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Abstract

Let X, Y , and Z be real separable Hilbert spaces, let T : X → Y be a compact
operator, and let L : D(L) → Z be a closed and densely defined linear operator.
Then the generalized singular value expansion (GSVE) is an expansion that expresses
T and L in terms of a common orthonormal basis. Under certain hypotheses on
discretization, the GSVE of an approximate operator pair (Tj, Lj), where Tj : Xj → Yj
and Lj : Xj → Zj, converges to the GSVE of (T, L). Error estimates establish a rate of
convergence that is consistent with numerical experiments in the case of discretization
using piecewise linear finite elements. Further numerical testing suggests that a higher
rate of convergence is attained by using higher order elements. However, the theory
does not cover this case.

vii



Chapter 1

Introduction

A linear inverse problem is a problem of the form Tx = y, where T : X → Y is a linear
operator and we wish to estimate the exact solution x∗ from a noisy measurement y of
the exact data y∗ (see [1], [2], [3], and [4]). We consider only linear inverse problems
defined on real separable Hilbert space. A particular class of inverse problems that
is of interest consists of those in which the operator T is an integral operator defined
by

(Tf)(s) =

∫

Ω1

k(s, t)f(t)dΩ1(t), (1.1)

where Ω1 and Ω2 are either bounded intervals in R, or are bounded two-dimensional
domains. The corresponding separable Hilbert spaces are X = L2(Ω1) and Y =
L2(Ω2) (see [5]).

We call Tx = y an inverse problem only when the problem is unstable (that is, x does
not depend continuously on y); for this reason, it is necessary to use regularization of
some sort to produce an acceptable approximation of the true solution x.

Let us consider the following model inverse problem. Let X = L2(0, 1) and define
T : X → X by the integral operator

(Tx)(s) =

∫ 1

0

k(s, t)x(t) dt,

where k(s, t) =
1

2
(s+ t− |s− t|) − st. It is a quick exercise to verify that T is the

solution operator to the following two-point boundary value problem.

−y′′(t) = x(t) in (0, 1)

y(0) = 0

y(1) = 0.

(1.2)

1



More precisely, given the right hand side x(t) to the above two-point boundary value
problem (1.2), the operator T gives back the solution y(t). Therefore,

(Tx)(s) =

∫ 1

0

k(s, t)x(t) dt = y(s).

In this example, the two-point boundary value problem (1.2) is the forward problem
and the equation

Tx = y (1.3)

defines the corresponding inverse problem.

To see that (1.3) actually defines an inverse problem, consider the case where x(t) = t

is the exact solution. This produces the exact data y(s) = −s
3

6
+
s

6
. Let β ∈ R

n be a

measurement of y at n equally spaces points on [0, 1], subject to uniformly distributed
random noise, scaled to 1% in the Euclidean norm.
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Figure 1.1: Exact solution (left) and exact and noisy data (right) for the
model inverse problem.

We will now discretize the interval [0, 1] in the following way. Let h =
1

n
and consider

the mesh

M = {[0, h], [h, 2h], · · · , [(n− 1)h, 1]}.

We can discretize the space X by the finite dimensional subspace Xn =
span{x1, x2, · · · , xn}, where {x1, x2, · · · , xn} is the standard nodal basis for the space
of continuous piecewise constant functions relative to the mesh M . We discretize the
operator T by the matrix A ∈ R

n×n using the Galerkin method (see [1], Section 3.2).
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By replacing the equation Tx = y with the discretized equation Aα = β, we then have

the vector ŷ =
n−1
∑

k=0

βkxk as our approximation (measurement) of y, and the resulting

vector x̂ =
n−1
∑

k=0

αkxk (where α is the solution of Aα = β) as our approximation of x.

Figure 1.2 gives the plot of the approximated solution x̂.
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Figure 1.2: Naive solution of the model inverse problem.

As we can see, the approximate solution x̂ is not close to the actual solution x. This
illustrates the fact that the solution x to equation (1.3) does not continuously depend
on the data y. Hence, the equation Tx = y defines a linear inverse problem, and
we will need to use regularization of some sort in order to solve it. We begin with
considering classical Tikhonov regularization (see [6] and [5]).
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In Tikhonov regularization, we consider the solution to the regularized problem

min
x∈X

‖Tx− y‖2 + λ‖x‖2, (1.4)

where λ > 0 is a constant. In this case, k ∈ L2((0, 1) × (0, 1)) and T is a compact
operator, so the singular value expansion (SVE) of T is invaluable for analyzing the
solution to this regularized problem. The SVE of T can be given as follows:

T =
∞
∑

k=1

σkψk ⊗ φk. (1.5)

Here, {φk} is a complete orthonormal sequence for the space N (T )⊥, {ψk} is an
orthonormal sequence in X, and {σk} is the sequence of singular values of T , a
sequence of positive numbers monotonically decreasing to 0 (see [7] Section 2.8 or see
[4]). It is easy to show that the unique solution of (1.4) lies in R(T ∗) (see [4]).

Using the SVE of T , we have that for any x =
∞
∑

k=1

αkφk ∈ N (T )⊥,

‖Tx− y‖2 + λ‖x‖2 =
[

∞
∑

k=0

(σk〈x, φk〉X − 〈y, ψk〉Y )2 + λ〈x, φk〉2X

]

+ ‖ŷ‖2

=

[

∞
∑

k=0

(σ2
k + λ)

(

〈x, φk〉X − σk
σ2
k + λ

〈y, ψk〉Y
)2

+

(

1− σ2
k

σ2
k + λ

)

〈y, ψk〉Y
]

+ ‖ŷ‖2,

where ŷ is the orthogonal projection of y onto R(T )⊥. Therefore, the unique solution
to problem (1.4) is given by

xλ,y =
∞
∑

k=0

σk
σ2
k + λ

〈y, ψk〉Y φk. (1.6)

Using an appropriate choice for λ, the plots for the exact solution x and the regularized
solution xλ,y can be seen in Figure 1.3.

As we can see from figure 1.3, the regularized solution xλ,y inherits the Dirichlet
boundary conditions of the forward problem (1.2). To understand why this is so, it
is easy to show that xλ,y ∈ R(T ∗). In this particular example, the operator T is self-
adjoint. This follows from the fact the that kernel k(s, t) is symmetric about the line
s = t (i.e. k(s, t) = k(t, s). Since T is the solution operator to the forward problem
(1.2) with Dirichlet boundary conditions, every element in the range of T has Dirichlet
boundary conditions. Thus, the regularized solution xλ,y ∈ R(T ∗) = R(T ) inherits

4
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Figure 1.3: Solution of model inverse problem produced by Tikhonov reg-
ularization.

Dirichlet boundary conditions. For this reason, classical Tikhonov regularization does
not work well for this problem.

We can generalize classical Tikhonov regularization by considering the unique solution
to the problem

min
x∈D(L)

‖Tx− y‖2 + λ‖Lx‖2, (1.7)

where again λ > 0 is a constant. Here, L is a closed operator with domain D(L)
and is densely defined in X. It is chosen to have the property that ‖Lx‖ is small
for reasonable solutions x and large for those x with some undesirable feature. Such
regularization is called Tikhonov regularization with seminorms since ‖x‖L = ‖Lx‖
defines a seminorm on D(L) (see [6] or [4]). In the case of classical Tikhonov regu-
larization, L is the identity operator, and the undesirable feature of x is being large
in magnitude.

In many cases, the true solution x has a certain level of smoothness or regularity. In
other words, the undesirable approximations for x in the problem Tx = y are those
approximations in which the derivative is undefined or large in magnitude. In the
case that X = L2(a, b), the derivative operator L : D(L) → Z is linear, closed, and
densely defined in X. Thus, a method of regularization appropriate for problems of
this kind will be Tikhonov regularization with seminorms defined by the derivative
operator. Similarly, if Ω ⊆ R

d (d = 2 or d ≥ 3), the gradient operator is a suitable
regularization operator for many problems.

Let problem (1.7) be discretized to produce the following linear algebra problem:

min
~x∈Rn

‖A~x− ~y‖2 + λ‖B~x‖2 (1.8)

5



Here, A ∈ R
m×n, B ∈ R

p×n, ~x ∈ R
n, and ~y ∈ R

m, and we assume thatN (A)∩N (B) =
{0}, where N (A) represents the null space of the matrix A. In order to solve this
problem, it is beneficial to simultaneously diagonalize the matrices A and B. This
is done by computing the generalized singular value decomposition (GSVD) of the
matrix pair (A,B). We present one version of the GSVD that is relevant to our
discussion (see [8], Theorem 22.2) .

Theorem 1. Let A ∈ R
m×n and B ∈ R

p×n be matrices such that m ≥ n and N (A)∩
N (B) = {0}. Then there exist a nonsingular matrix W ∈ R

n×n, matrices U ∈ R
m×n

and V ∈ R
p×p with orthonormal columns, and diagonal matrices S ∈ R

n×n and
M ∈ R

p×n such that

A = USW−1 , B = VMW−1.

Moreover, the diagonal entries si of S and m1 of M are nonnegative, and satisfy

s2i +m2
i = 1 for i = 1, 2, · · · , p,

si = 1 for i = p+ 1, p+ 2, · · · , n

(assuming for convenience that n ≥ p). In matrix form,

STS +MTM = I.

Let A = USW−1 and B = VMW−1 be the GSVD of (A,B) as given in the theorem.
Then

‖A~x− ~y‖2 + λ‖B~x‖2 = ‖USW−1~x− ~y‖2 + λ‖VMW−1~x‖2
= ‖US ~w − ~y‖2 + λ‖VM ~w‖2

=
n
∑

k=1

(skwk − 〈uk, ~y〉)2 +
p
∑

k=1

λ(mkwk)
2

=

p
∑

k=1

[

(skwk − 〈uk, ~y〉)2 + λm2
kw

2
k

]

+
n
∑

k=p+1

(wk − 〈uk, ~y〉)2.

By regrouping the terms of these sums, we have

p
∑

k=1

[

(skwk − 〈uk, ~y〉)2 + λm2
kw

2
k

]

+
n
∑

k=p+1

(wk − 〈uk, ~y〉)2

=

p
∑

k=1

[

(s2k + λm2
k)

(

wk −
sk〈uk, ~y〉
s2k + λm2

k

)2

+

(

1− s2k
(s2k + λm2

k)
2

)

〈uk, ~y〉
]

6



+
n
∑

k=p+1

(wk − 〈uk, ~y〉)2

Therefore, the solution to the discretized problem is ~x = W ~w where

wk =
sk

s2k + λm2
k

(uk · ~y).

Figure 1.4 shows the plots of the true solution x with the regularized solution xλ,y
coming from seminorm regularization. (A good value of λ was chosen by trial and
error.)
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Figure 1.4: The exact solution of the model inverse problem, together with
a solution produced by seminorm regularization.

The generalized singular value expansion (GSVE) of an operator pair (T, L), intro-
duced in [4], allows the two operators T and L to be simultaneously diagonalized in

7



the same way that the GSVD of a matrix pair (A,B) simultaneously diagonalizes
the matrices A and B. Therefore, the GSVE of the operator pair (T, L) makes the
analysis of problem (1.7) relatively transparent in the same way the GSVD of the
matrix pair (A,B) does for the discretized problem (1.8). To describe the GSVE,
we establish the following conditions on the operators T and L. Let X, Y , and Z
be separable Hilbert spaces, let T : X → Y be a compact linear operator, and let
L : D(L) → Z be a closed linear operator, where D(L) is a dense subspace of X. We
assume that there exists γ > 0 such that

‖Tx‖2Y + ‖Lx‖2Z ≥ γ‖x‖2X , for all x ∈ D(L). (1.9)

We define the inner product 〈·, ·〉∗ on D(L) by

〈u, v〉∗ = 〈Tu, Tv〉Y + 〈Lu, Lv〉Z . (1.10)

and write ‖ · ‖∗ for the corresponding norm. It is well known that D(L) is a Hilbert
space under the inner product 〈·, ·〉∗ given that condition (1.9) is met (see Section 5.2
of [4]). The following theorem asserts the existence of the generalized singular value
expansion of the operator pair (T, L) (see [9], Theorem 4.2).

Theorem 2. Let X, Y , and Z be real separable Hilbert spaces. Assume that T :
X → Y is a compact linear operator and L : D(L) → Z is a closed densely defined
linear operator. Assume that there exists γ > 0 such that (1.9) holds. Then there
exists a complete orthonormal set {φk : k ∈ I} for D(L) where I is a countable index
set, a partition M0 ∪ Ma ∪ Mb of I, orthonormal sets {ψk : k ∈ M0 ∪ Mb} in Y ,
{θk : k ∈ M0 ∪Ma} in Z, and subsets {ak : k ∈ I}, {bk : k ∈ I} of the nonnegative
real numbers such that

T =
∑

k∈M0
⋃
Mb

akψk ⊗∗ φk , L =
∑

k∈M0
⋃
Ma

bkθk ⊗∗ φk, (1.11)

and 0 ≤ ak, bk ≤ 1, a2k + b2k = 1 for every k ∈ I. Here, ⊗∗ refers to the outer product
with respect to the ∗-norm. (i.e. (ψk ⊗∗ φk)x = 〈φk, x〉∗ψk for any x ∈ D(L)).

Using the GSVE of the operator pair (T, L) given by (1.11), we have, for any x ∈
D(L),

‖Tx− y‖2Y + λ‖Lx‖2Z =

= ‖ŷ‖2 +
∑

k∈M0∪Mb

(ak〈x, φk〉∗ − 〈y, ψk〉Y )2 +
∑

k∈M0∪Ma

λb2k〈x, φk〉2∗

= ‖ŷ‖2 +
∑

k∈Mb

(ak〈x, φk〉∗ − 〈y, ψk〉Y )2 +
∑

k∈M0

[

(ak〈x, φk〉∗ − 〈y, ψk〉Y )2 + λb2k〈x, φk〉2∗
]

+
∑

k∈Ma

λb2k〈x, φk〉2∗

8



=
∑

k∈M0

[

(a2k + λb2k)

(

〈x, φk〉∗ −
ak

a2k + λb2k
〈y, ψk〉Y

)2

+

(

1− a2k
a2k + λb2k

)

〈y, ψk〉Y
]

+
∑

k∈Ma

λb2k〈x, φk〉2∗ +
∑

k∈Mb

(ak〈x, φk〉∗ − 〈y, ψk〉Y )2 +
∑

k∈Ma

λb2k〈x, φk〉2∗ + ‖ŷ‖2.

Here, ŷ is the orthogonal projection of y onto R(T )⊥. Therefore, the solution of
problem (1.7) is given by

xλ,y =
∑

k∈M0

ak
a2k + λb2k

〈y, ψk〉Y φk +
∑

k∈Mb

〈y, ψk〉Y φk. (1.12)

In practice, the GSVE of the operator pair (T, L) is a useful tool for analyzing meth-
ods such as Tikhonov regularization with seminorms. The GSVE of (T, L) can also
be used directly to make computations, as can be seen in the above derivations for
the regularized problem (1.7). In the next section, we provide an algorithm for com-
puting the GSVE of (Tj, Lj), where the operator pair (Tj, Lj) is a finite dimensional
discretization of the operator pair (T, L). In order to compute the GSVE of the
discretized operator pair (Tj, Lj), we compute the GSVD of an associated pair of
matrices.

