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Abstract

A key activity within the banking industry is to extend credit to customers, hence,

credit risk analysis is critical for financial risk management. There are various meth-

ods used to perform credit risk analysis. In this project, we analyze German and

Australian financial data from UC Irvine Machine Learning repository, reproducing

results previously published in literature. Further, using the same dataset and various

machine learning algorithms, we attempt to create better models by tuning available

parameters, however, our results are at best comparable to published results.

In this report, we have explained the algorithms and mathematical framework that

goes behind developing the machine learning models. We conclude with a discussion

and comparision of summarizing the best approach to classify these datasets. K

- Nearest Neighbors (KNN), Logistic Regression (LR), Naive Byaes Classification,

Support Vector Machine (SVM), Classification Trees and Artificial Neural Networks

(ANN) are the machine learning models used for this report.
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Chapter 1

Introduction

1.1 Motivation

A significant activity of the banking industry is to extend credit to customers. Credit

risk management evaluates available data and decides the credibility of a customer,

with the intent of protecting the financial institution against fraud.

1.2 Datasets

The UC Irvine Machine Learning repository (UCI - ML) contains collection of datasets

useful for evaluating machine learning algorithms. Two datasets rom the UCI - ML
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repository were used for this project: the Australian credit dataset [1], and other

is the German credit dataset[2]. The German dataset has 20 attributes and 1,000

instances, while the Australian dataset has 14 characteristics and 690 instances. The

response variable is a binary decision, whether a customer is credible or not. Both

datasets have some common attributes such as the credit score, the purpose of the

loan and customer information (occupation, salary, age and account duration).

1.3 Methodology

We apply six machine learning classification algorithms. A summary of the methods

are as follows:

1. K - Nearest Neighbors (KNN)

The KNN algorithm is a non parametric technique that classifies unknown data

points based on a majority votes of it’s K nearest neighbors.

2. Logistic Regression (LR)

Logistic Regression fits a logistic (sigmoid) function to the data. This is useful

when the dependent variable is binary. To compute the weights, we will utilize

the Iteratively Re-weighted Least Squares algorithm (IRLS).
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3. Naive Bayes Classification

This algorithm is based on the Bayes’ Theorem. It computes the probability of

each potential classification and selects the one with higher probability.

4. Support Vector Machine (SVM)

SVM identifies hyperplanes to separate the data based on labels. To handle

nonlinear data, projections using various kernels can be used.

5. Classification Trees

We will implement two types of classification trees: Decision Tree and Random

Forest. Decision Tree is similar to a flowchart and is very easy to visualize.

Every terminal node represents the output. Random Forest is a collection of

decision trees, where the majority vote is taken for prediction.

6. Artificial Neural Networks (ANN)

Neural Network is an algorithm which learns from the data. The process of

learning is similar to the human brain. Neural networks are used in many real-

world application like classify images, predicting the weather, voice detection,

etc.

We proceed to discuss the mathematical framework behind the above methods.
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Chapter 2

K - Nearest Neighbors (KNN)

2.1 Mathematical Framework

In KNN, the data is classified by the majority number of K nearest neighbors. The

most common metric for nearest distance is Minkowski distance.

d(x,y) =

(
k∑

i=1

(|xi − yi|)q
) 1

q

,

where often, one uses q = 2 to measure the Euclidean distance, or q = 1 to measure

the Manhattan distance.

Consider the following example in which we have two classes: one is black circles
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and the other is blue rectangles. Suppose we need to classify the data denoted by

green triangle shown in fig. 2.1. Let’s consider K = 3: we identify the three closest

neighbors, in this case two blue rectangles and one black circle. Per the majority

vote, we classified green triangle as a blue rectangle shown in fig. 2.2.

Figure 2.1: Random data generation of two classes: blue rectangles and
black circles. The green triangle denotes the data we wish to classify.

Now in fig. 2.3 we can see that, if we chooseK = 5, then we will have three black circles

and two blue rectangles. So, we classified the triangle as a black circle. Therefore,

choosing the correct K value is an essential task. The optimal k will always depend

on the dataset. For binary classification, the value of K should be considered as an

odd number so that there is no ambiguity.
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Figure 2.2: K - Nearest Neighbors example using K = 3. Here, the green
triangle is classified, by majority vote, as a blue rectangle.

2.2 Results

After scaling and normalizing the data, the data is split into training and testing data

using an 80% - 20% ratio: 80% of data are used for training, the rest of the data are

used for testing; k-fold cross-validation is used to check model accuracy. Initially, I

consider K = 5 and the Euclidean distance for both data sets; this model is reported

as the pre-tuned model below. A grid search was then used to tune the parameters

(K = {1, 3, 5, 7, 9, 11, 13, 15} and q = {1, 2, 3, 4, 5, 6, 7}). After tuning, the best

parameters for the German data are K = 7 and Euclidean distance (q = 2). For the

Australian data, K = 13 and the Manhattan distance, q = 1, was optimal. The

accuracy of the KNN model is reported in table 2.1.
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Figure 2.3: K - Nearest Neighbors example using K = 5. here, the green
triangle is classified, by majority vote, as a black circle

Table 2.1
K - Nearest Neighbors Accuracy Table

Dataset
Mean Accuracy (%)

Before Tuning After Tuning
Australian data 86 87
German data 74 75

Figures 2.4 and 2.5 are the confusion matrix of German data and Australian data

respectively. We can see that the tuned KNN model predicts twenty-eight false pos-

itives results for German dataset; these customers are not credible, but the model

predicts credible. The tuned KNN model predicts eight false positives for the Aus-

tralian dataset.

Figures 2.6 and 2.7 show the decision boundary plot of the KNN algorithm applied

to both data sets. The largest two principal components, as found by Principal

7



Figure 2.4: Confusion matrix of K - Nearest Neighbors using German
dataset. There is an unacceptably large number of false positives.

Component Analysis (PCA), are used to generate the plot [3].

Figures 2.8 and 2.9 are the learning curves of this machine-learning method applied to

the German and Austrialina data set respectively. A learning curve is a plot of model

learning performance over experience or time – it helps identify whether the model

is over-fitting or under-fitting. In this curve, y-axis is the accuracy and x-axis is the

number of training samples. For this method, both the curves show that the model is

neither over-fitting nor under-fitting because the learning curves do not exhibit high

bias or high variance.

8



Figure 2.5: Confusion matrix of K - Nearest Neighbors using Australian
dataset. There is a small number of false positives.

Figure 2.6: Decision boundary plot using K - Nearest Neighbors of German
dataset. Observe that the decision boundaries are very complicated for this
model.
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Figure 2.7: Decision boundary plot using K - Nearest Neighbors of Aus-
tralian dataset. The decision boundary for this data set is a lot simpler, as
compared with the decision boundary for the Australian data set.

Figure 2.8: Learning curve of K - Nearest Neighbors using the German
dataset. No high bias or high variance is observed, indicating that the KNN
model is not over-fitting or under-fitting this German data set.
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Figure 2.9: Learning curve of K - Nearest Neighbors using Australian
dataset. No high bias or high variance is observed, indicating that the KNN
model is not over-fitting or under-fitting this Austraian data set.
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Chapter 3

Logistic Regression

3.1 Mathematical Framework

Suppose we have N training samples (xi, yi) where the response variable, yi, is a

binary variable, i.e., yi ∈ {0, 1}. The log-odds then becomes,

ln

(
p (yi | xi)

1− p (yi | xi)

)
= wTxi, (3.1)

where p (yi | xi) is the posterior probability and w is the weight vector that we seek.

Logistic Regression (LR) models are fitted via maximum likelihood. Solving eq. (3.1)

12



for the class posterior probability,

Pr (yi = 1) = p (yi | xi) =
ew

T xi

1 + ewT xi
,

P r (yi = 0) = 1− p (yi | xi) =
1

1 + ewT xi
.

(3.2)

We recall Bernoulli RVs (random variables) are discrete RVs with only two values,

typically 0 and 1. The probability mass function is completely specified with one

parameter: the “probability of success”, p = Pr(X = 1),

pr(k) = pk(1− p)(1−k), k ∈ {0, 1}.

We note that for binary classification, each yi can be modelled as a Bernoulli RV.

Since yi is Bernoulli RV, the (joint) likelihood is

L(w) = Pr ({y1, y2, . . .} | w, {x1, x2, . . .}) =
N∏
i=1

pyi (1− p)(1−yi) .

Hence,

lnL(w) =
N∑
i=1

[yi ln(p) + (1− yi) ln(1− p)]

=
N∑
i=1

[
yi ln

(
ew

T xi

1 + ewT xi

)
+ (1− yi) ln

(
1− ew

T xi

1 + ewT xi

)]

=
N∑
i=1

[
yiw

Txi − ln
(

1 + ew
T xi
)]
.

