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Abstract 
Mona Lake, MI (a drowned river mouth system) has become eutrophic as result of 

cultural eutrophication. The integrated monitoring effort and subsequent modeling 

(LAKE2K) reported on here has shifted the management focus to internal phosphorus 

loads (60 percent of annual load, 90 percent of load during the stratified and anoxic 

period) as a necessary precursor to trophic state change. Sediment phosphorus release can 

yield extreme elevations (> 1 mgSRP/L) of bottom water soluble reactive phosphorus 

(SRP), with blooms of potentially toxic cyanobacteria (largely Microcystis) occurring 

annually. Such blooms are ascribable to stochastic mixing and phosphorus entrainment to 

the surface waters, with entrainment forces shown to be significant as a result of this 

lakes geographic proximity to large fetch events across Lake Michigan. Intrusion events 

from Lake Michigan are shown to strengthen stratification in Mona Lake, increasing 

hypolimnetic phosphorus accumulation prior to mixing events. Hypothetical phosphorus 

reduction strategies applied to the calibrated model indicate treatment of internal loading 

and a 25 percent reduction in external loading would allow Mona Lake to remain below 

20 ug/L total phosphorus (eutrophic threshold). 
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1 Introduction 
Eutrophication of inland waters in the Great Lakes basin has steadily increased as 

urbanization and growing agricultural intensity deliver phosphorus loads exceeding the 

assimilation capacity of the watersheds and their receiving water bodies (Smith et al. 

1999). Resulting algal blooms often include cyanobacteria, often capable of producing a 

toxin that is a threat to both human and aquatic life (Jacoby et al. 2000). This and other 

manifestations of eutrophication (e.g. reduced water clarity, hypoxia) place increasing 

importance on mitigating potential impacts through management plans that address both 

causes and impacts. 

Implementations of plans and methods addressing causes of eutrophic conditions 

can be seen throughout the Great Lakes basin. For example, in the Madison Lakes (WI), 

wastewater diversion in 1958 reduced the algae composition from 99 percent Microcystis 

to as low as 25 percent just one year later (Sonzgoni et al. 1975). Ongoing efforts to 

manage agricultural land use in the same region through efficient fertilizer application 

have been successful in reducing phosphorus loads between 30 and 50 percent. An 

adaptive watershed management plan implemented for Lake Mendota (WI) resulted in a 

phosphorus load reduction of nearly 33 percent from 2013 to 2015 (Yahara WINS Final 

Report 2016).  

Addressing symptoms of eutrophication often requires an engineering approach. 

For example, implementation of artificial mixing devices (physical mixing and/or 

aeration) is known to suppress the release of phosphorus from lake bottom sediments 

(Cook et al. 2005). Chaffrey Reservoir (Australia) saw a reduction in the internal loading 
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of soluble reactive phosphorus of nearly 80 percent when artificial destratification was 

employed to enhance oxygen transport to the hypolimnion (Sherman et al. 2000).  

Chemical treatment of lakes to suppress phosphorus-based eutrophication is 

another common management practice. This method and associated chemicals (i.e. 

aluminum sulfate, poly-aluminum chloride, lanthanum-modified bentonite clay) function 

on the same principle, wherein the chemical is applied to the lake surface and precipitates 

with phosphates in the water column, then settles out as a floc and creates a barrier in the 

pore water incapable of releasing phosphorus. The urban, predominantly internal 

phosphorus loading in hyper-eutrophic Swan Lake (Toronto) resulted in total phosphorus 

(TP) concentrations decrease 60 and 76 percent, respectively, in years one and two of 

Phoslock treatment, the commercial name for lanthanum-modified bentonite clay 

(Nurnberg et al. 2016). These and other methodologies are continually evolving 

implementations with promising success rates, used throughout the world in inland lakes 

with eutrophication issues, with certain methods being more appropriate for given 

ecosystems. In choosing an appropriate method, or combination thereof, it should be 

noted that the percent contribution of phosphorus from internal versus external loads 

differs for every waterbody. Wastewater treatment plants (pre-diversion) once delivered 

massive phosphorus loads to tributaries and thus surface waters. Although modern 

technologies and management techniques have reduced the external loading of 

phosphorus, including these wastewater sources, much of it remains in the watershed, 

commonly referred to as ‘legacy’ phosphorus deposits (James 2013), and quantified as an 

internal load.  
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To understand the impact of these deposits, we must study the phosphorus cycle 

and its respective role as the limiting nutrient in a given watershed or lake as it relates to 

biogeochemical processes. While external loading has historically been the dominating 

contributor of phosphorus to eutrophic lakes, it is generally delivered in forms not 

entirely bioavailable. Internal phosphorus loading is often significant or dominant in 

lakes that vertically stratify. Solar radiation causes at-depth density differences in the 

water column (stratification), resulting in decreased rates of mass transfer across layers. 

In productive lakes, the resulting decomposition creates a high oxygen demand in the 

sediments, capable of completely depleting the bottom layer (hypolimnion) of oxygen, 

termed anoxia. With large amounts of historic phosphorus loading and subsequent 

settling, and no process capable of diffusing sufficient oxygen into the hypolimnion, 

phosphorus-binding ferric iron is reduced to ferrous iron, releasing SRP, the most 

bioavailable form of phosphorus. This phosphorus is brought to the surface by wind-

driven mixing forces, known as entrainment, where algae now have the components 

required for photosynthesis. Seasonally, this phenomenon often coincides with nitrate and 

other nutrient depletions. Algae capable of nitrogen fixation (i.e. some cyanobacteria) 

often lack competition for nutrients at this time in the seasonal succession. This allows 

them to become the dominant algal species by consuming SRP brought to the surface by 

wind-driven entrainment. Hypolimnetic anoxia and attendant sediment phosphorus 

release can occur for upwards of 6 months in northern temperate lakes (Nurnberg 2004), 

a feature of their bathymetry and therefore stratification regime, as well as sediment 

chemistry.  
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Drowned river mouth lakes, such as those common along the eastern shore of Lake 

Michigan, are hydrodynamically linked to the larger Great Lakes system, potentially 

exposing them to intrusions under certain meteorological conditions. Carved by glaciers 

and flooded by water-level rise after the last ice age, drowned river mouth lakes are 

ravine-like in their bathymetry with large length to width ratios. Furthermore, their 

riverine formation often features a minimal mean depth and seasonally variable hydraulic 

residence times. These unique characteristics play intricately into the biogeochemical 

cycle of drowned river mouth lakes, increasing their susceptibility to stochastic wind 

events and associated disturbances in stratification regime and nutrient cycling. We seek 

to understand how historical impacts, as well as current features of a specific drowned 

river mouth system (hydrology, biogeochemistry) impact and inform management, both 

historically (wastewater diversion, celery flat discharge structures) and in the future 

(external and internal nutrient loads). 
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1.1 Study Site Description 

Mona Lake, a drowned river mouth system discharging to Lake Michigan, is 

oriented largely east-west, aligning it with prevailing westerly winds (Figure 1-1). The 

lake has a length of 6.5 km and an average width of 0.5 km with mean and maximum 

depths of 4.5 and 8.5 m, respectively. Hydraulic residence time can vary from 105 to 160 

days during low tributary flows, decreasing to less than 35 days during high tributary 

flows (Evans 1992). The mean annual retention time in this study was calculated to be 69 

and 54 days in 2017 and 2018, respectively.  

 

Figure 1-1 Mona Lake watershed location and orientation with respect to the wastewater 
treatment plant and major tributaries. Gray shaded area indicates municipal boundaries 

within watershed (Annis Water Resources Institute 2003). 
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The Mona Lake watershed has an area of 2 km2 and is predominantly agricultural 

in its eastern portion, forested in mid-watershed and residential/commercial to the west 

(Figure 1-2). Mona Lake, comprising less than 2 percent of the total watershed area, 

receives inputs from four tributaries (Black Creek, Little Black Creek, Cress Creek, and 

Ellis Drain; Table 1-1) with Black Creek representing the largest percentage of watershed 

area and hydrologic contribution. Black Creek receives input from large ponds, called the 

‘celery flats’, about 1 km upstream from the mouth at Mona Lake. These ponds were 

once agricultural fields that now represent attempts to return the area to wetlands. Once 

contributing phosphorus-rich water to Black Creek through levees (2.6x downstream 

increase; Steinman and Ogdahl 2011), discharge limiting structures were installed and 

levees filled in 2015 with the intention to suppress phosphorus loading from the flats. 

Their current magnitude and frequency of influence on Black Creek and therefore Mona 

Lake are presently not well understood. The effort herein will aim to update, elaborate 

upon, and synthesize previous and new studies of the lake, its watershed, and its 

tributaries. 
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Figure 1-2 Mona Lake watershed land use in 1997, illustrating the dominance of 
agricultural/forested lands to the east and commercial/residential land uses in the west 

(Annis Water Resources Institute 2003, edited to highlight major land use types). 
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Table 1-1 Contribution, of the four major tributaries to Mona Lake to watershed area and 
hydrologic contribution, as a percentage of the total. 

Tributary Watershed Area Hydrologic 
Contribution 

Black Creek 68 77 

Little Black Creek 9 9 

Cress Drain 6 6 

Ellis Drain 6 6 

Other 11 2 

 



3 

2 Objectives and Approach 
The Mona Lake Watershed Council is representing stakeholders to the Michigan 

Department of Environmental Quality (MDEQ) in recommending a management 

framework for eliminating manifestations of eutrophication. The plan would include a 

review of previous studies, a monitoring program to characterize tributary and lake 

conditions, and modeling exercises providing guidance for restorative actions, e.g. 

reductions in internal and external phosphorus loads. Several studies have quantified 

these loads for Mona Lake, documenting significant reductions over a period of decades 

(Freedman et al. 1979, Limnotech 1982, Steinman et al. 2006; Steinman et al. 2009). 

However, phosphorus loads have not been quantified in the last decade, and load 

estimates have not been integrated to support development of the engineered designs 

required for implementation of management solutions.  

Historically, the TP load to Mona Lake was well beyond the assimilation capacity 

of the system (water quality heavily impaired). Legacy deposits of phosphorus and 

oxygen demanding materials reflected decades of agricultural runoff and municipal 

wastewater discharge. Mona Lake once represented a classic example of a hypereutrophic 

water body (Figure 2-1) with manifestations of eutrophication including high levels of 

algal biomass, poor water clarity, and hypolimnetic oxygen depletion. Following 

wastewater diversion in 1972 (and continuing through 1981), external loading to Mona 

Lake was reduced 75-80 percent (Limnotech 1982); however, the annual mean TP for 

Mona Lake remained above the eutrophic threshold when modeled via trophic state 

(Chapra et al. 1981; Carlson 1977; Figures 2-2 and 2-3). Internal phosphorus loading, 
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previously estimated to constitute 73 to 82 percent of the total phosphorus load to Mona 

Lake (Steinman et al. 2009), results from legacy deposits in lake sediments that serve to 

sustain eutrophic conditions. In this study, internal phosphorus loading was found to 

constitute 60 percent of the annual total phosphorus load, and 90 percent of the total 

phosphorus load during the stratified and anoxic period (June to September). Loading 

models (Vollenweider 1975; Figure 2-1), based on external total phosphorus loading and 

retention time, support this hypothesis. Based solely on external loads, Mona Lake should 

have exhibited mesotrophic behavior following wastewater diversion (1982 study). The 

total phosphorus trophic state index (TSI), constructed from mean lake total phosphorus 

concentrations, more accurately represents the current eutrophic state (compare Figure 2-

2 with Figures 2-3 and 2-4), pointing to the significance of internal phosphorus loading.  