9



Chapter 2

The approximate GSVE of (T, L)

The purpose of this thesis is to propose and analyze a general approach to estimating
the GSVE of an operator pair (T, L). Two approaches were presented in [9]. The
first is based on recognizing that the pairs (a2k, φk) for k ∈ I (with ak = 0 for k ∈Ma)
are the eigenpairs of the compact self-adjoint operator T#T . These eigenpairs can
be estimated using the general theory for symmetric, variationally posed eigenvalue
problems, as presented in [10]. However, this approach has two shortcomings. We
must choose a finite-dimensional subspace Xj of D(L) with basis {x1, x2, · · · , xnj

}
and solve the generalized (matrix) eigenvalue problem

Gα = λMα,

where G ∈ R
n×n and M ∈ R

n×n are defined by

Gij = 〈xj, xi〉∗ , Mij = 〈Txi, Txj〉Y .

The first issue with this approach is the need to compute the matrix M ; generally,
this matrix is expensive to compute. (For example, if T is a Fredholm integral opera-
tor, then each Mij is defined by a triple integral.) The second difficulty is that, in the
typical application (R(T ) infinite-dimensional and not closed), M0 has infinite cardi-
nality and ak → 0 as k → ∞. It follows that by using an algorithm that computes
a2k (instead of computing ak directly), we artificially restrict the ability to compute
small singular values; roughly speaking, at best we can compute values of ak down to√
u (where u is the unit round), rather than down to u itself.

It should be noted that the approach described in the previous paragraph, which is
described fully in [9], does have the advantage that its convergence follows directly
from the theory of symmetric, variationally posed eigenvalue problems.

The second approach, as described in this chapter, is based on reducing the computa-
tion to that of a (matrix) generalized singular value decomposition. The GSVE of a

10



pair of operators (Tj, Lj) is related to the GSVD of a pair of related matrices, where
Tj and Lj are finite dimensional operators that approximate T and L respectively in
some sense. We now elaborate on this.

Let {Xj}, {Yj}, and {Zj} be sequences of finite dimensional spaces contained inD(L),
Y , and Z, respectively, such that for each j ∈ Z

+,

Xj = span{x(j)1 , x
(j)
2 , · · · , x(j)nj

},
Yj = span{y(j)1 , y

(j)
2 , · · · , y(j)mj

},
Zj = span{z(j)1 , z

(j)
2 , · · · , z(j)pj }.

Suppose that the sequence of spaces {Xj} approximate the space D(L) in that for
any x ∈ D(L),

‖ΠXj
x− x‖∗ → 0 as j → ∞.

Here, ΠXj
: D(L) → Xj is the orthogonal projection of D(L) onto Xj with respect

to the ∗-norm as defined in equation (1.10). Similarly, suppose that {Yj} and {Zj}
approximate the spaces Y and Z, respectively, such that for any y ∈ Y and for any
z ∈ Z,

‖PYjy − y‖Y → 0 as j → ∞,

‖PZj
z − z‖Z → 0 as j → ∞.

Here, PYj : Y → Yj and PZj
: Z → Zj are the orthogonal projections of Y onto Yj

and Z onto Zj respectively. For each j ∈ Z
+, let Tj : Xj → Yj and Lj : Xj → Zj

be linear operators that approximate T and L in some sense. The conditions under
which Tj and Lj should approximate T and L are made clear in the next chapter.
For each j ∈ Z

+, we define the ∗j-inner product on the space Xj by

〈x, y〉∗j = 〈Tjx, Tjy〉Y + 〈Ljx, Ljy〉Z for all x, y ∈ Xj (2.1)

In general, 〈·, ·〉∗j need not be positive definite on Xj . To ensure that 〈·, ·〉∗j defines
an inner product, we will assume that

N (Tj) ∩N (Lj) = 0 for every j ∈ Z
+.

Under the assumptions placed on (Tj, Lj) in the next chapter, this must hold for all
j ∈ Z

+ sufficiently large. Define the matrices Aj ∈ R
mj×nj and Bj ∈ R

pj×nj by

(Aj)kℓ = 〈y(j)k , Tjx
(j)
ℓ 〉Y ,

(Bj)kℓ = 〈z(j)k , Ljx
(j)
ℓ 〉Z .

11



Let Hj ∈ R
mj×mj and Jj ∈ R

pj×pj be the Gram matrices for span{y(j)1 , y
(j)
2 , · · · , y(j)mj}

and span{z(j)1 , z
(j)
2 , · · · , z(j)pj }, respectively, which are defined by

(Hj)kℓ = 〈y(j)k , y
(j)
ℓ 〉Y ,

(Jj)kℓ = 〈z(j)k , z
(j)
ℓ 〉Z .

The next theorem shows how to compute the GSVE of (Tj, Lj) using the GSVD of

the matrix pair (H
−1/2
j A, J

−1/2
j B).

Theorem 3. Let Aj, Bj, Hj, and Jj be as defined above, and let

H
−1/2
j Aj = USjW

−1
j , J

−1/2
j Bj = VMjW

−1/2
j

be the GSVD of the matrix pair (H
−1/2
j Aj, J

−1/2
j Bj). Define the matrices Uj =

H
−1/2
j U and Vj = J

−1/2
j V . Then the GSVE of the operator pair (Tj, Lj) is given

by

Tj =

min{mj ,nj}
∑

k=1

a
(j)
k ψ

(j)
k ⊗∗j φ

(j)
k ,

Lj =

min{pj ,nj}
∑

k=1

b
(j)
k θ

(j)
k ⊗∗j φ

(j)
k .

The values a
(j)
1 , a

(j)
2 , · · · , a(j)min{mj ,nj}

are the diagonal entries of Sj, the values

b
(j)
1 , b

(j)
2 , · · · , b(j)min{pj ,nj}

are the diagonal entries of Mj, and

φ
(j)
k =

nj
∑

i=1

(Wj)ikxk,

ψ
(j)
k =

mj
∑

i=1

(Uj)ikyk,

θ
(j)
k =

pj
∑

i=1

(Vj)ikzk.

The sets {φ(j)
1 , φ

(j)
2 , · · · , φ(j)

nj }, {ψ(j)
1 , ψ

(j)
2 , · · · , ψ(j)

mj}, and {θ(j)1 , θ
(j)
2 , · · · , θ(j)pj } are or-

thonormal in Xj, Y , and Z, respectively, where the ∗j-inner product is used on Xj.

The proof the Theorem 3 is similar to that of Theorem 4.4 of [9]. In that paper, the
special case of Tj = PYjT |Xj

and Lj = PZj
L|Xj is considered. However, the derivation

12



of the GSVE of an arbitrary pair of discretized operators (Tj, Lj) is similar to the
special case covered in [9]. For this reason, the proof of Theorem 3 is omitted.

The GSVE of the operator pair (Tj, Lj) can be seen to be directly related to the GSVD
of the pair of matrices from the last theorem. One advantage for computing this
GSVE is that the approximate generalized singular vectors computed are orthogonal
with respect to the spaces Xj, Y , and Zj with respect to the ∗j-norm, Y -norm, and
Z-norm respectively. It is this orthogonality that makes analysis and computations
transparent in much of applied mathematics.

As noted at the beginning of the chapter, our main goal is to analyze the convergence
of the GSVE of (Tj, Lj) to the GSVE of (T, L). The next example demonstrates that
a seemingly natural discretization need not lead to convergence of the GSVE.

Example 1. Let X = D(L) = H1(0, 1) and Y = Z = L2(0, 1). Define operators
T : X → Y and L : D(L) → Z by Tx = x and Lx = x′, respectively. By Rellich’s
lemma, T (the identity operator) is compact. In this example, the ∗-norm is precisely
the H1(0, 1)-norm.

We can easily derive the GSVE of (T, L) using Fourier analysis; the result is

T =
∞
∑

k=0

akψk ⊗∗ φk,

L =
∞
∑

k=1

bkθk ⊗∗ φk,

where, for k ≥ 1,

φk(t) =

√

2

k2π2 + 1
cos(kπt), ψk =

√
2 cos(kπt), θk(t) = −

√
2 sin(kπt),

ak =
1√

k2π2 + 1
, bk =

kπ√
k2π2 + 1

,

and φ0(t) = 1, ψ0(t) = 1, a0 = 1, and b0 = 0. It can be verified that {φk}∞k=1, {ψk}∞k=1,
and {θk}∞k=1 are orthonormal in the ∗, Y , and Z inner products, respectively. Also

a2k + b2k = 1, Tφk = akψk, and Lφk = bkθk for all k ∈ Z
+.

In the notation of Theorem 1.11, we have M0 = Z
+, Ma = ∅, and Mb = {0}.

We discretize (T, L) by defining Xj = Yj = Zj to be the space of continuous piecewise
linear functions on a uniform mesh of [0, 1] with j elements. Let {x0, x1, · · · , xj} be
the standard nodal basis. Define Tj = PYjT |Xj

and Lj = PZj
L|Xj. We compute the

GSVE of (T100, L100) as described in Theorem 3 and graph φ
(100)
k , ψ

(100)
k , and θ

(100)
k for

k = 1, 2, 3 (see Figures 1-3). We see that φ
(100)
1 , ψ

(100)
1 , θ

(100)
1 and φ

(100)
2 , ψ

(100)
2 , θ

(100)
2

13



are accurate approximations of the corresponding exact functions, but φ
(100)
3 , ψ

(100)
3 ,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
1

Figure 2.1: The computed functions φ
(100)
1 (top), ψ

(100)
1 (middle), and θ

(100)
1

(bottom) for Example 1, together with the corresponding exact functions φ1,
ψ1, and θ1. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.

and θ
(100)
3 are completely wrong. The behavior seen in Figure 3 is consistent with the

type of ”spurious modes” observed in the numerical solution of variationally posed
eigenvalue problems (see [10]). The spurious mode persists as the mesh is refined.

Although we do not show any more results here, in fact every triple
(φ

(100)
k , ψ

(100)
k , θ

(100)
k ) for k > 3 is far from the exact generalized singular functions

(φk, ψk, θk). Moreover, this behavior is not eliminated by refining the mesh. Every
fourth generalized singular mode is spurious.

In the next chapter, we analyze the convergence of the GSVE of (Tj, Lj) to that of
(T, L), presenting a condition on the convergence of (Tj, Lj) to (T, L) that guarantees
that the corresponding GSVEs converge. We will see that the condition fails for the
discretization in Example 1 and also see how to modify the discretization to obtain
convergence.
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Figure 2.2: The computed functions φ
(100)
2 (top), ψ

(100)
2 (middle), and θ

(100)
2

(bottom) for Example 1, together with the corresponding exact functions φ2,
ψ2, and θ2. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

0

2

3

Figure 2.3: The computed functions φ
(100)
3 (top), ψ

(100)
3 (middle), and θ

(100)
3

(bottom) for Example 1, together with the corresponding exact functions φ3,
ψ3, and θ3. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve.
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Chapter 3

Convergence

Let X, Y , and Z be separable Hilbert spaces, let T : X → Y be a compact linear
operator, and let L : D(L) → Z be a closed linear operator, where D(L) is a dense
subspace of X. We assume that there exists γ > 0 such that

〈Tx, Tx〉Y + 〈Lx, Lx〉Z ≥ γ‖x‖2X ∀x ∈ D(L).

We define the bilinear form 〈·, ·〉∗ : D(L)×D(L) → R by

〈x, y〉∗ = 〈Tx, Ty〉Y + 〈Lx, Ly〉Z .

Condition (1.9) from Chapter 1, which has been restated above, guarantees 〈·, ·〉∗
defines an inner product on D(L). Then, by Theorem 2, the GSVE of (T, L) is given
by

T =
∑

k∈M0
⋃
Mb

akψk ⊗∗ φk,

L =
∑

k∈M0
⋃
Ma

bkθk ⊗∗ φk.

Here, {(ak, bk)} are the generalized singular values of (T, L), and the sets {φk}, {ψk},
and {θk} are the generalized singular vectors of (T, L).

In the last section, we provided an algorithm for computing the approximate GSVE
of (Tj, Lj), which is given by

φ
(j)
k =

nj
∑

i=1

(Wj)ikxk, ψ
(j)
k =

mj
∑

i=1

(Uj)ikyk, θ
(j)
k =

pj
∑

i=1

(Vj)ikzk.

We next provide sufficient conditions under which the GSVE of (Tj, Lj) is guaranteed
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to converge to the GSVE of (T, L). Informally, this means that the approximate gen-

eralized singular values (a
(j)
k , b

(j)
k ) converge to the exact generalized singular values

(ak, bk), and the approximate generalized singular vectors {φ(j)
k }, {ψ(j)

k }, and {θ(j)k }
converge to the exact generalized singular vectors {φk}, {ψk}, and {θk}. Conver-
gence of the generalized singular vectors poses a complicated matter since the sets of
generalized singular vectors correspond to subspaces of the Hilbert spaces D(L), Y ,
and Z. The issues are comparable to those faced in approximating the eigenvalues
and eigenvectors of a linear operator A : X → X by the eigenvalues and eigenvec-
tors of an approximation Aj of A. We refer the reader to Boffi’s survey article [10]
for a detailed discussion. In the case of eigenvalues and eigenvectors, we can expect
that the eigenvalues of Aj to converge to the corresponding eigenvalues of A in the
expected manner. However, since a given eigenspace does not have a unique basis,
there is no reason that the computed basis of the corresponding eigenspace of Aj to
converge directly to a given basis of an eigenspace of A. Therefore, we have to refer
to convergence of a sequence of subspaces to a given subspace, not the convergence
of individual eigenvectors. Moreover, if λ is an eigenvalue of A of multiplicity k, then
there are probably k simple eigenvalues of Aj that converge to λ as j → ∞.

When discussing the convergence of the GSVE of (Tj, Lj) to the GSVE of (T, L), we
have an additional complication, namely that both T and L can have a nontrivial null
space. It is straightforward to show that N (L) must be finite-dimensional (otherwise,
the inequality (1.9) is incompatible with the compactness of T ). However, N (T )
could be infinite-dimensional. We will assume throughout our discussion that R(T )
is infinite-dimensional, since this is the interesting case in applications.

In terms of the GSVE of the operator pair (T, L),

T =
∑

k∈M0
⋃
Mb

akψk ⊗∗ φk,

L =
∑

k∈M0
⋃
Ma

bkθk ⊗∗ φk,

the generalized singular values of (T, L) have the following properties:

k ∈Mb =⇒ ak = 1 and bk = 0,

k ∈M0 =⇒ 0 < ak, bk < 1,

k ∈Ma =⇒ ak = 0 and bk = 1.

To compare the singular values of (Tj, Lj) with those of (T, L), we have to order the
generalized singular values of (T, L) consistently. Since N (L) is finite-dimensional, we
will assume that dim(N (L)) = ℓ and that Mb = {1, 2, · · · , ℓ}. Since R(T ) is infinite-
dimensional by assumption, we will define the index setM0 byM0 = {ℓ+1, ℓ+2, . . .}
and assume that aℓ+1 ≥ aℓ+2 ≥ . . . . Since a2k+ b

2
k = 1, this implies that bℓ+1 ≤ bℓ+2 ≤
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. . ..

With these definitions for Mb and Ma, we see that {ak : k ∈ Z
+} is a nonincreasing

sequence of positive real numbers, and {bk : k ∈ Z
+} is a nondecreasing sequence of

nonnegative real numbers. However, if Ma is nonempty (that is, if T has a nontrivial
null space), then there is no natural definition forMa that maintains the monotonicity
of the sequences {ak} and {bk}. Therefore, we will continue to denote Ma as a
(countable) abstract index set. We can now write the GSVE of (T, L) as follows:

T =
∞
∑

k=1

akψk ⊗∗ φk, (3.1)

L =
∞
∑

k=1

bkθk ⊗∗ φk +
∑

k∈Ma

bkθk ⊗∗ φk. (3.2)

Recall that the GSVE of (Tj, Lj) is given by

Tj =

min{mj ,nj}
∑

k=1

a
(j)
k ψ

(j)
k ⊗∗j φ

(j)
k ,

Lj =

min{pj ,nj}
∑

k=1

b
(j)
k θ

(j)
k ⊗∗j φ

(j)
k .

