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Abstract 

Connected and autonomous vehicles are becoming the major focus of research for the 

industry and academia in the automotive field. Many companies and research groups have 

demonstrated the advantages and the requirement of such technology to improve the energy 

efficiency of vehicles, decrease the number of crash and road accidents, and control 

emissions. 

This research delves into improving the autonomy of self-driving vehicles by implementing 

localized path planning algorithms to introduce motion control for obstacle avoidance 

during uncertainties. Lateral path planning is implemented using the A* algorithm 

combined with piecewise Bezier curve generation which provides an optimum trajectory 

reference to avoid a collision. Model Predictive Control (MPC) is used to implement 

longitudinal and lateral control of the vehicle. The data from vehicle-to-everything (V2X) 

communication infrastructure is used to navigate through multiple signalized intersections. 

Furthermore, a new method of developing Advanced Driver Assistance Systems (ADAS) 

algorithms and vehicle controllers using Model-In-the-Loop (MIL) testing is explored with 

the use of PreScan®. With PreScan®, various traffic scenarios are modeled and the sensor 

data are simulated by using physics-based sensor models, which are fed to the controller 

for data processing and motion planning. Obstacle detection and collision avoidance are 

demonstrated using the presented MPC controller. The results of the proposed controller 

and the scope of the future work conclude the research. 
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1 Introduction 

The major causes of road accidents in the United States in 2016 were reported due to driver 

distraction and driving-related accidents [1] as shown in Figure 1.1. One of the major ways 

the automotive industry and academia are focusing their research efforts to mitigate such 

fatalities is by heavily investing in research on autonomous and connected vehicles. By 

implementing Advanced Driver Assistance Systems (ADAS) technologies, majority of the 

driving-related accidents can be mitigated [2]. There has been an increasing demand for 

ADAS and self-driving technologies in the automotive industry due to increasing customer 

demand and stricter regulation to improve safety standards in automobiles.  

 
Figure 1.1: Statistics of safety concerns while driving in the U.S. [3] 

                                                 
The material contained in this chapter has been accepted for publication to the International Design 
Engineering Technical Conferences & Computers and Information in Engineering Conference, ASME, 2019. 
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With the advent of Waymo One [4] self-driving taxi in Arizona shown in Figure 1.2 and 

Tesla’s Autopilot [5], ADAS has become more popular than before. The technical 

breakthrough in the field of perception sensors and computational power in automobiles 

has advanced the level of autonomy possible in automobiles. Levels of automation in 

automobiles are classified based on the SAE standard referred in [6]. As per the standard 

the vehicles on road will be classified as SAE level 2 as it is considered to be partial 

automation since they require constant driver supervision of the surroundings at all times.  

 
Figure 1.2: Waymo’s self-driving taxi in Arizona. Image Source: By Dllu - Own work, CC 
BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64517567 

Though there is no production vehicle that can be classified as SAE level 3 or beyond in 

the United States, the concept of a fully autonomous vehicle has been demonstrated in 2007 

at the DARPA Urban Challenge [7]. The event requires teams to build and demonstrate a 

fully autonomous vehicle capable of navigating itself through numerous urban driving 

scenarios [8]. Six of the participant teams were able to complete the challenge without any 

human intervention. These six teams used various methods for path planning and motion 

control, which were implemented using various onboard sensors and computers. The 

practicality of such methods in the automotive industry can be realized now more than ever 

https://commons.wikimedia.org/w/index.php?curid=64517567
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due to the advancements in the onboard computational technology for sensor data 

processing. 

1.1 Literature Review 

This section is used to review some of the relevant literature in the field of self-driving 

vehicles, which provides valuable information on the aspects of decision making, path 

planning, and motion control, particularly for the autonomous systems that can be 

classified as level 3 and above. 

1.1.1 Vehicle Control 

Several methods have already been implemented by the automotive industry to achieve 

longitudinal and lateral motion control. Article [9] introduced longitudinal control to 

follow the lead car using vision-based sensors. Article [10] introduced methods of velocity 

prediction based on tire forces estimation and [11] demonstrated the implementation of 

adaptive cruise control (ACC) using model predictive methods. The lateral motion of a 

vehicle was achieved using the Pure-pursuit method [12], which is suitable for a non-

holonomic system such as a vehicle steering. The pure-pursuit method was also used by 

three of the six finalists of the DARPA Urban challenge as reported in [7]. Another 

trajectory tracking methodology based on a control Lyapunov function was used in [13]. 

Further, a comparison of various control methods for lateral motion control was given in 

[14]. 

1.1.2 Motion Planning 

The DARPA Challenge participants also demonstrated the use of various motion planning 

algorithms, which were deployed to facilitate the decision-making process for these 

autonomous vehicles. The winner of the challenge was Carnegie Mellon University’s team. 
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The team demonstrated trajectory generation in a 4-dimensional configuration space 

combined with Anytime D* algorithm to achieve obstacle avoidance [15]. Stanford’s team 

who was the runner-up team of the competition used a search strategy term called Hybrid 

A*, which is a variant of the A* algorithm with motion primitives for application on non-

holonomic and continuous systems [16]. Virginia Tech’s team finished third in the 

competition and used A* algorithm for route planning and a graph construction process of 

all the possible maneuvers. An arbitration method was implemented to select the optimum 

maneuver that was tracked by the controller [17]. The vehicle developed by MIT used a 

variation of an existing incremental tree-based search method known as Rapidly-exploring 

Random Tree (RRT) introduced in [18]. The variant used by MIT was called closed-loop 

RRT with biased sampling [19, 20]. Further motion planning algorithms have been 

introduced for planning the path of autonomous robots and unmanned aerial vehicles 

(UAV’s) such as RRT* [21] and a computationally faster version of the RRT* known as 

the Batch Informed Trees (BIT*) as introduced in [22]. 

1.1.3 Connected Vehicles 

The increasing availability of wireless communication technologies, which facilitates 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) via technologies such as 

Dedicated Short Range Communication (DSRC) [23] enables communication and data 

exchange from other vehicles and also real-time traffic information from road-side units 

(RSUs) such as signalized traffic intersections and congestion monitoring units. The 

improvement in the efficiency of a vehicle powertrain by optimizing the velocity profile in 

connected cars is demonstrated in [24]. Improved fuel economy and reduced CO2 

emissions in vehicles utilizing upcoming traffic signal information is demonstrated in [25]. 

Further, an algorithm to extract the traffic signal phase data from the original SPAT (Signal 

Phasing and Timing) messages, which is periodically broadcasted by the intersection is 

discussed in [26]. 
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1.2 Decision-Making Process in Autonomous Vehicles 

This section is used to describe the decision-making process that takes place in an 

autonomous system. Various aspects of this process have to be executed by driverless cars 

to complete any particular maneuver. These decisions are made based on the data from 

various onboard sensors such as Radar, LIDAR, camera/vision systems, Global Positioning 

Sensors and Inertial Measurement Units (GPS/IMU) and V2X communication modules. 

The data are used to automatically select an appropriate driving behavior, which then plans 

a motion trajectory and calculates the values of the control variables to execute the 

maneuver. These decision-making tasks are broadly classified into the following categories 

and the process chart is shown in Figure 1.3. 

 
 
Figure 1.3: Flowchart depicting the decision making process in self-driving vehicles 
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1. Route Planning: involves selecting the shortest or most optimum route based on 

the distance to destination and time of travel. This also uses real-time traffic and 

road data to change routes accordingly. A map is used to generate the most optimum 

route based on the starting point and destination and this route is optimized based 

on the real-time data. 

 

2. Behavioral Decision Making: Once the optimum route is planned, a decision 

making layer is used to select a driving behavior based on the sensor data, traffic 

information and other participants. Using the perceived data, different driving 

behaviors are employed for various road segments and traffic conditions. This layer 

of the algorithm can be tuned to closely replicate human driving behavior. Machine 

learning and Gaussian matrix models are usually used for prediction of surrounding 

vehicles’ states and to plan the trajectory accordingly. 

3. Motion Planning: Based on the selected driving behavior, a path planning 

algorithm is required to generate an optimum trajectory for completing the driving 

maneuver selected by the decision making layer. The generated path acts as a 

reference to the vehicle controller. The generated path has to be dynamically 

feasible for a non-holonomic system and should also be comfortable for the 

passengers. Collision avoidance strategies are also deployed in this layer. 

 

4. Vehicle Control: A closed-loop feedback control system is required for controlling 

the longitudinal and lateral motion of the vehicle. This layer is responsible for 

tracking the trajectory generated by the path planner by determining the appropriate 

values for the control variables. 

The scope of this research is limited by focusing on a novel path planning algorithm, 

vehicle control method, and MIL testing of the control algorithm. 
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1.3 Research Objectives and Contributions 

Though many path planning algorithms were introduced for self-driving vehicles as 

mentioned in section 1.1.2, these methods were not practical to use in real-time as they are 

computationally expensive. The vehicles come to a complete stop and the planning 

algorithm is executed to find an alternate path. This solution is not practical for real-world 

driving situations, where the self-driving vehicle are required to immediately react to any 

kind of obstacle in the path. The objective of this research is to introduce a simple planning 

algorithm combined with a closed-loop feedback controller that is computationally 

efficient and can be implemented and tested in real-time.  

This research proposes the use of model predictive control for throttle, brake and steering 

control of an autonomous vehicle. The route to be followed is assumed to be generated 

from the map data. The obstacle state i.e. location, orientation, and velocity is obtained 

using the camera and vision sensors included in the PreScan® sensor library. The A* 

algorithm combined with piecewise Bezier trajectory generator is implemented for real-

time localized path planning and obstacle avoidance by defining the desired lateral position 

of the vehicle. The trajectory generator defines the desired lateral position of the vehicle. 

The desired longitudinal position is determined based on the user-defined velocity 

command and the lead vehicle velocity. Physics-based communication transceivers are 

used for data exchange from road-side infrastructure to determine the signal phase and 

stop/go motion is achieved accordingly. The controller is tested for various traffic scenarios 

using PreScan® to validate the controller design. 

The proposed control algorithm can be implemented in real-time as it is computationally 

faster and more efficient to run. The control algorithm is tested using PreScan® in a fixed 

time step using Model-in-the-loop (MIL) methods. 
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To implement a computationally efficient and optimal path planning algorithm it is 

essential that the obstacle data obtained from the sensors are accurate. Using the obstacle 

data the A* algorithm is executed to find an optimal path avoiding the obstacles in the path. 

This path is converted into a trajectory using Bezier curves. The implementation of the 

proposed algorithm is further detailed in Chapter 2 of this report. 
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2 Path Planning 

Path Planning is an important aspect of an autonomous vehicle. It can be categorized into 

global and local path planning. Global path planning or route planning is based on the 

current position of the vehicle, user-entered destination, and a map of the surrounding 

region. An economic route is selected to reach the destination by traversing the minimum 

distance. Local path planning or motion planning is localized to a particular situation based 

on the surrounding environment. It is usually done to change lanes or avoid obstacles on 

the route. Global path planning is beyond the scope of this paper and an optimal route is 

assumed. Local path planning is achieved with the help of the A* algorithm. 

A* is a graph search method introduced as a graph traverser algorithm for an automated 

robot [27]. It is used to find the best path on a graph but is computationally efficient by 

making use of a heuristic approach [28]. The algorithm requires some predetermined 

information such as the current location of the ego vehicle, the obstacle location, and the 

target position.  

2.1 Obstacle Data 

The obstacle data are obtained with a physics-based model of an object camera sensor 

available in the PreScan® software. The data are generated on the basis of the infrastructure 

and the scenario that is created by the PreScan® GUI. The object camera sensor is modeled 

to represent a system that contains a camera and an image processing unit. This sensor 

determines the longitudinal distance (𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜) of the object and the lateral position (𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜) with 

respect to the sensors location on the ego vehicle. For a moving object, the sensor can be 

                                                 
The material contained in this chapter has been accepted for publication to the International Design 
Engineering Technical Conferences & Computers and Information in Engineering Conference, ASME, 2019. 
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used to determine the relative velocity of the object with respect to the velocity of the ego 

vehicle. 

The sensor is also able to generate coordinates of the position of an object with respect to 

the image captured by the camera unit. The data are used to determine the actual width of 

the object. Screen coordinates range from -1 to 1 in both horizontal and vertical directions 

and the center of the image is considered to be the origin as illustrated in Figure 2.1. Only 

the on-screen part of an object is taken into account and any non-visible parts of the object 

are omitted. 

 
Figure 2.1: Representation of data obtained from the PreScan® sensor model 

(-1, 1) 

(1,-1) (-1,-1) 

(1, 1) 

(0, 0) 

 𝑤𝑤𝑟𝑟 = 𝐿𝐿2  𝑤𝑤𝑙𝑙 = -𝐿𝐿1 
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From Figure 2.1, the on-screen width (𝑤𝑤𝑖𝑖𝑉𝑉𝐹𝐹ℎ𝑜𝑜𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠) of the obstacle can be estimated as the 

difference of the X-coordinate of the right edge (𝑤𝑤𝑟𝑟) and the X-coordinate of the left 

edge (𝑤𝑤𝑙𝑙) of the obstacle. The actual width of the obstacle is obtained using eqn. (2.1). 

 𝑤𝑤𝑖𝑖𝑉𝑉𝐹𝐹ℎ𝑎𝑎𝑠𝑠𝑎𝑎 = tan �
𝐹𝐹𝐹𝐹𝑉𝑉

2
� ∗ 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑤𝑤𝑖𝑖𝑉𝑉𝐹𝐹ℎ𝑜𝑜𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 (2.1) 

Where 𝑤𝑤𝑖𝑖𝑉𝑉𝐹𝐹ℎ𝑎𝑎𝑠𝑠𝑎𝑎 is the actual width of the obstacle; FOV is the camera beam’s field of 

view. This actual width (𝑤𝑤𝑖𝑖𝑉𝑉𝐹𝐹ℎ𝑎𝑎𝑠𝑠𝑎𝑎) is used in the A* algorithm to mark the position of the 

obstacles. The width data combined with the obstacle position is used to plan a path for the 

ego vehicle such that any collision is prevented. Since the algorithm assumes the ego 

vehicle as a point in one of the nodes of the map, the size of the ego vehicle should also be 

considered.  

