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Abstract 

 

The treated solid residuals resulting from wastewater treatment are referred to as 

biosolids. Biosolids must be monitored during treatment for the presence of 

pathogens, such as Ascaris spp. ova. Unfortunately, the current microscopic 

method for enumeration of Ascaris ova in biosolids is labor and time intensive, 

and quantifying viable ova that have larvated during treatment is difficult. The 

goal of this research was to evaluate improved methods for quantification of 

Ascaris ova in biosolids, including a method for quantifying the viability of Ascaris 

ova, and a comparison of the traditional microscopic method with qPCR. 

Improved methods to promote movement of larvated ova using bleach and heat 

treatment were tested and shown to increase ova movement when compared 

with no treatment, or heat or bleach only treatment, thus decreasing the testing 

time. A comparison of qPCR and microscopic methods using long-term stored 

biosolids, exhibited a correlation between the qPCR calculated and 

microscopically counted ova. Propidium monoazide (PMA)-qPCR was also 

tested as a method for preventing false positives from inactivated but not yet 

degraded larval ova; however, no decrease in amplification was observed for 

PMA treated samples. Based on these results, qPCR may be a valid method for 

quantifying Ascaris ova in biosolids. 
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1 Introduction 

1.1 Background  

1.1.1 Biosolids 

The treated solid residuals resulting from wastewater treatment processes are 

referred to as biosolids. Management and disposal of biosolids is a major cost 

and challenge for municipal water resource recovery facilities (WRRFs). 

Biosolids are an organic, nutrient-rich material that have beneficial effects on soil 

properties and plant production (NRC, 2002). As a result, of the roughly 6 million 

dry tons of biosolids annually produced in the U.S., up to 60% are land-applied 

for a variety of beneficial uses, including as agricultural fertilizers, for degraded 

land reclamation, and in public parks and golf courses. However, the biosolids 

also contain pathogens. Therefore, due to the risk of the persistence of 

pathogens in biosolids, they must be treated to reduce pathogen levels and 

stabilize the organic matter in the biosolids, thereby reducing their tendency to 

attract vectors (e.g., rats, etc.) before being land-applied. In 1993, the US 

Environmental Protection Agency (EPA) set to regulate the application of 

biosolids and to protect human health under the part 503 rule, which categorized 

biosolids as either Class A or Class B. The pathogen load resulting from the 

treatment process used determines the class of biosolids. Class B treatment 

must reduce the level of fecal coliforms to <2,000,000 colony forming units 

(CFUs)/g total solids (TS). In comparison, Class A biosolids must have pathogen 

levels that are near non-detect limits, and therefore meet the following standards: 

(1) fecal coliforms must be below 1000 most probable number (MPN)/g TS, or 

the density of Salmonella must meet <3 MPN/4g TS; (2) viable helminth ova 

must be <1 ova /4 g TS, and (3) enteric viruses must be <1 plaque-forming unit 

(PFU)/4g TS.  

There are six alternatives provided in the Part 503 rule for treating biosolids so 

they can be classified as Class A (EPA, 1994):  Alternative 1, thermally-treated 
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biosolids that are subjected to one of four time-temperature regimes; Alternative 

2, biosolids that are treated in a high pH-high temperature process, and meet 

specific pH, temperature, and air-drying requirements; Alternative 3, biosolids 

that are treated in other known processes that can reduce enteric viruses and 

viable helminth ova; Alternative 4, biosolids that treated in unknown processes 

(biosolids must be tested for Salmonella sp. or fecal coliform bacteria, enteric 

viruses, and viable helminth ova); Alternative 5, biosolids that treated in one of 

the Processes to Further Reduce Pathogens (PFRP); and Alternative 6, biosolids 

treated in a process equivalent to a PFRP, i.e., the process can consistently 

reduce pathogens to levels comparable to those achieved in the PFRPs (EPA, 

1994).  The PFRPs that can be used to achieve Class A status are composting, 

heat drying, heat treatment, thermophilic aerobic digestion, beta ray irradiation, 

gamma ray irradiation, or pasteurization.  With the possible exception of 

composting, these are all expensive, high-maintenance processes, and most are 

energy-intensive. 

The majority of publically owned WRRFs in the U.S. serve small communities, 

which are defined as having a population of  10,000 people and wastewater 

flow rates of  1106 gal/day (USEPA, 2012). Unfortunately, these plants often 

lack the capital resources and personnel and other operating requirements for 

implementing a PFRP. Fortunately, low-cost, low-technology (LCLT) alternatives 

are available and being used successfully at WRRFs in the U.S. and elsewhere.  

A Water Environment Research Foundation (WERF) study evaluated four of 

these processes:  long-term lagooning, air drying, combined lagooning/air drying, 

and cake storage (Schafer et al., 2004). The process descriptions from that 

report are briefly summarized below. 

Long-term Lagoon Storage/Treatment:  Liquid and dewatered digested sludge is 

placed in a lagoon and stored.  During storage, biosolids decomposition and 

pathogen destruction occur.  The mechanisms of pathogen inactivation that are 

active include: predation by other microorganisms, thermal inactivation, being 
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out-competed by other microorganisms for resources, and chemical inactivation 

(e.g., due to ammonia or organic acids). 

Air-Drying:  Liquid digested biosolids are placed on a sand drying bed, and 

digested dewatered sludge is placed on an impervious pad.  After the biosolids 

dry sufficiently, windrows can be formed and turned, which aids in drying, assists 

in the oxidation of organic matter, and may generate sufficient heat to accelerate 

pathogen kill.  Pathogen kill is a function of desiccation, temperature, and time. 

Cake Storage:  This process is similar to air drying except that larger windrows 

are used with minimal turning.  Pathogen destruction mechanisms are the same 

as for air drying except that desiccation plays a minor role.   

Coupled Lagoon Storage/Air Drying Systems:  This is a combination of the 

lagoon storage technique, plus the air drying method.  Thus, pathogens are 

sequentially subjected to the inactivation mechanisms that occur in both the 

lagoon and air-drying processes.   

1.1.2 Pathogens  

In addition to the types of bacteria, enteric viruses, protozoa, and helminths 

covered in the Part 503 regulations, biosolids have the potential to include a wide 

range of other human pathogens and indicator organisms (PIOs). For example, 

Salmonella spp., Shigella spp, Escherichia coli, and Campylobacter jejuni are 

pathogenic bacteria found in biosolids, while some of the enteric viruses of 

concern include Poliovirus, Adenovirus, and Coxsackievirus. Parasites found in 

biosolids include protozoans like Giardia spp., and Cryptosporidium parvum, as 

well as helminth worms including Ascaris lumbricoides, Trichuris trichiura, 

Toxocara  canis, and Taenia spp. (Gerba & Smith, 2005). However, helminth ova 

and enteric viruses levels in the US are often well below Class A levels, even in 

Class B biosolids. This is not due to the inactivation processes used for Class B 

biosolids treatment, but instead is due to the lack of infections in the population of 
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the United States, as well as other industrialized countries. However, in lower 

income countries, or countries with poor sanitation, the amount of pathogenic 

organisms is much greater (Amahmid, Asmama, & Bouhoum, 2002; Pepper, 

Brooks, Sinclair, Gurian, & Gerba, 2010). 

1.1.3 Ascaris spp. 

The PIOs that are the focus of this project are Ascaris spp. Ascaris, also known 

as intestinal roundworms, are parasitic helminths that are most commonly found 

in parts of Asia, Africa and South America (Amahmid, 1999). There are two main 

human health related species of Ascaris that exist: A. lumbricoides, and A. suum. 

A. lumbricoides is the human pathogen causing ascariasis, while A. suum is 

known as a pig roundworm. Although considered different species, A. suum can 

cross infect humans, and there is debate if they could be considered a single 

species (Leles, 2012). 

Ascaris have a very complex life cycle (Figure 1.1). The cycle begins with 

ingestion of larvated ova from contaminated food, water or soil. The ova travel to 

the small intestine, where the larvae hatch. Larvae then penetrate the intestinal 

wall and enter the bloodstream where they travel to the liver, then to the lungs 

where they leave the bloodstream and enter the alveoli. Once there the larvae 

will mature for approximately two weeks, before bursting through the alveolar 

walls and travel up the bronchioles. Larvae are coughed,up and then swallowed 

in to the pharynx, returning to the stomach and then small intestine. There, larvae 

mature into adult worms and mate, with females then producing over 200,000 

eggs each day (Bethony, 2006). These fertilized ova are then excreted into the 

environment in human feces. The single celled ova mature into the fully larvated 

form over the course of 18-28 days, at which point they are then infective, and 

thus able to start the cycle over when ingested by a human host. Fertilized ova 

are able to persist in the environment for several years, depending on 

temperature and moisture of the environment that they are in. 
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Fertilized ova contain a single cell surrounded by a thick chitin layer that can be 

either corticated or decorticated. These ova range from 40-75 µm in length and 

30-50 µm in width. Unfertilized ova are larger and longer than fertilized ova, 

stretching 85-95 µm with a width of 38-45 µm. The unembryonated inside of the 

unfertilized egg contains a shapeless protoplasm, while the shell is a thin chitin 

layer that is typically corticated. Both male and female adult Ascaris worms are a 

cream white color, with females being slightly larger at 22-35 cm in length, while 

males growing up to 30 cm. Females are long, thinly shaped while males have 

an incurved tale (Zeibig, 2003).  

 

Figure 1.1: Life cycle of Ascaris spp. (CDC, 2018) 

The maturation of single celled ova into an infective, fully larvated larvae occurs 

over several weeks once expelled from the host. The optimum environment for 

ova development is a warm, moist, and shaded area in soil, feces or water (CDC, 
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2018). The USEPA has 6 stage categories for Ascaris including adult, single 

celled ova, and four larvae stages (L1-L4) as illustrated in Figure 1.2. Ova 

maturation stages can be divided up even further when observed microscopically 

into 12 stages including 1-cell, 2-cell, 3-cell, 4-cell, early morula, late morula, 

blastula, gastrula, pre-lava 1, pre-larva 2, L1, and L2 (Cruz, Allanson, Kwa, 

Azizan, & Izurleta, 2012). L3-L4 and adult stages occur while inside the host, and 

are not observed during incubation.  

Figure 1.2: Developmental progression of Ascaris suum from a single celled 

ovum to a fully developed larva over the course of ~20 days. 

1.1.4 Health Concerns and Prevention 

Parasitic helminths are of concern because of their human health effects. 

Worldwide, 1.5 billion people are infected with soil-transmitted helminths, with 

over 800 million infections caused by Ascaris spp. (Fenwick, 2012). Most of 

these infections occur in warm, tropical environments with high rates of poverty 

and low hygiene and sanitation standards (Bethony, 2006; EPA, 2018). 

Using disability-adjusted life years (DALYs), total helminth infections account for 

39 million total life years lost, with 10.5 million years coming strictly from Ascaris 

infections (Stephenson, 2000). While those infected with small numbers of 
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worms are usually asymptomatic (Dold, 2014), patients infected with a large 

number of worms may show symptoms of vomiting, fever, distention and 

abdominal pain. Blockage of worms in the intestine, liver, or pancreas can cause 

damage and complications. Helminth infections in children can affect both their 

physical and psychological development (Stephenson, 2000). Ascaris infections 

in young children can also lead to malnutrition, which can lead mental 

development disabilities (Oberhelman, 1998). 

Recommended preventative measures to control ascariasis include washing 

hands and all food grown in the presence of manure. Children should also be 

supervised and prevented from eating soils or any possible contaminated 

materials. If an infection does occur, administration of anti-helminths such as 

albendazole and mebenazole are common treatment methods (CDC, 2018). 