Here, we assume that a
(j)
1 ≥ a

(j)
2 ≥ · · · ≥ a

(j)
nj and b

(j)
1 ≤ b

(j)
2 ≤ · · · ≤ b

(j)
nj .

To describe the convergence of the singular vectors of (Tj, Lj) to those of (T, L), we
will use the concept of the gap between two subspaces (see [10]).

Definition 4. Let H be a Hilbert space, and let U and V be closed subspaces of H.
The gap between U and V is defined to be δ̂(U, V ), where

δ(U, V ) = sup
u∈U
‖u‖=1

inf
v∈V

‖u− v‖,

δ̂(U, V ) = max{δ(U, V ), δ(V, U)}.
We now introduce the concept of angle between subspaces U and V of a Hilbert space
H. We define the asymmetric angle θ(U, V ), denoted more simply by θ, by

cos(θ(U, V )) = cos(θ) = inf
u∈U
‖u‖=1

sup
v∈V
‖v‖=1

〈u, v〉.

Notice that the above quantity is bounded between 0 and 1, so θ ∈ [0, π/2] is well
defined. We next derive the following properties about the asymmetric angle and
asymmetric gap.
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Theorem 5. Let U and V be closed subspaces of a Hilbert space H. Then the asym-
metric angle θ = θ(U, V ) has the following property:

cos(θ(U, V )) = cos(θ) = inf
u∈U
‖u‖=1

‖PV u‖.

Proof. Let u ∈ U such that ‖u‖ = 1. If ‖PV u‖ = 0, then u ∈ V ⊥ and hence

〈u, v〉 = 〈PV u, v〉 = 0.

Thus, sup
v∈V

‖v‖H=1

〈u, v〉H = ‖PV u‖H in this case. Suppose that ‖PV u‖ 6= 0. Then,

‖PV u‖ = 〈PV u,
PV u

‖PV u‖
〉 ≤ sup

v∈V
‖v‖=1

〈PV u, v〉

≤ sup
v∈V
‖v‖=1

‖PV u‖‖v‖ = ‖PV u‖.

Since 〈u, v〉 = 〈PV u, v〉 for every v ∈ V , we have

sup
v∈V
‖v‖=1

〈u, v〉 = sup
v∈V
‖v‖=1

〈PV u, v〉 = ‖PV u‖.

Thus we have shown that sup
v∈V

‖v‖H=1

〈u, v〉H = ‖PV u‖H in every case. We then have

inf
u∈U
‖u‖=1

‖PV u‖ = inf
u∈U
‖u‖=1

sup
v∈V
‖v‖=1

〈u, v〉 = cos(θ).

Theorem 6. Let U, V be closed subspaces of a Hilbert space H. Then

δ(U, V ) = sin(θ(U, V )).

Proof. This follows directly from the definition of asymmetric gap. Writing θ =
θ(U, V ),

δ(U, V )2 =



 sup
u∈U
‖u‖=1

inf
v∈V

‖u− v‖





2

= sup
u∈U
‖u‖=1

‖u− PV u‖2
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= sup
u∈U
‖u‖=1

(

1− ‖PV u‖2
)

= 1− inf
u∈U
‖u‖=1

‖PV u‖2

= 1− cos2(θ) = sin2(θ).

Therefore, δ(U, V ) = sin(θ).

Theorem 7. If the asymmetric angles θ(U, V ) and θ(V, U) are strictly less than π/2,
then θ(U, V ) = θ(V, U) and

δ(U, V ) = δ(V, U).

Proof. Let θ = θ(U, V ) and let ω = θ(V, U). Suppose that θ, ω < π/2. Then
cos(θ), cos(ω) > 0, and

inf
u∈U
‖u‖=1

‖PV u‖ > 0 , inf
v∈V
‖v‖=1

‖PUv‖ > 0.

Therefore, the projections PU and PV are bounded below when restricted to V and
U respectively. Hence, PU : V → U and PV : U → V each have closed range in U
and V , respectively, and are both injective. Also, we have for any u ∈ U and for any
v ∈ V ,

〈PV u, v〉 = 〈u, v〉 = 〈u, PUv〉.

Thus, as operators between the spaces U and V ,P ∗
V = PU and P ∗

U = PV . Then

R(PU) = N (PV )
⊥ = U,

R(PV ) = N (PU)
⊥ = V,

which shows that PU and PV are bijections between U and V . Therefore, for any unit
vector u ∈ U , there exists a unit vector v ∈ V such that u = PUv

‖PUv‖
. It follows that

‖PV u‖ = sup
x∈V
‖x‖=1

〈PV u, x〉

= sup
x∈V
‖x‖=1

〈u, PUx〉

= sup
x∈V
‖x‖=1

〈 PUv

‖PUv‖
, PUx〉 ≥ 〈 PUv

‖PUv‖
, PUv〉 = ‖PUv‖.
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Therefore we have

inf
v∈V
‖v‖=1

‖PUv‖ ≤ ‖PV u‖ ∀u ∈ U, ‖u‖ = 1

=⇒ inf
v∈V
‖v‖=1

‖PUv‖ ≤ inf
u∈U
‖u‖=1

‖PV u‖.

By symmetry of U and V in the above formulation, we then have

inf
v∈V
‖v‖=1

‖PUv‖ ≥ inf
u∈U
‖u‖=1

‖PV u‖.

Thus, cos(θ(U, V )) = cos(θ(V, U)), and we have

δ(U, V ) = sin(θ(U, V )) = sin(θ(V, U)) = δ(V, U).

Corollary 8. If δ(U, V ) and δ(V, U) are strictly less than 1, then

δ(U, V ) = δ(V, U).

Proof. Suppose δ(U, V ), δ(V, U) < 1. Then sin(θ(U, V )), sin(θ(V, U)) < 1 and there-
fore the angles θ(U, V ) and θ(V, U) are strictly greater than 0, and the previous
theorem then follows.

Given the sequences {ak} and {bk} of singular values and the sequences {φk}, {ψk},
and {θk} of singular vectors for (T, L), we define the corresponding singular spaces
by

Sk(φ) = span{φi : ai = ak}
Sk(ψ) = span{ψi : ai = ak}
Sk(θ) = span{θi : ai = ak}.

Typically, if ak is a multiple singular value (that is, dim (Sk(φ)) > 1), then each

approximate singular value a
(j)
k converging to ak will be a simple singular value of

(Tj, Lj), meaning that

dim {span{φ(j)
i : a

(j)
i = a

(j)
k } = 1.

For this reason, we define the approximate singular spaces of (Tj, Lj) by

S
(j)
k (φ) = span{φ(j)

i : a
(ℓ)
i → ak as ℓ→ ∞}
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S
(j)
k (ψ) = span{ψ(j)

i : a
(ℓ)
i → ak as ℓ→ ∞}

S
(j)
k (θ) = span{φ(j)

i : a
(ℓ)
i → ak as ℓ→ ∞}.

Note that because a2k + b2k = 1 for every k ∈ Z
+, it follows that

{i ∈ Z
+ : ai = ak} = {i ∈ Z

+ : bi = bk}

Therefore, we could have defined the above subspaces with reference to {bk} instead
of {ak}.
We can now define what it means for the GSVE of (Tj, Lj) to converge to the GSVE
of (T, L) (see [11], Definition 5).

Definition 9. We say that the GSVE of (Tj, Lj), j ∈ Z
+, converges to the GSVE of

(T, L) if, for all N ∈ Z
+ and all ε > 0, there exists an integer j0 such that for all

integers j ≥ j0,

∣

∣

∣
a
(j)
k − ak

∣

∣

∣ < ε for every k = 1, 2, · · · , N,
∣

∣

∣
b
(j)
k − bk

∣

∣

∣ < ε for every k = 1, 2, · · · , N,

δ̂
(

S
(j)
k (φ), Sk(φ)

)

< ε for every k = 1, 2, · · · , N,

δ̂
(

S
(j)
k (ψ), Sk(ψ)

)

< ε for every k = 1, 2, · · · , N,

δ̂
(

S
(j)
k (θ), Sk(θ)

)

< ε for every k = 1, 2, · · · , N.

In computing the gaps, we use the ∗, Y , and Z norms for

δ̂
(

S
(j)
k (φ), Sk(φ)

)

, δ̂
(

S
(j)
k (ψ), Sk(ψ)

)

, δ̂
(

S
(j)
k (θ), Sk(θ)

)

respectively.

Notice that Definition (9) does not refer to {φk : k ∈ Ma} or {θk : k ∈ Ma}. Our
theory with show that, in the representation

T =
∞
∑

k=1

akψk ⊗∗ φk,

L =
∞
∑

k=1

bkθk ⊗∗ φk +
∑

k∈Ma

bkθk ⊗∗ φk,

the series for T and the first series in the representation of L are approximated. It is
not guaranteed that we can approximate the second series in the representation of L.
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For each j ∈ Z
+, we refer to three different inner products on the space Xj, namely

the ∗-inner product, the ∗j-inner product, and the X-inner product. Therefore, there
are three different adjoint operators for the operator Tj . The adjoint of T with
respect to the ∗-inner product is denoted by T#, the adjoint of Tj with respect to the

∗j-inner product by T#j

j , and the adjoint of T with respect to the X-inner product by
T ∗. To study the convergence of the GSVE of (Tj, Lj) to that of (T, L), we consider

the operators T
#j

j Tj and T#T . Using the expansion for T as in equation (3.1), we

see that the eigenpairs of T#T are (a2k, φk), k = 1, 2, . . .. Similarly, the eigenpairs for

the operator T
#j

j Tj are
(

(a
(j)
k )2, φ

(j)
k

)

, k = 1, 2, . . . , nj. Our goal is to show that the

eigensystem of T
#j

j Tj converges to that of T#T ; we can then show that the GSVE of
(Tj, Lj) converges to the GSVE of (T, L).

We note that the operators T
#j

j Tj : Xj → Xj and T
#j

j TjPXj
: X → X, where PXj

is the orthogonal projection onto Xj with respect to the X-inner product, have the

same eigenpairs. Indeed, since T
#j

j Tj is just the restriction of T
#j

j TjPXj
to Xj, it is

immediate that an eigenpair of T
#j

j Tj is an eigenpair of T
#j

j TjPXj
. Conversely, if

T
#j

j TjPXj
x = λx, then, since T

#j

j TjPXj
maps X into Xj , it follows that x ∈ Xj, and

hence (λ, x) is also an eigenpair of T
#j

j Tj.

The theory of Babuska and Osborn ([12]; see also [10], Sections 6 and 9) shows that
if a sequence {Aj} of compact operators Aj : X → X converges in the operator
norm to the compact operator A : X → X, then eigensystems of Aj converge to
the eigensystem of A as j → ∞, provided we exclude the zero eigenvalues of A from
consideration. Specifically, we have the following theorem ([10], Theorem 9.1) (in
which ρ(A) denotes the resolvent set of A).

Theorem 10. Let A : X → X be a compact linear operator, and let {Aj} be a
sequence of compact linear operators from X to X such that

‖A− Aj‖L(X,X → 0 as j → ∞.

Then for any compact set K ⊆ ρ(A), there exists j0 ∈ Z
+ such that for every j ≥ j0,

we have K ⊆ ρ(Aj). If λ is a non-zero eigenvalue of A with multiplicity m, then

there are m eigenvalues λ
(j)
1 , λ

(j)
2 , · · · , λ(j)m of Aj, repeated according to their algebraic

multiplicities, such that each λ
(j)
i converges to λ as j → ∞. Moreover, if we define

Ej(λ) to be the direct sum of the eigenspaces corresponding to the eigenvalues of

λ
(j)
1 , λ

(j)
2 , · · · , λ(j)m , then the gap between Ej(λ) and the eigenspace E(λ) corresponding

to the eigenvalue λ tends to 0 as j → ∞.

By the above discussion, if we show that Aj = T
#j

j TjPXj
converges to A = T#T in

the operator norm, then it will follow that the eigensystem of T
#j

j TjPXj
converges to

the eigensystem of T#T . We will use the following fundamental result (See [13]).
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Theorem 11. Let U , V , and W be Hilbert spaces. Let M : V → W be a bounded
linear operator, let T : U → V be a compact linear operator, and let Mj : V → W be
a bounded linear operator for each j ∈ Z

+. Suppose that Mj → M pointwise on V .
Then

‖(Mj −M)T‖L(U,W ) → 0 as j → ∞.

Example 1 shows that the GSVE of (Tj, Lj) need not converge to the GSVE of (T, L).
We now describe the fundamental assumption on the sequences {Tj} and {Lj} that
will allow us to prove convergence of the GSVE. For each j ∈ Z

+, we define

tj,1 = max
x∈Xj

x 6=0

‖(T − Tj)x‖Y
‖x‖X

, (3.3)

tj,2 = max
x∈Xj

x 6=0

‖(T − Tj)x‖Y
‖x‖∗

, (3.4)

tj = max{tj,1, tj,2}, (3.5)

ℓj = max
x∈Xj

x 6=0

‖(L− L− j)x‖Z
‖x‖∗

, (3.6)

cj =
√

t2j + ℓ2j . (3.7)

Henceforth, we will assume that cj → 0 as j → ∞. We will see that this is enough
to imply that the GSVE of (Tj, Lj) converges to the GSVE of (T, L).

By (3.5), we have

‖(Tj − T )x‖Y ≤ tj‖x‖X and ‖(Tj − T )x‖Y ≤ tj‖x‖∗ for all x ∈ Xj,

and, by 3.6,
‖(Lj − L)x‖Z ≤ ℓj‖x‖∗ for all x ∈ Xj.

Therefore, for all x ∈ Xj,

‖Tjx‖2Y = 〈Tjx, Tjx〉Y = 〈(Tj − T )x, Tjx〉Y + 〈Tx, Tjx〉Y
≤ ‖(Tj − T )x‖Y ‖Tjx‖Y + ‖Tx‖Y ‖Tjx‖Y
≤ tj‖x‖∗‖Tjx‖Y + ‖Tx‖Y ‖Tjx‖Y .

Hence,

‖Tjx‖y ≤ tj‖x‖∗ + ‖Tx‖Y ≤ (1 + tj)‖x‖∗ for all x ∈ Xj (3.8)
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(since obviously ‖Tx‖Y ≤ ‖x‖∗ for all x ∈ D(L)). Similarly,

‖Ljx‖Z ≤ (1 + ℓj)‖x‖∗ for all x ∈ Xj. (3.9)

In our analysis, it will useful to define the quantity ηj by

ηj = c2j + 2(tj + ℓj). (3.10)

We will need the following bound.

Lemma 12. For every j ∈ Z
+, and for every x, y ∈ Xj,

|〈x, y〉∗ − 〈x, y〉∗j | ≤ ηj‖x‖∗‖y‖∗.

Proof. Let j ∈ Z
+, and let x, y ∈ Xj. Then

|〈x, y〉∗ − 〈x, y〉∗j | = |〈Tx, Ty〉Y + 〈Lx, Ly〉Z − 〈Tjx, Tjy〉Y − 〈Ljx, Ljy〉Z |
= |〈Tx, (T − Tj)y〉Y + 〈Lx, (L− Lj)y〉Z + 〈(T − Tj)x, Tjy〉Y

+ 〈(L− Lj)x, Ljy〉Z |
≤ ‖Tx‖Y ‖(T − Tj)y‖Y + ‖Ly‖Z‖(L− Lj)y‖Z

+ ‖(T − Tj)x‖Y ‖Tjx‖Y + ‖(L− Lj)x‖Z‖Ljy‖Z
≤ tj‖Tx‖Y ‖y‖∗ + ℓj‖Lx‖Z‖y‖∗ + tj‖x‖∗‖Tjy‖Y + ℓj‖x‖∗‖Ljy‖Z
≤ (t2j + ℓ2j)‖x‖∗‖y‖∗ + tj(1 + tj)‖x‖∗‖y‖∗ + ℓj(1 + ℓj)‖x‖∗‖y‖∗
=
(

t2j + ℓ2j + 2(tj + ℓj)
)

‖x‖∗‖y‖∗
= ηj‖x‖∗‖y‖∗.