Mona Lake stakeholders seek to reduce and or eliminate symptoms of 

eutrophication through reductions in phosphorus loading. Discrepancies between external 

load-based projections of trophic state and those observed at the lake today point to the 

need for further consideration of the importance of both external and internal loading 

management. Our primary objective is to integrate results from field monitoring and 

mathematical modeling of trophic state conditions to identify engineered actions allowing 

Mona Lake stakeholders to meet their goals. The results and proposed management 

implications will serve as the basis for development of a planning proposal submitted to 

MDEQ for consideration of funding and implementation assistance. The approach 

includes a field program in support of a modeling efforts, with insights from both 

informing the recommended survey of management techniques and focus areas.  
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In this research, two hypotheses will be tested using a one-dimensional (vertical) 

model, capable of simulating both current and potential water quality in Mona Lake. 

With the ability to modify internal and external loading independently, the model will 

allow for prediction of trophic state impacts by reducing external loads as well as further 

quantification of internal loading influence, hypothesized to be the driving factor in the 

still-eutrophic Mona Lake. Field sampling data collection was designed to provide model 

inputs: tributary loads, particle settling velocity analysis via sediment traps and 

photosynthetically active radiation monitoring at both the lake surface and subsurface, as 

well as conductivity, temperature, and dissolved oxygen profiles at multiple locations. In 

addition to satisfying needs for model inputs and calibration data, the specific assemblage 

of monitoring components allowed for a robust spatiotemporal analysis of both lake and 

tributary biogeochemical influences. Field data analysis and accompanying model 

application accomplished here are intended to be complementary to previous watershed 

research efforts while attempting to further summarize and confirm previous hypotheses 

about the relative importance of external and internal loading to Mona Lake.  
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Figure 2-1 Vollenweider Loading Plot (1975 Model) 2017 for years 1972 (Freedman et al 
1979), 1981 (Limnotech 1982). 
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Figure 2-2 Composite of Total Phosphorus in Mona Lake for years 1972 (Freedman et al 
1979), 1981 (Limnotech 1982). Dangerous and permissible trophic state boundary lines 

are shown (20 and 10 μg/L; Wetzel 2001). 

 

Figure 2-3 Composite of Carlson’s TP Trophic State Index (Carlson 1977) in Mona Lake 
for years 1972 (Freedman et al. 1979), 1981 (Limnotech 1982). Dangerous and 

permissible trophic state boundary lines are shown (Wetzel 2001) as applied to Carlson’s 
TP TSI (47 and 37). 
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3 Monitoring and Modeling Methods 
The monitoring program was designed to complement previous research regarding 

external and internal loading of phosphorus to Mona Lake and attendant water quality 

conditions. The field program was executed at multiple stations over June-September 

2017 and March-October 2018, at approximately twice-monthly intervals. Profiling was 

performed for conductivity, temperature, and dissolved oxygen, and discrete samples 

were collected for phosphorus, chlorophyll, and nitrate. These parameters support 

examination of spatiotemporal patterns and model calibration. Three tributaries were 

monitored for phosphorus and discharge in support of loading calculations. Additional 

monitoring components are detailed below, in relation to specific asset deployments and 

process studies (settling velocity, intrusion detection) in support of modeling. The 

biokinetic model applied in this research (LAKE2K) simulates the physical structure (3-

layer system: epilimnion, metalimnion, and hypolimnion) typical of dimictic lakes in 

temperate climates. Vertical diffusion coefficients (driven by seasonal and meteorological 

mixing activity) mediate the thermal balance and mass transfer through the water column. 

The water balance assumes that inflow equals outflow, and that precipitation balances 

evaporation. The model’s modest computational requirements yet robust biogeochemical 

simulation and calibration capability offer an ideal platform for application of overall 

project objectives. 
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3.1 Monitoring Methods 

3.1.1 Field Sampling 

3.1.1.1 Lake Monitoring 

The bathymetry of Mona Lake is spatially non-uniform, but generally, deeper 

from east to west, a property of its heritage as a drowned river mouth system. A 

bathymetric survey (Restorative Lake Sciences, LLC) was contracted by the Mona Lake 

Watershed Council prior to the beginning of lake sampling in 2017 (Figure 3-1). Those 

data were then used to determine the area of specified water column layers and their 

volume. Important in understanding its estuary-like nature and associated 

hydrodynamics, it should be noted that ~90 percent of the inflow to Mona Lake enters at 

the east end of the system, flowing westerly to its discharge into Lake Michigan. Five 

lake sampling sites (Figure 3-2) were chosen along the primary east-west axis, with the 

addition of conductivity, temperature, and dissolved oxygen profiles in the channel in 

2018 to better understand the characteristics of water introduced to Mona Lake through 

intrusions from Lake Michigan. 

Lake sampling sites were selected to best represent the expected spatial 

differences in depth-driven phenomena (thermocline, oxycline) as they relate to the 

stability of stratification, degree of anoxia and therefore rate of sediment phosphorus 

release. Samples for a full phosphorus series (SRP, TP and total dissolved phosphorus, 

TDP) were collected from the surface and 1 m above bottom; yielding particulate 

phosphorus (PP) and dissolved organic phosphorus (DOP) by calculation. Discrete 

conductivity, temperature, and dissolved oxygen profiles were also generated at each site 
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(~0.3m resolution). Time-continuous discrete depth (1 m below surface, mid-depth ~4 m, 

1 m above bottom ~8 m) water column temperature, and discrete depth Chl-a 

concentrations (surface) and nitrate levels (bottom) were monitored at the ‘East Deep’ 

site. Sediment traps were deployed via buoy at the East Deep and West Deep stations 

during 2017 for determination of particle (chlorophyll and particulate phosphorus) 

settling velocity. The 2017 field program included an acoustic doppler current profiler 

(ADCP) deployed midway down the ~0.5 km channel to Lake Michigan to measure the 

magnitude and frequency of intrusion into Mona Lake from Lake Michigan. Given the 

channel’s shallow depth, frequent recreational boat traffic and submerged aquatic 

vegetation, the ADCP was not deployed in 2018 and instead replaced by an Onset HOBO 

temperature logger post (surface, middle and bottom in ~6 m) at the confluence of Mona 

Lake and the channel to more simply detect the presence of intrusions from Lake 

Michigan.  
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Figure 3-1 Bathymetry of Mona Lake, illustrating the overall depth gradient from east to 
west, as well as the channel with Lake Michigan. Bathymetric Survey: Restorative Lake 
Sciences/Mona Lake Watershed Council, Map: Jamey Anderson, Great Lakes Research 

Center at Michigan Tech. 

 

Figure 3-2 Mona Lake Sampling Station Map. 
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3.1.1.2 Tributary Monitoring 

Three tributaries (Cress Creek, Black Creek, Little Black Creek; Figure 3-3) were 

sampled for discharge and phosphorus concentrations (SRP, TP, TDP, yielding PP and 

DOP by calculation) so that tributary loads could be calculated. Tributaries were 

monitored on 12 and 10 occasions in 2017 and 2018, respectively, capturing a broad 

range of discrete flows with the intent of identifying relationships between discharge 

(precipitation) and phosphorus concentrations. Discharge was measured as the product of 

velocity (Swoffer 2100 Velocity Meter) and stream cross-sectional area (based on water 

level, collected via staff gages and Onset HOBO U20L). Sampling was performed near 

the stream entrances to Mona Lake, with enough distance upstream to avoid potential 

intrusions of lake water. In 2017, monitoring of Black Creek included sites upstream and 

downstream of the celery flats as a means of assessing the phosphorus contribution from 

this P-rich source (Steinman and Ogdahl 2011). An upstream site was added on Little 

Black Creek in 2018 to further explore a potential point source of phosphorus observed in 

2017. Ellis Drain, a fourth named tributary, was not monitored as its drainage basin 

represents less than 5 percent of the load to Mona Lake (Steinman et al. 2009). Ellis drain 

was assumed to possess area-proportional discharge characteristics and phosphorus 

concentrations to Cress Creek and was accounted for in the external loading calculation 

as such. 
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Figure 3-3 Mona Lake Tributary Site Map. 

3.1.1.3 Celery Flats 

Outflow from the flats enters Black Creek through drainage structures preceded 

by discharge restrictors. Measuring discharge through the restrictors proved to be difficult 

and the hydrologic cycle of the celery flats was not well understood in the context of this 

monitoring effort. However, with a sampling site both upstream and downstream of the 

drain entrances to Black Creek, the 2017 field program was able to quantify the 

phosphorus loading from the celery flats. The sampling site upstream of the celery flats 

and downstream of the celery flats, this sampling site was omitted from the field program 

for 2018 for logistic/cost reasons. 

3.1.2 Laboratory Analysis 

Samples were analyzed for SRP (field filtered), TDP (field filtered), and TP 

(unfiltered). Respective pools of PP and DOP were then calculated. SRP concentrations 

were determined via the ascorbic acid method within 48 hours of sample collection while 
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TDP and TP samples were frozen upon collection and later digested with ammonium 

persulfate, followed by analysis via the ascorbic acid method (APHA, 2005, 4500-P B) 

on a Lambda Spectrophotometer with a concentration appropriate path length. Nitrate and 

Chl-a samples from a single lake station (East Deep) were field filtered and frozen upon 

collection, then sent to Upstate Freshwater Institute (UFI) in Syracuse, NY to be analyzed 

(US EPA 353.2 Rev 2.0, US EPA 445.0 Rev 1.2). Sediment traps, deployed 1 m above 

lake bottom at the East Deep and West Deep lake stations, were retrieved at ~monthly 

intervals. The samples were frozen upon collection and sent to UFI to be analyzed for 

Chl-a and total suspended solids (US EPA 445.0 Rev 1.2, Standard Methods 2540-D-97).  

3.1.3 Data Analysis  

3.1.3.1 Loading Calculation 

Mass balance surface water modeling requires a continuous time series of 

constituent (phosphorus) loads, which are calculated as the product of concentration (C) 

and discharge (Q). No tributaries in the Mona Lake watershed are gaged or monitored, 

yielding continuous discharge data. It is impractical to collect continuous concentration 

data. Thus, continuous discharge estimates were sought by methods other than direct 

measurement and concentration values through relationships with discharge (C/Q plots). 

Tributary velocity and cross-sectional area data were collected regularly for all 

three monitored tributaries, yielding discrete discharge values. Statistical fitting methods 

(least squares) were used to relate field-measured Black Creek discharge values with 

continuous measurements for Bear Creek (USGS gauge, Muskegon, MI). This 
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relationship was then used to generate daily, annual, and historical discharge data for 

Black Creek, based on the Bear Creek USGS database. Watershed area ratios to Black 

Creek (Mona Lake Watershed Resource Atlas, Annis Water Resources Institute 2003) 

were applied to the remaining Mona Lake tributaries (Little Black Creek, Cress Creek, 

Ellis Drain, Other), with the respective discrete discharge measurements for Little Black 

Creek and Cress Creek used for validation. Paired measurements of concentration (SRP, 

TP) and discharge for each tributary were regressed to explore relationships between 

discharge and concentration (construct C/Q plots). Continuous discharge data (Bear 

Creek/Black Creek relationship) can then be used with concentration estimates to 

produce time-continuous load estimates.  

3.1.3.2 Settling Velocity 

In a surface water mass balance, the rate of particle settling is a term required in 

identifying the quantity (phosphorus) lost to lake sediments, and thus not present in the 

outflow. Sediment trap contents were used to calculate the rate of particulate phosphorus 

settling (Chapra and Martin 2004) in Mona Lake as,  

 

 

where J = particulate phosphorus flux (mgPP/m2/d), CT = sediment trap total phosphorus 
concentration (mg/m3), V = sediment trap volume (m3), A = sediment trap entry area (m2), 
H = sediment trap height (m), t = deployment time (d), Cw = water column total 
phosphorus (mg/m3), and v = settling velocity (m/yr). 

𝑣𝑣 =
𝐽𝐽
𝐶𝐶𝑤𝑤

 

𝐽𝐽 =
𝐶𝐶𝑇𝑇∙𝑉𝑉
𝐴𝐴 ∙ 𝑡𝑡

=
𝐶𝐶𝑇𝑇∙𝐻𝐻
𝑡𝑡
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3.2 Modeling Methods 

Two types of modeling approaches are utilized here: a screening model 

(Vollenweider/Chapra Plots) to provide rapid assessment of phosphorus – phosphorus 

trophic state relationships and a more complex NDPZ model (LAKE2K) to support 

management projections.  