1.2 Scope and Objectives of Study 

The overall goal for the larger project of which the research reported here is a 

part is to develop a rational and universal approach for the design of LCLT Class 

A biosolids treatment processes. To achieve that goal, fundamental information 

on the impact of key process parameters on the kinetics of inactivation of PIOs is 

being collected under a wide range of conditions in carefully controlled laboratory 

studies, and validated in pilot-scale studies conducted at collaborating WRRFs 

that use different activated sludge configurations and produce Class B biosolids 

using anaerobic digestion.  

Detection of pathogens is critical for achieving the overall project goal of 

evaluating the inactivation of PIOs, and more generally for monitoring for human 

and environmental safety during the wastewater treatment process and beneficial 

reuse of biosolids. Although some of the key PIOs are relatively easy to quantify 

using conventional culture-based techniques (e.g., fecal coliforms), other 

organisms such as viruses and helminth ova are much more difficult to quantify 

via culture-based techniques and require specially trained technicians. For 
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example, culture-based quantification of Ascaris ova takes almost a month of 

incubation time, and many hours of laboratory effort to interpret a single sample 

using conventional microscopic counting methods. Therefore, the goal of this 

specific study was to improve upon the current enumeration methods for 

quantifying Ascaris ova in biosolids, and test a possible new approach for 

differentiating between live and dead ova using a PMA-qPCR.  Specifically, the 

objectives of this research were as follows: 

 Objective #1: Develop an improved method to quantify the viability of 

Ascaris ova. To determine the health risk that biosolids or other infective 

material pose, the viability of PIOs must be determined quickly and 

efficiently. The ability of Ascaris species to survive long periods of time 

make it an excellent indicator organism, but determination of viability of 

Ascaris ova can be difficult during long term storage, such as occurs in 

LCLT treatment methods for Class A biosolids. Therefore, the first 

objective of his study was to work to improve upon existing several 

methods that are currently used to quantify the viability of Ascaris ova in 

biosolids.   

Objective #2: Compare enumeration of Ascaris ova via qPCR with a 

conventional microscopic technique. Molecular methods such as qPCR 

are potentially capable of analyzing a large number of samples, in less 

time with greater accuracy than can be achieved with microscopic 

methods, making them a popular choice for pathogen detection. Although 

it is not currently an EPA-approved method, several studies have 

demonstrated the possibility of qPCR as a method to quantify helminths in 

wastewater and biosolids. If a molecular technique is to become a 

standard method for helminth quantification, more data are required  

comparing data obtained using the conventional microscopic technique 

with qPCR data. In addition, the qPCR techniques require refinement to 

provide for accurate measurements and prevent false-positives and false-
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negatives. Therefore, the second objective of his study was to work to 

improve upon existing methods that have been used to quantify Ascaris 

ova in biosolids via qPCR, especially coupled with the use of intercalating 

dyes such as PMA, which may be able to distinguish between living and 

dead cells.  

In the following chapter (Chapter 2), the background literature is reviewed in 

more detail for the LCLT technique of cake storage. The subsequent chapters 

are focused on Objective 1, the development of experimental techniques for 

determining Ascaris ova viability through induced motility using a bleach and heat 

treatment (Chapter 3), and Objective 2, the quantification of Ascaris ova using 

qPCR (Chapter 4). Finally, the conclusions drawn from this research are 

presented in Chapter 5, along with recommendations for future work. 
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2 Literature Review of Cake Storage  

 

2.1 Background  

As noted above, most small- and mid-sized water resource recovery facilities 

(WRRFs), do not have the resources to implement higher-technology processes 

for producing Class A biosolids and are in need of low-cost, low-technology 

alternatives (Farrell et al. 2004).  Fortunately, such processes are available and 

being used successfully at WRRFs in the U.S. and elsewhere. A Water 

Environment Research Foundation (WERF) study evaluated four of these 

processes:  long-term lagooning, air-drying, combined lagooning/air drying, and 

cake storage (Farrell et al. 2004).  The goal of this chapter is to review the cake 

storage process in more detail. 

2.2 Process Description 

Cake storage of biosolids is a similar process to an air-drying system, which can 

be applied to dewatered biosolids that have previously been aerobically or 

anaerobically digested  (Figure 2.1). 

After dewatering, as in air-drying, the 

dewatered cake biosolids are 

stacked in either a windrow, or large 

pile, and stored for an extended 

period to achieve pathogen and 

indicator organism (PIO) inactivation 

(Farrell et al., 2004). Despite the 

similarities with air drying, several 

key differences between cake 

storage and air-drying exist. For 

example, in cake storage, piles and 
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windrows can be higher and much larger than air-drying windrows. Typical pile 

height during cake storage are greater than four feet, whereas in air drying 

windrow heights of two feet are more typical. In addition, air-drying requires the 

frequent turning of windrows, whereas, cake storage, involves infrequent turning 

or zero turning of the piles. To be able to store the cake in windrows, the total 

solids content needs to exceed 30-35% total solids. If cake storage is to be 

applied to biosolids with total solids less than 30-35%, it will probably be 

necessary to use a trench or retaining walls to contain the cake. Drying of solids 

occurs during cake storage, mainly to the solids being exposed to the 

environment. However, whereas drying is a major goal of the air-drying process, 

it is not the goal of the cake storage method to produce dried biosolids, nor is 

drying considered as a method for pathogen reduction. 

If the material being treated via cake storage receives little or no mechanical 

mixing, the process and final product will not be uniform (Farrell et al. 2004). Any 

mixing will help ensure that the inside and outside of the windrow are treated 

similarly and will help with oxygen supply, which will in turn increase the oxidation 

of organic matter and the accompanying heat generation and temperature 

increase. The latter is important because in the absence of mixing, the transport 

of air and water is by diffusion only, which is very slow. Loss of moisture from the 

outer surface of the pile is a concern, but can be mitigated by covering the cake 

storage pile with polyethylene sheeting, which will reduce evaporation from the 

pile and associated cooling as well as maintaining of the pile exterior. Covering 

may also assist in the increasing above ambient temperatures, which may 

contribute to pathogen destruction. Because little drying will occur with covering, 

the material will have to be used as is or treated further in other processes to 

decrease the moisture content. 
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2.3 Mechanisms of Pathogen Destruction 

For biosolids to achieve Class A status, a significant reduction in the number of 

PIOs must be achieved, as discussed in Chapter 1. The inactivation of PIOs is 

due to several different physical, chemical, and biological stressors, such as 

storage time and drying, thermal effects, bacterial competition, and chemical 

levels, as discussed further below. The mechanisms of pathogen destruction in 

cake storage are generally similar to those described as being important for air 

drying (i.e., desiccation, chemical reactions, thermal effects, retention time, 

competition from non-pathogenic bacteria), except that desiccation is unlikely to 

play a major role in cake storage (Farrell et al, 2004).  

2.3.1 Storage Time and Drying 

Although drying is not a main goal of the cake storage process, it can occur, 

mainly on the external surfaces of a storage pile, and can contribute to the 

inactivation of PIOs. For example, Rouch et al. (2011) looked at the inactivation 

of E. coli and Salmonella via the effects of drying during cake storage under 

ambient temperatures. During the 4 week testing period of this study, biosolids 

were dried to a total of 15-20% moisture, resulting in a >4 log/g reduction in the 

amount of E. coli, with a final concentration of less than 10 cfu/g for E. coli. Dried 

biosolids also showed a significant (3-5 log ) decrease in Salmonella spp., with 5 

out of 6 samples showing no quantifiable amount. In comparison, in samples that 

were kept moist, several boxes had only slight decreases of 0.5 log, while 

several others showed a 2-4 log reduction over 2 weeks, followed by a slight 

increase by week 4. Similarly, Yeager et al. (1981) found a correlation between 

moisture content and bacterial levels in stored sludge that was seeded with 

Streptococcus faecalis, Proteus mirabilis, and Salmonella typhimurium and 

monitored over 100 days at 21OC. While the bacterial levels were stable at 5% 

solids, there was prompt inactivation at less than 20% moisture.    
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Desiccation can also lead to inactivation of helminth ova if total solids (TS%) 

reach 95% or higher. In fact, desiccation is one method that has been found to 

consistently inactivate helminth ova. In tests performed in a tropical climate 

(Brazil), inactivation of Ascaris below Class A standards was achieved in piles 

stored for 2-years, when sufficient drying occurred. Biosolids that had been 

stored underneath a covered patio reached less than 1 viable ova/ 4 grams while 

ova in boxes that were exposed to sun and rain remained above Class A 

standards. The total solids in covered boxes reached at least 70%, while 

uncovered boxes reached a little over 60%. Covered boxes did not reach Class A 

status until the 2-year mark, while the uncovered boxes were trending toward 

Class A and may have reached the threshold with several more months of 

storage. The temperature of the biosolids was not measured, and heat may have 

been another variable aiding inactivation (Pompeo et al. 2016).  

2.3.2 Thermal Effects 

Temperature is considered a well-known and useful stressor that leads to rapid 

inactivation of pathogens and other microorganisms. Many studies have looked 

at the effects of temperature during cake storage including Ahmed and Sorensen 

(1995, 1997). In the initial study, indicator organisms including S. typhimurium, 

Campylobacter jejuni, Yersinia enterocolitica, bacteriophage f2, and poliovirus 

were subjected to different temperatures over several testing runs in a laboratory 

setting. Higher temperatures were demonstrated in these sudies to result in 

greater PIO destruction than lower temperatures. For example, at 38oC, C. jejuni, 

reached below detection limits after 50-100 days, while at 49oC, pathogen levels 

were below detection limits within one day. Nevertheless, different 

microorganisms were observed to be more resistant to heat than others. During 

the trial at 22oC, C. jejuni levels dropped below the detection limit after 10 days, 

while S. typhimurium, and Y. enterocolitica took around 30 days to drop below 

detection limits. Similarly, while C. jejuni was inactivated very quickly at 38oC, S. 
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typhimurium did not reach detection limits until 20 days, and 7 days at 49oC. In 

comparison, at 5oC, there was little reduction in C. jejuni, and no reduction in the 

levels of S. typhimurium and Y. enterocolitica.  

Ahmed and Sorensen (1997) also performed a field study of cake storage at five 

WRRFs located throughout Utah, using tubes of spiked biosolids, suspended in 5 

ft. tall windrows. In the study, temperatures were recorded over a 90 day period 

during the summer. At two plants the biosolids temperatures closely resembled 

the ambient temperature, while several plants had significantly higher biosolids 

temperatures than ambient temperatures. Bacterial pathogen die off was rapid at 

all of the plants. Salmonella levels were reduced to below detection limits within 

the first 90 days, in both turned and unturned piles. Similarly, concentrations of 

C. jejuni were decreased to below the detection limit within 50 days in all of the 

turned piles, although it took around 80 days to drop below the detection limit in 

unturned piles at several of the WRRFs. In two of the plants, C. jejuni levels in 

the unturned piles were not decreased until after 148 days sampling. This 

suggests that C. jejuni levels are able to survive 5 months or longer under some 

storage conditions. Most plants also showed a decrease in fecal coliforms to 

below the detection limit within 100 days, while one plant took 150 days to reach 

detection limit. Interestingly, S. typhimurium and Y. enterocolitica deactivation 

rates were similar between the laboratory and field studies, the deactivation rates 

for C. jejuni in the field study were very different than found in the laboratory 

study, indicating some microorganism survival rates can vary greatly between 

laboratory and field studies.  

Similar studies have also looked at temperature as a deactivating agent of 

bacterial pathogens during cake storage and have derived similar conclusions. 

Al-Ghazali and Al-Azawi (1988) found that Listeria monocytogenes was reduced 

in 6 weeks to non-detectable levels on the surface of the biosolids piles at a 

temperatures of 28-32 oC. They also found that internal temperatures of the piles 

had reached 48-54 oC and L. monocytogenes levels had declined to below 
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detectable levels by week 8. Another stressor that could have affected pathogen 

inactivation in this study was the moisture content, which fell from 35% to 8% on 

the pile surface, and from 43% to 11% in the middle of the pile.  