(3.3)
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The task is to maximize the (log) likelihood, eq. (3.3). This is equivalent to minimizing

the negative log likelihood (NLL)

NLL(w) = −
N∑
i=1

[
yiw

Txi − ln
(

1 + ew
T xi
)]
.

Gradient descent is a first-order minimization method that uses information about

the gradient. The update formula looks like

wn+1 = wn − γ g(w)|wn .

where γ is a stepsize to be computed, and the gradient satisfies

g(w) = ∇wNLL(w) = XT (p− y). (3.4)

Here, X is N × (p + 1) matrix of xi values, p the vector of fitted probabilities has

elements pi = p (xi, w), y is a vector of yi values.

Newton’s method is a second-order optimization method which uses the gradient and

the Hessian (curvature). The update formula looks like

wn+1 = wn − γ̃ H−1(w)
∣∣
wn g|wn , (3.5)

where γ̃ is a stepsize to be computed, the gradient is defined above in eq. (3.4), and

14



the Hessian H satisfies,

H = ∇2 NLL(w) = XT S X. (3.6)

Here, S is a N × N diagonal matrix with entries si = pi(1 − pi). Both methods

converge, however, Newtons method is faster since it takes curvature into account.

Substituting the definitions of H, eq. (3.6) and g eq. (3.4) into eq. (3.5), we get

wn+1 = wn −H−1 g

= wn − (XT SnX)−1XT (y − pn)

= (XT SnX)−1((XT SnX)wn −XT (y − pn))

= (XT SnX)−1XT (SnX wn + y − pn)

= (XT SnX)−1XT Sn z,

(3.7)

where we define the working response or adjusted response,

zn = X wn + S−1n (y − pn).

3.2 Iteratively Re-weighted Least Squares (IRLS)

We have seen previously, eq. (3.7) that after each iteration, pn changes which in turn

changes Sn and zn. Therefore we update the weights, sn, after every iteration, and

solve a weighted least squares problem. The algorithm for finding the weights is

15



summarized in algorithm 1.

Algorithm 1 Iteratively Reweighted Least Squares (IRLS)

1: w = 0
2: while not converged do
3: for i = 1 : N do

4: pi =
ew

T xi

1 + ewT xi
;

5: si = pi(1 − pi);

6: zi = wT xi +
yi − pi
si

7: end for
8: S = diag(s1 s2 ... sN)
9: w = (XT S X)−1XT S z

10: end while=0

Predictions with the Sigmoid Function: So for a new data point x, compute

p(yi | w, x). If p(yi | w, x) ≥ 0.5 then classify x as Class A. If p(yi | w, x) < 0.5 then

classify x as Class B.

Figure 3.1: Sigmoid Function
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3.3 Results

We present the results of the logistic model in table 3.1. In algorithm 1, we iterate

until w converges to within 10−4. As previously observed for KNN classification, we

are able to generate better models for the Australian data set. The accuracy for the

logistic model is marginally better than the KNN model.

Table 3.1
Accuracy of the Logistic Model. The logistic model has marginally better

performance compared to the KNN model.

data set Mean Accuracy Before Tuning (%)

Australian Data 87
German Data 77

Figures 3.2 and 3.3 are the confusion matrix of German data and Australian data

respectively. For both datasets, the logistic model has more false positive compared

with the KNN model.

Figures 3.4 and 3.5 show the classification boundary plot for the logistic model. Since

we are using a linear regression model, the boundary that separates the data is a

straight line. For the German data set, this differs significantly from the classification

boundary obtained by the KNN model.

Figures 3.6 and 3.7 show the learning curves for this Logistic model. As we increase
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Figure 3.2: Confusion matrix of Logistic Regression using German data
set. There is an unacceptably large number of false positives.

the training samples, the model is learning at a slow rate, and in the end, there is a

little gap between the training curve and cross-validation curve; so we can say that

this model looks a good fit model because it does not show high bias or high variance.
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Figure 3.3: Confusion matrix of Logistic Regression using Australian data
set. There is an unacceptably large number of false positives.

Figure 3.4: Decision boundary plot of the Logistic omodel of the German
data set. Since linear regression is used, the decision boundary is a straight
line.
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Figure 3.5: Decision boundary plot using Logistic Regression of the Aus-
tralian data set.

Figure 3.6: Learning curve of Logistic Regression using the German data
set. No high bias or high variance is observed, indicating that the LR model
is not over-fitting or under-fitting this German data set.
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Figure 3.7: Learning curve of Logistic Regression using the Australian data
set. No high bias or high variance is observed, indicating that the LR model
is not over-fitting or under-fitting this Australian data set.
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Chapter 4

Naive Bayes Classification

4.1 Introduction

Naive Bayes Classification algorithm is based on Bayes’ theorem. Bayes’ theorem

reads,

P (A | B) =
P (A ∩B)

P (B)
=
P (A)P (B | A)

P (B)
,

where, P (A) is the probability of event A occurring, P (B) is the probability of event

B occurring, P (A | B) is the probability of A given B, P (B | A) is the probability

of B given A, and P (A∩B)) is the probability of both A and B occurring. In Naive

Bayes, we assume that the features are independent of each other. The classifier

proceeds to calculate the probability of each class and selects the class that has the
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greatest probability.

4.2 Mathematical Framework

Suppose we view a data set, X, in terms of feature vectors, i.e., our N ×p matrix has

p feature vectors,

X =


...

...
...

x̃1 x̃2 . . . x̃p

...
...

...



The conditional probability is given by

P (y = k | X) =
P (X | y = k)P (y = k)

P (X)
, for k = 1, . . . , K, j = 1, . . . , p,

where P (y = k | X) is the posterior probability, P (y = k) is the prior probability,

and P (X | y = k) is a likelihood. Using the chain rule, the likelihood P (X | y = k)
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can be decomposed as

P (x̃1, x̃2, . . . , x̃p | y = k) =P (x̃1 | x̃2, . . . , x̃p, y = k)×

P (x̃2 | x̃3, . . . , x̃p, y = k)× · · ·

P (x̃p− 1 | x̃p, y = k)P (x̃p | y = k).

(4.1)

Using the naive independence assumption,

P (x̃j | x̃j+1, . . . , x̃p) = P (x̃j | y = k),

eq. (4.1) can be expressed as,

P (X | y = k) =

p∏
j=1

P (x̃j | y = k),

Therefore the posterior probability can be calculated as,

P (y = k | X) =
P (y = k)

∏p
j=1 P (x̃j | y = k)

P (X)
.

The prior probability P (X) is constant therefore,

P (y = k | X) ∝ P (y = k)

p∏
j=1

P (x̃j | y = k).
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Now, if we consider the data set which has x̃1, . . . , x̃p and two classes k1 and k2 then,

P (y = k1 | x̃1, x̃2, . . . , x̃p) ∝ P (y = k1)

p∏
j=1

P (x̃j | y = k1)

∝ P (y = k1)

p∏
j=1

N (x̃j | µx̃j , σx̃j)

P (y = k2 | x̃1, x̃2, . . . , x̃p) ∝ P (y = k2)

p∏
j=1

P (x̃j | y = k2)

∝ P (y = k2)

p∏
j=1

N (x̃j | µx̃j , σx̃j)

Where, N (x̃j | µx̃j , σx̃j) = 1√
2πσ2

x̃j

e
−(x̃j−µx̃j )

2 / 2σ2
x̃j is Normal (Gaussian) distribution

with the mean µxi and the standard deviation σx̃. If P (y = k1 | x̃1, x̃2, . . . , x̃p) >

P (y = k2 | x̃1, x̃2, . . . , x̃p), then the classifier predicts that sample data are in Class

k1.

4.3 Results

So, after applying this method, we get the accuracy shown in table 4.1. Figures 4.1

and 4.2 are the confusion matrix of German data and Australian data respectively.

It seems that it has very less false-positives than Logistic Regression method which

are 27 and 8 for German and Australian data respectively.

Figures 4.3 and 4.4 are the decision boundary plot which separates the data with a
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Table 4.1
Accuracy of the Naive Bayes model. The Naive Bayes model has lesser

accuracy compared to Logistic model.

Dataset
Mean Accuracy (%)

Before Tuning After Tuning
Australian data 86 87
German data 74 75

Figure 4.1: Confusion matrix of Naive Bayes using German data set. There
is an unacceptably large number of false positives.

curve.

Figures 4.5 and 4.6 are the learning curves for the German and Australian data

respectively. In Figure 4.5, there is no gap between the training curve and cross-

validation curve, which shows that the model is underfitting, and in fig. 4.6, the gap

is very low, which shows that the model is little bit underfitting.
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Figure 4.2: Confusion matrix of Naive Bayes using Australian data set.
There is a small number of false positives.

Figure 4.3: Decision boundary plot using Naive Bayes of German data set.
Observe that the decision boundary is a curve for this model.
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Figure 4.4: Decision boundary plot using Naive Bayes of Australian data
set. Observe that the decision boundary is a curve for this model.