3.2.1 Screening Model 

In his book on Surface Water Quality Modeling, Chapra (1997) outlines the 

development and evolution of phosphorus loading plots (Vollenweider) and budget 

models (Chapra) useful in relating phosphorus inputs to lakes with the resultant trophic 

state. Vollenweider (1975), building on ideas set forth by Rawson (1956), recognized that 

the susceptibility of a lake to eutrophication was impacted by the system’s morphometric 

and hydraulic characteristics. More specifically, lakes that were deep and those with short 

hydraulic residence times (fast-flushing) were observed to be less susceptible to 

eutrophication than shallow lakes and those with long hydraulic residence times (slow-

flushing). The significance of these observations is that lakes with low susceptibility can 

assimilate more phosphorus (higher loading) while maintaining a trophic state similar to 

that for lakes with high susceptibility. 

 Vollenweider (1975) developed a database of lake depth (H, m), hydraulic 

residence time (τ, yr) and areal total phosphorus loading (Lp, gP m-2 yr-1) to examine 

these relationships. The resulting ‘plot’ placed a lake’s areal phosphorus loading on the y-

axis and a term (H/τw, m yr-1) characterizing morphometric and hydraulic properties on 
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the x-axis (Figure 3-4). From an examination of H/τw, increasing depth (H) and 

decreasing hydraulic residence time (τw, fast-flushing) serve to position a lake further to 

the right along the x-axis, reflecting the observed reduction in susceptibility to 

eutrophication and the ability to assimilate a larger phosphorus loading. For the depth and 

hydraulic retention times characteristic of most lakes, hydraulic retention time is the 

dominant term, with endpoints on the x-axis that may be termed ‘fast flushers’ and ‘slow 

flushers’, as illustrated here for four lakes with differing morphometric and hydraulic 

properties (Table 3-1 and Figure 3-4). 

Table 3-1 Morphometric and hydraulic characteristics of Lake Superior, Lake Erie, Mona 
Lake and Lake Pepin in the context of a Vollenweider Plot. 

System Depth 

H (m) 

Retention Time 

τ (yr) 

H/τw 

(m yr-1) 

Lake Superior 149 191 0.78 

Lake Erie 19 2.6 7.31 

Mona Lake 6 0.2 32.1 

Lake Pepin 6 0.04 136.88 
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Chapra (1997) presents a derivation demonstrating that the term H/τw in the 

Vollenweider Plot (Figure 1) is equivalent to qs, the areal hydraulic loading (m3 m-2 yr-1 

or m yr-1). Chapra and Tarapchak (1976) developed a derivation of a phosphorus budget 

model where the steady state phosphorus concentration (p, mg m-3) was given by, 

𝑝𝑝 =  
𝐿𝐿𝑝𝑝

𝑞𝑞𝑠𝑠 + 𝑣𝑣
 

with v being the apparent (TP-based) settling velocity (m yr-1). The budget model 

approach explicitly recognizes one source term (areal loading, Lp) and two sink terms 

(flushing (qs) and settling (v). Rearrangement of the steady state solution yields the 

applied in development of, what is termed here, a Chapra Plot, 

𝐿𝐿𝑝𝑝 =  𝑝𝑝 ∙ (𝑞𝑞𝑠𝑠 + 𝑣𝑣) 

with the source term (loading) on the y-axis and the sum of the sink terms (flushing and 

settling) on the x-axis (Figure 3-5). This format also accommodates inclusion of total 

phosphorus concentrations representing the boundaries between oligotrophy and 

mesotrophy (10 mgP m-3) and mesotrophy and eutrophy (20 mgP m-3; Figure 3-5). Both 

Vollenweider and Chapra Plots are utilized in this work to explore trophic state 

associated with historical and contemporary external TP-based loadings to Mona Lake. 
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Figure 3-4 A Vollenweider loading plot based on Vollenweider (1975), illustrating the 

position of four lakes along the x-axis characterizing morphometric and hydraulic 
residence time. 

 

Figure 3-5 A Chapra budget plot based on Chapra and Tarapchak (1976), illustrating the 
relationship between areal total phosphorus loading, areal hydraulic loading and settling 

velocity and their interaction in mediating trophic state. The solid lines represent TP 
concentrations of 10 and 20 mgP m-3; the boundaries between oligotrophy and 

mesotrophy and mesotrophy and eutrophy, respectively. 
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3.2.2 Biokinetic Model 

The model used in application to Mona Lake, LAKE2K, is part of a family of 

platforms that also includes QUAL2K (river water quality), SED2K (sediment quality) 

and AT2K (river benthic algae) developed by Dr. Steven C. Chapra of Tufts University 

(http://www.qual2k.com). LAKE2K (Chapra and Martin 2004), is a 1D, three-layer, 

biokinetic model written in Visual Basic that applies a mass balance approach to simulate 

physical and biogeochemical processes in lakes (Table 3-2). Additionally, the model 

accommodates different chemical forms (e.g., ammonia and nitrate nitrogen), physical 

states (e.g., soluble reactive, dissolved organic and particulate phosphorus) and classes 

(multiple phytoplankton and zooplankton species) of several state variables. A suite of 

more than 118 mass transport and kinetic coefficients are specified in full application of 

the model. The model framework, detailing kinetics and mass transfer in simulating 

carbon, nitrogen, oxygen and phosphorus is presented in Figure 3-6. 

Table 3-2 Physical, chemical and biological state variables accommodated in LAKE2K. 

Physical Chemical Biological 

Light Carbon Phosphorus Phytoplankton 

Temperature Conductivity Silica Zooplankton 

Secchi Disk Nitrogen Suspended Solids - 

- Oxygen - - 



21 

 

Figure 3-6 Model kinetics and mass transfer framework. Kinetic processes used in this 
model calibration are oxidation (x), photosynthesis (p), respiration (r), and death (d). 

Mass transfer processes are reaeration (re), settling (s), sediment oxygen demand (sod), 
and sediment-water exchange (sw). Other processes not explicitly utilized in this model 

application are: hydrolysis (h), nitrification (n), denitrification (dn), grazing (g), and 
egestion (e) (Chapra and Martin 2004).  

The modeling performed here targets the total phosphorus analyte and other state 

variables serving to mediate mass transport, biokinetics and trophic state impacts of that 

constituent. This requires specification of a physical framework and four submodels: total 

phosphorus (the target analyte), temperature (vertical mixing and biokinetic rates), 

dissolved oxygen (trigger for sediment-P flux) and phytoplankton (phosphorus cycling 

and trophic state response) with attendant provision of model inputs, initial conditions, 

biokinetic and mixing coefficients and datasets for use in testing model performance.  
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3.2.2.1 Physical Framework  

 Physically, the Mona Lake system is divided into three layers (epilimnion, 

metalimnion and hypolimnion; Figure 3-7) with fully mixed conditions simulated by 

adjustment of vertical mixing coefficients. While LAKE2K accommodates changing 

layer volumes due to imbalance between inflow and outflow, it is assumed here that 

inflow equals outflow and, in the water balance, that precipitation equals evaporation 

resulting in constant layer volumes. Layer boundaries are user specified through 

inspection of thermocline and oxycline position determined in monitoring programs. 

Tributary inflow is directed into one of the three layers (epilimnion, metalimnion, 

hypolimnion) based on a density algorithm derived from seasonal inflow and layer 

temperatures. 

 

Figure 3-7 Physical framework with water balance and vertical segmentation scheme. 
(Chapra and Martin 2004). 
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3.2.2.2 Temperature Submodel 

A heat balance is written for each of the three model layers. Where tributary 

discharge is received by the epilimnion, the balance includes heat inflow and outflow, 

air-water heat flux and heat exchange between the epilimnion and metalimnion. The heat 

balance for the metalimnion and hypolimnion is based solely on vertical mass transport 

between layers. Surface heat exchange is determined as the net effect of five processes, 

expressed as cal cm-2 d-1 (Figure 3-8). 

 

Figure 3-8 Surface heat balance. 

Solar radiation is computed as a function of the radiation at the top of the Earth’s 

atmosphere (varying with user-specified latitude) attenuated by atmospheric 

transmission, cloud cover and reflection. Atmospheric longwave radiation, resulting from 

heating of the atmosphere by the sun’s shortwave radiation, varies with air temperature 

and the emission efficiency reflectance of the atmosphere. Water longwave radiation is 

calculated based on the emissivity of water and water temperature. Conduction and 
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convection are heat transfer among molecules and fluids, respectively, and are calculated 

based on the wind speed and air and water temperatures. Evaporation and condensation 

are calculated based on wind speed and the vapor pressure of the air. Model inputs 

required for the heat balance calculation include latitude, cloud cover, air temperature and 

dew point; water temperature is calculated by the model internally. Meteorological model 

inputs were obtained from the National Oceanic and Atmospheric Administration station 

at the Muskegon County Airport. Heat exchange between layers occurs through vertical 

diffusive mass transport, calculated here for the metalimnion as,  

      

where 𝑐𝑐1,2,3 are the heat content (cal) of the individual layers, 𝐸𝐸1,2
′  are the bulk turbulent 

diffusion coefficients at lower boundary of the two layers (m3 d-1) and V2 is the 

metalimnetic layer volume (m3). Values for E’ are determined by calibration to measured 

layer column temperatures. 

3.2.2.3 Oxygen Submodel 

 The oxygen mass balance includes the contribution from phytoplankton 

photosynthesis and losses to oxidation of organic carbon and ammonia nitrogen and 

respiration by phytoplankton and zooplankton. Oxygen is further consumed by the lake 

bottom through sediment oxygen demand. Oxygen may be gained or lost from the system 

depending on whether the epilimnion is oversaturated or undersaturated. In this 
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application of LAKE2K, we limit the source-sink components to reaeration and sediment 

oxygen demand (Figure 3-9). 

 

Figure 3-9 Oxygen mass balance. 

Here, atmospheric reaeration depends on wind speed (a model input) and temperature 

(calculated internally). Vertical turbulent diffusion is as determined by model calibration 

(see Temperature Model) and the rate of sediment oxygen demand is a user input also 

determined by calibration. 

3.2.2.4 Phosphorus Submodel 

 The primary focus of the modeling effort is total phosphorus. In LAKE2K, the TP 

analyte is not calculated, but rather determined as the sum of its components (soluble 

reactive phosphorus (SRP), dissolved organic phosphorus (DOP) particulate organic 

phosphorus (detritus; POP) and phytoplankton phosphorus (Phyto-P). Mass balances are 

performed for each of the TP components, accommodating their specific source-sink 

terms (Table 3-3 and Figure 3-10). Those for POP and DOP are relatively 

Sediment
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reaeration

sediment demand

turbulent diffusion
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straightforward; both involving external loads and dissolution-hydrolysis processes and 

POP having a settling sink. The SRP mass balance is more complex as it is linked to both 

the phytoplankton (losses to algal uptake) and oxygen (trigger for onset of release) 

models. There is also a sediment release source which may be either user-specified or 

calculated using a Sediment Diagenesis Submodel (user-specification is employed here). 

The Phyto-P mass balance is linked to the SRP submodel as well through algal P uptake, 

calculated as the increase in phytoplankton biomass times the user-specified phosphorus : 

chlorophyll ratio. Each of these processes utilizes one or more of the more than 118 

kinetic coefficients embodied in LAKE2K; most kinetic coefficients have, as well, the 

option to adjust rates for changes in temperature through a derivation based on the 

Arrhenius model,   

          

where k(T) = reaction rate (1/d) at Temperature T (°C) and θ = the temperature parameter 

for a given reaction. The phosphorus mass balances also contain the vertical mass 

transport and outflow terms common to all of the temperature and constituent mass 

balances. 
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Table 3-3 Source-sink terms in the phosphorus TP component mass balances. 