Other cake storage studies have looked at the inactivation of viruses due to 

temperature effects in a broad range of mediums. Hurst et al. (1988) looked at 

several viruses and the effect that different environmental variables had on them. 

In wetted soil samples, poliovirus concentrations were tested at temperatures of 

1, 23, and 37 oC. At 1 oC, virus levels remained fairly constant and decreased 

less than 1-log over 75 days. In comparison, at 23oC, there was a gradual 

decline in poliovirus that resulted in a 3-log decrease over 75 days, while the 

37oC sample had a much more rapid decline than the cooler samples, reaching a 

3-log reduction in around 10 days. Similarly, Casanova et al. (2015) used a 

bacteriophage as a substitute, and found a 2 log reduction over 24 hours and a 

>7 log reduction after 3 days at 30 OC, while samples at 22 OC decreased by 

0.14-log after 24 hours and 5-log after 6 days.  

Temperature of the environment has also been demonstrated to be a stressor 

that can decrease the numbers of viable helminth ova in biosolids. Specifically, to 

inactivate helminth ova requires temperatures above 40 oC, with a contact time 

for 10-20 hours (Jimenez-Cisneros 2006). These conditions may be difficult to 

achieve with cake storage, but temperature effects been demonstrated in several 

different studies. Pecson et al. (2007) found that temperature has a direct effect 

on ova inactivation. In samples kept at a temperature of 20 oC, the inactivation 

period was considered to be several hundred days; however, the inactivation 

period was found to decrease significantly with every 10 oC increase in 

temperature, with samples at 50 oC becoming inactivated within several hours 

(Pecson 2007). Maya et al. (2012) obtained similar results for a wide variety of 

helminth species, with a distinct relationship between increasing inactivation and 

increasing temperatures. The study also showed that a decrease in moisture, 

coupled with an increase in temperature, as well as low pH, could decrease the 
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contact time to achieve 100% inactivation. In addition, Maya et al. (2006) also 

found that ova in a larval stage are more susceptible to inactivation than non-

larvated eggs. Nevertheless, because it is difficult to reach sufficiently high 

temperatures or ova inactivation in temperate climates using the cake storage 

method, it is suggested that storage time is the controlling factor in the 

inactivation of ova. When Ahmed and Sorensen (1997) tested for Ascaris ova 

inactivation, they found a steady decrease of ova but needed at least 330-400 

days before Class A status was achieved. Similarly, a study in Australia found a 

less than 1-log reduction of Ascaris ova over a 21 week stored biosolids 

laboratory study (Smart Water Fund 2012).  

2.3.3 Competition with Non-Pathogenic Bacteria 

The presence of native non-pathogenic microflora can also contribute to a 

decrease in the number of pathogenic bacteria due to predation and competition 

for nutrients, space and other resources. In a study performed by Hussong et al. 

(1985), Salmonella were introduced into two sets of composted sewage sludge, 

one that was sterilized and one that contained natural microflora. The samples 

were incubated at 36oC and room temperature, and with and without moisture. 

Salmonella was able to grow and survive in the sterilized moist samples as well 

as the dried samples, at 36oC and room temperature, although there was large 

inactivation in subsequent weeks. However, the non-sterilized samples exhibited 

much lower growth of Salmonella in both the moist and dry samples. Mondal et al 

(2015) observed similar results for the decay of Salmonella in sterilized and 

unsterilized sewage sludge.  

Viral pathogens can also be deactivated through the presence of other 

microorganisms. In a study performed by Hurst et al. (1980) on soil, poliovirus 

was spiked into sterile and non-sterile samples, which were kept under either 

anaerobic or aerobic conditions, as well as different temperatures. Hurst et al. 

(1980) found that in both the anaerobic and aerobic samples, viral inactivation 
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was significantly higher in the non-sterile groups compared to the sterile samples 

at every temperature. Furthermore, the aerobic samples showed a much higher 

inactivation rate than the anaerobic samples, suggesting that aerobic 

microorganisms are better at deactivating viruses than the microorganisms 

present under anaerobic conditions. Finally, similar to most other studies, Hurst 

et al. (1980) found that increasing the temperature resulted in a much faster 

decay rate for polioviruses.  

2.4 Treatment Considerations  

Based on the literature, there are a number of treatment guidelines that should 

be considered when attempting to achieve Class A biosolids production with 

cake storage. These treatment considerations fall into the categories of 

pretreatment requirements, potential for pathogen regrowth, climate effects, and 

the impact of mixing.  

2.4.1 Pretreatment  

Pretreatment of biosolids can have an effect on the characteristics of biosolids 

and their pathogens levels. For example, mesophilic digestion (37oC) and 

thermophilic digestion (55oC) result in similar levels of pH, TS, VS, and COD in 

the effluent, and comparable biogas production (Gavala et al. 2003), but differ in 

their effluent pathogen levels. If the retention time is sufficiently long, thermophilic 

digestion is capable of producing Class A quality biosolids, while mesophilic is 

unable to reach this quality.  

Similarly, the dewatering method used prior to cake storage can cause a 

difference in the number of pathogens and the consistency of biosolids. Erkan 

and Sanin (2013) found that in belt-pressed dried solids there was no spike in the 

growth of fecal coliforms after transitioning to cake storage, whereas 

centrifugation of mesophilically-digested anaerobic sludge resulted in a spike in 

PIOs quickly after dewatering. It is thought that the slight heating that occurs 
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during centrifugation, or the shearing that occurs to the biosolids during the 

process, results in the slight bump in microorganisms.  

2.4.2 Pathogen Regrowth  

Helminth ova, other parasites, and enteric viruses do not regrow during or after 

long-term storage because of their need for a host for replication. However, 

bacterial pathogens do have the potential for regrowth in stored biosolids even 

after long periods of dry, hot weather, in particular when storage is followed by a 

wet period. This is demonstrated by the data of Gibbs et al. (1997) who 

monitored fecal coliforms, fecal streptococci and Salmonella levels in 1 m tall 

biosolids piles during their study. During the hotter, dryer summer months, 

bacterial levels were below or near detection limits for most of the sampling 

events. Nevertheless, the bacterial levels increased during the beginning of the 

cooler, wetter winter, with the fecal coliform levels even increasing above the 

levels present at the beginning of the study. In one trial that were presented, 

there was  a span of 50 weeks during which fecal coliforms and salmonella were 

undetectable, which was followed by regrowth when the conditions improved. 

Similarly, Zaleski et al. (2005) observed increases in the numbers of Salmonella 

and fecal coliforms following rainfall events in dried biosolids. In this case, the 

authors attributed the increase to the possibility of recolonization from an external 

source instead of regrowth. Potential external sources of PIOs include fecal 

contamination from vectors such as rats, birds or insects around the biosolids.  

2.4.3 Climate  

As discussed above, thermal effects are one of the most effective treatment 

methods for the inactivation of pathogens and indicator organisms, and climates 

that are hotter and drier have a much more significant impact on these 

organisms. A study by Jepsen et al. (1997) in Denmark found similar results as 

studies discussed above. During warmer summer months, Fecal Streptococus 
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(FS) dropped from 106 FS/g to 104 FS/g within 2 months, while Salmonella levels 

were decreased to below detection limits after 1 month. In winter months, FS 

concentrations decreased less than 1-log, while Salmonella levels were still 

detectable after 6 months of storage. The decay rates of these organisms are 

similar to those found in the study performed by Ahmed and Sorensen (1995 and 

1997) in Utah. Thus, climates with longer, hotter summers would be much more 

effective for cake storage than treatment in colder climates with shorter 

summers.  

2.4.4 Mixing  

The results to date regarding the impact of mixing on the efficacy of cake storage 

for PIO inactivation are inconsistent. A study of Ascaris levels in stored biosolids 

by Pompeo et al. (2016) did not find any significant differences in Ascaris ova 

inactivation between boxes that were turned twice a month compared to those 

that were not turned at all. They did, however, determine that placing the boxes 

under a covered patio resulted in an increase in the inactivation of ova, 

compared with boxes that were not under a cover. Conversely, Ahmed et al. 

(Ahmed & Sorensen), found that increasing the mixing frequency in cake storage 

piles resulted in increased peak pile temperatures. Piles that were turned once 

per month had higher recorded temperatures than static piles at every sampling 

period. One plant where separate piles were turned once or twice a month 

showed a significant impact of turning on pile temperature, with piles subjected to 

one turning per month having an average temperature of 50.4 oC, while piles 

turned twice per month reached 57.4 oC. In comparison, the temperature in static 

piles was closely correlated with the ambient air temperature, and well below the 

temperatures reached by the turned piles.  
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3 A Comparison of Methods for Inducing Viable 
Larvated Ascaris suum Ova Motility Using Heating 
and Bleach Treatments 

3.1 Introduction 

Worldwide, 1.5 billion people are infected with soil-transmitted helminths, with 

over 800 million infections caused by Ascaris spp. (Fenwick, 2012). Most of 

these infections occur in warm, tropical environments with high rates of poverty 

and low hygiene and sanitation standards (Bethony, 2006; EPA, 2018). Ascaris 

infections occur from ingesting produce, water or soil that has been contaminated 

with fertilized ova.  

In many parts of the world, a key strategy for mitigating threats to water supply 

and the lack of fertilizers is the beneficial reuse of wastewater and sludges. 

However, the pathogens, including Ascaris spp., associated with these medias is 

a major concern with respect to human health that must be eliminated via 

treatment prior to use.  Unfortunately, appropriate sanitation is often lacking, and 

the proper precautions are not taken before these materials are applied to fields 

(Jensen, 2009). To protect human health, it is important to be able to monitor for 

the pathogens potentially present in wastes, wastewater and the solid residuals 

from treatment. Ascaris, ova comprise the strictest constraint on beneficial reuse 

because of their resistance to treatment, persistence in the soil, and public health 

risks (Fidjeland et al, 2015, Chaona et al, 2018). The World Health Organization 

(WHO) designates that < viable 1 ova per liter of wastewater is the maximum 

concentrations to eliminate risk of ascariasis (Ashbolt, 2004). In the United 

States, the Environmental Protection Agency (USEPA) requires wastewater 

solids be treated to reduce the level of enteric indicator organisms and 

pathogens. Only solids that have been treated in this manner may be land 

applied and are known as biosolids. Two categories of biosolids, Class A and 

Class B, exist. Class A biosolids, unlike Class B biosolids, can be land applied 
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without restrictions because they must meet strict limits on the number of 

pathogenic bacteria, viruses, and helminths. For example, it must be 

demonstrated that Class A biosolids contain <1 viable helminth ova per 4 g total 

solids of biosolids. 

Methods used to enumerate viable helminth ova recommended by the USEPA 

(USEPA, 2003), and other commonly used methods (Bowman et al 2003), 

include incubation of samples for 28 or more days at 26oC, after which ova are 

inspected using phase-contrast microscopy and ova and categorized as 

unfertilized, fertilized first-stage, or fertilized second-stage based on their 

development (USEPA 2003). The premise of this test is that ova that have 

developed to a fully larvated stage are viable, whereas ova that do not develop 

are non-viable. However, under some conditions, fertilized ova may develop to 

larval stages during wastewater pr biosolids treatment, and subsequently be 

inactivated. The EPA method is ineffective at distinguishing larvated ova that 

have been inactivated, but are still intact, from those that develop to mature 

stages during incubation in the laboratory. Thus, improved methods for 

quantifying viable helminth ova are needed.  

One potential basis for distinguishing viable and nonviable Ascaris larvae is using 

motility (Cruz, 2012; Manser, 2015). These methods require 5 to 10 minutes of 

observation per ova to determine if motility is occurring (Schmitz, 2016). 