To compensate for the size of the ego vehicle, the width of the obstacle is increased by the 

track width of the ego vehicle. This additional width is added only to the obstacles that are 

directly in front of the ego vehicle. This prevents unnecessary deviation from the path due 

to obstacles that are not in the path of the ego vehicle. Once all the required obstacle data 

is obtained, the data is fed to the path planner and a path is planned using the A* algorithm 

which is described further in section 2.2. 

2.2 A* Algorithm 

To implement the algorithm, the complete road space is converted into a grid with squares 

or nodes of size 1m. Each node represents the possible positions of the vehicle and a target 

position is calculated such that the target is saturated to a node that is 30 m ahead of the 

vehicle position node. This maximum distance (𝑥𝑥𝑚𝑚𝑎𝑎𝑚𝑚) is selected based on the 

computational efficiency and the sensor range.  
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The algorithm calculates the cost function (𝐷𝐷(𝑖𝑖)) for every possible node. This cost is the 

sum of two costs associated for every node. The first, is the cost to reach a future node 

(𝑥𝑥(𝑖𝑖)) and the second term (ℎ(𝑖𝑖)) is the cost to reach the target node from the future 

node.  The cost function is the sum of 𝑥𝑥(𝑖𝑖) and ℎ(𝑖𝑖) represented by 𝐷𝐷(𝑖𝑖) as shown in eqn. 

(2.2). 

 𝐷𝐷(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) + ℎ(𝑖𝑖) (2.2) 

Consider the present path planner node, represented as (𝑥𝑥1,𝑦𝑦1) and a future node which is 

being considered, represented as (𝑥𝑥2, 𝑦𝑦2).  Let the target node for the path planner 

be (𝑥𝑥𝑎𝑎, 𝑦𝑦𝑎𝑎). The cost (𝑥𝑥(𝑖𝑖)) and (ℎ(𝑖𝑖)) is determined using eqn. (2.3) 

 𝑥𝑥(𝑖𝑖) =  �(𝑥𝑥2 −  𝑥𝑥1)2 +  (𝑦𝑦2 −  𝑦𝑦1)2 

ℎ(𝑖𝑖) =  �(𝑥𝑥𝑎𝑎 −  𝑥𝑥2)2 +  (𝑦𝑦𝑎𝑎 −  𝑦𝑦2)2 
(2.3) 

This cost function is evaluated for all the possible nodes of the discretized configuration 

space. The nodes with the minimum cost function are connected to form the most optimal 

path to reach the target position. For any given node (𝑖𝑖, 𝑗𝑗) there are eight possible 

successors as shown in Figure 2.2. To keep track of the nodes occupied by obstacles and 

the nodes for which the cost function has already been evaluated, the cost data is stored for 

each of the possible future nodes using lists. 
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Figure 2.2: Possible future nodes are highlighted for a node (i, j) 

 

The algorithm maintains two lists known as the Open and the Close list. The open list 

consists of the nodes that have been visited but successor nodes have not been explored. 

The close list consists of the nodes that have been visited and its successors have been 

found. The nodes containing any obstacle obtained via the sensor is also added to the Close 

list. The successor node that is yet to be explored is added to the Open list and the list is 

populated until an optimum successor node is found. This process is repeated until the 

successor node is the target node. Once the target node is reached, the optimal path is 

obtained by tracing back the parent nodes with the minimum cost to obtain the optimal 

trajectory by avoiding obstacles. 

This optimum path obtained from the algorithm consists of waypoints to be followed so 

that the vehicle reaches the target position by avoiding obstacles. Though these waypoints 

represent the optimum position for the ego vehicle to be, a trajectory needs to be generated 
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for the ego vehicle to reach the successor node. The path obtained by the algorithm for a 

sample set of data is shown in Figure 2.3. It can be seen that the path obtained by the 

algorithm is not continuous and dynamically unfeasible due to the sharp change in angles. 

The trajectory needs to be dynamically feasible for a non-holonomic system such as a 

vehicle steering system that is continuous in nature so that it can be used as a reference for 

the closed-loop vehicle controller. A smoother curve would ensure smoother steering 

increments and decreased passenger discomfort. 

 
Figure 2.3: Optimal path obtained using A* for a sample dataset 

To improve the smoothness of the curve, the piecewise Bezier curve approach is used in a 

trajectory generator function which is further described in section 2.3. 
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2.3 Trajectory Generation 

Though the A* algorithm is computationally efficient in finding an optimal path, the path 

generated is not continuous and cannot be tracked by a non-holonomic system such as a 

vehicle steering system. To obtain a continuous curvature, a trajectory generator is used 

that converts the discontinuous path into a smoother curve using the Bezier curve equation 

[29]. A Bezier curve of degree 𝑖𝑖 can be represented by eqn. (2.4). 

 
𝑃𝑃(𝐹𝐹) =  �𝐽𝐽𝑖𝑖𝑠𝑠

𝑠𝑠

𝑖𝑖=0

(𝐹𝐹)𝑩𝑩𝒊𝒊 ,   𝐹𝐹 ∊  [0,1] (2.4) 

In eqn. (2.4), 𝑃𝑃(𝐹𝐹) represents the Bezier curve that is bounded by the control points or 

waypoints represented by 𝑩𝑩𝑖𝑖 and 𝐽𝐽𝑖𝑖𝑠𝑠(𝐹𝐹) represents the Bernstein polynomial [30] given by 

eqn. (2.5) 

 𝐽𝐽𝑖𝑖𝑠𝑠(𝐹𝐹) =  �
𝑖𝑖
𝑖𝑖
� 𝐹𝐹𝑖𝑖(1 − 𝐹𝐹)𝑠𝑠−𝑖𝑖  (2.5) 

Using eqn. (2.4) and (2.5), a Bezier curve cannot be used for the entire path as the resulting 

curve may pass through the obstacles. Therefore a variation of the piecewise Bezier curve 

approach [31] was used to obtain a smooth and continuous curve throughout the path. 

Using eqns. (2.4) & (2.5) a smooth curve can be obtained for a set of every 4 consecutive 

waypoints obtained from the path planner. The smoothness of the curve depends on the 

discretization of the variable 𝐹𝐹 in eqn. (2.4). For a smoother curve, a smaller discretization 

interval of 𝐹𝐹 shall be used. 

The path planner outputs are waypoints that have the desired lateral and longitudinal 

position. However, we are using the Bezier curve equations mentioned in eqns. (2.4) and 

(2.5), only for the lateral position of the vehicle. The path planner output is converted into 

the desired lateral deviation with respect to time using the Bezier curve function explained 
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in Table 3. This is done because the MPC controller also controls the longitudinal position 

of the vehicle by changing the speed of the vehicle based on the lead traffic and command 

velocity. To convert the path planner output into lateral deviation with respect to time, the 

frequency of the path planner is decreased and the frequency of the trajectory generator is 

increased as described in Table 1. This process is repeated continuously as the waypoints 

are updated to generate a smooth curve that can be tracked by the ego vehicle. The 

smoothness of the curve depends on the discretization of the variable 𝐹𝐹 in eqn. (2.4). The 

output of the trajectory generator for a lateral deviation of 3m produced by the path planner 

is shown in Figure 2.4. It can be seen that the path planner output is suddenly changed as 

the A* algorithm is implemented such that it can only output a minimum change of 1 m in 

position. This 1m is further discretized using the trajectory generator by using a smaller 

discretization interval (𝐹𝐹) and by increasing the frequency of the algorithm, creating a 

smooth curve. 

The implementation of the path planner and trajectory generator is shown in the 

pseudocode mentioned in Table 1. The first four waypoints obtained by the path planning 

algorithm are passed to the trajectory generator function to convert the path to a smooth 

Bezier curve. The target node for the path planner is calculated by calling the 𝐹𝐹𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐹𝐹𝑡𝑡𝐷𝐷𝐷𝐷𝑉𝑉() 

function, described in Table 2. Once all the variables are initialized, the path planner 

function is executed every 1 second if there is an obstacle in the path of the ego vehicle. 

Though for every iteration the path planner provides the complete optimal path till the 

target node, the trajectory generator only considers the first four nodes of the path, to 

generate a smooth trajectory to complete the maneuver as described in Table 3. Since the 

grid of the A* path planner is discretized into blocks of 1m square size, this deviation is to 

be further discretized to ensure a smooth steering maneuver to prevent sudden yaw angle 

changes. This is achieved by using a faster sampling rate for the trajectory generator as 

described in Table 1. Due to the faster sampling rate, smaller discretization interval for 

Bezier curve (𝐹𝐹) is used as shown in Table 3. Based on the actual vehicle lateral position 
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(𝑦𝑦𝑝𝑝𝑜𝑜𝑜𝑜) and the planned vehicle lateral position (𝑦𝑦𝑝𝑝𝑜𝑜𝑖𝑖𝑠𝑠𝑎𝑎𝑜𝑜), the direction of the curve is 

decided. Based on this direction, the points on the trajectory are determined using the 

Bezier equation and is appropriately indexed using the static variable (𝑖𝑖𝑖𝑖𝑉𝑉). The output 

(𝑦𝑦𝑟𝑟𝑠𝑠𝑟𝑟) is used as a reference value for the trajectory, that the vehicle has to follow and is 

fed to the variable (𝑦𝑦𝑟𝑟𝑠𝑠𝑟𝑟) as described in Table 3. . Using these reference points the change 

in the required yaw angle �𝜓𝜓𝑟𝑟𝑠𝑠𝑟𝑟� is calculated by taking the tangent of 2 consecutive points 

as shown in Table 3. 
 

Table 1: Path Planner & Trajectory Generation 
Initialization 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 ← Initial longitudinal position of the vehicle 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹  ← Initial lateral position of the vehicle 
𝑦𝑦𝐹𝐹𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐹𝐹  ← 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹  
𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑤𝑤𝑖𝑖𝑉𝑉 ← Width of lane markings 
ind ← index for referencing of Bezier Curve points 
Path Planning 
for every one second 
   𝑤𝑤𝑖𝑖𝑉𝑉𝐹𝐹ℎ𝐷𝐷𝑉𝑉𝐹𝐹  ← actual width of the obstacle 
   𝑥𝑥𝐹𝐹𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐹𝐹  ← 𝐹𝐹𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐹𝐹𝑡𝑡𝐷𝐷𝐷𝐷𝑉𝑉(�̇�𝑥𝐷𝐷𝑥𝑥𝑥𝑥 ,𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 ) 
  (𝑥𝑥𝑥𝑥𝑜𝑜𝐷𝐷 ,𝑦𝑦𝑥𝑥𝑜𝑜𝐷𝐷 )  ← Obstacle position from sensors 
  if (𝑥𝑥𝑥𝑥𝑜𝑜𝐷𝐷 >  𝑥𝑥𝐹𝐹𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐹𝐹  && 𝑦𝑦𝑥𝑥𝑜𝑜𝐷𝐷 < 𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑤𝑤𝑖𝑖𝑉𝑉 ) 
     𝐷𝐷𝐷𝐷𝐹𝐹ℎ(𝑥𝑥,𝑦𝑦) ← 𝐴𝐴_𝑆𝑆𝐹𝐹𝐷𝐷𝐷𝐷(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 , 𝑥𝑥𝐹𝐹𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐹𝐹 , 𝑥𝑥𝑥𝑥𝑜𝑜𝐷𝐷 ,𝑦𝑦𝑥𝑥𝑜𝑜𝐷𝐷 ,𝑤𝑤𝑖𝑖𝑉𝑉𝐹𝐹ℎ𝐷𝐷𝑉𝑉𝐹𝐹  ) 
  end 
end 
Trajectory Generation 
for every 0.01 second 
  𝑦𝑦 ←  𝐷𝐷𝐷𝐷𝐹𝐹ℎ(𝑦𝑦)(1:4) 
  𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝  ←  𝑢𝑢𝑖𝑖𝑖𝑖𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦(𝑦𝑦) 
  𝑦𝑦𝐷𝐷𝑥𝑥𝐷𝐷  ← actual y co-ordinate of the vehicle 
  �̇�𝑥𝐷𝐷𝑥𝑥𝑥𝑥  ← longitudinal ego vehicle velocity 
  if 𝐷𝐷𝑜𝑜𝐷𝐷�𝑦𝑦 − 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝 � ! =  0 then 
      ind ← reset index variable when new points are available 
     (𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷 ,𝜓𝜓𝐷𝐷𝐷𝐷𝐷𝐷 ) ← 𝐵𝐵𝐷𝐷𝐵𝐵𝑖𝑖𝐷𝐷𝐷𝐷(𝑦𝑦,𝑦𝑦𝐷𝐷𝑥𝑥𝐷𝐷 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 , �̇�𝑥𝐷𝐷𝑥𝑥𝑥𝑥 , 𝑖𝑖𝑖𝑖𝑉𝑉) 
  end 
end  
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Table 2:  targetCalc(�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 ,𝑥𝑥𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎) 
𝑥𝑥𝑥𝑥𝑜𝑜𝐷𝐷  ← x co-ordinate of obstacle position 
𝐹𝐹𝑥𝑥𝐷𝐷𝐷𝐷  ← Time gap to lead vehicle/obstacle 
𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹𝑖𝑖𝑉𝑉  ← Gap required to maintain between 2 static vehicles 
𝑥𝑥𝑉𝑉𝑖𝑖𝑖𝑖  ← Min planning length when no obstacle is present 
𝑥𝑥𝑉𝑉𝐷𝐷𝑥𝑥  ← Max planning length when obstacle is present 
if 𝑥𝑥𝑥𝑥𝑜𝑜𝐷𝐷  ! = 0 then 
    𝑥𝑥𝐹𝐹𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐹𝐹 =𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 + min((𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝐹𝐹𝑖𝑖𝑉𝑉  + ( �̇�𝑥𝐷𝐷𝑥𝑥𝑥𝑥 ∗  𝐹𝐹𝑥𝑥𝐷𝐷𝐷𝐷 )), 𝑥𝑥𝑉𝑉𝐷𝐷𝑥𝑥 ) 
else 
    𝑥𝑥𝐹𝐹𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷𝐹𝐹 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 + 𝑥𝑥𝑉𝑉𝑖𝑖𝑖𝑖  
end  