From this, we have the following Corollary.

Corollary 13. For any j ∈ Z
+ and for any x ∈ Xj,

(1− ηj)‖x‖2∗ ≤ ‖x‖2∗j ≤ (1 + ηj)‖x‖2∗, (3.11)

1

1 + ηj
‖x‖∗j ≤ ‖x‖2∗ ≤

1

1− ηj
‖x‖2∗j . (3.12)

Next, we define Mj : Xj → Xj and M : D(L∗L) → X by

M = T ∗T + L∗L

Mj = T ∗
j Tj + L∗

jLj.

Let x ∈ D(L) and y ∈ D(L∗L). Notice that

〈x, y〉∗ = 〈Tx, Ty〉Y + 〈Lx, Ly〉Z = 〈x, (T ∗T + L∗L)y〉X
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= 〈x,My〉X .

Therefore, M has the following property:

〈x, y〉∗ = 〈x,My〉X ∀x ∈ D(L) ∀y ∈ D(L∗L). (3.13)

Similarly, the operator Mj has the following property:

〈x, y〉∗j = 〈x,Mjy〉X ∀x, y ∈ Xj. (3.14)

These operators will be central to our analysis; the following three results come from
these two properties of M and Mj.

Theorem 14. The operator M is a bijection with bounded inverse, and

‖M−1‖L(X,D(L)) <
1√
γ
,

that is,

‖M−1x‖∗ ≤
‖x‖X√
γ

∀x ∈ X.

Proof. See [4], Theorem 5.25.

Theorem 15. For each j ∈ Z
+, the operator Mj is invertible and

‖Mj‖L(X,D(L)) ≤
1

(1− ηj)
√
γ
.

That is,

‖M−1
j x‖∗ ≤

1

(1− ηj)
√
γ
‖x‖X ∀x ∈ Xj.

Proof. Let j ∈ Z
+ and let x ∈ Xj. By Corollary 13, we have

‖M−1
j x‖2∗ ≤

1

1− ηj
‖M−1

j x‖2∗j =
1

1− ηj
〈M−1

j x,M−1
j x〉∗j

=
1

1− ηj
〈M−1

j x, x〉X

≤ 1

1− ηj
‖M−1

j x‖X‖x‖X

≤ 1

(1− ηj)
√
γ
‖M−1

j x‖∗‖x‖X .
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The desired result follows from dividing both sides of the inequality by ‖M−1
j x‖∗.

Next, recall that ΠXj
: D(L) → Xj denotes the orthogonal projection with respect to

the ∗-inner product onto the subspace Xj . The following result allows us to compare
M−1 and M−1

j .

Theorem 16. For every x ∈ X,

‖ΠXj
M−1x−M−1

j PXj
x‖∗ ≤

ηj
(1− ηj)

√
γ
‖x‖X .

Proof. Let x ∈ X. Then

‖ΠXj
M−1x−M−1

j PXj
x‖2∗

= 〈(ΠXj
M−1 −M−1

j PXj
)x, (ΠXj

M−1 −M−1
j PXj

)x〉∗
= 〈M−1x, (ΠXj

M−1 −M−1
j PXj

)x〉∗ − 〈M−1
j PXj

x, (ΠXj
M−1 −M−1

j PXj
)x〉∗

Notice that

〈M−1x, (ΠXj
M−1 −M−1

j PXj
)x〉∗ = 〈x, (ΠXj

M−1 −M−1
j PXj

)x〉X
= 〈PXj

x, (ΠXj
M−1 −M−1

j PXj
)x〉X

= 〈M−1
j PXj

x, (ΠXj
M−1 −M−1

j PXj
)x〉∗j .

Therefore we have

‖ΠXj
M−1x−M−1

j PXj
x‖2∗

= 〈M−1x, (ΠXj
M−1 −M−1

j PXj
)x〉∗ − 〈M−1

j PXj
x, (ΠXj

M−1 −M−1
j PXj

)x〉∗
= 〈M−1

j PXj
x, (ΠXj

M−1 −M−1
j PXj

)x〉∗j − 〈M−1
j PXj

x, (ΠXj
M−1 −M−1

j PXj
)x〉∗

≤ ηj‖M−1
j PXj

x‖∗‖(ΠXj
M−1 −M−1

j PXj
)x‖∗,

where we have applied Lemma 12 for the last inequality. Hence,

‖(ΠXj
M−1 −M−1

j PXj
)x‖∗ ≤ ηj‖M−1

j PXj
x‖∗.

Applying Theorem 15 (and the fact that ‖PXj
x‖X ≤ ‖x‖X), we obtain

‖(ΠXj
M−1 −M−1

j PXj
)x‖∗ ≤

ηj
(1− ηj)

√
γ
‖x‖X ,

as desired.

We can now prove that MjPXj
converges pointwise to M−1 on X.
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Theorem 17. For every x ∈ X,

‖M−1x−M−1
j PXj

x‖∗ → 0 as j → ∞.

Proof. Let x ∈ X. Then

‖(M−1 −M−1
j PXj

)x‖∗ ≤ ‖M−1x− ΠXj
M−1x‖∗ + ‖(ΠXj

M−1 −M−1
j PXj

)x‖∗
≤ ‖(I − ΠXj

)M−1x‖∗ +
ηj

1− ηj
‖x‖X .

By assumption, ΠXj
converges pointwise to the identity operator onD(L), and ηj → 0

as j → ∞. The desired result then follows.

For every y ∈ Yj and for every x ∈ Xj, we have

〈Tjx, y〉Y = 〈x, T#j

j y〉∗j = 〈Tjx, TjT#j

j y〉Y + 〈Ljx, LjT#j

j y〉Z
= 〈x, (T ∗

j Tj + L∗
jLj)T

#j

j y〉X .

Also,

〈Tjx, y〉Y = 〈x, T ∗
j y〉X .

Because this is true for every x ∈ Xj and for every y ∈ Yj, we see that

T ∗
j = (T ∗

j Tj + L∗
jLj)T

#j

j =MjT
#j

j .

Similarly,

T ∗ = (T ∗T + L∗L)T# =MT#.

We define Sj : Xj → Y by Sj = Tj−T |Xj
. By definition, we have that tj = ‖Sj‖L(Xj ,Y )

and hence, by assumption, ‖Sj‖L(Xj ,Y ) → 0 as j → ∞. We now compute the adjoint
of Sj. To do this, let x ∈ Xj and let y ∈ Y . Then

〈Sjx, y〉Y = 〈(Tj − T )x, y〉Y = 〈Tjx, y〉Y − 〈Tx, y〉Y
= 〈Tjx, PYjy〉Y − 〈x, T ∗y〉X
= 〈x, T ∗

j PYjy〉X − 〈x, PXj
T ∗x〉X

= 〈x, (T ∗
j PYj − PXj

T ∗)y〉X .

Therefore, S∗
j = T ∗

j PYj − PXj
T ∗, and since ‖S∗

j ‖L(Y,Xj) = ‖Sj‖L(Xj ,Y ), we see that

‖PXj
T ∗ − T ∗

j PYj‖L(Y,Xj) → 0 as j → ∞. (3.15)
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The following theorem will be used to show that T
#j

j TjPXj
→ T#T uniformly.

Theorem 18. T
#j

j PYjT → T#T in the L(D(L), D(L)) norm.

Proof. We have shown that T# = M−1T ∗ and T
#j

j = M−1
j T ∗

j . From this, it follows
that

T
#j

j PYjT − T#T = (M−1
j T ∗

j PYj −M−1T ∗)T.

By Theorem 11, it suffices to prove that M−1
j T ∗

j PYj → M−1T ∗ pointwise on Y as
j → ∞. Let y ∈ Y . Then

‖M−1T ∗y −M−1
j T ∗

j PYjy‖∗
≤ ‖(M−1 −M−1

j PXj
)T ∗y‖∗ + ‖M−1

j PXj
T ∗y −M−1

j T ∗
j PYjy‖∗

= ‖(M−1 −M−1
j PXj

)T ∗y‖∗ + ‖M−1
j (PXj

T ∗y − T ∗
j PYjy)‖∗

≤ ‖(M−1 −M−1
j PXj

)T ∗y‖∗ +
1

(1− ηj)
√
γ
‖(PXj

T ∗ − T ∗
j PYj)y‖X .

It now follows from Theorem 17 and (3.15) that ‖M−1T ∗y −M−1
j T ∗

j PYjy‖∗ → 0 as
j → ∞.

We need two more results.

Lemma 19. If {vj} ⊆ X and vj → v weakly as j → ∞, then PXj
vj → v weakly.

Proof. For any x ∈ X, we have

〈PXj
vj, x〉X = 〈vj, x〉X + 〈vj, (PXj

− I)x〉X → 〈v, x〉X

(notice that {vj} is a bounded sequence in X, and that (PXj
− I)x → 0 in norm).

This shows that PXj
vj → v weakly as j → ∞.

Theorem 20. TjPXj
→ T in the L(X, Y ) norm.

Proof. We argue by contradiction and assume that there exist ε0 > 0 and a subse-
quence {jk} of Z+ such that for every k ∈ Z

+, there exists vjk ∈ X satisfying

‖vjk‖X = 1 and ‖TjkPXjk
vjk − Tvjk‖Y ≥ ε0. (3.16)

Since T is compact and X is separable, without loss of generality, we can assume that
there exists v ∈ X and y ∈ Y such that vjk → v weakly in X and Tvjk → y in Y . We
then have

TjkPXjk
vjk = TPXjk

vjk + (Tjk − T )PXjk
vjk → Tv + 0 = y

29



(‖(Tjk − T )PXjk
vjk‖Y ≤ tj‖PXjk

vjk‖X → 0, and TPXjk
→ Tv because PXjk

vjk → v
weakly from Lemma 19 and T is compact). But then we have

TjkPXjk
vjk − Tvjk → y − y = 0,

contradicting (3.16). The contradiction completes the proof.

We have been working towards the following result.

Theorem 21. T
#j

j TjPXj
→ T#T in the L(D(L), D(L)) norm.

Proof. We have

‖T#j

j TjPXj
− T#T‖L(D(L),D(L))

≤ ‖T#j

j TjPXj
− T

#j

j PYjT‖L(D(L),D(L)) + ‖T#j

j PYjT − T#T‖L(D(L),D(L))

= ‖M−1
j T ∗

j PYj(TjPXj
− T )‖L(D(L),D(L)) + ‖T#j

j PYjT − T#T‖L(D(L),D(L)).

The second term to the right of the equals sign goes to 0 by Theorem 18. Therefore,
it suffices to show that the first term goes to 0. Applying Theorem 15, we have

‖M−1
j T ∗

j PYj(TjPXj
− T )‖L(D(L),D(L))

≤ 1

(1− ηj)
√
γ
‖T ∗

j PYj(TjPXj
− T )‖L(D(L),X)

≤ ‖T ∗
j ‖L(Yj ,Xj)

(1− ηj)
√
γ
‖TjPXj

− T‖L(D(L),Y )

=
‖Tj‖L(Xj ,Yj)

(1− ηj)
√
γ
‖TjPXj

− T‖L(D(L),Y )

≤ tj + ‖T‖L(X,Y )

(1− ηj)
√
γ

‖TjPXj
− T‖L(D(L),Y )

≤ tj + ‖T‖L(X,Y )

(1− ηj)γ
‖TjPXj

− T‖L(X,Y ).

Since tj → 0 as j → ∞ and T is a bounded operator from X to Y , it follows from
Theorem 20 that ‖M−1

j T ∗
j PYj(TjPXj

−T )‖L(D(L),D(L)) → 0 as j → ∞. This completes
the proof.

Theorem 3 and Theorem 10 show that the eigensystem of T
#j

j Tj, which is the same

as the eigensystem of T
#j

j TjPXj
, converges to the eigensystem of T#T . We can now

prove the following theorem.

Theorem 22. Assuming that cj → 0 as j → ∞ (where cj is defined by (3.7)), the
GSVE of (Tj, Lj) converges to the GSVE of (T, L) in the sense of Definition 9.
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Proof. Since ((a
(j)
k )2, φ

(j)
k ), k = 1, 2, · · · , nj, are the eigenpairs of T

#j

j TjPXj
, (a2k, φk)

are the eigenpairs of T#T , and T
#j

j TjPXj
→ T#T in the operator norm, it follows from

Theorem 10 that the set of approximate generalized singular values {a(j)k } converges to
the set of true generalized singular values {ak}, and the set of approximate generalized

singular functions {φ(j)
k } converges to the set of true generalized singular functions

{φk} in the manner described by Definition 9. Moreover, since
(

a
(j)
k

)2

+
(

b
(j)
k

)2

= 1

for every k = 1, 2, · · · , nj, and a2k + b2k = 1 for every k ∈ Z
+, it follows that the

set of approximate generalized singular values {b(j)k } also converges to the true set of
generalized singular values {bk} in the manner described in Definition 9.

It now remains only to show that {ψ(j)
k } converges to {ψk} and {θ(j)k } converges to

{θk} as j → ∞ in the sense of Definition 9. To show this, let k be an arbitrary
positive integer and let ε > 0 be given. We must show that there exists j0 ∈ Z

+ such
that

j ≥ j0 =⇒ max
{

δ
(

Sk(ψ), S
(j)
k (ψ)

)

, δ
(

S
(j)
k (ψ), Sk(ψ)

)}

< ε.

First, we show that j0 ∈ Z
+ can be chosen such that δ(Sk(φ), S

(j)
k (φ)) < ε for every

j ≥ j0. That is, we show that j0 can be chosen so that

j ≥ j0 =⇒ sup
y∈Sk(ψ)
‖y‖Y =1

inf
v∈S

(j)
k

‖y − v‖Y < ε. (3.17)

We know that there exists j0 ∈ Z
+ such that

j ≥ j0 =⇒ sup
x∈Sk(φ)
‖x‖∗=1

inf
v∈S

(j)
k

(φ)

‖x− v‖∗ <
akε

4
and tj < min

{akε

2
, 1
}

.

We will show that this value of j0 satisfies (3.17). It suffices to show that for any

j ≥ j0 and for any y ∈ Sk(ψ) satisfying ‖y‖Y = 1, there exists v ∈ S
(j)
k (ψ) such that

‖y − v‖Y < ε. Suppose

Sk(ψ) = span{ψk1 , ψk2 , · · · , ψkq}.

Then there exists real numbers α1, α2, · · · , αq such that

y = a−1
k

q
∑

i=1

αiakψki = a−1
k

q
∑

i=1

αiTφki = a−1
k Tx,

where x =

q
∑

i=1

αiφki . Moreover, since {φk1 , φk2 , · · · , φkq} is orthonormal in D(L) with

respect to the ∗-inner product, we see that ‖x‖∗ = ‖y‖Y = 1. Hence, there exists
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u ∈ S
(j)
k (φ) such that

‖x− u‖∗ <
akε

4
.

By construction, Tx = aky, and the vector v defined by v = a−1
k Tju lies in S

(j)
k (ψ).

Moreover,

‖y − v‖Y = a−1
k ‖Tx− Tju‖Y ≤ ‖(T − Tj)x‖Y + ‖Tjx− Tjv‖Y

ak

≤ tj + ‖Tj‖L(D(L),Y )‖x− u‖∗
ak

≤ tj + (1 + tj)‖x− u‖∗
ak

≤ 1

ak

(

akε

2
+

2akε

4

)

= ε

Thus, δ(Sk(ψ), S
(j)
k (ψ)) < ε for every j ≥ j0. The proof that j0 can be chosen such

that δ(S
(j)
k (θ), Sk(θ)) < ε for every j ≥ j0 is similar. Thus, we have shown that {ψ(j)

k }
converges to {ψk} in the sense of Definition 9.