Process  POP  DOP SRP Phyto-P 

tributary load source source source - 

sediment release - - source - 

phytoplankton uptake - - sink source 

POP dissolution sink source - - 

DOP hydrolysis - sink source - 

settling sink - - sink 

 

Figure 3-10 Mass balance processes for the components making up the total phosphorus 
analyte. In this illustration, the particulate organic phosphorus and phytoplankton 

phosphorus components are grouped together. 
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3.2.2.5 Phytoplankton Submodel 

 Phytoplankton are modeled by performing a mass balance on algal carbon 

considering photosynthesis as a source and respiration, death and zooplankton grazing as 

sinks. Model output as chlorophyll is determined through a user-specified carbon to 

chlorophyll ratio. In this application of LAKE2K, respiration and death are treated as a 

summed term represented by the rate of respiration and the zooplankton sink (grazing) is 

not included. The rate of gross photosynthesis (µ, d-1) is calculated as the product of a 

user-specified maximum rate of gross photosynthesis (µmax, d-1), mediated through 

dimensionless limitation functions describing the impact of temperature, 𝑓𝑓(𝑇𝑇), 

phosphorus availability, f(P) and light, f(I) on the rate of photosynthesis. LAKE2K makes 

provision for treating three phytoplankton groups exhibiting different maximum specific 

rates of photosynthesis and respiration and differing responses to T, P and I. That feature 

is utilized in this work to accommodate the seasonal succession from small green algae to 

large green algae to cyanobacteria (Plankton Ecology Group Model applied to Mona 

Lake, Gillett et al. 2015). 

 The temperature dependence of photosynthesis, 𝑓𝑓(𝑇𝑇), is described by an 

asymmetrical bell-shaped curve (Figure 3-11a) where an optimum temperature (Topt) and 

coefficients describing the slope of the ascending (κ1) and descending (κ2) limbs of the 

response are user-specified, 

𝑓𝑓(𝑇𝑇) = 𝑒𝑒− 𝜅𝜅1∙�𝑇𝑇−𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜�
2
   for T < Topt        

𝑓𝑓(𝑇𝑇) = 𝑒𝑒− 𝜅𝜅2∙�𝑇𝑇−𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜�
2
   for T > Topt        
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The nutrient limitation function, 𝑓𝑓(𝑃𝑃), uses a Michaelis-Menten (Monod) approach 

(Figure 3-11b) based on the SRP concentration (mgSRP m-3), and a user-specified half-

saturation constant (mgSRP m-3), 

𝑓𝑓(𝑃𝑃) = 𝑆𝑆𝑆𝑆𝑆𝑆
𝐾𝐾𝑝𝑝+𝑆𝑆𝑆𝑆𝑆𝑆

          

Nitrate and silica limitation are not considered in this application. The light dependency 

of photosynthesis, 𝑓𝑓(𝐼𝐼) also uses a Michaelis-Menten (Monod) approach (Figure 3-11c) 

based on the mean daily photosynthetically-available radiation (PAR, langleys d-1), 

computed as a constant fraction of the solar radiation incident at the water surface, and a 

user-specified half saturation constant (KI, langleys d-1), 

𝑓𝑓(𝐼𝐼) = 𝑃𝑃𝑃𝑃𝑃𝑃
𝐾𝐾𝐼𝐼+𝑃𝑃𝑃𝑃𝑃𝑃

    

Epilimnetic mean daily PAR is determined using the Beer-Lambert Law and an 

internally-calculated vertical light attenuation coefficient. The interrelationship of the 

physical framework and the temperature, oxygen, phosphorus and chlorophyll submodels 

in simulating total phosphorus and its impact on phytoplankton abundance (as 

chlorophyll) is summarized in Figure 3-12.  
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Figure 3-11 Growth mediation functions (f) for (a) temperature with Topt = 5, 15 and 25 
°C and κ1 and κ2 equal to 0.01 and 0.05, respectively, (b) phosphorus for a value of Kp = 

2 mgSRP m-3 and (c) light for a value of KI
 = 20 langleys d-1. 
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Figure 3-12 Model framework as used in this application of LAKE2K. 

3.2.2.6 Solution Technique 

 The mass balances described above are written in the form of ordinary differential 

equations and solved using an Euler integrator. Model output is generated in both tabular 

and graphical form. 
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4 Results and Discussion 
Applying budget trophic state models (Vollenweider Loading Plot, Carlson TSI) to 

Mona Lake indicate that the current phosphorus loading, after notable reductions 

(wastewater diversion, ~75%), coupled with its hydrodynamic properties, should result in 

a mesotrophic body of water. Calculation of trophic state from both past and current 

nutrient concentrations describe the observable trophic state of Mona Lake, highly 

eutrophic. The observed trends and impacts offering explanation for the existing trophic 

state and their drivers are discussed below.    

4.1 Spatiotemporal Phenomenon 

The morphometry characteristic of drowned river mouth systems like Mona Lake 

creates hydrologic properties important to remember when performing spatiotemporal 

analyses. As previously identified (Evans 1992), Mona Lake has seasonally variable 

retention times, also observed during monitoring in 2017 and 2018 (Table 4-1). With its 

riverine morphometry, high spring discharge (Figure 4-1) drive a strong flushing effect 

while the lake is isothermal, rapidly transporting tributary contributions to the larger Lake 

Michigan system. Low summer discharge allow tributary constituents to remain (settle or 

assimilate) in the lake longer at a time when conditions support algal growth (higher solar 

radiation, warmer water) while thermal and oxygen regimes impact temporal, internal 

lake dynamics (anoxia).  
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Table 4-1 Varying retention times for 2017 and 2018, periods identified. *January 1st 
2018-November 1st 2018 as December 2018 USGS data not yet available. 

 Winter/Spring τ (days) 

January-June 

Summer τ (days) 

June-September 

 

Annual τ (days) 

 

2017 35  141 55 

2018 37 103 44* 

 
Figure 4-1 Summation of Mona Lake tributary discharge for 2017 and 2018, illustrating 

seasonal minimum discharge from May through August and maximum discharge 
occurring in spring and fall. 

 
 
 
 
 
 
 
 
 

0

5

10

15

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

D
is

ch
ar

ge
 (m

3 /s
)

Tributary Discharge 

2017 2018



34 

 

4.1.1 Stratification and Anoxia 

Stratification in both 2017 & 2018 was present by mid-June, with well-defined 

oxyclines and thermoclines present at sites with sufficient depth to develop a thermal 

gradient (Mid, Deep East/Deep West/West). This stratification and attendant reduction of 

vertical mass transport, coupled with sediment oxygen demand, create a hypolimnion 

devoid of oxygen (anoxia) by the June 21st and June 5th sampling dates in 2017 and 2018, 

respectively. Generally, in eutrophic dimictic lakes, the thickness of the anoxic layer 

increases with the strength and duration of stratification, as limited oxygen is transferred 

to bottom layers, and the sediment oxygen demand greatly exceeds the mass introduced 

through diffusive mixing. In Mona Lake, the volume of the anoxic hypolimnion mirrored 

the strength of stratification at all sites deeper than ~4 m (Figure 4-7), indicating the lack 

of diffusive transport from the epilimnion and/or metalimnion during more heavily 

stratified periods. Seasonal temperature maps (2018; Figures 4-2, 4-4, and 4-6) indicate 

expected spatiotemporal warming trends (spatially homogenous within layers) while 

providing illustration of stochastic events impacting water quality (anoxia and attendant 

impacts).  

During periods of anoxia, lake sediments release highly bioavailable phosphorus 

(SRP). Phosphorus, like oxygen, is subject to the impacts of water density (stratification) 

on mass transport between layers. Thus, this SRP accumulates in the hypolimnion while 

small shear forces (entrainment; Figure 4-8) at the metalimnetic and then epilimnetic 

boundaries transfer phosphorus to surface waters. Controlled by stochastic wind events, 
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entrainment events (wind, shear) increase mass transport, especially in lakes with a 

shallow mean depth (low resistance to mixing). The resulting increase in mixing forces 

and therefore mass transport of phosphorus to the epilimnion (photic zone) can occur 

under conditions optimal for algal growth (high solar radiation, warm temperatures). 

4.1.1.1 East Station 

In 2018, conditions at the shallowest sampling site (East, depth ~4 m), warmed 

with increasing solar radiation, remaining completely mixed with the exception of 

ephemeral decreases observable in August and September (Figure 4-2). A function of its 

minimal depth, this area of the lake remains oxic longest (Figure 4-3), with the exception 

of intermittent anoxic episodes in June, July, and August. These anomalies in an 

otherwise well-mixed basin (temperature) likely occur during meteorologically quiescent 

periods (low wind, diffusive transport), wherein the sediment oxygen demand is greater 

than the mass transport of oxygen from the surface. In mid-July and mid-September, 

large masses of oxygen present themselves in the epilimnion. Not coinciding with 

temperature changes (mixing and/or entrainment), these increases are mass 

photosynthetic production plumes. 
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Figure 4-2 East station thermal succession, 2018.  

 

Figure 4-3 East station dissolved oxygen succession, 2018, corrected for saturation. 
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4.1.1.2 Mid Station 

Thermal succession at the Mid station (depth ~6 m) in 2018 illustrates the 

seasonal behavior expected of a temperate dimictic lake. The completely mixed water 

column (April), warms with increases in solar radiation (Figure 4-4). The penetration of 

solar radiation cannot reach the lake bottom as in the East basin, and thus stratification 

develops. Rates of heat transfer by vertical turbulent diffusion (mixing across layers) 

decline as stratification strengthens, reducing the transfer of heat and supply of oxygen to 

the hypolimnion (anoxia). Periods of increased mass transport between the epilimnion 

and metalimnion via entrainment are observable in mid-July, August, and September. 

The same supersaturation events observed at the East Station (mid-July and mid-

September) are seen at the Mid station. 

 
Figure 4-4 Mid station thermal succession, 2018.  
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Figure 4-5 Mid station dissolved oxygen succession, 2018, corrected for saturation. 

4.1.1.3 Deep Stations 

Like the Mid station, the deeper stations (composite of Deep East, Deep West, 

West) transition from completely mixed waters at ice-out to a strongly stratified system 

(Figure 4-6), producing an anoxic zone comprising nearly half the water column by mid-

July (Figure 4-7). As observed in the East and Mid stations, oxygen supersaturation 

events (photosynthesis), not ascribable to wind driven mixing (temperature decrease), 

appear to have taken place in mid-July and mid-September. 
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Figure 4-6 Composite of Deep East, Deep West, and West station thermal succession, 
2018 

 

Figure 4-7 Composite of Deep East, Deep West, and West station dissolved oxygen 
succession, 2018, corrected for saturation. 
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Further understanding of stochastic water column thermal (mixing) dynamics was 

accomplished through examination of data from the temperature logger buoy string at 

East Deep (1 m below the surface, 1 m above lake bottom, midpoint, Figure 4-8). We can 

observe multiple layer specific and multi-layer entrainment-based mixing events, 

transferring heat to lower layers. An entrainment event on June 29th (1, Entrainment; 

explained Figure 4-9) indicates a large, near whole water column mixing event. 

Epilimnetic and metalimnetic temperatures reach equilibrium with each other, 

transferring enough heat to warm the hypolimnion ~3°C. A rapid strengthening of 

stratification on July 20th (2, Intrusion) like occurred as a result of high amounts of solar 

radiation and quiescent meteorological periods. During this event, surface temperatures 

warmed drastically while the increasing density gradient prohibited heat transfer to 

bottom layers, observable in the decreased temperatures in both the metalimnion and 

hypolimnion. However, the magnitude and rate of heat loss in the metalimnion and 

hypolimnion is likely too abrupt to have come from decreasing magnitudes of heat 

transfer from the epilimnion and is likely the result of an intrusion from Lake Michigan, 

discussed qualitatively later. Another intrusion event on August 4th (3, Entrainment) 

caused a sharp drop in surface temperatures, transferring large amounts of heat to the 

metalimnion. The hypolimnion remains largely unaffected, showing only a small and 

brief increase in temperature. This inability to fully entrain the hypolimnion is likely 

correlated to the lack of shear force (wind) magnitude and duration during this event. 

