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Abstract: MicroRNA (miRNA), a type of non-coding RNA, is crucial for controlling gene expression.
Among the various miRNA families, miR166 stands out as a highly conserved group found in
both model and crop plants. It plays a key role in regulating a wide range of developmental and
environmental responses. In this review, we explore the diverse sequences of MIR166s in major
crops and discuss the important regulatory functions of miR166 in plant growth and stress responses.
Additionally, we summarize how miR166 interacts with other miRNAs and highlight the potential
for enhancing agronomic traits by manipulating the expression of miR166 and its targeted HD-ZIP
III genes.

Keywords: microRNA166; HD-ZIP III genes; plant development; stress response; agronomic traits
improvement

1. Introduction

Due to the ongoing impact of climate change, crop production is facing significant
challenges from extreme temperatures, drought, and flooding [1,2]. It is crucial to optimize
agronomic traits and develop more resistant varieties. Therefore, exploring novel regulatory
players and their biological functions is required for crop enhancement [3–5]. Despite
engineering protein-encoding genes, manipulating miRNAs and their targets also provides
a promising method for crop improvement. miRNAs are small, single-stranded, non-coding
RNA molecules that play a critical role in post-transcriptional gene regulation in plants.
MIRNA genes are transcribed and cleaved into a miRNA duplex by Dicer-like 1 (DCL1)
and other D-body-related proteins. miRNA duplexes are then recruited by the Argonaute1
(AGO1) protein and incorporated into RNA-induced silencing complexes (RISCs) [6]. The
miRNA-RISCs negatively regulate target gene expression via mRNA cleavage within the
miRNA complementary site [7,8] or by translation inhibition [9,10]. miRNAs are essential
for controlling a wide range of developmental and environmental processes by targeting
specific transcription factors at the post-transcriptional level [11]. Here, we focus on miR166,
a miRNA known to modulate complex agronomic traits and responses to abiotic stress
in major crop species [12,13]. In this study, we discuss the sequence diversity of MIR166
in different plant species and highlight the regulatory role of miR166 in both model and
crop plants, as well as its interactions with other miRNAs. Moreover, we highlight the
agronomic trait improvement by manipulating the expression of miR166 and its targets,
Class III HD-ZIP transcription factor genes (HD-ZIP IIIs).
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2. Conservation and Diversification of MIR165/166 in Model Plants and Main Crops

The miR165/166 family is both highly conserved and abundant in land plants [14,15].
miR166 genes have been identified in land plants, while miR165 genes have only been iden-
tified in the Brassicaceae family [16–18]. To explore the sequence diversity of miR165/166 in
land plants, mature miRNA sequences from six dicots and four monocots were obtained
and aligned manually using Clustal omega software (Release 22.1) [18]. Among the dicots,
Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), soybean (Glycine max), cotton
(Gossypium hirsutum), alfalfa (Medicago truncatula), and tomato (Solanum lycopersicum) contain
9, 6, 21, 2, 7, and 3 miR165/166 members, respectively (Figure 1). In the monocots, stiff brome
(Brachypodium distachyon), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays)
have 10, 14, 13, 11, and 14 miR166s, respectively (Figure 1). Mature miR165/166 sequences
are highly conserved, reflecting their similar functions within these species (Table 1). The
Arabidopsis genome has two miR165s (miR165a and miR165b) and seven miR166s (miR166a-
miR166g). miR165 and miR166 have almost identical nucleotide sequences except for a C-U
substitution at the 17th base, which has been confirmed with their distinct action mecha-
nisms [14]. Similarly, there are minimal nucleotide variations in members of the miR165/166
family from rapeseed, soybean, cotton, alfalfa, and tomato. Monocots exhibit a larger number
of members and diverse nucleotides in the miR166 family as compared to dicots. Notably, the
maize miR166 family displays 4 different nucleotides, while miR166g in stiff brome shares
only 11 conserved nucleotides with other family members. Overall, monocots likely have
more target genes regulated by the miR165/166 family than dicots.
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Figure 1. Phylogenetic analysis of MIR165/166s in model plants and major crops. The neighbor-join-
ing tree was constructed using Clustal omega (V1.2.2) and iTol online software (V6). The different 
colors indicated the seven clades. Dicots: arabidopsis thaliana, ath; brassica napus, bna; glycine max (soy-