The proof that {θ(j)k } converges to {θk} in the sense of Definition 9 is exactly the
same, and the proof is complete.

In Example 1, it appeared that the GSVE of (Tj, Lj) did not converge to the GSVE
of (T, L). Thus, the sequence of discretized operator pairs (Tj, Lj) must fail to satisfy
the hypotheses of Theorem 22.

Example 2. In this example, we analyze the discretization of Example 1. In Example
1, Tj = PYjT |Xj

, and since T is the identity operator, it follows that Tj = T |Xj

(Xj = Yj for each j ∈ Z
+). Therefore, tj = 0 for every j ∈ Z

+. However (recalling
that xi is the ith standard nodal basis function), a direct calculation shows that

ℓj = sup
x∈Xj

x 6=0

‖(Lj − L)x‖L2(0,1)

‖x‖H1(0,1)

≥ ‖(Lj − L)xj‖L2(0,1)

‖xj‖H1(0,1)

≥ 1

2
√
2
√

1 + h2/6

(where h = 1/j) and hence ℓj is bounded away from 0. Therefore, Theorem 22 does
not apply to this example.

We now present a discretization of the operators of Example 1 that satisfies the
hypotheses of Theorem 22 and hence leads to convergence of the GSVE.

Example 3. Let T , L, Xj, and Yj be defined as in Example 1, but now define Zj
to be the space of piecewise constant functions on the uniform mesh with j elements.
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As before, Tj is to be PYjT |Xj
= T |Xj

, and we define Lj = PZj
L. Since L maps Xj

into Zj, it follows that Lj = L|Xj
. Therefore, for this discretization, we have that

tj = ℓj = 0 for all j ∈ Z
+, and hence Theorem 22 guarantees that the GSVE of

(Tj, Lj) converges to the GSVE of (T, L) in the sense of Definition 9 as j → ∞.

Figures 3.1-3.3 show the approximate and exact singular functions for k = 1, 2, 3
(analogous to Figures 2.1-2.3 from Example 1). As in Example 1, we use j = 100
to obtain these numerical results. In contrast to Example 1, now all three of the
examined singular modes are well approximated.
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Figure 3.1: The computed functions φ
(100)
1 (top), ψ

(100)
1 (middle), and θ

(100)
1

(bottom) for Example 3, together with the corresponding exact functions φ1,
ψ1, and θ1. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.

Extensive numerical testing suggests that

∣

∣

∣
a
(j)
k − ak

∣

∣

∣
= O(h2) as j → ∞,

∣

∣

∣
b
(j)
k − bk

∣

∣

∣
= O(h2) as j → ∞.

Each of the generalized singular spaces is one-dimensional and, therefore, we can
compare the generalized singular functions directly rather than referring to the gap
between subspaces (we just have to normalize the vectors and multiply by -1 when
necessary so that the angle between each singular vector and its estimate is close to 0
rather than close to π). We observe

∥

∥

∥φ
(j)
k − φk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞,

∥

∥

∥
ψ

(j)
k − ψk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞,
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∥

∥

∥θ
(j)
k − θk

∥

∥

∥

L2(0,1)
= O(h) as j → ∞.

In each case, the rate of convergence is optimal for the given discretization
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Figure 3.2: The computed functions φ
(100)
2 (top), ψ

(100)
2 (middle), and θ

(100)
2

(bottom) for Example 3, together with the corresponding exact functions φ2,
ψ2, and θ2. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.
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Figure 3.3: The computed functions φ
(100)
3 (top), ψ

(100)
3 (middle), and θ

(100)
3

(bottom) for Example 3, together with the corresponding exact functions φ3,
ψ3, and θ3. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.
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Chapter 4

Rates of convergence

In Example 3 of the previous chapter, we compared the generalized singular values
and vectors of the operator pairs (T, L) and (Tj, Lj). In that example, we observed
the following rates of convergence for the generalized singular values:

∣

∣

∣
a
(j)
k − ak

∣

∣

∣
= O(h2) as j → ∞,

∣

∣

∣
b
(j)
k − bk

∣

∣

∣
= O(h2) as j → ∞.

We also observed the following rates of convergence for the generalized singular func-
tions:

∥

∥

∥
φ
(j)
k − φk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞,

∥

∥

∥ψ
(j)
k − ψk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞,

∥

∥

∥
θ
(j)
k − θk

∥

∥

∥

L2(0,1)
= O(h) as j → ∞.

Here, h = 1/j was the width of each interval of continuous piecewise linear finite
elements in the discretization Xj of X. In this chapter, we analyze the rate of conver-
gence of the generalized singular values and vectors of (Tj, Lj) to those of (T, L). We
next consider a less trivial example that demonstrates the same rates of convergence
observed in Example 3.

Example 4. Let X = L2(0, 1) and Y = Z = L2(0, 1). Define operators T : X → Y

and L : D(L) → Z by Lx = x′, and Tx =

∫ 1

0

sestx(t) dt. We discretize (T, L)

by defining Xj = Yj to be the space of continuous piecewise linear functions on a
uniform mesh with j elements, and Zj to be the set of piecewise constant functions
defined on each subinterval of the mesh. Let {x0, x1, · · · , xj} be the standard nodal
basis. Define Tj = PYjT |Xj

and Lj = PZj
L|Xj. Using the method of computation for
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the GSVE from Chapter 2, We are able to compute the singular values and vectors
for (Tj, Lj). The GSVE of (T, L) is unknown in this example, so convergence rates
are approximated using Richardson extrapolation. In our discretization, we will have
a total of 7 refinements of our finite element space. At each stage of refinement, the
previous discretization is also interpolated into the new refinement in order to compare
the functions from each refinement. Using Richardson extrapolation, we can use any
3 consecutive refinements of our discretization to produce a rate of approximation for
each of the singular values and singular vectors.

We begin with a discretization using 40 elements, and at each refinement of the dis-
cretization, we double the number of elements. Tables 4.1-4.4 give the rates of con-
vergence for the first 5 generalized singular vectors and generalized singular values of
T . The numbers in Table 4.1 are the estimates for p using Richardson extrapolation
such that

∣

∣

∣
a
(j)
k − ak

∣

∣

∣
= Chp.

The numbers in Table 4.2 (and similarly in Tables 4.3 and 4.4) are estimates of p
using Richardson extrapolation such that

∥

∥

∥
φ
(j)
k − φk

∥

∥

∥

L2(0,1)
= Chp.

The results of Table 4.1 suggest the following rates of convergence of the generalized
singular values of (Tj, Lj) to those of (T, L).

∣

∣

∣
a
(j)
k − ak

∣

∣

∣ = O(h2) as j → ∞,
∣

∣

∣b
(j)
k − bk

∣

∣

∣ = O(h2) as j → ∞.

The rate of convergence of b
(j)
k to bk follows immediately from the equations

a2k + b2k = 1,
(

a
(j)
k

)2

+
(

b
(j)
k

)2

= 1.

Tables 4.2-4.4 suggest the following rates of convergence of the generalized singular
vectors of (Tj, Lj) to those of (T, L).

∥

∥

∥φ
(j)
k − φk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞,

∥

∥

∥ψ
(j)
k − ψk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞,

∥

∥

∥θ
(j)
k − θk

∥

∥

∥

L2(0,1)
= O(h) as j → ∞.

36



Table 4.1

Rate of convergence of a
(j)
k

k j = 160 j = 320 j = 640 j = 1240 j = 2480
1 NaN NaN NaN NaN NaN
2 2.00065 2.00016 2.00004 2.00001 2.00000
3 2.00121 2.00031 2.00008 2.00002 2.00000
4 2.00339 2.00087 2.00022 2.00005 2.00001
5 2.00816 2.00214 2.00054 2.00013 2.00008

Table 4.2

Rate of convergence of φ
(j)
k

k j = 160 j = 320 j = 640 j = 1240 j = 2480
1 1.99998 2.00000 2.00000 2.00000 2.00000
2 2.00013 2.00003 2.00001 2.00000 2.00000
3 2.00020 2.00005 2.00001 2.00000 2.00000
4 1.99937 1.99984 1.99996 1.99999 2.00000
5 1.99644 1.99912 1.99978 1.99995 2.00000

In both examples, the same rates of convergence of the generalized singular values and
vectors were observed when using continuous piecewise linear elements to discretize
the space D(L) and when using piecewise constant elements to discretize the space Y .
In this chapter, we provide a theory and analysis to prove these rates of convergence.
In our analysis, it will be important to consider the space D(L∗L) ⊆ X.

To be consistent with the notation in Chapter 5, we will denote D(L∗L) by S2. We
define the bilinear form 〈·, ·〉S2 : S2 × S2 → R by

〈x, y〉S2 = 〈Mx,My〉X , ∀x, y ∈ S2,

where M : S2 → X was defined by M = T ∗T + L∗L in Chapter 3.

By Theorem 14, M has bounded inverse and is, therefore, injective. Hence, for any
x ∈ S2,

〈x, x〉S2 = 0 ⇐⇒ x = 0.

Therefore, 〈·, ·〉S2 defines an inner product on S2. The next two lemmas show that S2

is a dense subspace of D(L) and that S2 is a Hilbert space with norm ‖ · ‖S2 defined
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Table 4.3

Rate of convergence of θ
(j)
k

k j = 160 j = 320 j = 640 j = 1240 j = 2480
1 NaN NaN NaN NaN NaN
2 0.99971 0.99993 0.99998 1.00000 1.00000
3 0.99867 0.99967 0.99992 1.00000 1.00000
4 0.99605 0.99902 0.99975 0.99994 0.99998
5 0.99078 0.99771 0.99943 0.99986 0.99996

Table 4.4

Rate of convergence of ψ
(j)
k

k j = 160 j = 320 j = 640 j = 1240 j = 2480
1 2.00007 2.00002 2.00000 2.00000 2.00000
2 2.00009 2.00002 2.00001 2.00000 2.00000
3 2.00058 2.00014 2.00005 2.00001 2.00000
4 2.00112 2.00028 2.00007 2.00002 2.00000
5 2.00150 2.00039 2.00010 2.00003 1.99999

by

‖x‖S2 = ‖Mx‖X , ∀x ∈ X.

Lemma 23. S2 is dense in D(L).

Proof. It will suffice to prove that S⊥∗

2 = {0} where ⊥∗ denotes the orthogonal com-
plement in D(L) of S2 with respect to the ∗-inner product. Let w ∈ S⊥∗

2 , and define
u =M−1w. Then u ∈ D(L∗L), so by definition of w, 〈w, u〉∗ = 0. Therefore,

‖w‖2X = 〈w,w〉X = 〈w,M−1w〉∗ = 〈w, u〉∗ = 0.

Thus, w = 0 and the proof is complete.

Lemma 24. ‖ · ‖S2 is a stronger norm than ‖ · ‖∗. In particular, for every x ∈ S2,

‖x‖∗ ≤ (γ)−1/2‖x‖S2 .

Proof. Let x ∈ S2. Then it follows that

‖x‖2∗ = 〈x, x〉∗
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= 〈Tx, Tx〉Y + 〈Lx, Lx〉Z
= 〈x, (T ∗T + L∗L)x〉X
= 〈x,Mx〉X
≤ ‖x‖X‖Mx‖X
≤ (γ)−1/2‖x‖∗‖Mx‖X .

After dividing each side of the inequality by ‖x‖∗, we have

‖x‖∗ ≤ (γ)−1/2‖Mx‖X = (γ)−1/2‖x‖S2 ,

and this completes the proof.

We will now assume the following property of the discretization: There exists a
sequence of positive real numbers {εj} such that εj → 0 as j → ∞ and

‖ΠXj
x− x‖∗ ≤ εj‖x‖S2 , ∀x ∈ S2. (4.1)

This assumption is consistent with finite element approximation results. For instance
if Xj is the space of continuous piecewise linear finite elements in L2(0, 1), and L :
H1(0, 1) → L2(0, 1) is the derivative operator, then the ∗-norm is equivalent to the
H1(0, 1) norm, and the S2-norm is related to the H2-seminorm. In this case, we can
take εj = Chj for some constant C > 0, where hj is the mesh size of the j-th mesh
(see [14] Theorem 4.4.20).

Theorem 25. For every x ∈ S2,

‖ΠXj
x− x‖X ≤ ε2j‖x‖S2 . (4.2)

Proof. Let x ∈ S2, and define x̂ = ΠXj
x and w =M−1(x− x̂). Then

‖x− x̂‖2X = 〈x− x̂, x− x̂〉X
= 〈M−1(x− x̂), x− x̂〉∗
= 〈w, x− x̂〉∗.

Since x − x̂ is orthogonal to the space Xj with respect to the ∗-inner product, it
follows that 〈ΠXj

w, x− x̂〉∗ = 0. Therefore,

〈w, x− x̂〉∗ = 〈w − ΠXj
w, x− x̂〉∗.

Putting these results together, we have

‖x− x̂‖2X = 〈w, x− x̂〉∗ = 〈w − ΠXj
w, x− x̂〉∗

≤ ‖w − ΠXj
w‖∗‖x− x̂‖.
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Both w and x are in S2, so by (4.1), it follows that

‖w − ΠXj
w‖∗ ≤ εj‖w‖S2

‖x− x̂‖∗ ≤ εj‖x‖S2 .

From this we have

‖x− x̂‖2X ≤ ‖w − ΠXj
‖∗‖x− x̂‖∗ ≤ (εj‖w‖S2) (εj‖x‖S2)

= ε2j‖w‖S2‖x‖S2 .

Therefore,

‖x− x̂‖2X ≤ ε2j‖Mw‖X‖x‖S2

= ε2j‖M
(

M−1(x− x̂)
)

‖X‖x‖S2

= ε2j‖x− x̂‖X‖x‖S2 .

After eliminating a factor of ‖x− x̂‖X from each side of the inequality, we have

‖x− x̂‖X ≤ ε2j‖x‖S2 .

It should be noted that a similar argument yields that

‖x− ΠXj
x‖X ≤ εj‖x‖∗ ∀x ∈ D(L). (4.3)

It then follows that

‖ΠXj
x‖X ≤ ‖x‖X + εj‖x‖∗ ≤ (γ−1/2 + εj)‖x‖∗ ∀x ∈ D(L). (4.4)

The following lemma will be used in the analysis of the rate of convergence of the
generalized singular values.

Lemma 26. There exists a constant C > 0 such that

‖TjΠXj
x− Tx‖Y ≤ C(tj‖x‖∗ + ε2j‖x‖S2) ∀x ∈ S2. (4.5)

Proof. For every x ∈ S2, we have

‖TjΠXj
x− Tx‖Y ≤ ‖TjΠXj

x− TΠXj
x‖Y + ‖TΠXj

x− Tx‖Y
≤ ‖(T − Tj)ΠXj

‖Y + ‖T (ΠXj
x− x)‖Y

≤ tj‖ΠXj
x‖X + ‖T‖L(X,Y )‖ΠXj

x− x‖X
≤ tjγ

−1/2‖x‖∗ + ‖T‖L(X,Y )ε
2
j‖x‖S2

≤ C(tj‖x‖∗ + ε2j‖x‖S2),
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where C = max{γ−1/2, ‖T‖L(X,Y )}.

