian perspective. Simulation results show that the

two sorts of Bayes factors have good performance in the hypothesis testing. Moreover,

the Bayes factors can be easily implemented due to their unidimensional integral

expressions.

In the second project, we consider objective Bayesian analysis for the ICC in the

context of normal linear regression model. We first derive two objective priors for

the unknown parameters and show that both result in proper posterior distribu-

tions. Within a Bayesian decision-theoretic framework, we then propose an objective

Bayesian solution to the problems of hypothesis testing and point estimation of the

ICC based on a combined use of the intrinsic discrepancy loss function and objective

xv



priors. The proposed solution has an appealing invariance property under one-to-one

reparameterization of the quantity of interest. Simulation studies are conducted to

investigate the performance the proposed solution. Finally, a real data application is

provided for illustrative purposes.

In the third project, we study Bayesian quantile regression for semiparametric mixed

effects model, which includes both linear and nonlinear parts. We adopt the popular

cubic spline functions for the nonlinear part and model the variance of the random

effect as a function of the explanatory variables. An efficient Gibbs sampler with

the Metropolis-Hastings algorithm is proposed to generate posterior samples of the

unknown parameters from their posterior distributions. Simulation studies and a real

data example are used to illustrate the performance of the proposed methodology.

xvi



Chapter 1

Introduction

This dissertation consists of three distinct but related research projects. The first two

projects deal with objective Bayesian analysis for the intraclass correlation coefficient

(ICC) of normal linear regression models. In the first project, we derive the Bayes

factors based on the divergence-based priors for testing the presence of the ICC in

linear models. In the second project, we study the problems of hypothesis testing

and parameter estimation the ICC from a Bayesian decision-theoretic viewpoint. In

the third project, we consider Bayesian quantile regression for the semiparametric

mixed-effects models.

For illustrative purposes, we here briefly overview statistical inference for the ICC

1



from a frequentist perspective. Donner [28] suggested the use of random effects one-

way the analysis of variance (ANOVA) for making inference for the ICC. To be more

specific, the one-way ANOVA with random effects is given by

yij = µ+ aj + eij, i = 1, 2, · · · , n, j = 1, 2, · · · , k, (1.1)

where yij is the response i of subject j, µ is the grand mean of all the observations in

the population, the treatment effects aj are identically distributed with mean 0 and

variance σ2
a. Here, the error term eij

iid∼ N(0, σ2
e), where

iid∼ represents “independent

and identically distributed”. It can be shown that the variance of yij is given by

σ2 = σ2
a + σ2

e . Then the ICC can be defined as

ρ =
σ2
a

σ2
a + σ2

e

. (1.2)

The unbiased estimates of σ2
e and σ2

a are given by

s2
e =

SSE

k(n− 1)
and s2

a =
SSTR

n(k − 1)
− SSE

kn(n− 1)
,

respectively, where SSE=
∑

i=1

∑
j=1(yij − ȳi.) is the sum of squared errors of predic-

tion and SSTR =
∑

i=1 n(yi. − ȳ..) is the treatment sum of squares. Thus, the point

estimate of ICC is ρ̂ = s2
a/(s

2
a + s2

e). It deserves mentioning that ρ̂ = 0 indicates

no variation between groups (s2
a = 0) and that ρ̂ = 1 indicates no variation within

2



groups (s2
e = 0). As commented by Box and Tiao [17], the classical unbiased esti-

mates of s2
a can be a negative value even if the true value of σ2

a is nonnegative. This

could be viewed a serious disadvantage of using these estimates within a frequentist

framework; see, also, Wang and Sun [66].

The hypothesis testing problem of H1 : ρ = 0 versus H2 : ρ 6= 0 can be conducted by

using the F -test statistic given by

F =
SSTR

k − 1
/

SSE

k(n− 1)
,

which follows an F -distribution with degrees of freedom k− 1 and k(n− 1) under the

null hypothesis. For decision making at the α-th significance level, the null hypothesis

is rejected if F > F1−α,k−1,k(n−1), where F1−α,k−1,k(n−1) is the 100α% upper percentage

point of the F distribution with (p− 1) and k(n− 1) degrees of freedom.

In Chapter 2, we consider an objective Bayesian procedure for the hypothesis testing

problem of the ICC in normal linear regression model. We derive the Bayes factors

based on the divergence-based priors for testing the presence of the ICC. It turns out

that the proposed Bayes factors only have unidimensional integral expressions and

perform very well through numerous simulation studies.

In Chapter 3, we study the hypothesis testing and point estimation problems for

the ICC from a decision-theoretical viewpoint. It is well-known that the choice of

3



loss function plays a central role in the statistical decision theory. By adopting the

intrinsic discrepancy as the loss function, we develop the Bayesian reference criterion

for testing and estimating the ICC. The performance of the proposed approach is

illustrated by simulation studies.

In Chapter 4, we propose the Bayesian quantile regression for the semiparametric

mixed effects models. We employ the asymmetric Laplace distribution (ALD) for the

error term. The convenient choice of ALD allows us to set the quantile in advance and

the resulting posterior under a flat prior is the usual quantile regression estimates.

We develop an efficient Gibbs sampler with the Metropolis-Hastings algorithm for the

posterior sampling. The performance of the proposed procedure is examined through

extensive simulation studies and a real-data application.

In Chapter 5, we discuss some future work based on the three projects. We consider

developing the Bayes factor testing procedures based on the divergence-based priors

in the network autocorrelation model. In addition, we plan to deal with Bayesian

variable selection in the quantile semiparametric mixed effects models.

4



Chapter 2

Objective Bayesian Inference for

the Intraclass Correlation

Coefficient in Linear Models1

We outline objective Bayesian testing procedure for the intraclass correlation coeffi-

cient in linear models. For it, we derive the Bayes factors based on the divergence-

based priors, which have unidimensional integral expressions and can thus be easily

approximated numerically.

1This chapter has been published as an article in Statistics & Probability Letters (Zhang and Wang
[73]). Reprinted with permission D.1.
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2.1 Introduction

Consider the intraclass model of the form

yi = Xiβββ + εεεi, i = 1, 2, · · · , n, (2.1)

where yi is a k × 1 (k ≥ 2) vector of response variables, Xi is a k × p design matrix

of (p − 1) regressors (assuming the first column is ones) with p < k, and βββ is a

p × 1 vector of unknown regression parameters. We assume that the random error

εεεi
iid∼ N(0k, σ

2V), where
iid∼ stands for “independent and identically distributed”, 0k is

a k× 1 vector of zeros, and V = (1− ρ)Ik + ρJk with Ik being a k× k identity matrix

and Jk being a k × k matrix containing only ones. The parameter ρ is often referred

as the intraclass correlation coefficient (for short, ICC). It can be easily shown that

ρ ∈ (−(k − 1)−1, 1) is the necessary and sufficient condition for positive-definiteness

of the covariance matrix V. When ρ = 0, the intraclass model becomes the classical

linear normal model with independent errors.
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For notational simplicity, let

y =


y1

...

yn


nk×1

, X =


X1

...

Xn


nk×p

, εεε =


εεε1

...

εεεn


nk×1

.

The above model can be represented in a rather compact form as

y = Xβββ + εεε, (2.2)

where εεε follows an nk-dimensional multivariate normal distribution with mean 0nk

and covariance matrix σ2W, where W = In⊗V with ⊗ being the Kronecker product.

The probability density function (pdf) of y is given by

f(y | ρ, ννν) = (2π)−
kn
2 | σ2W|−

1
2 exp

{
− 1

2σ2
(y −Xβββ)TW−1(y −Xβββ)

}
, (2.3)

where ννν = (σ2, βββ). We are interested in testing

H1 : ρ = 0 versus H2 : ρ 6= 0, (2.4)

which can be equivalently expressed as the model selection problem of two competing

7



models

M1 : f1(y | ννν) = f(y | 0, ννν) versus M2 : f2(y | ρ, ννν) = f(y | ρ, ννν). (2.5)

The ICC has a lengthy history of practical applications in various fields of study as

a coefficient of reliability, such as epidemiologic research, genetics, psychology, and

sociology; see, for example, Barkto [4], Lin et al. [57], to name just a few. One

practical example is, in the multilevel modeling, ICC is often adopted to measure the

strength of correlation in a hierarchical data, which helps researchers determine if

the uncorrelatedness assumption is violated in the data. Another practical example

is the following, extracted from Chapter 5.2 of Frees [33]: twenty-seven individuals

including 16 boys and 11 girls were measured for distances from the pituitary to

the pteryomaxillary fissure in millimeters, at ages 8, 10, 12, and 14. In this case,

the distance yij measured in millimeters is the response for individual i measured

at age j, the design matrix consists of two columns with the first being age and

the second being gender (1 for males and 0 for females), and εεεi
iid∼ N(04, σ

2ΣΣΣ) with

ΣΣΣ = (1−ρ)I4+ρJ4. We are interested in studying how strong the individuals resemble

each other (i.e., ρ = 0, where ρ represents the resemblance among individuals).

Bayesian estimation of ρ has been conducted in the literature. Ghosh and Heo [37]

considered Bayesian credible intervals for ρ based on objective priors, whereas they

did not study the hypothesis testing of ρ. Later on, Lee and Kim [55] studied the

8



Bayesian Reference Criterion (BRC) for making inference of ρ, whereas the BRC

depends on an arbitrary threshold when making a formal decision. To the best of

my knowledge, the hypothesis testing of ρ in (2.4) has not well been studied from an

objective Bayesian perspective.

We develop an objective Bayesian solution to compare two competing models in

(2.5), see Berger and Pericchi [8] for a nice discussion about the advantages of using

Bayesian methods for model comparison. A natural way for comparing two competing

models is the Bayes factor (Kass and Raftery [45]), which has an intuitive meaning

of “measure of evidence” in favor of a model under the hypotheses. The Bayes factor

(BF) in favor of M2 and against M1 is defined as

BF21 =
p(y |M2)

p(y |M1)
=

∫
f2(y | ρ, ννν)π2(ρ, ννν) dρ dννν∫

f1(y | ννν)π1(ννν) dννν
, (2.6)

where π1(ννν) and π2(ρ, ννν) are the prior probabilities under models M1 and M2, re-

spectively. In general, when BF21 > (<)1, it indicates the data are more likely to

have occurred under M2 (M1). For instance, BF21 = 5 indicates that the data are

5 times more likely under M2 than under M1 (BF12 = 1/BF21 = .2). The posterior

probability of M1 given the data can be represented as

p(M1 | y) =

[
1 + BF21

p(M2)

p(M1)

]−1

,

9



where p(M2)/p(M1) is the prior model odds between two models or hypotheses, which

is assumed to be 1 in this paper. Unlike the frequentist P-value test, the value of

p(M1 | y) (or p(M2 | y) = 1− p(M1 | y)) allows practitioners to quantify the support

in a probability scale that the data provide for one hypothesis over another.

A critical ingredient of deriving the BF is to specify priors for the unknown parame-

ters under hypotheses. In the absence of prior knowledge, noninformative priors are

usually preferred, such as the Jeffreys prior (Jeffreys [43]) and the reference prior

(Bernardo [9]), whereas these priors are often improper and result in the BF up to an

undefined multiplicative constant. Bayarri and Garćıa-Donato [5] proposed an attrac-

tive way to obtain noninformative while proper priors, (so-called the divergence-based

(DB) priors). Since then, they have been implemented in practical applications. For

instance, Garćıa-Donato and Sun [34] adopted the DB priors for testing of no differ-

ence between groups in the one-way random-effects model. Kim et al. [47] consid-

ered the DB priors for testing the autocorrelation coefficient in linear models with

first-order autoregressive residuals. Note that derivation of these priors needs the

parameters to be orthogonal (Kass and Vaidyanathan [46]) or at least approximately

orthogonal for moderate or large sample sizes (Garćıa-Donato and Sun [34]).

This paper derives the BF associated with the DB priors for comparing two competing

models in (2.5). The resulting Bayes factors have unidimensional integral expressions

that can be numerically approximated in most statistical software, such as R and

10



SAS. Numerical results show that they perform very well in terms of the sum of the

frequentist type I and type II error probabilities, i.e., the probability of incorrectly

choosing H2 while H1 is true and the probability of incorrectly choosing H1 while H2

is true, respectively.

The remainder of this paper is organized as follows. In Section 2.2, we derive the DB

priors and their resulting BFs. In Section 2.3, we conduct simulations to evaluate the

performance of the BFs. Some concluding remarks are provided in Section 2.4, with

additional proofs given in the Appendix A.

2.2 The DB priors and the resulting BFs

In this section, we provide an objective Bayesian solution for the problem of hy-

pothesis testing in (2.4) based on the DB priors. In Subsection 2.2.1, we consider

objective priors for ρ after an orthogonal reparameterization (Cox and Reid [23]) of

(ρ, βββ, σ2) of model in (2.1). We derive the conditional sum-DB and min-DB priors

for ρ (Subsection 2.2.2) and obtain the BFs associated with these priors (Subsection

2.2.3).
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2.2.1 Objective priors for the unknown parameters

As mentioned in Section 2.1, derivation of the DB priors require the parameters to

be orthogonal. With orthogonal parameters, the off-diagonal elements of the Fisher

information matrix are all 0. Thus, orhtogonality is an important simplification for

derivation of the noninformative priors. First we find an orthogonal transformation

of (ρ, βββ, σ2), then we can employ the noninformative priors. For model in (2.2), we

follow the orthogonal transformation of the Fisher information matrix (Ghosh and

Heo [37]) and let

θ1 = ρ, θ2 =
1

σ2
(1− ρ)−(k−1)/k

(
1 + (k − 1)ρ

)−1/k
, θθθ3 = βββ.

Under this orthogonal transformation, θ1 is orthogonal to θθθ2 and θ3; thus, ννν = (θθθ2, θ3)

can be viewed as common parameters of both models in (2.3). The pdf of y in (2.2)

can be re-expressed as

f(y | θ1, θ2, θθθ3) ∝| θ−1
2 ΣΣΣ|−

1
2 exp

{
− 1

2
(y −Xθθθ3)T (θ−1

2 ΣΣΣ)−1(y −Xθθθ3)

}
,

where ΣΣΣ = (1 − θ1)−(k−1)/k
(
1 + (k − 1)θ1

)−1/k
W, W = In ⊗ V and V = (1 −

θ1)Ik + θ1Jk. The hypothesis testing problem of ρ in (2.4) is equivalent to H1 : θ1 =

θ0 versus H2 : θ1 6= θ0 with θ0 = 0, and thus it becomes the problem of comparing

12



two competing models

M1 : f1(y | θ0, θ2, θθθ3) = Nnk

(
Xθθθ3, θ

−1
2 Ink

)
,

M2 : f2(y | θ1, θ2, θθθ3) = Nnk

(
Xθθθ3, θ

−1
2 ΣΣΣ

)
. (2.7)

This paper adopts the second-order matching prior (Datta and Mukerjee [26]) for

(θ1, θ2, θθθ3) to develop the DB priors, because of its nice frequentist coverage proba-

bility studied by Ghosh and Heo [37]. This prior under the above model M2 is given

by

πN(θ1, θ2, θθθ3) ∝ (1− θ1)−1
(
1 + (k − 1)θ1

)−1
θ−1

2 . (2.8)

By following [46], we assume (θ2, θθθ3) to have the same meaning to both models and

thus specify a common (even improper) prior given by πN(θ2, θθθ3) ∝ θ−1
2 . Based on

the prior in (2.8), we define a noninformative prior for θ1 (the parameter of interest)

as

πN(θ1 | θ2, θθθ3) ∝ (1− θ1)−1
(
1 + (k − 1)θ1

)−1
. (2.9)

This leads to the following noninformative priors for the unknown parameters of

models in (2.7)

πN(θ2, θθθ3) ∝ θ−1
2 ,

πN(θ1, θ2, θθθ3) ∝ πN(θ1 | θ2, θθθ3)πN(θ2, θθθ3),

13



which will be used to derive the DB priors discussed in the following section.

2.2.2 The DB priors

The DB priors, proposed by Bayarri and Garćıa-Donato [5], are designed to use other

formal rules to construct objective priors of the new parameters under the alternative

hypothesis. They have shown that these priors are a generalization of Jeffreys-Zillow-

Siow priors for the model selection problems in linear models and are quite suitable for

Bayesian hypothesis testing under certain scenarios in which other proposals may fail.

Note that the DB measures are derived based on the measure of the direct Kullback-

Leibler (KL) divergence of the models under comparison, raised to a negative power.

