Michigan
Technological Michigan Technological University
1a8s] University Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2019

Approximation of the Generalized Singular Value Expansion

Matthew Jacob Roberts
Michigan Technological University, majrober@mtu.edu

Copyright 2019 Matthew Jacob Roberts

Recommended Citation

Roberts, Matthew Jacob, "Approximation of the Generalized Singular Value Expansion’, Open Access
Dissertation, Michigan Technological University, 2019.

https://doi.org/10.37099/mtu.dc.etdr/829

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

b Part of the Numerical Analysis and Computation Commons



http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/829
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.mtu.edu%2Fetdr%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages

APPROXIMATION OF THE GENERALIZED SINGULAR VALUE EXPANSION

By
Matthew J. Roberts

A DISSERTATION
Submitted in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY
In Mathematical Sciences

MICHIGAN TECHNOLOGICAL UNIVERSITY
2019

(©) 2019 Matthew J. Roberts



This dissertation has been approved in partial fulfillment of the requirements for the
Degree of DOCTOR OF PHILOSOPHY in Mathematical Sciences.

Department of Mathematical Sciences

Dissertation Advisor: Dr. Mark S. Gockenbach
Committee Member:  Dr. Benjamin W. Ong
Committee Member:  Dr. Jiguang Sun

Committee Member: Dr. Hassan Masoud

Department Chair:  Dr. Mark S. Gockenbach



Contents

List of Figures . . . . . . . . . . . . ...

List of Tables . . . . . . . . . .

Abstract . . . . . .

1 Introduction . . . . . . . . . . .

2 The approximate GSVE of (T, L)

3 Convergence. . . . . . . . . . . ..

4 Rates of convergence

5 Higher-order convergence and future work

References . . . . . . .

1l

=2 B B #

:‘w-\-\
2 B B B

g



List of Figures

1.1

1.2
1.3

1.4

2.1

2.2

2.3

3.1

3.2

Exact solution (left) and exact and noisy data (right) for the model
inverse problem. . . . . . . ... ...

Naive solution of the model inverse problem. . . . . . . . . . .. ..

Solution of model inverse problem produced by Tikhonov regulariza-
tlon. . . ..

The exact solution of the model inverse problem, together with a solu-
tion produced by seminorm regularization. . . . . . . ... ... ..

The computed functions ¢§100) (top), %100) (middle), and 9%100) (bot-
tom) for Example , together with the corresponding exact functions
o1, Y1, and ;. In each graph, the approximate function is the solid
curve and the exact function is the dashed curve. The approximate
and exact curves are indistinguishable at this scale. . . . . . . . ..

The computed functions ¢§100) (top), 1/1&100) (middle), and 95100) (bot-
tom) for Example , together with the corresponding exact functions
¢2, U9, and 5. In each graph, the approximate function is the solid
curve and the exact function is the dashed curve. The approximate
and exact curves are indistinguishable at this scale. . . . . . . . ..

The computed functions ¢é100) (top), wémo) (middle), and 9§100) (bot-
tom) for Example , together with the corresponding exact functions
@3, U3, and 3. In each graph, the approximate function is the solid
curve and the exact function is the dashed curve. . . . . . . .. ..

The computed functions ¢§100) (top), 1/1900) (middle), and 9900) (bot-
tom) for Example , together with the corresponding exact functions
o1, Y1, and ;. In each graph, the approximate function is the solid
curve and the exact function is the dashed curve. The approximate
and exact curves are indistinguishable at this scale. . . . . . . . ..

The computed functions ¢é100) (top), wémo) (middle), and 95100) (bot-
tom) for Example , together with the corresponding exact functions
¢2, U9, and 5. In each graph, the approximate function is the solid
curve and the exact function is the dashed curve. The approximate
and exact curves are indistinguishable at this scale. . . . . . . . ..

v

&



3.3 The computed functions ¢§100) (top), wgw‘” (middle), and 9&100) (bot-
tom) for Example , together with the corresponding exact functions
@3, U3, and 3. In each graph, the approximate function is the solid
curve and the exact function is the dashed curve. The approximate
and exact curves are indistinguishable at this scale. . . . . . . . ..



List of Tables

4.1 Rate of convergence of ag )
4.2 Rate of convergence of qﬁ,(j )
4.3 Rate of convergence of 0,(3 )
4.4 Rate of convergence of w,(cj )

vi

BEEBEE



Abstract

Let X, Y, and Z be real separable Hilbert spaces, let T': X — Y be a compact
operator, and let L : D(L) — Z be a closed and densely defined linear operator.
Then the generalized singular value expansion (GSVE) is an expansion that expresses
T and L in terms of a common orthonormal basis. Under certain hypotheses on
discretization, the GSVE of an approximate operator pair (7}, L;), where T : X; — Y
and L; : X; — Z;, converges to the GSVE of (T, L). Error estimates establish a rate of
convergence that is consistent with numerical experiments in the case of discretization
using piecewise linear finite elements. Further numerical testing suggests that a higher
rate of convergence is attained by using higher order elements. However, the theory
does not cover this case.
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Chapter 1

Introduction

A linear inverse problem is a problem of the form Tx = y, where T : X — Y is a linear
operator and we wish to estimate the exact solution * from a noisy measurement y of
the exact data y* (see [1], [2], [3], and [4]). We consider only linear inverse problems
defined on real separable Hilbert space. A particular class of inverse problems that
is of interest consists of those in which the operator 7" is an integral operator defined
by

(Tf)(s) = / E(s ) F()d (1), (L1)

where () and {25 are either bounded intervals in R, or are bounded two-dimensional
domains. The corresponding separable Hilbert spaces are X = L2?(;) and Y =
L?(9y) (see [A]).

We call Tx = y an inverse problem only when the problem is unstable (that is, z does
not depend continuously on y); for this reason, it is necessary to use regularization of
some sort to produce an acceptable approximation of the true solution .

Let us consider the following model inverse problem. Let X = L?(0,1) and define
T : X — X by the integral operator

(T2)(s) = /0 k(s () dt,

1
where k(s,t) = 5 (s+t—|s—t]) — st. It is a quick exercise to verify that 7" is the
solution operator to the following two-point boundary value problem.
x(t) in (0,1)
y(0)=0 (1.2)
0

[
<
N
—~
~
~—
I



More precisely, given the right hand side x(¢) to the above two-point boundary value
problem (|1.2)), the operator T' gives back the solution y(¢). Therefore,

(Tzx)(s) = /0 k(s,t)x(t) dt = y(s).

In this example, the two-point boundary value problem ([1.2)) is the forward problem
and the equation

T =y (1.3)

defines the corresponding inverse problem.

To see that (|1.3) actually defines an inverse problem, consider the case where z(t) = ¢
3

is the exact solution. This produces the exact data y(s) = —% + % Let 8 € R" be a

measurement of y at n equally spaces points on [0, 1], subject to uniformly distributed
random noise, scaled to 1% in the Euclidean norm.

0.08
0.8/ 0.06
06
0.04
04}
ozl 0.02
0 : 0 :
0 05 1 0 05 1

Figure 1.1: Exact solution (left) and exact and noisy data (right) for the
model inverse problem.

1

We will now discretize the interval [0, 1] in the following way. Let h = — and consider
n

the mesh

M = {[0,h],[h,2R], -~ , [(n — 1), 1]}.

We can discretize the space X by the finite dimensional subspace X, =
span{wzy, s, -+ ,x,}, where {z1,x9, -+, x,} is the standard nodal basis for the space
of continuous piecewise constant functions relative to the mesh M. We discretize the
operator 1" by the matrix A € R™" using the Galerkin method (see [I], Section 3.2).



By replacing the equation Tz = y with the discretized equation Aa = 3, we then have

n—1
the vector y = Z Brxr as our approximation (measurement) of y, and the resulting
k=0
n—1

vector & = Z axxy (where « is the solution of Aa = f3) as our approximation of x.

k=0
Figure [1.2] gives the plot of the approximated solution z.
8 T T T T T T T T T

_8 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.2: Naive solution of the model inverse problem.

As we can see, the approximate solution Z is not close to the actual solution x. This
illustrates the fact that the solution x to equation does not continuously depend
on the data y. Hence, the equation T'x = y defines a linear inverse problem, and
we will need to use regularization of some sort in order to solve it. We begin with
considering classical Tikhonov reqularization (see [6] and [5]).



In Tikhonov regularization, we consider the solution to the regularized problem

: 2 2
min || T —y|[* + All], (1.4)

where A > 0 is a constant. In this case, & € L*((0,1) x (0,1)) and T is a compact
operator, so the singular value expansion (SVE) of T is invaluable for analyzing the
solution to this regularized problem. The SVE of T' can be given as follows:

T = Zak¢k®¢k' (1.5)
=1

Here, {¢.} is a complete orthonormal sequence for the space N (T)*, {3} is an
orthonormal sequence in X, and {0y} is the sequence of singular values of T, a

sequence of positive numbers monotonically decreasing to 0 (see [7] Section 2.8 or see
[4]). It is easy to show that the unique solution of (1.4)) lies in R(T™) (see [4]).

Using the SVE of T', we have that for any x = Z ardr € N(T)*,

k=1
1Tz — y||* + A|||* = [Z (or(, dr)x — (y: Ydy)” + Ma, o) | + Il
k=0

- [i(ai +) ((x, Pr)x — agaj- A<y,¢k>y)2 N (1 B gﬁ_ A) (yﬂmyl

k=0
+ 191l
where § is the orthogonal projection of y onto R(T)+. Therefore, the unique solution
to problem (|1.4)) is given by

e}

:UM,:Z L (Y Vr)y - (1.6)

2
— oy + A

Using an appropriate choice for A, the plots for the exact solution x and the regularized
solution z,, can be seen in Figure [I.3]

As we can see from figure , the regularized solution x,, inherits the Dirichlet
boundary conditions of the forward problem ([1.2)). To understand why this is so, it
is easy to show that x), € R(T™). In this particular example, the operator 1" is self-
adjoint. This follows from the fact the that kernel k(s, ) is symmetric about the line
s =1t (i.e. k(s,t) = Ek(t,s). Since T is the solution operator to the forward problem
(1.2) with Dirichlet boundary conditions, every element in the range of T" has Dirichlet
boundary conditions. Thus, the regularized solution x,, € R(T*) = R(T') inherits
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Figure 1.3: Solution of model inverse problem produced by Tikhonov reg-
ularization.

Dirichlet boundary conditions. For this reason, classical Tikhonov regularization does
not work well for this problem.

We can generalize classical Tikhonov regularization by considering the unique solution
to the problem

min T2~ y|* + Al Lal . (L.7)

xeD(L

where again A > 0 is a constant. Here, L is a closed operator with domain D(L)
and is densely defined in X. It is chosen to have the property that ||Lz|| is small
for reasonable solutions x and large for those x with some undesirable feature. Such
regularization is called Tikhonov regularization with seminorms since ||z||;, = || Lz||
defines a seminorm on D(L) (see [6] or [4]). In the case of classical Tikhonov regu-
larization, L is the identity operator, and the undesirable feature of x is being large
in magnitude.

In many cases, the true solution = has a certain level of smoothness or regularity. In
other words, the undesirable approximations for z in the problem Tz = y are those
approximations in which the derivative is undefined or large in magnitude. In the
case that X = L*(a,b), the derivative operator L : D(L) — Z is linear, closed, and
densely defined in X. Thus, a method of regularization appropriate for problems of
this kind will be Tikhonov regularization with seminorms defined by the derivative
operator. Similarly, if @ C R? (d = 2 or d > 3), the gradient operator is a suitable
regularization operator for many problems.

Let problem ([1.7]) be discretized to produce the following linear algebra problem:

min [ AF — | + \| BE|” (1.8)



Here, A € R™*" B € RP*" 7 € R", and § € R™, and we assume that N (A)NN(B) =
{0}, where N'(A) represents the null space of the matrix A. In order to solve this
problem, it is beneficial to simultaneously diagonalize the matrices A and B. This
is done by computing the generalized singular value decomposition (GSVD) of the
matrix pair (A, B). We present one version of the GSVD that is relevant to our
discussion (see [8], Theorem 22.2) .

Theorem 1. Let A € R™ ™ and B € RP*™ be matrices such that m > n and N'(A)N
N(B) = {0}. Then there exist a nonsingular matric W € R™" matrices U € R™*™

and V€ RP*P with orthonormal columns, and diagonal matrices S € R™™ and
M € RP*™ such that

A=USW™ B=VMW
Moreover, the diagonal entries s; of S and my of M are nonnegative, and satisfy

st4+mi=1fori=1,2,---p,
s;=1fori=p+1,p+2,---,n

(assuming for convenience that n > p). In matriz form,

STS + MTM =1.

Let A=USW~! and B=VMW ™! be the GSVD of (4, B) as given in the theorem.
Then

IAZ = 71* + M| BZ||* = [USW ™2 — g||* + X[V MW 7|
= |US@ — || + |V M||*

= Z(Skwk — (up, i) + Z A(mywy)?