Figure 1. Phylogenetic analysis of MIR165/166s in model plants and major crops. The neighbor-joining
tree was constructed using Clustal omega (V1.2.2) and iTol online software (V6). The different colors
indicated the seven clades. Dicots: arabidopsis thaliana, ath; brassica napus, bna; glycine max (soybean),
gma; gossypium hirsutum (cotton), ghr; medicago truncatula (medicago), mtr; solanum lycopersicum
(tomato), sly. Monocots: brachypodium distachyon, bdi; oryza sativa (rice), osa; sorghum bicolor (sorghum),
sbi; zea mays (maize), zma.



Genes 2024, 15, 944 3 of 14

Table 1. Diversification of mature miR165/166 sequences in model and main crop plants.

Species/Members Sequence Alignment
Arabidopsis thaliana ath-miR165a,b U C G G A C C A G G C U U C A U C C C C C 21

9 ath-miR166a-g U C G G A C C A G G C U U C A U U C C C C 21
Brassica napus bna-miR166a-e U C G G A C C A G G C U U C A U U C C C C 21

6 bna-miR166f U C G G A C C A G G C U U C A U C C C C C 21
Glycine max gma-miR166h,k U C U C G G A C C A G G C U U C A U U C C 21

21 gma-miR166u U C U C G G A C C A G G C U U C A U U C 20
gma-miR166a-g,i U C G G A C C A G G C U U C A U U C C C C 21

gma-miR166m C G G A C C A G G C U U C A U U C C C C 20
gma-miR166n,o U C G G A C C A G G C U U C A U U C C C C 21
gma-miR166j U C G G A C C A G G C U U C A U U C C C G 21

gma-miR166p-t U C G G A C C A G G C U U C A U U C C C 20
Gossypium hirsutum2 ghr-miR166a,b U C G G A C C A G G C U U C A U U C C C C 21
Medicago truncatula mtr-miR166a,b,d,e,g U C G G A C C A G G C U U C A U U C C C C 21

7 mtr-miR166c,f U C G G A C C A G G C U U C A U U C C U C 21
Solanum lycopersicum sly-miR166a,b U C G G A C C A G G C U U C A U U C C C C 21

3 sly-miR166c U C G G A C C A G G C U U C A U U C C U C 21

Brachypodium distachyon bdi-miR166g
U G U G G U G A

U C U C G G A C C A G G C 21
10 bdi-miR166h U C G G A C C A G G C U U C A A U C C C U 21

bdi-miR166f U C U C G G A C C A G G C U U C A U U C C 21
bdi-miR166a-d,i U C G G A C C A G G C U U C A U U C C C C 21

bdi-miR166e C U C G G A C C A G G C U U C A U U C C C 21
bdi-miR166j U C G G A C C A G G C U U C A U U C C U U 21

Oryza sativa osa-miR166g-i U C G G A C C A G G C U U C A U U C C U C 21
13 osa-miR166a-d,f,j U C G G A C C A G G C U U C A U U C C C C 21

osa-miR166e U C G A A C C A G G C U U C A U U C C C C 21
osa-miR166k-m U C G G A C C A G G C U U C A A U C C C U 21

Sorghum bicolor sbi-miR166f U C G G A C C A G G C U U C A U U C C U C 21
11 sbi-miR166k U C G G A C C A G G C U U C A U U C C U 20

sbi-miR166a-d,h-j U C G G A C C A G G C U U C A U U C C C 20
sbi-miR166e,g U C G G A C C A G G C U U C A A U C C C U 21

Zea mays zma-miR166l,m U C G G A C C A G G C U U C A U U C C U C 21
14 zma-miR166j,k,n U C G G A C C A G G C U U C A A U C C C U 21

zma-miR166a U C G G A C C A G G C U U C A U U C C C C 21
zma-miR166b-i U C G G A C C A G G C U U C A U U C C C * 20