The KL divergence between M1 and M2 in (2.7) is given by

KL[θ0 : θ1] =

∫
log

f2(y | θ1, θ2, θθθ3)

f1(y | θ0, θ2, θθθ3)
f2(y | θ1, θ2, θθθ3)dy. (2.10)

We usually take the sums or minimum of the KL directed divergences to obtain the

symmetry property. Then the sum-DB measure is given by

DS[θ0, θ1] = KL[θ0 : θ1] + KL[θ1 : θ0], (2.11)
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and the min-DB measure is given by

DM [θ0, θ1] = 2×min{KL[θ0 : θ1], KL[θ1 : θ0]}. (2.12)

For our testing problem at hand, we follow Definition 2.2.1 of Bayarri and Garćıa-

Donato [5] and obtain both the sum and minimum DB priors summarized in the

following proposition with proofs given in the Appendix A.1.

Definition 2.2.1 Let

c(q) =

∫
θ1

(1 +D[θ0, θ1])−q πN(θ1 | θ2, θθθ3)dθ1

and

q = inf{q ≥ 0 : c(q) <∞}, q∗ = q + 2−1,

where D[θ0, θ1] = D[θ0, θ1]/n∗ is the mean divergence measure and

πN(θ1 | θ2, θθθ3) = (1−θ1)−1
(
1+(k−1)θ1

)−1
is the conditional prior for θ1 from (2.9).

n∗ is the effective sample size equal to the number of data points. Then the DB prior

under M1 is πD(θ2, θθθ3) = πN(θ2, θθθ3) = θ−1
2 and under M2 is πD(θ1, θ2, θθθ3) = πD(θ1 |

θ2, θθθ3)πN(θ2, θθθ3), where the conditional DB prior for θ1 is given by

πD(θ1 | θ2, θθθ3) = c−1(q∗)(1 +D[θ0, θ1])−q∗ πN(θ1 | θ2, θθθ3).
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The conditional sum-DB prior πS and the conditional min-DB prior πM(·) are defined

when D is chosen to be DS(·) in (2.11) or DM(·) in (2.12) respectively. In what

follows, we refer to their corresponding c’s and q’s as cS, qS, qS∗ and cM , qM , qM∗ ,

respectively.

Proposition 1 Under M2 in (2.7), the conditional sum-DB prior for θ1 is

πS(θ1 | θ2, θθθ3) =

√
2

cS

[
(1− θ1)1/k+1

(1 + (k − 1)θ1)1/k−2
+

(1− θ1)−1/k+2(1 + (k − 2)θ1)

(1 + (k − 1)θ1)−1/k−1

]− 1
2

,

(2.13)

where

cS =
√

2

∫
1

− 1
k−1

[
(1− θ1)1/k+1

(1 + (k − 1)θ1)1/k−2
+

(1− θ1)−1/k+2(1 + (k − 2)θ1)

(1 + (k − 1)θ1)−1/k−1

]− 1
2

dθ1.

The conditional min-DB prior for θ1 is

πM(θ | θ2, θθθ3) = c−1
M

[
(1− θ1)

1−2k
2k

(
1 + (k − 1)θ1

)− k+1
2k
(
1 + (k − 2)θ1

)− 1
2 I(θ1 ≥ 0)

+ (1− θ1)−
k+1
2k

(
1 + (k − 1)θ1

) 1−2k
2k I(θ1 < 0)

]
(2.14)

where I(A) is an indicator function, such that I(A) = 1 if A is true and 0 otherwise,
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and

cM =

∫ 1

− 1
k−1

[
(1− θ1)

1−2k
2k

(
1 + (k − 1)θ1

)− k+1
2k
(
1 + (k − 2)θ1

)− 1
2 I(θ1 ≥ 0)

+ (1− θ1)−
k+1
2k

(
1 + (k − 1)θ1

) 1−2k
2k I(θ1 < 0)

]
dθ1.

It deserves mentioning that both conditional sum-DB and min-DB priors are proper

and thus can be used for the new parameter θ1 under the alternative hypothesis.

Thus, the BFs based on these priors are also well-defined for comparing two competing

models in (2.7) discussed in the following subsection.

2.2.3 The Bayes factors based on the DB priors

We derive the BFs for comparing two competing models in (2.7) based on the priors

in Subsections 2.2.1 and 2.2.2, which are given by

πD(θ2, θθθ3) ∝ 1

θ2

,

πD(θ1, θ2, θθθ3) ∝ πD(θ1 | θ2, θθθ3)πD(θ2, θθθ3),
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where πD(θ1 | θ2, θθθ3) is the conditional DB prior for θ1 in Proposition 1 with D = S

and M . The resulting BF is defined as

BF21 =

∫∫∫
f2(y | θ1, θ2, θθθ3)πD(θ1, θ2, θθθ3) dθ1 dθ2 dθθθ3∫∫
f1(y | θ0, θ2, θθθ3)πD(θ2, θθθ3) dθ2 dθθθ3

. (2.15)

We summarize the resulting BFs in the following theorem with proofs provided in the

Appendix A.2.

Theorem 1 The BF associated with the conditional sum-DB prior in (2.13) in favor

of M2 in (2.7) is given by

BFS21(Y) = c−1
S |X

TX|
1
2

[
yT (Ink −H1)y

]nk−p
2

∫ 1

− 1
k−1

hS(θ1)dθ1, (2.16)

where H1 = X(XTX)−1XT , H2 = W−1X(XTW−1X)−1XTW−1 with W = In ⊗V,

cS is a constant defined in Proposition 1, and

hS(θ1) =
√

2

[
(1− θ1)1/k+n(k−1)+1

(1 + (k − 1)θ1)1/k−n−2
+

(1− θ1)−1/k+n(k−1)+2(1 + (k − 2)θ1)

(1 + (k − 1)θ1)−1/k−n−1

]− 1
2

× |XTW−1X|−
1
2

[
yT (W−1 −H2)y

]−nk−p
2 .

The BF associated with the conditional min-DB prior in (2.14) in favor of M2 in
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(2.7) is given by

BFM21(Y) = c−1
M |X

TX|
1
2

[
yT (Ink −H1)y

]nk−p
2

∫ 1

− 1
k−1

hM(θ1)dθ1, (2.17)

where cM is a constant defined in Proposition 1 and

hM(θ1) =
[
(1− θ1)

1
2k

+n−nk−2
2

(
1 + (k − 1)θ1

)− 1
2k
−n+1

2
(
1 + (k − 2)θ1

)− 1
2 I(θ1 ≥ 0)

+ (1− θ1)−
1
2k

+n−nk−1
2

(
1 + (k − 1)θ1

) 1
2k
−n+2

2 I(θ1 < 0)
]

× |XTW−1X|−
1
2

[
yT (W−1 −H2)y

]−nk−p
2 .

Note that the Bayes factors in (2.16) and (2.17) have really simple expressions with a

unidimensional integral and can thus be numerically approximated by using standard

statistical package, such as R and SAS.

2.3 Simulation study

In this section, we undertake simulation studies to investigate the performance of

two Bayes factors (BFS21 and BFM21) for testing the hypotheses in (2.4). Without loss

of generality, we choose σ2 = 1, βββ = (1, 0.5, −1)T , and X1 = · · · = Xn = Xc,

where Xc is a k × 3 matrix generated from a uniform distribution over (−2, 2) with
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mean 0. Since Xc is already centered, we do not need an intercept column. We

then generate data yi from the same multivariate normal distribution Nk(Xcβββ, σ
2V),

where V = (1−ρ)Ik+ρJk with ρ ranging from −(k−1)−1 +0.01 to 0.99 in increment

of 0.01. To assess the influence of the sample size and dimension of random variables,

we take n = 10, 20, 50 and k = 3, 6, 9. For each case, we simulate N = 5000 data

sets with various choices of n and k. The decision criterion used in this paper is to

choose H2 if the value of the BF exceeds 1 and H1 otherwise (Kass and Raftery [45]).

The relative frequencies of rejection of H1 under different combinations of n and

k are depicted in Figure 2.1. For further illustrative purposes, we also report the

relative frequency of rejecting H1 and the average posterior probability of H2 for

certain chosen values of n, k, and ρ in Table 2.1. Rather than providing exhaustive

results based on these simulations, we merely highlight the most important findings

as follows:

(i) Two BFs perform well under across all simulation scenarios. When H1 is false

(i.e., ρ 6= 0), BFS21 slightly outperforms BFM21 in terms of the relative frequency

of rejecting H1 and the average posterior probability of H2, whereas they behave

similarly when n becomes large.

(ii) When k is moderate or large, the BFS21 outperforms BFM21 , because the latter

is generally more in favor of H1 than the former, especially when H1 true,

leading to its worse performance than BFS21 when H1 is wrong. The amount of
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differences between them disappears quickly with an increasing value of either

|ρ| or n.

(iii) As expected, the relative frequency of rejection of H1 will significantly increases

as |ρ| increases. Also, as either n or k becomes large, the relative frequency

of rejection of H1 also increases when H1 is false, This is mainly because in

statistical theory the Bayesian procedures generally have better performance

with an increasing value of n.

(iv) Simulation studies suggest that the BFS21 should be preferred in practical appli-

cations, because the sum of the type I and type II error probabilities of BFS21 is

smaller than the one of BFM21 across all the considered simulations.

We now investigate the frequentist coverage probability of the marginal posteriors of ρ

under these two priors. Let α be the left tail probability and ρ(α) be the corresponding

quantile of the posterior distribution π(ρ | Data) under the DB priors πS or πM .

Theoretically, it follows F (ρ(α)) =
∫ ρ(α)
−∞ π(ρ | Data)dρ = α. Letting P (α | ρ) =

P (F (ρ) < α | ρ, Data) = P (
∫ ρ
−∞ π(ρ | Data)dρ < α | ρ, Data), we observe that

P (α | ρ) should be very close to α if the chosen prior performs well with respect

to the probability matching criterion. The last two columns of Table 2.1 shows

the estimated 95% coverage of the posterior distributions between two priors under

different scenarios, which is denoted by P (95% | πS or πM) = P (97.5% | ρ)−P (2.5% |

ρ). We observe that estimated 95% coverage of the posterior distribution under
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different priors is very close to the frequentist coverage probabilities even for small

sample sizes.

2.4 Concluding remarks

We derived the DB priors (Bayarri and Garćıa-Donato [5]) and their resulting BFs

for the intraclass correlation coefficient in linear models, which are shown to have

unidimensional integral expressions that can be easily implemented by practitioners.

It deserves mentioning that the classical balanced one-way random effect model is just

a special case of the intraclass model by letting σ2 = σ2
a + σ2

e and ρ = σ2
a/σ

2
e ∈ (0, 1),

where σ2
a and σ2

e stand for the treatment and error variances, respectively; see Garćıa-

Donato and Sun [34]. This observation motivates a study of generalizing our results

to the unbalanced case with different number of observations in each group, which is

currently under investigation and will be reported elsewhere.
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Table 2.1
Relative frequencies of rejection of H1 : ρ = 0 (for short, RF(H1)) and the
average posterior probabilities (square root of the MSE) of H2 based on
the BFs under the sum-DB and min-DB priors, respectively. Frequentist

coverage of the 95% credible interval.

k ρ n RFS(H1) pS(M2 | y) RFM(H1) pM(M2 | y) P (95% | πS) P (95% | πM)
3 −0.1 10 0.1070 0.2757 (0.1700) 0.1000 0.2647 (0.1689) 95.40% 95.34%

20 0.0778 0.2081 (0.1760) 0.0655 0.1871 (0.1703) 95.30% 95.28%
50 0.1248 0.2254 (0.2275) 0.1142 0.2062 (0.2219) 94.66% 94.66%

0.0 10 0.0672 0.2458 (0.1393) 0.0625 0.2358 (0.1387) 95.70% 95.66%
20 0.0328 0.1587 (0.1183) 0.0258 0.1404 (0.1125) 94.98% 95.00%
50 0.0185 0.1119 (0.1048) 0.0155 0.0985 (0.0987) 94.60% 94.60%

0.2 10 0.2002 0.3353 (0.2164) 0.1930 0.3255 (0.2175) 95.06% 95.02%
20 0.2395 0.3320 (0.2713) 0.2202 0.3093 (0.2697) 95.32% 95.30%
50 0.4700 0.5036 (0.3325) 0.4438 0.4815 (0.3355) 95.12% 95.14%

0.4 10 0.5128 0.5464 (0.2882) 0.5025 0.5378 (0.2914) 95.22% 95.22%
20 0.7352 0.7131 (0.2956) 0.7163 0.6949 (0.3051) 95.04% 95.06%
50 0.9768 0.9603 (0.1209) 0.9745 0.9564 (0.1285) 94.50% 94.52%

6 −0.1 10 0.2622 0.3740 (0.2427) 0.1675 0.2767 (0.2299) 96.10% 96.06%
20 0.4580 0.4943 (0.2911) 0.3422 0.3989 (0.2941) 95.80% 95.76%
50 0.8630 0.8136 (0.2355) 0.7910 0.7523 (0.2760) 94.86% 94.86%

0.0 10 0.0503 0.2004 (0.1352) 0.0260 0.1294 (0.1137) 95.94% 95.92%
20 0.0292 0.1490 (0.1192) 0.0155 0.0941 (0.0987) 95.42% 95.44%
50 0.0195 0.1041 (0.1073) 0.0098 0.0649 (0.0881) 94.76% 94.76%

0.2 10 0.4418 0.4970 (0.3156) 0.3598 0.4142 (0.3266) 94.78% 94.78%
20 0.6882 0.6827 (0.3209) 0.6070 0.6159 (0.3489) 94.78% 94.76%
50 0.9610 0.9459 (0.1517) 0.9438 0.9276 (0.1820) 95.04% 95.00%

0.4 10 0.8655 0.8485 (0.2498) 0.8250 0.8091 (0.2875) 94.46% 94.64%
20 0.9872 0.9789 (0.0942) 0.9810 0.9713 (0.1149) 94.88% 94.94%
50 0.9998 0.9999 (0.0092) 0.9998 0.9998 (0.0113) 95.02% 95.08%

9 −0.1 10 0.9062 0.8141 (0.1930) 0.7622 0.6969 (0.2506) 95.38% 95.16%
20 0.9980 0.9794 (0.0541) 0.9908 0.9585 (0.0912) 95.78% 95.70%
50 1.0000 1.0000 (0.0001) 1.0000 1.0000 (0.0003) 95.49% 95.81%

0.0 10 0.0455 0.1895 (0.1321) 0.0162 0.0981 (0.0993) 95.36% 95.34%
20 0.0238 0.1424 (0.1129) 0.0078 0.0711 (0.0815) 95.00% 94.96%
50 0.0160 0.0989 (0.1025) 0.0080 0.0488 (0.0745) 95.36% 95.36%

0.2 10 0.6740 0.6778 (0.3221) 0.5648 0.5808 (0.3627) 94.96% 94.96%
20 0.8952 0.8742 (0.2302) 0.8348 0.8211 (0.2839) 94.72% 94.74%
50 0.9978 0.9951 (0.0426) 0.9942 0.9920 (0.0603) 94.86% 94.84%

0.4 10 0.9632 0.9491 (0.1528) 0.9370 0.9255 (0.1957) 94.58% 94.58%
20 0.9998 0.9985 (0.0172) 0.9990 0.9972 (0.0285) 94.72% 94.62%
50 1.0000 1.0000 (0.0000) 1.0000 1.0000 (0.0001) 95.16% 95.22%
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Figure 2.1: Relative frequencies of rejection of H1 : ρ = 0 based on the
BFs associated with the sum-DB and min-DB priors, respectively.
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Chapter 3

Objective Bayesian Hypothesis

Testing and Estimation for the

Intraclass Model1

The intraclass correlation coefficient (ICC) plays an important role in various fields

of study as a coefficient of reliability. In this paper, we consider objective Bayesian

analysis for the ICC in the context of normal linear regression model. We first derive

two objective priors for the unknown parameters and show that both result in proper

posterior distributions. Within a Bayesian decision-theoretic framework, we then

propose an objective Bayesian solution to the problems of hypothesis testing and

1This chapter has been published as an article in Statistical Theory and Related Fields (Zhang et al.
[72]). Reprinted with permission D.2.
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point estimation of the ICC based on a combined use of the intrinsic discrepancy

loss function and objective priors. The proposed solution has an appealing invariance

property under one-to-one reparametrization of the quantity of interest. Simulation

studies are conducted to investigate the performance the proposed solution. Finally,

a real-data application is provided for illustrative purposes.