= Z [(Skwk — {ug, 1)) + Amiwz] + Z (wi, — (ug, 7).

By regrouping the terms of these sums, we have

p

Z [(skwy — (uk, )* + Amgwy]| + Z (wy — (ug, 9))?

k=1 k=p+1

(s34 am2) (wk - M)Q i <1 B (L) %@]

st + Ami st + Am3)?

k=1



+ ) (we = (w,)°

k=p+1

Therefore, the solution to the discretized problem is ¥ = W where

Sk
2 2
sy + Amg

wy = (u, - ).

Figure shows the plots of the true solution x with the regularized solution z,,
coming from seminorm regularization. (A good value of A\ was chosen by trial and
error.)
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Figure 1.4: The exact solution of the model inverse problem, together with
a solution produced by seminorm regularization.

The generalized singular value expansion (GSVE) of an operator pair (T, L), intro-
duced in [4], allows the two operators T and L to be simultaneously diagonalized in



the same way that the GSVD of a matrix pair (A, B) simultaneously diagonalizes
the matrices A and B. Therefore, the GSVE of the operator pair (7, L) makes the
analysis of problem relatively transparent in the same way the GSVD of the
matrix pair (A, B) does for the discretized problem (|1.8). To describe the GSVE,
we establish the following conditions on the operators T" and L. Let X, Y, and Z
be separable Hilbert spaces, let T': X — Y be a compact linear operator, and let
L : D(L) — Z be a closed linear operator, where D(L) is a dense subspace of X. We
assume that there exists v > 0 such that

IT|l§ + L]z = yll2l% . for all z € D(L). (1.9)
We define the inner product (-, ), on D(L) by
(u, ) = (Tu, Tv)y + (Lu, Lv) 7. (1.10)

and write || - ||« for the corresponding norm. It is well known that D(L) is a Hilbert
space under the inner product (-, ). given that condition is met (see Section 5.2
of [4]). The following theorem asserts the existence of the generalized singular value
expansion of the operator pair (7, L) (see [9], Theorem 4.2).

Theorem 2. Let X, Y, and Z be real separable Hilbert spaces. Assume that T :
X — Y is a compact linear operator and L : D(L) — Z is a closed densely defined
linear operator. Assume that there exists v > 0 such that (@) holds. Then there
exists a complete orthonormal set {¢y, : k € I} for D(L) where I is a countable index
set, a partition Mo U M, U M, of I, orthonormal sets {¢y : k € My U My} in Y,
{0 - k€ MyU M,} in Z, and subsets {ay : k € I}, {bx : k € I} of the nonnegative

real numbers such that

T= Y ath®dr, L= > bib®. o, (1.11)

keMo | My keMo M,

and 0 < ag, by, <1, a3 + b3 =1 for every k € I. Here, ®, refers to the outer product
with respect to the x-norm. (i.e. (Vg Q. ¢p)x = (Gk, )Wy for any x € D(L)).

Using the GSVE of the operator pair (T, L) given by (1.11]), we have, for any = €
D(L),

1Tz = yly + M| Lz|| =
=9I+ Y (alm deh— viy) + Y Abi{z, )’

keMoUM, keMoUM,
= 11917+ > (e, dn)e = (@ bi)y)* + D [(anl@, du)e — (¥, 0x)v)” + A7, ¢1) 7]
ke M, ke My
+ ) A, )’
kEM,



>

2 2
(aj + Ab}) <<$,¢k>* ﬁ( Y, Uk)y ) (1 - ﬁ) <%¢k>y]
ke My

)@ k) ) (ar(m drde — (k)y)t Y bR, ék)2 + i1

keM, keMy keM,

Here, ¢ is the orthogonal projection of y onto R(T)*. Therefore, the solution of
problem (|1.7) is given by

Try = Z ﬁ( Ys i)y Or + Z Vk)y Ok (1.12)

keMy keM,

In practice, the GSVE of the operator pair (7', L) is a useful tool for analyzing meth-
ods such as Tikhonov regularization with seminorms. The GSVE of (T, L) can also
be used directly to make computations, as can be seen in the above derivations for
the regularized problem . In the next section, we provide an algorithm for com-
puting the GSVE of (T}, L;), where the operator pair (7}, L;) is a finite dimensional
discretization of the operator pair (T,L). In order to compute the GSVE of the
discretized operator pair (7}, L;), we compute the GSVD of an associated pair of
matrices.



Chapter 2

The approximate GSVE of (T, L)

The purpose of this thesis is to propose and analyze a general approach to estimating
the GSVE of an operator pair (T, L). Two approaches were presented in [9]. The
first is based on recognizing that the pairs (a3, ¢x) for k € I (with ay = 0 for k € M,)
are the eigenpairs of the compact self-adjoint operator T#T. These eigenpairs can
be estimated using the general theory for symmetric, variationally posed eigenvalue
problems, as presented in [10]. However, this approach has two shortcomings. We
must choose a finite-dimensional subspace X of D(L) with basis {x1,2s, -, 2y}
and solve the generalized (matrix) eigenvalue problem

Ga = \Ma,
where G € R™" and M € R"*" are defined by
Gij = (xj, i) , Myj = (Tx;, Txj)y.

The first issue with this approach is the need to compute the matrix M; generally,
this matrix is expensive to compute. (For example, if T is a Fredholm integral opera-
tor, then each M;; is defined by a triple integral.) The second difficulty is that, in the
typical application (R(7") infinite-dimensional and not closed), My has infinite cardi-
nality and a; — 0 as k — oco. It follows that by using an algorithm that computes
a? (instead of computing a;, directly), we artificially restrict the ability to compute
small singular values; roughly speaking, at best we can compute values of a; down to
Vu (where u is the unit round), rather than down to u itself.

It should be noted that the approach described in the previous paragraph, which is
described fully in [9], does have the advantage that its convergence follows directly
from the theory of symmetric, variationally posed eigenvalue problems.

The second approach, as described in this chapter, is based on reducing the computa-
tion to that of a (matrix) generalized singular value decomposition. The GSVE of a

10



pair of operators (1}, L;) is related to the GSVD of a pair of related matrices, where
T; and L, are finite dimensional operators that approximate 7" and L respectively in
some sense. We now elaborate on this.

Let {X;}, {Y;}, and {Z,} be sequences of finite dimensional spaces contained in D(L),
Y, and Z, respectively, such that for each j € Z™T,

X, = span{z{" 2§ ... 20},

) nj
Y}' - span{ygj), yéj)a e 7y£rJL3}7

Z; = span{zﬁj), zéj), e ,zg)}.

Suppose that the sequence of spaces {X;} approximate the space D(L) in that for
any z € D(L),

Ly, — 2|/, — 0 as j — oo.

Here, IIx, : D(L) — Xj is the orthogonal projection of D(L) onto X; with respect
to the *-norm as defined in equation (1.10). Similarly, suppose that {Y;} and {Z,}
approximate the spaces Y and Z, respectively, such that for any y € Y and for any
z € 4,

1Pv,y = ylly = 0 as j — oo,
|Pz,2 — 2|z — 0 as j — oo.

Here, Py, : Y — Yj and Py, : Z — Z; are the orthogonal projections of Y onto Y
and Z onto Z; respectively. For each j € ZT,let T; : X; — Y; and L; : X; — Z;
be linear operators that approximate 7" and L in some sense. The conditions under
which T and L; should approximate 7" and L are made clear in the next chapter.
For each j € Z*, we define the *;-inner product on the space X; by

(z,9)s, = (Tjz, Tjy)y + (Ljz, Ljy) 7 for all z,y € X; (2.1)

In general, (-, -),, need not be positive definite on X; . To ensure that (-, -),, defines
an inner product, we will assume that

N(T;) "N (L;) = 0 for every j € Z".

Under the assumptions placed on (7}, L;) in the next chapter, this must hold for all
j € Z* sufficiently large. Define the matrices A; € R™i*" and B; € RPi*" by

(ADke = (), T2y,
(Bj)we = (=), Liz") .

11



Let H; € R™*™i and J; E RPi*Pi be the Gram matrices for span{ylj),y2 : )}

m;
and spam{z1 ,zéj ), e zpj } respectively, which are defined by

(Hy)we = w9y,
(Tre = (27, 29 5.

The next theorem shows how to compute the GSVE of (7}, L;) using the GSVD of
the matrix pair (H]._I/QA, Jj_l/QB).
Theorem 3. Let A;, B;, H;, and J; be as defined above, and let

—-1/2 — —-1/2 —-1/2
HPA; =08t 7By = v

J

be the GSVD of the matriz pair (Hj_l/QAj,Jj_l/sz). Define the matrices U; =
H]._I/QU and V; = Jj_lﬂV. Then the GSVE of the operator pair (T, L;) is given
by

min{m;,n;}

k=1
min{p;,n;}
L, = Z b( )9( ) B, (J)'
k=1
The values agj), agj), - ,agi)n{mjmj} are the diagonal entries of S;, the values
bgj), bgj),- ,bfﬁm{p ny} OT€ the diagonal entries of M;, and
&) = Z(Wj)uﬂk,
i=1
V= Z(Uj)ikylm
i=1
07 =" (Vi)inz.
i=1
The sets {¢1 ) 7' ) gljj)}? {w§])7 éj)a e 7¢£’le}: and {95]%95])’ o :elgjg)} are or-

thonormal in X, Y, and Z, respectively, where the *;-inner product is used on Xj.

The proof the Theorem |3|is similar to that of Theorem 4.4 of [9]. In that paper, the
special case of T = Py,T'|x; and L; = Pz, L| X} is considered. However, the derivation

12



of the GSVE of an arbitrary pair of discretized operators (7}, L;) is similar to the
special case covered in [9]. For this reason, the proof of Theorem [3|is omitted.

The GSVE of the operator pair (7}, L;) can be seen to be directly related to the GSVD
of the pair of matrices from the last theorem. One advantage for computing this
GSVE is that the approximate generalized singular vectors computed are orthogonal
with respect to the spaces X;, Y, and Z; with respect to the *;-norm, Y-norm, and
Z-norm respectively. It is this orthogonality that makes analysis and computations
transparent in much of applied mathematics.

As noted at the beginning of the chapter, our main goal is to analyze the convergence
of the GSVE of (T}, L;) to the GSVE of (T, L). The next example demonstrates that
a seemingly natural discretization need not lead to convergence of the GSVE.
Example 1. Let X = D(L) = H(0,1) and Y = Z = L?(0,1). Define operators
T:X =Y and L : D(L) — Z by Tx = x and Lz = 2/, respectively. By Rellich’s
lemma, T (the identity operator) is compact. In this example, the x-norm is precisely
the H'(0,1)-norm.

We can easily derive the GSVE of (T, L) using Fourier analysis; the result is

T =Y any ®. b,

k=0
L= byl ®. b,
k=1

where, for k> 1,

oult) = ,/#H cos(krt), e = V2 cos(krt), Ou(t) = —/Dsin(krt),

1 k
P S A ——

e LY o
and ¢o(t) =1, o(t) =1, ap =1, and by = 0. It can be verified that {pr}32 1, {Vr}221,
and {0}, are orthonormal in the x, Y, and Z inner products, respectively. Also

az + b} =1, Top = apdy, and Loy, = bpby, for all k € 77,

In the notation of Theorem we have My = Z*, M, = &, and M, = {0}.

We discretize (T, L) by defining X; =Y; = Z; to be the space of continuous piecewise
linear functions on a uniform mesh of [0, 1] with j elements. Let {xo, 1, - ,x;} be
the standard nodal basis. Define T; = Py,T|x, and L; = Pz L|X;. We compute the

GSVE of (Tioo, L10o) as described in Theorem|3 and graph (b,(fmo), ¢,§100), and 9,&100) for
k=1,23 (see Figures 1-3). We see that ¢§1°°), w§1°°), 95100) and gbgloo), wémo), 95100)

13



are accurate approximations of the corresponding exact functions, but <Z5§,100), 1/1:(),100);

¢1
0.5 T T T T T T T T T
0 /
05 1 L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
%
2 T T T T T T T T T
0 /‘
2 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
01
1.5 —T
1+
0.5
0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.1: The computed functions d)gloo) (top), %100) (middle), and 0%100)

(bottom) for Example together with the corresponding exact functions ¢1,
11, and 61. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.

and 0:(,)100) are completely wrong. The behavior seen in Figure 3 is consistent with the
type of "spurious modes” observed in the numerical solution of variationally posed
eigenvalue problems (see [10)]). The spurious mode persists as the mesh is refined.

Although we do not show any more results here, in fact every triple
(qb,(ﬂloo),w,(gloo),@,gwo)) for k > 3 is far from the exact generalized singular functions
(dk, Ui, Ox). Moreover, this behavior is not eliminated by refining the mesh. Every
fourth generalized singular mode is spurious.

In the next chapter, we analyze the convergence of the GSVE of (7}, L;) to that of
(T, L), presenting a condition on the convergence of (T}, L;) to (7, L) that guarantees
that the corresponding GSVEs converge. We will see that the condition fails for the
discretization in Example (1] and also see how to modify the discretization to obtain
convergence.
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Figure 2.2: The computed functions <Z>(2100) (top), ¢§100) (middle), and 95

(bottom) for Example together with the corresponding exact functions ¢,
1o, and 6. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.