 

Table 3: Bezier(𝑦𝑦,𝑦𝑦𝑝𝑝𝑜𝑜𝑜𝑜,𝑦𝑦𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎, �̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜, 𝑖𝑖𝑖𝑖𝑉𝑉) 
𝐹𝐹𝑉𝑉𝑖𝑖𝐷𝐷𝑉𝑉  ← discretization interval of t 
𝑦𝑦𝐷𝐷𝑥𝑥𝑖𝑖𝑖𝑖𝐹𝐹𝐷𝐷 ← [𝑦𝑦𝐷𝐷𝑥𝑥𝐷𝐷 : (𝑦𝑦(4) − 𝑦𝑦𝐷𝐷𝑥𝑥𝐷𝐷 )/3:𝑦𝑦(4)]  
t ← [0: 𝐹𝐹𝑉𝑉𝑖𝑖𝐷𝐷𝑉𝑉 ∶ 1] 
ind ← 𝑉𝑉𝑖𝑖𝑖𝑖((𝑖𝑖𝑖𝑖𝑉𝑉 + 1), 𝐷𝐷𝐷𝐷𝑖𝑖𝑥𝑥𝐹𝐹ℎ(𝐹𝐹)) 
if 𝐷𝐷𝐷𝐷𝑖𝑖𝑥𝑥𝐹𝐹ℎ(𝑦𝑦𝐷𝐷𝑥𝑥𝑖𝑖𝑖𝑖𝐹𝐹𝐷𝐷 )  ==  4 then 

    𝐷𝐷𝑦𝑦 ←  � ��3
𝑖𝑖 � 𝐹𝐹

𝑖𝑖(1 − 𝐹𝐹)3−𝑖𝑖 ∗ 𝑦𝑦𝐷𝐷𝑥𝑥𝑖𝑖𝑖𝑖𝐹𝐹𝐷𝐷 (𝑖𝑖)�
3

𝑖𝑖=0
 

    𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷  ← 𝐷𝐷𝑦𝑦(𝑖𝑖𝑖𝑖𝑉𝑉)   

    𝜓𝜓𝐷𝐷𝐷𝐷𝐷𝐷  ← tan �𝐷𝐷𝑦𝑦 (𝑖𝑖𝑖𝑖𝑉𝑉 )−𝐷𝐷𝑦𝑦 (𝑖𝑖𝑖𝑖𝑉𝑉 −1)
�̇�𝑥𝐷𝐷𝑥𝑥𝑥𝑥 ∗0.01

� 

else 
    𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷  ←  𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹  
    𝜓𝜓𝐷𝐷𝐷𝐷𝐷𝐷  ← 0 
end   

 

As described in the algorithms, while there is a deviation of 1m in the path, the trajectory 

generator runs more iterations to generate all the points of the Bezier curve. This is shown 

clearly in Figure 2.4 where the trajectory generator had to be run faster than the path 

planner to produce the same lateral deviation as that of the path planner. The first four 

nodes of the optimum path obtained from the path planner are also shown in Figure 2.4. 
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To ensure a smooth transition from a previous Bezier curve to the new curve, the actual 

lateral position of the ego vehicle is selected as the starting point and a curve is generated 

from that point using the new waypoints provided by the path planner. This is shown in the 

trajectory generator pseudocode shown in Table 3. 

 

Figure 2.4: Comparison of Path Planner and Trajectory Generator Output – The marked 
portion highlights the joining of two different Bezier curves when there is a change in the 
path planner output. 

This method is implemented only to determine the desired lateral position of the vehicle to 

avoid obstacles. By considering only the lateral motion of the path planner and by 

deploying a Bezier curve trajectory generator, we make sure that the reference lateral 

deviation output is applicable for a non-holonomic system and this reference lateral 

deviation can be tracked by the controller. This also allows for further control over the 

2 4 6 8 10 12 14 16 18

Time (seconds)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

La
te

ra
l D

ev
ia

tio
n 

(m
)

A  Star  y(1)

A  Star  y(2)

A  Star  y(3)

A  Star  y(4)

Bezier Curve



20 

 

longitudinal motion of the ego car, which allows the ego vehicle to follow the lead vehicle 

or dynamic obstacles and is also used to implement stop and go motion.  

The output of the trajectory generator is passed to the Model Predictive controller as a 

reference for the lateral control of the vehicle. The controller is tuned such that it is capable 

to provide an optimum steering angle to track the reference lateral deviation. By tracking 

this reference trajectory, the vehicle is capable of avoiding collisions by detecting obstacles 

on the road and avoiding them. The prediction model used and the measured outputs and 

the control variables are further discussed in Chapter 3. 
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3 Model Predictive Vehicle Control 

Model Predictive Control is used to implement lateral and longitudinal control of the ego 

vehicle. This method is suitable for the control of multiple-input and multiple-output 

(MIMO) systems by solving an optimization problem to minimize a defined cost function 

[32, 33]. The operating principle of MPC is to calculate the appropriate values for the 

control variables by solving an optimization problem to minimize a cost function [34-36]. 

The cost function is usually associated with the measurable states of the system being 

controlled and the reference to the MPC controller. The reference could be a single value 

for every measurable state or a trajectory for a time that is equal to the prediction horizon 

of the MPC controller. Using MPC, a trajectory can be tracked using the linearized 

prediction model. The optimization is carried out throughout the prediction horizon interval 

until the reference and the predicted output becomes equal at the control horizon.  

By using varying weights for the various terms of the cost function, the importance of one 

factor over the other can be defined [37]. The rate of change of the control variables can 

also be controlled so that the steering and throttle changes are smooth and comfortable for 

the passengers. By tuning the weights and the scale factors of the MPC, the behavior and 

the harshness of the control can be varied. Different driving modes can be assigned with 

different weights and scaling factors thereby distinguishing the driving behavior from one 

mode to another. The first step for the implementation of the MPC controller is the 

formulation of the prediction model. 

                                                 
The material contained in this chapter has been accepted for publication to the International Design 
Engineering Technical Conferences & Computers and Information in Engineering Conference, ASME, 2019. 
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3.1 Prediction Model 

To increase computational efficiency, it is advisable to use a simple prediction model with 

lesser dimensions [38]. The prediction model is a linearized approximation of the vehicle 

plant model that is used to predict the states of the vehicle and the control variable value is 

appropriately calculated such that the cost function is minimized. The predicted states and 

the reference states are matched as the cost function decreases. Therefore a simplified 

linear plant model is constructed for predicting the future states in the controller. This 

prediction model is a combination of the longitudinal and lateral motion control equations 

of the vehicle. The longitudinal control model is used to calculate the normalized tractive 

force values while the lateral control model is used to calculate the appropriate steering 

angle. Figure 3.1 gives an overview of the MPC-based longitudinal and lateral control 

system implemented in this research. 

 
Figure 3.1: Overview of MPC based Longitudinal and lateral control model. 

3.1.1 Longitudinal Control Model 

For longitudinal control of the ego vehicle, the control variables are the normalized tractive 

force (𝐹𝐹𝑎𝑎) required to achieve the acceleration/deceleration (�̈�𝑥𝑑𝑑𝑠𝑠𝑜𝑜𝑖𝑖𝑟𝑟𝑠𝑠𝑑𝑑) as defined by the 
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controller. The relation between the tractive force and the acceleration is shown in eqn. 

(3.1). The normalized value of the tractive force is used making the controller robust for 

use in any kind of powertrain system. Positive tractive force demand implies an 

acceleration request to the controller and negative tractive force implies braking request.   

The actual acceleration of the vehicle deviates from the desired acceleration with a time 

constant 𝜏𝜏 [39] as shown in eqn. (3.1).  

 𝐹𝐹𝑎𝑎 = 𝑉𝑉�̈�𝑥𝑑𝑑𝑠𝑠𝑜𝑜𝑖𝑖𝑟𝑟𝑠𝑠𝑑𝑑 

�̈�𝑥𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 =
1

𝜏𝜏𝐷𝐷 + 1
�̈�𝑥𝑑𝑑𝑠𝑠𝑜𝑜𝑖𝑖𝑟𝑟𝑠𝑠𝑑𝑑  

(3.1) 

Equation (3.1) is used to account for the lag in the lower level throttle controller that also 

accounts for the lag due to the backlash in the dynamic components of the powertrain and 

the throttle system. 

The longitudinal position of the ego vehicle is represented by 𝑥𝑥, that is measured from a 

reference point, which is the initial position of the ego vehicle with respect to PreScan® 

coordinates. The mass of the vehicle is represented by 𝑉𝑉 and the frontal area of the vehicle 

is represented by 𝐴𝐴. Using the drag coefficient (𝑡𝑡𝑑𝑑) , air density (𝜌𝜌) and the coefficient of 

rolling friction (𝜇𝜇𝑟𝑟) the acceleration losses due to air resistance and rolling friction 

represented as 𝐷𝐷𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 is determined. The longitudinal acceleration of the vehicle (�̈�𝑥𝑠𝑠𝑒𝑒𝑜𝑜) is 

determined as shown in eqn. (3.2). 

 �̈�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 =  �̈�𝑥𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 −  �
𝐷𝐷𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉

� 

𝐷𝐷𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 =  𝜇𝜇𝑉𝑉𝑥𝑥 + 0.5𝜌𝜌𝑡𝑡𝑑𝑑𝐴𝐴�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜2 

(3.2) 

Integrating �̈�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 over the sampling time gives the velocity of the ego vehicle (�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜). 

The controller tracks the velocity of the ego vehicle to a command reference (𝑉𝑉𝑠𝑠𝑚𝑚𝑑𝑑). 
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The velocity output from the equations described above is a good approximation of the 

actual velocity output of the vehicle. Though this model is sufficient to accelerate the 

ego vehicle to a certain commanded velocity, a control strategy needs to be 

implemented to deal with any stationary or moving obstacles in front of the ego vehicle. 

To determine the distance to an obstacle and to control the velocity based on this data, 

the velocity of the lead vehicle (𝑉𝑉𝑙𝑙𝑠𝑠𝑎𝑎𝑑𝑑) is required, which is determined using the 

PreScan® sensor model. 

  The object camera sensor from PreScan® provides the relative velocity of the lead 

vehicle with respect to the ego vehicle velocity. By adding the ego vehicle velocity, the 

lead vehicle velocity can be determined. The relative velocity is integrated over the 

sample time to determine the relative distance (𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙) between the two vehicles as shown 

in eqn. (3.3). The initial value of the distance (𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎) is obtained from the sensor. 

 

 𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙 = �(𝑉𝑉𝑙𝑙𝑠𝑠𝑎𝑎𝑑𝑑 − �̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜)𝑉𝑉𝐹𝐹 + 𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎 (3.3) 

By combining eqns. (3.2) & (3.3), the prediction model for the longitudinal control is 

written in state-space representation with states 𝒙𝒙 =  [�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙 �̈�𝑥𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙]𝑇𝑇 and the 

inputs to the system defined as  𝒖𝒖 =  [𝐹𝐹𝑎𝑎]. The resistance (𝐷𝐷𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜) and lead vehicle 

velocity (𝑉𝑉𝑙𝑙𝑠𝑠𝑎𝑎𝑑𝑑) is introduced into the system as a measured disturbance and is updated 

at each sample time. This disturbance vector is defined as 𝒘𝒘 =  [𝐷𝐷𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 𝑉𝑉𝑙𝑙𝑠𝑠𝑎𝑎𝑑𝑑]𝑇𝑇. The 

output vector of the system is 𝒚𝒚 =  [�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙]𝑇𝑇. The state space representation of the 

longitudinal system for the prediction model is shown in eqn. (3.4). 
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 �̇�𝒙 = 𝑨𝑨𝑹𝑹𝒆𝒆𝒍𝒍𝒆𝒆𝒙𝒙 + 𝑩𝑩𝑹𝑹𝒆𝒆𝒍𝒍𝒆𝒆𝒖𝒖 + 𝑩𝑩𝒘𝒘𝒘𝒘; 

𝒚𝒚 = 𝑪𝑪𝑹𝑹𝒆𝒆𝒍𝒍𝒆𝒆𝒙𝒙 + 𝑫𝑫𝑹𝑹𝒆𝒆𝒍𝒍𝒆𝒆𝒖𝒖 

where 

𝑨𝑨𝑹𝑹𝒆𝒆𝒍𝒍𝒆𝒆 = �

0 0 1
−1 0 0

0 0
−1
𝜏𝜏

�, 

𝑩𝑩𝑹𝑹𝒆𝒆𝒍𝒍𝒆𝒆 =  � 
0
0

1/𝜏𝜏𝑉𝑉
� ;       𝑩𝑩𝒘𝒘 =  �

−1/𝑉𝑉 0
0 1
0 0

�, 

 

𝑪𝑪𝑹𝑹𝒆𝒆𝒍𝒍𝒆𝒆 =  �1 0 0
0 1 0 � ,           𝑫𝑫𝑹𝑹𝒆𝒆𝒍𝒍𝒆𝒆 = �00� ; 

(3.4) 

The output of the system represented in eqn. (3.4) is the velocity of the ego vehicle (�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜)  

and the relative distance between the ego vehicle and the lead vehicle (𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙).  The reference 

for the ego vehicle velocity is determined from a velocity predictor function. This is just 

the user commanded velocity (𝑉𝑉𝑠𝑠𝑚𝑚𝑑𝑑) but it is modulated when the vehicle is travelling on 

a curved road or is optimized to navigate through signalized intersections. The MPC 

control tries to reduce the difference between the reference commanded velocity and the 

predicted ego vehicle velocity and calculates the appropriate throttle opening value. 