Bursts of shear stress (gusts) may be capable of causing entrainment in surface layers, 

while more sustained winds may be required for the shear forces to translate to and 

impact the hypolimnion. 
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Figure 4-8 Temperature loggers, placed 1 m below surface (Top), the mid-depth point of 
3.5 m below surface (Middle), and 1 m above bottom (Bottom) in 2017. Arrows and text 

indicate examples of observed physical mixing events attributed to entrainment and 
intrusions.  

 

Figure 4-9 Entrainment diagram, illustrating shear forces and phosphorus transport. 
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general trend is that of warming until declines leading up to fall turnover. The 

metalimnion fluctuates as a function of diffusive heat transfer (entrainment), warming 

under shear forces (wind) transferring heat from the epilimnion. The metalimnion can 

also undergo cooling during quiescent periods (lack of diffusion at its epilimnetic 

boundary) as small amounts of turbulent mixing at the hypolimnetic boundary persist and 

cooler water is diffused into the metalimnion. Hypolimnetic temperatures are expected to 

continuously warm until turnover approaches. 

The thermal mass of the system must be conserved, however, and a cooling of the 

hypolimnion prior to fall turnover is not ascribable to entrainment, as this could only 

transfer warmer water. As previously noted, simultaneous cooling of the metalimnion and 

hypolimnion was observed (Figure 4-9) at the East Deep continuous temperature 

monitoring buoy in 2017. The only hydrologic component capable of introducing cooler 

water to Mona Lake during the stratified period is Lake Michigan. While it was 

previously hypothesized that Lake Michigan may interact with Mona Lake under wind-

driven seiche events (ADCP deployment, 2017), its influence was not expected to be 

detected 2.4 km (East Deep Buoy) from the confluence with Lake Michigan. While the 

ADCP deployment offered qualitative insight in to the frequency and range of magnitude 

Lake Michigan’s hydrodynamic linking has, while its data were not able to be 

quantitatively integrated in this effort (would require robust nearshore Lake Michigan 

modeling/coupling). Channel temperature monitoring (Figures 4-10 and 4-11) revealed 

diurnal and stochastic fluctuations in water temperature present in the Mona Lake-Lake 

Michigan channel. While the channel is shallow (mean depth ~2 m), it was suspected that 
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cooler (more dense) water from Lake Michigan may sometimes remain on the bottom of 

the channel, seeping into Mona Lake, while the warmer Mona Lake water (less dense) 

discharge outward. Under larger seiche events, the whole channel water column may be 

comprised of cooler Lake Michigan water. This dense pulse from Lake Michigan, likely 

cooler than any existing water in Mona Lake, will create a ‘new’ hypolimnion, 

strengthening the stratification regime and subsequent resistance to mixing. In 2018, 

temperature was monitored at surface, middle, and bottom depths at the channels origin 

with Mona Lake. On eight occasions in 2018, a temperature gradient of over 6°C from 

channel surface to bottom was observed (Figure 4-11), coinciding with the observed 

stratified period in Mona Lake. From this, it is hypothesized that stochastic and 

ephemeral intrusions from Lake Michigan may introduce cooler (more dense) water to 

Mona Lake, strengthening the stratification attendant resistance to mixing.  

 
Figure 4-10 Temperature logger vertical post mean temperature data, placed in the 

confluence of Mona Lake and it’s channel to Lake Michigan, illustrating intrusion event 
frequency. 
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Figure 4-11 Temperature logger vertical post mean temperature data, placed in the 

confluence of Mona Lake and it’s channel to Lake Michigan. Three temperature loggers 
were placed at top, middle, and bottom in ~2 m of water. Data displayed indicates 

observed difference between top and bottom loggers. 

4.1.3 Chlorophyll and Cyanobacteria 
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hypolimnion, with entrainment forces responsible for diffusing it upwards to the 

epilimnion where biomass production can occur.  

The transport of phosphorus and subsequent growth in Mona Lake is observable 

in regression of mean lake surface TP against observed Chl-a concentrations (Figure 4-

12; Dillon and Rigler 1974), which peaked during a Microcystis bloom containing 360 

μg/L Microcystin-LR (Michigan Department of Environmental Quality Staff Report; 

Figure 4-13). following lake turnover. Microcystins are neuro and/or hepatic toxin 

produced by cyanobacteria. In 2015, the Michigan Department of Environmental Quality 

(MDEQ) revised their definition of a harmful algal bloom to align with the World Health 

Organization Guidelines (Chorus et. al. on behalf of WHO 1999) that algal blooms in 

recreational waters pose a human risk at levels exceeding 20 μg/L microcystin, which is 

1/18 the Mona Lake concentration on 9/16/18. Cyanobacteria capable of producing 

microcystins (i.e. Anabaena) are often capable of nitrogen fixation (Dolman et al. 2012), 

offering them a competitive advantage in a lake with low dissolved inorganic nitrogen 

(Xie et al. 2012). This allows them to persist in the seasonal algal succession through 

initial ice-free depletion of nutrients (nitrogen, phosphorus), often coinciding with 

entrainment-based upwellings of SRP in lakes with anoxic sediment release and allowing 

them to undergo rapid growth with minimal competition for nutrients. Microcystin 

concentrations have been correlated to total phosphorus in Mona Lake (Xie et al. 2012). 
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Figure 4-12 Total phosphorus and Chlorophyll-a relationship, 2018.  

 
Figure 4-13 Lake surface total phosphorus, Chlorophyll a, and Microcystin 

concentrations observed in 2018, illustrating correlation.  
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monitoring (2018) was the second highest phosphorus load since 2008 (Figure 4-14). No 

significant relationship between tributary discharge and phosphorus concentration was 

observed during the field monitoring (see 4.2.2), and thus an average concentration from 

2017 & 2018 was applied to each respective tributary for external load calculation. A 10-

year mean daily load analysis (Figure 4-15) was in agreement with previous hydrologic 

analysis (Evans 1992, Steinman et al. 2009) regarding Black Creek delivering over 70 

percent of the phosphorus load to Mona Lake. For the monitored years 2017 and 2018, 

Little Black Creek was found to represent 12 percent of the load, an increase from 

previously published loading analyses. This was attributed to an upstream source of SRP, 

detected in this field monitoring and discussed in detail below. A temporal loading plot 

(Figure 4-16) again illustrates the seasonal minimum external load delivered from May 

through August, while spring and fall high discharge are responsible for higher rates of 

external loading. 

 
Figure 4-14 External loading daily average for years 2008-2018. *USGS December 2018 

data unavailable.  

0

5

10

15

20

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018*

L
oa

d 
(k

g/
d)

10-Year Daily TP Load



48 

 
Figure 4-15 Total phosphorus load fractions for each tributary in the Mona Lake 

Watershed. ‘Other Tribs’ refers to small creek area as presented in the Mona Lake 
Watershed Atlas (Annis Water Resources Institute 2003). 

 

Figure 4-16 External loading (tributary summation) in 2018.  
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4.2.1 Little Black Creek 

Upon detection of elevated SRP concentrations (2017, relative to other tributaries 

in the watershed) in Little Black Creek, discrete spatial monitoring was conducted in an 

attempt to locate a source capable of delivering a concentration ~2x higher than nearby 

tributaries. Samples collected 3 km upstream from the Little Black Creek monitoring 

program sampling site contained 196 μgSRP/L and 277 μgSRP/L (Figure 4-17) while 

concentrations 500-800 meters further upstream contained 10-20 μgSRP/L (other 

watershed tributary mean: 16 μgSRP/L). Concentrations downstream from the peak 

detections point showed a plausible dilution effect over ~1 km. Sources of water quality 

impairment (storm sewers from metal finishing industries, metal plating Superfund site, 

spills from a wastewater pump station) in Little Black Creek (U.S. EPA section 303(d) 

listed) have been documented previously (Steinman et al. 2006), while elevated SRP 

levels were not among the detected impairments. The documented sources capable of 

producing this nutrient point-source contribution would seem to be the abandoned landfill 

without a leachate collection system, or various stormwater discharges (MDEQ 2000). 

However, the pollution detected in this effort is upstream of documented contamination 

sites and monitoring wells (Figure 4-17; map oriented North-South, discharge occurs 

east-west). Because of this, exact source attribution was not made in this research, but its 

spatial resolution provides justification for further spatiotemporal analysis of Little Black 

Creek phosphorus loading. The impacts of its contribution and/or potential reduction to 

loading and therefore trophic state of Mona Lake is discussed later in this document 

(Section 5). 
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Figure 4-17 Little Black Creek upstream SRP sampling results, with documented MDEQ 
contamination sites downstream. Map is oriented North-South, while tributary discharge 

occurs East-West.  
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4.2.2 Concentration and Discharge Relationships 

No significant relationships were seen in regression analysis of tributary discharge 

and concentration for either SRP or TP (Figures 4-18, 4-20, and 4-21). However, the 

observed high discharge two-year peak TP value for Black Creek (9.5 m3/s at 142 μg/L) 

is hypothesized that the precipitation event causing this decadal high discharge would 

have likely resulted in abnormal contributions of particulate phosphorus (sediment or 

algae bound). This is confirmed in regressing the particulate phosphorus pool for Black 

Creek (Figure 4-19), indicating the fraction of phosphorus bound to particles for the high 

discharge event to be 26 percent higher than the average observed during monitoring. 

2017 and 2018 observed mean phosphorus pools (Figure 4-22) indicate that Black Creek 

has the highest tributary particulate and dissolved organic phosphorus concentrations, 

while Little Black Creek contains the highest concentration of soluble reactive 

phosphorus. Analysis of celery flat TP loading to Black Creek (upstream and downstream 

of celery flats) indicate no significantly different increase in concentrations (Figure 4-23), 

remaining magnitudes lower than TP values for the celery flats (Steinman and Ogdahl 

2011).  
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Figure 4-18 Black Creek TP/SRP versus discharge plot for 20 total sampling events in 
2017 and 2018. 

 

Figure 4-19 Black Creek PP versus discharge plot for 20 total sampling events in 2017 
and 2018, explaining the observed TP increase as a PP increase at the outlier (large 

storm) discharge data point.  

R² = 0.3255

R² = 0.0012

0

25

50

75

100

125

150

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

C
on

ce
nt

ra
tio

n 
(m

gP
/m

3 )

Discharge (m3/s)

C/Q Plot - Black Creek 

TP

SRP

R² = 0.2568

0

25

50

75

100

125

150

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

C
on

ce
nt

ra
tio

n 
(m

g/
m

3 )

Discharge (m3/s)

Particulate Phosphorus C/Q Plot - Black Creek 



53 

 

Figure 4-20 Little Black Creek TP/SRP versus discharge plot for 20 total sampling events 
in 2017 and 2018. 

 

Figure 4-21 Cress Creek TP/SRP versus discharge plot for 20 total sampling events in 
2017 and 2018. 
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Figure 4-22 Mean SRP, POP, and DOP pools, with standard deviation, for 20 total 
sampling events in 2017 and 2018.  

 

Figure 4-23 Observed differences in mean TP concentrations in Black Creek, upstream 
and downstream of the celery flats control structures. Celery flat TP concentrations 

(Steinman 2009) presented for comparison.  
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4.3 Screening Models 

Synthesis of initial conclusions from the above results begins with application of 

updating screening models previously applied in water quality assessment (Vollenweider 

and Chapra loading models, Trophic State Index). Contemporary conditions (2017 and 

2018) place the expected trophic state of Mona Lake between mesotrophy and eutrophy 

per the Vollenweider and Chapra plots (Figure 4-24). The same trophic state was 

predicted in applying the same models to data from 1981, the first post-wastewater 

diversion study (Limnotech 1982), suggesting little change in nearly four decades. 