However, Smith (1991) found that suspending Ascaris ova in a 1% sodium 

hypochlorite solution caused ova to move vigorously, and as a result, evidence of 

motility was generally observed within ova. No attempt was made to optimize the 

treatment used to induce motility in this earlier study. The current study aimed to 

determine the optimal treatment for increasing the motility of Ascaris ova during 

viability testing by comparing the effectiveness of bleach treatment, heating the 

ova, or a combination of the two treatments. 
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3.2 Methods  

Ascaris suum ova were obtained from Dwight Bowman (Cornell University). A 0.1 

N sulfuric acid solution (50 mL) contained 106 ova and was stored at 4 oC until 

used. The initial viability of the ova was characterized by removing 200-µL aliquot 

and transferring it to 20 mL of DI water. Formalin was added to the sample at a 

concentration of 0.5% to prevent fungal and bacterial growth, before incubating 

the subsample at 26 oC for 28 days. The ova were then inspected 

microscopically to determine the number that matured to the second stage, after 

which the ova stock solution was aliquoted into ten 2-mL aliquots. Aliquoted 

samples were then stored in at 4 oC refrigerator until the experiments described 

below were performed.  

Initially, a preliminary experiment was performed to screen for the possible 

effects of different heating times and the presence of bleach on the movement of 

ova movement. The treatments that were tested in the preliminary experiment 

included: no heat, 5, 10, 20, or 30 minutes of incubation at 40 oC, bleach with no 

heating, and bleach (1%) with incubation at 40 oC for 20 minutes. Each of these 

treatments was tested on 10 second-stage ova.  

To more carefully test for any synergistic or antagonistic effects between  bleach 

and incubation at 40 oC for 20 minutes (heat) on the movement of larvated ova, a 

two-factor (heat and bleach), two-level (low and high) factorial experiment was 

conducted. Based on the results of the preliminary experiment, four different 

combinations of treatments were tested: (1) no bleach and no heat, (2) bleach 

and no heat, (3) no bleach and heat, and (4) bleach plus heat. Each test was run 

in duplicate and in a random order. A total of 30 ova were selected at random 

and counted for each trial of the full factorial experiment.  

For all movement trials, a 2-mL aliquot of the ova stock was vortexed for 5 

seconds to create a homogenized mixture. 700 µL was aseptically pipetted onto 

a Sedgewick-Rafter counting chamber and covered with a cover slip. If the effect 
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of heating was being tested, the aliquot was vortexed to homogenize, placed in a 

hot water bath at 40 +/- 2 oC for the selected time period, and then transferred to 

the counting chamber. If the effect of bleach was being tested, a 75 µL solution of 

10% bleach was pipetted into the counting chamber after the 700 µL ova sample 

was loaded into the counting chamber. The ova and bleach solution was then 

mixed for 1 minute by gently swirling the chamber by hand. The sample was then 

placed under a microscope at low light settings to observe ova movement using 

the 40X objective. Only ova that had fully larvated were observed for a maximum 

of 1 minute. Any movement during the 1-minute observation period was 

considered a positive result, while those ova that did not move were counted as 

negative.  

3.3 Results 

The preliminary experiment demonstrated clear differences in ova movement for 

different heating times, and due to the addition of bleach to heated and non-

heated samples. Based on these results, heating for at least 20 minutes was 

required to maximize ova movement. There was no additional improvement 

observed for longer heating times (30 minutes). The highest ova movement 

count was observed with bleach and heat for 20 minutes, while surprisingly, 

bleach by itself did not produce any movement. Based on these results, the 

conditions for the full factorial experiment were selected.  
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Table 3.1: Results from initial, small-scale study to determine the optimum 

combination of heating times and bleach needed to induce movement of viable 

second-stage Ascaris suum ova during microscopic inspection.  

The results of the two-factor, two-level factorial experiment are summarized in 

Table 3.2. Differences in the motility counts were observed in the samples 

treated with bleach, heat, or a combination of the two. For example, when the 

ova were pipetted directly on to the counting chamber without prior treatment, the 

number of ova displaying motility averaged 6 out of thirty for Trials 1 and 2. 

However, when bleach was added to the slide before observation under the 

microscope, the average motility counts increased to 19.5 viable ova per 30 ova 

counted. In comparison, when 20 minutes of heat was applied to each sample 

before counting without bleach, the average number of viable ova was 18.5. 

Finally, the trials that combined the 1% bleach treatment and heating to 40 oC for 

20 minutes produced the highest average count of 22.5 viable ova.   

 

 

Treatment Number of second stage ova (out of 10) 
exhibiting movement within 1 minute 

No Heat 0 

5 min at 40 oC 0 

10 min at 40 oC 2 

20 min at 40 oC 5 

30 min at 40 oC 4 

Bleach + 20 min at 40 oC 7 

Bleach + No Heat 0 
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 Number of ova out of 30 exhibiting movement 

within       1 minute 

Treatment Replicate 1 Replicate 2 Total 

No Bleach No Heat 7 5 12 

Bleach No Heat 19 20 39 

No Bleach Heat 17 20 37 

Bleach Heat 26 19 45 

Total 69 64 133 

Table 3.2: Results of the factorial experiment to determine the optimum 

combination of heating to 40 oC and application of bleach (1%) to induce 

movement of viable second-stage Ascaris suum ova during microscopic 

inspection. 

To determine the significance of each of the treatment as well as synergistic and 

antagonistic effects, an analysis of variance (ANOVA) was performed (Table 

3.3). The main effect of bleach treatment was calculated to be 7.75, the main 

effect of heat was calculated to be 8.75, and the interaction effect of bleach and 

heat was calculated at -4.75. The resulting sum of squares calculated for the 

bleach effect and heat effect were 120.125 and 153.125, respectively, while the 

sum of squares for the two-factor interaction was 45.125. Based on these values, 

the F value was calculated for each treatment as summarized in Table 3.3. 

These F values were then compared to the F value for 4 degrees of freedom, 

with p < 0.05, which is 7.71. Accordingly, the main effect of bleach on the 

movement of ova is significant (15.254 > 7.71), as was the effect of heat (19.444 

> 7.71). However, the interaction between bleach and heat on ova motility is not 
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significant (5.730 < 7.71), i.e., there is no synergistic or antagonistic effect 

between heat and bleach. These results indicate that the main effects of heat 

and bleach are additive. Therefore, increasing both bleach and heat from low to 

high values increases ova movement by their main effects, 7.75 and 8.75 

respectively, for a total increase of 16.5 over the baseline condition of no bleach 

and no heat. This is consistent with the results of the preliminary study and 

indicates that the combination of heat and bleach gives the highest viable ova 

count.  

Table 3.3: Analysis of variance for the two-factor (heat and bleach), two-level 

(low and high) factorial experiment designed to identify the optimum treatment for 

inducing movement of viable second-stage Ascaris suum ova during microscopic 

inspection. 

3.4 Conclusions 

The natural development of Ascaris ova to larvated forms in the environment can 

make it impossible to determine viability using only incubation development 

methods. Methods such as observation for motility offer a reliable way to quantify 

viable Ascaris ova. Due to the long observation time required for each ova, we 

developed a method to promote ova movement using a bleach and heating 

 

Experimental 

Treatment 

 

Sum of 

Squares 

 

Degrees of 

Freedom 

 

Mean 

Square 

 

F 

Heat 153.125 1 153.125 19.444 > F0.05(1,4) 

Bleach 120.125 1 120.125 15.254 > F0.05(1,4) 

Heat + Bleach 45.125 1 45.125 5.730 < F0.05(1,4) 

Error 31.5 4 7.875  

Total 349.875 7   

F0.05(1,4) 7.71    
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treatment before counting. The application of bleach plus heat increased the total 

number of ova that exhibited motility when compared with no treatment, bleach 

alone or heat alone.   
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4 Use of Molecular Methods for the detection and 
quantification of Ascaris Ova During Long-term 
Biosolids Storage  

4.1 Introduction  

In many parts of the developing world, ascariasis, which is caused by infection 

with the parasitic helminth Ascaris lumbricoides is rampant. It is estimated that 

890 million people worldwide are infected with Ascaris, typically caused by 

inadequate sanitation (Pullan, 2014). Infection with Ascaris or other parasitic 

worms is not endemic in the U.S. Nevertheless, wastewater treatment utilities 

that wish to distribute wastewater treatment solids without restriction for land 

application or other beneficial reuses must ensure that the solids meet strict 

standards for pathogenic bacteria, enteric viruses and helminth ova by treating 

the solids with established methods. The Class A biosolids standards require that 

biosolids contain less than 1 viable helminth ovum per 4 grams of total solids at 

the time of distribution (EPA, 1993). 

Wastewater treatment utilities may also seek regulatory approval for the use of 

alternative solids treatment methods by demonstrating that they consistently 

achieve adequate reduction of pathogens that are equivalent to the “Processes 

to Further Reduce Pathogens” (PFRP). Demonstrating PFRP equivalency 

requires at least a two-log reduction in the abundance of viable Ascaris ova. The 

U.S. Environmental Protection Agency (EPA) method for quantifying viable 

helminth ova uses flotation and filtration to elute ova from solids, followed by 

incubation and then enumeration of ova at different developmental stages via 

microscopic inspection (Bowman, 2003). Unfortunately, this method results in 

variable and often low ova recovery rates (Alum, 2019; Steinbaum, 2017), and it 

requires over one month to complete.  

In addition, under some conditions, helminth ova may develop into advanced 

larval stages and subsequently be inactivated prior to the incubation stage. This 
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can make it difficult to assess viability via microscopic methods. Thus, there is an 

urgent need for methods that can be used rapidly and accurately to quantify 

viable helminth ova at low concentrations in both developed countries and in 

global water and sanitation hygiene (WASH) applications. We recently reported 

on a variation of the EPA’s method for quantifying helminth ova that incorporates 

assessment of motility to distinguish viable and non-viable helminths in advanced 

larval stages.  

qPCR-based methods offer an alternative to lengthy culture- and microscopy-

based methods, and previous studies have shown that a qPCR-based method 

targeting the internal transcribed spacer 1 (ITS-1) region could be used to 

quantify Ascaris in water samples. Pecson et al. (2006) showed that ITS-1 copies 

increased with incubation of viable ova, while a constant qPCR signal or cycle 

threshold (Ct) value resulted when inactivated ova were incubated (Pecson, 

2006). In a related study, Raynal et al (2012) showed that when fully larvated ova 

were inactivated via several disinfecting procedures, the qPCR signal decreased 

(Raynal, 2012).  

However, several complications can reduce the accuracy of qPCR-based 

methods when they are applied to environmental samples. For example, 

environment inhibitors such as humic acids, polysaccharides, or bile may be 

present and reduce amplification and contribute to false-negative results or low 

estimates of population abundance (Schrader, 2012). Another challenge is that 

qPCR may amplify target DNA sequences that have been released to the 

environment but have not degraded, as well as target DNA within intact but non-

viable cells. This may lead to false-positive results and/or overestimation of the 

abundance of the number of copies of target DNA in environmental samples 

(Chaiyanan, 2001; Wang, 2006).  

One promising strategy for limiting amplification of target DNA derived from non-

viable cells is to treat samples with a non-specific DNA intercalating dye such as 
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propidium monoazide (PMA) (Li, 2014; Parshionikar, 2010; Bae, 2009; Taskin, 

2011; Alonso, 2014; Karim, 2015). The intercalating dye binds with extracellular 

DNA and DNA in weakened, permeable non-viable cells. The dye-bound DNA is 

then not available for amplification via qPCR. Theoretically, only DNA extracted 

from viable cells, which are generally not permeable by PMA, is thus amplified 

via qPCR. However, very few studies have evaluated the use of PMA-qPCR to 

limit amplification of target DNA from soil-transmitted helminths. Treatment of 

inactivated Ancylostoma caninum ova with 100 µM PMA reduced the qPCR 

signal 4 orders of magnitude compared to a sample containing 100% viable ova 

(Gyawali, 2017). The qPCR signal for a PMA-treated sample containing a 

mixture of 50% viable and 50% non-viable A. caninum was reduced one order of 

magnitude compared to the 100% viable sample. In contrast, amplification of the 

100% viable and 100% non-viable samples treated with PMA yielded very 

different results, with the 100% non-viable A. caninum being reduced 4 orders of 

magnitude compared to the 100% viable sample.  