The relative distance is controlled using a constant time gap approach, where the controller 

is required to maintain a time gap of 𝑇𝑇𝑒𝑒𝑎𝑎𝑝𝑝 from the lead vehicle [40]. The distance required 

to maintain the given time gap is known as the safe  distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠) that is determined 

using eqn. (3.5). 
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 𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠 =  𝐷𝐷𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠 +  𝑇𝑇𝑒𝑒𝑎𝑎𝑝𝑝 ∗ �̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜  (3.5) 

The static distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑠𝑠) represents the minimum gap between two stationary vehicles. 

It is required to maintain this gap when a vehicle is stopped due to a stop sign or a traffic 

light at an intersection. This safe distance is used as a reference to the MPC controller, 

which tries to track the relative distance to the safe distance as shown in Figure 3.2. 

 
Figure 3.2: Representation of Relative Distance and Safe Distance 

3.1.2 Lateral Control Model 

To achieve lateral control, a linearized steering model is used for prediction. The steering 

system is approximated to a bicycle model, which simplifies the vehicle dynamics to a 

single track with the lateral deviation (𝑦𝑦) and the yaw angle (𝜓𝜓) as the outputs of the 

system [39]. A graphic representation of the bicycle model is shown in Figure 3.3. The 

steering angle is represented by 𝛿𝛿 and the yaw angle is represented by 𝜓𝜓. The distance from 

the CG of the vehicle to the front and rear wheels is represented by 𝐷𝐷𝑟𝑟 and 𝐷𝐷𝑟𝑟 , respectively. 

The cornering stiffness of the front and rear tires are represented by 𝑡𝑡𝑟𝑟 𝐷𝐷𝑖𝑖𝑉𝑉 𝑡𝑡𝑟𝑟 , respectively 

and the moment of inertia of the vehicle with respect to the yaw axis is represented by 𝐼𝐼𝑧𝑧. 

The lateral velocity of the vehicle is given by �̇�𝑦𝑠𝑠𝑒𝑒𝑜𝑜 and the lateral deviation is represented 

by 𝑦𝑦. The prediction model is implemented with the states 𝒙𝒙 =  ��̇�𝜓 𝜓𝜓 �̇�𝑦𝑠𝑠𝑒𝑒𝑜𝑜 𝑦𝑦�
𝑇𝑇

   and 

inputs to the system as 𝒖𝒖 =  [𝛿𝛿]. The output of the prediction model is 𝒚𝒚 =  [𝑦𝑦 𝜓𝜓]𝑇𝑇. The 

prediction model for the lateral vehicle motion in state-space representation is shown in 

eqns. (3.6). 

Ego vehicle Lead vehicle 

Relative Distance (DRel) 
Safe Distance (Dsafe) 
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 �̇�𝒙 = 𝑨𝑨𝑹𝑹𝒔𝒔𝒍𝒍𝒙𝒙 + 𝑩𝑩𝑹𝑹𝒔𝒔𝒍𝒍𝒖𝒖, 𝒚𝒚 = 𝑪𝑪𝑹𝑹𝒔𝒔𝒍𝒍𝒙𝒙 + 𝑫𝑫𝑹𝑹𝒔𝒔𝒍𝒍𝒖𝒖 

where 

𝑨𝑨𝑹𝑹𝒔𝒔𝒍𝒍 =  �

𝐷𝐷1 0 𝐷𝐷2 0
0 0 1 0
𝐷𝐷3 0 𝐷𝐷4 0
1 �̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 0 0

� ,     𝑩𝑩𝑹𝑹𝒔𝒔𝒍𝒍 =  

⎣
⎢
⎢
⎢
⎢
⎡ 2 ∗

𝑡𝑡𝑟𝑟
𝑉𝑉

0

2 ∗ 𝑡𝑡𝑟𝑟 ∗
𝐷𝐷𝑟𝑟
𝐼𝐼𝑧𝑧

0 ⎦
⎥
⎥
⎥
⎥
⎤

 

𝑪𝑪𝑹𝑹𝒔𝒔𝒍𝒍 =  �0 0 0 1
0 1 0 0� , 𝑫𝑫𝑹𝑹𝒔𝒔𝒍𝒍 = �00� 

𝐷𝐷1 =  −
2 ∗ 𝑡𝑡𝐷𝐷 + 2 ∗ 𝑡𝑡𝐷𝐷

𝑉𝑉
�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜

;                   𝐷𝐷2 =  −�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 −
2 ∗ 𝑡𝑡𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷 − 2 ∗ 𝑡𝑡𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷

𝑉𝑉
�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜

; 

𝐷𝐷3 =  −
2 ∗ 𝑡𝑡𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷 − 2 ∗ 𝑡𝑡𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷

𝐼𝐼𝐵𝐵
�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜

;         𝐷𝐷4 = −  
2 ∗ 𝑡𝑡𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷2 + 2 ∗ 𝑡𝑡𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷2

𝐼𝐼𝐵𝐵
�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜

 

(3.6) 
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Figure 3.3: Representation of the dynamic bicycle model for lateral control [39] 

To implement the prediction model in a single MPC controller, the state-space 

equations from eqns. (3.4) & (3.6) are combined to form a single state-space 

representation as shown in eqn. (3.7) with states 𝒙𝒙 =

 � �̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙 �̈�𝑥𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 �̇�𝜓 𝜓𝜓 �̇�𝑦𝑠𝑠𝑒𝑒𝑜𝑜 𝑦𝑦�
𝑇𝑇
 and the control inputs as  𝒖𝒖 =  [𝐹𝐹𝑎𝑎  𝛿𝛿]𝑇𝑇. 

The disturbance to the system is represented as 𝒘𝒘 =  [𝐷𝐷𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 𝑉𝑉𝑙𝑙𝑠𝑠𝑎𝑎𝑑𝑑]𝑇𝑇. The output state 

vector of the system is 𝒚𝒚 =  [�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙 𝑦𝑦 𝜓𝜓]𝑇𝑇 . 

 

 �̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝒖𝒖 +  𝑩𝑩𝒘𝒘𝒘𝒘, 𝒚𝒚 = 𝑪𝑪𝒙𝒙 + 𝑫𝑫𝒖𝒖 

where 

𝑨𝑨 =  �
𝐴𝐴𝑙𝑙𝑜𝑜𝑠𝑠𝑒𝑒 𝐵𝐵𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷(3,4)

𝐵𝐵𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷(4,3) 𝐴𝐴𝑙𝑙𝑎𝑎𝑎𝑎
� ;  

(3.7) 

δ 

ψ 

�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜 

lr 

lf 

Cg 

X 

Y 

�̇�𝑦𝑠𝑠𝑒𝑒𝑜𝑜 
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𝑩𝑩 =  �
𝐵𝐵𝑙𝑙𝑜𝑜𝑠𝑠𝑒𝑒 𝐵𝐵𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷(3,1)

𝐵𝐵𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷(4,1) 𝐵𝐵𝑙𝑙𝑎𝑎𝑎𝑎
� ;   𝑩𝑩𝒘𝒘 =  �

−1/𝑉𝑉 0
0 1
0 0

� ; 

 

𝑪𝑪 =  �
𝑡𝑡𝑙𝑙𝑜𝑜𝑠𝑠𝑒𝑒 𝐵𝐵𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷(2,4)

𝐵𝐵𝐷𝐷𝐷𝐷𝑥𝑥𝐷𝐷(2,3) 𝑡𝑡𝑙𝑙𝑎𝑎𝑎𝑎
� ;   𝑫𝑫 = �

0 0
0 0
0 0
0 0

� ; 

 

3.2 Problem Formulation 

The prediction model is converted to a discrete-time model in the controller using the first-

order hold method [41] and is represented as shown in eqn. (3.8). 

 𝒙𝒙𝒍𝒍+𝟏𝟏 = 𝑨𝑨𝒄𝒄𝒙𝒙𝒍𝒍 + 𝑩𝑩𝒄𝒄𝒖𝒖𝒍𝒍 +  𝑩𝑩𝒘𝒘𝒄𝒄𝒘𝒘𝒍𝒍;  

𝒚𝒚𝒍𝒍 =  𝑪𝑪𝒄𝒄𝒙𝒙𝒍𝒍 + 𝑫𝑫𝒄𝒄𝒖𝒖𝒍𝒍; 
(3.8) 

The control variables (𝑢𝑢𝑎𝑎) i.e. the tractive force and the steering wheel angle are determined 

by solving an optimization problem for each time step over the control horizon (𝐹𝐹𝑠𝑠) with a 

cost function defined in eqn. (3.9). 

 

𝓗𝓗:��𝑤𝑤1 ��̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜𝑖𝑖 −  𝑉𝑉𝑠𝑠𝑚𝑚𝑑𝑑�
2

+ 𝑤𝑤2�𝐷𝐷𝑅𝑅𝑠𝑠𝑙𝑙𝑖𝑖 −  𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠�
2

+ 𝑤𝑤3�𝑦𝑦𝑖𝑖 −  𝑦𝑦𝑟𝑟𝑠𝑠𝑟𝑟�
2

𝑎𝑎𝑐𝑐

𝑖𝑖=1

+ 𝑤𝑤4�𝜓𝜓𝑖𝑖 −  𝜓𝜓𝑟𝑟𝑠𝑠𝑟𝑟�
2

  + 𝑤𝑤𝑟𝑟1�∆𝐹𝐹𝑎𝑎𝑖𝑖�
2

+ 𝑤𝑤𝑟𝑟2|∆𝛿𝛿𝑖𝑖|2� 

(3.9) 



30 

 

In eqn. (3.9), 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 & 𝑤𝑤4 represent the weights of the predicted outputs and 𝑤𝑤𝑟𝑟1 & 𝑤𝑤𝑟𝑟2 

are the weights for the rate of change of the control variables (∆𝐹𝐹𝑎𝑎 𝐷𝐷𝑖𝑖𝑉𝑉 ∆𝛿𝛿) i.e., the change 

in the tractive force and steering angle.  The constraints for the optimization problem are 

given in eqns. (3.10). 

 𝐷𝐷𝑅𝑅𝑠𝑠𝑙𝑙𝑖𝑖 ≥  𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠 

𝐹𝐹𝑎𝑎𝑚𝑚𝑖𝑖𝑠𝑠 ≤  𝐹𝐹𝑎𝑎𝑖𝑖 ≤ 𝐹𝐹𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 

∆𝐹𝐹𝑎𝑎𝑚𝑚𝑖𝑖𝑠𝑠 ≤  ∆𝐹𝐹𝑎𝑎𝑖𝑖 ≤ ∆𝐹𝐹𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 

𝛿𝛿𝑚𝑚𝑖𝑖𝑠𝑠 ≤  𝛿𝛿 ≤ 𝛿𝛿𝑚𝑚𝑎𝑎𝑚𝑚 

∆𝛿𝛿𝑚𝑚𝑖𝑖𝑠𝑠 ≤  ∆𝛿𝛿𝑖𝑖 ≤ ∆𝛿𝛿𝑚𝑚𝑎𝑎𝑚𝑚 

(3.10) 

The minimum and maximum values for the control variables are chosen based on the 

vehicle and powertrain constraints. The rate of change limits is selected such that the 

steering angle change and the acceleration change are within the permissible limits for 

passenger comfort. The selected values are summarized in Table 5. MATLAB®, 

Simulink®, and Model Predictive Toolbox™ [40, 42] were used to solve the optimization 

problem with a QP solver. 

3.3 Closed-Loop Implementation 

The solution to the optimization problem yields the control signals i.e. the tractive force 

demand (𝐹𝐹𝑎𝑎) and the optimum steering wheel angle (𝛿𝛿) required to minimize the cost 

function shown in eqn. (3.8). These signals are passed to the vehicle model that calculates 

the vehicle states, which are used as the feedback for solving the optimization problem for 

the next time step. The feedback signals include vehicle states such as vehicle 
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velocity (�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜), relative distance to obstacle (𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙), the lateral deviation from the 

reference (𝑦𝑦) and the yaw angle of the ego vehicle (𝜓𝜓).  

The reference for the longitudinal control is determined from the user-defined command 

velocity (𝑉𝑉𝑠𝑠𝑚𝑚𝑑𝑑) or the velocity predictor and the safe distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠) calculator. The 

reference for the lateral control is determined from the path planner and the trajectory 

generator. 

Simulations are carried out on the PreScan® platform to introduce traffic characteristics 

and to visualize the performance of the controller for varying traffic scenarios that are 

discussed further in section 4. 
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4 Simulation Results 

The controller is tested for varying traffic scenarios using various static and dynamic 

obstacles from the PreScan® library. The platform creates a run-time environment to 

execute these various traffic scenarios and a model-in-the-loop setup is established where 

the controller is tested.  

4.1 Scenario Setup 

To test the control algorithm, a real-time traffic scenario is modeled using the PreScan® 

software. This platform allows the user to create any kinds of roads, road signs, lane 

markings, traffic signals, and other cars. Using Open Street Maps, the roads and 

environment of any place can be modeled using the software. The controller can also be 

tested for various weather and lighting conditions. A sample scenario that is created using 

PreScan® software is shown in Figure 4.1. 

Various types of vehicles ranging from motorcycles to trailer trucks can be modeled and 

simulated as required. This research uses the Toyota Prius model available in the PreScan 

library as the ego vehicle. The vehicle model is tweaked to make it more representative of 

the actual vehicle. Values of the vehicle parameters used in the prediction model of the 

MPC controller is shown in Table 4. The complete vehicle dynamics parameters are shown 

in Figure 4.2. All the other parameters pertaining to tire force estimation and vehicle pitch 

and roll calculation is used in the vehicle plant model, which is used for simulation to test 

the controller. 