3.1 Introduction

Consider the intraclass model of the form

Yi = Xiβββ + εεεi, i = 1, 2, · · · , n, (3.1)

where Yi is a k× 1 vector of response variables, Xi is a k× p design matrix of (p− 1)

regressors (assuming the first column is ones) and βββ is a p × 1 vector of unknown

common regression coefficients. We assume that the random error εεεi
iid∼ N(0k, σ

2ΣΣΣ),

where
iid∼ stands for ”independent and identically distributed,” 0k is a k × 1 vector

of zeros, and ΣΣΣ = (1 − ρ)Ik + ρJk with Ik being a k × k identity matrix and Jk

being a k × k matrix containing only ones. The parameter ρ is often referred as the

intraclass correlation coefficient (ICC). Note that ρ ∈ (−(k− 1)−1, 1) is the necessary

and sufficient condition for positive-definiteness of ΣΣΣ. When ρ is equal to 0, the

intraclass model becomes the classical linear normal model with independent errors.
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The ICC has been widely applied in various fields of study as a coefficient of reliabil-

ity, from epidemiologic research to genetic studies; see, for example, Barkto [4], Fleiss

[32], Lin et al. [57], among others. The analysis of the ICC transitionally consists of

two branches, hypothesis testing and point estimation, and it has received attentions

from two main statistical streams of thought: frequentists and Bayesians. From a

frequentist viewpoint, Paul [59] considered the maximum likelihood estimate (MLE)

of the ICC in a generalized model setting by solving iteratively a single estimating

equation. Paul [60] developed the score tests for testing the significance of the in-

terclass correlation in familial data. For Bayesian methods, Jelenkowska [44] studied

Bayesian estimation of the ICC in the linear mixed model. Chung and Dey [22]

considered Bayesian analysis of the ICC using the reference prior under a balanced

variance components model. Later on, Ghosh and Heo [37] considered Bayesian cred-

ible intervals for ρ based on different objective priors and made comparisons among

these priors in terms of matching the corresponding frequentist coverage probabilities.

It deserves mentioning that the problems of hypothesis testing and point estima-

tion for ρ have not yet been studied within a decision-theoretical viewpoint. This

motivates us to propose an objective Bayesian solution to these problems based on

the Bayesian reference criterion (for short, BRC) (Bernardo and Rueda [15]). The

proposed solution allows the researchers to simultaneously study important inference

summaries of the ICC, including point estimation, credible interval estimation, and
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precise hypotheses. In addition, it enjoys various appealing properties: (i) it is invari-

ant under one-to-one reparametrization of the parameter of interest ρ; (ii) it depends

only on the assumed model, appropriate objective priors, and the observed data; (iii)

it is appropriate to perform the hypothesis test: H0 : ρ = ρ0 versus H1 : ρ 6= ρ0 for

any ρ0 ∈ (−(k − 1)−1, 1), and (iv) it can be easily approximated numerically in most

statistical software and can thus be implemented by the practitioners from different

fields.

The remainder of the paper is organized as follows. In Section 3.2, we derive two

objective priors of the unknown parameters and discuss the propriety of their corre-

sponding posterior distributions. In Section 3.3, we propose an objective Bayesian

solution to both hypothesis testing and estimation problems of ρ from a decision-

theoretical viewpoint. Section 3.4 investigates the performance of the proposed solu-

tion through simulations and a real data application. Some concluding remarks are

provided in Section 3.5, with additional proofs given in the Appendix B.
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3.2 Posterior distribution

For notational convenience, let Y and εεε be nk× 1 vectors and X is an nk× p design

matrix, and they are given by

Y =


Y1

...

Yn

 , X =


X1

...

Xn

 , εεε =


εεε1

...

εεεn

 ,

respectively. The model in (3.1) can be expressed in a more compact way as

Y = Xβββ + εεε, (3.2)

where εεε follows an nk-dimensional normal distribution with mean vector 0nk and

covariance matrix σ2ΦΦΦ, where ΦΦΦ = In⊗ΣΣΣ is an nk-dimensional matrix and ⊗ denotes

the Kronecker product. The likelihood function of the intraclass model in (3.2) is given

by

p(Y | βββ, σ2, ρ) ∝|σ2ΦΦΦ|−1/2 exp

{
− 1

2σ2
(Y −Xβββ)′ΦΦΦ−1(Y −Xβββ)

}
∝(σ2)−nk(1− ρ)−n(k−1)/2(1 + (k − 1)ρ)−n/2

× exp

{
− 1

2σ2
(Y −Xβββ)′ΦΦΦ−1(Y −Xβββ)

}
,
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where |A| denotes the determinant of a matrix A.

Bayesian analysis begins with prior specification for all the unknown parameters in the

model. In the absence of relevant prior knowledge for (βββ, σ2, ρ) in the above model,

noninformative priors are often preferred. One of the most popular noninformative

priors is the Jeffreys prior, which is proportional to the square root of the determinant

of the Fisher information matrix. It can be shown that the Jeffreys prior is given by

πJ(ρ, σ2, βββ) ∝
(
σ2
)−(p+2)/2

(1− ρ)−1(1 + (k − 1)ρ)−1|X′ΦΦΦ−1X|1/2. (3.3)

Given that the parameter of interest is ρ, we integrate out βββ and σ2 (i.e., πJ(ρ | D) ∝∫ ∫
f(Y | βββ, σ2, ρ)πJ(ρ, σ2, βββ) dβββ dσ2) and obtain the marginal posterior density for

ρ, denoted by πJ(ρ | D), where D represents the observable data. It follows that

πJ(ρ | D) ∝ (1− ρ)−n(k−1)/2−1(1 + (k − 1)ρ)−n/2−1S(ρ)−nk/2, (3.4)

where S(ρ) = Y′
(
ΦΦΦ−1−ΦΦΦ−1X(X′ΦΦΦ−1X)−1X′ΦΦΦ−1

)
Y. Note that when X1 = · · · = Xn,

the prior in (3.4) can be simplified by replacing S(ρ) with (Y−X′β̂ββ)′ΣΣΣ−1(Y−X′β̂ββ),

where β̂ββ = (X′ΣΣΣ−1X)−1X′ΣΣΣ−1Ȳ and Ȳ =
∑n

i=1 Yi/n. The simplified version is just

the Jeffreys prior derived by Ghosh and Heo [37].

One may argue that, when we aim at a subset of the parameters with the rest treated
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as nuisance parameters, the direct use of the Jeffreys prior may sometimes be unsat-

isfactory. To overcome such a pitfall, Bernardo [9] proposed an algorithm to derive

objective priors by maximizing some entropy distances. This was further explored

by Berger and Bernardo ([6], [7]) and named by them the reference priors. We ob-

tain that the one-at-a-time reference prior for the parameter ordering {ρ, σ2, βββ} or

{ρ, βββ, σ2} is given by

πR(ρ, σ2, βββ) ∝ (σ2)−1(1− ρ)−1(1 + (k − 1)ρ)−1, (3.5)

which is exactly the same as the reference prior identified by Ghosh and Heo [37],

because their model is just a special case of model in (3.1) when we set X1 = · · · = Xn.

In addition, it can be shown that the prior in (3.5) is a second-order matching prior

because it achieves approximate frequentist validity of the posterior quantiles of the

interest parameter ρ with a margin of error of o(n−1). We refer the interested readers

to Datta and Ghosh ([24], [25]) and Datta and Mukerjee [26] about the second-order

matching criterion in detail. The resulting marginal posterior density of ρ under this

prior, denoted by πR(ρ | D), is given by

πR(ρ | D) ∝ (1− ρ)−n(k−1)/2−1(1 + (k − 1)ρ)−n/2−1|X′ΦΦΦ−1X|−1/2S(ρ)−(nk−p)/2. (3.6)

Given that neither πJ in (3.3) nor πR in (3.5) is proper, it is important to study the

propriety of their corresponding posterior distributions, which is summarized in the
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following theorem with proofs given in the Appendix B.1.

Theorem 2 Consider the intraclass linear model in (3.1). Under either the Jeffreys

prior πJ in (3.3) or the reference prior πR in (3.5) for the unknown parameters, the

joint posterior distribution of (ρ, σ2, βββ) is proper when k ≥ 2.

As commented by Bernardo [12], the problems of hypothesis testing and point estima-

tion can be viewed as a special decision problem from a Bayesian decision-theoretic

point of view. The choice of the loss function plays a central role in the statistical

decision theory. There are numerous loss functions, such as the squared error loss,

the zero-one loss, and the absolute error loss, whereas many of them often lack of

the invariance property required in practice. For example, the squared error loss is

often overused in statistical inference as a measure of the discrepancy between two

sampling distributions, heavily depending on the chosen parameterizations (Bernardo

[11]). In this paper, we consider the intrinsic discrepancy as a loss function due to its

various appealing properties discussed in the next section.

3.3 Bayesian reference criterion

In this section, we propose an objective Bayesian solution based on the Bayesian

reference criterion (BRC) proposed by Bernardo and Rueda [15]. In Subsection 3.3.1,
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we overview the BRC and derive the intrinsic discrepancy for the hypothesis testing

of ρ. We then obtain Bayesian intrinsic statistic in Subsection 3.3.2 and Bayesian

intrinsic estimator of ρ in Subsection 3.3.3.

3.3.1 Intrinsic discrepancy loss function

Without loss of generality, we assume that the probabilistic behavior of observable

data y can be appropriately described by the probability model

M ≡
{
p(y | θθθ, ωωω), y ∈ Y, θθθ ∈ ΘΘΘ, ωωω ∈ ΩΩΩ

}
, (3.7)

where θθθ is the parameter of interest and ωωω is a nuisance parameter. We aim at de-

ciding whether or not to treat the reduced model p(y | θθθ0, ωωω) under H0 : θθθ = θθθ0

as a proxy for the general model M . In other words, we decide whether the model

under H0 is compatible with the observable data. Since the Kullback-Leibler (KL)

direct divergence is a good measure of discrepancy between two probability distribu-

tions (Robert [62]), Bernardo [10] developed the logarithmic discrepancy derived by

minimizing this divergence measure. Given that the logarithmic discrepancy is not

symmetric and this feature may be unsuitable in some contexts, Bernardo and Rueda

33



[15] developed a symmetric version, often called the intrinsic discrepancy given by

δ(θθθ, ωωω, θθθ0) = min
{
κ(θθθ0 | ωωω, θθθ), κ(θθθ, ωωω | θθθ0)

}
,

where

κ(θθθ0 | ωωω, θθθ) = inf
ωωω0∈ΩΩΩ

∫
p(y | θθθ, ωωω) log

p(y | θθθ, ωωω)

p(y | θθθ0, ωωω0)
dy,

and

κ(θθθ, ωωω | θθθ0) = inf
ωωω0∈ΩΩΩ

∫
p(y | θθθ0, ωωω0) log

p(y | θθθ0, ωωω0)

p(y | θθθ, ωωω)
dy.

The unit of the intrinsic discrepancy is the nat of information, while it could be

a bit of information if the logarithm was taken in base 2 instead of base e. The

intrinsic discrepancy has an invariant property under one-to-one reparametrization.

For a thorough discussion of other properties, see Bernardo and Rueda [15], Bernardo

and Juárez [13], Bernardo [12]. In what follows, we provide the intrinsic discrepancy

between two intraclass models with its derivations given in the Appendix B.2.

Theorem 3 The intrinsic discrepancy for testing H0 : ρ = ρ0 versus H1 : ρ 6= ρ0, for

ρ0 ∈
(
−(k − 1)−1, 1

)
under the intraclass model in (3.1) is given by

δ(ρ0, ρ) =


κ(ρ0 | ρ) if ρ ∈

(
− 1
k−1

, ρ0

]
κ(ρ | ρ0) if ρ ∈ (ρ0, 1)

, (3.8)
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where

κ(ρ | ρ0) =
nk

2
log

{
1 + (k − 2)ρ− (k − 1)ρ0ρ

(1 + (k − 1)ρ)(1− ρ)

}
− n

2
log

{
(1 + (k − 1)ρ0)(1− ρ0)k−1

(1 + (k − 1)ρ)(1− ρ)k−1

}
.

(3.9)

It can be easily verified that ρ0 7→ δ(ρ0, ρ) is a continuous convex function with a

unique minimum at ρ = ρ0. Figure 3.1 depicts the curves ρ0 7→ δ(ρ0, ρ) for n = 1,

k = 4 and ρ ∈ {−0.3, 0, 0.3}. We observe that the corresponding curve of the intrinsic

discrepancy always vanishes at ρ0 = ρ.

3.3.2 Bayesian intrinsic statistic

If we select the intrinsic discrepancy as the loss function, then the intrinsic statistic

can be defined as the posterior expectation of the intrinsic discrepancy loss, namely,

d(ρ0 | D) =

∫
Θ

δ(ρ, ρ0)πδ(ρ | D) dρ, (3.10)

where πδ(ρ | D) is the marginal posterior distribution for ρ under the δ-reference

prior when the quantity of interest is δ(ρ0, ρ) in (3.8). Because δ(ρ0, ρ) is a one-to-

one piecewise function of ρ, we follow Proposition 1 of Bernardo [10] and show that

the δ-reference prior corresponding to the parameter of interest δ(ρ0, ρ) is exactly
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the same as the reference prior for ρ corresponding to the parameter of interest ρ. In

addition, the posterior distribution of ρ is invariant under this kind of transformations

(Bernardo and Smith [16], p. 326). The intrinsic statistic in (3.10) can thus be

rewritten as

d(ρ0 | D) =

∫
Θ

δ(ρ0, ρ)πδ(ρ | D) dρ =

∫
Θ

δ(ρ0, ρ)π(ρ | D) dρ

=

∫ ρ0

−1/(k−1)

κ(ρ0 | ρ)π(ρ | D) dρ+

∫ 1

ρ0

κ(ρ | ρ0)π(ρ | D) dρ,

where π(ρ | D) is the marginal posterior distribution of ρ under either πJ in (3.3)

or πR in (3.5). We observe from Bernardo [12] that the intrinsic statistic can be

interpreted as the expected value of the log-likelihood ratio against the simplified

model under H0. On the other hand, the BRC can be defined as

Reject H0 : ρ = ρ0 when d(ρ0 | D) > d∗

for some given utility constant d∗. In this paper, we advocate the conventional choices

d∗ ∈
{

log(10), log(100), log(1000)
}

for scientific communication. The value of about

log(10) indicates some evidence against H0; the value of about log(100) provides

rather strong evidence against H0, while the value of about log(1000) can be safely

used to reject H0. For further details about these values, we refer the interested

readers to Bernardo and Rueda [15], Bernardo and Juárez [13], Bernardo and Pérez

[14], and Bernardo [12].
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3.3.3 Bayesian intrinsic estimator

We follow Bernardo and Juárez [13] and define the intrinsic estimator of ρ as

ρ∗ = ρ∗(D) = arg min
ρ0∈Θ

d(ρ0 | D), (3.11)

which is the value minimizing the posterior expectation of the intrinsic discrepancy

loss function. The intrinsic estimator inherits the invariance property of the intrinsic

statistic under one-to-one piecewise transformation, which means that if ψ = ψ(ρ)

is a one-to-one reparametrization of ρ, then the intrinsic estimator of ψ is simply

ψ∗ = ψ(ρ∗).

3.4 Examples

We examine the performance of the proposed solution to both hypothesis testing and

point estimation problems of ρ though simulation studies (Subsection 3.4.1) and a

real-data application (Subsection 3.4.2).
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3.4.1 Simulation study

We conduct simulation studies to investigate the behavior of the proposed solution

under different scenarios. There are n observations and 2 regressors (p = 3) and the

data are generated from the model in (3.1). Without loss of generality, we set σ2 = 1,

βββ = (1, 1, 1)′ and ΣΣΣ = (1 − ρT )I3 + ρTJ3, where ρT is the prespecified true value of

ICC. Each element of Xi for i = 1, · · · , n is generated from a uniform density over the

interval (−2, 2). To check the variations of the proposed approach, ρT is taken to be

one of four different values: −0.3, 0, 0.3, 0.8 corresponding to the correlation being

negative, zero, medium, and large, respectively, while considering different sample

sizes n = 5 (small) and n = 20 (medium). For each simulation setting, we consider

N = 10, 000 replications. We analyze the averaged estimates along with the mean

absolute errors (MAE) given by

MAE =
1

N

N∑
j=1

∣∣ρ̂j − ρT ∣∣,
where ρ̂j represents the estimate of ρT in jth replication.

The MAEs of the Bayesian estimations and the MLE (Paul [59]) are reported in Tables

3.1 and 3.2. Several features can be drawn as follows. (i) The intrinsic estimator under

πR outperforms the one under πJ in most cases, especially when the sample size is
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small, and they behave similarly as n increases. (ii) The intrinsic estimator under each

prior outperforms the posterior mode and is comparable with the posterior median.

(iii) When the true value ρT is near by 0, the MLE performs the best, whereas when

ρT is far from 0 (e.g., ρT = 0.8), the intrinsic estimator performs the best among all

the estimators under consideration. (iv) On average, the MAEs of all the estimators

decrease significantly with an increasing sample size. In a marked contrast with other

estimators, the intrinsic one is invariant under one-to-one transformation, which is

not shared others, such as the posterior mean. Simulations with other choices of ρ

have also been conducted, and similar conclusions are achieved and thus not presented

here for simplicity.