Figure 4.5: Learning curve of Naive Bayes using the German data set.
Very small gap is observed as increases the samples, indicating that the
Naive Bayes model is under-fitting this German data set.
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Figure 4.6: Learning curve of Naive Bayes using the Australian data set.
No gap is observed as increases the samples, indicating that the Naive Bayes
model is under-fitting this Australian data set.
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Chapter 5

Support Vector Machine (SVM)

5.1 Linear SVM

Support Vector Machine is a supervised machine learning algorithm. The idea is

to select the optimal hyperplane that partitions the data. There are indeed many

hyperplanes that can partition the data, see fig. 5.1; the SVM method selects the

optimal hyperplane, which we define below. First, the equation of a hyperplane is

given by

wTx+ b = 0, (5.1)

where w is a weight vector, x is the input vector and b is the bias. The optimal

hyperplane we wish to find is the one which maximizes the margin to the hyperplane,

30



Figure 5.1: Example of the possible hyperplanes

that is, finding a hyperplane that maximizes the distance to the nearest training-data

point of any class.

The distance between a data point xi to a hyperplane defined by eq. (5.1) is given by

|wT xi + b|
‖w‖

. (5.2)

We can scale w arbitrarily without changing its direction, so without loss of generality,

we can scale w so that the numerator of eq. (5.2) is one. Hence, the distance between

the data point xi to a hyperplane will be given by 1
‖w‖ . The data point(s) in Class

“+1” closest to the hyperplane will obey wT xi + b = 1, and the points in Class “−1”

closest to the hyperplane will obey wTxi+b = −1. An example of the optimal margin
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is given in fig. 5.2. The total width between the hyperplanes and the two classes is

Figure 5.2: Example of the optimal margin

thus given by

1

‖w‖
+

1

‖w‖
=

2

‖w‖
.

If the data is linearly separable, the following must hold true:

wT xi + b ≥ 1, ∀xi ∈ C+1,

wT xi + b ≤ −1, ∀xi ∈ C−1.
(5.3)

We note that maximizing the margin is equivalent to minimizing ‖w‖. For conve-

nience, we minimize 1
2
‖w‖2. If we desire that all the samples are correctly classified,
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i.e., eq. (5.3) is satisfied, then we wish to satisfy

yi(w
Txi + b) ≥ 1, i = 1, . . . , N.

The constrained minimization problem can then be posed:

min
w,b

1

2
‖w‖2

subject to yi(w
Txi + b) ≥ 1, i = 1, . . . , N.

Using Lagrange multipliers to find the minima,

L(w, b, α) =
1

2
wTw −

N∑
i=1

αi(yi(w
Txi + b)− 1). (5.4)

Due to the inequality constraints, the solution to this must meet the following Karush-

Kuhn-Tucker (KKT) conditions,

αi ≥ 0, i = 1, . . . , N ;

αi(yi(w
Txi + b)− 1) = 0, ∀i

∂ L
∂ w

= w −
N∑
i=1

αiyixi = 0 =⇒ w =
N∑
i=1

αiyixi

∂ L
∂ b

= −
N∑
i=1

αiyi = 0 =⇒
N∑
i=1

αiyi = 0

(5.5)

Substituting these KKT conditions, eq. (5.5), into the Lagrangian equation, eq. (5.4),
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leads to the Wolfe dual problem,

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαk yi yk x
T
i xk

subject to
N∑
i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , N.

The dual problem is a maximization problem of a cost function quadratic in α. So,

we’ll minimize the negative of cost function,

min
α

1

2

N∑
i=1

N∑
k=1

αiαk yi yk x
T
i xk −

N∑
i=1

αi

subject to
N∑
i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , N.

To put this in standard QP form, we‘ll express it in matrix/vector form,

min
α

1

2
αT



y1 y1 x
T
1 x

T
1 y1 y2 x

T
1 x

T
1 · · · y1 yN x

T
1 x

T
N

y2 y1 x
T
2 x

T
1 y2 y2 x

T
2 x

T
1 · · · y2 yN x

T
2 x

T
N

...
...

. . .
...

yN y1 x
T
N x

T
1 yN y2 x

T
N x

T
1 · · · yN yN x

T
N x

T
N


α− 1T α,

subject to yT α = 0, 0 ≤ α ≤ ∞.

This minimization problem can be solved by any QP solver. In Python, the CVXOPT

library has QP solvers, and MATLAB has the quadprog() function.
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5.2 Non-Linear SVM (Kernel Trick)

Suppose the data is non-linearly separable. SVM can still be applied to separate data

with the use of a kernel trick – a kernel is used to transform the data to a higher

dimensions which is then separable with hyperplanes.

Radial Basis Functions (RBF) and polynomial kernels are two popular kernel func-

tions used in the SVM community.

† RBF Kernel: K(xi, xk) = e−γ ‖xi−xk‖
2

† d-th degree Polynomial Kernel: K(xi, xk) =
(
1 + xTi xk

)d

We can rewrite the Wolfe dual minimization problem using the kernel functions,

min
α

1

2

N∑
i=1

N∑
k=1

αi αk yi ykK(xi, xk)−
N∑
i=1

αi

subject to
N∑
i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , N

(5.6)
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5.3 Results

By applying Kernel SVM to German and Australian credit data sets, the accuracies

are obtained shown in table 5.1. The default parameters for SVM is set to be polyno-

mial kernel with degree 2. The other tuning values for degree are from 1 to 7 and for

kernel, RBF is also considered as different kernel. However, for Australian data set,

it gives even good accuracy by setting the polynomial kernel with degree 1. While

for German data, it improves the accuracy with RBF kernel.

Figures 5.3 and 5.4 are the confusion matrix of German data and Australian data

respectively. It seems that it has more false-positives which are 33 and 19 for German

and Australian data respectively. This model has good accuracies, but due to more

number of false-positives, this model is risky for these data sets.

Table 5.1
Accuracy of the Support Vector Machine model. The SVM model has
marginally better performance compared to the Naive Bayes model.

Dataset
Mean Accuracy (%)

Before Tuning After Tuning
Australian data 81 87
German data 72 77

Figures 5.5 and 5.6 are the decision boundary plot of this method. We can see that

in German data set the data are separated by the Gaussian curve, while a straight

line separates Australian data because for this data set the poly kernel with degree 1

is used.
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Figure 5.3: Confusion matrix of Support Vector Machine using German
data set. There is an unacceptably large number of false positives.

Figures 5.7 and 5.8 are the learning curves for the German and Australian data

respectively. In fig. 5.7 the training score is very high, however the validation score

is not improving, which shows that the SVM model for german data is over-fitting.

In fig. 5.8 the gap between the training score and validation score is very low which

shows under-fitting.
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Figure 5.4: Confusion matrix of Support Vector Machine using Australian
data set. There is an unacceptably large number of false positives.

Figure 5.5: Decision boundary plot using Support Vector Machine of Ger-
man data set. Observe that the decision boundary is a curve for this model.
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Figure 5.6: Decision boundary plot using Support Vector Machine of Aus-
tralian data set. Observe that the decision boundary is a straight line for
this model.

Figure 5.7: Learning curve of Support Vector Machine using the German
data set. Training score is very high and cross validation score is not im-
proving, indicating that the Support Vector Machine model is over-fitting
this German data set.
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Figure 5.8: Learning curve of Support Vector Machine using the Australian
data set. No gap is observed as increases the samples, indicating that the
Support Vector Machine model is under-fitting this Australian data set.
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Chapter 6

Classification Trees

6.1 Decision Tree

6.1.1 Introduction

A decision tree can be viewed as a flow chart, where each node represents the features

of objects belonging to the node, each split represents a decision, and each terminal

node represents the output. Decision tree classification can be performed using the

ID3 (Iterative Dichotomiser 3) algorithm, which was invented by Ross Quinlan [].

The ID3 algorithm uses entropy as a metric. CART (Classification And Regression

Trees) is another algorithm to generate decision trees, which uses the Gini index as
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a metric to calculate information gain. A typical decision tree is shown in fig. 6.1.

Figure 6.1: Decision Tree consists of three types of nodes; Root Node,
Decision Node, and Terminal Node.

6.1.2 Mathematical Framework

Suppose we view a data set in terms of feature vectors, i.e., our N × p matrix has p

feature vectors,

X =


...

...
...

x̃1 x̃2 . . . x̃p
...

...
...
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The ID3 algorithm for finding the decision tree proceeds as follows.

1. Set X to be the entire data set.

2. Compute the entropy of X, where the entropy is defined as

H(X) =
∑
c∈C

− p(c) log2 p(c). (6.1)

For our credit risk analysis, the response variable has binary values, C = {Yes,

No}, and p(c) is the respective probability.