The overall goals of this research were to: (1) optimize a PMA-qPCR method for 

differentiation of DNA derived from viable and nonviable Ascaris (roundworm) 

ova eluted from biosolids, and (2) apply this method to quantify inactivation of 

viable Ascaris ova during long term storage and air-drying of seeded wastewater 

treatment biosolids.   

4.2 Methods 

4.2.1 Biosolids Spiking/Sampling 

Ascaris suum ova were harvested by Dwight Bowman (Cornell University) and 

shipped in a 0.1 N sulfuric acid solution. The ova had a viability of 90.87% at the 

time of shipment and were stored at 4 oC until needed.  

Freshly pressed biosolids were collected from both GIWA and PLWSA. Three 

grams of the biosolids were added to each containment pouch by adding 150 µL 
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of an Ascaris ova stock solution containing 200 ova/µL. This yielded a 

concentration of 10,000 ova per gram wet weight biosolids, or 30,000 ova per 

bag. Each bag was then heat-sealed three times across the top with a heat 

sealer. Importantly, the pore size of the bags was 25 µm. Ascaris ova are 30 to 

50 µm. Therefore, the bags served as sentinel chambers that exposed ova to the 

physical and chemical conditions in the biosolids, but did not allow them to be 

released into the pilot-scale test beds. 

The integrity of the bags was tested using the following procedure. A bag seeded 

with ova was placed in a biosolids pile for one week, and then stirred in a beaker 

of water overnight using a magnetic stirrer. The water was subjected to a double-

centrifugation elution method using water and magnesium sulfate to recover any 

ova that might have escaped. Microscopic examination of the eluent revealed no 

eggs. 

Ova-seeded bags for a given test bed were gathered into a nylon mesh bag (25 

µm pore size, 12 in x 18 in, filterbags.com) and suspended in a square plastic 

stack as previously described (Becker, 2018). On day 300 at PLWSA and day 

335 at GIWA, additional ova bags were prepared. Aged biosolids (3 g) from the 

appropriate test bed were placed into each bag, 30,000 ova were added, and the 

bags were sealed as described above. The sealed ova bags were placed in suet 

feeders, which were subsequently packed with aged biosolids obtained from the 

test beds. One suet feeder was buried in each test bed at the same depth as the 

original set of bags, and chains were attached to the suet feeders to facilitate 

their retrieval at sampling events. 

Ova-seeded bags were collected from both the stack and the suet feeder (after 

day 300) from each test bed at every sampling event at PLWSA, whereas at 

GIWA, ova-seeded bags the stacks and suet feeders (after day 335) were 

collected on alternating sampling dates until air-drying was initiated. During air-
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drying, the bags were collected from both stacks and suet feeders at each 

sampling event. 

At GIWA, when the biosolids were transferred from the test beds to air-drying 

piles, all of the remaining ova-seeded bags for a given treatment (inside or 

outside storage) were gathered into a single nylon bag and placed in a short 

stack, which was inserted in the pile. Likewise, all of the ova-seeded bags in the 

suet feeders were consolidated into a single suet feeder for a given treatment 

and placed in the appropriate pile. The air-drying phase at GIWA also included a 

third windrow formed with fresh digested and dewatered biosolids. Inside the 

freshly dewatered biosolids, a suet feeder containing newly made sentinel bags 

spiked with 30,000 ova was. This pile, known as the direct air-drying pile, was 

sampled at each sampling event.  

Sentinel bags from each test bed were transported on ice until they could be 

stored at 4 oC for up to one week before the ova were eluted.  

4.2.2 Ova Elution 

Ova were eluted from biosolids as described by Bowman et al. (2003) with the 

following modifications: All glassware and containers were treated with 

organosilane prior to elutions. Ova bags spiked with Ascaris ova were used 

instead of freshly pressed biosolids cake. First, the top of the ova bag was cut 

open, and then the two sides were cut open to form a long rectangular sheet, 

which was placed into a 600-mL beaker. The scissors were washed into the 

beaker using a wash bottle containing DI water. A stir bar was added to mix the 

solids (instead of blending the sample), and the beaker was covered with a layer 

of Parafilm™. Four sieves with increasingly small openings (#20, 60, 80, and 

100) were stacked and placed on a tight-fitting bucket and used to clear larger 

particles from the mixture. The sample was rinsed with a hand-held pressure 

washer through the sieve stack.  



38 

After settling overnight, the sediment was distributed evenly between six 50-mL 

centrifuge tubes. After the wash steps, the pellet was broken up via vortexing, or 

a wooden stick to help completely break up the pellet. the stick was washed into 

the tube using deionized water. A water aspiration vacuum filtration apparatus 

incorporating a #400 sieve was prepared by covering the sieve with Parafilm™ to 

increase suction when pouring solution through sieve The supernatant was 

decanted and discarded, and the pellet was washed into a 15-mL screw top vial 

(Thermo Scientific; Model 2116-0015PK) using a 0.5% formalin solution.  

During enumeration, a 700-µL sample was observed under 100X magnification in 

a Sedgwick-Rafter counting chamber with cover slip. Different stages of ova were 

counted and categorized based on their development. Duplicate 700 µL samples 

were enumerated microscopically. Ova were not only categorized based on first 

and second stages, but also as being viable or non-viable, based on the larval 

movement, as described above.  

4.2.3 qPCR Standards Preparation  

A Topo 2.1-cloned bacterial plasmid containing the ITS-1 sequence target was 

obtained from Kara Nelson (University of California, Berkley). To prepare the 

aliquoted samples, LB broth was inoculated from a stock of ITS-1 E. coli and 

grown overnight at 37 oC. A LB agar plate was then streaked using the E. coli 

culture grown overnight, and then the plate was incubated overnight. A single 

colony was used to inoculate another flask of LB broth, incubated overnight, and 

then aliquoted in to 2-mL freezer vials and stored at -80 oC in a 20% glycerol 

solution. To extract the ITS-1 plasmid, an aliquot was taken from the freezer and 

inoculated in LB broth overnight. The plasmid was extracted and purified using a 

Zyppy Plasmid Miniprep kit according to the manufacturer's instructions. The 

abundance and purity of the plasmid extract were quantified 

spectrophotometrically. Linearized plasmid was prepared by incubating 1 µg of 

DNA with 10 units of HindIII and 5 µL of NEB buffer in a 50 µL total reaction 
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volume at 37 oC for 1 hour, followed by incubation at 80 oC for 20 minutes to 

inactivate the restriction enzyme. Cut plasmids were visualized on 1% agarose 

gel to ensure that they were of the correct length and that there was a singular 

product. The purity and size of the linearized pCR 2.1-TOPO plasmid containing 

the 201-bp ITS-1 insert were inspected using gel electrophoresis. The linearized 

plasmid copy concentration was quantified using a Nanodrop spectrophotometer 

(Marshall Scientific; Hampton, NH)..The total mass of DNA (in ng) was then 

divided by the weight of a single plasmid, calculated using the plasmid size of 

4100 base pairs (bp) and the mass of a single bp (650 Da). The stock solution 

(2.2 x 1011 copies/µL) was serially diluted to produce standards containing 107, 

105, 103, 102, and 101 copies/µL. Standards and a negative control were 

amplified in triplicate along with each set of samples, which were also analyzed 

in triplicate (Yun et al. 2006; Ahmed et al. 2014). 

4.2.4 DNA Extraction  

DNA was extracted from biosolids eluent using a DNeasy Powersoil kit (MoBio; 

Carlsbad, CA) according to the manufacturer's instructions (Appendix B), with 

slight modifications. Initially, a 100 µL ova suspension was added to the tubes 

containing beads, instead of adding 0.25 g of sample, as specified in the 

manufacturer's protocol. Tubes were homogenized using a Mini-BeadBeater-8 

(BioSpec Products; Bartlesville, OK) for 3 minutes on the highest setting. For the 

final DNA elution from the microcentrifuge spin column, 50 µL of solution C6 was 

used instead of the 100 µL specified in the original protocol. 

qPCR was performed using 8-tube strips and a StepOnePlus qPCR thermocycler 

using Forward Primer (TGCACATAAGTACTATTTGCGCGTAT), 0.25 µL 10 µM 

ITS0-1 Reverse Primer (TGATGTAATAGCAGTCGGCGG), 0.37 µL 10 µM ITS-1 

Taqman Probe (FAM-CGTGAGCCACATAGTAAATTGCACACAAATG-TAMRA). 

Each reaction tube contained 10 µL of Applied Biosystems 2X Fast Master mix, 

0.25 µL of forward and reverse primers (10 µM), 0.37 µL Probe (10 µM), 2 µL of 
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extracted sample DNA or plasmid control, and sufficient PCR-grade water to 

bring the volume to 20 µL. The temperature cycle parameters were as follows: 2 

min at 50 oC, 10 min at 95 oC, followed by 40 cycles of 95 oC for 15 seconds and 

59 oC for 1 minute.  

4.2.5 DNA Recovery From Ova and Inhibition Testing  

Biosolids were spiked with the plasmids containing the ITS-1 gene and 

amplification of the extracted DNA in several dilutions was performed to 

determine if the DNA extracts contained any PCR inhibitors derived from the 

biosolids. Linearized ITS-1 plasmids (106) were spiked into 0.25 g of fresh 

biosolids and mixed in a microcentrifuge tube. The samples were extracted in 

triplicate, using the PowerSoil extraction kit as described above, except that the 

sample was vortexed instead of being subjected to bead-beating. Negative 

biosolids controls that were not spiked with ITS-1 plasmid were run in triplicate 

with the spiked samples.  

To quantify the DNA extraction efficiency from ova that were eluted from 

biosolids, triplicate 100 µL samples of eluent from control samples containing 

viable ova were extracted using the bead-beating PowerSoil extraction protocol. 

The percent recovery was calculated according to: 

 %Recovery =
ITS-1copies

number of ova*
600 cells

2ndstage ovum
*
33 ITS-1copies

cell

*100%  [4-1] 

where the number of ova was determined microscopically.  

4.2.6 PMA Treatment  

Propidium monoazide (1 mg) was dissolved in 980 µL of 20% dimethyl sulfoxide 

solution (Fisher Biotech) to obtain a 2 mM working stock solution and then stored 

in the dark at -20 oC. To treat each sample, 100 µL of an eluted ova suspension 
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was added to a clear microcentrifuge tube, and the PMA working stock was 

added to achieve the desired final concentration. Samples containing PMA were 

incubated in the dark at room temperature for 5 minutes, before being exposed to 

a 650 W continuous-beam lamp (SP12-001, Fovitec, Irvine, CA) for 15 minutes to 

promote photoactivation of PMA and binding of DNA. During the photoactivation 

step, the light source was held in place 20 cm above the samples using a ring 

stand. To prevent sample evaporation or overheating, the samples were placed 

on top of a layer of ice in a plastic tub that was lined with aluminum foil. After 

being exposed to light, the samples were centrifuged for 5 minutes at 2500 x g, 

decanted to remove PMA, and resuspended in PBS.  

Ideally, the concentration of PMA used to treat samples will bind DNA derived 

from non-viable Ascaris ova without inhibiting  qPCR amplification of DNA 

derived from viable ova. To determine the optimal PMA concentration, biosolids 

were seeded with Ascaris ova and stored at 4 ˚C until being incubated and 

subjected to the elution process described above. Triplicate samples of viable 

second-stage ova were then exposed to 0, 25, 50, 100, and 200 µM PMA. The 

optimal PMA dose was then applied to second-stage ova that were treated with 

10% bleach for 15 minutes, incubated at 70 oC for 15 minutes and at 80 oC for 5 

minutes in block heater (Torrey Pines Scientific, Carlsbad, CA) to determine if 

PMA could distinguish between living and inactivated Ascaris ova.  