To analyze the evolution of MIR165/166s, a phylogenic tree was constructed using the
hairpin sequences of miR165/166 from various species, including Arabidopsis, rapeseed,
soybean, cotton, alfalfa, tomato, stiff brome, rice, sorghum, and maize (miRbase release
22.1) [19]. A total of 96 MIR165/166s were obtained and further classified into 7 clades,
with 2 dicot-specific clades (consisting of 19 and 14 MIR165/166s, respectively), 2 monocot-
specific clades (including 7 and 10 MIR166s, respectively), and 3 mixed clades (11, 23, and
12 MIR166s, respectively). All MIR165/166s in Arabidopsis, rapeseed, and soybean can be
grouped to dicot- specific clades, and most MIR166s are not specific to monocot species.
MIR166s in each monocot species were grouped into five clades (two monocot-specific
clades and three mixed clades), indicating a greater diversity of MIR166s in monocots as
compared to dicots.

In eukaryotes, MIRs primarily originate from inverted duplications, random hairpin
sequences, and small transposable elements [7,20,21]. Tandem and segmental duplications
in plant genomes contribute to the diversification of MIRs [22]. Several miRNA clusters
have been found in plants. For instance, miR166s can be transcribed from a single poly-
cistronic transcript [23]. In the six dicots and four monocots mentioned above, polycistronic
MIRs exist in rapeseed, soybean, cotton, alfalfa, rice, maize, stiff brome, and sorghum
(Table 2), and represented by bna-MIR166b-c, gma-MIR166e-q, osa-MIR166i-j, osa-MIR166h-k,
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zma-MIR166k-m, bdi-MIR166h-j, and sbi-MIR166f-g. Additionally, bna-MIR166a-e have two
copies in the soybean genome.

Table 2. Polycistronic MIR166s in model and main crop plants.

Class Species Polycistronic MIR166 Location

Dicots Brassica napus bna-MIR166b,c Scaffold2676:6222~6333
Scaffold2676:6215~6341

Glycine max gma-MIR166e,q 4:46797931~46798040
4:46798188~46798339

Gossypium hirsutum ghr-MIR166a,b D12:41573882~41574028
D12:41573879~41574032

Medicago truncatula mtr-MIR166c,d 3:47901757~47901861
3:47901931~47902021

Monocots Brachypodium distachyon bdi-MIR166h,j 3:57184726~57184865
3:57184616~57184767

Oryza sativa osa-MIR166i,j 3:25294953~25295097
3:25294953~25295092

osa-MIR166d,h,k 2:32435174~32435292
2:32435003~32435129

Sorghum bicolor sbi-MIR166d,f,g 4:64857783~64857921
4:64857514~64857647

Zea mays zma-MIR166k,m 5:219021288~219021455
5:219021559~219021714

3. Functions of miR166 in Crop Development and Stress Response
3.1. miR166 as a Determinant in Plant Morphogenesis

In land plants, miR165/166 is a crucial regulator in leaf polarity establishment, shoot
meristem formation, and ovule and floral development (Figure 2) [18,24–33]. In Arabidop-
sis, mutants involving miR165/166 and its targets exhibit aberrant leaf polarity [34,35].
Specifically, miR165a, miR166a, and miR166b are expressed on the abaxial surface, while
PHABULOSA (PHB) and REVOLUTA (PHV) are expressed on the adaxial surface, con-
tributing to the establishment and maintenance of leaf polarity. The role of miR165/166
in leaf polarity regulation has been demonstrated in other dicot crops, such as cotton,
tomato, and tobacco [12,27,36,37]. In monocot crops like rice, maize, and wheat, miR166
performs similar functions [13,38–41]. The knockdown of rice miR166 mediates leaf rolling
by releasing its targeted homeodomain containing protein4 (OsHB4) mRNA [38]. In maize, the
miR166-rolled leaf 1/2 (Rld1/2) regulatory module interacts with the miR390-leafbladeless1
(lbl1) regulatory module to define the expression of ta-siRNA, establishing concentration
gradients and maintaining leaf polarity [42–44]. In wheat, the loss control of HB2 from
miR165/166 also mediates rolled leaf [41].