100)

¢,
02F ' ' H‘ L1 ‘ ' ' ]
M ‘ ‘“ M
o) H H'“’,},v
-0.2 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
'/}3
2 ‘ T ‘ ' ' ]
T
o) H H M{ﬂl,v
_2k fn fn fn fn fn fn fn fn fn -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
03
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LK H b HEHH L
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B 07 0.1 0 ‘2 0 .‘3 0 .‘4 0 .‘5 0 .‘6 0 ‘7 0 ‘8 0. ‘9 1

Figure 2.3: The computed functions ¢g100) (top), 1/)§100) (middle), and 9&100)

(bottom) for Example together with the corresponding exact functions ¢s,
13, and f3. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve.
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Chapter 3

Convergence

Let X, Y, and Z be separable Hilbert spaces, let T : X — Y be a compact linear
operator, and let L : D(L) — Z be a closed linear operator, where D(L) is a dense
subspace of X. We assume that there exists v > 0 such that

(Tz, Tx)y + (Lx, Lz)y > v|z||3% Vo € D(L).
We define the bilinear form (-,-), : D(L) x D(L) — R by
(x,y) = (Tx,Ty)y + (Lx, Ly) 7.

Condition (1.9) from Chapter 1, which has been restated above, guarantees (-, -),
defines an inner product on D(L). Then, by Theorem [2 the GSVE of (T, L) is given
by

T = Z arr Dy G,
ke My UMb
L= Z b0 @y Gy

keMy | M,

Here, {(ay,by)} are the generalized singular values of (T, L), and the sets {¢x}, {¢r},
and {6} are the generalized singular vectors of (7T, L).

In the last section, we provided an algorithm for computing the approximate GSVE
of (T}, L;), which is given by

Ty m; bj

l(cj) - Z(ij)ikxka @D;(cj) = Z(Uj)ikyk’ el(cj) - Z(‘/})ikzk'

i=1 =1 =1

We next provide sufficient conditions under which the GSVE of (T}, L;) is guaranteed
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to converge to the GSVE of (T, L). Informally, this means that the approximate gen-
eralized singular values (a,(cj ), bg )) converge to the exact generalized singular values
(ax,by), and the approximate generalized singular vectors {gzﬁ,(gj)}, {w,(cj "1, and {0,9 )
converge to the exact generalized singular vectors {¢}, {¢}, and {6x}. Conver-
gence of the generalized singular vectors poses a complicated matter since the sets of
generalized singular vectors correspond to subspaces of the Hilbert spaces D(L), Y,
and Z. The issues are comparable to those faced in approximating the eigenvalues
and eigenvectors of a linear operator A : X — X by the eigenvalues and eigenvec-
tors of an approximation A; of A. We refer the reader to Boffi’s survey article [10]
for a detailed discussion. In the case of eigenvalues and eigenvectors, we can expect
that the eigenvalues of A; to converge to the corresponding eigenvalues of A in the
expected manner. However, since a given eigenspace does not have a unique basis,
there is no reason that the computed basis of the corresponding eigenspace of A; to
converge directly to a given basis of an eigenspace of A. Therefore, we have to refer
to convergence of a sequence of subspaces to a given subspace, not the convergence
of individual eigenvectors. Moreover, if A is an eigenvalue of A of multiplicity k&, then
there are probably k simple eigenvalues of A; that converge to A as j — oo.

When discussing the convergence of the GSVE of (T}, L;) to the GSVE of (T, L), we
have an additional complication, namely that both T" and L can have a nontrivial null
space. It is straightforward to show that A/(L) must be finite-dimensional (otherwise,
the inequality is incompatible with the compactness of T'). However, N (T)
could be infinite-dimensional. We will assume throughout our discussion that R(7T')
is infinite-dimensional, since this is the interesting case in applications.

In terms of the GSVE of the operator pair (T, L),

T = Z arr Ry« Pr,

keMo U M,

L= Z bplk @y Ok,

keMo|J M,
the generalized singular values of (T, L) have the following properties:

kEMb:>ak:1andbk:0,
ke My — O<ak,bk<1,
ke M, = a,=0and b, = 1.

To compare the singular values of (7}, L;) with those of (7, L), we have to order the
generalized singular values of (T, L) consistently. Since N'(L) is finite-dimensional, we
will assume that dim(N (L)) = ¢ and that M, = {1,2,--- ,¢}. Since R(T) is infinite-
dimensional by assumption, we will define the index set My by My = {¢(+1,0+2,...}
and assume that a1 > apy0 > ... . Since a% —l—b,Qc = 1, this implies that by 1 < byyo <

17



With these definitions for M, and M,, we see that {a) : k € Z*} is a nonincreasing
sequence of positive real numbers, and {by : k € Z"} is a nondecreasing sequence of
nonnegative real numbers. However, if M, is nonempty (that is, if 7" has a nontrivial
null space), then there is no natural definition for M, that maintains the monotonicity
of the sequences {a;} and {by}. Therefore, we will continue to denote M, as a
(countable) abstract index set. We can now write the GSVE of (7', L) as follows:

T =) an @. ¢, (3.1)
k=1

L= bbp®. ¢ + > bl ®. oy (3.2)
k=1 keM,

Recall that the GSVE of (T}, L;) is given by

min{m;,n;}
T, = Z a}(j)l/}](cj) B, (;5](5)7
k=1
min{p;,n;} . . .
Lj _ Z b}(ﬂ])e}i]) ®*j ](ﬁj)'
k=1

Here, we assume that agj) > agj) > > a%) and bﬁj) < béj) << bq(f;,)_

To describe the convergence of the singular vectors of (7}, L;) to those of (7', L), we
will use the concept of the gap between two subspaces (see [10]).

Definition 4. Let H be a Hilbert space, and let U and V' be closed subspaces of H.
The gap between U and V' is defined to be 6(U, V'), where
§(U,V) = Sup inf [|u —of,
flull=1
5(U,V) = max{0(U,V),8(V,U)}.
We now introduce the concept of angle between subspaces U and V' of a Hilbert space
H. We define the asymmetric angle 6(U, V'), denoted more simply by 6, by

cos(0(U,V)) = cos(f) = inf sup (u,v).

lull=1jy)]=1

Notice that the above quantity is bounded between 0 and 1, so 6 € [0,7/2] is well
defined. We next derive the following properties about the asymmetric angle and
asymmetric gap.
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Theorem 5. Let U and V be closed subspaces of a Hilbert space H. Then the asym-
metric angle @ = 0(U, V') has the following property:

cos(0(U, V) = cos(0) = 11615 | Pyull.

flull=1
Proof. Let u € U such that ||ul] = 1. If || Pyu|| = 0, then u € V+ and hence
(u,v) = (Pyu,v) = 0.

Thus, sup (u,v)g = ||Pyul|g in this case. Suppose that ||Pyul| # 0. Then,

H”HH 1
Pyu
[ Pvull = (Pyu, 77—) < sup (Pyu,v)
[Pyull” ™ vev
flvll=1
< sup [Pyulll[o]l = [|Pyul.
H’UH 1

Since (u,v) = (Pyu,v) for every v € V, we have

sup (u,v) = sup (Pyu,v) = || Pyul|.

veV veV
llvl=1 llvl=1

Thus we have shown that sup (u,v)y = ||Pyul/g in every case. We then have

veV

vl =1
f _
inf |Pvul = 1n[f] SU‘F/) (u,v) = cos(f).
flull=1 llull= 1HUH 1

Theorem 6. Let U,V be closed subspaces of a Hilbert space H. Then

(U, V) =sin(6(U,V)).

Proof. This follows directly from the definition of asymmetric gap. Writing 0 =
(U, V),

2

(U, V)? = inf [|u —
U, V) sup inf ju — o]
[lull=1

= sup Hu—PVuH2

ue
flull=1
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= sup (1—|[Pvul?)
uelU
Jull=1
1 2
=1 ”L{%IHPWH

=1 — cos?(f) = sin?*(6).
Therefore, 6(U, V') = sin(0). O
Theorem 7. If the asymmetric angles (U, V') and 6(V,U) are strictly less than 7/2,
then 6(U, V) =0(V,U) and

S(U, V) = 8(V,U).

Proof. Let 6 = 0(U,V) and let w = O(V,U). Suppose that §,w < 7/2. Then
cos(6), cos(w) > 0, and

inf [|[Pyull >0, inf |[Pyol| > 0.
Jull=1 oll=1

Therefore, the projections Py and Py are bounded below when restricted to V' and
U respectively. Hence, Py : V — U and Py, : U — V each have closed range in U
and V', respectively, and are both injective. Also, we have for any v € U and for any
velV,

(Pyu,v) = (u,v) = (u, Pyv).

Thus, as operators between the spaces U and V,Pj; = Py and P, = Pyy. Then

which shows that P and Py are bijections between U and V. Therefore, for any unit

vector u € U, there exists a unit vector v € V such that u = leﬁ' It follows that

[Pvul = sup (Pyu,z)

zeV
llz]l=1
= sup <U7PU:E>
eV
[lz]l=1
PU?} PUU
= sup (———, Pyx) > (———, Pyv) = || Pyv||.
2P poa ) = (e 0 = 01
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Therefore we have

inf || Pyl < ||Pyul| Yue U, [ju] =1
veV
loli=1
. _
= if [[Pyo] < inf [Pyl
Jell=1 Jull=1

By symmetry of U and V' in the above formulation, we then have

inf [|[Pyo|| > inf || Pyull.
veV uel
[[ol=1 [Jul| =1

Thus, cos(6(U,V)) = cos(6(V,U)), and we have

3(U,V) = sin(0(U, V) = sin(0(V, U)) = 5(V, U).

Corollary 8. If 6(U,V) and 6(V,U) are strictly less than 1, then

S(U,V) = 8(V,U).

Proof. Suppose §(U,V),0(V,U) < 1. Then sin(6(U,V)),sin(6(V,U)) < 1 and there-
fore the angles (U, V) and 6(V,U) are strictly greater than 0, and the previous
theorem then follows. O

Given the sequences {a} and {by} of singular values and the sequences {¢x}, {¢r},
and {6} of singular vectors for (T, L), we define the corresponding singular spaces

by

Sk(@) = span{¢; : a; = ay}
Sk(v) = span{v); : a; = ax}
Sk(0) = span{6; : a; = ax}.

Typically, if aj is a multiple singular value (that is, dim (Sk(¢)) > 1), then each

approximate singular value a,(cj ) converging to a, will be a simple singular value of

(T3, L;), meaning that
dim {span{gbgj) : agj) = a,(ﬂj)} =1
For this reason, we define the approximate singular spaces of (1}, L;) by
S,ij)(gb) = span{gbﬁj) a5y as 0 — oo}

7
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S,(Cj)(w) = Span{z/}gj) : az@ — ap as £ — oo}
(

S;gj)(Q) = span{¢§j) a0l aj as { — oo}

7

Note that because a; + b2 = 1 for every k € Z7, it follows that
{ieZ*:ai:ak}:{ieZJr:bi:bk}

Therefore, we could have defined the above subspaces with reference to {b;} instead

of {ak}

We can now define what it means for the GSVE of (T}, L;) to converge to the GSVE

of (T, L) (see [11], Definition 5).

Definition 9. We say that the GSVE of (T}, L;), j € Z*, converges to the GSVE of
(T, L) if, for all N € Z* and all ¢ > 0, there exists an integer jo such that for all
mtegers § > jo,

‘a,ij) —ak‘ <e foreveryk=1,2,---,

b,(j)—bk‘ <e foreveryk=1,2,---,

B (S’gj)(lb),Sk(w)) <e¢ foreveryk=1,2,---,

N
N
S(S}gj)(gb),sk(gﬁ)) <e¢ foreveryk =1,2,--- N,
N
0 <Sl(cj)<0): Sk(9)> <e foreveryk=1,2,--- N

In computing the gaps, we use the x, Y, and Z norms for
5(59(0),5:(@)) + 6 (5Pw). 8uw)) . 5 (5(6), 54(0))

respectively.

Notice that Definition (9) does not refer to {¢y : k € M,} or {0, : k € M,}. Our
theory with show that, in the representation

T = Z apr Qs O,
=1

L= Z bkek R (bk + Z bkek R« ¢k7
k=1

keM,

the series for T and the first series in the representation of L are approximated. It is
not guaranteed that we can approximate the second series in the representation of L.
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For each j € Z*, we refer to three different inner products on the space X;, namely
the x-inner product, the *;-inner product, and the X-inner product. Therefore, there
are three different adjoint operators for the operator 7; . The adjoint of 7" with
respect to the x-inner product is denoted by 7%, the adjoint of T} with respect to the

*j-inner product by Tj#j , and the adjoint of T" with respect to the X-inner product by
T*. To study the convergence of the GSVE of (7}, L;) to that of (T, L), we consider

the operators Tj#j T; and T#T. Using the expansion for 7" as in equation 1) we
see that the eigenpairs of T#T are (a3, %),k = 1,2,.... Similarly, the eigenpairs for
the operator Tj#jTj are ((@,(j))Q, ¢,(€j)) Jk=1,2,...,n;. Our goal is to show that the
eigensystem of T]#]T] converges to that of T#T; we can then show that the GSVE of
(T;, L) converges to the GSVE of (T, L).