                                                 
The material contained in this chapter has been accepted for publication to the International Design 
Engineering Technical Conferences & Computers and Information in Engineering Conference, ASME, 2019. 
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Figure 4.1: Sample scenario that can be created on PreScan software 

 

Table 4: Vehicle parameters for Toyota Prius 
 

Parameter Value 

Mass (𝑉𝑉) 1650 kg 
Wheelbase 2.90 m 

Cornering Stiffness – Front (𝑡𝑡𝑟𝑟) 66479 N/rad 
Cornering Stiffness – Rear (𝑡𝑡𝑟𝑟) 110068 N/rad 
Moment of Inertia – yaw (𝐼𝐼𝑧𝑧) 3269 kg m2 

Steering Angle (max) -565°, 565° 
CG distance – Front (𝐷𝐷𝑟𝑟) 1.16 m 
CG distance – Rear (𝐷𝐷𝑟𝑟) 1.74 m 
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Figure 4.2: Vehicle Dynamics Parameters for the Toyota Prius Model 

4.2 Simulation Setup 

The working of the path-planning algorithm and the lateral controller is demonstrated using 

a scenario, in which a stationary obstacle is blocking the path of the ego vehicle. For 

simulation and controller tuning, the Toyota Prius vehicle model was used and the 

constraints for the steering wheel and the acceleration were decided accordingly. The rate 

constraints are decided such that there are no harsh pitch and roll accelerations for 

maximum passenger comfort. The weight coefficients in eqn. (3.9) are tuned such that the 

most critical factor requires more weightage as it is essential for the safe operation of the 

vehicle. The minimum and maximum values of the control variables and the weights for 

the cost function are shown in Table 5. The obstacle is detected through the vision sensors 

as shown in Figure 4.4 

The vehicle tries to stay in the center of the path until the obstacle is detected. The path is 

a straight road and the goal of the experiment is to observe the maneuver planned by the 

ego vehicle to avoid a collision by deviating from a straight line path. The longitudinal 
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control algorithm modulates the throttle and brake values to control the speed of the ego 

vehicle such that the vehicle slows down when the obstacle is approaching and tries to 

reach the command velocity once the collision avoidance maneuver is complete. Cameras 

are added at different locations on the vehicle to visualize the movement of the vehicle. 

The Vis-Viewer interface is shown in Figure 4.3. 

 

 
Figure 4.3: Vis-Viewer Setup for visualizing the ego vehicle 
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Table 5: Simulation and model parameters for MPC controller 

Parameter Value 

Weighting factor (𝑤𝑤1) 980 

Weighting factor (𝑤𝑤2) 125000 

Weighting factor (𝑤𝑤3) 103931 

Weighting factor (𝑤𝑤4) 0.1 

Rate Weights (𝑤𝑤𝑟𝑟1 ,𝑤𝑤𝑟𝑟2) 750, 0.09 

𝐹𝐹𝑎𝑎𝑚𝑚𝑖𝑖𝑠𝑠, 𝐹𝐹𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 -100%, 100% 

𝛿𝛿𝑚𝑚𝑖𝑖𝑠𝑠, 𝛿𝛿𝑚𝑚𝑎𝑎𝑚𝑚 -565°, 565° 

∆𝐹𝐹𝑎𝑎𝑚𝑚𝑖𝑖𝑠𝑠, ∆𝐹𝐹𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 -1%, 1% 

∆𝛿𝛿𝑚𝑚𝑖𝑖𝑠𝑠, ∆𝛿𝛿𝑚𝑚𝑎𝑎𝑚𝑚 -56°, 56° 
 

 
Figure 4.4: Object detected in the path of the ego vehicle through the vision sensor 
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4.3 Scenario 1 – Stationary Obstacle 

The ego vehicle with an initial velocity of 5m/s accelerates to reach the command velocity. 

The object is first detected when it is at a distance of 100m from the ego vehicle as shown 

in Figure 4.5. When the relative distance of the obstacle reaches the safe distance as 

highlighted by the arrow in Figure 4.5, the vehicle starts to brake to maintain a safe distance 

with the obstacle. When the relative distance falls below the safe distance highlighted using 

the dashed line, the path-planning algorithm is triggered and a maneuver is planned and 

executed to avoid a collision. The reference trajectory generated from the planner and the 

actual vehicle trajectory obtained is shown in Figure 4.7. The steering maneuver 

implemented by the controller is shown in Figure 4.8. Once the vehicle is at its maximum 

lateral deviation, the obstacle is no longer in the path of the ego vehicle and hence the 

obstacle is avoided as shown in Figure 4.5. 

During the object avoidance maneuver, the longitudinal control algorithm is also changing 

the tractive force percentage demand to control the velocity of the ego vehicle based on the 

difference between the relative distance and the safe distance. As the relative distance is 

decreasing, the tractive force demand becomes negative as the vehicle is braking to 

maintain a safe distance from the obstacle. The tractive force values implemented by the 

controller is shown in Figure 4.9. As the vehicle is slowing down, the steering maneuver 

also takes place to avoid a collision. Once the ego vehicle deviates from the path of the 

obstacle i.e. at maximum lateral deviation, the tractive force is adjusted so that the ego 

velocity tracks the commanded velocity and stabilizes as it approaches the command 

velocity as shown in Figure 4.6 and Figure 4.9. The object avoidance maneuver performed 

by the ego vehicle can be visualized using PreScan® Vis-Viewer application as shown in 

Figure 4.10, Figure 4.11 & Figure 4.12. 
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Figure 4.5: Safe distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠) versus relative distance (𝐷𝐷𝑅𝑅𝑠𝑠𝑙𝑙) as the ego vehicle is 
approaching to the obstacle 

 
Figure 4.6: Command velocity (𝑉𝑉𝑠𝑠𝑚𝑚𝑑𝑑) versus ego vehicle velocity (�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜) through the object 
avoidance maneuver 

5 10 15 20

Time (seconds)

0

5

10

15

20

Ve
lo

ci
ty

 (m
/s

)

Command Velocity
Ego Velocity

5 10 15 20

Time (seconds)

0

20

40

60

80

100

D
is

ta
nc

e 
(m

)

Safe Distance
Relative Distance

Obstacle 
avoided 

Obstacle 
detected 

Braking 



39 

 

 
Figure 4.7: Comparison of the reference trajectory and actual vehicle trajectory obtained 
using the MPC controller 

 
Figure 4.8: Steering wheel angle (δ) to generate the object avoidance maneuver 
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Figure 4.9: Tractive Force (𝐹𝐹𝑎𝑎) implemented by MPC controller 

 
Figure 4.10: Ego vehicle deviating from the path to avoid collision with the obstacle 
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Figure 4.11: Ego vehicle at the maximum deviation from the path 

 
Figure 4.12: Ego Vehicle rejoining the path after crossing the obstacle 
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4.4 Scenario 2 – Moving Obstacle 

A second test is conducted using a lead vehicle to demonstrate the working of longitudinal 

and lateral control in harmony. In this scenario, the lead vehicle is traveling at a constant 

speed of 10m/s and uncertainty is created as the lead vehicle comes to a sudden stop. The 

initial velocity of the ego vehicle is 5m/s. The behavior of the ego vehicle is observed as it 

is following the lead vehicle. As soon as the relative distance becomes less than the safe 

distance, braking is initiated as the controller tries to match the velocity of ego vehicle to 

the lead vehicle velocity to maintain a constant gap as shown in Figure 4.13 and Figure 

4.14. The tractive force values obtained from the controller is shown in Figure 4.17. Once 

the lead vehicle stops suddenly, the relative distance decreases further and the tractive force 

demand becomes negative. The relative distance falls below the safe distance as 

highlighted by the dashed line in Figure 4.13 and the path planner creates a maneuver for 

the ego vehicle to pass the lead vehicle thereby preventing a collision. The reference 

trajectory generated by the path planner and the actual trajectory executed by the vehicle 

are shown in Figure 4.15 and the steering angle values implemented to complete the 

maneuver are shown in Figure 4.16. Once the maneuver is completed, the ego vehicle 

accelerates to reach the command velocity as shown in Figure 4.14 and the tractive force 

values used to reach this steady state are shown in Figure 4.17. 
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Figure 4.13: Safe distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠) versus relative distance (𝐷𝐷𝑅𝑅𝑠𝑠𝑙𝑙) as the ego vehicle 
approaches the obstacle 
 

 
Figure 4.14: Comparison of reference velocity, ego velocity (�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜) and lead velocity 
(𝑉𝑉𝑙𝑙𝑠𝑠𝑎𝑎𝑑𝑑) while following and passing 
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Figure 4.15: Comparison of the reference trajectory and actual vehicle trajectory obtained 
to avoid a collision 

 
Figure 4.16: Steering wheel angle (𝛿𝛿) for the object avoidance maneuver 
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Figure 4.17: Tractive force (𝐹𝐹𝑎𝑎) implemented by the MPC controller 

4.5 Scenario 3 – Multiple Obstacles 

In this test, a multi-lane road is used with multiple objects to demonstrate the obstacle 

avoidance maneuver. The obstacles are simulated using trucks rather than cars to 

understand the behavior of the path planner as it takes more time to pass a truck due to their 

long wheelbase. Three trucks are placed among which two of them are directly in the path 

of the ego vehicle and one of them is in an adjacent lane as shown in Figure 4.18. The 

horizontal line in Figure 4.18 indicates the desired path of the ego vehicle. The red dashed 

rectangles indicate the position of the trucks on the multi-lane road. With an initial ego 

velocity (ẋego) of 5m/s the ego vehicle starts moving. The command velocity (Vcmd) for 

the ego vehicle is 20m/s as shown in Figure 4.19. The ego vehicle accelerates as it tries to 

reach the command velocity (Vcmd) due to which the relative distance (DRel) to the obstacle 

starts decreasing and the safe distance (Dsafe) is increasing as shown in Figure 4.21. The 

vehicle starts slowing down once the relative distance (DRel) to the truck is equal to the 

safe distance (Dsafe)  as highlighted in Figure 4.21.  
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Figure 4.18: Multiple objects test scenario created using trucks 

 
Figure 4.19: Command velocity (𝑉𝑉𝑠𝑠𝑚𝑚𝑑𝑑) versus ego vehicle velocity (�̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜) through the 
multiple objects avoidance maneuver 
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Figure 4.21: Safe distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠) versus relative distance (𝐷𝐷𝑅𝑅𝑠𝑠𝑙𝑙) as the ego vehicle 
approaches the obstacles 

 

 

 

 

 

 

 

The path planner and the trajectory generator are triggered when the relative distance falls 

below the safe distance and a trajectory is planned and the object avoidance maneuver is 

executed as shown in Figure 4.22. The avoidance maneuver for each of the obstacle is 

highlighted in Figure 4.22. It can be seen in this figure that the planner is capable of 

planning a trajectory for avoiding obstacles in both directions. For the first obstacle, the 

algorithm planned a path with positive lateral deviation due to the presence of the third 

truck adjacent to the lane of the ego vehicle path. The path planning algorithm takes into 

account the location of both these obstacles and a path is planned to avoid both the 

obstacles. Once the vehicle returns to the original path, the second obstacle in the path of 

the ego vehicle is detected and a path in a different direction is planned. The change in 

direction is due to the positioning of the second obstacle. To complete the maneuver with 

minimum lateral deviation, the path planner generates a trajectory with negative lateral 

deviation as shown in Figure 4.22.  The steering wheel angle values (δ) calculated by the 

MPC controller to track the reference trajectory is shown in Figure 4.23. 
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Figure 4.20: Safe distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑟𝑟𝑠𝑠) versus relative distance (𝐷𝐷𝑅𝑅𝑠𝑠𝑙𝑙) as the ego vehicle is 
approaching to the obstacles 
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Figure 4.22: Comparison of the reference trajectory and actual vehicle trajectory obtained 
to avoid both the obstacles in the path 

 
Figure 4.23: Steering wheel angle (𝛿𝛿) for the object avoidance maneuver for both 
obstacles in the path 
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The requested tractive force percentage (Ft)  to achieve longitudinal control is shown in 

Figure 4.24. The braking zones for both the obstacles can be observed as highlighted in 

Figure 4.24. 

 
Figure 4.24: Tractive force (𝐹𝐹𝑎𝑎) implemented by the MPC controller 

From the above results, it can be clearly seen that by using path planning algorithms, the 

autonomous vehicle can safely navigate through a collision scenario or any such 

uncertainties. Using the connected vehicle technology, traffic signal data from road-side 

units are obtained via the V2X infrastructure. This data is used to achieve stop/go motion 

of the ego vehicle at signalized intersections. This is demonstrated in Chapter 5. 
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5 Approach and Departure at Signalized Intersections 

5.1 Motivation 

The number of vehicles on road in urban areas has been rising continuously and this 

directly leads to an increase in traffic congestion. This is one of the major causes of air 

pollution in cities as vehicles generate more emissions when they spend more time in stop 

and go traffic as the engine operates in idling/low speeds during which the emission levels 

are high. Electric vehicles could solve the issue of emissions but increased electricity 

consumption may lead to even more pollution as most of the electrical energy nowadays is 

still generated by burning coal. Increasing traffic congestions also lead to increased travel 

times in a stop and go traffic that is not only an inconvenience but also a cause of driver 

frustration, which is one of the main reasons for road accidents. 

By implementing connected vehicle technologies, vehicle-to-infrastructure (V2I) 

communication technology can be used to transmit signal information such as signal phase 

and time to next phase, which can be used to stop the vehicle at a red light in a fuel efficient 

way. This can be further improved by modifying the algorithm in such a way that the 

velocity of the vehicle is adjusted such that the vehicle reaches the intersection only at a 

green phase. This reduces travel times and can further be improved to save energy while 

braking and acceleration. A model predictive approach to predict a velocity command 

using such traffic signal information is shown in [25]. 

5.2 Data Extraction from V2I transmitters 

The transmitters make use of the Dedicated Short Range Communication (DSRC) 

technology to enable communication between the vehicles and the road-side-units. The 

data that is transferred is according to the SAE J2735 Message Set Dictionary standard 
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[43]. This standard specifies the definitive message structure and provides the message 

definitions. 