We further compare the frequentist coverage probability of the posterior distributions

of ρ under πJ and πR. Following Sun and Ye [64], we let α be the left tail probability

and ρ(α) be the corresponding quantile of the marginal posterior distribution π(ρ | D)

under either πJ or πR. Theoretically, it follows F (ρ(α)) =
∫ ρ(α)
−∞ π(ρ | D)dρ = α.

Letting P (α | ρT ) = P (ρ < ρ(α) | ρT , D) = P (F (ρ) < α | ρT , D) = P (
∫ ρ
−∞ π(ρ |

D)dρ < α | ρT , D), we observe that P (α | ρT ) should be very close to α if the

chosen prior performs well with respect to the probability matching criterion. Table

3.3 shows the estimated tail probabilities of the posterior distributions between two

priors under different scenarios. We observe that the tail probabilities of the posterior

distribution of ρ under πR are closer to the frequentist coverage probabilities than the

ones under πj. This observation is reasonable, because πR is a second-order matching
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prior if ρ is the parameter of interest.

In addition to the parameter estimation, the proposed solution can be used to test

any value of ρ = ρ0 ∈ (−0.5, 1) since k = 3 in our simulation study. For illustrative

purposes, suppose that we are interested in evaluating whether the data are compat-

ible with H0 : ρ = 0. We analyze the frequentist behavior of the proposed solution

under πR for the hypothesis testing of ρ based on two scenarios discussed below.

First, consider the scenario in which H0 : ρ = 0 is true. We simulate 5, 000 random

samples from the model in (3.1) with ρT = 0 based on the simulation setup above.

Figure 3.2 depicts the sampling distribution of d(ρ | D) from the 5, 000 simulations.

For n = 5, the significance level is around 13.24% for d∗ = log(10) (mild evidence);

the significance level is around 3.26% for d∗ = log(100) (strong evidence), and the

significance level is around 0.88% for d∗ = log(1000) (safe to reject H0). We ob-

serve that as n increases (n = 20), the significance level approximately goes down

to 5.20%, 0.26% and 0.06%, respectively. As one would expect, the significance level

significantly decreases as n increases from a frequentist viewpoint.

Second, consider the scenario in which H0 : ρ = 0 is not true. We study the behavior

of the sampling distribution of the proposed solution and the relative frequency of the

rejection of H0. We again simulate 5, 000 random samples from the model in (3.1)

with ρT ∈ {−0.3, 0.3, 0.8}. Figure 3.3 shows the sampling distribution of d(ρ | D)

from the 5, 000 simulations. Note that the power of the proposed approach increases
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when ρT is far from the testing value ρ0 = 0 or n is larger. For instance, when

H0 : ρ = 0 while ρT = 0.8, for n = 5, the relative frequency of rejecting H0 is

approximately equal to 79.46% for d∗ = log(10), to 35.32% for d∗ = log(100), and to

6.56% for d∗ = log(1000); for n = 20, this relative frequency significantly increases to

100%, 99.84%, and 98.68%, respectively. We may thus conclude that the power of the

proposed solution increases with n and that the performance of the proposed solution

is quite satisfactory for the problems of hypothesis testing and point estimation of ρ

in the intraclass model in (3.1).

Given that there are two objective priors: the reference prior (πR) or the Jeffreys

prior (πJ), which of them is preferable for the proposed solution in practical ap-

plications? Numerical evidence from the above simulation studies showed that the

Bayesian estimations under πR outperform the ones under πR. Additionally, πR is

also a second-order matching prior if ρ is the parameter of interest. We thus have a

preference to recommend the use of πR in the analysis of the ICC.

3.4.2 An illustrative example

We use a real data example to illustrate the practical application of the proposed

solution. The orthodontic data set is present in Table 3.4 and obtained from Chapter
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5.2 of Frees [33]: twenty-seven individuals including 16 boys and 11 girls were mea-

sured for distances from the pituitary to the pteryomaxillary fissure in millimeters,

at ages 8, 10, 12, and 14. We consider the intraclass model of the form

yi = β0j4 + β1Ai + β2Gij4 + εεεi, i = 1, · · · , 27,

where yi = (yi1, yi2, yi3, yi4)T with yij being the distance for individual i measured

at age j, Ai = (8, 10, 12, 14)T is a 4× 1 vector of ages and Gi represents the gender

(1 for male and 0 for female), and εεεi
iid∼ N(04, σ

2ΣΣΣ) with ΣΣΣ = (1 − ρ)I4 + ρJ4.

We observe from Figure 3.4(a) that the marginal posterior densities for ρ under two

objective priors are quite normal in shape. Table 3.5 provides the point estimators for

ρ under different procedures. We here analyze the results under πR for simplicity. The

intrinsic estimator ρ∗ = 0.622 is close to the posterior median equal to 0.620, whereas

both are slightly different from the MLE equal to 0.597. According to the non-

rejection regions with d∗ ∈ {log(10), log(100), log(1000)} presented in Figure 3.4(b),

we somehow doubt that the true value of ρ is outside Rlog(10) = (0.423, 0.773); we

seriously doubt that ρ is outside Rlog(100) = (0.304, 0.833), and we are almost sure

that the true correlation value ρ is not outside Rlog(1000) = (0.211, 0.870).

On the other hand, the proposed solution can be used for the hypothesis testing of

ρ = ρ0 ∈ (−1/3, 1). If we are interested in testing H0 : ρ = ρ0 = 0 versus H1 : ρ 6= ρ0.
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we can numerically verify that the intrinsic statistic under πR is

d(ρ0 | D) =

∫ 1

−1/3

δ(ρ0, ρ)π(ρ | D) dρ ≈ 14.2747 ≈ log(1582791),

which indicates that the expected value of the average of the log likelihood ratio

against H0 is about 14.2747, showing that the likelihood ratio is expected to be

about 1, 582, 791. Thus, we may conclude that the data provide very strong evidence

against H0 and that the null hypothesis is opposed to the observable data. Due to the

invariance property of the proposed solution, if the parameter of interest is ρ3, then

its intrinsic estimator is simply (ρ∗)3 ≈ 0.6223, and the corresponding non-rejection

regions are simply given by R̃log(10) = (0.076, 0.462), R̃log(100) = (0.028, 0.578), and

R̃log(1000) = (0.009, 0.659), respectively.

3.5 Concluding remarks

In this paper, we first derived two objective priors for the unknown parameters in

the intraclass model in (3.1) and proved that both result in proper posterior distribu-

tions. Within a Bayesian decision-theoretic framework, we then proposed an objective

Bayesian solution to both hypothesis testing and point estimation problems of the

ICC ρ. The proposed solution has an appealing invariance property under one-to-one

reparametrization of the quantity of interest, which is not shared by some commonly
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used estimators, such us the posterior mean.

It deserves mentioning that the proposed solution can be directly applied to the

balanced one-way random effect ANOVA model, since it is a special case of the

intraclass model in (3.1) if we let σ2 = σ2
a + σ2

e and ρ = σ2
a/σ

2 ∈ (0, 1), where σ2
a

and σ2
e stand for the treatment and error variances, respectively. This observation

motivates a possible extension of the proposed solution to the unbalanced model with

different number of observations in each class, which is currently under investigation

and will be reported elsewhere.
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Figure 3.1: The intrinsic discrepancy δ(ρ0, ρ) in (3.8) as a function of ρ0

for n = 1, k = 4 and ρ ∈ {−0.3, 0, 0.3}

Table 3.1
The MAE of the Bayesian estimators for ρ based on 10, 000 replications in

the simulation study.

n=5 n=20

ρT Prior Intrinsic Mean Median Mode Intrinsic Mean Median Mode

−0.3
πR 0.148 0.155 0.149 0.162 0.058 0.060 0.058 0.059
πJ 0.164 0.163 0.166 0.185 0.060 0.060 0.060 0.062

0
πR 0.242 0.213 0.243 0.333 0.108 0.105 0.108 0.115
πJ 0.294 0.263 0.296 0.379 0.114 0.111 0.114 0.121

0.3
πR 0.268 0.230 0.268 0.377 0.119 0.115 0.119 0.129
πJ 0.315 0.276 0.315 0.412 0.124 0.119 0.124 0.133

0.8
πR 0.148 0.157 0.148 0.151 0.057 0.059 0.057 0.057
πJ 0.142 0.141 0.141 0.153 0.056 0.056 0.056 0.058

45



Table 3.2
The MAE of the MLE for ρ based on 10, 000 replications in the simulation

study.

n=5 n=20
−0.3 0.137 0.058

0 0.198 0.102
0.3 0.231 0.118
0.8 0.236 0.074

Table 3.3
The estimated tail probabilities of posterior distributions based on 10, 000

replications in the simulation study.

n=5 n=20
ρT Prior P (0.05 | ρT ) P (0.90 | ρT ) P (0.05 | ρT ) P (0.90 | ρT )

−0.3
πR 0.0453 0.9127 0.0477 0.9010
πJ 0.0497 0.9145 0.0425 0.9166

0
πR 0.0460 0.9069 0.0535 0.8977
πJ 0.0842 0.8598 0.0617 0.8879

0.3
πR 0.0439 0.9119 0.0453 0.9054
πJ 0.1021 0.8357 0.0614 0.8816

0.8
πR 0.0441 0.9087 0.0484 0.9001
πJ 0.1341 0.7825 0.0779 0.8587
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Figure 3.2: Sampling distribution of d(ρ | D) under H0 obtained from
the 5,000 simulations with ρT = 0 for different sample sizes when testing
H0 : ρ = 0.

Table 3.4
The orthodontic data from Frees [33].

Age of girls Age of boys

Number 8 10 12 14 8 10 12 14

1 21 20 21.5 23 26 25 29 31
2 21 21.5 24 25.5 21.5 22.5 23 26.5
3 20.5 24 24.5 26 23 22.5 24 27.5
4 23.5 24.5 25 26.5 25.5 27.5 26.5 27
5 21.5 23 22.5 23.5 20 23.5 22.5 26
6 20 21 21 22.5 24.5 25.5 27 28.5
7 21.5 22.5 23 25 22 22 24.5 26.5
8 23 23 23.5 24 24 21.5 24.5 25.5
9 20 21 22 21.5 23 20.5 31 26
10 16.5 19 19 19.5 27.5 28 31 31.5
11 24.5 25 28 28 23 23 23.5 25
12 21.5 23.5 24 28
13 17 24.5 26 29.5
14 22.5 25.5 25.5 26
15 23 24.5 26 30
16 22 21.5 23.5 25

47



0 5 10 15 20 25

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

n=5
D

e
n
s
it
y

d(ρ0 | D)

ρT = 0.3

Density of d(ρ0 | D)

d
*
= log(10)

d
*
= log(100)

d
*
= log(1000)

0 5 10 15 20 25

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

n=20

D
e
n
s
it
y

d(ρ0 | D)

ρT = 0.3

Density of d(ρ0 | D)

d
*
= log(10)

d
*
= log(100)

d
*
= log(1000)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

n=5

D
e
n
s
it
y

d(ρ0 | D)

ρT = 0.3

Density of d(ρ0 | D)

d
*
= log(10)

d
*
= log(100)

d
*
= log(1000)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

n=20

D
e
n
s
it
y

d(ρ0 | D)

ρT = 0.3

Density of d(ρ0 | D)

d
*
= log(10)

d
*
= log(100)

d
*
= log(1000)

0 10 20 30 40

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

n=5

D
e
n
s
it
y

d(ρ0 | D)

ρT = 0.8

Density of d(ρ0 | D)

d
*
= log(10)

d
*
= log(100)

d
*
= log(1000)

0 10 20 30 40

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

n=20

D
e
n
s
it
y

d(ρ0 | D)

ρT = 0.8

Density of d(ρ0 | D)

d
*
= log(10)

d
*
= log(100)

d
*
= log(1000)

Figure 3.3: Sampling distribution of d(ρ | D) under H0 obtained from
5,000 simulations with ρT ∈ {−0.3, 0.3, 0.8} for different sample sizes when
testing H0 : ρ = 0.
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Figure 3.4: The marginal posterior density for ρ based on two objective
priors (left), and the intrinsic statistic with the non-rejection regions corre-
sponding to the threshold values d∗ ∈ {log(10), log(100), log(1000)} (right)
for the orthodontic data in Frees [33].

Table 3.5
Estimations of ρ for the orthodontic data from Frees [33].

Priors Intrinsic Mean Median Mode

πJ 0.603 0.598 0.601 0.608
πR 0.622 0.616 0.620 0.627
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Chapter 4

Bayesian Quantile Regression for

Semiparametric Mixed-Effects

Models

Semiparametric mixed-effects models (SPMMs) are widely used for longitudinal data

in various practical applications. The model contains a linear part modeling some

explanatory variables and a nonlinear part associated with a time effect. As quantile

regression has become a popular tool in data analysis, in this article, we aim to put

forward Bayesian quantile regression for SPMMs. The quantile structure is attained

by specifying the error term as the asymmetric Laplace distribution (ALD). A cubic

spline approximation is applied for the nonlinear part. We model the variation within
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subjects by specifying the variance of random effect as a function of some explana-

tory variables. An efficient Gibbs sampler with the Metropolis-Hastings algorithm is

developed to sample the parameters from their posterior distributions. Simulation

studies and a real data example are used to illustrate the proposed methodology.

4.1 Introduction

Quantile regression is a type of regression analysis and has been widely applied in a

wide range of disciplines, such as biological studies, econometrics, fiance, and social

sciences. Quantile regression provides information that the classical mean regression

cannot reflect, because it quantifies the association of explanatory variables with a

specific quantile of a dependent variable and is also quite insensitive to heteroscedas-

ticity and outliers, which often occur in many practical applications. Since the seminal

work of Koenker and Bassett [48], quantile regression has drawn increasingly attention

in the literature from both Bayesian and frequentist points of view; see, for example,

Kotz et al. [52], Yu and Moyeed [70], Alhamzawi and Ali [2], to name just a few.

It deserves mentioning that due to a close link between the asymmetric Laplace distri-

bution (ALD) and quantile regression, the quantile regression analysis has attracted

a great deal of attention from a Bayesian perspective. Of particular note is that Yu
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and Moyeed [70] showed that the problem of estimating quantile regression coeffi-

cients in the linear quantile regression model is equivalent to the one of maximizing

the likelihood function in terms of the regression coefficients by specifying the ALD as

the error distribution. Thereafter, numerous researchers conducted Bayesian quantile

regression analysis with the use of the ALD as the error distribution.

Kottas and Krnjaji [51] proposed a Bayesian semiparametric methodology for quantile

regression using Dirichlet process mixtures for the error distribution. Kozumi and

Kobayashi [53] developed an efficient Gibbs sampling algorithm for Bayesian quantile

regression based on a location-scale mixture representation of the ALD. Chen and

Yu [20] studied Bayesian inference for nonparametric quantile regression and adopted

piecewise polynomial functions for curve fitting. Wang [65] proposed nonlinear mixed-

effects models based on a likelihood-based approach using the ALD. We observe

that the ALD provides a natural and effective way in Bayesian quantile regression

framework. The estimators can be sampled from their posterior distributions through

highly efficient Markov chain Monte Carlo (MCMC) algorithms.

Bayesian quantile regression of mean models has been extensively studied in the lit-

erature, whereas the problem of jointly modeling mean and variance has often been

relatively neglected. Modeling variance is often necessary to obtain confidence inter-

vals and other predictions. Aitkin [1] proposed maximum likelihood (ML) estimation

for mean and variance in normal liner regression models. Cepeda and Gamerman [19]
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studied variance heterogeneity of normal regression models from a Bayesian perspec-

tive. In Lombardia and Sperlich [58], the ML estimation is applied to the general-

ized mixed-effects model and the variance of random effects is estimated to improve

statistical inference on estimating parameters. Since semiparametric mixed-effects

models are useful tools for analyzing longitudinal data, Alhamzawi and Ali [2] de-

rived Bayesian quantile regression for longitudinal data and Xu et al. [67] presented a

Bayesian approach for semiparametric mixed-effects models. In this paper, we gener-

alize these methods into Bayesian quantile regression on semiparametric mixed-effects

models. In particular, the variance of random effects is modeled as a function of the

explanatory variables.

The remainder of this chapter is organized as follows. In section 4.2, we present the

model in matrix form. In section 4.3, we specify prior distributions of the param-

eters and derive their corresponding posteriors. The Gibbs sampling algorithm is

implemented to obtain the estimated parameters. Simulation study and a real data

example are illustrated in section 4.4 and section 4.5, which evaluate the proposed

methodology and apply it to practical use. Some discussion are given in section 4.6.
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4.2 Bayesian quantile structure for semiparamet-

ric mixed-effects models

In this section, we discuss semiparametric mixed-effects double regression models and

adopt the B-spline method to fit semeiparametric models in Subsection 4.2.1. We then

consider Bayesian quantile analysis of semiparametric mixed-effects double regression

models in Subsection 4.2.2.