We note that the operators Tj#j T; » X; — X, and T]#j T;Px, : X — X, where Px;
is the orthogonal projection onto X; with respect to the X-inner product, have the
same eigenpairs. Indeed, since Tfﬂ} is just the restriction of Tj#j T;Px, to Xj, it is
immediate that an eigenpair of Tj#j T; is an eigenpair of Tj#j T;Px,; . Conversely, if
@#jﬂPij = Az, then, since @#jﬂPXj maps X into X , it follows that x € X, and
hence (A, x) is also an eigenpair of T]#j T;.

The theory of Babuska and Osborn ([12]; see also [10], Sections 6 and 9) shows that
if a sequence {A;} of compact operators A; : X — X converges in the operator
norm to the compact operator A : X — X, then eigensystems of A; converge to
the eigensystem of A as j — oo, provided we exclude the zero eigenvalues of A from

consideration. Specifically, we have the following theorem ([10], Theorem 9.1) (in
which p(A) denotes the resolvent set of A).

Theorem 10. Let A : X — X be a compact linear operator, and let {A;} be a
sequence of compact linear operators from X to X such that

||A — Aj”L(X,X — 0 (ISj — OQ.

Then for any compact set K C p(A), there exists jo € Z" such that for every j > jo,
we have K C p(A;). If X is a non-zero eigenvalue of A with multiplicity m, then

there are m eigenvalues /\gj), /\éj), e ,)\%) of A;, repeated according to their algebraic

multiplicities, such that each )\Ej) converges to A as 7 — 0o. Moreover, if we define
E;(X\) to be the direct sum of the eigenspaces corresponding to the eigenvalues of

Aﬁj), )\gj), e ,)\%), then the gap between E;(\) and the eigenspace E(X\) corresponding
to the eigenvalue \ tends to 0 as j — oo.

By the above discussion, if we show that A; = Tj#j T;Px; converges to A =T #T in
the operator norm, then it will follow that the eigensystem of Tj#j T; Px, converges to
the eigensystem of T#T. We will use the following fundamental result (See [13]).
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Theorem 11. Let U, V', and W be Hilbert spaces. Let M :V — W be a bounded
linear operator, let T : U — V' be a compact linear operator, and let M; : V — W be
a bounded linear operator for each j € Z*. Suppose that M; — M pointwise on V.
Then

H(Mj — M)THE(U,W) — 0 as j — oQ.

Example [1{shows that the GSVE of (T}, L;) need not converge to the GSVE of (7', L).
We now describe the fundamental assumption on the sequences {7;} and {L;} that
will allow us to prove convergence of the GSVE. For each j € Z*, we define

T-—1T;
t;1 = max I = T)ally. (3.3)
YT Tallx
x#0
T-—1T:
tjo = max I = T)ally ]>$”Y, (3.4)
weXy [l
x#0
t]’ = max{t]-,l,tj,g}, (35)
L—-—L—
— palz. 50
z€X, [l
x#0

C; = y/t? + é? (37)

Henceforth, we will assume that ¢; — 0 as 7 — oo. We will see that this is enough
to imply that the GSVE of (7}, L;) converges to the GSVE of (7', L).

By (3.5)), we have

(75 = T)zlly < tjllzllx and [|(T; = T)zlly < tj]jzfl. for all o € Xj,

and, by [3.6]
|(L; — L)z||z < ¢]|z||. for all z € Xj.

Therefore, for all x € X},

Ty |ly = Tz, Tiz)y = (T; — D)o, Tjz)y + (T2, Tjz)y
< (75 = Dzlly [ Tylly + I Tlly [Tyl
< tllzl N Telly + Ty [ Tiz]ly-

Hence,

[Tizlly < tillzlls + 1 Txlly < (1 +2)[l]l. for all z € X; (3.8)
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(since obviously [|Tz|y < ||x||« for all z € D(L)). Similarly,
|Lx||z < (14 ¢;)||z], for all z € Xj. (3.9)
In our analysis, it will useful to define the quantity n; by
nj =+ 2t + (). (3.10)
We will need the following bound.

Lemma 12. For every j € Z*, and for every x,y € X,
[z, 9)s — (2, 9)s, | < mjllllllylls-
Proof. Let j € Z*, and let z,y € X;. Then

[z, ) — (@, 9)s| = |(T2, Ty)y + (L, Ly) 7 — (Tjz, Tiy)y — (L, Ljy) 7|
|(Tx, (T —T})y)y + (Lz, (L — Ly)y)z + (T — Tj)z, Tyy)y

+((L = Lj)z, L;y) 7|
< ||Tz|ly (T = Tj)ylly + [ Lyl zl[(L — L)yl z

+ (T = T))zlly | Tzlly + (L = Ly)zllz|| Lyl 2
tillTzlly llyll« + Gl Ll zllyll« + ¢zl Tylly + Gllll Lyl 2
(&5 + )zl Nyl + (1 + )zl Nyl + 60+ )]yl
= (B + 6 +20t; +4)) Izl llyll.

<
<

= njll /]yl
O
From this, we have the following Corollary.

Corollary 13. For any j € Z* and for any v € X;,

(L= np)ll[Z < 2ll2, < (1452, (3.11)
1

zll.. < |z|? < z|? . 3.12
1+mll [ ||_1_77j|| [ (3.12)

Next, we define M, : X; — X; and M : D(L*L) — X by

M =TT+ L"L

Let x € D(L) and y € D(L*L). Notice that

<l’,y>* = <Tvay>Y + <L$, Ly>Z = <$, (T*T + L*L)y>X
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= (z, My)x.
Therefore, M has the following property:
(z,y). = (¥, My)x Vax € D(L) Yy € D(L*L). (3.13)
Similarly, the operator M, has the following property:
(z,9)s; = (x, Mjy)x Yo,y € X;. (3.14)

These operators will be central to our analysis; the following three results come from
these two properties of M and M;.

Theorem 14. The operator M s a bijection with bounded inverse, and

1
HM71H£ x,p(L) < —=,
(X,D(L)) ﬁ

that is,

Hﬂh

1Mz, < 20X v e x,
VA

Proof. See [4], Theorem 5.25. O
Theorem 15. For each j € Z*, the operator M; is invertible and

1
(L=m)v7

M| cx.pr)) <

That 1is,

1
(T —=m)v/7

Proof. Let j € Z" and let x € X;. By Corollary , we have

1M ). < [ellx Vo e X;.

1
L—mn;

_ 1 _ _
1M 1I||zj 1 n; (M 1x7Mj 1$>*j
= (M)
ol b
1

L—mn;
1

ST

1M ]l <

1M | x| x

1M ]|
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The desired result follows from dividing both sides of the inequality by || M j_lx||*. O

Next, recall that IIx, : D(L) — X; denotes the orthogonal projection with respect to
the *-inner product onto the subspace X; . The following result allows us to compare
M~ and M j_l.

Theorem 16. For every x € X,

My M o — M 'Pyall, < — 8 .
T, M~ 2 — M Px, x|, < (1_nj)ﬁ|lx\lx

Proof. Let x € X. Then

IMx, M~z — M; "' Px, x|}
= ((ILx, M~ — M; ' Px, )z, (ILx,M~" — M ' Px,)x),
= <M_15L’, (1_[)(].]\4_1 - MjiIPXj)Iﬂ - <M]~71PXJJI, (HXjM_l - M]-ilpxj)l‘)*

Notice that

<M_11L', (1_[)(].]\4_1 — MjiIPXj).Iﬂ = <ZL’, (1_[)(].]\4_1 — MjiIPXj).I>X
= <PXJ«77; (HXjMil - M]-ilpxj)l’)X
= <M;1PXjIE, (HXjMil — M;lpxj)x>*j.

Therefore we have

[x, M~z — M Px x|

= (M, (T, M~ — M5 Py i), — (M Py,, (I, M~ — M Py )a),

= (M'Px,z, (Tlx, M~ — M Py )a)., — (M Py z, (Tlx, M~ — M Py )a),
< || M Py ||| (T, MY — M Py )|,

where we have applied Lemma [12] for the last inequality. Hence,
(T, M~ — M Py )al|. < | M Py, ..
Applying Theorem [15] (and the fact that ||Px,z|x < ||z]x), we obtain

_ _ 1j
|(Ix, M~ — M Py )z, < —2—r
’ N (VG

as desired. [

2l x

We can now prove that M;Px, converges pointwise to M ~1on X.
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Theorem 17. For every x € X,

M~ e — M P, x|l — 0 as j — oo.

Proof. Let x € X. Then

1M~ = M7 Pyl < ||M7he — T, M el + [[(Tg M1 — My Py )

< (I = T M~z + |l x.

J

By assumption, ILy, converges pointwise to the identity operator on D(L), and n; — 0
as j — 00. The desired result then follows. O

For every y € Y; and for every z € X, we have

(T, y)y = (o, TPy, = (L LT y)y + (L, LTPy)
* * #;

Also,
<T‘j$a y>Y = <$7 T‘J*y>X
Because this is true for every x € X, and for every y € Y}, we see that
* * * #j _ #j
T = (T;T; + Ly L)1) = M1}
Similarly,

T = (T"T + L*L)T* = MT%.

We define S; : X; — Y by S; = T;—T|x,. By definition, we have that t; = |9}/ z(x,.v)
and hence, by assumption, ||.Sj]|z(x,y) — 0 as j — oo. We now compute the adjoint
of S;. To do this, let z € X; and let y € Y. Then

(Sjz,y)y = ((T; = Tz, y)y = (Tjz,y)y — (T, y)y
= (Tjz, Pry)y — (x, T y)x
= (z,T; Pyy)x — (v, Px,T"7)x
= (z, (T Py, — Px,T")y) x.

Therefore, S5 = T; Py, — Px, T, and since [|S||ziv.x;) = 1S/l z(x;,y), we see that

HPXjT* — TkaYjHﬁ(Y,Xj) — 0 as j — OQ. (315)
J
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The following theorem will be used to show that @#jﬂPXj — T#T uniformly.

Theorem 18. T/ Py, T — T#T in the L(D(L), D(L)) norm.

Proof. We have shown that T# = M~'T* and Tj#j = M;'T7. From this, it follows
that

#j — * — *
T/ Py, T — T*T = (M;'T} Py, — M~'T*)T.

By Theorem , it suffices to prove that Mj_lT]?*Pyj — M~'T* pointwise on Y as
j—o0. Let y € Y. Then

HMﬁlT*y — M{lT;‘PijH*
< (M7= M7 Py )Tyl + | M P, Ty — M T Pyl
= (M~ = M Px )Tyl + [|M; ! (Px, T*y — T} Py,y)|l

< (I = My Py, Ty + |(Px,T" — T} Py )yl x.

1
(T =)V

It now follows from Theorem (17| and (3.15)) that |[M~'T*y — Mj_lT;‘Pyij* — 0 as
J — oo. [

We need two more results.

Lemma 19. If {v;} € X and v; — v weakly as j — oo, then Px,v; — v weakly.

Proof. For any x € X, we have
(Px;vj,7)x = (vj, 2)x + (vj, (Px;, — I)z)x — (v, ) x

(notice that {v;} is a bounded sequence in X, and that (Px, — I)r — 0 in norm).
This shows that Px,v; — v weakly as j — oo. O]

Theorem 20. T; Py, — T in the L(X,Y) norm.

Proof. We argue by contradiction and assume that there exist ¢y > 0 and a subse-
quence {j;} of Z* such that for every k € Z*, there exists v;, € X satisfying

v lx =1 and [|T}, Px;, vj, — Tvj, ||y = eo. (3.16)

Since T' is compact and X is separable, without loss of generality, we can assume that
there exists v € X and y € Y such that v;, — v weakly in X and Tv;, -+ yinY. We
then have

TjkPXijjk = TPXijjk + (Tjk - T)PXijjk —Tv+0=y
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Ty, — T)Px; villy < 4l Px;, vjllx — 0, and TPx;, — Tv because Px; vj, — v
weakly from Lemma |19/ and T is compact). But then we have

TjkPXijjk —Tvj, —y—y=0,
contradicting (3.16]). The contradiction completes the proof. H

We have been working towards the following result.