Every DSRC message is classified into several components- 

1. Message – the top level of complexity in the data structure 

2. Data Frame – complex data structures  

3. Data Element – smallest division of information content 

The definitions of each of these components are available in the Message Set Dictionary 

[43]. Every Message Frame consists of several Data Frames and Data Elements. Data 

Frames can further be a collection of simple Data Frames or Data Elements. A figure 

representing a sample DSRC Message is shown in Figure 5.1. It can be seen in this figure 

that a Message can contain both Data Frames and Data Elements and Data Frames can 

further contain Data Frames and Data Elements. 

 
Figure 5.1: Representation of a sample DSRC Message Frame 

To implement stop/go motion at signalized intersections, two messages are required to be 

transmitted by the road-side-unit which are received by the vehicle system with the 

message ID as follows 
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1. MSG_MapData (MAP) 

2. MSG_SignalPhaseAndTiming (SPAT) 

The Map Data message is used to convey one or more intersection’s lane geometry maps 

within a single message. This message includes data pertaining to the geographical 

information of items such as complex intersections, road segments, high-speed curve 

outlines and segments of roadway. This message is also used to define the details of the 

indexing systems that are in turn used by other messages to relate to additional information 

such as the signal phase events from the SPAT message at a specific geographic location 

on the roadway. A complete summary of the SPAT message payload is given in Appendix 

A. 

The Signal Phase and Timing message is used to transmit the current status of one or more 

signalized intersections. Along with with the MAP data, the vehicle system will be able to 

determine the state of the signal phasing and the time for the next phase to occur. A 

complete summary of the SPAT message payload is given in Appendix B. 

5.2.1 Data Extraction from MAP Message 

When the ego vehicle is in the range of the road-side-unit, the MAP message is used to 

determine the position and location of the road-side-unit. For a traffic signal, this location 

is actually the location of the stop line on the road. Since the MAP message may contain 

data for one or more intersection lanes, it is first required to determine the lane data that 

are applicable to the ego vehicle. This is achieved using the global position of the vehicle, 

which is obtained using the Global Positioning Sensor (GPS) unit.  

The geometric nodes of all the lanes pertaining to an intersection are stored in the Node 

List XY Data Frame as described in Appendix A. The location of the Node List XY Data 

Frame is visually represented in Figure 5.2. Node List XY Data Frame contains the position 

of the center nodes of the lanes spaced at approximately 1 centimeter. The location for all 
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the nodes of the center point for all the lanes approaching the intersection is transmitted to 

the vehicle. By comparing the GPS coordinates of the vehicle with the coordinates present 

in the Node List XY Data Frame, the Generic Lane ID is determined for the active lane of 

the ego vehicle. This Lane ID is used to index additional data for the selected lane. The 

contents of the Generic Lane Data Frame is shown in Figure 5.3. In this figure, the solid 

line indicates required data frames and the dashed line indicates optional data frames. 

 
Figure 5.2: Location of the Node List XY Data Frame in the MAP Message 
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Figure 5.3: The contents of the Generic Lane Data Frame 

Using the Lane ID, the corresponding data for the active lane form the MAP and SPAT 

messages is determined. The location of the stop line for the selected Lane ID is determined 

using the Intersection geometry Data Frame. The position 3D data frame is used to 

determine the latitude and longitude of the center of the stop line. The location of the 

latitude and longitude data elements are visually represented in Figure 5.4. 
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Figure 5.4: Representation of Latitude and Longitude of the stop line 

The distance of the ego vehicle from the stop line represented as 𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙 is calculated using 

the GPS coordinates of the ego vehicle represented by 𝐷𝐷𝐷𝐷𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 & 𝐷𝐷𝑥𝑥𝑖𝑖𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺 and the 

coordinates of the center of the stop line determined form the MAP data is represented by 

𝐷𝐷𝐷𝐷𝐹𝐹𝑅𝑅𝐺𝐺𝑅𝑅 & 𝐷𝐷𝑥𝑥𝑖𝑖𝑥𝑥𝑅𝑅𝐺𝐺𝑅𝑅. The distance to the stop line is determined using eqn. (5.1) [44]. 

 𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙 =  �(𝐷𝐷𝐷𝐷𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐷𝐷𝐷𝐷𝐹𝐹𝑅𝑅𝐺𝐺𝑅𝑅)2 +  (𝐷𝐷𝑥𝑥𝑖𝑖𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺 −   𝐷𝐷𝑥𝑥𝑖𝑖𝑥𝑥𝑅𝑅𝐺𝐺𝑅𝑅)2  (5.1) 

This relative distance 𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙 is used to control the motion of the ego vehicle to implement 

stop/go motion, which is discussed further in detail. 

Once the Lane ID for the active lane of the ego vehicle is obtained, it is further used to 

select the Signal Group ID data element. This Signal Group ID is used to match the lane 

data in the MAP message and the signal phasing data from the SPAT message. To 

determine the signal phasing for the active lane of the ego vehicle, the Signal Group ID is 

used as an index to select the appropriate signal phasing data from the SPAT message. The 

Signal Group ID is obtained from the MAP message using the Connects to Data Frame 

contained in the Generic Lane data frame as shown in Figure 5.3. The address for the Signal 

Group ID for a corresponding Generic Lane is visually represented as shown in Figure 5.5. 
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Figure 5.5: Representation of Signal Group ID Location 

The extraction of the signal Phasing Data from the SPAT message is discussed in the next 

section 

5.2.2 Data Extraction from SPAT Message 

The DSRC message set transmitted by the road-side-unit contains both the MAP data and 

the SPAT data. SPAT data can be used to determine the current phase for each signal in 

the system, which is sent in the Movement Phase State Data Frame. The phase timing 

related information is conveyed via the Time Change Details Data Frame, which contains 

information such as the time an event has begun or expected to begin and the time at which 

the event will end latest. The SPAT message payload is shown in Appendix B. 

Since the SPAT message contains information from one or more signalized intersections, 

the Signal Group ID obtained from the MAP message is used to index the appropriate 

SPAT data for the ego vehicle. The schematic of the SPAT message with the Signal Group 

ID and the Movement Phase State data is shown in Figure 5.6. Using the active Signal 

Group ID determined using the MAP data, the Movement Phase State and the Time Change 

Details data for the appropriate Lane is determined. 

Generic 
Lane 

Lane ID 

Connection Signal Group ID 
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Figure 5.6: Schematic of SPAT Message Data Frame 

The Movement Phase State is a Data Element that conveys the current signal phase 

information i.e. green/red phase. The SPAT Message is capable of transmitting other 

various information such as yellow or flashing red but the scope of this research is limited 

to stop/go motion, hence only the red and green phases are considered. The Time Change 

Details Data Frame consists of timing related signals such as the phase or event start time 

and likely end time. The contents of the Time Change Details Data frame are shown in 

Figure 5.7. 

 
Figure 5.7: Contents of Time Change Details Data Frame 

The Movement Phase State and Max. End Time data elements are used to determine the 

signal phase and the time to the next phase. This is one of the methods that can be used to 

extract the required data as per the SAE J2735 Message Set definitions. 
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5.3 Implementation of Stop/Go motion 

The V2X signal information is used to determine if the current phase of the signal and the 

time for it to change. The range of the DSRC signal is usually 300m as defined by the 

PreScan V2X Plugin module. Though the data is available from 300m, the stopping action 

starts only when the signal is at a distance of 50m away from the ego vehicle. This distance 

was selected as it is the approximate stopping distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝) required to stop a vehicle 

when the vehicle is at a speed of 30 mph. The stopping distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝) is calculated using 

eqn. (5.2). 

 𝐷𝐷𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝 =  𝑇𝑇𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝 ∗ �̇�𝑥𝑠𝑠𝑒𝑒𝑜𝑜  (5.2) 

In eqn. (5.2), 𝑇𝑇𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝 represents the time gap from the intersection at which braking is 

initiated. The information broadcasted from the V2I transmitter is the latitude and longitude 

of the device with the PreScan® global coordinates as a reference.  

For a red signal phase, the relative distance to the signal (𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙) is used as a reference to the 

MPC controller. The stopping distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝) tracks this relative distance thereby slowing 

down the vehicle as the ego vehicle changed its velocity to maintain the stopping distance 

from the traffic signal. Once the signal phase changes to green, the controller stops tracking 

the relative distance as the signal phase is green and no stopping maneuver is required. The 

MPC controller tries to track the command velocity by changing the tractive force demand 

thereby changing the ego velocity. 

This process is further explained using the simulation setup and the simulation results 

discussed below.  
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5.4 Simulation Setup 

A scenario is created with multiple signalized intersections in the PreScan® GUI. The 

signal phase and the change in signals are programmed such that the green phase and the 

red phase are in the ‘ON’ state for the same duration. After this specified time is elapsed, 

the signal phase changes. The orange phase in the signals are not considered and only the 

red and green phases are considered. The V2X transmitter is positioned on the signal as 

shown in Figure 5.8. The red dot in Figure 5.8 indicates the V2X transmitter. Two such 

traffic signals are placed at intersections, with different phase change timings are spaced at 

130 m from each other as highlighted using the red boxes in Figure 5.11. The Signal Group 

ID of these two signals is defined in Figure 5.11. 

 
Figure 5.8: Positioning of the V2X transmitter on the traffic signal. 

The simulation is set up such that the signal phase change time for both these signals is 

different. The phase change time for the first signal with Signal Group ID of 1 is 21 seconds 

and for the second signal with Signal Group ID of 2 is 10 seconds. The phase change of 

the signals with respect to time for signal 1 is shown in Figure 5.9 and the phase change 

with respect to time for signal 2 is shown in Figure 5.10. 
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Figure 5.9: Phase change for Signal 1 

 
Figure 5.10: Phase Change for Signal 2 
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Figure 5.11: Scenario created with signalized intersections in PreScan GUI - The red 
boxes highlight the position of the traffic signals. 

The information broadcast via the V2X transmitter is the SPAT message and the MAP 

message. The PreScan® V2X plugin toolbox can be used to model a signal similar to the 

SPAT message and the MAP message using the Generic V2X signal format as shown in 

Figure 5.12. The MAP and SPAT message payloads are shown in Appendix A and 

Appendix B, respectively, as described in the SAE – J2735 Message Set Dictionary [43]. 

The actual signals from the DSRC devices require preprocessing to extract the data. For 

simulating this preprocessed data, generic signals from the PreScan® V2X plugin toolbox 

are used to model the required MAP and SPAT messages. The distance is calculated using 

the Position signal contained in the MAP message. This is also used to determine the 

appropriate Signal Group ID that is applicable for the ego vehicle based on the position. 

The Movement Phase State data element for the corresponding Signal Group ID are used 

to determine the value of the current signal phase and the time when the phase changes. 

The messages transmitted from these devices are received by a single receiver on the ego 

vehicle. Generic signals are modeled to transmit only the required signals such as position, 

Signal Group ID & Phase state as shown in Figure 5.13. The frequency at which the data 
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is updated is 0.1 seconds as defined by the standard. The vehicle level controller is able to 

receive the data only from a predefined number of devices. If more devices are transmitting 

the data, it will not be able to read the data from these additional devices. 

 
Figure 5.12: V2X plugin setting on PreScan 

 
Figure 5.13: Visualization of the V2I Message Packet 
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5.5 Simulation Results 

Using the above-mentioned traffic scenario, the stop/go motion of the ego vehicle at 

signalized intersections is demonstrated. The ego vehicle initially 160 m away from the 

first signal starts moving with an initial velocity of 5m/s as shown in Figure 5.14. The 

vehicle tries to attain the command velocity of 20m/s and stabilizes at this value. When the 

ego vehicle reaches a distance of 50m to the intersection as shown in Figure 5.15 braking 

is initiated and the vehicle slows down such that it stops at the intersection because of the 

red phase. This can be seen clearly in Figure 5.14 and the region of braking is highlighted 

and labeled. Once the phase changes, the controller stops tracking the relative distance 

(𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙) as the phase is green as highlighted in Figure 5.15. This is achieved by eliminating 

the difference between the relative distance and the stopping distance, which makes the 

distance term zero in the cost function. The ego vehicle again tries to reach the command 

velocity and continues acceleration as shown in Figure 5.14. The first intersection is passed 

by now and the second intersection signals are being read the vehicle. This is because the 

Signal Group ID is updated from 1 to 2 as shown in Figure 5.14. Though the distance to 

the second signal is less than 50m, the relative distance to the signal originates only when 

the signal phase changes to the red phase as shown in Figure 5.15. The vehicle comes to a 

rest and waits till the phase changes and passes the intersection as shown in Figure 5.14 & 

Figure 5.15. The tractive force demanded by the controller to achieve this stop/go motion 

is shown in Figure 5.16. 
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Figure 5.14: Velocity of ego vehicle through two signalized intersections 

 
Figure 5.15: Relative distance (𝐷𝐷𝑟𝑟𝑠𝑠𝑙𝑙) versus stopping distance (𝐷𝐷𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝) through signalized 
intersections. 
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Figure 5.16: Tractive Force requested by the MPC controller for the stop/go motion 

Using the SPAT data from V2X infrastructure, the navigation of the autonomous vehicle 

through signalized traffic intersections was made possible and stop/go motion of the 

autonomous vehicle is demonstrated using the PreScan Software. 

By using path planning algorithms and V2X communication signals the self-driving 

capability of any Level 2 autonomous vehicle is increased. The conclusion for the research 

and the possible future work in the field are discussed in the next chapter. 
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6 Conclusions & Future Work 

This research focusses on the implementation of computationally efficient path planning 

algorithms for autonomous vehicles, which can be implemented in real-time to plan an 

optimum path such that the autonomous vehicle can avoid obstacles during uncertainties. 

The control algorithm was further extended to demonstrate stop/go motion at signalized 

intersections with the use of data transmission using V2X communication technology.  