Recall that the GSVE of (T, L) can be expressed as

T =
∞
∑

k=1

akψk ⊗∗ φk,

L =
∞
∑

k=1

bkθk ⊗∗ φk +
∑

k∈Ma

bkθk ⊗∗ φk,

and similarly, the GSVE of (Tj, Lj) is given by

Tj =

min{mj ,nj}
∑

k=1

a
(j)
k ψ

(j)
k ⊗∗j φ

(j)
k ,

Lj =

min{pj ,nj}
∑

k=1

b
(j)
k θ

(j)
k ⊗∗j φ

(j)
k .

Here, we order the generalized singular terms in the GSVE of (T, L) such that the
generalized singular values of T are nonincreasing and the generalized singular values
of L are nondecreasing, as was done in Chapter 3. To be precise, we assume that the
index sets Mb and M0, defined in Definition 1.11 of Chapter 3, are given by

Mb = {1, 2, · · · , Nb}, M0 = {Nb + 1, Nb + 2, · · · },

where Nb = dim(N (L)). Since T is a compact operator, the null space of L must
be finite-dimensional, hence making such an indexing possible. Similarly, the GSVE
for (Tj, Lj), as given above, is such that the sequence of generalized singular values

{a(j)k }k=1 is nonincresing and the sequence of generalized singular values {b(j)k }k=1 is
nondecreasing for every j ∈ Z

+.

The generalized singular values ak of (T, L) can be characterized as

ak = max
S⊆D(L)
dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖∗

,

where this maximum is attained for each k ∈ Z
+ by the space

S = Φk = span{φ1, φ2, · · · , φk}.
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The corresponding singular values of Tj can be characterized as

a
(j)
k = max

S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗j

.

We will often have to compare the norms ‖ · ‖∗ and ‖ · ‖∗j on the subspace Xj when
analyzing the rates of convergence of the generalized singular vectors. Recall that
ηj = c2j + 2(tj + ℓj). Then ηj = O(cj) → 0 as j → ∞, and hence 0 ≤ ηj < 1
for all j ∈ Z

+ that are sufficiently large. We will need the following fact about the
generalized singular vectors of the operator pair (T, L).

Lemma 27. For all k ∈ Z
+ =Mb ∪M0, φk ∈ S2.

Proof. Let k ∈M0 ∪Mb. Then we have

Tφk = akψk, T
#ψk = akφk,

where ak > 0. Putting both of these things together, we have
T#Tφk = a2kφk.

Since T# =M−1T ∗ (see [9], Theorem 5.27), if follows that φk ∈ D(M) = S2.

Notice that when ak ∈ Ma, the same argument does not hold since T#Tφk = 0.
We will need a few more preliminary results in order to prove a particular rate of
convergence.

Lemma 28. For every n ∈ Z
+,

max
S⊆D(L)
dim(S)=k

min
x∈S
x6=0

‖Tx‖Y
‖x‖∗

= max
S⊆S2

dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖∗

.

Proof. This follows immediately from the fact that S2 is dense in D(L).

Lemma 29. For every k ∈ Z
+ and for every sufficiently large positive integer j,

max
S⊆D(L)
dim(S)=k

min
x∈S
x 6=0

‖TjΠXj
x‖Y

‖x‖∗
= max

S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗

. (4.6)

Proof. We assume that j is sufficiently large such that dim(Xj) ≥ k. Clearly, the
left-hand side of (4.6) is at least as big as the right-hand side. Therefore, we must
prove that

max
S⊆D(L)
dim(S)=k

min
x∈S
x 6=0

‖TjΠXj
x‖Y

‖x‖∗
≤ max

S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗

. (4.7)
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Let S be a k-dimensional subspace of X, and let Ŝ = ΠXj
S. We consider two cases.

If S∩X⊥∗

j is nontrivial, where X⊥∗

j denotes the orthogonal complement of Xj in D(L)
with respect to the ∗-norm, then there exists x ∈ S such that x 6= 0 and TjΠXj

x = 0.
It then follows that

min
x∈S
x 6=0

‖TjΠXj
x‖Y

‖x‖∗
= 0

=⇒ min
x∈S
x 6=0

‖TjΠXj
x‖Y

‖x‖∗
≤ max

K⊆Xj

dim(K)=k

min
x∈K
x 6=0

‖Tjx‖Y
‖x‖∗

The second case is that S ∩ X⊥∗

j is trivial. In this case, dim(Ŝ) = k, and there is a

one-to-one correspondence between x ∈ S and x̄ ∈ Ŝ (x̄ = ΠXj
x). For each such x

and x̄, we have x̄− x ∈ X⊥∗

j and hence

Tjx̄ = TjΠXj
x̄ = TjΠXj

x.

Also, we have that ‖x̄‖∗ = ‖ΠXj
x‖∗ ≤ ‖x‖∗. Therefore,

‖TjΠXj
x‖Y

‖x‖∗
≤ ‖Tjx̄‖Y

‖x̄‖∗
.

From this, it follows that

min
x∈S
x 6=0

‖TjΠXj
x‖Y

‖x‖∗
≤ min

x̄∈Ŝ
x̄ 6=0

‖Tjx̄‖Y
‖x̄‖∗

≤ max
Ŝ⊆Xj

dim(Ŝ)=k

min
x̄∈Ŝ
x̂ 6=0

‖Tjx̄‖Y
‖x̄‖∗

,

and, thus, we have shown

max
S⊆D(L)
dim(S)=k

S∩X⊥∗

j ={0}

min
x∈S
x 6=0

‖TjΠXj
x‖Y

‖x‖∗
≤ max

S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗

,

which completes the proof.

We can now prove the desired result.

Theorem 30. For each k ∈ Z
+, there exists constants C1 and C2 such that for all

sufficiently large positive integers j,

ak − C1(cj + ε2j) ≤ a
(j)
k ≤ ak + C2cj. (4.8)
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Proof. By Corollary 9 of [11],

‖x‖∗
‖x‖∗j

≤ 1
√

1− ηj
∀x ∈ Xj, (4.9)

where ηj = c2j + 2(tj + cj). Using this result, we have

a
(j)
k = max

S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗j

= max
S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗

‖x‖∗
‖x‖∗j

≤ 1
√

1− ηj
max
S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗

≤ 1
√

1− ηj
max
S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y + ‖(T − Tj)x‖Y
‖x‖∗

≤ 1
√

1− ηj



 max
S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖∗

+ tj





≤ 1
√

1− ηj



 max
S⊆D(L)
dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖∗

+ tj





=
1

√

1− ηj
(ak + tj).

Since

1
√

1− ηj
= 1 + δ(ηj)ηj where 0 < δ(ηj) < 1,

for all ηj sufficiently small (0 ≤ ηj < 3/8 suffices), and since tj = O(cj) and ηj = O(cj),
this establishes the upper bound in (4.8). To prove the lower bound, we define the
subspace Φk = span{φ1, φ2, · · · , φk} and apply Lemma 26:

ak = max
S⊆D(L)
dim(S)=k

min
x∈S
x 6=0

‖Tx‖Y
‖x‖∗

= min
x∈Φk
x 6=0

‖Tx‖Y
‖x‖∗

≤ min
x∈Φk
x 6=0

‖TjΠXj
x‖Y + C(tj‖x‖∗ + ε2j‖x‖S2)

‖x‖∗
.
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Since Φk is fixed and finite-dimensional, there exists Ck > 0 such that

‖x‖S2

‖x‖∗
≤ Ck ∀x ∈ Φk.

If we define C ′ = max{C,CCk}, we obtain

ak ≤ min
x∈Φk
x 6=0

(‖TjΠXj
x‖Y

‖x‖∗
+ C ′(tj + ε2j)

)

= min
x∈Φk
x 6=0

‖TjΠXj
x‖Y

‖x‖∗
+ C ′(tj + ε2j)

≤ max
S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗

+ C ′(tj + ε2j).

By Corollary 9 of [11],

‖x‖∗j
‖x‖∗

≤
√

1 + ηj ∀x ∈ Xj.

Therefore,

ak ≤
√

1 + ηj



 max
S⊆Xj

dim(S)=k

min
x∈S
x 6=0

‖Tjx‖Y
‖x‖∗



+ C ′(tj + ε2j)

=
√

1 + ηj

(

a
(j)
k

)

+ C ′(tj + ε2j)

=⇒ 1
√

1 + ηj
(ak − C ′(tj + ε2j)) ≤ a

(j)
k .

Since

1
√

1 + ηj
= 1− ς(ηj)ηj, where 0 ≤ ς(ηj) ≤ 1/2,

the lower bound in (4.8) follows (again using the fact that both tj and ηj are O(cj)),
and the proof is complete.

We now wish to analyze the convergence of the generalized singular vectors of (Tj, Lj)
to the generalized singular vectors of (T, L). Recall that for each k, we define the

spaces Ek and E
(j)
k by

Ek = span{φi : ai = ak}.
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and

E
(j)
k = span{φ(j)

i : a
(ℓ)
i → ak as ℓ→ ∞}.

We will need to prove that the subspace E
(j)
k converges to the subspace Ek as j → ∞

in the sense that the gap between Ek and E
(j)
k converges to 0 as j → ∞. Recall that

the gap between subspaces U and V in H, denoted by δ̂(U, V ) is defined by

δ̂(U, V ) = max{δ(U, V ), δ(V, U)},
δ(U, V ) = sup

u∈U
‖u‖H=1

inf
v∈V

‖u− v‖H .

We wish to derive estimates for δ̂(Ek, E
(j)
k ), where gap is defined by either the X-norm

or the ∗-norm. We will, therefore, write δ̂∗ and δ∗ for the gap defined by the ∗-norm
and δ̂X and δX for the gap defined by the X-norm.

It was shown in [11] that, under the assumptions made here, δ̂∗(Ek, E
(j)
k ) → 0 as j →

∞. We will need the following results to conclude that δX(Ek, E
(j)
k ) = δX(E

(j)
k , Ek)

for all positive integers j sufficiently large.

Theorem 31. If U and V are k-dimensional subspaces of a Hilbert space H, where
k is a positive integer, then δ(U, V ) = δ(V, U).

Proof. Without loss of generality, let us assume that δ(U, V ) ≤ δ(V, U). By Theorem
7, the result holds if δ(U, V ) and δ(V, U) are both strictly less than 1. It suffices, there-
fore, to show that the assumption δ(U, V ) < δ(V, U) = 1 produces a contradiction.
Since V is finite dimensional,

δ(V, U) = max
v∈V
‖v‖=1

‖PUv − v‖.

Therefore, the assumption that δ(V, U) = 1 implies that there exists v̂ ∈ V such that
‖v̂‖ = 1 and ‖PU v̂ − v̂‖ = 1. This is possible only if PU v̂ = 0. That is, if v̂ ∈ U⊥.
On the other hand, the assumption that δ(U, V ) < 1 implies that ‖PV u− u‖ < 1 for
all u ∈ U and hence that the null space of P = PV |U (PV restricted to U) is trivial.
Since dim(U) = dim(V ) = k, the fundamental theorem of linear algebra implies that
P maps U onto V ; thus, there exists û ∈ U such that Pû = v̂. But then

∥

∥

∥

∥

P

(

û

‖û‖

)

− û

‖û‖

∥

∥

∥

∥

< 1 =⇒ ‖Pû− û‖ < ‖û‖

=⇒ ‖v̂ − û‖ < ‖û‖
=⇒ ‖v̂‖2 + ‖û‖2 < ‖û‖2
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(where we used δ(U, V ) < 1 in the first step and v̂ ∈ U⊥ in the last step). Since
‖v̂‖ = 1, the last inequality is impossible, and the proof is complete.

The previous theorem implies that δX(Ek, E
(j)
k ) = δX(E

(j)
k , Ek). It follows, therefore,

that δ̂X(Ek, E
(j)
k ) = δ(Ek, E

(j)
k ), and it, therefore, suffices to analyze the convergence

of δX(Ek, E
(j)
k ) to zero. The same comments apply to δ̂∗: δ̂∗(Ek, E

(j)
k ) = δ∗(Ek, E

(j)
k ).

Specifically, we will show that

δX(Ek, E
(j)
k ) = O(cj + ε2j),

δ∗(Ek, E
(j)
k ) = O(cj + εj).

By definition of δX(Ek, E
(j)
k ), we must show that there exists C = Ck > 0 such that,

for all v ∈ Ek with ‖v‖X = 1, there exists w ∈ E
(j)
k such that

‖v − w‖X ≤ C(cj + ε2j). (4.10)

We will show that the same vector w also satisfies

‖v − w‖∗ ≤ C(cj + εj)

(albeit with a different constant for C).

We now proceed to show that there exists C > 0 such that given v ∈ Ek with ‖v‖∗ = 1,

one can define w ∈ E
(j)
k such that inequality (4.10) holds. To do this, we will need

some more notation and several preliminary results. Recall that the dimension of Xj

is nj; let rj be the rank of Tj. Then there exist rj generalized singular value/singular

vector pairs (a
(j)
i , φ

(j)
i ) of Tj. If rj < nj, extend the set {φ(j)

i : i = 1, 2, · · · , rj}
to an orthonormal basis {φ(j)

i : i = 1, 2, · · · , nj} for Xj, and define a
(j)
i = 0 for

i = rj+1, rj+2, · · · , nj. It should be noted that {φ(j)
i : i = 1, 2, · · · , nj} is orthonormal

with respect to the ∗j-inner product.
We will write

Ik = {i ∈ Z
+ : ai = ak};

then

Ek = span{φi : i ∈ Ik},
E

(j)
k = span{φ(j)

i : i ∈ Ik}.

We will also write Jj = {1, 2, · · · , nj}.
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Recall that we have defined the operators M : D(L∗L) → X and Mj : Xj → Xj by

M = T ∗T + L∗L,

Mj = T ∗
j Tj + L∗

jLj.

Both such operators are bijections and each has bounded inverse (see Chapter 3). For
each j ∈ Z

+, we define the operator Λj : D(L∗L) → Xj by

Λj =M−1
j PXj

M.

Here, again, PXj
denotes the orthogonal projection onto the subspace Xj of X with

respect to the X-norm. Notice that, for any u, v ∈ Xj,

〈u, v〉∗j = 〈Tju, Tjv〉Y + 〈Lju, Ljv〉Z = 〈(T ∗
j Tj + L∗

jLj)u, v〉X = 〈Mju, v〉X .

Similarly, for any u, v ∈ D(L) such that u ∈ S2,

〈u, v〉∗ = 〈Mu, v〉X .

Therefore, for any u ∈ S2 and for any v ∈ Xj, we have

〈Λju, v〉∗j = 〈M−1
j PXj

Mu, v〉∗j = 〈PXj
Mu, v〉X

= 〈Mu, v〉X = 〈u, v〉∗,

that is,

〈Λju, v〉∗j = 〈u, v〉∗ ∀u ∈ S2 , ∀v ∈ Xj. (4.11)

The operator Λj approximates the operator ΠXj
in the following sense.

Lemma 32. For every j ∈ Z
+ and for every u ∈ S2,

‖(ΠXj
− Λj)u‖∗ ≤

ηj
(1− ηj)

√
γ
‖u‖S2 .

Proof. By Theorem 16, for every x ∈ X,

‖(ΠXj
M−1 −M−1

j PXj
)x‖∗ ≤

ηj
(1− ηj)

√
γ
‖x‖X .

Since M : S2 → X, it follows that for every u ∈ S2,

‖(ΠXj
M−1 −M−1

j PXj
)Mu‖∗ ≤

ηj
(1− ηj)

√
γ
‖Mu‖X .
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By definition, ‖u‖S2 = ‖Mu‖X . Thus we have

‖(ΠXj
− Λj)u‖∗ = ‖(ΠXj

−M−1
j PXj

M)u‖∗ = |(ΠXj
M−1 −M−1

j PXj
)Mu‖∗

≤ ηj
(1− ηj)

√
γ
‖u‖S2 .

Lemma 26 and Lemma 32 yield the following estimate.