4.2.1 Semiparametric mixed-effects models

Consider the semiparametric mixed-effects model of the form

yij = xTijβββ + g(tij) + vi + εij, i = 1, 2, · · · , n, j = 1, 2, · · · ,mi, (4.1)

where yij is the response variable of the ith subject on the jth measurement, xij =

(xij1, · · · , xijp)T is a p×1 vector of predictor variables, βββ is a p×1 vector of unknown

common regression coefficients, g(tij) is an unknown smooth function associated with

a univariate observed covariate tij associated with time, vi is a random effect of each

subject with vi ∼ N(0, σ2
i ) with σ2

i being the heterogeneity variance of the random

effect, and εij is the error term. Here, the superscript T represents the transpose of
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a matrix or a vector. For practical applications, we often assume that there exists a

variance heterogeneity of each subject and that the variance σ2
i is related to several

predictors zi = (zi1, · · · , ziq)T such that σ2
i = h(zi, γγγ), where h(·, ·) is a known function

to model varying variance and γγγ = (γ1, · · · , γq)T is a q × 1 vector of regression

coefficients. There are several known forms for h(zi, γγγ), such as log-linear model or

power product model; see Xu et al. [67].

To explicitly specify the model in (4.1), we adopt the B-spline technique to approx-

imate the nonparametric function g(·), which converts the nonparametric function

into a linear function consisting of a set of basis functions. Without loss of generality,

we assume that tij ∈ [0, 1], which can be partitioned as 0 = s0 < s1 < · · · < skn <

skn+1 = 1, where {si} is an internal knot. This provides that there are K = kn + M

normalized B-spline basis functions {πk(tij)} of order M that form a basis the linear

spline space, where πk(·) is the k-th basis function and k = 1, 2, · · · , K. In this paper,

we consider the cubic splines (i.e., M = 4), because they have two continuous deriva-

tives which are often sufficient to give smooth approximations and a third degree

piecewise polynomial usually behaves numerically well. In addition, by following He

and Fung [41], we choose the number of knots to be the integer part of N1/5, where

N =
∑n

i=1 mi. Thus, the model (4.1) can be linearized as

yij = xTijβββ + bTijααα + vi + εij, i = 1, 2, · · · , n, j = 1, 2, · · · ,mi, (4.2)
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where bij = (π1(tij), · · · , πK(tij))
T is a K × 1 vector of basis functions and ααα is a

K × 1 vector of the regression coefficients for the basis functions.

According to Kozumi and Kobayashi [53], we can obtain the τ -th quantile regression

estimator for βββτ and ααατ by minimizing the following objective loss function

(β̂ββτ , α̂αατ ) = arg min
βββτ ,ααατ

n∑
i=1

mi∑
j=1

ρτ
(
yij − xTijβββτ − bTijααατ − vi

)
, (4.3)

where τ ∈ (0, 1) is a given quantile level and ρτ (·) is the check loss function defined

as

ρτ (u) = u{τ − I(u < 0)},

where I(·) denotes the indicator function. Given that the estimators cannot be ob-

tained by differentiating the objective function in (4.3), we may interior point methods

to calculate these quantile regression estimators; see, for example, Koenker and Park

[50]. We observe from Yu and Moyeed [70] that the minimization problem in (4.3)

is equivalent to maximizing the likelihood function by specifying the error term εij

in (4.2) as the asymmetric Laplace distribution (ALD). This relationship has been

widely adopted to develop Bayesian quantile regression methods in the literature; see,

for example, Kozumi and Kobayashi [53].
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4.2.2 Bayesian quantile regression models

To fully conduct Bayesian quantile analysis for the model in (4.2), we may assume

that the error term εij follows the ALD, which can be written as a scale mixture

of normals with the scale mixing parameter following an exponential distribution

summarized in the following proposition.

Proposition 2 Let e ∼ Exp(θ−1) and r ∼ N(0, 1) be two independent random vari-

ables. Then ε ∼ ALD(µ, θ, τ) can be presented by

ε = µ+ k1e+ r
√
k2θe,

where k1 = 1−2τ
τ(1−τ)

and k2 = 2
τ(1−τ)

.

Based on this mixture representation in Proposition 2, the model (4.2) with the

random error term εij ∼ ALD(0, θ, τ) can be rewritten as

yij = xTijβββ + bTijααα + vi + k1eij + rij
√
k2θeij, (4.4)

where k1 = 1−2τ
τ(1−τ)

, k2 = 2
τ(1−τ)

, eij and rij are random variables independent of each

other, such that eij ∼ Exp(θ−1) and rij ∼ N(0, 1).

58



For notational simplicity, let y = (yT1 , · · · ,yTn )T be the vector of all response obser-

vations with yi = (yi1, · · · , yimi)T , t = (tT1 , · · · , tTn )T be the time sequence vector

with ti = (ti1, · · · , timi)T , X = (XT
1 , · · · , XT

n )T be the design matrix with Xi =

(xi1, · · · ,ximi)T , B = (BT
1 , · · · ,BT

n )T with Bi = (bi1, · · · ,bimi)T , e = (eT1 , · · · , eTn )T

with ei = (ei1, · · · , eimi)T , r = (rT1 , · · · , rTn )T with ri = (ri1, · · · , rimi)T . Denote

ṽ = (vT1 , · · · ,vTn )T with vi = vi ⊗ 1mi , where ⊗ is the Kronecker product and 1mi

is a vector which has mi 1s. Then the model (4.4) can be written as a matrix form

given by

y = Xβββ + Bααα + ṽ + k1e + r ◦
√
k2θe, (4.5)

where ◦ is the Hadamard product, which lets two vectors of the same dimensions

multiply element by element.

The likelihood function of all model parameters is given by

L(ααα, βββ, γγγ, θ,v, e | y,X,Z, t)

∝ |ΣΣΣ|−
1
2 |E|−

1
2 exp

{
− 1

2
(y − µµµ)TE−1(y − µµµ)− 1

2
vTΣΣΣ−1v

}
,

(4.6)

where Z = (z1, · · · , zn)T with zi = (zi1, · · · , ziq)T , E = k2θdiag(eT ), µµµ = Xβββ + Bααα+

ṽ + k1e, and ΣΣΣ = diag(σ2
1, · · · , σ2

n). The representation of the likelihood function

in (4.6) allows us to develop an easy way to construct an efficient Gibbs sampler

algorithm for the posterior sampling in the following section.
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4.3 Posterior inference

Bayesian analysis begins with the prior specifications for the unknown model param-

eters (ααα, βββ, γγγ, θ) in (4.6). For the unknown parameters (ααα, βββ, γγγ), we assume that

they are independently distributed as multivariate normal distributions such that

ααα | φ2 ∼ NK(ααα0, φ
2IK), βββ | θ ∼ Np(βββ0, θBβ), and γγγ ∼ Nq(γγγ0,Bγ), respectively,

where ααα0, βββ0, γγγ0, Bβ, Bγ are the prespecified hyperparameters, and φ2 follows an

inverse Gamma distribution, denoted by φ2 ∼ Inv-Gamma(aφ2 , bφ2), with aφ2 and bφ2

being known positive constants. For the unknown parameter θ, we assume that it

follows an inverse Gamma distribution denoted by θ ∼ Inv-Gamma(aθ, bθ), where aθ,

and bθ are known positive constants.

The joint posterior distribution, in a combination of the likelihood function in (4.6),

the distribution of the latent variable e, and the proposed prior for (ααα, βββ, γγγ, θ) is given

by

p(ααα, βββ, γγγ, θ,v, e | y,X,Z, t)

∝ L(ααα, βββ, γγγ, θ,v, e | y,X,Z, t)p(e | θ)p(ααα | φ2)p(βββ | θ)p(γγγ)p(φ2)p(θ),

which is not recognizable, and thus, it may be prohibitive to directly adopt numerical

techniques to draw Bayesian inference for the unknown parameters. In what follows,
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we first obtain the full conditional distribution of each unknown parameter and then

construct an efficient Gibbs sampler with the Metropolis-Hastings algorithm for the

posterior samplings.

The posterior distributions of each parameter are as follows:

∗ For θ, since eij | θ ∼ exp(θ−1), βββ | θ ∼ Np(βββ0, θBβ), and θ ∼ Inv-

Gamma(aθ, bθ), it follows

p(θ | βββ, ααα, γγγ,v, e,y,X,Z, t)

∝ L(θ | βββ, ααα, γγγ,v, e,y,X,Z, t)p(e | θ)p(βββ | θ)p(θ)

∝ θ−a
?
θ−1 exp

(
−b

?
θ

θ

)
,

(4.7)

where a?θ = 3N+p
2

+ aθ and b?θ = 1
2
(y − µµµ)TE−1

0 (y − µµµ) + 1
2
(βββ − βββ0)TB−1

β (βββ −

βββ0) + eT1N + bθ with E0 = k2diag{eT}.

∗ For φ2, since ααα | φ2 ∼ NK(ααα0, φ
2IK), and φ2 ∼ Inv-Gamma(aφ2 , bφ2), it follows

p(φ2 | ααα) ∝ p(ααα | φ2)p(φ2) ∝ (φ2)
−a?

φ2
−1

exp

(
−
b?φ2

φ2

)
, (4.8)

where a?φ2 = K
2

+ aφ2 and b?φ2 = 1
2
(ααα− ααα0)T (ααα− ααα0)+bφ2 .
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∗ For ααα, since ααα | φ2 ∼ NK(ααα0, φ
2IK), it follows

p(ααα | θ, βββ, γγγ,v, e,y,X,Z, t) ∝ L(ααα | θ, βββ, γγγ,v, e,y,X,Z, t)p(ααα | φ2)

∝ exp

{
−1

2
(ααα− ααα?0)TB?−1

α (ααα− ααα?0)

}
,

(4.9)

where ααα?0 = B?
α((φ2)−1ααα0 + BTE−1(y−Xβββ − ṽ− k1e)) and B?

α = (BTE−1B +

(φ2)−1IK)−1.

∗ For βββ, since βββ | θ ∼ Np(βββ0, θBβ), it follows

p(βββ | θ, ααα, γγγ,v, e,y,X,Z, t) ∝ L(βββ | θ, ααα, γγγ,v, e,y,X,Z, t)p(βββ | θ)

∝ exp

{
−1

2
(βββ − βββ?0)TB?−1

β (βββ − βββ?0)

}
,

(4.10)

where βββ?0 = B?
β(θ−1B−1

β βββ0 + XTE−1(y− ṽ−Bααα−k1e)) and B?
β = (XTE−1X +

θ−1B−1
β )−1.

∗ For v, the conditional posterior is given by

p(v | θ, βββ, ααα, γγγ, e,y,X,Z, t)

∝ exp

{
−1

2
(ṽTE−1ṽ − 2(y −Xβββ −Bααα− k1e)TE−1ṽ + vTΣΣΣ−1v)

}
∝ exp

{
−1

2
(v − v?0)TB?−1

v (v − v?0)

}
,

(4.11)
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where v?0 = B?
vw, B?

v = (A + ΣΣΣ−1)−1 with

A = (k2θ)
−1diag{

m1∑
j=1

e−1
1j , · · · ,

mn∑
j=1

e−1
nj }

and w = (w1, · · · , wn)T with wi = (k2θ)
−1
∑mj

j=1

{
(yij−xTijβββ−bTijααα−k1eij)e

−1
ij

}
.

∗ For e, since eij | θ ∼ Exp(θ), it follows

p(eij | θ, βββ, ααα, γγγ,v,y,X,Z, t) ∝ L(eij | θ, βββ, ααα, γγγ,v,y,X,Z, t)p(eij | θ)

∝ e
− 1

2
ij exp

{
−(a?eeij +

b?eij
eij

)/2

}
,

(4.12)

where a?e =
k21+2k2
k2θ

and b?eij =
(yij−xT

ijβββ−b
T

ijααα−vi)2
k2θ

.

∗ For γγγ, since γγγ ∼ Nq(γγγ0,Bγ), it follows

p(γγγ | θ, βββ, ααα,v, e,y,X,Z, t)

∝ L(γγγ | θ, βββ, ααα,v, e,y,X,Z, t)p(γγγ)

∝ |ΣΣΣ|−
1
2 exp

{
−1

2
vTΣΣΣ−1v − 1

2
(γγγ − γγγ0)TB−1

γ (γγγ − γγγ0)

}
.

(4.13)

According to these conditional posteriors from (4.7) to (4.13), we construct an efficient

Gibbs sampler with the Metropolis-Hastings algorithm for the posterior simulation

summarized as follows.

Step 1: Set up initial values ΦΦΦ(0) = (θ(0), φ2(0)
, ααα(0), βββ(0), γγγ(0)), e(0), and v(0).
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Step 2: For the kth iteration, based on ΦΦΦ(k) = (θ(k), φ2(k)
, ααα(k), βββ(k), γγγ(k)), e(k),

and v(k), update ṽ(k) = ((v
(k)
1 )T , · · · , (v(k)

n )T )T with v
(k)
i = v

(k)
i ⊗1mi ; ΣΣΣ(k) =

diag((σ2
1)(k), · · · , (σ2

n)(k))T and E(k) = k2θ
(k)diag(e(k)).

Step 3: Based on ΦΦΦ(k) = (θ(k), φ2(k)
, ααα(k), βββ(k), γγγ(k)), e(k), and v(k), sample ΦΦΦ(k+1) =

(θ(k+1), φ2(k+1)
, ααα(k+1), βββ(k+1), γγγ(k+1)), e(k+1), and v(k+1) as follows:

(i) Sampling θ(k+1) | βββ(k), ααα(k),v(k), e(k),E(k) from Inv-Gamma(a?θ, b
?
θ),

(ii) Sampling φ2(k+1) | ααα(k) from Inv-Gamma(a?φ2 , b
?
φ2),

(iii) Sampling ααα(k+1) | θ(k+1), φ2(k+1)
, βββ(k),v(k), e(k),E(k) from NK(ααα?0,B

?
α),

(iv) Sampling βββ(k+1) | θ(k+1), ααα(k+1),v(k), e(k), E(k) from Np(βββ?0,B
?
β),

(v) Sampling v(k+1) | θ(k+1), βββ(k+1), ααα(k+1), e(k), γγγ(k),ΣΣΣ(k) from Nn(v?0,B
?
v),

(vi) Sampling e
(k+1)
ij | θ(k+1), βββ(k+1), ααα(k+1),v(k+1) from GIG(1

2
, a?e, b

?
eij), where GIG

represents the generalized inverse Gaussian distribution.

(vii) Sampling γγγ(k+1) | v(k+1) from (4.13) using an efficient Metropolis-Hastings

method in the Appendix C.

Step 4: Repeating Steps 2 and 3 until the specified number of iterations, i.e., k = J .

The posterior sampling algorithm above was conducted in R language and can be

made available upon request to the corresponding author.
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4.4 Simulation study

In this section, we conduct some simulation studies to evaluate the finite sample

performances of the proposed Bayesian quantile semiparametric approach with re-

spect to the different choices of prior information (Subsection 4.4.1) and different

non-standard error distributions (Subsection 4.4.2). All the simulation results were

based on 10,000 iterations with discarding the first 2000 as the burn-in period. There

is no evidence of lack of convergence in MCMC simulation according to the run length

control diagnostic due to Raftery and Lewis [61] and the convergence diagnostic test

statistic (at a significance level of 5%) proposed by Geweke [36].

4.4.1 Quantile regression model with ALD errors

In the simulation study, we let the time related nonparametric part of the model in

(4.1) be g(tij) = sin(2πtij), such that yij = xTijβββ+ g(tij) + vi + k1eij + rij
√
k2θeij, i =

1, 2, · · · , n, j = 1, 2, · · · ,m with m = 4. The observations tij’s are generated from

a uniform [0, 1] distribution, xij is a 3 × 1 vector whose elements are independently

sampled from a standard normal distribution N(0, 1) and βββ = (1,−0.8, 1)T . For the

random effect vi, we consider a log-linear structure of the variance model, such that
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log(σ2
i ) = zTi γγγ with γγγ = (1,−0.5)T and zi = (zi1, zi2)T , where zi1 and zi2 are inde-

pendently sampled from N(0, 1). Then vi is generated from the normal distribution

N(0, σ2
i ). Since rij follows the normal distribution, rij

√
k2θeij ∼ N(0, k2θeij) with

eij generated from the standard exponential distribution with θ = 1, we generate yij

from the normal distribution N(µij, k2θeij) with µij = xTijβββ + g(tij) + vi + k1eij.

In practical application, one may argue that the specifications of the hyperparameters

in the prior distributions could have a large impact on the posterior distributions of the

parameters of interests. We here investigate the sensitivity of the proposed Bayesian

procedure with three different types of the hyperparameter values for βββ0 and γγγ0 as

follows:

Type I: Accurate prior information with βββ0 = (1,−0.8, 1)T and γγγ0 = (1,−0.5)T .