3. Calculate the weighted sum entropy of a particular feature.

H(X | x̃) =
∑
x

p(x̃)
∑
c∈C

−p(c | x̃) log2 p(c | x̃)

4. Calculate information gain for each feature and partition X using the maximum

gain.

IG(X, x) =
∑
c∈C

− p(x) log2 p(x)−
∑
x

p(x)
∑
c∈C

− p(c | x) log2 p(c | x)

5. Repeat steps 2-5 with X as each child node until we get the desired decision

tree.
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The CART algorthm is similar except that the entropy computation, eq. (6.1) is

replaced by computing the gini index,

G(X) =
∑
c∈C

p(c) (1− p(c))

6.1.3 Results

Table 6.1 shows the accuracy of this model. For both data sets, I used Gini as a

metric in the start; then after using the Grid Search method, it was concluded that

entropy metric is best for both data sets.

Table 6.1
Accuracy of the Decision tree model. The Decision Tree model has

marginally weaker performance compared to the SVM model.

Dataset
Mean Accuracy (%)

Before Tuning After Tuning
Australian data 84 85
German data 68 69

Figures 6.4 and 6.5 are the decision boundary plot of this method. The data is

separated with some partitions in both the data sets.

Figures 6.6 and 6.7 are the learning curves. From these curves we can say that the

model overfits the data because in the end, as the training samples increases the

training score is constant however, the cross-validation is decreasing.

44



Figure 6.2: Confusion matrix of Decision Tree using German data set.
There is an unacceptably large number of false positives.

6.2 Random Forest Classification

6.2.1 Methodology

The Random Forest Classification is an algorithm which collects decision trees using

the random subsets of features and choosing the majority vote among them for the

classification. This method minimizes overfitting and increases the overall accuracy.

Figure 6.8 shows how the random forest classification looks. So, for a given data each

tree will make a vote for the prediction, and the majority vote will be considered as

the prediction.
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Figure 6.3: Confusion matrix of Decision Tree using Australian data set.
There is an unacceptably large number of false positives.

6.2.2 Results of Random Forest

After applying this method to Australian and German Credit data set, the results

are obtained as shown in table 6.2. Initially, I consider ten trees and gini met-

ric. For tuning I consider gini and entropy as metric, and the number of trees are

{10, 20, 30, 40, 50, 75, 100, 150}. But after grid search it turns out that, for the

Australian data 40 trees and entropy metric are best, while for German data 30 trees

and entropy metric gives better accuracy.

Figures 6.11 and 6.12 are the decision boundary plots, and figs. 6.9 and 6.10 are the

confusion matrices. This method has very good accuracy and also it has less number
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Figure 6.4: Decision boundary plot using Decision Tree of German data set.
Observe that the decision boundary separates the data with the partitions
for this model.

of false-positives as compared to SVM and Decision Tree methods. Figures 6.13

and 6.14 are learning curves. From the learning curves we can see that there is no

high bias or high variance. Therefore this model is a good fit model.

Table 6.2
Accuracy of the Random Forest Model. The Random Forest model has
marginally better performance compared to the Decision Tree model.

Dataset
Mean Accuracy (%)

Before Tuning After Tuning
Australian data 87 89
German data 72 75
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Figure 6.5: Decision boundary plot using Decision Tree of Australian data
set. Observe that the decision boundary separates the data with the parti-
tions for this model.

Figure 6.6: Learning curve of Decision Tree using the German data set.
Training score is very high and cross validation score is decreasing after
increasing training samples, indicating that the Decision Tree model is over-
fitting this German data set.
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Figure 6.7: Learning curve of Decision Tree using the German data set.
Training score is very high and cross validation score is decreasing after
increasing training samples, indicating that the Decision Tree model is over-
fitting this Australian data set.

Figure 6.8: Random Forest Classification
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Figure 6.9: Confusion matrix of Random Forest using German data set.
There is an unacceptably large number of false positives.

Figure 6.10: Confusion matrix of Random Forest using Australian data
set. There is a little large number of false positives.
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Figure 6.11: Decision boundary plot using Random Forest of German
data set. Observe that the decision boundaries are very complicated for this
model.

Figure 6.12: Decision boundary plot using K - Nearest Neighbors of Aus-
tralian data set. The decision boundary for this data set is a lot simpler, as
compared with the decision boundary for the German data set.
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Figure 6.13: Learning curve of Random Forest using the German data set.
No high bias or high variance is observed, indicating that the KNN model
is not over-fitting or under-fitting this German data set.

Figure 6.14: Learning curve of Random Forest using Australian data set.
No high bias or high variance is observed, indicating that the KNN model
is not over-fitting or under-fitting this Austraian data set.
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Chapter 7

Artificial Neural Networks

7.1 Introduction

The process of learning in an artifical neural network is similar to the the learning

process in a human brain. Neural networks are used in many real-world application,

for example, to classify images, predict weather and in voice detection.

A perceptron is a single-layer neural network; a multi-layer neural network has more

than one perceptron. In fig. 7.1, we can see the example of a simplified perceptron.

This perceptron takes input data x = (x1, x2), applies weights and a bias to the data,

and outputs the sign of the resulting calculation.
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Figure 7.1: Simplified Perceptron

From chapter 5, the operation of the perceptron in fig. 7.1 is akin to classifying data

based on the hyperplane defined by w and b. If the data is not linearly separable, see

??, this perceptron is not a good classifier.

To classify the non-linear data in fig. 7.2, we need another hyperplane. Two coupled

perceptrons can be used to generate two hyperplanes. Figure 7.3, gives a cartoon

view of how nonlinear data can classified with two perceptrons. We will explore this

mathematically shortly.
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Figure 7.2: Single Perceptron Hyperplane

7.2 Basic Neural Network Model

A hidden layer is a layer between input and output. Given an input data, x, with p

features, a hidden layer constructs M linear combinations of the input variables, also

known as activations. Assume a constant value (often 1) has been added to the input

vectors to accommodate the bias – bias is the intercept added to the linear equation.

The M linear combinations of the input variables are given by

a
(1)
j =

p∑
i=1

w
(1)
ji xi = w

(1)T
j x, j = 1, 2, . . . ,M.
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Figure 7.3: Two Perceptron hyperplanes

The superscript (1) denotes that these are weights for the first activation. Each

activation is acted upon by a nonlinear differentiable activation function h. There

are four activation functions which are widely used.

1. Sigmoid function, h(x) =
1

1 + e−x
;

2. ReLU (Rectified Linear Units) function, h(x) = max(x, 0);

3. Hyperbolic tangent function, h(x) =
1− e−2x

1 + e−2x
;

4. A threshold function,

h(x) =


1 if x ≥ 0

0 otherwise

.
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The basic structure of the hidden layer is shown in fig. 7.4. The value zj = h(aj) is

referred to as hidden units.

Figure 7.4: Hidden Layer

Suppose for simplicity that there are only two layers in this model: a hidden layer

and an output layer, where there are K desired outputs. The output activations are

a
(2)
k =

M∑
i=1

w
(2)
ki zi = w

(2)T
k z, k = 1, 2, . . . , K.

The output activations are acted on by another activation function,

yk = h(2)(a
(2)
k ), k = 1, 2, . . . , K.
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Notice that one can use different output activation function – the problem often

dictates which output activation function is appropriate. For regression, h(2) is often

chosen to be the identity, therefore yk = a
(2)
k . For binary classification, one can choose

h(2) as the Sigmoid or ReLU function; for multi-class classification, one can choose

h(2)k as the soft-max function. This form of neural network is often refered to as the

“Feed Forward Neural Network”, see fig. 7.5. One can increase the number of layers,

and vary the number of linear combinations in each hidden layer.

Figure 7.5: Feed Forward Neural Network

7.3 Backpropagation

Backpropagation is an algorithm to evaluate gradient descent which is used to mini-

mize the errors. Let E(w) be the Sum of Square Errors (SSE(w)). If we consider the

sigmoid function z = σ(a), where a is the perceptrons activation before applying the
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logistic sigmoid: ai = wTxi + b. Therefore,

E(w) = SSE(w) =
1

2

N∑
i=1

(yi − zi)
2 =

1

2

N∑
i=1

(yi − σ(ai))
2

∂ E

∂ wj
=

∂ E

∂ z

∂ z

∂ a

∂ a

∂ wj
=

N∑
i=1

(zi − yi){σ(ai)[1 − σ(ai)]}(xij)

∂ E

∂ b
=

∂ E

∂ z

∂ z

∂ a

∂ a

∂ b
=

N∑
i=1

(zi − yi){σ(ai)[1 − σ(ai)]}(1)

w(τ +1) = w(τ) − η

N∑
i=1

(zi − yi){σ(ai)[1− σ(ai)]}(xij) (7.1)

b(τ +1) = b(τ) − η
N∑
i=1

(zi − yi){σ(ai)[1− σ(ai)]} (7.2)

Now, define δj = ∂ En/∂ aj, where En is the error function evaluated with the nth

training sample, and aj is the jth activation. Then for the weight connecting the ith

neurons output (in the previous layer) to the jth neurons input (in the current layer),

∂En
∂wji

=
∂En
∂aj

∂aj
∂wji

= δjzi (7.3)

Once we have all δs, we can compute the LHS of the above equation 7.3 for any weight

in the network. The δs for the output layer are straightforward. The δs for hidden

layers are given via the chain rule.