Lemma 33. There exists a constant C > 0 such that for every j ∈ Z
+,

‖T − TjΛj‖L(S2,Y ) ≤ C(cj + ε2j).

Proof. By Lemma 26, ‖ · ‖S2 is a stronger norm than ‖ · ‖∗ and there exists C ′ > 0
such that for every j ∈ Z

+,

‖T − TjΛj‖L(S2,Y ) ≤ ‖T − TjΠXj
‖L(S2,Y ) + ‖Tj(ΠXj

− Λj)‖L(S2,Y )

≤ C ′(tj + ε2j) + ‖Tj‖L(D(L),Y )‖ΠXj
− Λj‖L(S2,D(L))

Since ‖Tj‖L(D(L),Y ) ≤ ‖T‖L(D(L),Y ) + tj and tj, ηj = O(cj), it follows that

‖T − TjΛj‖L(S2,Y ) ≤ C ′(tj + ε2j) + ‖Tj‖L(D(L),Y )‖ΠXj
− Λj‖L(S2,D(L))

≤ C ′(tj + ε2j) + (‖T‖L(D(L),Y ) + tj)
ηj

(1− ηj)
√
γ
= O(cj + ε2j).

This completes the proof.

Let v ∈ Ek such that ‖v‖X = 1. We now define w ∈ E
(j)
k by

w = Π
(j)

E
(j)
k

Λjv,

where Π
(j)

E
(j)
k

: Xj → E
(j)
k is defined to be the orthogonal projection of Xj onto E

(j)
k

with respect to the ∗j-inner product defined on Xj. By the triangle inequality,

‖v − w‖X ≤ ‖v − Λjv‖X + ‖Λjv − w‖X . (4.12)

We first consider the first term to the right of inequality (4.12) above. We already
know that

∥

∥v − ΠXj
v
∥

∥

X
≤ ε2j‖v‖S2 ∀v ∈ Ek ⊆ S2
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and

∥

∥v − ΠXj
v
∥

∥

∗
≤ εj‖v‖S2 ∀v ∈ Ek ⊆ S2.

Therefore, since Ek is a finite-dimensional subspace of S2, there exists a constant
C

(1)
k > 0 such that

v ∈ Ek, ‖v‖X = 1 =⇒
∥

∥v − ΠXj
v
∥

∥

X
≤ C

(1)
k ε2j ,

v ∈ Ek, ‖v‖∗ = 1 =⇒
∥

∥v − ΠXj
v
∥

∥

∗
≤ C

(1)
k εj.

Putting this together with Lemma 32, we have the following lemma.

Lemma 34. For every v ∈ Ek such that ‖v‖X = 1,

‖v − Λjv‖X = O(cj + ε2j) , ‖v − Λjv‖∗ = O(cj + εj).

Proof. By the triangle inequality,

‖v − Λjv‖X ≤ ‖v − ΠXj
v‖X + ‖(ΠXj

− Λj)v‖X

From the above argument together with Lemma 32, we have

‖v − ΠXj
v‖X + ‖(ΠXj

− Λj)v‖X ≤ ‖v − ΠXj
v‖X + γ−1/2‖(ΠXj

− Λj)v‖∗
≤ C

(1)
k ε2j +

ηj
(1− ηj)γ

‖v‖S2

≤ C
(1)
k ε2j +

ηj
(1− ηj)γ

C
(2)
k ‖v‖X

= C
(1)
k ε2j + C

(2)
k

ηj
(1− ηj)γ

.

Here, such a constant C
(2)
k > 0 exists because Xj is a finite dimensional space and,

therefore, all norms on Xj are equivalent. Since ηj = O(cj), it follows that

C
(2)
k

ηj
(1− ηj)γ

= O(cj).

Therefore, we have

‖v − Λjv‖X ≤ C
(1)
k ε2j + C

(2)
k

ηj
(1− ηj)γ

= O(cj + ε2j).

Similarly, we have that

‖v − Λjv‖∗ ≤ ‖v − ΠXj
v‖∗ + ‖(ΠXj

− Λj)v‖∗

50



≤ C
(1)
k εj +

ηj
(1− ηj)γ

‖v‖S2 .

By exactly the same argument as above, it then follows that

‖v − Λjv‖∗ = O(cj + εj).

We now consider the second term ‖Λjv − w‖X to the right of inequality (4.12). By
our coercivity condition (1.9), we have that

‖Λjv − w‖X ≤ γ−1/2 ‖Λjv − w‖∗ .

Therefore, it suffices to prove that

‖Λjv − w‖∗ = O(cj + ε2j).

Notice that Λjv − w ∈ Xj. Therefore, as a consequence of Corollary 13, we have

‖Λjv − w‖2∗ ≤
1

1− ηj
‖Λjv − w‖2∗j .

Before we prove that ‖Λjv − w‖∗j = O(cj + ε2j), we need the following result.

Lemma 35. For each k ∈ Z
+, the quantity

ρ
(j)
k = max

{

1

a2k − (aji )
2
: i ∈ Jj\Ik

}

is bounded by a constant C for all sufficiently large j ∈ Z
+. In other words, there

exists C = Ck > 0 such that for all j ∈ Z
+ sufficiently large,

ρ
(j)
k ≤ C.

Proof. The proof is similar to that of Lemma 7 in [15].

The next result shows that the quantity ‖Λjv − w‖∗j can be bounded by a constant

times the quantity ‖(ΛjT#T − T
#j

j TjΛj)v‖2∗j for sufficiently large j ∈ Z
+. Using

previous results, we can then show that this upper bound converges to 0 at a rate at
least as fast as O(ε2j + cj).

Lemma 36. For every j ∈ Z
+,

‖Λjv − w‖∗j ≤ ρ
(j)
k ‖(ΛjT#T − T

#j

j TjΛj)v‖∗j .
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Proof. By definition, w = Π
(j)

E
(j)
k

Λjv, where Π
(j)

E
(j)
k

is the orthogonal projection of Xj

onto E
(j)
k with respect to the ∗j-inner product defined on Xj. Since E

(j)
k = span{φ(j)

i :
i ∈ Ik}, we can express these vectors as

Λjv =
∑

i∈Jj

〈φ(j)
i ,Λjv〉∗jφ(j)

i , w =
∑

i∈Ik

〈φ(j)
i ,Λjv〉∗jφ(j)

i .

Taking the difference then gives

‖Λjv − w‖2∗j =
∑

i∈Jj\Ik

〈φ(j)
i ,Λjv〉2∗j .

For i ∈ Jj\Ik, we have

a2k〈φ(j)
i , T

#j

j TjΛjv〉∗j = a2k

(

a
(j)
i

)2

〈φ(j)
i ,Λjv〉∗j = a2k

(

a
(j)
i

)2

〈φ(j)
i , v〉∗

=
(

a
(j)
i

)2

〈φ(j)
i , T#Tv〉∗

=
(

a
(j)
i

)2

〈φ(j)
i ,ΛjT

#Tv〉∗j .

Subtracting
(

a
(j)
i

)2

〈φ(j)
i , T

#j

j TjΛjv〉X from each side of the equation above, we have

(

a2k − (a
(j)
i )2

)

〈φ(j)
i , T

#j

j TjΛjv〉∗j =
(

a
(j)
i

)2

〈φ(j)
i , (ΛjT

#T − T
#j

j TjΛj)v〉∗j .

Therefore, for any i ∈ Jj\Ik,

1
(

a
(j)
i

)2 〈φ
(j)
i , T

#j

j TjΛjv〉∗j =
1

a2k −
(

a
(j)
i

)2 〈φ
(j)
i , (ΛjT

#T − T
#j

j TjΛj)v〉∗j .

Therefore, we have

‖Λjv − w‖2∗j =
∑

i∈Jj\Ik

〈φ(j)
i ,Λjv〉2∗j

=
∑

i∈Jj\Ik







1
(

a
(j)
i

)2 〈φ
(j)
i , T

#j

j TjΛjv〉∗j







2

=
∑

i∈Jj\Ik







1

a2k −
(

a
(j)
i

)2 〈φ
(j)
i , (ΛjT

#T − T
#j

j TjΛj)v〉∗j







2
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≤
∑

i∈Jj\Ik

(

ρ
(j)
k 〈φ(j)

i , (ΛjT
#T − T

#j

j TjΛj)v〉∗j
)2

≤
(

ρ
(j)
k

)2

‖(ΛjT#T − T
#j

j TjΛj)v‖∗j .

This completes the proof.

We want to show that ‖(ΛjT#T − T
#j

j TjΛj)v‖∗j = O(cj + ε2j). Let y ∈ Ek such that
‖y‖X = 1, and let x ∈ Xj. Then

〈x, (ΛjT#T − T
#j

j TjΛj)y〉∗j
= 〈x,ΛjT#Ty〉∗j − 〈x, T#j

j TjΛjy〉∗j
= 〈Tx, Ty〉Y − 〈Tjx, TjΛjy〉Y = 〈(T − Tj)x, Ty〉Y + 〈Tjx, (T − TjΛj)y〉Y .

Therefore,

〈x, (ΛjT#T − T
#j

j TjΛj)y〉∗j
= 〈(T − Tj)x, Ty〉Y + 〈Tjx, (T − TjΛj)y〉Y
≤ ‖(T − Tj)x‖Y ‖Ty‖Y + ‖Tjx‖Y ‖(T − TjΛj)y‖Y .

As a consequence of Lemma 33, there exists a constant C ′ > 0 such that for every
j ∈ Z

+ and for every u ∈ S2,

‖(T − TjΛj)u‖Y ≤ C ′(cj + ε2j)‖u‖S2 .

From this, it then follows that

‖(T − Tj)x‖Y ‖Ty‖Y + ‖Tjx‖Y ‖(T − TjΛj)y‖Y
≤ tj‖x‖∗‖T‖L(X,Y )‖y‖X + (1 + tj)‖x‖∗C ′(cj + ε2j)‖y‖S2 .

Since Ek is finite dimensional, all norms on Ek are equivalent. Thus, there exists
C ′′ > 0 such that for every u ∈ Ek, C

′‖u‖S2 ≤ C ′′‖u‖X . Therefore, we have

tj‖x‖∗‖T‖L(X,Y )‖y‖X + C ′(cj + ε2j)(1 + tj)‖x‖∗‖y‖S2

≤ tj‖x‖∗‖T‖L(X,Y )‖y‖X + (1 + tj)C
′′(cj + ε2j)‖x‖∗‖y‖X

≤
(

tj‖T‖L(X,Y ) + (1 + tj)C
′′(cj + ε2j)

) 1
√

1− ηj
‖x‖∗j .
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Hence,

〈x, (ΛjT#T − T
#j

j TjΛj)y〉∗j ≤
[

(

tj‖T‖L(X,Y ) + (1 + tj)C
′′(cj + ε2j)

) 1
√

1− ηj

]

‖x‖∗j .

(4.13)

Since tj = O(cj) and ηj = O(cj) as j → ∞, it follows that

[

(

tj‖T‖L(X,Y ) + (1 + tj)C
′′(cj + ε2j)

) 1
√

1− ηj

]

= O(cj + ε2j).

Therefore, there exists C > 0 such that for all j ∈ Z
+ sufficiently large,

[

(

tj‖T‖L(X,Y ) + (1 + tj)C
′′(cj + ε2j)

) 1
√

1− ηj

]

≤ C(cj + ε2j).

We then combine this with inequality (4.13) to give

〈x, (ΛjT#T − T
#j

j TjΛj)y〉∗j ≤ C(cj + ε2j)‖x‖∗j . (4.14)

Notice that the constant C does not depend on the choice of y or x from above. With
inequality (4.14), we can prove the following theorem.

Lemma 37. Let k ∈ Z
+. Then there exists C = Ck > 0 and jk ∈ Z

+ such that for
every v ∈ Ek with ‖v‖X = 1 and for all j ∈ Z

+ with j ≥ jk ,

‖(ΛjT#T − T
#j

j TjΛj)v‖∗j ≤ C(cj + ε2j).

Proof. Let v ∈ Ek such that ‖v‖X = 1, and let z = (ΛjT
#T − T

#j

j TjΛj)v. Then

‖z‖∗j = sup
x∈Xj

‖x‖∗j=1

〈x, z〉∗j

= sup
x∈Xj

‖x‖∗j=1

〈x, (ΛjT#T − T
#j

j TjΛj)v〉∗j ,

and the previous theorem gives us the desired bound for sufficiently large j.

From Lemmas 34, 36, and 37 it follows that there exists C1, C2 > 0 and jk ∈ Z
+ such

that for all j ∈ Z
+ with j ≥ jk,

‖v − w‖X ≤ ‖v − Λjv‖X + ‖Λjv − w‖X
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≤ ‖v − Λjv‖X +
1

√

(1− ηj)γ
‖Λjv − w‖∗j

≤ C1(ε
2
j + cj) +

1
√

(1− ηj)γ

(

ρ
(j)
k ‖(ΛjT#T − T

#j

j TjΛj)v‖∗j
)

≤ C1(ε
2
j + cj) +

1

(1− ηj)
√
γ

(

ρ
(j)
k C2(cj + ε2j)

)

=

(

C1 +
ρ
(j)
k C2

√

(1− ηj)γ

)

(ε2j + cj)

≤ C(cj + ε2j),

where C > 0 is a constant depending on k.

Since Ek is a finite-dimensional subspace, the preceding lemmas hold if we assume
that ‖v‖∗ = 1 instead of ‖v‖X = 1. If the term ‖v − w‖X is replaced with ‖v − w‖∗,
the same reasoning above using properties of norms and Lemma 34 shows that if we
assume that v is chosen from Ek such that ‖v‖∗ = 1, then there exists a constant
C3 > 0 such that for all j ∈ Z

+ sufficiently large,

‖v − w‖∗ ≤ C3(cj + εj).

In this bound, we only have εj, as oppose to ε2j . This is a consequence of Lemma 34
since the ∗-norm is stronger than X-norm from the coercivity condition (1.9). These
results justify the following theorem about the rate of convergence of the gap between
Ek and E

(j)
k to 0 as j → ∞.

Theorem 38. Let k ∈ Z
+ be given. Then there exists a constant C = Ck > 0 such

that for any v ∈ Ek with ‖v‖X = 1 and for all j ∈ Z
+ sufficiently large, there exists

w ∈ E
(j)
k satisfying

‖v − w‖X ≤ C(cj + ε2j),

‖v − w‖∗ ≤ C(cj + εj).

In terms of gap, it follows that for all j ∈ Z
+ sufficiently large,

δ̂X(Ek, E
(j)
k ) ≤ C(cj + ε2j),

δ̂∗(Ek, E
(j)
k ) ≤ C(cj + εj).

Using Theorem 38, we are able to derive the rates of convergence of the other gener-
alized singular spaces. To do this, we define, for each k ∈ Z

+, the following spaces:

Fk = span{ψi : i ∈ Ik},

55



F
(j)
k = span{ψ(j)

i : i ∈ Ik},
Gk = span{θi : i ∈ Ik},
G

(j)
k = span{θ(j)i : i ∈ Ik}.

Using the GSVE’s of (T, L) and (Tj, Lj), it is clear that for any k ∈ Z
+,

T (Ek) = Fk,

L(Ek) = Gk,

Tj

(

E
(j)
k

)

= F
(j)
k ,

Lj

(

E
(j)
k

)

= G
(j)
k .

The next theorem gives a rate of convergence of F
(j)
k to Fk and of G

(j)
k to Gk as

j → ∞.

Theorem 39. Let k ∈ M0 be given. Then there exists a constant C = Ck > 0 such
that

δ̂(Fk, F
(j)
k ) ≤ C(cj + ε2j) and δ̂(Gk, G

(j)
k ) ≤ C(cj + εj).