The shoot apical meristem is responsible for generating aboveground aerial organs
throughout the lifespan of higher plants, involving complex molecular mechanisms [45,46].
miR165/166 has been shown to modulate shoot apical meristem formations [30,47–49].
In Arabidopsis, AGO10 competes with AGO1 to bind miR165/166, which is essential for
shoot apical meristem development and maintenance [30,50]. Sequestration miR165/166
by AGO10 has also been shown to fine-tune the axillary meristem initiation [49]. In rice,
several HD-ZIP III genes regulate leaf initiation via an auxin-dependent manner [43]. The
miR166-HD-ZIP III module controls maize inflorescence development and defines tassel
architecture through interacting with ZmAGO18b [13,51]. In both model plants and major
crops, the regulation of the shoot apical and axillary meristem development by miR166
subsequently affects flowering time, plant height, and fruit size [11–13,38,41]. For instance,
the overexpression of RDD1, a target gene of rice miR166 in vascular tissue, enhances
nutrient absorption, transportation, assimilation, and photosynthesis, thus resulting in
higher grain yield [52,53].



Genes 2024, 15, 944 5 of 14
Genes 2024, 15, 944 5 of 15 
 

 

 
Figure 2. Experimentally verified functions of miR166-HD-ZIP IIIs in regulating model and crop 
plant morphology and development. (A). Regulatory roles of miR165/166 in Arabidopsis include leaf 
polarity, shoot apical meristem formation, and axillary meristem development. (B). The knockdown 
of miR166 leads to decreased plant height in soybean. (C). Tomato miR166 is involved in the regu-
lating of leaf polarity, plant height, ovule, and flower morphogenesis. (D). In rice, miR166 acts as a 
determinant in rice leaf rolling, plant height, and yield. (E) The loss function of miR166 results in 
rolled leaf, short tassel central spike, and reduced plant height. STTM166 represents the knockdown 
mutant of miR166 by short tandem target-mimic (STTM) technology. 

The shoot apical meristem is responsible for generating aboveground aerial organs 
throughout the lifespan of higher plants, involving complex molecular mechanisms 
[45,46]. miR165/166 has been shown to modulate shoot apical meristem formations [30,47–
49]. In Arabidopsis, AGO10 competes with AGO1 to bind miR165/166, which is essential 
for shoot apical meristem development and maintenance [30,50]. Sequestration 
miR165/166 by AGO10 has also been shown to fine-tune the axillary meristem initiation 
[49]. In rice, several HD-ZIP III genes regulate leaf initiation via an auxin-dependent man-
ner [43]. The miR166-HD-ZIP III module controls maize inflorescence development and 
defines tassel architecture through interacting with ZmAGO18b [13,51]. In both model 
plants and major crops, the regulation of the shoot apical and axillary meristem develop-
ment by miR166 subsequently affects flowering time, plant height, and fruit size [11–

Figure 2. Experimentally verified functions of miR166-HD-ZIP IIIs in regulating model and crop
plant morphology and development. (A). Regulatory roles of miR165/166 in Arabidopsis include leaf
polarity, shoot apical meristem formation, and axillary meristem development. (B). The knockdown
of miR166 leads to decreased plant height in soybean. (C). Tomato miR166 is involved in the
regulating of leaf polarity, plant height, ovule, and flower morphogenesis. (D). In rice, miR166 acts as
a determinant in rice leaf rolling, plant height, and yield. (E) The loss function of miR166 results in
rolled leaf, short tassel central spike, and reduced plant height. STTM166 represents the knockdown
mutant of miR166 by short tandem target-mimic (STTM) technology.

In addition to the impacts on leaf polarity establishment and shoot meristem forma-
tion, miR166 has also been found to regulate plant reproductive development in several
plant species. In Arabidopsis, miR165/166 is highly expressed in ovule primordia, which
restricts the PHB expression and promotes integument formation, thereby influencing ovule
morphogenesis [18]. In tomato, miR166 has been indicated to regulate ovule and flower
morphogenesis, as well as pollen viability under adverse temperatures [27,54]. In rice, the
anther adaxial/abaxial polarity is fine-tuned by the miR166-SPOROCYTELESS/NOZZLE
(SPL) module so as to build the internal boundary and establish the internal structure for
the anthers [55]. Point mutations in the binding site between miR166 and the HB2 gene
cause abnormal spikes in wheat [41].
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3.2. miR166 Regulates Root and Vascular Development