6.1 Conclusion 

In this research, we have addressed the issue of path planning and motion control of self-

driving vehicles under uncertainties, such as an obstacle in the path or a traffic collision 

situation. With the use of the proposed A* algorithm combined with a Bezier curve 

trajectory generator, a model predictive controller was implemented to control the lateral 

motion of the vehicle. Furthermore, a constant time gap approach was used to apply 

longitudinal control for changing the speed of the vehicle based on the distance to a lead 

vehicle and commanded velocity. Using MIL methods and PreScan® simulation tool, the 

controller was tested for various traffic scenarios and the performance of the controller was 

evaluated for validation. The working of the longitudinal and lateral control algorithms was 

demonstrated for scenarios with static and dynamic obstacles.  

Furthermore, the same control algorithm was used to implement stop/go motion in 

autonomous vehicles to navigate signalized intersections in urban driving scenarios. MAP 

and SPAT message data frames such as position and phase state were transmitted using the 

V2X communication devices from the traffic signal and the distance to the nearest 

approaching signal was determined. Using this data, stop/go motion of the autonomous 

vehicle was demonstrated by simulating a traffic scenario on the PreScan® GUI. Using 

real-time MIL testing methods, the control algorithm was tested for varying traffic phase 

signals and timings, and the behavior of the controller and the ego vehicle was observed. 



67 

 

By implementing such algorithms, the level of autonomy of self-driving vehicles can be 

increased during uncertainties or while navigating signalized intersections thereby 

mitigating and eventually eliminating human intervention in autonomous driving. 

6.2 Future Work 

The research in the field of autonomous vehicles is moving at a rapid pace, yet there are 

many new areas to be explored. Conducting similar MIL/SIL testing for more varied 

situations and understanding the effects of temperature and lighting can also be studied. 

PreScan® allows users to simulate the controller for various road grades, weather 

conditions, ambient lighting, and other disturbances can be introduced to validate the 

robustness of the controller. 

The proposed path planning algorithm can be further developed and improved by testing 

the control algorithm using HIL methods and real-time vehicle testing. Vehicle data can be 

used to improve the prediction model and thereby improving the MPC controller behavior 

for nonlinearities. Non-Linear MPC can be implemented by improving the prediction 

model to include the steering and tire system nonlinearities, which can increase the quality 

of the controller. Further, sensor data quality can be improved by using more complex 

image processing and data localization algorithms to combine data from various sensors 

making it more accurate.  

The information from the V2X communication devices can be used to further develop the 

control algorithm to communicate with other cars and road-side-units, which can be used 

to tackle various driving situations such as navigating through a non-signalized intersection 

or lane change assistance for highway driving. Further, the SPAT message data can be used 

to develop algorithms for efficient approach and departure at intersections, which can lead 

to energy savings and reduced trip times. All such advanced algorithms can be tested using 

the PreScan® simulation platform and subsequently tested on real-time HIL systems. 
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Appendix A:  Structure of the MAP Message 

The payload structure of the MAP message payload is shown in Figure 7.1. The data frames 

of importance for the proposed control algorithm are outlined in the figure with dashed 

lines. A more detailed definition of all the data frames can be found in the SAE – J2735 

Message Set Definition Standard.  

 
Figure 7.1: Payload of MAP Message 
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Appendix B: Structure of the SPAT Message 

The payload structure of the SPAT message payload is shown in Figure 7.2. The data 

frames of importance for the proposed control algorithm are outlined in the figure with 

dashed lines. A more detailed definition of all the data frames can be found in the SAE – 

J2735 Message Set Definition Standard.  

 
Figure 7.2: Payload of SPAT Message 
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	1.1.1 Vehicle Control
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	1.1.2 Motion Planning
	The DARPA Challenge participants also demonstrated the use of various motion planning algorithms, which were deployed to facilitate the decision-making process for these autonomous vehicles. The winner of the challenge was Carnegie Mellon University’s...

	1.1.3 Connected Vehicles
	The increasing availability of wireless communication technologies, which facilitates vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) via technologies such as Dedicated Short Range Communication (DSRC) [23] enables communication and data ...


	1.2 Decision-Making Process in Autonomous Vehicles
	This section is used to describe the decision-making process that takes place in an autonomous system. Various aspects of this process have to be executed by driverless cars to complete any particular maneuver. These decisions are made based on the da...
	Figure 1.3: Flowchart depicting the decision making process in self-driving vehicles
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	2 Path Planning
	Path Planning is an important aspect of an autonomous vehicle. It can be categorized into global and local path planning. Global path planning or route planning is based on the current position of the vehicle, user-entered destination, and a map of th...
	A* is a graph search method introduced as a graph traverser algorithm for an automated robot [27]. It is used to find the best path on a graph but is computationally efficient by making use of a heuristic approach [28]. The algorithm requires some pre...
	2.1 Obstacle Data
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	Figure 2.1: Representation of data obtained from the PreScan® sensor model
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	2.2 A* Algorithm
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	Figure 2.2: Possible future nodes are highlighted for a node (i, j)
	The algorithm maintains two lists known as the Open and the Close list. The open list consists of the nodes that have been visited but successor nodes have not been explored. The close list consists of the nodes that have been visited and its successo...
	This optimum path obtained from the algorithm consists of waypoints to be followed so that the vehicle reaches the target position by avoiding obstacles. Though these waypoints represent the optimum position for the ego vehicle to be, a trajectory nee...
	Figure 2.3: Optimal path obtained using A* for a sample dataset
	To improve the smoothness of the curve, the piecewise Bezier curve approach is used in a trajectory generator function which is further described in section 2.3.

	2.3 Trajectory Generation
	Though the A* algorithm is computationally efficient in finding an optimal path, the path generated is not continuous and cannot be tracked by a non-holonomic system such as a vehicle steering system. To obtain a continuous curvature, a trajectory gen...
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	The path planner outputs are waypoints that have the desired lateral and longitudinal position. However, we are using the Bezier curve equations mentioned in eqns. (2.4) and (2.5), only for the lateral position of the vehicle. The path planner output ...
	The implementation of the path planner and trajectory generator is shown in the pseudocode mentioned in Table 1. The first four waypoints obtained by the path planning algorithm are passed to the trajectory generator function to convert the path to a ...
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	Figure 2.4: Comparison of Path Planner and Trajectory Generator Output – The marked portion highlights the joining of two different Bezier curves when there is a change in the path planner output.
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	3.1.1 Longitudinal Control Model
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	3.1.2 Lateral Control Model
	To achieve lateral control, a linearized steering model is used for prediction. The steering system is approximated to a bicycle model, which simplifies the vehicle dynamics to a single track with the lateral deviation (𝑦) and the yaw angle (𝜓) as t...
	Figure 3.3: Representation of the dynamic bicycle model for lateral control [39]
	To implement the prediction model in a single MPC controller, the state-space equations from eqns. (3.4) & (3.6) are combined to form a single state-space representation as shown in eqn. (3.7) with states 𝒙= ,, ,,,𝑥.-𝑒𝑔𝑜.-,𝐷-𝑟𝑒𝑙.-,,𝑥.-𝑎𝑐𝑡...


	3.2 Problem Formulation
	The prediction model is converted to a discrete-time model in the controller using the first-order hold method [41] and is represented as shown in eqn. (3.8).
	The control variables (,𝑢-𝑡.) i.e. the tractive force and the steering wheel angle are determined by solving an optimization problem for each time step over the control horizon (,𝑡-𝑐.) with a cost function defined in eqn. (3.9).
	In eqn. (3.9), ,𝑤-1.,,𝑤-2.,,𝑤-3. & ,𝑤-4. represent the weights of the predicted outputs and ,𝑤-𝑟1. & ,𝑤-𝑟2. are the weights for the rate of change of the control variables ,∆,𝐹-𝑡. 𝑎𝑛𝑑 ∆𝛿. i.e., the change in the tractive force and steeri...
	The minimum and maximum values for the control variables are chosen based on the vehicle and powertrain constraints. The rate of change limits is selected such that the steering angle change and the acceleration change are within the permissible limit...

	3.3 Closed-Loop Implementation
	The solution to the optimization problem yields the control signals i.e. the tractive force demand (,𝐹-𝑡.) and the optimum steering wheel angle (𝛿) required to minimize the cost function shown in eqn. (3.8). These signals are passed to the vehicle ...
	The reference for the longitudinal control is determined from the user-defined command velocity (,𝑉-𝑐𝑚𝑑.) or the velocity predictor and the safe distance (,𝐷-𝑠𝑎𝑓𝑒.) calculator. The reference for the lateral control is determined from the path...
	Simulations are carried out on the PreScan® platform to introduce traffic characteristics and to visualize the performance of the controller for varying traffic scenarios that are discussed further in section 4.
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	𝑨𝒍𝒐𝒏𝒈=001−10000−1𝜏,
	𝑩𝒍𝒐𝒏𝒈=  001/𝜏𝑚;      𝑩𝒘= −1/𝑚00100,
	𝑪𝒍𝒐𝒏𝒈= 100010 ,           𝑫𝒍𝒐𝒏𝒈=00;
	𝐷𝑠𝑎𝑓𝑒= 𝐷𝑠𝑡𝑎𝑡𝑖𝑐+ 𝑇𝑔𝑎𝑝∗𝑥𝑒𝑔𝑜
	𝒙=𝑨𝒍𝒂𝒕𝒙+𝑩𝒍𝒂𝒕𝒖,  𝒚=𝑪𝒍𝒂𝒕𝒙+𝑫𝒍𝒂𝒕𝒖
	where
	𝑨𝒍𝒂𝒕= 𝑎10𝑎200010𝑎30𝑎401𝑥𝑒𝑔𝑜00,     𝑩𝒍𝒂𝒕= 2∗𝐶𝑓𝑚02∗𝐶𝑓∗𝑙𝑓𝐼𝑧0
	𝑪𝒍𝒂𝒕= 00010100,  𝑫𝒍𝒂𝒕=00
	𝑎1= −2∗𝐶𝑓+2∗𝐶𝑟𝑚𝑥𝑒𝑔𝑜;                  𝑎2= −𝑥𝑒𝑔𝑜−2∗𝐶𝑓∗𝑙𝑓−2∗𝐶𝑟∗𝑙𝑟𝑚𝑥𝑒𝑔𝑜;
	𝑎3= −2∗𝐶𝑓∗𝑙𝑓−2∗𝐶𝑟∗𝑙𝑟𝐼𝑧𝑥𝑒𝑔𝑜;        𝑎4=− 2∗𝐶𝑓∗𝑙𝑓2+2∗𝐶𝑟∗𝑙𝑟2𝐼𝑧𝑥𝑒𝑔𝑜
	𝒙=𝑨𝒙+𝑩𝒖 + 𝑩𝒘𝒘,  𝒚=𝑪𝒙+𝑫𝒖
	where
	𝑨= 𝐴𝑙𝑜𝑛𝑔𝑧𝑒𝑟𝑜𝑠3,4𝑧𝑒𝑟𝑜𝑠4,3𝐴𝑙𝑎𝑡; 
	𝑩= 𝐵𝑙𝑜𝑛𝑔𝑧𝑒𝑟𝑜𝑠(3,1)𝑧𝑒𝑟𝑜𝑠(4,1)𝐵𝑙𝑎𝑡;  𝑩𝒘= −1/𝑚00100;
	𝑪= 𝐶𝑙𝑜𝑛𝑔𝑧𝑒𝑟𝑜𝑠2,4𝑧𝑒𝑟𝑜𝑠2,3𝐶𝑙𝑎𝑡;  𝑫=00000000;
	𝒙𝒕+𝟏=𝑨𝒅𝒙𝒕+𝑩𝒅𝒖𝒕+ 𝑩𝒘𝒅𝒘𝒕; 
	𝒚𝒕= 𝑪𝒅𝒙𝒕+𝑫𝒅𝒖𝒕;
	𝓗:𝑖=1𝑡𝑐𝑤1𝑥𝑒𝑔𝑜𝑖− 𝑉𝑐𝑚𝑑2+𝑤2𝐷𝑅𝑒𝑙𝑖− 𝐷𝑠𝑎𝑓𝑒2+𝑤3𝑦𝑖− 𝑦𝑟𝑒𝑓2+𝑤4𝜓𝑖− 𝜓𝑟𝑒𝑓2  +𝑤𝑟1∆𝐹𝑡𝑖2+𝑤𝑟2∆𝛿𝑖2
	𝐷𝑅𝑒𝑙𝑖≥ 𝐷𝑠𝑎𝑓𝑒
	𝐹𝑡𝑚𝑖𝑛≤ 𝐹𝑡𝑖≤𝐹𝑡𝑚𝑎𝑥
	∆𝐹𝑡𝑚𝑖𝑛≤ ∆𝐹𝑡𝑖≤∆𝐹𝑡𝑚𝑎𝑥
	𝛿𝑚𝑖𝑛≤ 𝛿≤𝛿𝑚𝑎𝑥
	∆𝛿𝑚𝑖𝑛≤ ∆𝛿𝑖≤∆𝛿𝑚𝑎𝑥
	4 Simulation Results
	The controller is tested for varying traffic scenarios using various static and dynamic obstacles from the PreScan® library. The platform creates a run-time environment to execute these various traffic scenarios and a model-in-the-loop setup is establ...
	4.1 Scenario Setup
	To test the control algorithm, a real-time traffic scenario is modeled using the PreScan® software. This platform allows the user to create any kinds of roads, road signs, lane markings, traffic signals, and other cars. Using Open Street Maps, the roa...
	Various types of vehicles ranging from motorcycles to trailer trucks can be modeled and simulated as required. This research uses the Toyota Prius model available in the PreScan library as the ego vehicle. The vehicle model is tweaked to make it more ...
	Figure 4.1: Sample scenario that can be created on PreScan software
	Table 4: Vehicle parameters for Toyota Prius
	Figure 4.2: Vehicle Dynamics Parameters for the Toyota Prius Model