Type II: Inaccurate prior information with βββ0 = 1.5 × (1,−0.8, 1)T and γγγ0 = 1.5 ×

(1,−0.5)T .

Type III: None prior information with βββ0 = (0, 0, 0)T and γγγ0 = (0, 0)T .

Other hyperparameters are set as σ2
γ = 4, aθ = bθ = 1, aφ2 = bφ2 = 1, Bβ = I3, and

Bγ = I2. It deserves mentioning that the prior information can be easily included

for the proposed procedure by specifying different values of the hyperparameters

mentioned above. In addition, we also study the behavior of the proposed Bayesian
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approach with three different sample sizes n = 30, 80, 160 and quantile levels τ =

0.25, 0.5, 0.75. We generate 100 replications from each combination of the above

various settings.

To study the accuracy of estimating the nonparametric function g(·) based on the

cubic B-spline approximation, we depict the true sine curve against its estimated one

in Figure 4.1 and 4.2 under different scenarios. We observe from these figures that the

B-spline method works very well for estimating nonparametric part of the model and

that there is no observable effects of prior information among the above three different

types of the hyperparameters, since all the estimated curves are close to the true sine

curves. More simulation studies with respect to other values of the hyperparameters,

n, and τ have also been conducted, and the conclusions are substantively similar and

are thus not presented here for simplicity.

In Table 4.1, we present the simulation results for the unknown model parameters

θ, β1, β2, β3, γ1, and γ2 in terms of the estimated bias and the mean squared error

(MSE) under different quantiles, sample size, and the three types of prior information.

Some conclusions from this table can be summarized as follows:

1. As one expects, the bias and MSE of all the parameters decrease significantly

under each quantile level as the sample size increases. For instance, there is

no apparent difference between n = 80 and n = 160, which indicates that the
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sample size n = 80 is large enough to obtain accurate estimates under the

considered simulation settings.

2. The Bayesian estimates are quite robust for the specifications of the priors for

the unknown parameters. The bias and MSE of the parameters do not have

distinct difference across the three types of prior information. This indicates

that the estimators converge to a certain level and the initial values of parame-

ters in the proposed sampling algorithm do not affect the accuracy of the point

estimations.

3. The parameter γγγ is related to the variance of the random effect and it has

relatively large bias and MSE compared to other parameters. The hyperpa-

rameter θ always has a small bias regardless of different sample sizes and prior

information.

4. At a specific combination of sample size and prior information, the biases under

different quantiles are reasonably close to each other.

4.4.2 Quantile regression model with non ALD of errors

In this section, in order to check the performance of the proposed model under

different data-generating error distributions, three different non-standard error dis-

tributions are used in the simulation. The semiparametric mixed-effects model is
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yij = xTijβββ + g(tij) + vi + εij, i = 1, 2, · · · , n, j = 1, 2, · · · ,m, where m = 4.

Other simulation settings for generating observations and hyperparameters are the

same as section 4.1. Sample size is set to be n = 80, three different quantile levels

τ = 0.25, 0.5, 0.75 are applied. For the prior information, we set βββ0 = (0, 0, 0)T and

γγγ0 = (0, 0)T , which are noninformative priors.

Data are generated under the following three distributions for the error term:

Type A : εij ∼ N(µ, 4), with µ chosen such that the τth quantile is 0.

Type B : εij ∼ Laplace(µ, 2), with µ chosen such that the τth quantile is 0.

Type C : εij ∼ 0.3N(µ+ 1, 1) + 0.7N(µ, 4), with µ chosen such that the τth quantile

is 0.

By comparing Table 4.2 with the block of Type III in Table 4.1, the difference is

negligible. Under the mixture normal distribution of error, the MSE’s are smaller for

all the parameters, particularly for 0.25 and 0.75 quantiles. One noteworthy feature

is that the mixture normal distribution has a much better estimate than the ones

under other distributions for the variance parameter γγγ when n is small (e.g., n = 30).

Overall, the proposed model is relatively robust to the non-ALD of errors.
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4.5 Real data application: the multi-center AIDS

cohort study

In this section, we apply our Bayesian quantile mixed-effects model to the widely

used MultiCenter AIDS Cohort Study (MACS) data. MACS is an ongoing study of

HIV infection among homosexual men, initialed in 1984 at four institutions: UCLA,

Northwestern university in Chicago, the university of Pittsburgh, and Johns Hopkins

university in Baltimore. The latest dataset involves more than 7,000 gay men. In this

paper, the data is collected from 1984 to 1991, containing 283 HIV positive gay men.

This dataset has been widely used to study the mean CD4 percentage depletion over

time and the effects of other physical status, including age of the patient at the start

of the trial, smoking status and the post-infection CD4 percentage. Since the trend

of CD4 depletion may be very different between high CD4 percentage patients and

low CD4 percentage patients, this motivates us to apply a quantile regression model

to investigate such groups of patients.

In the following Bayesian quantile regression model, yij is the observation of CD4

percentage at the current visit, xij1 is the smoking status (0 for non-smoker and 1

for smoker), xij2 is the age of the patient at the start of the trial and xij3 is the

post-infection CD4 percentage. To eliminate the intercept, xij = (xij1, xij2, xij3)T has
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been centered. βββ = (β1, β2, β3)T is the parameters for the linear part of the model.

We assume the variance of the random effect vi has a linear relationship with two

explanatory variables zi1 = 1
mi

∑mi
j=1 xij1 and zi2 = 1

mi

∑mi
j=1 xij3. τ is the quantile

such that k1 = 1−2τ
τ(1−τ)

and k2 = 2
τ(1−τ)

.



yij = xTijβββ + g(tij) + vi + k1eij + rij
√
k2θeij

eij ∼ Exp(θ−1)

rij ∼ N(0, 1)

vi ∼ N(0, σ2
i )

σ2
i = γ1zi1 + γ2zi2

i = 1, 2, · · · , 283, j = 1, 2, · · · ,mi

The main objective of this study is to figure out the relationship between mean CD4

percentage g(tij) and time tij at different quantiles. The Gibbs sampling algorithm is

used with 55,000 iterations. All hyperparameters are set to be small and the initial

value of all unknown parameters are noninformative of 0 value. In the Metropolis-

Hastings procedure of sampling γγγ, σ2
γ is set to 4, such that approximate acceptance

rates for γγγ is 35%. 5 different quantiles are engaged in our analysis, which are 5%,

lower quantile, median, upper quantile and 95%. The Bayesian estimates (BST) of

θ, φ2, βββ, γγγ and their corresponding standard deviation estimates (SD) are summa-

rized in the Table 4.3. All parameters have small standard deviations.
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Figure 4.3 represents the estimated CD4 depletion trends under 5 different quantiles,

the scattered data points are also plotted with the 5 curves. As predicted, the CD4

depletion trends are indeed distinct among diverse groups of patients. For the patients

who have a high CD4 level around 50, their CD4 percentage almost get back to their

original level after 6 years. The other patients’ CD4 percentage decreases quickly

after infection, however it increases a little bit at the end. This indicates drug usage

can be based on the patients’ starting CD4 percentage.

4.6 Discussion

In this study, we have developed the Bayesian quantile regression for semiparametric

mixed effect model. The proposed model is first checked by the simulation model

consisting of both linear and nonlinear part. The model has a good performance for

estimating the linear parameters and fitting the sine curves. While for the parameters

in the variance model, it is somewhat sensitive to the sample size, the estimated

variance parameters have relative large bias and MSE when the sample size is small.

For all other parameters, the model is quite robust to the prior information and

sample size.

Eventually, the proposed model is applied to the famous MACS data, which has been

widely analyzed by many authors. Most authors have adopted mean model for this
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dataset, such as Fan and Li [30] and Zhao and Xue [75]. The median model in this

paper can be compared with their mean model. The middle curve in Figure 4.3 is

indeed similar to Zhao and Xue [75]’s result.
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Figure 4.1: The true sine curve versus the estimated curve when n = 80
and quantile τ = 0.5.
Type I (left panel), Type II (middle panel), Type III (right panel)
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Figure 4.2: The true sine curve versus the estimated curve when n = 160
and quantile τ = 0.25.
Type I (left panel), Type II (middle panel), Type III (right panel)
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Table 4.1
BIAS and MSE (in parenthesis) of the Bayesian estimated parameters

under AL error distributions.

n = 30 n = 80 n = 160
Type Par τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

I θ −0.0120 −0.0052 0.0070 −0.0066 −0.0058 0.0047 −0.0027 0.0014 −0.0060
(0.1009) (0.0954) (0.0997) (0.0681) (0.0554) (0.0584) (0.0406) (0.0469) (0.0388)

β1 −0.0292 0.0389 −0.0033 0.0186 0.0005 0.0055 −0.0110 −0.0097 −0.0110
(0.0670) (0.0509) (0.0671) (0.0671) (0.0196) (0.0267) (0.0126) (0.0081) (0.0155)

β2 −0.0264 −0.0182 −0.0261 0.0157 −0.0177 0.0090 −0.0034 −0.0038 −0.0009
(0.0926) (0.0493) (0.0850) (0.0182) (0.0182) (0.0267) (0.0122) (0.0075) (0.0146)

β3 0.0442 0.0383 −0.0158 0.0139 0.0201 −0.0154 0.0139 0.0152 0.0177
(0.0631) (0.0479) (0.0610) (0.0269) (0.0244) (0.0324) (0.0119) (0.0092) (0.0122)

γ1 −0.0893 −0.0942 −0.0900 −0.0364 −0.0408 −0.1162 −0.0644 −0.0065 −0.0213
(0.1575) (0.1454) (0.1915) (0.1024) (0.0749) (0.1284) (0.0559) (0.0339) (0.0499)

γ2 0.0015 0.0313 0.0981 0.0207 0.0226 0.0358 0.0593 0.0254 0.0139
(0.1468) (0.1433) (0.1753) (0.0839) (0.0688) (0.1168) (0.0772) (0.0520) (0.0589)

II θ −0.0087 −0.0030 0.0059 −0.0038 −0.0026 −0.0024 0.0026 −0.0049 −0.0065
(0.0840) (0.1052) (0.0897) (0.0611) (0.0629) (0.0546) (0.0400) (0.0425) (0.0433)

β1 0.0265 0.0484 0.0432 −0.0080 0.0228 −0.0007 −0.0113 0.0187 −0.0015
(0.0635) (0.0505) (0.0570) (0.0312) (0.0201) (0.0176) (0.0129) (0.0113) (0.0123)

β2 −0.0411 0.0484 0.0040 −0.0012 −0.0085 −0.0123 0.0159 −0.0079 −0.0195
(0.0693) (0.0693) (0.0655) (0.0287) (0.0199) (0.0282) (0.0159) (0.0080) (0.0148)

β3 0.0406 0.0220 0.0307 −0.0085 0.0036 0.0291 0.0025 0.0005 0.0188
(0.0841) (0.0507) (0.0676) (0.0206) (0.0181) (0.0293) (0.0134) (0.0089) (0.0089)

γ1 0.0621 0.0383 0.0893 0.0396 −0.0371 −0.0476 −0.0756 0.0191 −0.0602
(0.1373) (0.1458) (0.1301) (0.1004) (0.1096) (0.0876) (0.0733) (0.0438) (0.0565)

γ2 −0.0817 0.0101 −0.0500 0.0275 −0.0073 0.0253 0.0254 0.0124 0.0015
(0.1657) (0.1585) (0.1790) (0.1043) (0.0946) (0.1285) (0.0546) (0.0513) (0.0646)

III θ 0.0133 0.0054 0.0052 0.0066 −0.0017 0.0070 0.0082 −0.0029 0.0008
(0.0902) (0.0954) (0.0875) (0.0615) (0.0555) (0.0589) (0.0385) (0.0423) (0.0438)

β1 −0.0534 −0.0554 −0.1049 −0.0060 −0.0137 −0.0254 −0.0077 −0.0179 −0.0129
(0.0661) (0.0460) (0.0911) (0.0209) (0.0224) (0.0256) (0.0131) (0.0087) (0.0107)

β2 0.0289 0.0295 0.0555 0.0096 0.0385 0.0148 0.0118 0.0079 0.0185
(0.0600) (0.0457) (0.0641) (0.0295) (0.0196) (0.0175) (0.0116) (0.0103) (0.0107)

β3 −0.0658 −0.0488 −0.1025 −0.0290 −0.0215 −0.0144 −0.0238 −0.0240 −0.0113
(0.0620) (0.0662) (0.0936) (0.0342) (0.0233) (0.0251) (0.0156) (0.0112) (0.0107)

γ1 −0.3904 −0.3864 −0.4605 −0.2155 −0.1535 −0.1697 −0.0769 −0.0903 −0.1054
(0.3888) (0.3222) (0.4177) (0.1666) (0.1105) (0.1436) (0.0640) (0.0470) (0.0619)

γ2 0.2749 0.2181 0.2131 0.0822 0.0510 0.0975 0.0309 0.0627 0.0771
(0.0619) (0.2544) (0.2342) (0.1289) (0.0997) (0.1173) (0.0548) (0.0548) (0.0651)
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Table 4.2
BIAS and MSE (in parenthesis) of the Bayesian estimated parameters

under non-AL error distributions.

n = 30 n = 80 n = 160
Type Par τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

A β1 −0.0207 −0.0271 −0.0327 −0.0361 −0.0098 −0.0328 −0.0115 0.0019 −0.0274
(0.0388) (0.0464) (0.0469) (0.0190) (0.0154) (0.0181) (0.0092) (0.0071) (0.0109)

β2 0.0314 0.0334 0.0319 0.0124 0.0136 0.0274 0.0012 0.0024 0.0105
(0.0481) (0.0333) (0.0537) (0.0139) (0.0157) (0.0176) (0.0117) (0.0083) (0.0083)

β3 −0.0390 −0.1331 −0.0460 −0.0201 −0.0200 −0.0246 −0.0074 −0.0181 −0.0111
(0.0462) (0.0549) (0.0619) (0.0184) (0.0159) (0.0142) (0.0096) (0.0084) (0.0115)

γ1 −0.3511 −0.3409 −0.3111 −0.1329 −0.1749 −0.1490 −0.1109 −0.0847 −0.0570
(0.3303) (0.3538) (0.3077) (0.1027) (0.0985) (0.0859) (0.0496) (0.0409) (0.0528)

γ2 0.1616 0.1717 0.1973 0.1402 0.0446 0.0677 0.0557 0.0144 −0.0239
(0.2122) (0.1398) (0.2131) (0.0819) (0.0736) (0.0672) (0.0587) (0.0386) (0.0573)

B β1 −0.0546 −0.0319 −0.0635 −0.0144 −0.0002 −0.0141 −0.0196 −0.0136 −0.0075
(0.0792) (0.0580) (0.0706) (0.0216) (0.0208) (0.0309) (0.0153) (0.0097) (0.0125)

β2 0.0478 0.0264 0.0322 0.0373 0.0178 −0.0082 0.0071 0.0136 0.0273
(0.0874) (0.0447) (0.0715) (0.0231) (0.0154) (0.0281) (0.0154) (0.0090) (0.0135)

β3 −0.0814 −0.0965 −0.1166 −0.0289 0.0005 −0.0160 −0.0097 −0.0058 −0.0091
(0.0781) (0.0876) (0.1116) (0.0206) (0.0186) (0.0259) (0.0141) (0.0125) (0.0131)

γ1 −0.4020 −0.3837 −0.4462 −0.1167 −0.1514 −0.1454 −0.1393 −0.0552 −0.0896
(0.4017) (0.3499) (0.3815) (0.1201) (0.1158) (0.1099) (0.1122) (0.0441) (0.0789)

γ2 0.2355 0.1080 0.1945 0.1040 0.1044 0.0913 0.0970 0.0391 0.0006
(0.2878) (0.1769) (0.3284) (0.1139) (0.0915) (0.1163) (0.1020) (0.0619) (0.0716)

C β1 −0.0438 −0.0344 −0.0562 −0.0066 −0.0194 −0.0144 −0.0165 −0.0110 −0.0108
(0.0308) (0.0253) (0.0270) (0.0080) (0.0066) (0.0081) (0.0053) (0.0053) (0.0038)

β2 0.0260 0.0415 0.0357 0.0226 0.0010 0.0100 0.0047 −0.0041 −0.0071
(0.0223) (0.0279) (0.0312) (0.0087) (0.0083) (0.0094) (0.0055) (0.0037) (0.0047)

β3 −0.0767 −0.0432 −0.0615 −0.0045 0.0040 −0.0126 −0.0019 −0.0031 −0.0152
(0.0309) (0.0233) (0.0245) (0.0072) (0.0064) (0.0092) (0.0066) (0.0046) (0.0054)

γ1 −0.1808 −0.2185 −0.1716 −0.0950 −0.0337 −0.1084 −0.0825 −0.0366 −0.0885
(0.1779) (0.1750) (0.2245) (0.0603) (0.0497) (0.0641) (0.0344) (0.0285) (0.0383)

γ2 0.0914 0.0746 0.0587 0.0182 0.0400 0.0670 0.0260 0.0380 0.0475
(0.1283) (0.1305) (0.1276) (0.0420) (0.0402) (0.0534) (0.0295) (0.0326) (0.0333)

Table 4.3
Bayesian estimates of parameters

Para τ = 0.05 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.95
-meter EST SD EST SD EST SD EST SD EST SD
θ 13.2085 0.4839 4.4710 0.1204 4.1962 0.0993 4.5024 0.1200 13.2236 0.4842
β1 2.0488 1.6893 −0.7739 0.7027 0.2189 0.6922 1.5626 0.6835 −0.7623 1.7094
β2 0.0355 0.1134 −0.1403 0.0463 −0.1980 0.0506 −0.1137 0.0436 0.0135 0.1074
β3 0.1562 0.1046 0.4223 0.0454 0.4630 0.0464 0.4889 0.0384 0.4189 0.0988
γ1 −0.0675 0.9112 −11.8339 0.3957 −12.1509 0.3400 −11.3330 0.3936 −0.1292 0.9174
γ2 0.0351 0.1116 0.0265 0.0167 0.0161 0.0142 0.0085 0.0164 −0.0505 0.1049
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Figure 4.3: The mean CD4 percentage g(tij) vs time tij at different quan-
tiles.
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Chapter 5

Future Work

While the Bayesian hypothesis testing and point estimation problems of ICC have

been widely studied, there are still loads of future studies that need to be conducted.