Application of 10 year mean tributary loading (2008-2018; averaged), indicates 2017 and 

2018 monitoring years to be representative of the decadal status and agree with the 

Vollenweider and Chapra model-based consensus that external loads to Mona Lake 

should result in near mesotrophy (Figure 4-25).  

The trophic state observed in years 2017 and 2018 is classifiably eutrophic, as 

verified by TSI/TP concentration analysis (Figures 4-26 and 4-27), also observed by 

MDEQ (staff report on Algal Toxin Monitoring in Michigan Inland Lakes 2017). While a 

decrease in mean lake TP (during monitoring) was observed in 2018, it is believed to 

have been influenced by a series of large precipitation events in September, significantly 

flushing the lake of its seasonally accumulated phosphorus and reducing the observed 

seasonal mean TP concentration. Furthermore, it remains 5x above the eutrophic 

threshold. As was identified to be a main objective, the discrepancy between trophic state 

prediction models seen in both historical and contemporary assessments directs modeling 

and management actions toward the manifestations of legacy deposits (internal loading).  



56 

 

 
Figure 4-24 Vollenweider and Chapra plots for historical 1972, 2017 and 2018 trophic 

state predictions.  

0.01

0.1

1

10

100

0.1 1 10 100 1000

L
oa

di
ng

 (g
P/

m
2 /y

r)

H/τ (m/yr, Vollenweider) and qs+v (m/yr, Chapra)
Vollenweider 1972 Vollenweider 2017 Vollenweider 2018
Chapra 1972 Chapra 2017 Chapra 2018

Hypereutrophic

Eutrophic
Mesotrophic
Oligotrophic



57 

 
Figure 4-25 Vollenweider and Chapra plots from 10 year average loading estimates. 

 
Figure 4-26 Trophic state index calculation for historical data, 1972 (Freedman et al 
1979), 1981 (Limnotech 1982), and monitoring years observations (2017 and 2018). 
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Figure 4-27 Total phosphorus historical data, 1972 (Freedman et al 1979), 1981 
(Limnotech 1982), and monitoring years observations (2017 and 2018).  
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attributable to settling during a meteorologically quiescent period. Comparing mean 

tributary TP to mean hypolimnetic TP gives further proof of a potent source of internally 

loaded phosphorus (Figure 4-29), entrained to surface waters by stochastic mixing events. 

Observations of mean hypolimnetic SRP (Figure 4-30) provide proof of a clear internal 

source of phosphorus (sediment released). Entrainment forces (mixing) migrate this 

completely bioavailable form of phosphorus (SRP) to surface waters, wherein it is 

quickly consumed and observed analytically as total phosphorus (majority particulate 

phosphorus, Figure 4-31). A temporal analysis of percent TP as SRP for 2018, aligned 

temporally with the dissolved oxygen map (Figure 4-32), offers tertiary proof of sediment 

released SRP under anoxic conditions.  

 

Figure 4-28 Mean tributary TP (2017/2018) and mean epilimnetic TP (2017 and 2018), 
illustrating lake surface water concentrations higher than discharge concentrations, 

pointing to internal loading sources. Solid line indicates tributary mean while shaded area 
illustrates tributary TP range (mean plus and minus the standard deviation). 
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Figure 4-29 Mean tributary TP (2017/2018) and mean hypolimnetic TP (2017 and 2018), 

illustrating lake bottom water concentrations higher than discharge concentrations, 
pointing to the source of internal loading. Solid line indicates tributary mean while 

shaded area illustrates tributary TP range (mean plus and minus the standard deviation). 

 
Figure 4-30 Mean tributary SRP (2017/2018) and mean hypolimnetic SRP (2017 and 

2018), illustrating lake bottom water concentrations higher than discharge concentrations, 
pointing to the source of internal loading. Solid line indicates tributary mean while 

shaded area illustrates tributary SRP range (mean plus and minus the standard deviation). 
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Figure 4-31 Mean tributary particulate phosphorus (2017/2018) and mean epilimnetic 
particulate phosphorus (2017 and 2018), illustrating lake bottom water concentrations 
higher than discharge concentrations, attributing the internal source to increases in PP. 

 

Figure 4-32 Percent TP as SRP for 2018, aligned temporally with the deep sites (East 
Deep, West Deep, West) dissolved oxygen succession map. 
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4.4 Biokinetic Model 

Screening models, such as those developed by Vollenweider (1975) and Chapra 

and Tarapchak (1976), have found favor in supporting water quality assessment for over 

40 years. These are simple frameworks, with input requirements well within reach of 

most stakeholders. Additionally, they may be used together with empirical models to 

quantify other manifestations of eutrophication (e.g., Chlorophyll, Secchi disk 

transparency, hypolimnetic oxygen demand; Chapra 1997). Yet, screening models are 

applied with the knowledge that they do not take into account all of the source/sink 

processes important to some systems; in the case of Mona Lake, for example, sediment 

phosphorus release. Application in support of engineering design and management, 

where the economic impact of decision-making comes into play, suggests that a more 

sophisticated platform would be appropriate. Chapra (1997) has described the trade-offs 

between model complexities, model reliability and funds available for model 

development and application (Figure 4-32). In essence, those relationships show that 

model reliability increases with complexity to a point and then declines as the framework 

moves past the modeler’s capacity to parameterize processes. Additional funds may allow 

accommodation of additional complexity, thus achieving the required reliability. It is part 

of the modeling craft to incorporate a degree of complexity consistent with both the 

required reliability and the funds available. The utilization of a biokinetic framework here 

is in the spirit of that objective. 

 One of the objectives in applying the biokinetic model, here LAKE2K, is to test 

model performance by comparing model output with field observations. In this process, 
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termed calibration, model parameters are adjusted over a reasonable range to yield a 

solution that yields a best fit to observations. A ‘best fit’ may be defined subjectively as 

the model’s ability to visually track the magnitude and spatial or temporal pattern of a 

constituent. Alternatively, a quantitative approach may be selected where the modeler 

seeks to minimize residuals between output and observations (e.g. root mean square 

error). The subjective approach is chosen here, as the ability to predict the magnitude of 

concentrations and seasonal/spatial patterns are of primary importance to the 

management of Mona Lake. While this goal may be achieved through an objective 

approach, such an outcome is not guaranteed.  

The LAKE2K platform as applied here (Figure 3-12) includes a physical 

framework and four submodels: Temperature, Oxygen, Phosphorus and Phytoplankton 

(Chlorophyll). The development of the physical framework, model inputs (e.g. 

meteorological conditions, hydrologic and constituent loads) and initial conditions have 

been described previously. Kinetic coefficients relating to the four submodels, as 

specified through the calibration process, are presented in Table 4-2. Output generated by 

each submodel forms the basis of the performance evaluation and, subsequently, model 

runs in management applications.  
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Figure 4-33 The trade-off between model complexity, model reliability and funding for 
model development and application. Adapted from Chapra (1997). 
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Table 4-2 Biokinetic coefficients utilized in this application of LAKE2K. Bold face 
indicates coefficients adjusted in model calibration. Phytoplankton groups are small green 

algae (SG), large green algae (LG) and cyanobacteria (Cy). 

 

Parameter Units Value
Stoichiometry:
Dry weight gD 100
Carbon gC 40
Nitrogen gN 7.2
Phosphorus gP 1
Chlorophyll gA 1
Water Column Particulate organic phosphorus:
Dissolution rate d-1 0.05
Temperature parameter for organic P dissolution d'less 1.07
Settling velocity m d-1 1
Water Column Dissolved organic phosphorus:
Hydrolysis rate d-1 0.015
Temperature parameter for organic P hydrolysis d'less 1.07
Sediment Flux:
Diagenesis model No
SOD g m-2 d-1 1.1
SOD temperature correction d'less 1.08
Oxygen attenuation of SOD L mgO2

-1 0.5
SRPFlux mgP m-2 d-1 20
SRP release temperature correction d'less 1.1
Oxygen trigger of SRP release L mgO2

-1 0.15

Phytoplankton:
Type SG LG Cy
Maximum growth rate d-1 2.5 1 2
Temperature model for growth
Theta or Topt °C 10 18 20
Kappa1 d'less 0.02 0.0075 0.055
Kappa2 d'less 0.8 0.035 0.05
Respiration rate d-1 0.02 0.02 0.02
Temperature parameter for respiration d'less 1.07 1.07 1.07
Fraction organic for respiration d'less 0.5 0.5 0.5
Death rate d-1 0 0 0
Temperature parameter for death d'less 1.08 1.08 1.08
Nitrogen half saturation µgN L-1 65 65 65
Phosphorus half saturation µgP L-1 1 1 1
Silica half saturation µgSi L-1 50 50 50
Light model
Light parameter langleys/d 70 70 70
Settling velocity @ 20oC m d-1 0.1 0.1 0
Cell density g/cm3 1.027 1.027 1.027
Ammonia preference parameter µgN L-1 25 25 25
Grazability d'less 0 0 0
Silica content gSi 0 0 0

Half saturation

Optimal
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4.4.1 Temperature Submodel 

 The model was calibrated to 2018 monitoring data, as field efforts in 2018 began 

in March as opposed to mid-June in 2017 and provided a more complete calibration 

dataset. Meteorological data (air temperature, dew-point temperature, wind speed, cloud 

cover, and atmospheric turbulence) are input as required for the heat balance calculation. 

Continuous tributary temperature is also user input in support of the thermal load 

calculation while lake layer (3-layer) initial condition temperatures are derived from early 

season field data. Tributary heat and meteorological (solar radiation) inputs are received 

by the user-defined epilimnion, with heat transfer to other layers controlled by vertical 

turbulent mixing coefficients for the epilimnion-metalimnion and metalimnion-

hypolimnion boundaries, respectively. The frequency and magnitude of the mixing 

coefficients is user-input and adjusted to achieve a best fit to the modeled heat balance 

(lake layer temperature). The excellent model-data fit noted here (Figure 4-35) is 

generally expected of physical submodels, with more variability expected with the 

introduction of chemical and biological state variables. However, the satisfactory fit of 

the heat budget confirms that the vertical mass transport, crucial in simulating more 

complex state variables (phosphorus, dissolved oxygen), is very well characterized by the 

model. 
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Figure 4-34 Comparison of measured (symbols) and modeled (lines) layer-average water 
temperature for 2018. The epilimnion is represented by open symbols and a solid black 

line, the metalimnion by gray symbols and a gray line and hypolimnion by black symbols 
and a dashed black line. 

4.4.2 Oxygen Submodel 

Tributary discharge (oxygen loading, assuming saturation) and meteorological 

data inputs (wind speed; reaeration calculation) are also utilized in the Oxygen Submodel 

(Figure 4-35). The Oxygen Submodel mass balance includes tributary loads to the 

epilimnion, reaeration of the epilimnion, sediment oxygen demand in the hypolimnion, 

and vertical mass transport between the adjoining layers. Vertical mass transport 

coefficients are called on from the Temperature Submodel. A measured dissolved oxygen 

concentration is specified as an initial condition for each of the three layers and layer 

specific concentrations are calculated as a function of time. The combination of these 
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Oxygen Submodel is to provide a quantification of the trigger for the onset of sediment 

phosphorus release in the Phosphorus Submodel.  

As thermal stratification strengthens, vertical mass transport is reduced and 

hypoxia and anoxia are observed in the metalimnion and hypolimnion (Figure 4-35). 