δj =
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

(7.4)
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7.3.1 Procedure for Backpropagation

1. Apply an input vector xn and forward propagate through the network, and

compute all activations and outputs throughout the network. aj =
∑

iwjizi,

and zj = h(aj).

2. Determine δk for all output units, δj = ∂En

∂aj
.

3. Backpropagate the outputs δk to obtain δs for all hidden units

δj =
∂ En
∂ aj

=
∑
k

∂ En
∂ ak

∂ ak
∂ aj

=
∑
k

δk
∂ ak
∂ aj

= h′(aj)
∑
k

wkj δk

4. Compute the partial derivatives shown in eq. (7.3)

This can be extended to any number of hidden layers. The steps remain the same.

Backpropagation is a method of efficiently calculating the error‘s partial derivative

w.r.t. each network parameter. Combining this with numerical optimization methods

(like gradient descent) gives a powerful learning algorithm for neural networks.

Let’s understand backpropagation using a simple multi-layer example shown in

fig. 7.6.
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Figure 7.6: Two layer backpropagation

† First, we predict y using Feedforward.

a
(1)
1 = w

(1)
11 xn1 + w

(1)
12 xn2 + w

(1)
13

z1 = σ(a
(1)
1 )

a
(1)
2 = w

(1)
21 xn1 + w

(1)
22 xn2 + w

(1)
23

z2 = σ(a
(2)
1 )

a0 = w
(2)
11 Z1 + w

(2)
12 Z2

y = σ(a0)
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† After that, we determine the output units δ

En =
1

2
(yn − ŷn)

δ0 =
∂ En
∂ a0

=
∂ En
∂ y

∂ y

∂ a0

δ0 = [yn − σ(a0)](σ(a0)(1 − σ(a0)))

† Then, we will apply backpropagation to determine all δs.

δj = h′(aj)
∑
k

wkj δk

δ1 = σ′(a1)w
(2)
11 δ0 = δ(a1)[1 − δ(a1)]w

(2)
11 δ0

δ2 = σ′(a2)w
(2)
12 δ0 = δ(a2)[1 − δ(a2)]w

(2)
12 δ0

† Then, compute error derivatives w.r.t. weights using equation 7.3.

∂ En

∂ w
(2)
11

= δ0 z1
∂ En

∂ w
(1)
12

= δ1 x2

∂ En

∂ w
(2)
12

= δ0 z2
∂ En

∂ w
(1)
22

= δ2 x2

∂ En

∂ w
(1)
11

= δ1 x1
∂ En

∂ w
(1)
13

= δ1 (1)

∂ En

∂ w
(1)
21

= δ2 x1
∂ En

∂ w
(1)
23

= δ2 (1)

† Finally, updates the weights using w
(c)(τ + 1)
ab = w

(c)(τ)
ab − η ∂ En

∂ w
(c)
ab
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7.4 Results

Table 7.1 shows the accuracy after applying this model. In this model, three hidden

layers are used. Using ReLU function in hidden layers and Sigmoid function in the

output layer, the results will have high accuracy. Initially, I consider the batch size

of 25 and 100 epochs. For tuning, the batch sizes are 25 and 50, and epochs are 100

and 200. After tuning the best parameters for Australian data are the batch size of

50 and 100 epochs, while it remains the same for the German data. An epoch is one

cycle through the full training data set. It defines the number times that the learning

algorithm will work through the entire training data set. Batch is the size of the

training set.

Figures 7.9 and 7.10 are the dicision boundary plots. The data is separated by the

multiple hyperplanes. Figures 7.7 and 7.8 are the confusion matrices. The false-

positives for German and Australian data are 32 and 10 respectively.

Table 7.1
Accuracy of the ANN model. The ANN model has lesser accuracy

compared to the Random Forest model.

Dataset
Mean Accuracy (%)

Before Tuning After Tuning
Australian data 87 88
German data 75 75
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Figure 7.7: Confusion matrix of Artificial Neural Networks using German
data set. There is an unacceptably large number of false positives.

Figure 7.8: Confusion matrix of Artificial Neural Networks using Aus-
tralian data set. There is a small number of false positives.
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Figure 7.9: Decision boundary plot using Artificial Neural Networks of
German data set. Observe that the decision boundaries are multiple hyper-
planes for this model.

Figure 7.10: Decision boundary plot using K - Nearest Neighbors of Aus-
tralian data set. Observe that the decision boundaries are multiple hyper-
planes for this model.
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Chapter 8

Results and Discussion

Table 8.1 shows the comparison of accuracy between our models and the models used

in the paper [4]. Table 8.2 shows the comparison of false positives and false negatives

after applying various classification models.

Table 8.1
Comparison Table. Comparison of accuracy between our models and the

models used in the paper

Models
German data (%) Australian data (%)

Our Results From paper Our Results From paper
KNN 75 72 85 89

Logistic Regression 77 - 87 -
Naive Bayes 75 77 87 78

SVM 77 78 87 85
Decision Trees 69 85 85 90
Random Forest 75 - 88 -

ANN 75 77 77 82

From the table 8.1, we can see that the Random Forest classification model gives
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Table 8.2
Comparison Table of False Positives and False Negatives

Models
German dataset Australian dataset
False

Positives
False

Negatives
False

Positives
False

Negatives
KNN 28 17 8 12

Logistic Regression 30 25 14 8
Naive Bayes 27 23 8 10

SVM 33 22 19 4
Decision Tree 28 32 18 7

Random Forest 30 10 11 7
ANN 32 18 10 11

the best accuracy for the Australian credit dataset. However, SVM and Logistic

Regression give best accuracy for the German credit dataset.

From the table 8.2, it seems that KNN and Naive Bayes models give least false-

positives for the Australian dataset. For the German dataset, Naive Bayes model gives

least false-positives. False-negatives is we predict a customer non-credible instead of

credible. Large number of false-negative affects the profit. But, if we consider less

risk then Naive Bayes model is best for both the datasets, and KNN model is also

good model for both the datasets.
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Appendix A

Sample Code

A.1 Machine Learning.py

# Problem Description

# Machine_Learning.py

# Description:

# Predict whether the customer is creditable or not.

# Two datasets: 1) German Credit dataset 2) Australian ←↩
Credit dataset

# Six Machine Learning Classification Methods:

# 1) Logistic Regression - lr

# 2) K - Nearest Neighbors Classification - knn

# 3) Support Vector Machine Classification - svc

# 4) Decision Tree Classification - dt
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# 5) Random Forest Classification - rf

# 6) Naive Bayes Classification - nb

# Special requirements or dependencies:

# None; Tested in Mac OS X with Python 2.7

# Compilation and execution:

# Compilation not necessary

# Execution takes approx 100 -120 seconds on most modern ←↩
hardware.

# For the execution in terminal

# python Machine_Learning.py

# Import the library

import pandas as pd

# Import the dataset

#dataset = pd.read_excel('German_Credit_Data.xlsx ')

#dataset.drop (["Acc","Telephone","Gender"],axis = 1, ←↩
inplace = True)

dataset = pd.read_excel('Australian_Credit_Data.xlsx')

# Data Pre -Processing(Splitting data , Categorical data , ←↩
Feature Scaling)

from Functions import data_preprocessing

X_train ,X_test ,y_train ,y_test ,X,y = data_preprocessing(←↩
dataset)

# Fitting Logistic Regression to the Training set

from sklearn.linear_model import LogisticRegression

classifier_lr = LogisticRegression ()
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classifier_lr.fit(X_train , y_train)

# Fitting K-NN to the Training set

from sklearn.neighbors import KNeighborsClassifier

classifier_knn = KNeighborsClassifier(n_neighbors = 5, ←↩
metric = 'euclidean ')

classifier_knn.fit(X_train , y_train)

# Fitting Kernel SVM to the Training set

from sklearn.svm import SVC

classifier_svc = SVC(kernel = 'poly', degree = 2)

classifier_svc.fit(X_train , y_train)

# Fitting Decision Tree Classification to the Training ←↩
set

from sklearn.tree import DecisionTreeClassifier

classifier_dt = DecisionTreeClassifier(criterion = 'gini←↩
', min_samples_split = 10)

classifier_dt.fit(X_train , y_train)

# Fitting Random Forest Classification to the Training ←↩
set

from sklearn.ensemble import RandomForestClassifier

classifier_rf = RandomForestClassifier(n_estimators = ←↩
10, criterion = 'entropy ', min_samples_split = 2)

classifier_rf.fit(X_train , y_train)