In Chapter 2, we derive the Bayes factor based on the divergence-based priors in

linear models. The proposed method could be extended to other statistical models,

such as the network autocorrelation model discussed in the following section.

For the semiparametric models in Chapter 4, the parameters are estimated from their

posterior distributions through Markov Chain Monte Carlo algorithm. It is of partic-

ular interest to conduct variable selection to identify some important predictors that

are contributive to the response variable. Variable selection will not only significantly
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shorten training times, but also boost computational efficiency. This observation mo-

tivates us to investigate problem of variable section in Bayesian quantile regression

for semiparametric mixed-effect models.

5.1 Bayes factor based on the divergence-based

priors for the network autocorrelation model

The network autocorrelation model is expressed as

y = ρWy + Xβββ + εεε, (5.1)

where y is an n× 1 (k ≥ 2) vector for values of a dependent variable, X is an n× k

matrix of values for the n actors on k independent variables, and βββ is a k×1 vector of

unknown regression coefficients. We assume that the random error εεεi
iid∼ N(0n, σ

2In),

where
iid∼ stands for “independent and identically distributed”, 0n is an n × 1 vector

of zeros and In being an n× n identity matrix. Furthermore, W is an n× n weight

matrix representing social ties in a network, with wij denoting the degree to which

yi depends on yj (i, j = 1, 2, · · · , n). The key parameter ρ is referred as the network

autocorrelation, which quantifies the social influence for given y, W and X.

The frequentist approach for testing H1 : ρ = 0 versus H2 : ρ 6= 0 is the significance
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tests, such as the likelihood ratio test. The decision rule is to compare the p-value with

a prespecified significance level α, whereas it may not be able to evaluate evidence

in favor of the null hypothesis as the Bayesian approach. This observation motivates

us to consider the hypothesis testing problem from a Bayesian perspective. Dittrich

et al. [27] proposed the Bayes factors based on empirical informative prior and uniform

prior and obtained some interesting results through simulation studies and real-data

applications. We consider the Bayes factors based on the divergence-based (DB)

priors for the network autocorrelation coefficient ρ.

We observe from Doreian [29] that the probability density function (pdf) of y is given

by

f(y | ρ, σ2, βββ) = (2πσ2)−
n
2 | det(Aρ) | exp

{
− 1

2σ2
(Aρy − Xβββ)T (Aρy − Xβββ)

}
,

where Aρ = In − ρW. The condition of a nonsingular Aρ is ρ ∈
(
λ−1

(n), λ
−1
(1)

)
, where

λ(1) ≤ λ(2) ≤ · · · ≤ λ(n) are the ordered eigenvalues of W; see Hepple [42].

As illustrated in Section 2.2.1, derivation of the DB priors requires the parameters to

be orthogonal. First we need to translate (ρ, βββ, σ2) to be the orthogonal parameters

(θ1 = ρ, θ2, θ3) by letting the off-diagonal elements of the Fisher information matrix

equaling 0.

The hypothesis testing can be equivalently expressed as the model selection problem
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of the two competing models given by

M1 : f1(y | ννν) = f(y | 0, ννν) versus M2 : f2(y | θ1, ννν) = f(y | θ1, ννν). (5.2)

where ννν = (θ2, θ3). The Bayes factor (BF) in favor of M2 and against M1 is defined

as

BF21 =
p(y |M2)

p(y |M1)
=

∫
f2(y | θ1, ννν)πD(θ1, ννν) dθ1 dννν∫

f1(y | ννν)πN(ννν) dννν
, (5.3)

where πN(ννν) is a noninformative prior and πD(θ1, ννν) ∝ πD(θ1 | ννν)πN(ννν) with πD(θ1 |

ννν) being the conditional DB prior.

In order to derive the DB priors, we first find out the KL divergence between the two

models 5.2 and acquire the sum-DB measure and the min-DB measure, respectively.

By following Definition 2.2.1, it is not difficult to derive the conditional DB prior

πD(θ1 | ννν). Finally, by integrating ννν out in 5.3, we obtain the Bayes factors based

on the sum and min-DB priors. In ongoing work, we compare the performance of

the proposed Bayes factors under the DB priors and the ones based on empirical

informative prior and uniform prior due to Doreian [29]. After extensive simulations

studies, the results will be reported elsewhere.
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5.2 Bayesian variable selection for the semipara-

metric mixed-effect models

Since Yu and Moyeed [70] proposed Bayesian quantile regression by employing the

asymmetric Laplace distribution (ALD) for the error term, many researchers studied

variable selection for Bayesian quantile regression, such as Koenker and Machado

[49], Yu et al. [69], Yuan and Lin [71], and Alhamzawi and Yu [3]. More recently,

Zhang et al. [74] developed Bayesian variable selection methods in semi-parametric

models in the framework of partially linear Gaussian and problit regressions. We

observe that most of Bayesian procedures for variable selection in quantile regression

models consider the specification of priors independent of quantiles, even though the

parameter values could vary with quantiles under consideration. This observation

motivates us to develop a quantile dependent prior for regression coefficients that is

as informative as possible. In ongoing work, we plan to develop a quantile dependent

prior for the regression coefficients and conduct the problem of Bayesian variable

selection in semiparametric mixed-effects double regression models.

For the variable selection problem, we could utilize indicator variables for variable

inclusion and elimination, see Smith and Kohn [63], Kuo and Mallick [54] and Liang
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et al. [56] for inference. Other Bayesian variable selection methods including stochas-

tic search variable selection (SSVS) (Yi et al. [68] and Brown et al. [18]), reversible

jump MCMC (Green [39]) and composite model space (Godsill [38] and Fang et al.

[31]) could be considered as well. These will be investigated in the future.
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Appendix A

Proofs of Theorems from Chapter

2

A.1 Proof of Proposition 1

For ΣΣΣ = (1− θ1)−(k−1)/k
(
1 + (k − 1)θ1

)−1/k
W, it is easy to show that |ΣΣΣ| = 1,

tr(ΣΣΣ) = (1− θ1)−(k−1)/k
(
1 + (k − 1)θ1

)−1/k
tr(W)

= nk(1− θ1)−(k−1)/k
(
1 + (k − 1)θ1

)−1/k
, and

tr(ΣΣΣ−1) = (1− θ1)(k−1)/k
(
1 + (k − 1)θ1

)1/k
n tr(V−1)

= nk(1− θ1)−1/k
(
1 + (k − 1)θ1

)−(k−1)/k(
1 + (k − 2)θ1

)
.
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We observe from model (2.7) that the pdf of y under M1 is given by

f1(y | θ0, θ2, θθθ3) = (2π)−
kn
2 | θ−1

2 Ink|−
1
2 exp

{
− θ2

2
(y −Xθθθ3)T (y −Xθθθ3)

}
,

and that the pdf of y under M2 is given by

f2(y | θ1, θ2, θθθ3) = (2π)−
kn
2 | θ−1

2 ΣΣΣ|−
1
2 exp

{
− θ2

2
(y −Xθθθ3)TΣΣΣ−1(y −Xθθθ3)

}
.

The direct KL divergence between two models M1 and M2, denoted by KL[θ0 : θ1], is

given by

KL[θ0 : θ1] =

∫
log

f2(y | θ1, θ2, θθθ3)

f1(y | θ0, θ2, θθθ3)
f2(y | θ1, θ2, θθθ3)dy

=− 1

2
log | ΣΣΣ | −θ2

2
tr
[
(ΣΣΣ−1 − Ink)(θ

−1
2 ΣΣΣ)

]
=
nk

2

[
(1− θ1)−(k−1)/k

(
1 + (k − 1)θ1

)−1/k − 1
]
.

Similarly, the KL divergence between two models M2 and M1, denoted by KL[θ1 : θ0],

is given by

KL[θ1 : θ0] =

∫
log

f1(y | θ0, θ2, θθθ3)

f2(y | θ1, θ2, θθθ3)
f1(y | θ0, θ2, θθθ3)dy

=
1

2
log | ΣΣΣ | −θ2

2
tr
[
(Ink − ΣΣΣ−1)(θ−1

2 Ink)
]

=
nk

2

[
(1− θ1)−1/k

(
1 + (k − 1)θ1

)−(k−1)/k(
1 + (k − 2)θ1

)
− 1
]
.
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The sum-DB measure in (2.11) is

DS[θ0, θ1] =KL[θ0 : θ1] + KL[θ1 : θ0]

=
nk

2

[
(1− θ1)−(k−1)/k

(1 + (k − 1)θ1)1/k
+

(1− θ1)−1/k(1 + (k − 2)θ1)

(1 + (k − 1)θ1)(k−1)/k
− 2

]
,

and the min-DB measure in (2.12) is

DM [θ0, θ1] =2×min{KL[θ0 : θ1], KL[θ1 : θ0]

=2×
[
KL[θ1 : θ0]I(θ1 ≥ 0) + KL[θ0 : θ1]I(θ1 < 0)

]
=nk

[
(1− θ1)−1/k

(
1 + (k − 1)θ1

)−(k−1)/k(
1 + (k − 2)θ1

)
I(θ1 ≥ 0)

+ (1− θ1)−(k−1)/k
(
1 + (k − 1)θ1

)−1/k
I(θ1 < 0)− 1

]
.

Then, we follow Definition 2.2.1 to derive the conditional DB priors as follows:

Given that the number of data points is nk (y is nk× 1), we set the effective sample
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size n∗ = nk. For the sum-DB prior, when k ≥ 2 and q ≥ 0, it follows

cS(q) =

∫
θ1

(1 +D
S
[θ0, θ1])−q πN(θ1 | θ2, θθθ3)dθ1

=

∫
θ1

(1 +DS[θ0, θ1]/n∗)−q (1− θ1)−1
(
1 + (k − 1)θ1

)−1
dθ1

=2q

∫
1

− 1
k−1

(1− θ1)q(k−1)/k

(1 + (k − 1)θ1)−q/k

[
1 +

(1− θ1)(k−2)/k(1 + (k − 2)θ1)

(1 + (k − 1)θ1)(k−2)/k

]−q
dθ1

≤

∫
1

− 1
k−1

(1− θ1)q−q/k

(1 + (k − 1)θ1)−q/k
dθ1

≤

∫
1

− 1
k−1

(
1 + (k − 1)θ1

)q
dθ1 <∞,

thus, qS = inf{q ≥ 0 : cS(q) <∞} = 0, qS∗ = qS + 2−1 = 2−1, which provides

πS(θ1 | θ2, θθθ3) =c−1
S (qS∗ )(1 +D

S
[θ0, θ1])−q

S
∗ πN(θ1 | θ2, θθθ3)

=

√
2

cS

[
(1− θ1)1/k+1

(1 + (k − 1)θ1)1/k−2
+

(1− θ1)−1/k+2(1 + (k − 2)θ1)

(1 + (k − 1)θ1)−1/k−1

]− 1
2

,

where

cS = cS(qS∗ )

=
√

2

∫
1

− 1
k−1

[
(1− θ1)1/k+1

(1 + (k − 1)θ1)1/k−2
+

(1− θ1)−1/k+2(1 + (k − 2)θ1)

(1 + (k − 1)θ1)−1/k−1

]− 1
2

dθ1.
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For the conditional min-DB prior, when k ≥ 2 and q ≥ 0, it follows

cM(q) =

∫
θ1

(1 +D
M

[θ0, θ1])−q πN(θ1|θ2, θθθ3)dθ1

=

∫
θ1

(1 +DM [θ0, θ1]/n∗)−q (1− θ1)−1
(
1 + (k − 1)θ1

)−1
dθ1

=

∫ 1

− 1
k−1

[
(1− θ1)q/k−1

(
1 + (k − 1)θ1

)−q/k+q−1(
1 + (k − 2)θ1

)−q
I(θ1 ≥ 0)

+ (1− θ1)−q/k+q−1
(
1 + (k − 1)θ1

)q/k−1
I(θ1 < 0)

]
dθ1.

Now we prove cM(q) <∞ if q > 0. When θ1 ∈ (−(k − 1)−1, 0), we have

cM(q) =

∫ 0

− 1
k−1

(1− θ1)−q/k+q−1
(
1 + (k − 1)θ1

)q/k−1
dθ1

≤
∫ 0

− 1
k−1

C1

(
1 + (k − 1)θ1

)q/k−1
dθ1 <∞ (C1 is a constant),

since the function f(θ1) = (1− θ1)−q/k+q−1 is continuous on [−(k− 1)−1, 0], it has an

upper bound (C1). Thus, the integral is finite if q/k − 1 > −1.

When θ1 ∈ [0, 1), we have

cM(q) =

∫ 1

0

(1− θ1)q/k−1
(
1 + (k − 1)θ1

)−q/k+q−1(
1 + (k − 2)θ1

)−q
dθ1

≤
∫ 1

0

C2(1− θ1)q/k−1dθ1 <∞ (C2 is a constant),

since the function f(θ1) =
(
1 + (k − 1)θ1

)−q/k+q−1(
1 + (k − 2)θ1

)−q
is continuous on
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[0, 1], it has an upper bound (C2). Thus, the integral is finite if q/k − 1 > −1.

Consequently, qM = inf{q > 0 : cM(q) <∞} = 0, qM∗ = qM + 2−1 = 2−1, and

πM(θ1 | θ2, θθθ3) =c−1
M (qM∗ )(1 +D

M
[θ0, θ1])−q

M
∗ πN(θ1|θ2, θθθ3)

=c−1
M

[
(1− θ1)

1−2k
2k

(
1 + (k − 1)θ1

)− k+1
2k
(
1 + (k − 2)θ1

)− 1
2 I(θ1 ≥ 0)

+ (1− θ1)−
k+1
2k

(
1 + (k − 1)θ1

) 1−2k
2k I(θ1 < 0)

]
,

where

cM = cM(qM∗ ) =

∫ 1

− 1
k−1

[
(1− θ1)

1−2k
2k

(
1 + (k − 1)θ1

)− k+1
2k
(
1 + (k − 2)θ1

)− 1
2 I(θ1 ≥ 0)

+ (1− θ1)−
k+1
2k

(
1 + (k − 1)θ1

) 1−2k
2k I(θ1 < 0)

]
dθ1,

leading to the proof of Proposition 1.