Model output for epilimnetic oxygen tracks the seasonal temperature trend impacting 

saturation well, but under-predicts observations. This occurs because measurements are 

made near mid-day (capturing photosynthetically-driven oversaturation), while the model 

generates daily average output. Model output for the hypolimnion tracks the depletion 

rate and onset of anoxia satisfactorily, indicating that vertical mass transport coefficients 

(Temperature Submodel) and the user-specified rate of sediment oxygen demand serve 

well in describing bottom water oxygen dynamics. Lastly, model output also tracks 

oxygen in the metalimnion well, a location where concentration is mediated by vertical 

mass transport and conditions in the epilimnion and hypolimnion. This result offers 

further support for the value of the vertical mass transport coefficients determined in the 

Temperature Submodel. 
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Figure 4-35 Comparison of measured (symbols) and modeled (lines) layer-average 

dissolved oxygen concentration for 2018. The epilimnion is represented by open symbols 
and a solid black line, the metalimnion by gray symbols and a gray line and the 

hypolimnion by black symbols and a dashed black line. 

4.4.3 Phosphorus Submodel 

The Phosphorus Submodel begins with a mass balance on soluble reactive 

phosphorus, accommodating inputs from tributary loads, conversion of dissolved organic 

phosphorus and sediment release, as well as sinks including phytoplankton uptake and 

lake flushing. SRP is distributed across layers through the vertical mass transport defined 

in previous submodels. The SRP component of the Phosphorus Submodel plays a critical 

role in mediating trophic state conditions, as it is expected to be a reflection of the 

sediment release phenomenon, a driving force for the Phytoplankton (Chlorophyll) 

Submodel. The SRP mass balance tracks the (low) epilimnetic and (high) hypolimnetic 

concentrations well (Figure 4-36). Characteristics of the simulation include low 

concentrations in the epilimnion due to phytoplankton uptake and high concentrations in 

the hypolimnion due to sediment release, with an expanded scale (Figure 4-37) better 

representing conditions in the epilimnion.  
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Dissolved organic phosphorus is the second of three components of the 

Phosphorus Submodel, with a mass balance accommodating inputs from tributary loads 

and conversion of particulate organic phosphorus. DOP sinks include hydrolysis to 

soluble reactive phosphorus and lake flushing while vertical mass transport distributes 

DOP across layers. The primary significance of dissolved organic phosphorus is as part 

of the recycle of phosphorus taken up by phytoplankton and returned to the SRP 

component through dissolution of particulate and dissolved organic phosphorus. The 

modeled mass balance tracks DOP concentrations well in both magnitude and stability 

(Figure 4-38).  

The particulate phosphorus mass balance accommodates inputs from tributary 

loads and accounts for uptake of soluble reactive phosphorus by phytoplankton. As a 

particle bound form of phosphorus, it settles, in addition to hydrolysis and flushing. Its 

distribution across layers is a function of vertical mass transport forces. The primary 

significance of particulate phosphorus is in its tributary load contribution, as well as its 

role as a reservoir/storage (through phytoplankton) for SRP transported from the 

hypolimnion. Recycle of PP contributes back to the SRP pool through dissolution and 

hydrolysis of DOP. The PP mass balance (Figure 4-39) tracks concentrations well over 

the season, both in magnitude and temporal structure, responding to tributary loads and 

spring phytoplankton growth in the early part of the season and increases in 

phytoplankton abundance in the late summer.  

 The mass balances for SRP, PP, and DOP are summed to yield the TP mass 

balance. TP is the primary state variable for evaluating trophic state response to 
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management actions, integrating tributary loads, sediment phosphorus release and in-lake 

processes. Thus the Phosphorus Submodel plays a critical role in engineering design. As 

with soluble reactive phosphorus, total phosphorus results emphasize the discrepancy 

between (low) epilimnetic and (high) hypolimnetic concentrations (Figure 4-40); with an 

expanded scale presentation (Figure 4-41) for the epilimnion better illustrating the 

goodness of fit. 

 

Figure 4-36 Comparison of measured (symbols) and modeled (lines) layer-average 
soluble reactive phosphorus for 2018. The epilimnion is represented by open symbols and 

a solid black line and the hypolimnion by black symbols and a dashed black line. 
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Figure 4-37 Comparison of measured (symbols) and modeled (line) epilimnetic, layer-
average soluble reactive phosphorus for 2018. This figure provides a scale expansion 

from the figure illustrating both epilimnetic and hypolimnetic concentrations. 

 

Figure 4-38 Comparison of measured (symbols) and modeled (line) epilimnetic, layer-
average dissolved organic phosphorus for 2018.  
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Figure 4-39 Comparison of measured (symbols) and modeled (line) layer-average, 
epilimnetic particulate phosphorus for 2018.  

 

Figure 4-40 Comparison of measured (symbols) and modeled (lines) layer-average total 
phosphorus for 2018. The epilimnion is represented by open symbols and a solid black 

line and the hypolimnion by black symbols and a dashed black line. 
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Figure 4-41 Comparison of measured (symbols) and modeled (line) epilimnetic, layer-
average total phosphorus for 2018. This figure provides a scale expansion from the figure 

illustrating both epilimnetic and hypolimnetic concentrations. 

4.4.4 Phytoplankton (Chlorophyll) Submodel 
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reflecting the effects of light, temperature, and soluble reactive phosphorus concentration. 

The light effect is influenced by the flux of solar radiation (Temperature Submodel) and 

an internally-calculated vertical extinction coefficient. The effects of temperature are 

simulated through a temperature optimum and internally calculated (Temperature 

Submodel) layer temperatures. Soluble reactive phosphorus levels, calculated in the 

Phosphorus Submodel, are included through a Michaelis-Menten function. The 

Phytoplankton (Chlorophyll) Submodel serves well in tracking the planktonic algal 

community (Figure 4-43), both as phytoplankton biomass and in the seasonal pattern: a 

spring bloom followed by a clearing phase, a stable midsummer period and, finally, a late 

summer-early fall bloom (cyanobacteria). 

 

Figure 4-42 Model-predicted contributions to epilimnetic chlorophyll by each of three 
phytoplankton groups over the 2018 field season 
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Figure 4-43 Comparison of measured (symbols) and modeled (lines) epilimnetic 
chlorophyll for 2018. Measurements are represented by symbols and model output by a 

line. 

4.5 Management Scenario Modeling 
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impacts under hypothetical phosphorus load reduction strategies able to aid and direct 

management resources.  

4.5.1 Internal Loading Reduction 

In the absence of anoxia induced sediment phosphorus release, model predictions 
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can conclude that in the absence of internal loading, under existing external loading 

scenarios, Mona Lake would reach mesotrophy by mid-June. Chlorophyll-a 

concentrations (Figure 4-45) are predicted to enter eutrophic levels during April green 

algae abundance, declining as temperatures increase and growth optima change between 

phytoplankton groups, recovering to near eutrophic levels in May. While these are both 

significant improvements, interannual variance in discharge (external loading) could shift 

the temporal occurrence of the below-threshold dates, aligning it with seasonal algal 

succession capable of cyanobacteria proliferation. 

 

Figure 4-44 Model predicted total phosphorus concentrations if sediment released 
phosphorus were managed (zero). Black line indicates baseline (calibrated model) while 

grey line indicates prediction of baseline model sans sediment release. Eutrophic 
threshold indicated by at 20 μg/L.  
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Figure 4-45 Model predicted Chlorophyll-a concentrations if sediment released 
phosphorus were managed (zero). Black line indicates baseline (calibrated model) while 

grey line indicates prediction of baseline model sans sediment release. Eutrophic 
threshold indicated at 10 μg/L.  

4.5.2 External Loading Reduction 

With the above management simulation illustrating the governance of seasonal 

loading (high spring load), external load reduction scenarios of 10, 25, 50, and 75 percent 
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dominates trophic state dynamics by July. Lastly, external loading reductions of 50 and 

75 percent, while not impossible, would be very difficult in the Mona Lake watershed.  

 

Figure 4-46 Total phosphorus predictions resulting from external load reductions of 10, 
25, 50, and 75 percent. Baseline shown in black and eutrophic threshold indicated at 20 

μg/L. 
 

 

Figure 4-47 Chlorophyll-a predictions resulting from external load reductions of 10, 25, 
50, and 75 percent. Baseline shown in black and eutrophic threshold indicated at 10 μg/L. 
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4.5.3 Combined Reduction 

Previously tested management scenarios, addressing external and internal loading 

independently, showed promising improvements in predicted water quality. However, 

neither predicted an entirely satisfactory improvement in trophic state (eutrophic to 

mesotrophic) for the whole ice-free period. As a result, a plausible external loading 

reduction of 25 percent was paired with hypothetical internal loading treatment (no 

sediment release), with model predictions confirming this to be a satisfactory 

management strategy (Figures 4-48 and 4-49). The absence of sediment phosphorus 

loading, combined with an external loading reduction of 25 percent predicts mesotrophy 

from May onward. The lake is able to remain in mesotrophy (characterized by TP and 

Chlorophyll-a concentrations) as a result of no internally loaded and stochastically 

entrained phosphorus reaching the epilimnion. Furthermore, the epilimnetic 

concentrations for the “Existing IC” result from a model prediction using existing 

(baseline) lake TP concentrations as the initial condition and not those that would result 

from the reduction. Extending the baseline model runtime and applying resulting 

concentrations from the respective reduction percentage as a new initial condition further 

improves the trophic state of Mona Lake, as seen in the “New IC” simulations. Under the 

revised initial condition, a mean lake total phosphorus concentration of 17 μg/L is 

predicted (mesotrophic), reflected in mean Chlorophyll-a concentrations of 5 μg/L (1 

μg/L above mesotrophy).  
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Figure 4-48 Total phosphorus predictions resulting from an external load reduction of 25 
percent paired with internal loading control (no sediment release). Baseline shown by 
solid line and eutrophic threshold indicated at 20 μg/L. 

 

Figure 4-49 Chlorophyll-a predictions resulting from an external load reduction of 25 
percent paired with internal loading control (no sediment release). Baseline shown by 

solid line and eutrophic threshold indicated at 10 μg/L. 
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5 Summary and Recommendations for Future Work 
As Dr. Steve Chapra has noted, “Lakes function as watershed settling basins in 

which man’s past and present impacts are recorded.” Project objectives and 

accomplishments are detailed below, followed by recommendations for future work. 

5.1 Summary 

Decades of nuisance algal growth in the Mona Lake watershed are the result of 

cultural eutrophication (urbanization, agriculture). Historical external loading (tributaries 

prior to wastewater diversion) delivered high loads of phosphorus, stimulating high 

amounts of seasonal biomass production. Resulting decomposition (death and settling) 

has created a high sediment-oxygen demand. Combined with spatiotemporal 

phenomenon creating and contributing stochastically to its stratification and subsequent 

anoxia, particle bound phosphorus in the sediments begins its release and transport to the 

surface. Entrained to the photic zone, this internally loaded phosphorus arrives just 

following assimilation of high spring nutrient loads that stimulate initial algal growth. As 

external loading decreases with minimal summer discharge, internal loading manifests 

just as blue-green algae flourish, lacking competition for nutrients. Previous reduction 

efforts in external loading have offered improvement (wastewater diversion, celery flat 

discharge restriction), while decades of their historical prevalence continue to dictate the 

trophic state of Mona Lake in the form sediment phosphorus release (SRP).  



83 

5.1.1 Black Creek 

Prior to discharge restriction, the celery flats were shown to contribute 1.6x and 

2.6x downstream SRP and TP increases, respectively (Steinman & Ogdahl 2011). In this 

effort, the first study after the installation of discharge restrictors (2015), a non-

significant difference (p<0.10) was found between upstream and downstream 

concentrations. From this, initial conclusions on the efficacy of celery flat discharge 

restriction (contribution to Black Creek) are positive, but suggest the need for further 

monitoring.  

5.1.2 Little Black Creek 

While only 9 percent of the hydrologic contribution to Mona Lake, Little Black 

Creek is responsible for 12 and 18 percent of the TP and SRP load, respectively. With 

management solutions likely still requiring external loading reduction, the upstream 

potential point-source detection, shown here to be spatially separate from prior 

contamination, offers a potential reduction in loading of 4 and 12 percent for TP and 

SRP, respectively. This load reduction was calculated by paired differences (10 sampling 

events in 2018) in concentrations between the original downstream sampling site and a 

site upstream of the source detection area. 