Theorem 21. T/ T;Py, — T#T in the L(D(L), D(L)) norm.
Proof. We have

#.
|77 T; Px, — T*T|| c(p(w).p(L)
< HQ#J'Y}PXJ' - Tj#j Py T\ e(p(ry,pey) + HTj#j Py T =TT coey.owy
_ * #
= 105775 Py, (T3 P, = T)eormypeey + T Py T = T#T oy oy

The second term to the right of the equals sign goes to 0 by Theorem [I8 Therefore,

it suffices to show that the first term goes to 0. Applying Theorem (15, we have
IMGT7 Py, (T3 Py, = T eoiw).pew)

1

< ———|T; Py, (T;Px; = T) |l c(p(r).x

(1 _ nj)ﬁ J AN J (D(L),X)

< T llewsx

T (L=m)A

|75l ;. v7)

= —— =T Px;, — T zpw)y

< T ecy

O VAT

i+ 1T e,y

(L —m;)y
Since t; — 0 as j — 0o and T is a bounded operator from X to Y, it follows from

Theoremthat ||Mj_1Tj*Pyj (T;Px; —T)|lc(p(ry),pry) — 0 as j — co. This completes
the proof. n

|T5Px; — Tl c(pw),y)

)
1T;Px; — Tlleo).y)

) 1T Px; — Tl cix,y)-

Theorem |3| and Theorem [10| show that the eigensystem of T]#jTj, which is the same

as the eigensystem of TJ#J'TJ-PXJ., converges to the eigensystem of T#T. We can now
prove the following theorem.

Theorem 22. Assuming that ¢; — 0 as j — oo (where ¢; is defined by ), the
GSVE of (T}, L;) converges to the GSVE of (T, L) in the sense of Definition |9
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Proof. Since ((a,(cj))Q,cﬁ,gj)), k=1,2,--- ,n;, are the eigenpairs of 7}#]'7}]3)(1,, (a2, 1)
are the eigenpairs of T# T, and Tj#j TjPx; =T #T in the operator norm, it follows from

Theorem |10[that the set of approximate generalized singular values {a,(cj )} converges to
the set of true generalized singular values {a;}, and the set of approximate generalized

singular functions {gb,(j )} converges to the set of true generalized singular functions
N\ 2 N2

{¢r} in the manner described by Definition @ Moreover, since (a,(f )) + (b,(j )) =1

for every k = 1,2,--- ,n;, and af + bi = 1 for every k € Z*, it follows that the

set of approximate generalized singular values {b,(cj )} also converges to the true set of
generalized singular values {b;} in the manner described in Definition |§|

It now remains only to show that {1#,? )} converges to {1} and {9,(3 )} converges to
{6;} as j — oo in the sense of Definition [9] To show this, let k be an arbitrary
positive integer and let ¢ > 0 be given. We must show that there exists jo € Z* such
that

52 o = max {0 (5:(0). () .6 (S (). Skw)) | <.

First, we show that jo € Z* can be chosen such that §(Sk(¢), 5,9)(@) < ¢ for every
J > jo- That is, we show that jy can be chosen so that

j>jJo = sup inf |ly—oly <e. (3.17)
yESK () UES,(CJ)
lylly=1

We know that there exists jo € Z" such that

€ €
Jj>jo = sup inf H:C—vH*<aiand tj<min{al71}.
2€54(¢) vesY) (9) 4 2

[l «=1

We will show that this value of jy satisfies (3.17). It suffices to show that for any
j > jo and for any y € (1) satisfying [ly[ly = 1, there exists v € S (1)) such that
ly — v|ly < e. Suppose

Sk:(w) = Spaﬂ{%u 77Z)k2, T 7¢’€q}'

Then there exists real numbers aq, as, - -+ , oy such that

q q
-1 -1 -1
Y = a, E aapy, = ay E o Tor, = a, T,
i=1 i=1

q

where z = Z ¢y, Moreover, since {¢y,, Pr,, - -, dx, } is orthonormal in D(L) with
i=1

respect to the s-inner product, we see that ||z|. = |ly|]ly = 1. Hence, there exists
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u € S,gj)(qﬁ) such that

ake
[ = ull. < f-

By construction, T'x = aiy, and the vector v defined by v = a,:lTju lies in S,Ej) ().
Moreover,

(T = Ty)zlly + Tz = Tyolly

ly = vlly = a |Tz = Tiully <

ag
ti + 1T ccoy v le — ull
< o
ti+ (1+t)]|r — ull.

ay
1 [fare 2aie
< [ Z= =
- Qg < 2 + 4 ) ©

Thus, §(Sk(), S,gj)(w)) < ¢ for every j > jo. The proof that jo can be chosen such

that 5(5,&”(9), Sk(0)) < ¢ for every j > jo is similar. Thus, we have shown that {wl(j)}
converges to {¢;} in the sense of Definition [9

The proof that {0,(; )} converges to {6} in the sense of Definition @ is exactly the
same, and the proof is complete. O

In Example , it appeared that the GSVE of (T}, L;) did not converge to the GSVE
of (T, L). Thus, the sequence of discretized operator pairs (7}, L;) must fail to satisfy
the hypotheses of Theorem [22]

Example 2. In this example, we analyze the discretization of Example[l. In Ezample
T; = Py,T|x;, and since T is the identity operator, it follows that T; = T|x;,
(X; =Y, for each j € Z"). Therefore, t; = 0 for every j € Z*. However (recalling
that x; is the ith standard nodal basis function), a direct calculation shows that

00— sup N = Dzllzen o I = L)jllzaen 1
! zEX; || 10,1 N 2|l 10,1 T 2v2 1+ h?/6
x#0

(where h = 1/7) and hence {; is bounded away from 0. Therefore, Theorem does
not apply to this example.

We now present a discretization of the operators of Example [1] that satisfies the
hypotheses of Theorem [22| and hence leads to convergence of the GSVE.

Example 3. Let T', L, X;, and Y; be defined as in Example |1, but now define Z;
to be the space of piecewise constant functions on the uniform mesh with j elements.
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As before, Tj is to be Py,T|x, = T|x;, and we define L; = Pz, L. Since L maps X;
into Zj, it follows that L; = L|x,. Therefore, for this discretization, we have that
t; ={; =0 for all j € Z*, and hence Theorem guarantees that the GSVE of
(T3, L;) converges to the GSVE of (T, L) in the sense of Deﬁm’tion@ as j — oo.

Figures show the approximate and exact singular functions for k = 1,2,3
(analogous to Figures from Ezxample . As in Example |1, we use j = 100

to obtain these numerical results. In contrast to Example |1, now all three of the
examined singular modes are well approximated.
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Figure 3.1: The computed functions <Z>(1100) (top), 1/1?00) (middle), and 9%

(bottom) for Example together with the corresponding exact functions ¢,
11, and 61. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.

100)

Ezxtensive numerical testing suggests that
’a(j)—a ‘ = 0O(h?) ]
. k| = as j — 0o,

‘b,(f) - bk‘ — O(h?) as j — co.

Fach of the generalized singular spaces is one-dimensional and, therefore, we can
compare the generalized singular functions directly rather than referring to the gap
between subspaces (we just have to normalize the vectors and multiply by -1 when
necessary so that the angle between each singular vector and its estimate is close to 0
rather than close to w). We observe

G ‘ _ 2 .

Hqﬁk O L) O(h?) as j — oo,
(j) o ‘ — O h2 .

H@Dk Vg o) (h?) as j — oo,
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-l

L2(0,1)

O(h) as j — oc.

In each case, the rate of convergence is optimal for the given discretization
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Figure 3.2: The computed functions (bgloo) (top), ¢é100) (middle), and 95

(bottom) for Example together with the corresponding exact functions ¢o,
1o, and 6. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.
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Figure 3.3: The computed functions qbgwo) (top), wéloo) (middle), and 9&100)
(bottom) for Example together with the corresponding exact functions ¢s,
13, and fs3. In each graph, the approximate function is the solid curve and
the exact function is the dashed curve. The approximate and exact curves
are indistinguishable at this scale.
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Chapter 4

Rates of convergence

In Example |3| of the previous chapter, we compared the generalized singular values
and vectors of the operator pairs (T, L) and (7}, L;). In that example, we observed
the following rates of convergence for the generalized singular values:

a,(j) — ak’ = O(h?) as j — oo,

b,ij) — bk‘ = O(h?) as j — oo.

We also observed the following rates of convergence for the generalized singular func-
tions:

@ _ _ 2 .
quk o oy O(h*) as j — o0,
[o |, =0 asj— o
k £2(0,1) ’
0 — 0 = O(h) as j .
667 ] g = O 255 o0

Here, h = 1/j was the width of each interval of continuous piecewise linear finite
elements in the discretization X; of X. In this chapter, we analyze the rate of conver-
gence of the generalized singular values and vectors of (7}, L;) to those of (T',L). We
next consider a less trivial example that demonstrates the same rates of convergence
observed in Example [3]

Example 4. Let X = L*(0,1) and Y = Z = L*(0,1). Define operators T : X —Y
1
and L : D(L) — Z by Lx = a', and Tz = / sex(t) dt. We discretize (T, L)

0
by defining X; = Y; to be the space of continuous piecewise linear functions on a

uniform mesh with j elements, and Z; to be the set of piecewise constant functions
defined on each subinterval of the mesh. Let {xo, 1, - ,z;} be the standard nodal
basis. Define Tj = Py,T|x, and L; = Py, L|X;. Using the method of computation for

35



the GSVE from Chapter 2, We are able to compute the singular values and vectors
for (T;,L;). The GSVE of (T, L) is unknown in this example, so convergence rates
are approximated using Richardson extrapolation. In our discretization, we will have
a total of 7 refinements of our finite element space. At each stage of refinement, the
previous discretization is also interpolated into the new refinement in order to compare
the functions from each refinement. Using Richardson extrapolation, we can use any
3 consecutive refinements of our discretization to produce a rate of approximation for
each of the singular values and singular vectors.

We begin with a discretization using 40 elements, and at each refinement of the dis-
cretization, we double the number of elements. Tables 4.1-4.4 give the rates of con-
vergence for the first 5 generalized singular vectors and generalized singular values of
T. The numbers in Table 4.1 are the estimates for p using Richardson extrapolation
such that '

)a,(g) — ak‘ = ChP.

The numbers in Table 4.2 (and similarly in Tables 4.3 and 4.4) are estimates of p
using Richardson extrapolation such that

= ChP.
£2(0,1)

o -

The results of Table 4.1 suggest the following rates of convergence of the generalized
singular values of (T, L;) to those of (T, L).

a,&j) —ak‘ = O(h?) as j — oo,

b — bk‘ — O(h?) as j — .

The rate of convergence of b;,j) to by follows immediately from the equations
ai + by =1,
N\ 2 N\ 2
()" + () = 1.

Tables 4.2-4.4 suggest the following rates of convergence of the generalized singular
vectors of (T}, L;) to those of (T, L).

H¢k P £2(0,1) (W) as j = oc,

H@D(j) — g =O(h?) as j — o0
k £2(0,1) ’
o _ :

Hek Oy, o) O(h) as j — oo.
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Table 4.1 '
Rate of convergence of a,(j )

|

| j=160]j=2320];j=0640 | j =1240 | j = 2480 |
NaN NaN NaN NaN NaN
2.00065 2.00016 2.00004 2.00001  2.00000
2.00121 2.00031 2.00008 2.00002  2.00000
2.00339 2.00087 2.00022 2.00005  2.00001
2.00816 2.00214 2.00054 2.00013  2.00008

U W N =

Table 4.2 ‘
Rate of convergence of gbgg )

| k]j=160],=2320];=0640 | j = 1240 | j = 2480 |
1.99998  2.00000 2.00000 2.00000  2.00000
2.00013  2.00003 2.00001 2.00000  2.00000

k
1
2
3 2.00020 2.00005 2.00001 2.00000  2.00000
4
5

1.99937 1.99984 1.99996 1.99999  2.00000
1.99644 1.99912 1.99978 1.99995  2.00000

In both examples, the same rates of convergence of the generalized singular values and
vectors were observed when using continuous piecewise linear elements to discretize
the space D(L) and when using piecewise constant elements to discretize the space Y.
In this chapter, we provide a theory and analysis to prove these rates of convergence.
In our analysis, it will be important to consider the space D(L*L) C X.

To be consistent with the notation in Chapter 5, we will denote D(L*L) by Sy. We
define the bilinear form (-, -)g, : So X So — R by

<x7y>32 - <M'T7My>X ) vxvy € 527

where M : Sy — X was defined by M = T*T + L*L in Chapter 3.

By Theorem [14] M has bounded inverse and is, therefore, injective. Hence, for any
T € SQ,

(r,x)s, =0 <= x=0.

Therefore, (-,-)g, defines an inner product on Sy. The next two lemmas show that Sy
is a dense subspace of D(L) and that S5 is a Hilbert space with norm || - ||s, defined
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Table 4.3 '
Rate of convergence of 9,(3 )

|

k|j=160]j=320[;=0640] j = 1240 | j = 2480 |
1 NaN NaN NaN NaN NaN
2099971 0.99993 0.99998 1.00000  1.00000

3 0.99867 0.99967 0.99992 1.00000  1.00000
4
5

0.99605 0.99902 0.99975 0.99994  0.99998
0.99078 0.99771 0.99943 0.99986  0.99996

Table 4.4 _
Rate of convergence of wl(j )

|

k|j=160];=320],=640 | j = 1240 | j = 2480
1 2.00007 2.00002 2.00000 2.00000 2.00000
2 2.00009 2.00002 2.00001 2.00000  2.00000
3 2.00058 2.00014 2.00005 2.00001  2.00000
4
5

2.00112 2.00028 2.00007 2.00002  2.00000
2.00150 2.00039 2.00010 2.00003  1.99999

by
lz|ls, = |Mz|x , Vz € X.