A.2 Proof of Theorem 1

We observe from equation in (2.15) that the BF associated with the sum-DB prior

can be written as

BFS21 =

∫∫∫
f2(y | θ1, θ2, θθθ3)πS(θ1 | θ2, θθθ3)πS(θ2, θθθ3) dθ1 dθ2 dθθθ3∫∫

f1(y | θ0, θ2, θθθ3)πS(θ2, θθθ3) dθ2 dθθθ3

=
mS

2 (y)

mS
1 (y)

,
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where f1(y | θ0, θ2, θθθ3) and f2(y | θ1, θ2, θθθ3) are the pdf’s of two competing models

in (2.7), πS(θ2, θθθ3) ∝ θ−1
2 and πS(θ1 | θ2, θθθ3) is the conditional sum-DB prior in

Proposition 1. Thus, the denominator part is given by

mS
1 (y) =

∫∫
f1(y | θ0, θ2, θθθ3)πS(θ2, θθθ3) dθ2 dθθθ3

=π
p−nk

2 Γ
(nk − p

2

)
| XTX |−

1
2

[
yT (Ink −H1)y

]−nk−p
2 ,

where H1 = X(XTX)−1XT . The numerator part is given by

mS
2 (y) =

∫∫∫
f2(y | θ1, θ2, θθθ3)πS(θ1 | θ2, θθθ3)πS(θ2, θθθ3) dθ1 dθ2 dθθθ3

=π
p−nk

2 Γ
(nk − p

2

)
c−1
S

∫ 1

− 1
k−1

hS(θ1)dθ1,

where cS is defined in Proposition 1 and

hS(θ1) =
√

2

[
(1− θ1)1/k+n(k−1)+1

(1 + (k − 1)θ1)1/k−n−2
+

(1− θ1)−1/k+n(k−1)+2(1 + (k − 2)θ1)

(1 + (k − 1)θ1)−1/k−n−1

]− 1
2

× |XTW−1X|−
1
2

[
yT (W−1 −H2)y

]−nk−p
2 ,

with H2 = W−1X(XTW−1X)−1XTW−1, W = In⊗V and V = (1− θ1)Ik + θ1Jk. It

can be easily shown that

BFS21 =
mS

2 (y)

mS
1 (y)

= c−1
S |X

TX|
1
2

[
yT (Ink −H1)y

]nk−p
2

∫ 1

− 1
k−1

hS(θ1)dθ1.
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Similarly, the BF based on the min-DB prior is given by

BFM21 =

∫∫∫
f2(y | θ1, θ2, θθθ3)πM(θ1 | θ2, θθθ3)πM(θ2, θθθ3) dθ1 dθ2 dθθθ3∫∫

f1(y | θ0, θ2, θθθ3)πM(θ2, θθθ3) dθ2 dθθθ3

=
mM

2 (y)

mM
1 (y)

,

where πM(θ2, θθθ3) ∝ θ−1
2 and πM(θ1 | θ2, θθθ3) is the conditional min-DB prior in Propo-

sition 1. Thus, the denominator part is given by

mM
1 (y) = mS

1 (y) = π
p−nk

2 Γ
(nk − p

2

)
| XTX |−

1
2

[
yT (Ink −H1)y

]−nk−p
2 .

Integrating with respect to (θ1, θ2, θθθ3), the numerator part is given by

mM
2 (y) = π

p−nk
2 Γ

(nk − p
2

)
c−1
M

∫ 1

− 1
k−1

hM(θ1)dθ1,

where cM is defined in Proposition 1 and

hM(θ1) =
[
(1− θ1)

1
2k

+n−nk−2
2

(
1 + (k − 1)θ1

)− 1
2k
−n+1

2
(
1 + (k − 2)θ1

)− 1
2 I(θ1 ≥ 0)

+ (1− θ1)−
1
2k

+n−nk−1
2

(
1 + (k − 1)θ1

) 1
2k
−n+2

2 I(θ1 < 0)
]

× |XTW−1X|−
1
2

[
yT (W−1 −H2)y

]−nk−p
2 .

Thus, simple algebra shows that the resulting BF is given by

BFM21 =
mM

2 (y)

mM
1 (y)

= c−1
M |X

TX|
1
2

[
yT (Ink −H1)y

]nk−p
2

∫ 1

− 1
k−1

hM(θ1)dθ1.
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This completed the proof of Theorem 1.
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Appendix B

Proofs of Theorems from Chapter

3

In this appendix, we prove that the posterior distribution is proper under πR in (3.5),

since the case for πJ is exactly the same and thus omitted for simplicity. We first

provide a very useful lemma, which plays an important role in determining the tail

behavior of the key terms of the marginal posterior distribution πR(ρ | D).

Lemma 1 The marginal posterior distribution πR(ρ | D) in (3.6) is a continuous

function in
(
−1/(k − 1), 1

)
and their terms are such that |X′ΦΦΦ−1X|−1/2 = O((1 −

ρ)p/2) and S(ρ) = O((1−ρ)−1) as ρ→ 1, and such that |X′ΦΦΦ−1X|−1/2 = O((1+ρ(k−

1))p/2) and S(ρ) = O((1 + ρ(k − 1))−1) as ρ→ −1/(k − 1).
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Proof. Direct inspection shows that πR(ρ | D) in (3.6) is a continuous function in(
−1/(k − 1), 1

)
. We consider the behavior of its two key terms as (i) ρ→ 1 and (ii)

ρ→ −1/(k − 1).

(i) Let η1 = ρ/(1− ρ), which tends to infinity as ρ→ 1. Given that ΣΣΣ = (1− ρ)Ik +

ρJk = (1− ρ)
[
Ik + ρ/(1− ρ)Jk

]
, we have

ΣΣΣ−1 = (1− ρ)−1

(
Ik −

η1

1 + η1k
Jk

)
.

Then it follows that

X′ΦΦΦ−1X =
n∑
i=1

X′iΣΣΣ
−1Xi = (1− ρ)−1

n∑
i=1

(
X′iXi −

η1X
′
iJkXi

1 + η1k

)
. (B.1)

As η1 →∞, we have

∣∣∣∣ n∑
i=1

(
X′iXi −

η1X
′
iJkXi

1 + η1k

)∣∣∣∣= O(1),

which show that |X′ΦΦΦ−1X| = O((1− ρ)−p), and thus

|X′ΦΦΦ−1X|−1/2 = O((1− ρ)p/2).

In addition, as η1 → ∞, we observe that each element of the inverse matrix in the

right hand of Equation (B.1) becomes O(1). With a little abuse of notation, as
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η1 →∞, we denote

[ n∑
i=1

(
X′iXi −

η1X
′
iJkXi

1 + η1k

)]−1

= O(1),

which shows that (X′ΦΦΦ−1X)−1 = O((1 − ρ)). Note also that ΦΦΦ−1 = In ⊗ ΣΣΣ−1 =

(1− ρ)−1In ⊗
(
Ik − η1

1+η1k
Jk
)

= (1− ρ)−1ΦΦΦ−1
1 , where

ΦΦΦ−1
1 = In ⊗

(
Ik −

η1

1 + η1k
Jk

)
→ In ⊗

(
Ik −

1

k
Jk

)
,

as η1 → ∞. Also, (X′ΦΦΦ−1
1 X)−1 = (1 − ρ)−1(X′ΦΦΦ−1X)−1 = O(1). Thus, as ρ → 1, it

follows

S(ρ) = Y′
(
ΦΦΦ−1 − ΦΦΦ−1X(X′ΦΦΦ−1X)−1X′ΦΦΦ−1

)
Y

=
1

1− ρ
Y′
(
ΦΦΦ−1

1 − ΦΦΦ−1
1 X(X′ΦΦΦ−1

1 X)−1X′ΦΦΦ−1
1

)
Y

= O
(
(1− ρ)−1

)
.

(ii) Let η2 = ρ/
(
1 + ρ(k− 1)

)
, which tends to infinity as ρ→ −1/(k− 1). Given that

ΣΣΣ−1 = (1− ρ)−1

(
Ik −

ρ

1 + ρ(k − 1)
Jk

)
= (1− ρ)−1

(
Ik − η2Jk

)
,
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it follows that

X′ΦΦΦ−1X =
n∑
i=1

X′iΣΣΣ
−1Xi = (1− ρ)−1

n∑
i=1

(
X′iXi − η2X

′
iJkXi

)
.

As η2 →∞, we have |X′ΦΦΦ−1X| = O(ηp2), and thus

|X′ΦΦΦ−1X|−1/2 = O(η
−p/2
2 ) = O

(
(1 + ρ(k − 1))p/2

)
.

In addition, as η2 → ∞, we observe that
(
X′ΦΦΦ−1X

)−1
= O(1) and that ΦΦΦ−1 =

In ⊗ ΣΣΣ−1 = (1− ρ)−1In ⊗
(
Ik − η2Jk

)
= η2ΦΦΦ−1

2 , where

ΦΦΦ−1
2 =

1

1− ρ
In ⊗

(
Jk −

1

η2

Ik

)
→ k − 1

k
In ⊗ Jk.

As η2 →∞, we have
(
X′ΦΦΦ−1

2 X
)−1

= η2

(
X′ΦΦΦ−1X

)−1
= O(1), and thus

S(ρ) = Y′
(
ΦΦΦ−1 − ΦΦΦ−1X(X′ΦΦΦ−1X)−1X′ΦΦΦ−1

)
Y

= η2Y
′(ΦΦΦ−1

2 − ΦΦΦ−1
2 X(X′ΦΦΦ−1

2 X)−1X′ΦΦΦ−1
2

)
Y

= O(η2) =
(
(1 + ρ(k − 1))−1

)
.
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B.1 Proof of Theorem 2

We now show that the posterior distribution under πR is proper. Recall that the

corresponding marginal posterior of ρ is given by

πR(ρ | D) ∝ (1− ρ)−n(k−1)/2−1(1 + (k− 1)ρ)−n/2−1|X′ΦΦΦ−1X|−1/2S(ρ)−(nk−p)/2. (B.2)

Then the reference prior πR leads to a proper posterior distribution if and only if

∫ 1

−1/(k−1)

πR(ρ | D) dρ <∞.

By following Lemma 1, we observe that ρ→ 1, the tail behavior of πR(ρ | D) follows

πR(ρ | D) ∝ (1− ρ)−n(k−1)/2−1(1 + (k − 1)ρ)−n/2−1|X′ΦΦΦ−1X|−1/2S(ρ)−(nk−p)/2

= O
(
(1− ρ)n/2−1

)
,

and that ρ→ −1/(k − 1), the tail behavior of πR(ρ | D) follows

πR(ρ | D) ∝ (1− ρ)−n(k−1)/2−1(1 + (k − 1)ρ)−n/2−1|X′ΦΦΦ−1X|−1/2S(ρ)−(nk−p)/2

= O
(
(1 + ρ(k − 1))n(k−1)/2−1

)
.
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Given that πR(ρ | D) is a continuous function in
(
−1/(k − 1), 1

)
, the posterior

distribution under πR is proper, provided that k ≥ 2. This completed the proof of

Theorem 2.

B.2 Proof of Theorem 3

Define ΣΣΣ = (1− ρ)Ik + ρJk and ΣΣΣ0 = (1− ρ0)Ik + ρ0Jk. It can be easily verified that

tr
(
ΣΣΣ−1

0 ΣΣΣ
)

=
k
(
1 + (k − 2)ρ0 − (k − 1)ρρ0

)
(1− ρ0)(1 + (k − 1)ρ0)∣∣ΣΣΣ−1

0 ΣΣΣ
∣∣ =

(
1 + (k − 1)ρ

)
(1− ρ)k−1(

1 + (k − 1)ρ0

)
(1− ρ0)k−1

,

where tr(M) represents the trace of the matrix M.

Consider that the KL divergence measure of a normal linear model Nkn

(
y |

Xβββ0, σ
2
0(In ⊗ ΣΣΣ0)

)
from another normal linear model Nkn

(
y | Xβββ, σ2(In ⊗ ΣΣΣ)

)
is
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given by

∫
p
(
y | Xβββ, σ2(In ⊗ ΣΣΣ)

)
log

p
(
y | Xβββ, σ2(In ⊗ ΣΣΣ)

)
p
(
y | Xβββ0, σ

2
0(In ⊗ ΣΣΣ0)

) dy
=

1

2

{
R0

σ2
0

+ tr
(σ2

σ2
0

(In ⊗ ΣΣΣ0)−1(In ⊗ ΣΣΣ)
)
− log

∣∣∣σ2

σ2
0

(In ⊗ ΣΣΣ0)−1(In ⊗ ΣΣΣ)
∣∣∣− kn}

=
1

2

{
R0

σ2
0

+ tr
(σ2

σ2
0

In ⊗ (ΣΣΣ−1
0 ΣΣΣ)

)
− log

∣∣∣σ2

σ2
0

In ⊗ (ΣΣΣ−1
0 ΣΣΣ)

∣∣∣− kn}
=

1

2

{
R0

σ2
0

+ n
σ2

σ2
0

tr
(
ΣΣΣ−1

0 ΣΣΣ
)
− nk log

(σ2

σ2
0

)
− n log

∣∣ΣΣΣ−1
0 ΣΣΣ

∣∣− kn},
where R0 = (βββ0 − βββ)′X′(In ⊗ ΣΣΣ0)−1X(βββ0 − βββ). The minimum of the logarithmic

divergence above for βββ0 ∈ Rp and σ0 > 0 is achieved when

βββ0 = βββ and σ0 = σ

√
tr
(
ΣΣΣ−1

0 ΣΣΣ
)

k
,

and substitution yields

κ(ρ0 | σ2, βββ, ρ)

= inf
βββ0∈Rp,σ0>0

1

2

{
R0

σ2
0

+ n
σ2

σ2
0

tr
(
ΣΣΣ−1

0 ΣΣΣ
)
− nk log

(σ2

σ2
0

)
− n log

∣∣∣ΣΣΣ−1
0 ΣΣΣ

∣∣∣− kn}
=
n

2

{
k log

(
tr(ΣΣΣ−1

0 ΣΣΣ)
)
− log

(
|ΣΣΣ−1

0 ΣΣΣ|
)
− k log(k)

}
=
nk

2
log

{
1 + (k − 2)ρ0 − (k − 1)ρρ0

(1 + (k − 1)ρ0)(1− ρ0)

}
− n

2
log

{
(1 + (k − 1)ρ)(1− ρ)k−1

(1 + (k − 1)ρ0)(1− ρ0)k−1

}
,

which is the same as κ(ρ0 | ρ) in (3.9).
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Similarly, the minimum of the logarithmic divergence measure of Nkn

(
y | Xβββ, σ2(In⊗

ΣΣΣ)
)

from Nkn

(
y | Xβββ0, σ

2
0(In ⊗ ΣΣΣ0)

)
is given by

∫
p
(
y | Xβββ0, σ

2
0(In ⊗ ΣΣΣ0)

)
log

p
(
y | Xβββ0, σ

2
0(In ⊗ ΣΣΣ0)

)
p
(
y | Xβββ, σ2(In ⊗ ΣΣΣ)

) dy

=
1

2

{
R

σ2
+ n

σ2
0

σ2
tr
(
ΣΣΣ−1ΣΣΣ0

)
− nk log

(σ2
0

σ2

)
− n log

∣∣ΣΣΣ−1ΣΣΣ0

∣∣− kn},
where R = (βββ0−βββ)′X′(In⊗ΣΣΣ)−1X(βββ0−βββ). The minimum of the divergence measure

above for βββ0 ∈ Rp and σ0 > 0 is achieved when

βββ0 = βββ and σ0 = σ

√
k

tr
(
ΣΣΣ−1ΣΣΣ0

) ,
and substitution yields

κ(ρ, σ2, βββ | ρ0)

=
n

2

{
k log

(
tr(ΣΣΣ−1ΣΣΣ0)

)
− log

(
|ΣΣΣ−1ΣΣΣ0|

)
− k log(k)

}
=
nk

2
log

{
1 + (k − 2)ρ− (k − 1)ρ0ρ

(1 + (k − 1)ρ)(1− ρ)

}
− n

2
log

{
(1 + (k − 1)ρ0)(1− ρ0)k−1

(1 + (k − 1)ρ)(1− ρ)k−1

}
= κ(ρ | ρ0).

Therefore, the intrinsic statistic is given by

δ(ρ, ρ0) = δ(ρ, σ2, βββ, ρ0) = min
{
κ(ρ0 | ρ), κ(ρ | ρ0)

}
.
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It can be easily shown that κ(ρ | ρ0) ≥ κ(ρ0 | ρ) if and only if ρ ∈
(
− 1
k−1

, ρ0

]
. This

completed the proof of Theorem 3.
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Appendix C

The Metropolis-Hastings

Algorithm from Chapter 4

Since γγγ does not follow a standard distribution, the Metropolis-Hastings algorithm

can be employed. As Chib and Greenberg [21] suggested, the commonly used

multivariate normal distribution is chosen as the proposal distribution, which is

Nq(m(k+1), σ2
γV

(k+1)) with

m(k+1) = arg max log p(γγγ | v(k+1),y,X,Z, t),

V (k+1) = {(−H)−1}γγγ=m, H =
∂2p(γγγ|v(k+1),y,X,Z, t)

∂γγγ∂γγγT
,

where H is the Hessian matrix and σ2
γ is chosen such that the average acceptance
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rate is between 0.25 and 0.45 (Gelman et al. [35]). For the (k+ 1)th iteration, sample

γγγ(k+1) by the following two steps:

Step 1: Generate a new candidate γγγ? from the proposal distribution Nq(m(k+1),

σ2
γV

(k+1)) .

Step 2: Let

γγγ(k+1) =


γγγ? if Unif(0, 1) ≤ ω(γγγ?, γγγ(k))

γγγ(k) otherwise

,

where ω(γγγ?, γγγ(k)) is the acceptance ratio:

ω(γγγ?, γγγ(k)) = min

{
1,

p(γγγ?|v(k+1),y,X,Z, t)

p(γγγ(k)|v(k+1),y,X,Z, t)

}
.
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