Roots, the underground organs of plants, provide essential functions such as water and
nutrient uptake, as well as anchorage for plant survival. Root development is intricately reg-
ulated by transcription factors, miRNAs, phytohormones, and environmental cues [56,57].
An increasing number of studies have shed light on the roles of miR166 in root development
(Figure 3A–C). In Arabidopsis, MIR165a and MIR166b are activated by transcription factors
SHORT ROOT (SHR) and SCARECROW (SCR) [58]. miR165a, miR166a, and miR166b are
specifically expressed in the endodermal layer, and their movements from the inner to the
outer regions are crucial for vascular patterning and root architecture [58,59]. The opposing
activity between miR165/166 and the HD-ZIP III genes coordinates root growth and devel-
opment [60]. The knockdown of miR166 and the overexpression of HD-ZIP III gene HB15
lead to inhibition of vascular development and secondary cell wall formation, whereas
the HB15 mutant displayed the opposite phenotype in response to high temperature [61].
In Medicago, the overexpression of miR166 leads to the reduced formation of bundles,
which leads to a reduction in the symbiotic nodules and lateral roots [62]. Despite the
significant differences in root systems between monocots and dicots, miR166 also influences
maize root development. In maize, the interactions of miR166-Rld1/2 and miR390-lbl1 are
involved in root development in an auxin-dependent manner [63]. Maize mutants with the
inactivation of miR166 also exhibit decreased formation of lateral roots [13].
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Figure 3. Functional identification of miR166 in model and crop plant roots and vascular develop-
ment. (A–C). The overexpression or knockdown of miR166 induces root architecture alterations
in Arabidopsis, maize, and medcago truncatula. (D,E). Vascular patterns determined by the miR166-
HD-ZIP IIIs module in rice, maize, and Arabidopsis. STTM166 represents the knockdown mutant of
miR166 by short tandem target-mimic (STTM) technology.

In addition to its role in regulating root vascular patterning, miR166 also plays a
crucial role in stem vascular development (Figure 3D–E). The overexpression of Arabidopsis
miR165/166 leads to defects in vascular tissues and interfascicular fibers [64]. In rice,
miR166 is involved in xylem development, as evidenced by the aberrant vascular anatomy
observed in miR166 knockdown mutants [12,38]. Furthermore, the OsmiR166b-OsHox32
module regulates the expression of cell-wall-related genes, influencing the mechanical
strength of the plants [65]. Similarly, a maize miR166 knockdown mutant shows abnormali-
ties in stem vascular patterning [13].
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3.3. The Regulatory Role of miR165/166 in Phytohormones Signaling

Phytohormones are signaling molecules that are involved in many developmental and
environmental processes [31]. miRNAs, including miR166, serve as crucial regulators in
phytohormone response pathways (Figure 4) [66]. In Arabidopsis, the spatiotemporal expres-
sion of miR165/166 is fine-tuned by phytohormone crosstalk [31]. Six phytohormones, in-
cluding indole-3-acetic acid (IAA), gibberellic acid (GA), cytokinin (CK), abscisic acid (ABA),
jasmonic acid (JA), and salicylic acid (SA) have been suggested to modulate the expression
of miR165/166s, implicating their involvement in phytohormone responses. miR165/166-
HD-ZIP IIIs modules play critical roles in Arabidopsis ABA homeostasis through regulating
BG1 expression [28]. In maize, the inactivation of miR166 mediates increased ABA levels
and decreased IAA levels [13]. However, the ABA contents in rice miR166 knockdown
mutants by short tandem target-mimic (STTM) technology are nearly unaffected [38], in-
dicating potential differences in the miR165/166-dependent ABA regulatory pathways
between maize and rice. In soybean, miR166 is essential for plant height modulation by
regulating the GA level [67]. In Arabidopsis, a miR165/166 target gene, PHABULOSA (PHB)
has been identified to activate the expression of the cytokinin biosynthesis gene [59].
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3.4. miR166 in Response to Abiotic Stress and Pathogenic Infection