Lemma 23. S, is dense in D(L).

Proof. Tt will suffice to prove that S3* = {0} where L, denotes the orthogonal com-
plement in D(L) of S, with respect to the *-inner product. Let w € S5, and define
w= M"tw. Then u € D(L*L), so by definition of w, (w,u), = 0. Therefore,

lwll% = (w,w)x = (w, M w). = (w,u). = 0.
Thus, w = 0 and the proof is complete. O

Lemma 24. || - ||s, is a stronger norm than || - ||.. In particular, for every x € Ss,

lzlle < ()72 )alls,.

Proof. Let x € Sy. Then it follows that

]I} = (=, z).
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= (Tx,Tx)y + (Lz,Lx) 4
= (z,(T"T+ L"L)x)x

= (xr,Mx)x

< [zl x 1M ]| x

(

IN

V)72 | M x
After dividing each side of the inequality by ||z||., we have
lzll. < ()72 Mzllx = ()7 )z]s,,

and this completes the proof. O]

We will now assume the following property of the discretization: There exists a
sequence of positive real numbers {¢,} such that ¢; = 0 as j — oo and

M,z = fl. < &jljzlls,, Yo € S (4.1)

This assumption is consistent with finite element approximation results. For instance
if X is the space of continuous piecewise linear finite elements in L?(0,1), and L :
H'(0,1) — L*(0,1) is the derivative operator, then the *-norm is equivalent to the
H'(0,1) norm, and the Sy-norm is related to the H*-seminorm. In this case, we can
take €; = Ch; for some constant C' > 0, where h; is the mesh size of the j-th mesh
(see [I4] Theorem 4.4.20).

Theorem 25. For every x € Ss,

1My — allx < ¥lz]]s,. (4.2)

Proof. Let x € S,, and define & = Ilx, 2 and w = M~"(z — Z). Then

lo — 2l = (@ — &, 2 — @)x
= (M~ — 1), — &),

= (w,r — T),.

Since z — & is orthogonal to the space X, with respect to the *-inner product, it
follows that (Ilx,w,z — ), = 0. Therefore,

(w,r — 1), = (w—x,w,r — ),
Putting these results together, we have
|z — 2% = (w,z — &), = (w —lx,w,z — &),

< [Jw — x;wll [l — 2.

39



Both w and x are in Sy, so by (4.1)), it follows that

lw = Tlxwlle < gffwlls,

|z — 2|« <ejllzlls,
From this we have

lo — % < llw —Tx, [lle = &l < (gjllwlls,) (e5l12lls.)

= & [wlls, |25,
Therefore,

|z — 2]k <el|Mw|x||zs,
= e IM (M~ (z — 1)) || x|l s,

=iz — @llx)z]ls,-
After eliminating a factor of ||x — || x from each side of the inequality, we have

lz — llx < &jlllls,.

O
It should be noted that a similar argument yields that
|z —IIx,z||x < gjl|z||« Vo € D(L). (4.3)
It then follows that
M, 2llx < lzllx +egllzlle < (7772 + &) |2l Vo € D(L). (4.4)

The following lemma will be used in the analysis of the rate of convergence of the
generalized singular values.

Lemma 26. There exists a constant C > 0 such that
1Ty x — Txlly < Ctyllzll. + &5llzlls,) Yo € Se. (4.5)
Proof. For every x € Sy, we have

[T51lx,x — Ty < ||T3llx;z — Tlxally + [[TTxz — Ty
< (T = T)lx,[ly + 1T (x,z — @)y
< 4|y zlx + [Tl ew) My, z — 2| x
<ty Pzl + 1T cxnes |zl s,
< Oyl + 7 llzlls,),
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where C' = max{y~/2, 1T e vy }-

Recall that the GSVE of (T, L) can be expressed as
T = aphy ®. ¢,
k=1

k=1

k€M,
and similarly, the GSVE of (7}, L;) is given by

min{m;,n;}
Tj _ Z a}(ﬁﬂ)w}(j) ®*j (ﬁg@]);
k=1
min{p;,n;} ' ' ‘
Lj _ Z b}(g])e}(g]) ®*j I(cj)'

k=1

Here, we order the generalized singular terms in the GSVE of (T, L) such that the
generalized singular values of T" are nonincreasing and the generalized singular values

of L are nondecreasing, as was done in Chapter 3. To be precise, we assume that the
index sets M, and M, defined in Definition of Chapter 3, are given by

Mb:{1,27-.- ,Nb}, MO:{Nb+17Nb+2,"-}’

where N, = dim(N(L)). Since T is a compact operator, the null space of L must
be finite-dimensional, hence making such an indexing possible. Similarly, the GSVE
for (T3, L), as given above, is such that the sequence of generalized singular values

{a,(j V41 is nonincresing and the sequence of generalized singular values {b,(g My s

nondecreasing for every j € Z*.

The generalized singular values a;, of (7, L) can be characterized as

_ [Ty

arp = max min-———,

Sscp(L) z€S ||z«
dim(8)=k #7#0

where this maximum is attained for each k € Z* by the space

S = cI)k - Span{¢17¢2a e 7¢k}
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The corresponding singular values of 7T; can be characterized as

: T
a) = max min H JmHY.
SCx; zes ||z«
dim(S)=k T#0 !
We will often have to compare the norms || - ||, and || - [|, on the subspace X; when

analyzing the rates of convergence of the generalized singular vectors. Recall that
n; = ¢; +2(t; +¢;). Then n; = O(c;) — 0 as j — oo, and hence 0 < 7; < 1
for all j € Z" that are sufficiently large. We will need the following fact about the
generalized singular vectors of the operator pair (7', L).

Lemma 27. For all k € Z* = M, U My, ¢, € Ss.
Proof. Let k € My U M,. Then we have

Tor = axthy, Ty = arr,

where a; > 0. Putting both of these things together, we have
T#T¢r = aidr.

Since T# = M~1T* (see [9], Theorem 5.27), if follows that ¢, € D(M) = S,. O

Notice that when a; € M,, the same argument does not hold since T#T¢;, = 0.
We will need a few more preliminary results in order to prove a particular rate of
convergence.

Lemma 28. For everyn € Z7,

. Ty N Tzlly
ax min ——-—— = max min-—,—.
SCD(L) z€S ||z« SCS, wes |z||«
dim(S)=k =70 dim(S)=k =#0
Proof. This follows immediately from the fact that Sy is dense in D(L). O]

Lemma 29. For every k € Z* and for every sufficiently large positive integer j,

TIlx.x T}
max minM = max min | ﬂHY. (4.6)
sco(L) zes |zl SCX; zes x|«
dim(8)=k #7#0 dim(S)=k 270

Proof. We assume that j is sufficiently large such that dim(X;) > k. Clearly, the
left-hand side of (4.6]) is at least as big as the right-hand side. Therefore, we must

prove that

Ty x T.
max min M < max min w (4.7)
sco(L) zes  |lz||. SCX; aes  |z|.
dim(9)=k 270 dim(S)=k *7#0
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Let S be a k-dimensional subspace of X, and let S=1I x,;5. We consider two cases.
IfSNnXx f is nontrivial, where X ]L denotes the orthogonal complement of X; in D(L)
with respect to the *-norm, then there exists z € S such that x # 0 and T;IIx,x = 0.
It then follows that

win I T510x, x|y
res Izl
T 11, T;
Bty el
zeS ||z KCX; weK ||zl
z7#0 dim(K)=k 270

The second case is that S N le* is trivial. In this case, dim(S’) = k, and there is a
one-to-one correspondence between z € S and z € S (z = lx,r). For each such z
and z, we have T — x € Xj* and hence

T‘j"f = T‘jHXjf = T‘jHXjI.
Also, we have that [|Z[|. = [[Tlx,z[/. < [[z][.. Therefore,

| T30 x|y < IIT'i’Ily.

£ (PO
From this, it follows that
Ty, T
T @y T2 o ax min ||CFJ:L‘||Y,
wes Izl zes |7 scx; zes |1l
#0 dim(S)=k *
and, thus, we have shown
Tillx x T.
max min —” JX; Iy < max min H ]xHY,
sco(r) zeS  |lzl. Scx; zes ||z«
dim(S)=k *#0 dim(8)=k #7#0
SNX;*={0}
which completes the proof. O

We can now prove the desired result.

Theorem 30. For each k € Z*, there exists constants Cy and Co such that for all
sufficiently large positive integers j,

ap — Cy(c; + 83) < ag) < ay, + Cac;. (4.8)
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Proof. By Corollary 9 of [11],
1]« 1
zlle, = /1=y

where 7; = ¢ 4+ 2(t; + ¢;). Using this result, we have

Vx € Xj, (49)

ey [ Taly el
) = —
SCX; wes |l sCX; wes |zl [z,
dim(S)=k z#0 dim(S)=k x#0
1 T;
— N, cX; =x€ T ||«
v " iy 320
1 T T-T;
€L e Mol =Tl
—_m. CX; z€ ||«
7 dim(syk @70
o1 Tzl
VT B A T
1 dim(S)=k ©#0 *
_ 1 Tzl
S T | s TRy, Y
i dim($)=k #0 *
1
= ———(a + t;).
L —mn;
Since

1
\/1: =1+ (n;)n; where 0 < d(n;) < 1,

— 1
for all n; sufficiently small (0 < n; < 3/8 suffices), and since t; = O(¢;) and n; = O(¢;),
this establishes the upper bound in (4.8). To prove the lower bound, we define the
subspace ®; = span{¢r, ¢, - ,¢;} and apply Lemma 26}

_ Tzl
ar = max min
scp(L) =€S ||z«
dim(8)=k =70
Ty
e [all.
NIy + Ol + £ llells,)
< min .
EP
x#0
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Since @y, is fixed and finite-dimensional, there exists C}, > 0 such that

]l

If we define C" = max{C, CC\}, we obtain

I T51 0 ]|y
< min | ——L—— + C'(t; + &
o < iy (T O )
x#0
Tillx x
_ i M7l C'(t; +€2)
L P
x#0
T
< max min H ]xHYJrC'(tJJrS?)

By Corollary 9 of [11],

T4
Izll., </1+n; Vz € X;.

]|«
Therefore,
ar < 4/1+mn; | max min 1Ty +C'(t; +€3)
- T\ oscx; wes |z 7T
dim(S)=k =70
— T+ (a,(j)) +O'(t; +€2)
1 .
:>—G_C/t+€2 Sa/(‘j)‘
m( k (] _])) k
Since

1
N

the lower bound in (4.8]) follows (again using the fact that both t; and 7, are O(c;)),
and the proof is complete. O

=1 —(n)m;, where 0 < ¢(n;) < 1/2,

We now wish to analyze the convergence of the generalized singular vectors of (T}, L;)
to the generalized singular vectors of (7, L). Recall that for each k, we define the

spaces Ej and E,gj ) by

Ey = span{¢; : a; = a}.
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and
E]gj) = Span{(;ﬁz(j) : agé) — ay, as { — oo}

We will need to prove that the subspace E,gj )

converges to the subspace Ej as j — oo
in the sense that the gap between Fj and E,gj ) converges to 0 as j — o0o. Recall that

the gap between subspaces U and V' in H, denoted by ) (U, V) is defined by

6(U, V) = max{6(U,V),8(V,U)},
(U, V)= sup in‘f; llu — vz

ue€lU V€
llull m=1

We wish to derive estimates for & (Ey, E,gj )), where gap is defined by either the X-norm
or the *-norm. We will, therefore, write d. and d. for the gap defined by the *norm
and d0x and dx for the gap defined by the X-norm.

It was shown in [I1] that, under the assumptions made here, 5*(Ek, E,(Cj )) —0asj—

oo. We will need the following results to conclude that dy (Fj, E,gj)) = (5X(E,§j), Ek)
for all positive integers j sufficiently large.

Theorem 31. If U and V' are k-dimensional subspaces of a Hilbert space H, where
k is a positive integer, then §(U, V) = 6(V,U).