4.2.7 Statistical Analysis 

All statistical analyses were performed using Microsoft Excel 2016. Correlation 

between microscopic ova counts and those that were calculated via qPCR was 

calculated using the Spearman’s rank correlation. t-tests were used to compare 

the number of ova in samples treated via PMA-qPCR and qPCR, and in samples 

treated with different physical-chemical inactivation methods performed prior to 

applying PMA-qPCR.  
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4.3 Results and Discussion  

4.3.1 qPCR Standards and Recovery 

The qPCR standard curves for the ITS-1 plasmid gene had correlation 

coefficients (R2) > 0.99 (Appendix C). qPCR amplification efficiencies ranged 

from 90% to 103%. The standard curve had a slope of -3.381. Amplification of 

the diluted plasmid DNA indicated that the biosolids caused insignificant 

inhibition because serial the serial dilutions all yielded ITS-1 sequence copy 

numbers that were less than 8% lower than the theoretical number of ITS-1 

sequence copies added to the samples. The biosolids matrices that were not 

spiked with ITS-1 plasmid were all negative for ITS-1 sequence copies, indicating 

that there was no native Ascaris ova in the biosolids and no contamination of 

samples with Ascaris DNA.  

ITS-1 sequence copy numbers were converted to viable second stage ova 

concentrations by dividing the qPCR-based ITS-1 copy numbers by the number 

of ITS-1 sequences per second-stage ovum, which was experimentally 

determined. To determine this value, triplicate biosolids samples (3 g) were 

spiked with 30,000 ova, which were subsequently eluted, incubated, and 

enumerated microscopically. The mean number of second-stage viable ova 

recovered was 77. The corresponding numbers of ITS-1 sequence copies in the 

samples determined using qPCR were 275905, 298921, and 215546, 

respectively. The geometric mean of the ITS-1 copy number was divided by the 

mean number of ova (260,986.5 ITS-1 sequence copies  77 ova) to obtain a 

value of 3,389 ITS-1 sequences per second-stage ovum. 

4.3.2 qPCR enumeration of ova in biosolids during long-term storage and 
air drying  

Initially, single-celled ova were seeded at a target concentration of approximately 

30,000 fertilized ova per 3 g biosolids wet weight. An average of 12,696 ova per 

3 g biosolids weight were recovered (Figure 4.1). This corresponds to a recovery 
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of 42.3% of total ova, which is within the range of recoveries 33.3 to 81.5% of 

Ascaris ova from sludge, biosolids, and wastewater reported in previous studies 

(Alum, 2014; Karkashan, 2015; Maya, 2006; Ravindran, 2019). 

 

Figure 4.1: Number of Ascaris ova recovered from seeded biosolid samples (3 g 

wet weight) stored at 4 ˚C. 

Microscopic enumeration of Ascaris ova following incubation indicated that the 

total second-stage and viable second-stage ova in GIWA inside test bed #5 

followed similar trends over a two-year period (Figure 4.2).  
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Total second-stage ova decreased from 10929 on day 0 to 2395  65 on day 

714, the last day of long-term storage, and 809  54 on day 785, the last day of 

air drying. During the same period, viable second-stage ova decreased from 

10201 on day 0 to 1038  28 on day 714, and 351  24 on day 785. The similar 

patterns in the total and viable second-stage ova suggest that as viable second-

stage ova are inactivated in the biosolids, the outer shell, as well as the larvae 

inside the ova, degrade. The PLWSA long-term storage test bed 2 results 

followed trends similar to those observed in the GIWA test bed (Figure 4.3). Total 

second-stage ova decreased from 7879 on day 0 to 1220.57  1424 on day 393, 

and viable second-stage ova decreased from 7194 to 651  108 during this 

period. Finally, in the freshly digested and dewatered biosolids that were treated 

directly using air drying, the total second-stage and viable second-stage ova 

decreased from 18069  738 on day 15 to 470  50 on day 71 of air-drying, 

respectively (Figure 4.4). During microscopic observation of several of the direct 

Figure 4.2: Total () and viable (Δ) second-stage Ascaris suum ova 
counted microscopically in test bed 5 at GIWA. Error bars represent 

95% confidence intervals. 
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air drying samples, Ascaris worms were detected following sample incubation, as 

discussed below.  

 

 

 

 

Figure 4.4: Total () and viable (Δ) second-stage Ascaris suum ova 
counted microscopically in the air drying pile at GIWA. Error bars 

represent 95% confidence intervals. 
 

Figure 4.3: Total () and viable (Δ) second-stage Ascaris suum ova 
counted microscopically in test bed 2 at PLWSA.  
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The number of cells enumerated via qPCR followed the same qualitative trends 

as the microscopic counts of total second stage larvae. In general, the number of 

total second stage ova in the GIWA test bed 5 samples determined via qPCR 

was within 50% of the values measured microscopically (Figure 4.5). The only 

exceptions were days 286 and 430 when the percent difference between the 

qPCR- and microscopy-based counts was 58% and 51%, respectively.  

 

Similarly, the qPCR-based counts of viable second stage ova in PLWSA test bed 

2 on days 300, 393, and 421 differed from the microscopy-based counts by 10, 

49, and 200%, respectively (Figure 4.6). However, it is important to note that the 

total number of ova that were counted in test bed 2 after day 300 were quite low, 

and thus any differences in the qPCR and microscopic counts resulted in 

relatively large error values when calculated on a percentage basis. On an 

absolute basis, the differences in the number of viable second-stage ova 

enumerated via qPCR and microscopic inspection on days 300, 393, and 421 

were just 6.7, <1, and 2.7, respectively. In contrast, qPCR-based measures of 

Figure 4.5: Viable second-stage Ascaris ova enumerated in GIWA test 
bed 5 via microscopy () and qPCR (Δ), assuming 3389 ITS-1 

sequence copies per ovum. 
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viable second-stage ova in the direct air-drying pile at GIWA were higher than the 

microscopy-based counts in all of the samples (Figure 4.7). In particular, on days 

15 and 29, over the qPCR-based counts exceeded the microscopy-based counts 

by 1300 and 2500%, respectively. On days 43, 57, and 71, qPCR-based counts 

exceeded the microscopy-based measures by 600, 362, and 256%, respectively, 

but it is important to note that these values represent small absolute differences 

in the counts due to the low numbers of ova in the samples.    

 

Figure 4.6: Viable second-stage Ascaris ova enumerated in PLWSA 
test bed 2 via microscopy () and qPCR (Δ), assuming 3389 ITS-1 

sequence copies per ovum. 
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Several aspects of ova development and inactivation in the freshly digested and 

dewatered biosolids that were directly subjected to air-drying presumably 

contributed to the differences observed in the qPCR- and microscopy-based ova 

estimates shown in Figure 4.7. First, on days 15 and 29, three and two worms, 

respectively, were observed in the eluted ova samples. Although it is not a 

normal step in their lifecycle, other studies have noted hatching of ova in 

anaerobic and aerobic digesters (Manser, 2015) as well as in bile (Jaskoski, 

1964). Several factors have been linked to the in vitro hatching of Ascaris ova, 

including temperatures near human homeostasis, higher gas-phase CO2 

concentrations, the chemical composition of the aqueous environment, and pH 

(Rodgers, 1958; Fairbairn, 1961). These ejected worms are larger than second 

stage larvae (Figure 4.8), and therefore presumably have more cells. After 

hatching, growth may have continued, resulting in further increases in the total 

cell numbers. The higher cell numbers in emergent worms is important because 

it means that a single Ascaris worm will generate a higher qPCR signal 

Figure 4.7: Viable second-stage Ascaris ova enumerated in the direct 
air drying pile at GIWA via microscopy () and qPCR (Δ), assuming 

3389 ITS-1 sequence copies per ovum.  



49 

compared to a single Ascaris larva, resulting in an overestimate of ove numbers 

based on ITS-1 copies. This may explain why the two counts of total ova counts 

measured using qPCR were orders of magnitude higher than those counted via 

microscopy on days 15 and 29. In addition, over the course of the 71 day air 

drying treatment, conditions in the pile became very dry and hot (T  40 ˚C), and 

therefore, fewer first-stage ova could develop into second-stage ova (in the 

biosolids or during laboratory incubation), i.e., the ova were inactivated. As a 

result, the number of second-stage ova observed microscopically dropped 

significantly at each sampling event, while the number of first-stage ova 

increased (Figure 4.9). Target DNA within these first-stage ova presumably was 

amplified via qPCR. Thus, the contributions of ITS-1 DNA derived from first-stage 

ova could potentially explain, at least in part, why the qPCR-based estimates of 

viable second-stage ova exceeded the microscopic counts on days 43, 57, and 

71.  

   A      B 

 

Figure 4.9: The total number of second stage ova, first stage ova, and (A) % total 

solids and (B) temperature in the direct air drying pile at GIWA. 

The viable second-stage ova data shown in Figures 4.2, 4.3, and 4.4 were 

pooled after omitting the data obtained for the day 15 and day 20 samples from 

the direct air drying pile, and the qPCR-based ova estimates were plotted as a 

function of the microscopy based ova numbers in Figure 4.10. The relationship 
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between these two measures was quantified by calculating the Spearman’s Rho 

correlation coefficient (ρ) for the data set, according to:  

[4-2] 

   

where di
2 = difference between the ranks of corresponding variables, and n = the 

number of observations. In this case n = 15. Because ρ =  0.76071, the qPCR-

based measurements of viable Ascaris ova are strongly correlated to those made 

via microscopy. Similarly, the linear regression of the data set can be described 

with an R2 value of 0.6405.  Finally, the linear regression has a slope of 0.89795 

and y-intercept equal to 10.653. If the qPCR- and microscopy-based measures of 

ova are in 100% agreement, then the linear regression would have a slope equal 

to one and a y-intercept equal to 0. Therefore, the slope and y-intercept of the 

linear regression in Figure 4 also indicate that the two measures are in good 

agreement. Previous studies derived similar relationships between qPCR and 

microscopy-based Ascaris ova counts, e.g., a linear relationship of qPCR-based 

counts =1.1265*microscopy-based counts + 8.812 was found by Soto et al. 

(2017) and Raynal et al. found that qPCR-based counts were 0.8646 times the 

microscopy-based counts (2012). 
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Figure 4.10: Linear regression of Ascaris ova numbers of ova calculated based 
on ITS-1 copy number versus microscopic ova counts . 

4.3.3 Determination of the Optimal PMA Concentration 

PMA binds to and precipitates double-stranded DNA, which enhances the 

removal of DNA derived from non-viable cells during DNA extraction and 

purification and prevents its amplification (Nocker et al., 2006). At the same time, 

elevated PMA concentrations are known to be cytotoxic (Taylor et al., 2014). As 

a result, amplification of DNA derived from viable cells could potentially be 

inhibited by using elevated concentrations of PMA. Therefore, steps were taken 

to determine a PMA concentration that would: (1) not significantly reduce the 

qPCR signal associated with DNA derived from viable Ascaris ova, and (2) 

maximize the reduction of the qPCR signal associated with DNA derived from  

non-viable Ascaris ova, To determine the PMA dose that meets the first criterion, 

viable second-stage Ascaris ova were treated with different concentrations of 

PMA and the resulting qPCR signals were compared to the signal derived from 

untreated ova. To compare each data set, a t-test was performed according to: 
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  [4-3] 

 

 

where x1 = mean of 1st set of values; x2 = mean of 2nd set of values; s1 = standard 

deviation of 1st set of values ; s2 = standard deviation of sample 2nd set of values; 

n1 = number of samples in 1st set of values; and n2 = number of samples in 2nd 

set of values.  

 

Figure 4.11: Control ova treated with different concentrations of propidium 

monoazide. Error bars represent 95% confidence.  