Plants are usually exposed to abiotic and biotic stresses that inhibit their growth and
development. The post-transcriptional regulation mediated by miRNAs play critical roles
in responding to abiotic and biotic stresses [3,4,68,69]. An increasing number of studies
have highlighted the involvement of miR166 in various abiotic and biotic stress responses
(Figure 5). In Arabidopsis, the downregulation of miR165/166 leads to the upregulation
of its target gene PHABULOSA (PHB), potentially enhancing drought and cold resistance
through ABA homeostasis [28], but making it sensitive to heat stress [70]. The high
temperature mediates the reduced expression of MIR166 and the elevated expression of
the HD-ZIP III gene HB-15 [61]. In maize, STTM166, the miR166 inactivation mutant,
exhibits improved tolerance to drought, salinity, and high temperatures [13]. Similarly, the
knockdown of rice miR166 results in enhanced drought resistance, characterized by rolled
leaves and altered stem xylem architecture [38]. The miR166-HD-ZIP III gene module
has been proven to be a crucial regulator in alfalfa (Medicago sativa L.) and tea plant
(Camellia sinensis) [71,72]. Therefore, the lower expression of miR165/166 is crucial for
resistance to abiotic stresses, although the underlying mechanisms may vary among plant
species. In contrast, miR166 has distinct effects on pathogen infection and heavy metal
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stress. In rice, miR166k-166h enhances immunity by the post-transcriptional regulation
of ethylene-insensitive 2 (EIN2) [73]. The overexpression of miR166 or knockout of OsHB4
leads to enhanced cadmium tolerance [15]. In tomato, the overexpression of miR166
enhances late blight resistance [74]. A recent study indicated that the sly-miR166-SlyHB
module is a susceptibility factor to Tomato leaf curl New Delhi virus (ToLCNDV) [75].
The overexpression of sly-miR166 or the gene silencing of SlyHB enhances the resistance
to ToLCNDV.
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Figure 5. miR166 confers plant abiotic stress and pathogenic immunity. (A–D). The inactivation of
miR165/166 mediates enhanced abiotic stress tolerance in Arabidopsis, rice, and maize. (E–G). The
overexpression of miR166 is essential for improving pathogenic immunity and cadmium tolerance in
rice and tomato.

Moreover, extensive small RNA profiling studies have revealed the involvement of
miR165/166 in various stress responses, including drought resistance in tomato [76]; cold
tolerance in Brassica napus [77]; heat stress responses in rice, maize, and wheat [78–81];
chromium tolerance in rice [82]; and virus infection in tobacco [83].

3.5. Other Functions of miR166 in Crops

Small RNA sequencing studies have revealed that miR166 may play roles in phloem
fiber development in flax [84]; seed development in barley, narrow-leafed lupin, and
maize [85–87]; seed germination in barley and maize [85,88]; seed dormancy in barley [89];
and heterosis formation in Brassica napus [77]. Collectively, a wealth of literature has
highlighted the crucial involvement of miR166 in diverse aspects of plant development and
stress responses. However, the interactions of miR166 with other miRNAs and its functions
in modulating complex agronomic traits remain largely unresolved.

4. The Interactions between miR166 and Other miRNAs in Model and Crop Plants

In the intricate landscape of developmental and environmental processes, miR166 in-
teracts with other miRNAs or components of the miRNA biogenesis pathway to carry out
its biological functions (Figure 6). For example, in Arabidopsis, shoot regeneration inhibition
and leaf polarity determination are regulated by AGO10-suppressing miR165/166 [30,50,90].
The maintenance of stem cells mediated by miR165/166 is dependent on the repression of
AGO1 through miR168 targeting and cleavage [91]. The establishment and maintenance of
leaf polarity involve the crosstalk between the miR390-AGO7-TAS3 and miR165/166-HD-ZIP
IIIs modules in Arabidopsis and maize [92]. The interplay between miR160 and miR165/166
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fine-tunes the expression of ABA and IAA-related genes, impacting leaf development, drought
tolerance, and somatic embryogenesis induction in Arabidopsis [93,94]. In salt-stressed potato,
the opposing activities of miR166 and miR159 establish an asymmetric expression pattern for
basal growth [95]. In Arabidopsis, the miR166-HD-ZIP IIIs module is essential for silencing seed
dormancy and maturation genes during the vegetative phase, potentially interacting with
the miR156-SPLs module [96]. Furthermore, miR172 and miR165/166, potentially connected
through the WUS transcription factor, participate in modulating the temporal program of flo-
ral stem cells in Arabidopsis [97]. These studies collectively highlight the intricate regulatory
networks in which miR165/166 is embedded.
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5. Exploring the miR166-HD-ZIP IIIs Module to Improve Complex Agronomic Traits