Proof. Let k ∈M0. Then T |Ek
: Ek → Fk and L|Ek

: Ek → Gk are bijections. In [11],

it is proven that the space F
(j)
k converges to Fk and G

(j)
k converges to Gk as j → ∞

when k ∈ M0. Therefore, the respective gaps between these spaces is less than 1 for
j ∈ Z

+ sufficiently large. Thus, it follows that for sufficiently large j ∈ Z
+,

δ
(

Fk, F
(j)
k

)

= δ̂
(

Fk, F
(j)
k

)

,

δ
(

Gk, G
(j)
k

)

= δ̂
(

Gk, G
(j)
k

)

.

By definition of the asymmetric gap,

δ
(

Fk, F
(j)
k

)

= max
u∈Fk

‖u‖Y =1

min
v∈F

(j)
k

‖u− v‖Y

= max
u∈Ek

‖Tu‖Y =1

min
v∈F

(j)
k

‖Tu− v‖Y .

When T : Ek → Fk is understood to be restricted to Ek, we will just write T instead
of T |Ek

. This map defines a bijection of finite dimensional spaces and therefore has a
bounded inverse T−1 : Fk → Ek. Suppose that u ∈ Ek such that ‖Tu‖Y = 1. Then,

‖u‖X = ‖T−1Tu‖X ≤ ‖T−1‖L(Fk,Ek)‖Tu‖Y
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= ‖T−1‖L(Fk,Ek).

Then

1 ≤ ‖T−1‖L(Fk,Ek)

‖u‖X
.

From this, it then follows that

max
u∈Ek

‖Tu‖Y =1

min
v∈F

(j)
k

‖Tu− v‖Y ≤ max
u∈Ek

‖Tu‖Y =1

min
v∈F

(j)
k

‖Tu− v‖Y
‖u‖X

‖T−1‖L(Fk,Ek)

= ‖T−1‖L(Fk,Ek) max
u∈Ek

‖u‖X=1

min
v∈F

(j)
k

‖Tu− v‖Y .

From Theorem 38, it follows that there exists a constant C ′ > 0 such that for any
u ∈ Ek with ‖u‖ ≤ ‖T−1‖L(Fk,Ek), there exists w ∈ E

(j)
k such that for all j ∈ Z

+

sufficiently large,

‖u− w‖X ≤ C ′(cj + ε2j),

‖u− w‖∗ ≤ C ′(cj + εj).

Since Tjw ∈ F
(j)
k , we have

‖T−1‖L(Fk,Ek) max
u∈Ek

‖u‖X=1

min
v∈F

(j)
k

‖Tu− v‖Y ≤ ‖T−1‖L(Fk,Ek) max
u∈Ek

‖u‖X=1

‖Tu− Tjw‖Y

≤ ‖T−1‖L(Fk,Ek) max
u∈Ek

‖u‖X=1

(

‖T‖L(X,Y )‖u− w‖X + ‖(T − Tj)w‖Y
)

≤ ‖T−1‖L(Fk,Ek)

(

‖T‖L(X,Y )C
′(cj + ε2j) +

tj
√

1− ηj
‖v‖∗

)

.

The term
tj

√

1− ηj
‖v‖∗ at the end of this inequality follows from the fact

‖(T − Tj)w‖Y ≤ tj‖w‖∗ ≤
tj

√

1− ηj
‖w‖∗j

=
tj

√

1− ηj
‖Π(j)

E
(j)
k

Λjv‖∗j

≤ tj
√

1− ηj
‖Λjv‖∗j

≤ tj
√

1− ηj
‖v‖∗.
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Since Ek is a finite dimensional space, it follows that all norms are equivalent on Ek.
Also, tj(1 − ηj)

−1/2 = O(cj) as j → ∞. Hence, there exists a constant C1 > 0 such
that for any v ∈ Ek with ‖v‖X = 1 and for all j ∈ Z

+ sufficiently large,

‖T−1‖L(Fk,Ek)

(

‖T‖L(X,Y )C
′(cj + ε2j) +

tj
√

1− ηj
‖v‖∗

)

≤ C1(ε
2
j + cj).

Thus, it follows that for all j ∈ Z
+ sufficiently large,

δ
(

Fk, F
(j)
k

)

= max
u∈Fk

‖u‖Y =1

min
v∈F

(j)
k

‖u− v‖Y = max
u∈Ek

‖Tu‖Y =1

min
v∈F

(j)
k

‖Tu− v‖Y

≤ ‖T−1‖L(Fk,Ek)

(

‖T‖L(X,Y )C
′(cj + ε2j) +

tj
√

1− ηj
‖v‖∗

)

≤ C1(cj + ε2j).

We now prove a rate of convergence of the spaces G
(j)
k to Gk as j → ∞. Again

considering only the asymmetric gap δ
(

Gk, G
(j)
k

)

, the same argument above gives

δ
(

Gk, G
(j)
k

)

= max
u∈Gk

‖u‖Z=1

min
v∈G

(j)
k

‖u− v‖Z

= max
u∈Ek

‖Lu‖Z=1

min
v∈G

(j)
k

‖Gu− v‖Z

≤ ‖L−1‖L(Gk,Ek) max
u∈Ek

‖u‖X=1

(

‖L‖L(D(L),Y )‖u− w‖∗ + ‖(L− Lj)w‖Z
)

,

where w is the same as above. By the same argument as above together with Lemma
34, it follows that there exists a constant C2 > 0 such that

δ
(

Gk, G
(j)
k

)

≤ ‖L−1‖L(Gk,Ek) max
u∈Ek

‖u‖X=1

(

‖L‖L(D(L),Y )‖u− w‖∗ + ‖(L− Lj)w‖Z
)

≤ C2(cj + εj).

By letting C = max{C1, C2}, the theorem is then proven.

In the previous theorem, the assumption that k ∈M0 is necessary for the spaces G
(j)
k

to converge to Gk at the rate provided in the theorem. When k ∈ Mb = N (L), the

space Gk of left generalized singular vectors in Z is trivial, and the gap between G
(j)
k

and Gk is either 0 or 1, depending on whether G
(j)
k is trivial or not. Therefore, a rate

of convergence is not sensible when k ∈ Mb. Also, one should notice that the rate of
convergence of G

(j)
k to Gk as j → ∞ is one order of εj worse than the convergence rate
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of the other singular spaces. This follows from the possibility of L being unbounded
with respect to the weaker norm ‖ · ‖X . Hence, in the derivation above, the quantity
‖L(v−w)‖Y must be compared to ‖v−w‖∗ instead of ‖v−w‖X , which yields a worse
rate of convergence.
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Chapter 5

Higher-order convergence and

future work

The theory established in Chapter 4 proves the orders of convergence observed in
Example 3 for the corresponding generalized singular values and vectors. In this
example, Xj was the discretization of the space X = H1(0, 1) using continuous piece-
wise linear finite elements on a mesh with elements of length h = 1/j. The rates of
convergence for the generalized singular values were as follows:

∣

∣

∣a
(j)
k − ak

∣

∣

∣
= O(h2) as j → ∞,

∣

∣

∣
b
(j)
k − bk

∣

∣

∣
= O(h2) as j → ∞.

Also, the following rates of convergence for the generalized singular functions were as
follows:

∥

∥

∥
φ
(j)
k − φk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞,

∥

∥

∥
ψ

(j)
k − ψk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞,

∥

∥

∥
θ
(j)
k − θk

∥

∥

∥

L2(0,1)
= O(h) as j → ∞.

If we consider this same example, but withXj and Yj the space of continuous piecewise
quadratic finite elements, and Zj the space of piecewise linear finite elements (not
necessarily continuous), we then observe the following rates of convergence for the
generalized singular values:

∣

∣

∣
a
(j)
k − ak

∣

∣

∣
= O(h3) as j → ∞,

∣

∣

∣b
(j)
k − bk

∣

∣

∣ = O(h3) as j → ∞.
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Also, the following rates of convergence of the generalized singular functions are
observed to be

∥

∥

∥
φ
(j)
k − φk

∥

∥

∥

L2(0,1)
= O(h3) as j → ∞,

∥

∥

∥
ψ

(j)
k − ψk

∥

∥

∥

L2(0,1)
= O(h3) as j → ∞,

∥

∥

∥
θ
(j)
k − θk

∥

∥

∥

L2(0,1)
= O(h2) as j → ∞.

Similarly, if we letXj and Yj be the space of continuous piecewise cubic finite elements,
and if we let Zj be the space of piecewise quadratic finite elements (not necessarily
continuous), we observe for the generalized singular values,

∣

∣

∣
a
(j)
k − ak

∣

∣

∣ = O(h4) as j → ∞,
∣

∣

∣
b
(j)
k − bk

∣

∣

∣
= O(h4) as j → ∞,

and for the generalized singular functions,

∥

∥

∥
φ
(j)
k − φk

∥

∥

∥

L2(0,1)
= O(h4) as j → ∞,

∥

∥

∥
ψ

(j)
k − ψk

∥

∥

∥

L2(0,1)
= O(h4) as j → ∞,

∥

∥

∥θ
(j)
k − θk

∥

∥

∥

L2(0,1)
= O(h3) as j → ∞.

The theory of Chapter 4 is based on the assumption that there exists a sequence of
positive real numbers {εj} such that εj → 0 as j → ∞ and

‖ΠXj
x− x‖∗ ≤ εj‖x‖S2 , ∀x ∈ S2.

A generalization of this assumption would make sense if we are using higher order
finite elements. We begin by defining the sequence Sn of Hilbert spaces ordered by
containment. Since M : D(L∗L) → X is densely defined, self-adjoint, and strictly
positive, it has a square root A =M1/2. We define

M =
∞
⋂

k=0

D(Ak).

Then, by Lemma 8.17 of [6], M is dense in X, and we define

〈x, y〉Sk
= 〈Akx,Aky〉X , ‖x‖Sk

= ‖Akx‖X , ∀x, y ∈ M.
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It is easy to see that 〈·, ·〉Sk
defines an inner product on M, and we define Sk to be

the completion of M with respect to the norm ‖ · ‖Sk
. We say that the collection of

spaces {Sk : k ∈ Z, k ≥ 0} is the Hilbert scale define by A. By definition, S0 = X.
we also have that S1 = D(L) and the definition of S2 is consistent with that given in
chapter 4. Further, the sequence of norms ‖ · ‖Sk

is increasing in strength as k → ∞.
This is summarized in following theorem.

Theorem 40.

1.) S1 = D(L) and 〈·, ·〉S1 = 〈·, ·〉∗.

2.) For every n,m ∈ Z such that m > n ≥ 0, it follows that ‖ · ‖Sm
is a stronger norm

than ‖ · ‖Sn
, and Sm is a dense subspace of Sn with respect the norm ‖ · ‖Sn

.

Proof. To prove (1), let x, y ∈ D(L∗L). Since M is self-adjoint with respect to the
X-inner product, it follows that A = M1/2 is also self adjoint with respect to the
X-inner product, and

〈x, y〉S1 = 〈Ax,Ay〉X = 〈M1/2x,M1/2y〉X = 〈x,My〉X = 〈x, y〉∗.

By Lemma 23 from Chapter 4, S2 is dense in D(L) with respect to the norm ‖ · ‖∗.
Thus, it follows that for every x, y ∈ D(L),

〈x, y〉S1 = 〈x, y〉∗.

For a proof of (2), see [6], Proposition 8.19.

We now make the following assumption about the discretizations Xj: There exists a
sequence of positive real numbers {εj} and a positive integer n such that εj → 0 as
j → ∞ and

‖ΠXj
x− x‖∗ ≤ εkj‖x‖Sk+1

, ∀x ∈ Sk+1 , ∀k ∈ Z such that 0 ≤ k ≤ n. (5.1)

Theorem 41. For every x ∈ Sk+1,

‖ΠXj
x− x‖X ≤ εk+1

j ‖x‖Sk+1
, ∀k ∈ Z

+ such that 0 ≤ k ≤ n. (5.2)

Proof. Let x ∈ Sk+1, and define x̂ = ΠXj
x and w =M−1(x− x̂). Then w ∈ S2 and

‖x− x̂‖2X = 〈x− x̂, x− x̂〉X
= 〈M−1(x− x̂), x− x̂〉∗
= 〈w, x− x̂〉∗
= 〈w − ΠXj

w, x− x̂〉∗
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≤ ‖w − ΠXj
w‖∗‖x− x̂‖.

Since w ∈ S2 and x ∈ Sk+1, it follows from (5.1), that

‖w − ΠXj
w‖∗ ≤ εj‖w‖S2 , ‖x− x̂‖∗ ≤ εkj‖x‖Sk+1

.

Therefore, we have

‖x− x̂‖X ≤ ‖w − ΠXj
‖∗‖x− x̂‖∗

≤ (εj‖w‖S2)
(

εkj‖x‖Sk+1

)

= εk+1
j ‖w‖S2‖x‖Sk+1

= εk+1
j ‖Mw‖X‖x‖Sk+1

= εk+1
j ‖M

(

M−1(x− x̂)
)

‖X‖x‖Sk+1

= εk+1
j ‖x− x̂‖X‖x‖Sk+1

.

After eliminating a factor of ‖x− x̂‖X from each side of the inequality, we have

‖x− x̂‖X ≤ εk+1
j ‖x‖Sk+1

.

In the case that the generalized singular vectors of the operator pair (T, L) are in the
space Sn+1, where n is defined in our discretization assumption above, the following
theorems can be proven by following the analysis of Chapter 3.

Theorem 42. For each k ∈ Z
+, there exists constants C1 and C2 such that for all

sufficiently large positive integers j,

ak − C1(cj + εn+1
j ) ≤ a

(j)
k ≤ ak + C2cj. (5.3)

Theorem 43. Let k ∈ Z
+ be given. Then there exists a constant C = Ck > 0 such

that for any v ∈ Ek with ‖v‖X = 1 and for all j ∈ Z
+ sufficiently large, there exits

w ∈ E
(j)
k satisfying

‖v − w‖X ≤ C(cj + εn+1
j ),

‖v − w‖∗ ≤ C(cj + εnj ).

In terms of gap, it follows that for all j ∈ Z
+ sufficiently large,

δ̂X(Ek, E
(j)
k ) ≤ C(cj + εn+1

j ),

δ̂∗(Ek, E
(j)
k ) ≤ C(cj + εnj ).

Theorem 44. Let k ∈ M0 be given. Then there exists a constant C = Ck > 0 such
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that

δ̂(Fk, F
(j)
k ) ≤ C(cj + εn+1

j ),

δ̂(Gk, G
(j)
k ) ≤ C(cj + εnj ).

The proofs for these theorems depend on the right generalized singular vectors φk
being in Sn+1 for each k ∈ Z

+. Let φk be a right generalized singular vector of (T, L).
Then

Tφk = akψk, T
#ψk = akφk,

where ak > 0. Putting both of these things together, we have

T#Tφk = a2kφk.

Therefore, using the fact that T#T =M−1T ∗T , it follows that

φk =
1

a2k
M−1T ∗Tφk.

It is clear that φk ∈ S2, but in order for φk ∈ Sn, it must follows that T ∗Tφk ∈ Sn−2.
This assumption may be rather strong for a few reasons. One reason is that T ∗T
may not be smoothing with respect to the operator L∗L. In other words, it may be
that T ∗T does not map Si back into Si for some integer i. Another reason is that the
functions in Si may have to satisfy more and more boundary conditions as i becomes
larger. Such boundary conditions arise, for example, when T is the solution operator
to the Laplace equation.

The analysis for these observed rates of convergence is still incomplete. The above
issues suggest that further assumptions may need to be made pertaining to the dis-
cretization. If this is so, then it should be possible to find a compact operator T such
that even with higher order elements, convergence of the generalized singular values
and vectors should be no better than O(hp) for some a fixed integer p, regardless the
order of the finite elements used.
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