Proof. Without loss of generality, let us assume that 6(U, V) < 6(V,U). By Theorem
[7] the result holds if 5(U, V) and §(V, U) are both strictly less than 1. It suffices, there-
fore, to show that the assumption 6(U,V) < §(V,U) = 1 produces a contradiction.
Since V is finite dimensional,

WV, U) = max | Poyv — vl
vE
l[oll=1

Therefore, the assumption that 6(V,U) = 1 implies that there exists © € V such that
|9]| = 1 and ||Py® — || = 1. This is possible only if Pyt = 0. That is, if o € U*L.
On the other hand, the assumption that §(U, V') < 1 implies that ||Pyu — u|| < 1 for
all u € U and hence that the null space of P = Py |y (Py restricted to U) is trivial.
Since dim(U) = dim(V') = k, the fundamental theorem of linear algebra implies that
P maps U onto V; thus, there exists u € U such that Pu = v. But then

U U
(5) T
|7 () -

<1 = ||Pu—a| < |ul

= [0 —all < jall
= [JolI* + [lall* < flal®
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(where we used §(U,V) < 1 in the first step and © € U* in the last step). Since
|0]| = 1, the last inequality is impossible, and the proof is complete. O

The previous theorem implies that dx (FE}, E ) =0x (E,gj , Ex). It follows, therefore,
that oy (Ej, By ) = §(Ey, E(J )) and it, therefore, suffices to analyze the convergence

of Ox(Ey, E EY )) to zero. The same comments apply to d,: 0, (E, E ) = 0(Ey, E EY )).
Spe(:lﬁcally, we will show that

5X(Ek7Elgj)) O(cj +E§)7
3. (B, BY) = O(cj +¢).

By definition of dx (FE}, E( )) we must show that there exists C' = C} > 0 such that,
for all v € Ej, with ||v||x = 1, there exists w € EV such that

lv —wlx < C(Cj+€?). (4.10)
We will show that the same vector w also satisfies
v —wll. < Clej +¢5)

(albeit with a different constant for C').

We now proceed to show that there exists C' > 0 such that given v € Ej with ||v||.

one can define w € E,(gj ) such that inequality 1} holds. To do this, we will need
some more notation and several preliminary results. Recall that the dimension of X;
is nj; let 7; be the rank of 7;. Then there exist r; generalized singular Value / singular

vector pairs (agj),qbz(j)) of T;. If r;j < n;, extend the set {gb(j) Dio= o1}
to an orthonormal basis {¢§7) 4= 1,2,--- n;} for X;, and deﬁne a(J) = 0 for
i =r;+1,7;42,--- ,n;. It should be noted that {(/ﬁz(j) :i=1,2,---,n;}is orthonormal
with respect to the *;-inner product.

We will write
={i €Z" :a; = ar};
then

Ey = span{¢; : i € I},
E,gj) = span{gbl(-j) vie I}

We will also write J; = {1,2,--- ,n;}.
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Recall that we have defined the operators M : D(L*L) — X and M; : X; — X; by

M =TT+ L"L,

Both such operators are bijections and each has bounded inverse (see Chapter 3). For
each j € Z*, we define the operator A; : D(L*L) — X; by

Aj = M;"Px M.

Here, again, Px; denotes the orthogonal projection onto the subspace X; of X with
respect to the X-norm. Notice that, for any u,v € Xj,

(u,v)s; = (Tju, Tjv)y + (Lju, Ljv)z = (T Tj + LjLj)u, v)x = (Mju,v)x.
Similarly, for any w,v € D(L) such that u € Sy,
(u,v), = (Mu,v)x.
Therefore, for any v € S, and for any v € X, we have

(Aju,v)., = (M; ' Px, Mu,v),, = (Px,Mu,v)x
= (Mu,v)x = (u,v)s,

that is,
(Aju,v),, = (u,v), Yu € Sy , Vv € Xj. (4.11)
The operator A; approximates the operator Ilx; in the following sense.
Lemma 32. For every j € Zt and for every u € Ss,
Iy, = Aull. € 7= ]ulls,
(1 =n)v7
Proof. By Theorem for every x € X,

My M~ — M Py Y, < — .
(I, CUPx )zl < (1_nj)ﬂllxllx

Since M : Sy — X, it follows that for every u € S5,

_ _ n;
[(Tx, M~ = M P ) Mul|, < WHMUHX-
J
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By definition, ||u||s, = || Mu||x. Thus we have

|1y, — Ap)ull. = (L, — M5 Py Myull. = |(ILy, M~ — M Px,) M,
UA
<

— (T=m)y

[ll s

Lemma [26] and Lemma [32] yield the following estimate.

Lemma 33. There exists a constant C > 0 such that for every j € Z*,
1T = Tihjllesayy < Clej +€5)-

Proof. By Lemma | - Ils, is a stronger norm than || - ||, and there exists C’ > 0
such that for every j € ZT,

| T — TiAjllcesoyy < NT — Tillx; || cisoyy + 1T (T, — Aj) |l 2(sa,v
< C'(t; +€3) + 1Tl cnwy ) Mx, — Ajlleese,piy)

Since ”T}HZZ(D(L),Y) S HTHL:(D(L),Y) + tj and tj;nj = O(Cj), it follows that

1T — TiAjlleesayy < C'(t5 + €5) + 1Tl coyn 1Hx, — Ajllse,niy)
< C'(t; + €3 + (Tl ey + t5) 2 = O(cj +€3).

(I =)V

This completes the proof. n

Let v € E} such that ||v||x = 1. We now define w € E,gj) by
w =T Ajv
E]i]) 7%
where Hg()j) X — E,Ej) is defined to be the orthogonal projection of X; onto E,gj)
with respgct to the *;-inner product defined on X;. By the triangle inequality,
[o —wllx < llv—=Apllx +[[Av —wlx. (4.12)

We first consider the first term to the right of inequality (4.12)) above. We already
know that

Hv — HX].UHX < <€?||v||s2 Yo € B, C Sy
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and

HU — HXjU . < €jHU||52 Yv € B, C Ss.

Therefore, since Ej, is a finite-dimensional subspace of Sy, there exists a constant
C’,gl) > ( such that

2

ve B Ilx =1 = [o— T, < e

(NS Ek:7 HUH* =1 = H'U — l_IXj’U”>|< S Clgl)éfj
Putting this together with Lemma we have the following lemma.

Lemma 34. For every v € Ey such that ||v||x = 1,
o — Ajullx = O(c; +€7) , flv— Aol = O(c; + ;).
Proof. By the triangle inequality,
o = Ajullx < [lo —IIxvlx + [y, — Aj)vllx
From the above argument together with Lemma |32 we have

lv =T ollx + [(Mx, = Aj)vllx < flo =Ty ollx +~7 2|y, = Aj)oll.

<oWery s
k =j (1_7]].)7” H 2
o]
N X
(1—m)y "
—eW2 o
TR (L=

< COMe? 4

Here, such a constant C’,E,Z) > 0 exists because X is a finite dimensional space and,
therefore, all norms on X; are equivalent. Since 7; = O(c;), it follows that

0(2)—773' = O(c;).
STy 0@

Therefore, we have

1y
v — Ajoflx < CVe2 0P —H
J k <3 k (1 . 77]')7
= O(Cj + E?)

Similarly, we have that

[ = Ajulle < flv = Txoll + [[(Tx, = Aj)vll.
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|
’UHS .
(I=m)y"

S Clil)Ej +

By exactly the same argument as above, it then follows that
lv = Ajulls = O(c; + €;).

]

We now consider the second term ||Ajuv — w| x to the right of inequality (4.12). By
our coercivity condition (1.9)), we have that

1A 0 = wllx <3772 [ Aj0 —wll,.
Therefore, it suffices to prove that
A0 —w||, = Olc; + 7).

Notice that Aju —w € X;. Therefore, as a consequence of Corollary , we have

— A0 — wll,

1
1Aj0 — ]} <
L =n;
Before we prove that [|[Aju — wl[., = O(c; + €7), we need the following result.
Lemma 35. For each k € Z™, the quantity
) — max —1 c1 € J\I
P 2 _( j)2 ' J\k

ap — @

is bounded by a constant C for all sufficiently large j € Z*. In other words, there
exists C' = Cy, > 0 such that for all j € Z* sufficiently large,

) <C.
Proof. The proof is similar to that of Lemma 7 in [15]. O

The next result shows that the quantity ||Ajv —wl|,, can be bounded by a constant
times the quantity ||(A;7#T — @#jﬂAj)v\|fj for sufficiently large j € Z*. Using
previous results, we can then show that this upper bound converges to 0 at a rate at
least as fast as O(e3 + ¢;).

Lemma 36. For every j € 7",

1A 0 —wll, < PP II(ATHT — T TiA )] .,
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Proof. By definition, w = ngj)/\jv, where Hgﬁﬁ is the orthogonal projection of X;

onto E,gj) with respect to the *;-inner product defined on X;. Since E,(gj) = span{gbl(-j) :
i € I}, we can express these vectors as

Ajv - Z<¢§j)? Ajv>*j¢§j) y W= Z<¢§j)’ Ajv>*j¢z(j)‘

iEJj i€}

Taking the difference then gives

1A= w2 = 3 (6P, A2

iEJj\Ik
For i € J;\I};, we have
. , N2, N2
a6, TP TA )., = af (o) (6, Aj0)., = af () (61, v).
N2
= (o) (@9, 7#Tv).
N2,
= (a?) (o, A T#T0).,.
N2
Subtracting (aﬁ”) <¢§J), Tj#j’_Z}Ajv)X from each side of the equation above, we have
. , _ N2 ,
(2 = (@)?) @2, T T A0, = (o) (0, (ATHT =TT, )0).,.

Therefore, for any i € J;\ 1},

1 ; . 1 ; .
< o 2<¢§])77}#]7}AJ’U>*J- = W(éy), (AjT#T — 7}#37}/\]-)10*]..

Therefore, we have

1o —wl2 = Y (67, )2

iEJj\Ik
2
1 : .

= > | ot A,

i€\ I (aij >

2
1 A "

= Z W@E]), (A THT — T TiA ).,

ieJ\I, \ ai — (q; )
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. . _ 2
< 3 (WD, (THT - TP T A,

iEJj\Ik

N 2 _
< (o) I TPT =TT Ao,

This completes the proof. n

We want to show that |[(A;7#T — Tj#jTjAj)vH*j = O(cj +¢€5). Let y € Ej, such that
lyllx =1, and let z € X;. Then
(z, (N TH#T — ]}#jJ}Aj)y>*j
= (2, N\ T#Ty)., — (2. T TyA ),
= (T, Ty)y — (Tix, TiAjy)y = (T =Tz, Ty)y + (T, (T = TiA;)y)y .
Therefore,
(z, (N THT — Tg#jTjAj)y>*j

(T =T;)x, Ty)y + Ty, (T = TiA;)y)y
< (T =Tpzlv I Tylly + 1 T3lly [[(T = T5A;)ylly-

As a consequence of Lemma there exists a constant C’ > 0 such that for every
j € Z* and for every u € Ss,

(T = TiAz)ully < C'(c;+ &) lulls,.
From this, it then follows that
1T = Tl I Tylly + 1Tl (T = Tyl
< tll2ll TN e lyllx + (1 + )27 (e; + D llylls, -

Since FE} is finite dimensional, all norms on E, are equivalent. Thus, there exists
C” > 0 such that for every u € Ey, C'||ul|s, < C"||u||x. Therefore, we have

tillll T e lyllx + C'(c; + €)X+ ) [l lylls,
< tillall Tl e lyllx + X+ £)C"(e; + &)zl Nyl x

< (KTl ey + (1 +8)C"(c; + €7)) ]l -

L —mn;
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Hence,

(@, (NTHT — T TN ), < | (G1IT ey + (1 +1)C"(c; +€2))

1
—=—| llls,-
V3=

(4.13)
Since t; = O(c;) and n; = O(c;) as j — oo, it follows that
1
TN 2xyy + (L4 15)C" (¢ + €3)) Nl O(¢j + €3).
j
Therefore, there exists C' > 0 such that for all j € Z* sufficiently large,
" 2 1 2
(T ey + (L+85)C"(c; +€3)) N < Clg +¢j).
J
We then combine this with inequality (4.13]) to give
(@, (\THT = T TA ) )yh, < Cle + £3) ., (4.14)

Notice that the constant C' does not depend on the choice of y or z from above. With
inequality (4.14)), we can prove the following theorem.

Lemma 37. Let k € Z". Then there exists C = Cy, > 0 and j, € Z* such that for
every v € Ey with ||v]|x =1 and for all j € Z* with j > ji ,

#;j
IATH*T — THT A o, < Cley +22).

Proof. Let v € Ej, such that ||v]|x =1, and let z = (A;T#T — Tj#jTjAj)v. Then

HZH*J = sup <x7’z>*j
CEEXJ'
ll]l+ ;=1
— # #i
= sup (z, (AT7T =TV TiAj)v).,,
.Z’GXJ'
llz]l«;=1

and the previous theorem gives us the desired bound for sufficiently large j. O]

From Lemmas [34] [36] and [37 it follows that there exists C;, Cy > 0 and j;, € Z* such
that for all j € Z* with 7 > jp,

[ = wlx < lv=~Awllx + 140 —wllx
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1

< o = Agollx + —=——|lAsv = w].,
(L —=m;)y
1 ; .
<G+ ) + ———— (ANNTHT = T TN o)l )
(L —=mj)y

< Ci(E+¢) + (b Cales + )

1
(I =m)\v7

(j)C
= C1+L (€J2»+cj)
(T =)y
S C(Cj +€?),

where C' > 0 is a constant depending on k.