# Fitting Naive Bayes Classification to the Training set

from sklearn.naive_bayes import BernoulliNB

classifier_nb = BernoulliNB(alpha = 1, binarize = 0.0 )

classifier_nb.fit(X_train , y_train)

# Predicting the Test set results

y_pred_lr = classifier_lr.predict(X_test)
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y_pred_knn = classifier_knn.predict(X_test)

y_pred_svc = classifier_svc.predict(X_test)

y_pred_dt = classifier_dt.predict(X_test)

y_pred_rf = classifier_rf.predict(X_test)

y_pred_nb = classifier_nb.predict(X_test)

# Plot Confusion Matrix before tuning

from Functions import con_mat_plot

print('Confusion Matrix for Logistic Regression ')

con_mat_plot(y_test ,y_pred_lr)

print('Confusion Matrix for KNN')

con_mat_plot(y_test ,y_pred_knn)

print('Confusion Matrix for SVM')

con_mat_plot(y_test ,y_pred_svc)

print('Confusion Matrix for Decision Tree')

con_mat_plot(y_test ,y_pred_dt)

print('Confusion Matrix for Random Forest ')

con_mat_plot(y_test ,y_pred_rf)

print('Confusion Matrix for Naive Bayes ')

con_mat_plot(y_test ,y_pred_nb)

# Applying K-Fold Cross Validation

from Functions import k_fold_cross

accuracies_lr = k_fold_cross(classifier_lr , X_train , ←↩
y_train)

accuracies_knn = k_fold_cross(classifier_knn , X_train , ←↩
y_train)

accuracies_svc = k_fold_cross(classifier_svc , X_train , ←↩
y_train)

accuracies_dt = k_fold_cross(classifier_dt , X_train , ←↩
y_train)

accuracies_rf = k_fold_cross(classifier_rf , X_train , ←↩
y_train)
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accuracies_nb = k_fold_cross(classifier_nb , X_train , ←↩
y_train)

print('LR: Mean Accuracy before tuning ',accuracies_lr.←↩
mean() *100.)

print('KNN :Mean Accuracy before tuning ',accuracies_knn.←↩
mean() *100.)

print('SVC :Mean Accuracy before tuning ',accuracies_svc.←↩
mean() *100.)

print('Decision Tree :Mean Accuracy before tuning ',←↩
accuracies_dt.mean() *100.)

print('Random Forest :Mean Accuracy before tuning ',←↩
accuracies_rf.mean() *100.)

print('Naive Bayes :Mean Accuracy before tuning ',←↩
accuracies_nb.mean() *100.)

# Applying Grid Search to find the best model and the ←↩
best parameters

from Functions import choosing_parameters

# Best parameters for Logistic Regression

parameters_lr = [{'C': [1, 5, 10], 'tol': [1e-4,1e-5,1e←↩
-6,1e -10]}]

best_para_lr = choosing_parameters(parameters_lr ,←↩
classifier_lr ,X_train ,y_train)

C_lr = best_para_lr [0]

tole_lr = best_para_lr [1]

# Best parameters for KNN

parameters_knn = [{'n_neighbors ': [3, 5, 7, 3, 9, 11, ←↩
13], 'metric ': ['minkowski '],

'p': [1,2,3,4,5,6,7]}]
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best_para_knn = choosing_parameters(parameters_knn ,←↩
classifier_knn ,X_train ,y_train)

N_knn = best_para_knn [0]

metric_knn = best_para_knn [1]

p_knn = best_para_knn [2]

# Best parameters for SVM

parameters_svc = [{'kernel ': ['rbf','poly'], 'degree ': ←↩
[1, 2, 3, 4, 5, 6, 7]}]

best_para_svc = choosing_parameters(parameters_svc ,←↩
classifier_svc ,X_train ,y_train)

ker_svc = best_para_svc [0]

deg_svc = best_para_svc [1]

# Best parameters for Decision Tree

parameters_dt = [{'criterion ': ['gini','entropy '], '←↩
min_samples_split ': [2,4,6,8,10,15]}]

best_para_dt = choosing_parameters(parameters_dt ,←↩
classifier_dt ,X_train ,y_train)

criteria_dt = best_para_dt [1]

min_split_dt = best_para_dt [0]

# Best parameters for Random Forest

parameters_rf = [{'criterion ': ['gini','entropy '],'←↩
min_samples_split ': [2,5, 10, 15, 20],

'n_estimators ': [10, 20, 30, 40, ←↩
50 ,100 ,150]}]

best_para_rf = choosing_parameters(parameters_rf ,←↩
classifier_rf ,X_train ,y_train)

min_samp_spl_rf = best_para_rf [0]

n_est_rf = best_para_rf [1]

criterion_rf = best_para_rf [2]
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# Best parameters for Naive bayes

parameters_nb = [{'alpha ': [1, 5, 7, 10, 20, 50, 60, ←↩
100],

'binarize ': [0.0, 0.1, 0.2, 0.3, 0.4, ←↩
0.5]}]

best_para_nb = choosing_parameters(parameters_nb ,←↩
classifier_nb ,X_train ,y_train)

alfa_nb = best_para_nb [1]

bi_nb = best_para_nb [0]

#Selecting the best parameters and apply the ←↩
classification methods

# Logistic Regression

classifier_lr = LogisticRegression(C = int(C_lr), tol = ←↩
float(tole_lr) )

classifier_lr.fit(X_train , y_train)

# KNN

classifier_knn = KNeighborsClassifier(n_neighbors = int(←↩
N_knn), metric = str(metric_knn), p = int(p_knn))

classifier_knn.fit(X_train , y_train)

# SVM

classifier_svc = SVC(kernel = str(ker_svc), degree = int←↩
(deg_svc))

classifier_svc.fit(X_train , y_train)

# Decision Tree Classification

classifier_dt = DecisionTreeClassifier(criterion = str(←↩
criteria_dt), min_samples_split = int(min_split_dt))

classifier_dt.fit(X_train , y_train)

# Random Forest Classification
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classifier_rf = RandomForestClassifier(n_estimators = ←↩
int(n_est_rf), criterion = str(criterion_rf),

min_samples_split = ←↩
int(←↩
min_samp_spl_rf))

classifier_rf.fit(X_train , y_train)

# Naive Bayes Classification

classifier_nb = BernoulliNB(alpha = int(alfa_nb), ←↩
binarize = float(bi_nb))

classifier_nb.fit(X_train , y_train)

# Predict the Test set results

y_pred_lr = classifier_lr.predict(X_test)

y_pred_knn = classifier_knn.predict(X_test)

y_pred_svc = classifier_svc.predict(X_test)

y_pred_dt = classifier_dt.predict(X_test)

y_pred_rf = classifier_rf.predict(X_test)

y_pred_nb = classifier_nb.predict(X_test)

# Create Confusion Matrix

from Functions import con_mat_plot

print('Confusion Matrix for Logistic Regression ')

con_mat_plot(y_test ,y_pred_lr)

print('Confusion Matrix for KNN')

con_mat_plot(y_test ,y_pred_knn)

print('Confusion Matrix for SVM')

con_mat_plot(y_test ,y_pred_svc)

print('Confusion Matrix for Decision Tree')

con_mat_plot(y_test ,y_pred_dt)

print('Confusion Matrix for Random Forest ')

con_mat_plot(y_test ,y_pred_rf)

print('Confusion Matrix for Naive Bayes ')
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con_mat_plot(y_test ,y_pred_nb)

# Apply K-Fold Cross Validation

from Functions import k_fold_cross

accuracies_lr = k_fold_cross(classifier_lr , X_train , ←↩
y_train)

accuracies_knn = k_fold_cross(classifier_knn , X_train , ←↩
y_train)

accuracies_svc = k_fold_cross(classifier_svc , X_train , ←↩
y_train)

accuracies_dt = k_fold_cross(classifier_dt , X_train , ←↩
y_train)

accuracies_rf = k_fold_cross(classifier_rf , X_train , ←↩
y_train)

accuracies_nb = k_fold_cross(classifier_nb , X_train , ←↩
y_train)

print('LR: Mean Accuracy after tuning ',accuracies_lr.←↩
mean() *100.)

print('KNN :Mean Accuracy after tuning ',accuracies_knn.←↩
mean() *100.)

print('SVM :Mean Accuracy after tuning ',accuracies_svc.←↩
mean() *100.)

print('Decision Tree :Mean Accuracy after tuning ',←↩
accuracies_dt.mean() *100.)

print('Random Forest :Mean Accuracy after tuning ',←↩
accuracies_rf.mean() *100.)

print('Naive Bayes :Mean Accuracy after tuning ',←↩
accuracies_nb.mean() *100.)