In crops, the miR166-HD-ZIP IIIs module has been demonstrated to regulate various crucial
processes such as plant mechanical strength, lateral meristem formation, nodulation, nutrition
uptake, abiotic stress tolerance, and pathogenic immunity [12,13,15,38,48,52,53,62,65,73,74].
Hence, the miR166-HD-ZIP IIIs module holds great potential as a versatile toolbox for improving
agronomic traits in crops. Given that miR166 has multiple family members and target genes
with distinct temporal–spatial expression patterns, it becomes essential to finely regulate the
expression of specific MIR166 or HD-ZIPIII genes responsible for specific agronomic traits. For
instance, editing the promoter sequence of OsHox32 can lead to the downregulation of target
genes, enhancing culm mechanical strength. Similarly, editing the promoter sequence of the
polycistronic miRNA gene for OsmiR166k and OsmiR166h can result in the upregulation of
miRNAs, thereby boosting rice pathogenic immunity. Interestingly, a recent study revealed
that exogenous miRNAs can mediate post-transcription gene silencing in plants, offering an
alternative method to modulate the expression of miR166 and its target genes [98]. For instance,
feeding double-strand artificial miRNA (ds-amiRNA) for MIR166s enhances the abiotic stress
tolerance; likewise, feeding ds-miR166 improves pathogenic immunity. Furthermore, studies
have revealed that plant primary miRNAs (pri-miRNAs) encode regulatory peptides, termed
miRNA-encoded peptides (miPEPs), which can specifically increase the expression of their
corresponding miRNAs [99,100]. The exogenous application of miPEPs specifically increases
their cognate miRNA expressions. Consequently, peptides like miPEP172c and miPEP171d have
been utilized for improving agronomic traits in soybean and grapevine [101,102]. In Arabidopsis,
pri-miR165a, pri-miR166a, and pri-miR166g encode miPEPs that are used to enhance the
expression of miR166a and miR166g [100]. Similarly, certain pri-miR166 in major crops may
encode miPEPs that could be beneficial for crop enhancement through external application.

However, it is crucial to note that gene editing and miRNA decoy strategies often result
in mutations with severe phenotypic consequences, such as dwarf stature, seed abortion, or
even plant lethality, making them unsuitable for crop breeding. [12,103,104]. For example,
the knockdown of miR166 in Arabidopsis, rice, and maize yields positive effects on abiotic
stress tolerance but also causes negative effects on developmental transition, fruit size,
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male fertility, and plant height [11,13,38]. In crop breeding, breeders typically opt to screen
for ideal genotypes or haplotypes of MIR166s and their target genes and further optimize
agronomic traits through marker-assisted selection (MAS). The interactions of miR166 with
other miRNAs or genes, e.g., miR160, provides an alternative way to mitigate the negative
effects by genetic crossing [93,94].

6. Concluding Remarks

miR166 is a well-conserved miRNA family in both dicots and monocots. Given the
diverse functions of miR166 and its target genes in model plants and main crops, it is promis-
ing to exploit the miR166-HD-ZIP IIIs module for agronomic traits improvements. However,
several hurdles should be considered. First, our knowledge of the miR166-HD-ZIP IIIs
module is limited, particularly in crops. It is necessary to explore their diversified functions
in crops. Second, the temporal–spatial expressions, the developmental–environmental
responses, and the miR166 and HD-ZIP IIIs interactions are far from uncovered. The RNA
profiling allows us to analyze the expression of miR166 and HD-ZIP IIIs at different cellu-
lar/tissular levels, developmental stages, and environmental stimulus. Third, the interplay
of miR166-HD-ZIP IIIs with other miRNAs and miRNA biogenesis pathway components is
still largely unknown. miRNA decay technologies and miRNA inducible CRISPR systems
are optimal tools for us to investigate the interactive roles of miR166 [105,106].
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