Since Ej, is a finite-dimensional subspace, the preceding lemmas hold if we assume
that ||v]|. = 1 instead of ||v||x = 1. If the term ||v — w||x is replaced with ||v — w||,
the same reasoning above using properties of norms and Lemma [34] shows that if we
assume that v is chosen from Ej such that ||v|l, = 1, then there exists a constant
C3 > 0 such that for all j € Z* sufficiently large,

v —w|l. < Cs(c; + &5).

In this bound, we only have ¢}, as oppose to 5?. This is a consequence of Lemma
since the x-norm is stronger than X-norm from the coercivity condition . These
results Justlfy the following theorem about the rate of convergence of the gap between
EkandE] to 0 as j — oo.

Theorem 38. Let k € Z* be given. Then there exists a constant C = Cj, > 0 such
that for any v € Ey with ||v||x = 1 and for all j € Z* sufficiently large, there exists
w e E,E,J) satisfying

o —wllx < Cle; +€3),
v —w|. < Cle; + ;).

In terms of gap, it follows that for all j € Z sufficiently large,

(5 (Ek, ) C(Cj‘{'&?),
5 (Ek, ) C(Cj —f—Ej).

Using Theorem [38] we are able to derive the rates of convergence of the other gener-
alized singular spaces. To do this, we define, for each k € Z™, the following spaces:

Fy, = span{¢; : i € I},
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F,Ej) = span{wi(j) i€ I},
Gy =span{f; : i € I},
G,&j) = span{@l(j) i€ I}

Using the GSVE’s of (T, L) and (T}, L), it is clear that for any k € Z,

The next theorem gives a rate of convergence of F,ﬁj ) to Fy and of G,(j ) to Gy as
7 — o0.

Theorem 39. Let k € My be given. Then there exists a constant C' = Cy > 0 such
that

(B, F) < O(ej + €2) and §(Gy,, GY) < C(e; +<).

Proof. Let k € My. Then T'|p, : E, — Fy and L|g, : E, — G, are bijections. In [11],
it is proven that the space F; ,ij ) converges to Fj and G,(j ) converges to G as j — 00
when k € M,. Therefore, the respective gaps between these spaces is less than 1 for

j € Z" sufficiently large. Thus, it follows that for sufficiently large j € Z*,

6 (Fi ) =0 (R FY).
5<GhG£):5<GMG£).
By definition of the asymmetric gap,

J (Fk,F,gj)> = max min Hu—va
= max min ||[Tu—|y.

Tl EF

When T': E), — F}. is understood to be restricted to Ej, we will just write T instead
of T'|g,. This map defines a bijection of finite dimensional spaces and therefore has a
bounded inverse T~ : Fy, — Ej. Suppose that u € Ej, such that ||[Tu|ly = 1. Then,

lullx = 1T Tullx <77 M| mol Tully
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= 1T 2(m,20)-
Then

1T~ 25, 5)

1<
[Jullx

From this, it then follows that

T _
max win |Tu—vly < max min o beypny oo
u€Ey gl ue veFY) HUH 7
1 Tully=1 k u

From Theorem [3§ it follows that there exists a constant C’ > 0 such that for any
u € By with ||ul| < |77 2y, B, there exists w € E,gj) such that for all j € Z*
sufficiently large,

lu—w|x <C'(¢; +¢3),
Ju—wl. <C'(c; +¢5).

Since Tjw € F,gj), we have

1T o0 max min [|[Tu — vy < T 2,50 max [T —Tywlly
ue vEFJ cr
[l x ||HHX 1
<NT N e(re B0 max (1T ecxonllu — wlx + (T = Th)w|ly)

”u”X 1

< T Y e(rm) (l\Tflz(X,Y)C'(Cj +e)+

t.
—=|lvl: | -
V3=

t:
The term —=2—||v||, at the end of this inequality follows from the fact

VT

(T = Ty)wlly <tjllwll. <
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Since E} is a finite dimensional space, it follows that all norms are equivalent on Ej.
Also, t;(1 — ;)72 = O(c;) as j — oco. Hence, there exists a constant C; > 0 such
that for any v € Ej, with [|v||x = 1 and for all j € Z" sufficiently large,

_ t
1T 20 (HTHz(X,Y)C/(Cj +ej) + +I|v||*> < Cilgf +¢j).

V1=

Thus, it follows that for all j € Z* sufficiently large,

5 (Fk,Fk(j)) = max min |u —v|y = max min ||Tu — vy
fuly 21 vEF ITally=1 €T

_ tj
<7 M (HTHﬁ(XY)C'(Cj +ef) + +!\U|1*>

\/1_773

< Ci(c; +€3).

We now prove a rate of convergence of the spaces Gg ) to G as 7 — o0o. Again

considering only the asymmetric gap ¢ (Gk, G,(cj )>, the same argument above gives

) (Gk,G,(j)> = max min ||u—vlz
ueGy ’L)EG(j)
ullz=1"""*

< I erm max (IZllewwlle = wll. + (L = Lwllz)

flullx=1

where w is the same as above. By the same argument as above together with Lemma
[34] it follows that there exists a constant Cy > 0 such that

5 (G GP) < I etum max (1Ll el — wll, + (= Lywllz)
flullx=1

< CQ(C]' + €j>.

By letting C' = max{C}, Cs}, the theorem is then proven. ]

In the previous theorem, the assumption that k& € M is necessary for the spaces G,(cj )
to converge to Gy, at the rate provided in the theorem. When k € M, = N (L), the

space Gy, of left generalized singular vectors in Z is trivial, and the gap between G,(j )

and G}, is either 0 or 1, depending on whether G,(f ) is trivial or not. Therefore, a rate
of convergence is not sensible when k& € M,. Also, one should notice that the rate of
convergence of G,(f ) to G as j — 00 is one order of ¢; worse than the convergence rate

o8



of the other singular spaces. This follows from the possibility of L being unbounded
with respect to the weaker norm || - || x. Hence, in the derivation above, the quantity
| L(v—w)]||y must be compared to ||v —wl||, instead of ||v —w||x, which yields a worse
rate of convergence.
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Chapter 5

Higher-order convergence and
future work

The theory established in Chapter 4 proves the orders of convergence observed in
Example (3| for the corresponding generalized singular values and vectors. In this
example, X; was the discretization of the space X = H'(0, 1) using continuous piece-
wise linear finite elements on a mesh with elements of length h = 1/j. The rates of
convergence for the generalized singular values were as follows:

‘a,(f) — ak‘ = O(h2) as j — 00,

b,(cj) - bk‘ = O(h?) as j — oc.

Also, the following rates of convergence for the generalized singular functions were as
follows:

@ _ _ 2 .

Hqﬁk Ok o) O(h*) as j — o0,

Hw(j) — g = O(h2) as j — 00
k £2(0,1) ’
@) _ _ ;

HQk Oy on O(h) as j — oo.

If we consider this same example, but with X; and Y} the space of continuous piecewise
quadratic finite elements, and Z; the space of piecewise linear finite elements (not
necessarily continuous), we then observe the following rates of convergence for the
generalized singular values:

= O(h*) as j — oo,

‘a,(j) — ag

) — bk‘ — O(h®) as j — oo
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Also, the following rates of convergence of the generalized singular functions are
observed to be

(9) _ =0 h3 .
“¢k P £2(0,1) (1) as j = oo,
[ =], = OB as 5 = oo,
() _ 2 :
Hﬁk — O o O(h®) as j — oo.

Similarly, if we let X; and Y; be the space of continuous piecewise cubic finite elements,
and if we let Z; be the space of piecewise quadratic finite elements (not necessarily
continuous), we observe for the generalized singular values,

a,(j) — ak‘ = O(h') as j — oo,

b — bk‘ = O(h?) as j — oo,

and for the generalized singular functions,

@ _ _ 4 .
|60~ o oy = O a5 = oo,
Hwk Vi £2(0,1) (1) as j = oo,
oY) _ g — O(h3 ' .
[0 =01 1, = OO 25 > o0

The theory of Chapter 4 is based on the assumption that there exists a sequence of
positive real numbers {¢;} such that ¢; — 0 as j — oo and

Mx,e =zl < gjllzlls,, Vo€ S,

A generalization of this assumption would make sense if we are using higher order
finite elements. We begin by defining the sequence .S,, of Hilbert spaces ordered by
containment. Since M : D(L*L) — X is densely defined, self-adjoint, and strictly
positive, it has a square root A = M2, We define

M = ﬁ D(AF).

k=0

Then, by Lemma 8.17 of [6], M is dense in X, and we define

(@.y)s, = (A", Ay)x , ||zlls, = [A%2]x , Yo,y € M.
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It is easy to see that (-,-)g, defines an inner product on M, and we define Sy, to be
the completion of M with respect to the norm || - ||s,. We say that the collection of
spaces {Sy : k € Z,k > 0} is the Hilbert scale define by A. By definition, Sy = X.
we also have that S; = D(L) and the definition of S is consistent with that given in
chapter 4. Further, the sequence of norms || - ||s, is increasing in strength as k — oo.
This is summarized in following theorem.

Theorem 40.
1.) Sy =D(L) and (-,-)s, = (-, )«

2.) For every n,m € Z such that m > n > 0, it follows that || - ||s,. is a stronger norm
than || - ||s,, and Sy, is a dense subspace of S, with respect the norm || - ||s,, -

Proof. To prove (1), let x,y € D(L*L). Since M is self-adjoint with respect to the
X-inner product, it follows that A = M2 is also self adjoint with respect to the
X-inner product, and

<$ay>51 = <A$,Ay>x = <M1/2$aMl/2y>X = <x>My>X = <$7y>*

By Lemma [23| from Chapter 4, Sy is dense in D(L) with respect to the norm || - ||..
Thus, it follows that for every z,y € D(L),

<x7y>51 = <Z‘,y>*.

For a proof of (2), see [6], Proposition 8.19. O

We now make the following assumption about the discretizations X;: There exists a
sequence of positive real numbers {¢;} and a positive integer n such that ¢; — 0 as
7 — oo and

Mx,z — x| < M|zl 50,1 V2 € Sgy1 , Vk € Z such that 0 < k < n. (5.1)
Theorem 41. For every x € Ski1,

MLy, z — z[|x < Eer1||x||5k+1 , Yk € Z" such that 0 < k < n. (5.2)

Proof. Let x € Sgy1, and define & = Ilx,z and w = M~z — ). Then w € S, and



< flw = x;w| ||z — 2.
Since w € Sy and x € Sy, it follows from ({5.1)), that
Hw - HijH* < Eij”SQ ) HLE - j”* < €§‘|$|’Sk+l'
Therefore, we have
|z —2[[x < [Jw—1ILx, ||z — 2|

< (gjllwlls,) (5|l s )

=i wll s llzlls,

= i | Mwl| x| z]|s,,,

=i M (MY = 2)) [ x 2 s

= eft |z — 2| x|l]ls.,-
After eliminating a factor of || — Z||x from each side of the inequality, we have
Iz = 2lx < efH2lsy,,
L]

In the case that the generalized singular vectors of the operator pair (7, L) are in the
space S,+1, where n is defined in our discretization assumption above, the following
theorems can be proven by following the analysis of Chapter 3.

Theorem 42. For each k € Z*, there exists constants Cy and Cy such that for all
sufficiently large positive integers 7,
ap — Cl(Cj + €?+1) < a,(cj) S ar + OQCj. (53)

Theorem 43. Let k € Z* be given. Then there exists a constant C = C), > 0 such
that for any v € Ey with ||v||x = 1 and for all j € Z" sufficiently large, there exits
w e E,(f) satisfying

lv —wllx < Cle; +e5*),
lo —wll. < Cle; + 7).

In terms of gap, it follows that for all j € Z sufficiently large,

Ox(Er, B) < Clej + 5™,
0. (B, BY)) < Clej + ).

Theorem 44. Let k € My be given. Then there exists a constant C' = Cy > 0 such
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that

(i, FY) < Clej + i,
(G, GY) < C(c; +€m).

The proofs for these theorems depend on the right generalized singular vectors ¢y
being in S,, 41 for each k € Z*. Let ¢, be a right generalized singular vector of (7', L).
Then

Tor = arr, THp = apoy,

where ap > 0. Putting both of these things together, we have
T#T¢y, = iy,

Therefore, using the fact that T#7 = M~'T*T, it follows that
1 — 1%
b = — M\ T .
aj

It is clear that ¢, € Ss, but in order for ¢ € S,,, it must follows that T*T'¢, € S,,_s.
This assumption may be rather strong for a few reasons. One reason is that T*T
may not be smoothing with respect to the operator L*L. In other words, it may be
that T*T does not map S; back into .S; for some integer i. Another reason is that the
functions in S; may have to satisfy more and more boundary conditions as ¢ becomes
larger. Such boundary conditions arise, for example, when T is the solution operator
to the Laplace equation.

The analysis for these observed rates of convergence is still incomplete. The above
issues suggest that further assumptions may need to be made pertaining to the dis-
cretization. If this is so, then it should be possible to find a compact operator T" such
that even with higher order elements, convergence of the generalized singular values
and vectors should be no better than O(h?) for some a fixed integer p, regardless the
order of the finite elements used.
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