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

X_train = pca.fit_transform(X_train)

X_test = pca.transform(X_test)
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# Logistic Regression

classifier_lr = LogisticRegression(C = int(C_lr), tol = ←↩
float(tole_lr) )

classifier_lr.fit(X_train , y_train)

# KNN

classifier_knn = KNeighborsClassifier(n_neighbors = int(←↩
N_knn), metric = str(metric_knn), p = int(p_knn))

classifier_knn.fit(X_train , y_train)

# SVM

classifier_svc = SVC(kernel = str(ker_svc), degree = int←↩
(deg_svc))

classifier_svc.fit(X_train , y_train)

# Decision Tree Classification

classifier_dt = DecisionTreeClassifier(criterion = str(←↩
criteria_dt), min_samples_split = int(min_split_dt))

classifier_dt.fit(X_train , y_train)

# Random Forest Classification

classifier_rf = RandomForestClassifier(n_estimators = ←↩
int(n_est_rf), criterion = str(criterion_rf),

min_samples_split = ←↩
int(←↩
min_samp_spl_rf))

classifier_rf.fit(X_train , y_train)

# Naive Bayes Classification

classifier_nb1 = BernoulliNB(alpha = int(alfa_nb), ←↩
binarize = float(bi_nb))

classifier_nb1.fit(X_train , y_train)

from sklearn.naive_bayes import GaussianNB
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classifier_nb = GaussianNB ()

classifier_nb.fit(X_train , y_train)

# Decision boundary plot

from Functions import plot_decision_boundary

plot_decision_boundary(classifier_lr ,X_train , y_train , ←↩
X_test , cmap='Paired_r ')

from Functions import plot_decision_boundary

plot_decision_boundary(classifier_knn ,X_train , y_train ,←↩
X_test , cmap='Paired_r ')

from Functions import plot_decision_boundary

plot_decision_boundary(classifier_svc ,X_train , y_train ,←↩
X_test , cmap='Paired_r ')

from Functions import plot_decision_boundary

plot_decision_boundary(classifier_dt ,X_train , y_train , ←↩
X_test , cmap='Paired_r ')

from Functions import plot_decision_boundary

plot_decision_boundary(classifier_rf ,X_train , y_train , ←↩
X_test , cmap='Paired_r ')

from Functions import plot_decision_boundary

plot_decision_boundary(classifier_nb ,X_train , y_train , ←↩
X_test , cmap='Paired_r ')

# Learning curve

from sklearn.model_selection import ShuffleSplit

cv = ShuffleSplit(test_size =0.2, random_state = 0)
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from Functions import plot_learning_curve

title = "Learning Curves (Logistic Regression)"

estimator = classifier_lr

plot_learning_curve(estimator , title , X, y, ylim =(0.25 , ←↩
1.25), cv=cv, n_jobs =4)

title = "Learning Curves (KNN)"

estimator = classifier_knn

plot_learning_curve(estimator , title , X, y, (0.25 , 1.25)←↩
, cv=cv , n_jobs =4)

title = "Learning Curves (SVM)"

estimator = classifier_svc

plot_learning_curve(estimator , title , X, y, (0.25 , 1.25)←↩
, cv=cv , n_jobs =4)

title = "Learning Curves (Decision Tree)"

estimator = classifier_dt

plot_learning_curve(estimator , title , X, y, (0.25 , 1.25)←↩
, cv=cv , n_jobs =4)

title = "Learning Curves (Random Forest)"

estimator = classifier_rf

plot_learning_curve(estimator , title , X, y, (0.25 , 1.25)←↩
, cv=cv , n_jobs =4)

title = "Learning Curves (Naive Bayes)"

estimator = classifier_nb1

plot_learning_curve(estimator , title , X, y, (0.25 , 1.25)←↩
, cv=cv , n_jobs =4)
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A.2 Functions.py

# importing the libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import learning_curve

from sklearn.model_selection import ShuffleSplit

# Function for Plotting:

def plot_classification(X_train ,X_test ,y_train ,y_test ,←↩
y_pred):

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

X_train = pca.fit_transform(X_train)

X_test = pca.transform(X_test)

explained_variance = pca.explained_variance_ratio_

comparision = pd.DataFrame.join(pd.DataFrame(y_test ,←↩
columns =['y_test ']),pd.DataFrame(y_pred ,dtype=int ,←↩
columns =['y_pred ']))

comparision['Comparision '] = comparision.apply(←↩
lambda x: 0 if x[0] == x[1] else 1, axis =1)

plotdata = pd.DataFrame.join(pd.DataFrame(X_test ,←↩
columns =['0','1']),comparision['Comparision '])

# Plot misclassification
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fig3 , ax3 = plt.subplots(figsize = (14,7))

ax3.scatter(x = plotdata[plotdata.Comparision ==0][ '←↩
0'],y = plotdata[plotdata.Comparision == 0]['1'], ←↩
marker = 'o',color = 'red')

ax3.scatter(x = plotdata[plotdata.Comparision ==1][ '←↩
0'],y = plotdata[plotdata.Comparision == 1]['1'], ←↩
marker = 'o',color = 'blue')

ax3.legend (['Classified ','Misclassified '])

plt.xlabel('X1')

plt.ylabel('X2')

plt.title('Classification ')

plt.show()

# Function for Confusion Matrix:

def con_mat_plot(y_test ,y_pred):

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test , y_pred)

plt.clf()

plt.imshow(cm, interpolation='nearest ', cmap=plt.cm.←↩
Wistia)

classNames = ['Negative ','Positive ']

plt.title('Confusion Matrix - Test Data')

plt.ylabel('True Result ')

plt.xlabel('Predicted Result ')

tick_marks = np.arange(len(classNames))

plt.xticks(tick_marks , classNames , rotation =45)

plt.yticks(tick_marks , classNames)

s = [['TN','FP'], ['FN', 'TP']]

for i in range (2):

for j in range (2):
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plt.text(j,i, str(s[i][j])+" = "+str(cm[i][j←↩
]))

plt.show()

# Function k-fold cross validation

def k_fold_cross(classifier , X_train , y_train):

from sklearn.model_selection import cross_val_score

accuracies = cross_val_score(estimator = classifier ,←↩
X = X_train , y = y_train , cv = 10)

return accuracies.mean()

# Data Preprocessing

def data_preprocessing(dataset):

listt = dataset.select_dtypes(include =['category ', ←↩
object ]).columns

X = dataset.iloc[:, :-1]. values

y = dataset.iloc[:, -1]. values

for i in range(0,len(y)):

if y[i] == 2:

y[i] = 0

listn = np.empty ((len(listt) ,1))

for i in range(0,len(listt)):

listn[i,0] = dataset.columns.get_loc(listt[i])

# Categorial data

from sklearn.preprocessing import LabelEncoder , ←↩
OneHotEncoder

labelencoder_X = LabelEncoder ()

for i in range(0,len(listn)):
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X[:,int(listn[i,0])] = labelencoder_X.←↩
fit_transform(X[:,int(listn[i,0])])

onehotencoder = OneHotEncoder(←↩
categorical_features = [int(listn[i,0])])

# Splitting the dataset into the Training set and ←↩
Test set

from sklearn.model_selection import train_test_split

X_train , X_test , y_train , y_test = train_test_split(←↩
X, y, test_size = 0.2)

# Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler ()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

return X_train ,X_test ,y_train ,y_test ,X,y

# Function for selecting the best parameters:

def choosing_parameters(parameters ,classifier ,X_train ,←↩
y_train):

from sklearn.model_selection import GridSearchCV

grid_search = GridSearchCV(estimator = classifier ,

param_grid = parameters ,

scoring = 'accuracy ',

cv = 10,

n_jobs = -1)

grid_search = grid_search.fit(X_train , y_train)

best_accuracy = grid_search.best_score_

best_parameters = grid_search.best_params_

best_para = np.array(best_parameters.values ())

return best_para
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# Function for decision boundary plot

def plot_decision_boundary(clf , X, Y, X_test , cmap='←↩
Paired_r '):

clf.predict(X_test)

h = 0.02

x_min , x_max = X[: ,0].min() - 10*h, X[:,0].max() + ←↩
10*h

y_min , y_max = X[: ,1].min() - 10*h, X[:,1].max() + ←↩
10*h

xx , yy = np.meshgrid(np.arange(x_min , x_max , h),

np.arange(y_min , y_max , h))

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.figure(figsize =(10 ,10))

plt.contourf(xx, yy, Z, cmap=cmap , alpha =0.25)

plt.contour(xx, yy, Z, colors='k', linewidths =0.7)

plt.ylabel('x2')

plt.xlabel('x1')

plt.grid()

plt.scatter(X[:,0], X[:,1], c=Y, cmap=cmap , ←↩
edgecolors='k');