	4.2 Simulation Setup
	The working of the path-planning algorithm and the lateral controller is demonstrated using a scenario, in which a stationary obstacle is blocking the path of the ego vehicle. For simulation and controller tuning, the Toyota Prius vehicle model was us...
	The vehicle tries to stay in the center of the path until the obstacle is detected. The path is a straight road and the goal of the experiment is to observe the maneuver planned by the ego vehicle to avoid a collision by deviating from a straight line...
	Figure 4.3: Vis-Viewer Setup for visualizing the ego vehicle
	Table 5: Simulation and model parameters for MPC controller
	Figure 4.4: Object detected in the path of the ego vehicle through the vision sensor

	4.3 Scenario 1 – Stationary Obstacle
	The ego vehicle with an initial velocity of 5m/s accelerates to reach the command velocity. The object is first detected when it is at a distance of 100m from the ego vehicle as shown in Figure 4.5. When the relative distance of the obstacle reaches t...
	During the object avoidance maneuver, the longitudinal control algorithm is also changing the tractive force percentage demand to control the velocity of the ego vehicle based on the difference between the relative distance and the safe distance. As t...
	Figure 4.5: Safe distance (,𝐷-𝑠𝑎𝑓𝑒.) versus relative distance ,(𝐷-𝑅𝑒𝑙.) as the ego vehicle is approaching to the obstacle
	Figure 4.6: Command velocity (,𝑉-𝑐𝑚𝑑.) versus ego vehicle velocity (,,𝑥.-𝑒𝑔𝑜.) through the object avoidance maneuver
	Figure 4.7: Comparison of the reference trajectory and actual vehicle trajectory obtained using the MPC controller
	Figure 4.8: Steering wheel angle (δ) to generate the object avoidance maneuver
	Figure 4.9: Tractive Force (,𝐹-𝑡.) implemented by MPC controller
	Figure 4.10: Ego vehicle deviating from the path to avoid collision with the obstacle
	Figure 4.11: Ego vehicle at the maximum deviation from the path
	Figure 4.12: Ego Vehicle rejoining the path after crossing the obstacle

	4.4 Scenario 2 – Moving Obstacle
	A second test is conducted using a lead vehicle to demonstrate the working of longitudinal and lateral control in harmony. In this scenario, the lead vehicle is traveling at a constant speed of 10m/s and uncertainty is created as the lead vehicle come...
	Figure 4.13: Safe distance (,𝐷-𝑠𝑎𝑓𝑒.) versus relative distance ,(𝐷-𝑅𝑒𝑙.) as the ego vehicle approaches the obstacle
	Figure 4.14: Comparison of reference velocity, ego velocity (,,𝑥.-𝑒𝑔𝑜.) and lead velocity (,𝑉-𝑙𝑒𝑎𝑑.) while following and passing
	Figure 4.15: Comparison of the reference trajectory and actual vehicle trajectory obtained to avoid a collision
	Figure 4.16: Steering wheel angle (𝛿) for the object avoidance maneuver
	Figure 4.17: Tractive force (,𝐹-𝑡.) implemented by the MPC controller

	4.5 Scenario 3 – Multiple Obstacles
	In this test, a multi-lane road is used with multiple objects to demonstrate the obstacle avoidance maneuver. The obstacles are simulated using trucks rather than cars to understand the behavior of the path planner as it takes more time to pass a truc...
	Figure 4.18: Multiple objects test scenario created using trucks
	Figure 4.19: Command velocity (,𝑉-𝑐𝑚𝑑.) versus ego vehicle velocity (,,𝑥.-𝑒𝑔𝑜.) through the multiple objects avoidance maneuver
	Figure 4.21: Safe distance (,𝐷-𝑠𝑎𝑓𝑒.) versus relative distance ,(𝐷-𝑅𝑒𝑙.) as the ego vehicle approaches the obstacles
	The path planner and the trajectory generator are triggered when the relative distance falls below the safe distance and a trajectory is planned and the object avoidance maneuver is executed as shown in Figure 4.22. The avoidance maneuver for each of ...
	Figure 4.22: Comparison of the reference trajectory and actual vehicle trajectory obtained to avoid both the obstacles in the path
	Figure 4.23: Steering wheel angle (𝛿) for the object avoidance maneuver for both obstacles in the path
	The requested tractive force percentage (,F-t.)  to achieve longitudinal control is shown in Figure 4.24. The braking zones for both the obstacles can be observed as highlighted in Figure 4.24.
	Figure 4.24: Tractive force (,𝐹-𝑡.) implemented by the MPC controller
	From the above results, it can be clearly seen that by using path planning algorithms, the autonomous vehicle can safely navigate through a collision scenario or any such uncertainties. Using the connected vehicle technology, traffic signal data from ...


	Figure 4.20: Safe distance (,𝐷-𝑠𝑎𝑓𝑒.) versus relative distance ,(𝐷-𝑅𝑒𝑙.) as the ego vehicle is approaching to the obstacles
	5 Approach and Departure at Signalized Intersections
	5.1 Motivation
	The number of vehicles on road in urban areas has been rising continuously and this directly leads to an increase in traffic congestion. This is one of the major causes of air pollution in cities as vehicles generate more emissions when they spend mor...
	By implementing connected vehicle technologies, vehicle-to-infrastructure (V2I) communication technology can be used to transmit signal information such as signal phase and time to next phase, which can be used to stop the vehicle at a red light in a ...

	5.2 Data Extraction from V2I transmitters
	The transmitters make use of the Dedicated Short Range Communication (DSRC) technology to enable communication between the vehicles and the road-side-units. The data that is transferred is according to the SAE J2735 Message Set Dictionary standard [43...
	Every DSRC message is classified into several components-
	1. Message – the top level of complexity in the data structure
	2. Data Frame – complex data structures
	3. Data Element – smallest division of information content
	The definitions of each of these components are available in the Message Set Dictionary [43]. Every Message Frame consists of several Data Frames and Data Elements. Data Frames can further be a collection of simple Data Frames or Data Elements. A figu...
	Figure 5.1: Representation of a sample DSRC Message Frame
	To implement stop/go motion at signalized intersections, two messages are required to be transmitted by the road-side-unit which are received by the vehicle system with the message ID as follows
	1. MSG_MapData (MAP)
	2. MSG_SignalPhaseAndTiming (SPAT)
	The Map Data message is used to convey one or more intersection’s lane geometry maps within a single message. This message includes data pertaining to the geographical information of items such as complex intersections, road segments, high-speed curve...
	The Signal Phase and Timing message is used to transmit the current status of one or more signalized intersections. Along with with the MAP data, the vehicle system will be able to determine the state of the signal phasing and the time for the next ph...
	5.2.1 Data Extraction from MAP Message
	When the ego vehicle is in the range of the road-side-unit, the MAP message is used to determine the position and location of the road-side-unit. For a traffic signal, this location is actually the location of the stop line on the road. Since the MAP ...
	The geometric nodes of all the lanes pertaining to an intersection are stored in the Node List XY Data Frame as described in Appendix A. The location of the Node List XY Data Frame is visually represented in Figure 5.2. Node List XY Data Frame contain...
	Figure 5.2: Location of the Node List XY Data Frame in the MAP Message
	Figure 5.3: The contents of the Generic Lane Data Frame
	Using the Lane ID, the corresponding data for the active lane form the MAP and SPAT messages is determined. The location of the stop line for the selected Lane ID is determined using the Intersection geometry Data Frame. The position 3D data frame is ...
	Figure 5.4: Representation of Latitude and Longitude of the stop line
	The distance of the ego vehicle from the stop line represented as ,𝐷-𝑟𝑒𝑙. is calculated using the GPS coordinates of the ego vehicle represented by ,𝑙𝑎𝑡-𝐺𝑃𝑆. & ,𝑙𝑜𝑛𝑔-𝐺𝑃𝑆. and the coordinates of the center of the stop line determined f...
	This relative distance ,𝐷-𝑟𝑒𝑙. is used to control the motion of the ego vehicle to implement stop/go motion, which is discussed further in detail.
	Once the Lane ID for the active lane of the ego vehicle is obtained, it is further used to select the Signal Group ID data element. This Signal Group ID is used to match the lane data in the MAP message and the signal phasing data from the SPAT messag...
	Figure 5.5: Representation of Signal Group ID Location
	The extraction of the signal Phasing Data from the SPAT message is discussed in the next section

	5.2.2 Data Extraction from SPAT Message
	The DSRC message set transmitted by the road-side-unit contains both the MAP data and the SPAT data. SPAT data can be used to determine the current phase for each signal in the system, which is sent in the Movement Phase State Data Frame. The phase ti...
	Since the SPAT message contains information from one or more signalized intersections, the Signal Group ID obtained from the MAP message is used to index the appropriate SPAT data for the ego vehicle. The schematic of the SPAT message with the Signal ...
	Figure 5.6: Schematic of SPAT Message Data Frame
	The Movement Phase State is a Data Element that conveys the current signal phase information i.e. green/red phase. The SPAT Message is capable of transmitting other various information such as yellow or flashing red but the scope of this research is l...
	Figure 5.7: Contents of Time Change Details Data Frame
	The Movement Phase State and Max. End Time data elements are used to determine the signal phase and the time to the next phase. This is one of the methods that can be used to extract the required data as per the SAE J2735 Message Set definitions.


	5.3 Implementation of Stop/Go motion
	The V2X signal information is used to determine if the current phase of the signal and the time for it to change. The range of the DSRC signal is usually 300m as defined by the PreScan V2X Plugin module. Though the data is available from 300m, the sto...
	In eqn. (5.2), ,𝑇-𝑠𝑡𝑜𝑝. represents the time gap from the intersection at which braking is initiated. The information broadcasted from the V2I transmitter is the latitude and longitude of the device with the PreScan® global coordinates as a refere...
	For a red signal phase, the relative distance to the signal (,𝐷-𝑟𝑒𝑙.) is used as a reference to the MPC controller. The stopping distance (,𝐷-𝑠𝑡𝑜𝑝.) tracks this relative distance thereby slowing down the vehicle as the ego vehicle changed its...
	This process is further explained using the simulation setup and the simulation results discussed below.

	5.4 Simulation Setup
	A scenario is created with multiple signalized intersections in the PreScan® GUI. The signal phase and the change in signals are programmed such that the green phase and the red phase are in the ‘ON’ state for the same duration. After this specified t...
	Figure 5.8: Positioning of the V2X transmitter on the traffic signal.
	The simulation is set up such that the signal phase change time for both these signals is different. The phase change time for the first signal with Signal Group ID of 1 is 21 seconds and for the second signal with Signal Group ID of 2 is 10 seconds. ...
	Figure 5.9: Phase change for Signal 1
	Figure 5.10: Phase Change for Signal 2
	Figure 5.11: Scenario created with signalized intersections in PreScan GUI - The red boxes highlight the position of the traffic signals.
	The information broadcast via the V2X transmitter is the SPAT message and the MAP message. The PreScan® V2X plugin toolbox can be used to model a signal similar to the SPAT message and the MAP message using the Generic V2X signal format as shown in Fi...
	The actual signals from the DSRC devices require preprocessing to extract the data. For simulating this preprocessed data, generic signals from the PreScan® V2X plugin toolbox are used to model the required MAP and SPAT messages. The distance is calcu...
	Figure 5.12: V2X plugin setting on PreScan
	Figure 5.13: Visualization of the V2I Message Packet

	5.5 Simulation Results
	Using the above-mentioned traffic scenario, the stop/go motion of the ego vehicle at signalized intersections is demonstrated. The ego vehicle initially 160 m away from the first signal starts moving with an initial velocity of 5m/s as shown in Figure...
	Figure 5.14: Velocity of ego vehicle through two signalized intersections
	Figure 5.15: Relative distance (,𝐷-𝑟𝑒𝑙.) versus stopping distance (,𝐷-𝑠𝑡𝑜𝑝.) through signalized intersections.
	Figure 5.16: Tractive Force requested by the MPC controller for the stop/go motion
	Using the SPAT data from V2X infrastructure, the navigation of the autonomous vehicle through signalized traffic intersections was made possible and stop/go motion of the autonomous vehicle is demonstrated using the PreScan Software.
	By using path planning algorithms and V2X communication signals the self-driving capability of any Level 2 autonomous vehicle is increased. The conclusion for the research and the possible future work in the field are discussed in the next chapter.


	𝐷𝑟𝑒𝑙= 𝑙𝑎𝑡𝐺𝑃𝑆−𝑙𝑎𝑡𝑅𝑆𝑈2+ 𝑙𝑜𝑛𝑔𝐺𝑃𝑆−  𝑙𝑜𝑛𝑔𝑅𝑆𝑈2 
	𝐷𝑠𝑡𝑜𝑝= 𝑇𝑠𝑡𝑜𝑝∗𝑥𝑒𝑔𝑜
	6 Conclusions & Future Work
	This research focusses on the implementation of computationally efficient path planning algorithms for autonomous vehicles, which can be implemented in real-time to plan an optimum path such that the autonomous vehicle can avoid obstacles during uncer...
	6.1 Conclusion
	In this research, we have addressed the issue of path planning and motion control of self-driving vehicles under uncertainties, such as an obstacle in the path or a traffic collision situation. With the use of the proposed A* algorithm combined with a...
	Furthermore, the same control algorithm was used to implement stop/go motion in autonomous vehicles to navigate signalized intersections in urban driving scenarios. MAP and SPAT message data frames such as position and phase state were transmitted usi...

	6.2 Future Work
	The research in the field of autonomous vehicles is moving at a rapid pace, yet there are many new areas to be explored. Conducting similar MIL/SIL testing for more varied situations and understanding the effects of temperature and lighting can also b...
	The proposed path planning algorithm can be further developed and improved by testing the control algorithm using HIL methods and real-time vehicle testing. Vehicle data can be used to improve the prediction model and thereby improving the MPC control...
	The information from the V2X communication devices can be used to further develop the control algorithm to communicate with other cars and road-side-units, which can be used to tackle various driving situations such as navigating through a non-signali...
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