As summarized in Figure 4.11 (and Appendix D), treatment of Ascaris ova with 

50 µM or 100 µM treated samples did not have a significant impact (p < 0.05) on 

the number of ITS-1 sequences amplified relative to the number of ITS-1 

sequence copies (1.5 x 105) in the control samples that were not treated with 

PMA. In contrast, treatment of Ascaris ova with either 25 µM or 200 µM of PMA 

significantly reduced the qPCR yield relative to the untreated controls (p < 0.05).  



53 

In practice, a wide range of PMA concentrations have been used to prevent 

amplification of target DNA from a variety of nonviable microorganisms. For 

example, Yuan et al. (2018) found that a minimum of 5 µM PMA was needed to 

bind the DNA from 105 colony forming units (CFU)/mL of dead Escherichia coli 

cells, whereas 50 µM PMA was cytotoxic to, and reduced the qPCR signal from, 

viable E. coli cells. However, a PMA concentration of 50 µM is frequently used for 

treatment of bacterial cells (e.g., Nocker et al., 2006); and 100 µM PMA was 

used to distinguish DNA derived from viable versus nonviable helminth 

(hookworm) ova (Gyawali et al., 2006; Gyawali et al., 2007). Presumably, in the 

current study, 200 µM PMA exerted a cytotoxic effect on viable Ascaris ova and 

inhibited the amplification of the ITS-1 DNA sequence target. It is not clear why 

treatment of viable Ascaris ova with 25 µM PMA reduced the number of ITS-1 

sequences amplified from ova relative to the untreated controls. The most likely 

explanation is that during the photoactivation of the PMA, the 25 µM sample 

became overheated. This could compromise the integrity of ova structures and 

allow PMA to permeate cells.  

Based on the results obtained with viable Ascaris ova, the effect of PMA on the 

amplification of DNA derived from non-viable ova was examined using a 

concentration of 100 µM PMA. To confirm that the treatment methods (incubation 

in 10% bleach for 15 minutes at room temperature, and incubation at 70 ˚C for 5 

min or 15 min) effectively inactivated Ascaris ova, the treated ova were inspected 

microscopically. If no viable ova were detected, i.e., no ova exhibited movement 

in the microscope field, the treatment was considered effective. In addition, 

Ascaris ova that had a bubbly appearance were considered inactivated (Figure 

4.12). 
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Figure 4.12: Viable Ascaris ova taken from control samples (top row) and ova 
,with formation of bubbles, that have been inactivated using high heat treatment 

The appearance of bubbles on inactivated Ascaris ova also was also noted by 

Schmitz (2016) and is not observed on viable ova. It should be noted that the 

bleach treatment was chosen to test the hypothesis that fully developed worms 

contributed to the high qPCR-based counts of viable second-stage ova relative to 

the microscopy-based counts on days 15 and 20 in the direct air drying pile, as 

described above. Specifically, it was thought that bleach would inactivate the 

worms, make them permeable to PMA, and thus reduce the qPCR-based signal 

associated with the worms. The combination of bleach and PMA treatments was 

used successfully to prevent amplification of DNA derived from juvenile potato 

cyst nematodes (Christoforou et al., 2014). In contrast, bleach was not expected 

to inactivate viable Ascaris ova. In fact, Ascaris ova are routinely treated with 

bleach to remove coloration and the corticated layers well as to induce them to 

move during microscopic inspection, as described above.  
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 As expected, the number of viable second-stage ova in the controls and 

samples treated with 10% bleach estimated using qPCR alone were not 

significantly different (p=0.05; Figure 4.13). However, the PMA + qPCR-based 

measure of viable second-stage ova in the bleached sample were also not 

significantly different relative to the control sample. This indicates that treatment 

with bleach and PMA cannot be used to prevent amplification of DNA from 

emerged Ascaris worms via qPCR.  

 

 

 

 

 

 

 

 

 

 

Thus, if worms are present, an overestimation of viable second stage Ascaris ova 

will be obtained using qPCR (with or without PMA).   

In contrast, the number of viable second-stage ova in the untreated controls and 

the samples incubated for 15 min at 70 ˚C were significantly different based on 

qPCR alone (p < 0.05; Figure 4.14). These results indicate that heat is effective 

at inactivating viable second-stage Ascaris ova. Moreover, they show that most 

Figure 4.13: Ova Treated with either no treatment, PMA 
only, Bleach and PMA, or Heat and PMA  
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of the DNA derived from heat-inactivated Ascaris ova is not amplified using 

qPCR. Presumably, this is the result of heat induced unwinding of AT-base pair 

rich regions of the DNA from heat treated ova, as discussed above, and/or the 

removal of this DNA from samples  through DNA purification steps. Treatment of 

heat-inactivated Ascaris ova with PMA did not further decrease the yield of ITS-1 

sequences amplified via qPCR (p < 0.05). Due to the thick shell of Ascaris ova 

and its resistance to different chemicals, PMA may not have been able to 

permeate any of the the Ascaris ova, or, DNA derived from heat-inactivated 

Ascaris ova was removed during DNA purification (Hill, 2013).  

 

In contrast, the number of ITS-1 copies derived from Ascaris ova heated to 

70 ˚C for 5 min and amplified via qPCR was not significantly different (p < 0.05) 

compared to those obtained from the untreated control (Figure 4.15). When ova 

Figure 4.14: Ova Treated with either no treatment, Bleach, or Heat all 
without PMA  
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that were heated for 5 min were inspected microscopically, they did not exhibit 

movement and their surfaces were bubbled, indicated that they were inactive. 

However, the 5 minute heating period, unlike the 15 minute heating period, did 

not melt or damage DNA enough to prevent qPCR amplification. The addition of 

PMA to the Ascaris ova maintained at 70 ˚C for 5 min did significantly reduce the 

ITS-1 sequence qPCR signal (p < 0.05); however, a substantial amount of DNA 

from the heat inactivated ova was still amplified. It is possible that the PMA 

treatment method could be optimized to improve PMA binding of DNA derived 

from inactivated ova, but it seems unlikely that amplification of this DNA cannot 

be completely eliminated using only PMA unless the conditions that result in ova 

inactivation are extreme enough to cause irrervisble damage to, or degradation 

of, the DNA. In that case, there really is no benefit of adding PMA, as observed 

the analyses of samples taken from the biosolids long-term storage beds and air 

drying beds, as well as the samples that were heated to 70 ˚C for 15 min. In 

those scenarios, DNA extraction and qPCR appear to results that are consistent 

with microscopic ova measurements, unless fully developed Ascaris worms are 

present. 
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4.4 Conclusions  

PMA concentration and treatment methods that have previously been applied to 

a wide range of organisms, including hookworms, were used to treat Ascaris ova 

in the current study. Treatment of Ascaris ova with 100 µM PMA did not have 

significant negative impacts on the qPCR amplification of ITS-1 sequence DNA 

derived from viable ova. However, treatment with PMA did not completely 

suppress the qPCR amplification of DNA from Ascaris ova that were inactivated 

via heat treatment, unless the heat treatment itself was sufficiently severe to 

damage the ova and DNA enough that the qPCR signal was reduced by four 

orders of magnitude, even in the absence of PMA. Thus, there appears to be 

Figure 4.15 : Log ITS-1 DNA copies per 100 µL of eluent in no 
treatment controls and in samples treated with heat (for 15 min) and 

no PMA, heat (for 5 min) no PMA, or heat (for 5 min) plus PMA.  
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little benefit to treating Ascaris ova with PMA to distinguish between ITS-1 

sequence copy numbers derived from viable and non-viable ova. This was 

illustrated by comparing the number of viable second-stage Ascaris ova 

enumerated via traditional microscopy and qPCR in biosolids that were subjected 

to long-term storage and air drying. qPCR captured the qualitative trends and 

accurately predicted the quantity of viable Ascaris ova in these systems, unless 

fully developed (juvenile) Ascaris worms were present. Combined treatment with 

bleach and PMA did not significantly eliminate the large qPCR signal derived 

from the juvenile worms. Therefore, future research should focus on identifying 

methods that can be used to account for the potential impacts of juvenile Ascaris 

worms on qPCR-based estimate of viable ova.   
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5 Conclusions and Future Directions  

5.1 A Comparison of Methods for Inducing Viable Larvated 
Ascaris suum Ova Motility Using Heating and Bleach 
Treatments 

5.1.1 Inducing Movement via heat and/or bleach treatment  

The goal of  the 3rd chapter of this chapter was to improve the methods used for 

determining viability of Ascaris ova that have developed over the course of a 

treatment process, i.e. the long term storage of biosolids. When compared with 

samples that had not been treated, using 1% bleach, heating up to 40 oC, as well 

as using a combination of both increased the number of ova seen to move over 

the course of 1 minute.  

5.1.2 Future Directions  

Other methods to determine viability such as dyes, other viability testing, or 

molecular methods such as qPCR could be tested to provide other methods for 

determining viability where just incubation would not be useful. Other 

chemical/heat treatments could also improve the viability counts or reduce the 

time needed to observe each ova.   

5.2 Use of Molecular Methods for the detection and 
quantification of Ascaris Ova During Long-term Biosolids 
Storage  

5.2.1 Enumeration of Ascaris ova using Microscopy vs qPCR 

Several studies have shown the ability to use qPCR to test for the presence of 

Ascaris ova in wastewater samples, however few have attempted to correlate 

qPCR results with microscopic ova counts. In this study, we attempted to 

correlate 15 ova-spiked biosolids samples that had been subjected to long-term 

storage treatment. Using control larvated ova, a ITS-1 copies/ova was 



69 

determined for our DNA extraction method and used to determine the number of 

viable ova. Using this, the number of ova was able to be determined via qPCR 

for a majority of the samples. However, two samples had qPCR results 

suggesting an ova concentration several times higher than that which was 

counted microscopically.  

5.2.2 PMA Treatment to Prevent False-Positives  

PMA has been used as a way to prevent false-positives during molecular 

methods as it binds to DNA in non-viable cells. PMA was first tested in several 

concentrations to determine the maximum that would still amplify viable ova, and 

was found that  ova treated with 100 µM had similar results to none treated ova, 

while 200 µM treated ova were significantly lower. Next, qPCR and PMA-qPCR 

was tested on several samples using bleach, short-heat, long heat, and no 

treatment methods. Generally, qPCR found no difference between the use of 

PMA or not for the no, bleach, or long-heat treatment methods. However, when 

ova samples were treated with a higher temperature for shorter duration, PMA-

qPCR resulted in lower ITS-1 copy concentrations than that of normal qPCR. 

While PMA-qPCR was more accurate than regular qPCR for short heat ova, it 

was it did not accurately amplify DNA from only inactivated ova, as there were no 

viable of in the sample after heat treatment.  

5.2.3 Future Direction 

The use of qPCR is a promising approach that could be used to determine the 

number of viable ova in a biosolids sample. Further research is needed to 

improve the correlation, as well as increase the number of samples run. Different 

matrices such as feces, wastewater, differently treated biosolids need to be 

tested to determine if further correlation could be found. Different extraction 

methods such as freeze-thaw, different bead-beading/mixing, as well as different 

extraction kits should be tested to determine which one can get the best recover 

of DNA ova from different matrices. The number of ITS-1 copies/ ova that we 
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determined was based on the DNA extraction method we used. More studies 

could determine a more accurate number of ITS-1 copies/ ova that could be used 

to accurately predict the number of ova that would be quantified using the 

accepted microscopy method.  

PMA-qPCR may be a promising approach to determine a more accurate number 

of ITS-1 copies from only viable ova in a sample. Further research is needed to 

test if concentrations between 100 and 200 µM can consistently reduce the 

number of ITS-1 copies amplified from inactivated ova. Other PMA protocols 

such as longer retention time, longer light exposure times, or other deviations 

may cause greater binding of PMA to inactivated DNA and should be looked into. 

Different treatment methods such as UV, different chemical treatments (pH, lime, 

etc), or different heat treatments should be tested to determine if PMA would be 

more effective for samples treated in different ways.  
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A Copyright documentation 

 

The image used in this thesis is from the Center for Disease Control webpage on Ascaris 

lumbricoides. CDC materials displayed on the website are public domain and are free of 

copyright restrictions. Please see below for additional citation details and attribution 

information.  