# Function for learning curve

def plot_learning_curve(estimator , title , X, y, ylim=←↩
None , cv=None ,

n_jobs=None , train_sizes=np.←↩
linspace (.1, 1.0, 5)):

plt.figure ()
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plt.title(title)

if ylim is not None:

plt.ylim(*ylim)

plt.xlabel("Training examples")

plt.ylabel("Score")

train_sizes , train_scores , test_scores = ←↩
learning_curve(

estimator , X, y, cv=cv, n_jobs=n_jobs , ←↩
train_sizes=train_sizes)

train_scores_mean = np.mean(train_scores , axis =1)

train_scores_std = np.std(train_scores , axis =1)

test_scores_mean = np.mean(test_scores , axis =1)

test_scores_std = np.std(test_scores , axis =1)

plt.grid()

plt.fill_between(train_sizes , train_scores_mean - ←↩
train_scores_std ,

train_scores_mean + ←↩
train_scores_std , alpha =0.1,

color="r")

plt.fill_between(train_sizes , test_scores_mean - ←↩
test_scores_std ,

test_scores_mean + test_scores_std ,←↩
alpha =0.1, color="g")

plt.plot(train_sizes , train_scores_mean , 'o-', color←↩
="r",

label="Training score")

plt.plot(train_sizes , test_scores_mean , 'o-', color=←↩
"g",

label="Cross -validation score")

plt.legend(loc="best")

return plt
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A.3 ANN.py

# Problem Description

# ANN.py

# Description:

# Predict whether the customer is creditable or not.

# Two datasets: 1) German Credit dataset 2) Australian ←↩
Credit dataset

# Artificial Neural Network

# Special requirements or dependencies:

# None; Tested in Mac OS X with Python 2.7

# Compilation and execution:

# Compilation not necessary

# Execution takes approx 8-10 minutes on most modern ←↩
hardware.

# For the execution in terminal

# python ANN.py

# Import the library

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

# Import the dataset

dataset = pd.read_excel('German_Credit_Data.xlsx')

#dataset = pd.read_excel('Australian_Credit_Data.xlsx ')

89



# Data Pre -Processing(Splitting data , Categorical data , ←↩
Feature Scaling)

from Functions import data_preprocessing

X_train ,X_test ,y_train ,y_test ,X,y = data_preprocessing(←↩
dataset)

# Make the ANN!

# Importing the Keras libraries and packages

import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasClassifier

def ann_model ():

# Initialising the ANN

classifier = Sequential ()

# Adding the input layer and the first hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu', input_dim = np.←↩
shape(X_test)[1]))

# Adding the second hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu'))

# Adding the second hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu'))
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# Adding the output layer

classifier.add(Dense(1, kernel_initializer = '←↩
uniform ', activation = 'sigmoid '))

# Compiling the ANN

classifier.compile(optimizer = 'adam', loss = '←↩
binary_crossentropy ', metrics = ['accuracy '])

return classifier

# Fitting the ANN to the Training set

classifier = KerasClassifier(build_fn = ann_model , ←↩
batch_size = 25, epochs = 100)

# Cross validation

from sklearn.model_selection import StratifiedKFold

from sklearn.model_selection import cross_val_score

kfold = StratifiedKFold(n_splits =10, shuffle=True , ←↩
random_state = 2)

results = cross_val_score(classifier , X_test , y_test , cv←↩
=kfold)

print(results.mean())

# Making predictions and evaluating the model

classifier.fit(X_train , y_train)

# Predicting the Test set results

y_pred = classifier.predict(X_test)

y_pred = (y_pred > 0.5)

from Functions import con_mat_plot
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con_mat_plot(y_test ,y_pred)

# Tuning the ANN

import keras

from keras.wrappers.scikit_learn import KerasClassifier

from sklearn.model_selection import GridSearchCV

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

def build_classifier(optimizer):

classifier = Sequential ()

classifier.add(Dense(units = 10, kernel_initializer ←↩
= 'uniform ', activation = 'relu', input_dim = np.←↩
shape(X_test)[1]))

classifier.add(Dropout(p = 0.1))

classifier.add(Dense(units = 10, kernel_initializer ←↩
= 'uniform ', activation = 'relu'))

classifier.add(Dropout(p = 0.1))

classifier.add(Dense(units = 1, kernel_initializer =←↩
'uniform ', activation = 'sigmoid '))

classifier.compile(optimizer = optimizer , loss = '←↩
binary_crossentropy ', metrics = ['accuracy '])

return classifier

classifier = KerasClassifier(build_fn = build_classifier←↩
)

parameters = {'batch_size ' : [25, 50],

'epochs ' : [100, 200],

'optimizer ' : ['adam' , 'rmsprop ']}

grid_search = GridSearchCV(estimator = classifier ,
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param_grid = parameters ,

scoring = 'accuracy ',

cv = 10)

grid_search = grid_search.fit(X_train , y_train)

best_parameters = grid_search.best_params_

best_accuracy = grid_search.best_score_

print('Best Accuracy = ',best_accuracy)

best_parameters = np.array(best_parameters.values ())

epo = int(best_parameters [0])

opt = str(best_parameters [1])

bs = int(best_parameters [2])

# Defining model with tuned parameteres

def ann_model ():

# Initialising the ANN

classifier = Sequential ()

# Adding the input layer and the first hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu', input_dim = np.←↩
shape(X_test)[1]))

# Adding the second hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu'))

# Adding the second hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu'))

# Adding the output layer
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classifier.add(Dense(1, kernel_initializer = '←↩
uniform ', activation = 'sigmoid '))

# Compiling the ANN

classifier.compile(optimizer = opt , loss = '←↩
binary_crossentropy ', metrics = ['accuracy '])

return classifier

# Fitting the ANN to the Training set

classifier = KerasClassifier(build_fn = ann_model , ←↩
batch_size = bs , epochs = epo)

kfold = StratifiedKFold(n_splits =10, shuffle=True , ←↩
random_state = 2)

results = cross_val_score(classifier , X_test , y_test , cv←↩
=kfold)

print(results.mean())

# Making predictions and evaluating the model

classifier.fit(X_train , y_train)

# Predicting the Test set results

y_pred = classifier.predict(X_test)

y_pred = (y_pred > 0.5)

# Confusion matrix

from Functions import con_mat_plot

con_mat_plot(y_test ,y_pred)

# Applying PCA
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from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

X_train = pca.fit_transform(X_train)

X_test = pca.transform(X_test)

def ann_model ():

# Initialising the ANN

classifier = Sequential ()

# Adding the input layer and the first hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu', input_dim = np.←↩
shape(X_test)[1]))

# Adding the second hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu'))

# Adding the second hidden layer

classifier.add(Dense(10, kernel_initializer = '←↩
uniform ', activation = 'relu'))

# Adding the output layer

classifier.add(Dense(1, kernel_initializer = '←↩
uniform ', activation = 'sigmoid '))

# Compiling the ANN

classifier.compile(optimizer = 'adam', loss = '←↩
binary_crossentropy ', metrics = ['accuracy '])

return classifier

# Fitting the ANN to the Training set
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classifier = KerasClassifier(build_fn = ann_model , ←↩
batch_size = 25, epochs = 100)

classifier.fit(X_train , y_train)

# Decision boundary

def plot_decision_boundary(clf , X, Y, X_test , cmap='←↩
Paired_r '):

clf.predict(X_test)

h = 0.02

x_min , x_max = X[: ,0].min() - 10*h, X[:,0].max() + ←↩
10*h

y_min , y_max = X[: ,1].min() - 10*h, X[:,1].max() + ←↩
10*h

xx , yy = np.meshgrid(np.arange(x_min , x_max , h),

np.arange(y_min , y_max , h))

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.figure(figsize =(10 ,10))

plt.contourf(xx, yy, Z, cmap=cmap , alpha =0.25)

plt.contour(xx, yy, Z, colors='k', linewidths =0.7)

plt.ylabel('x2')

plt.xlabel('x1')

plt.grid()

plt.scatter(X[:,0], X[:,1], c=Y, cmap=cmap , ←↩
edgecolors='k');

plot_decision_boundary(classifier ,X_train , y_train , ←↩
X_test , cmap='Paired_r ')

96


	CREDIT RISK ANALYSIS USING MACHINE LEARNING AND NEURAL NETWORKS
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Motivation
	Datasets
	Methodology

	K - Nearest Neighbors (KNN)
	Mathematical Framework
	Results

	Logistic Regression
	Mathematical Framework
	Iteratively Re-weighted Least Squares (IRLS)
	Results

	Naive Bayes Classification
	Introduction
	Mathematical Framework
	Results

	Support Vector Machine (SVM)
	Linear SVM
	Non-Linear SVM (Kernel Trick)
	Results

	Classification Trees
	Decision Tree
	Introduction
	Mathematical Framework
	Results

	Random Forest Classification
	Methodology
	Results of Random Forest


	Artificial Neural Networks
	Introduction
	Basic Neural Network Model
	Backpropagation
	Procedure for Backpropagation

	Results

	Results and Discussion
	References
	Sample Code
	Machine_Learning.py
	Functions.py
	ANN.py