Figure 1.1:  “Ascaris lumbricoides Life Cycle” by DPDx at the US Center for Disease 

Control. Licensed under Public Domain - 

https://www.cdc.gov/parasites/ascariasis/biology.html Accessed August 2017. 
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B Purification Kit Protocols  

 

B.1 Powersoil DNeasy Extraction Kit 

 

1. To the PowerBead Tubes provided, add 0.25 grams of sample 

 
2. Gently vortex to mix 

 
3. Check Solution C1. If Solution C1 is precipitated, heat solution to 60°C until 

dissolved before use. 

 
4. Add 60 µl of Solution C1 and invert several times or vortex briefly. 

 
5. Secure PowerBead Tubes horizontally with tape on flat-bed vortex pad. 

Vortex at a maximum speed for 10 minutes.  
 

6. Make sure the PowerBead Tubes rotate freely in your centrifuge without 
rubbing. Centrifuge tubes at 10,000 x g for 30 sec at room temperature. 
CAUTION: Be sure not to exceed 10,000 x g or tubes may break 

 
7. Transfer the supernatant to a clean 2 ml Collection Tube (provided).  

 
8. Add 250 µl of Solution C2 and vortex for 5 seconds. Incubate at 4°C for 5 

minutes.  
 

9. Centrifuge the tubes at room temperature for 1 minute at 10,000 x g 
 

10. Avoiding the pellet, transfer up to, but no more than, 600 µl of supernatant to 
a clean 2 ml Collection Tube (provided).   

 
11. Add 200 µl of Solution C3 and vortex briefly. Incubate at 4°C for 5 minutes.  

 
12. Centrifuge the tubes at room temperature for 1 minute at 10,000 x g.  

 
13. Avoiding the pellet, transfer up to, but no more than, 750 µl of supernatant 

into a clean 2 ml Collection Tube (provided) 
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14. Shake to mix Solution C4 before use. Add 1200 µl of Solution C4 to the 
supernatant and vortex for 5 seconds.  

 
15. Load approximately 675 µl onto a Spin Filter and centrifuge at 10,000 x g for 

1 minute at room temperature. Discard the flow through and add an additional 
675 µl of supernatant into the Spin Filter and centrifuge at 10,000 x g for 1 
minute at room  

 
16. temperature. Load the remaining supernatant onto the Spin Filter and 

centrifuge at 10,000 x g for 1 minute at room temperature.  
 

17. Add 500 µl of Solution C5 and centrifuge at room temperature for 30 
seconds at 10,000 x g. 

 
18. Discard the flow through. 

 
19. Centrifuge again at room temperature for 1 minute at 10,000 x g. 

 
20. Carefully place spin filter in a clean 2 ml Collection Tube (provided). Avoid 

splashing any Solution C5 onto the Spin Filter  
 

21. Add 100 µl of Solution C6 to the center of the white filter membrane. 
 

22. Centrifuge at room temperature for 30 seconds at 10,000 x g. 
 

23. Discard the Spin Filter. The DNA in the tube is now ready for any 
downstream application. 

 
24. Storage at -20°C to -80°C  
 

B.2 Test Method for Detecting, Enumerating, and 
Determining the Viability of Ascaris Ova in Sludge 

 
1.0 Procedure 
 
1.1 The percentage moisture of the sample is determined by analyzing a 
separate portion of the sample, so the final calculation of ova per gram dry 
weight can be determined. The concentration of ova in liquid sludge samples 
may be expressed as ova per unit volume. 
 
1.2 Initial preparation: 
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1.2.1 Dry or thick samples: Weigh about 300 g (estimated dry weight) and place 
in about 500 ml water in a beaker and let soak overnight at 4 - 10EC. Transfer to 
blender and blend at high for one minute. Divide sample into four beakers. 
 
1.2.2 Liquid samples: Measure 1,000 ml or more (estimated to contain at least 50 
g dry solids) of liquid sample. Place one half of sample in blender. Add about 200 
mL water. Blend at high speed for one minute transfer to a beaker. Repeat for 
other half of sample. 
 
1.3 Pour the homogenized sample into a 1000 mL tall form beaker and using a 
wash bottle, thoroughly rinse blender container into beaker. Add 1% 7X to reach 
900 ml final volume. 
 
12.4 Allow sample to settle four hours or overnight at 4 - 10EC. Stir occasionally 
with a wooden applicator, as needed to ensure that material floating on the 
surface settles. Additional 1% 7X may be added, and the mixture stirred if 
necessary. 
 
1.5 After settling, vacuum aspirate supernatant to just above the layer of solids. 
Transfer sediment to blender and add water to 500 ml, blend again for one 
minute at high speed. 
 
1.6 Transfer to beaker, rinsing blender and add 1% 7X to reach 900 ml. Allow to 
settle for two hours at 4 - 10EC, vacuum aspirate supernatant to just above the 
layer of solids. 168 
 
1.7 Add 300 ml 1% 7X and stir for five minutes 
on a magnetic stirrer. 
 
1.8 Strain homogenized sample through a 20 or 50 mesh sieve placed in a funnel 
over a tall beaker. Wash sample through sieve with a spray of 1% 7X from a 
spray bottle. 
 
1.9 Add 1% 7X to 900 mL final volume and allow to settle for two hours at 4 - 
10EC. 
 
1.10 Vacuum aspirate supernatant to just above layer of solids. Mix sediment 
and distribute equally to 50 mL graduated conical centrifuge tubes. Thoroughly 
wash any sediment from beaker into tubes using water from a wash bottle. Bring 
volume in tubes up to 50 ml with water. 
 
1.11 Centrifuge for 10 minutes at 1000 X G. Vacuum aspirate supernatant from 
each tube down to just above the level of sediment. (The packed sediment in 
each tube should not exceed 5 mL. If it exceeds this volume, add water and 
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distribute the sediment evenly among additional tubes, repeat centrifugation, and 
vacuum aspirate supernatant.) 
 
1.12 Add 10 to 15 mL of MgSO4 solution (specific gravity 1.20) to each tube and 
mix for 15 to 20 seconds on a vortex mixer. (Use capped tubes to avoid 
splashing of mixture from the tube.) 
 
1.13 Add additional MgSO4 solution (specific gravity 1.20) to each tube to bring 
volume to 50 mL. Centrifuge for five to ten minutes at 800 to 1000 X g. DO NOT 
USE BRAKE. 
 
1.14 Allow the centrifuge to coast to a stop without the brake. Pour the top 25 to 
35 mL of supernatant from each tube through a 400 mesh sieve supported in a 
funnel over a tall beaker. 
 
1.15 Using a water spray bottle, wash excessive flotation fluid and fine particles 
through sieve. 
 
1.16 Rinse sediment collected on the sieve into a 100 mL beaker by directing the 
stream of water from the wash bottle onto the upper surface of the sieve. 
 
1.17 After thoroughly washing the sediment from the sieve, transfer the 
suspension to the required number of 15 mL centrifuge tubes, taking care to 
rinse the beaker into the tubes. Usually one beaker makes one tube. 
 
1.18 Centrifuge the tubes for three minutes at 800 X G, then discard the 
supernatant. 
 
1.19 If more than one tube has been used for the sample, transfer the sediment 
to a single tube, fill with water, and repeat centrifugation. 
 
1.20 Aspirate the supernatant above the solids. 
 
1.21 Resuspend the solids in 4 mL 0.1 N H2SO4 and pour into a 20-mL 
polyethylene scintillation vial or equivalent with loose caps. 
 
1.22 Before incubating the vials, mark the liquid level in each vial with a felt tip 
pen. Incubate the vials, along with control vials containing Ascaris ova mixed with 
4 mL 0.1 N H2SO4, at 26EC for three to four weeks. Every day or so, check the 
liquid level in each vial. Add reagent grade water up to the initial liquid level line 
as needed to compensate for evaporation. After 18 days, suspend, by inversion 
and sample small aliquots of the control cultures once every 2 - 3 days. When 
the majority of the control Ascaris ova are fully embryonated, samples are ready 
to be examined. 
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1.23 Examine the concentrates microscopically using a Sedgwick-Rafter cell to 
enumerate the detected ova. Classify the ova as either unembryonated, 
embryonated to the first, second, or third larval stage. In some embryonated 
Ascaris ova the larva may be observed 
to move. See Figure 1 for examples of various Ascaris egg categories. 
 
2.0 Calculation 
 
2.1 Calculate % total solids using the % moisture 
result: 
% Total solids = 100% - % moisture 
13.2 Calculate catagories of ova/g dry weight in 
the following manner: 
Ova/g dry wt = (NO) x (CV) x (FV) 

(SP) x (TS) 

 

B.3 Zymo Plasmid Miniprep  

 
Perform the following procedure at room temperature. 

1. Transfer 600lowing procedure at roomgrown in LB medium to a 1.5ml 
microcentrifuge tube. 

Note: If you wish to process larger volumes of bacterial culture (up to 3.0ml), use 
the protocol provided in 

Section 4.C. 

2. Add 100C.to process larger voer, and mix by inverting the tube 6 times. 

The solution should change from opaque to clear blue, indicating complete lysis. 

Note: Proceed to Step 3 within 2 minutes. Excessive lysis can result in 
denatured plasmid DNA. If 

processing a large number of samples, process samples in groups of ten or less. 
Continue with the next set of 

ten samples after the fi rst set has been neutralized and mixed thoroughly. 

3. Add 350een neutralized and mixed thoroughly.ly.zed and mixed 
thoroughly.ess. Continue with t 
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The sample will turn yellow when neutralization is complete, and a yellow 
precipitate will form. Invert the 

sample an additional 3 times to ensure complete neutralization. 

4. Centrifuge at maximum speed in a microcentrifuge for 3 minutes. 

5. Transfer the supernatant (~900 a microcPureYield supernatant. 

Do not disturb the cell debris pellet. For maximum yield, transfer the supernatant 
with a pipette. 

6. Place the minicolumn into a PureYieldureYield PureYiel PureYieldo a 
PureYieldor maximum yield, transfer the  

for 15 seconds. 

7. Discard the fl owthrough, and place the minicolumn into the same PureYield 
same Pur same Pur 

8. Add 200same PureYield PureYieldlace dor maxminicolumn. Centrifuge at 
maximum speed in a microcentrifuge 

for 15 seconds. It is not necessary to empty the PureYieldconds. It is n. It 

9. Add 400onds. Column Wash Solution to the minicolumn. Centrifuge at 
maximum speed in a microcentrifuge for 

30 seconds. 

10. Transfer the minicolumn to a clean 1.5ml microcentrifuge tube, then add 
30hen add 30tube, theer directly to the 

minicolumn matrix. Let stand for 1 minute at room temperature. 

Notes: 

1. Nuclease-free water at neutral pH can also be used to elute DNA. 

2. For large plasmids (>10kb), warm the Elution Buff er to 50oC prior to elution, 
and increase elution volume 

to 500oC prior to elution, and increase eltemperature (22o 50oC prior to elution, 
and increase elutio 

Step 11. 
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11. Centrifuge at maximum speed in a microcentrifuge for 15 seconds to elute 
the plasmid DNA. Cap the 

microcentrifuge tube, and store eluted plasmid DNA at or 15  
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C Plasmid Standard Preparation  
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D PMA Concentration Optimization 

PMA Concentration (µM) Geometric mean  95% confidence 

interval of ITS-1 copy number in samples 

treated with PMA 

0 1.5 x 105  5.7 x 104 

25 1.5 x 104  1.8 x 104 

50 1.0 x 105  4.1 x 104 

100 1.5 x 105  2.8 x 104 

200 1.8 x 104  1.4 x 104 

Table D-1. ITS-1 sequence copies in 100 µL of eluent derived from ova treated with 

varying PMA concentrations.   
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