5.1.3 Internal Loading 

Sediment released phosphorus has been shown to account for ~68 percent of the 

mass total phosphorus to Mona Lake (Steinman et al. 2009). The impacts (both in the 

presence and absence of) this internal source of phosphorus have been quantified in the 
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modeling effort, offering both a management tool for an internal loading treatment 

method feasibility study, and further conclusive evidence that sediment released 

phosphorus dominates the trophic state dynamics at a time when the lake is most 

vulnerable (blue-greens). 

5.2 Recommendations 

Multiple stochastic and ephemeral forces (meteorological) impact the dynamics of 

Mona Lake. Its erratic behavior applies greatly to its geochemical characteristics 

(external loading, variable retention time). Thus, a management approach aimed at 

improving its trophic state must be multifaceted, taking care to acknowledge the presence 

of idiosyncratic watershed components and events with consideration given to how they 

may impact management methods. 

5.2.1 Tributary Monitoring 

As noted above, there exists initial evidence for celery flat discharge control 

structure success. However, without continuous monitoring, final conclusions should not 

be drawn on the percent efficacy. Prior to discharge control structure installation, 

downstream-upstream differences in SRP were significantly correlated to antecedent 

precipitation, yet upstream-downstream load differences in SRP and TP were not 

significantly correlated (Steinman and Ogdahl 2011). This forms the basis for the 

recommendation that an updated, hydrologically robust, monitoring of the celery flats be 

a component of external load reduction efforts. For example, continuous discharge 

monitoring paired with discharge-triggered autosampling would offer true loading 
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contribution analysis.  Lastly, representing 77 percent of the hydrologic contribution, the 

Black Creek watershed is the most obvious candidate for further external loading 

reductions (best management practices) to couple with internal loading 

treatment/remediation.  

5.2.2 Intrusion Monitoring 

Detection of intrusions from Lake Michigan (physically and chemically) propose 

an area of thought crucial in considering when evaluating sediment release treatment and 

respective effectiveness. While hypothesized to strengthen stratification, intrusions could 

also impact the residence time of chemical treatment and/or inactivation technologies by 

diluting a treatment dosage, or rendering it insufficient. It is recommended the potential 

for these stochastic phenomenological be considered during internal loading treatment 

technology feasibly studies.  

5.2.3 Sediment Release Study 

In the management modeling presented above, it was shown that while external 

loading reductions (some unrealistic) would drastically improve the mean trophic state of 

Mona Lake, sediment release control (the absence of internal loading) would continue to 

govern late season growth dynamics. From this, a pairing of management actions, both 

external and internal, are recommended. Optimal best management practices for the 

watershed would require further analysis of land use not accomplished in this study, but 

should be conducted.  
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Various internal lake management techniques will have ranging efficacies, due to 

the stochastic mixing properties of Mona Lake. It is recommended that internal loading 

treatment technologies be evaluated based on their ability to treat and interact with the 

governing, dynamic components: anoxia and attendant phosphorus release, intrusion 

frequency and associated repercussions, and resiliency/usefulness of seasonal high-

discharge flushing events. Lastly, treatment technology costing should consider the 

unique bathymetry of Mona Lake in that only an estimated 42 percent of its area is 

capable of stratification and attendant anoxia leading to phosphorus release – meaning 

only a relatively small area of the western half of the lake may require the decided upon 

treatment method.  

Phosphorus release inactivation may be accomplished through chemical flocculation, 

oxidation, and/or binding methods: 

o Aluminum salts (alum; Cooke et al. 2005), forms an aluminum hydroxide 

barrier that persists even in the presence of continued anoxia, although 

nearby Spring Lake has shown diminishing inactivation with this method 

in an 11 year post-treatment study (Annis Water Resources Institute 

Report 2017). 

o Phoslock, a lanthanum modified bentonite clay, bonds with phosphorus 

released during anoxia (SRP) and has been shown to maintain its binding 

capacity longer than alum (Robb et al. 2003). 
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o Sediment oxidation (Riplox) enhances denitrification, retaining the 

phosphorus binding capabilities of iron in the sediments (Cooke et al. 

2005). 

Physical manipulation leading to phosphorus release inactivation may be accomplished 

through aeration or mixing: 

o Hypolimnetic aeration, effective at increasing dissolved oxygen in the 

hypolimnion without causing destratification accomplished through 

submersion of a lift device, bringing hypolimnetic water to the surface, 

exchanging it with gases (oxygen), and returning it to the hypolimnion. 

o Artificial circulation, preventing stratification, improves water column 

dissolved oxygen (prevents anoxia). Furthermore, this technique can alter 

the seasonal succession of algae, neutralizing seasonal nutrient dynamics 

favoring blue-greens later in the year by continuously providing for more 

desirable green algae (Cooke et al. 2005).   

o Hypolimnetic withdrawal, accomplished through siphoning or pumping of 

hypolimnetic water to areas of low-nutrient concentration have been 

shown to accelerate phosphorus export (flushing) while reducing the 

entrained phosphorus capabilities (Cooke et al. 2005). This may be a 

unique method to consider regarding withdrawal to the Mona Lake 

channel. 
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5.3 Conclusion 

The above summary of observations and subsequent production of a model 

capable of simulating management strategies, offers a contemporary, system-wide 

understanding of spatiotemporal trophic state dynamics. While the impact of legacy 

deposits is felt heavily in Mona Lake – it is not anomalous in that regard – and the work 

presented here, combined with recommendations for future work, ensure the capability to 

improve its water quality for current and future stakeholders.  

“Let us put our minds together and see what kind of life we can make for our children.” 

         Sitting Bull 
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	I could not have accomplished and grown so much in this period of my life without the support of many friends and family members – and especially my dog, Frank, who always reminds me when it is time to go to the woods and remember why we do this in th...
	“You become. It takes a long time. That’s why it doesn’t happen often to people who break easily, or have sharp edges, or who have to be carefully kept. Generally, by the time you are Real, most of your hair has been loved off, and your eyes drop out ...
	The Velveteen Rabbit
	Abstract

	Mona Lake, MI (a drowned river mouth system) has become eutrophic as result of cultural eutrophication. The integrated monitoring effort and subsequent modeling (LAKE2K) reported on here has shifted the management focus to internal phosphorus loads (6...

	1 Introduction
	Eutrophication of inland waters in the Great Lakes basin has steadily increased as urbanization and growing agricultural intensity deliver phosphorus loads exceeding the assimilation capacity of the watersheds and their receiving water bodies (Smith e...
	Implementations of plans and methods addressing causes of eutrophic conditions can be seen throughout the Great Lakes basin. For example, in the Madison Lakes (WI), wastewater diversion in 1958 reduced the algae composition from 99 percent Microcystis...
	Addressing symptoms of eutrophication often requires an engineering approach. For example, implementation of artificial mixing devices (physical mixing and/or aeration) is known to suppress the release of phosphorus from lake bottom sediments (Cook et...
	Chemical treatment of lakes to suppress phosphorus-based eutrophication is another common management practice. This method and associated chemicals (i.e. aluminum sulfate, poly-aluminum chloride, lanthanum-modified bentonite clay) function on the same...
	To understand the impact of these deposits, we must study the phosphorus cycle and its respective role as the limiting nutrient in a given watershed or lake as it relates to biogeochemical processes. While external loading has historically been the do...
	Drowned river mouth lakes, such as those common along the eastern shore of Lake Michigan, are hydrodynamically linked to the larger Great Lakes system, potentially exposing them to intrusions under certain meteorological conditions. Carved by glaciers...
	1.1 Study Site Description
	Mona Lake, a drowned river mouth system discharging to Lake Michigan, is oriented largely east-west, aligning it with prevailing westerly winds (Figure 1-1). The lake has a length of 6.5 km and an average width of 0.5 km with mean and maximum depths o...
	Figure 1-1 Mona Lake watershed location and orientation with respect to the wastewater treatment plant and major tributaries. Gray shaded area indicates municipal boundaries within watershed (Annis Water Resources Institute 2003).
	The Mona Lake watershed has an area of 2 km2 and is predominantly agricultural in its eastern portion, forested in mid-watershed and residential/commercial to the west (Figure 1-2). Mona Lake, comprising less than 2 percent of the total watershed area...
	Figure 1-2 Mona Lake watershed land use in 1997, illustrating the dominance of agricultural/forested lands to the east and commercial/residential land uses in the west (Annis Water Resources Institute 2003, edited to highlight major land use types).
	Table 1-1 Contribution, of the four major tributaries to Mona Lake to watershed area and hydrologic contribution, as a percentage of the total.


	2 Objectives and Approach
	The Mona Lake Watershed Council is representing stakeholders to the Michigan Department of Environmental Quality (MDEQ) in recommending a management framework for eliminating manifestations of eutrophication. The plan would include a review of previou...
	Historically, the TP load to Mona Lake was well beyond the assimilation capacity of the system (water quality heavily impaired). Legacy deposits of phosphorus and oxygen demanding materials reflected decades of agricultural runoff and municipal wastew...
	Mona Lake stakeholders seek to reduce and or eliminate symptoms of eutrophication through reductions in phosphorus loading. Discrepancies between external load-based projections of trophic state and those observed at the lake today point to the need f...
	In this research, two hypotheses will be tested using a one-dimensional (vertical) model, capable of simulating both current and potential water quality in Mona Lake. With the ability to modify internal and external loading independently, the model wi...
	Figure 2-1 Vollenweider Loading Plot (1975 Model) 2017 for years 1972 (Freedman et al 1979), 1981 (Limnotech 1982).
	Figure 2-2 Composite of Total Phosphorus in Mona Lake for years 1972 (Freedman et al 1979), 1981 (Limnotech 1982). Dangerous and permissible trophic state boundary lines are shown (20 and 10 μg/L; Wetzel 2001).
	Figure 2-3 Composite of Carlson’s TP Trophic State Index (Carlson 1977) in Mona Lake for years 1972 (Freedman et al. 1979), 1981 (Limnotech 1982). Dangerous and permissible trophic state boundary lines are shown (Wetzel 2001) as applied to Carlson’s T...

	3 Monitoring and Modeling Methods
	The monitoring program was designed to complement previous research regarding external and internal loading of phosphorus to Mona Lake and attendant water quality conditions. The field program was executed at multiple stations over June-September 2017...
	3.1 Monitoring Methods
	3.1.1 Field Sampling
	3.1.1.1 Lake Monitoring
	The bathymetry of Mona Lake is spatially non-uniform, but generally, deeper from east to west, a property of its heritage as a drowned river mouth system. A bathymetric survey (Restorative Lake Sciences, LLC) was contracted by the Mona Lake Watershed ...
	Lake sampling sites were selected to best represent the expected spatial differences in depth-driven phenomena (thermocline, oxycline) as they relate to the stability of stratification, degree of anoxia and therefore rate of sediment phosphorus releas...
	Figure 3-1 Bathymetry of Mona Lake, illustrating the overall depth gradient from east to west, as well as the channel with Lake Michigan. Bathymetric Survey: Restorative Lake Sciences/Mona Lake Watershed Council, Map: Jamey Anderson, Great Lakes Resea...
	Figure 3-2 Mona Lake Sampling Station Map.
	3.1.1.2 Tributary Monitoring
	Three tributaries (Cress Creek, Black Creek, Little Black Creek; Figure 3-3) were sampled for discharge and phosphorus concentrations (SRP, TP, TDP, yielding PP and DOP by calculation) so that tributary loads could be calculated. Tributaries were moni...
	Figure 3-3 Mona Lake Tributary Site Map.
	3.1.1.3 Celery Flats
	Outflow from the flats enters Black Creek through drainage structures preceded by discharge restrictors. Measuring discharge through the restrictors proved to be difficult and the hydrologic cycle of the celery flats was not well understood in the con...

	3.1.2 Laboratory Analysis
	Samples were analyzed for SRP (field filtered), TDP (field filtered), and TP (unfiltered). Respective pools of PP and DOP were then calculated. SRP concentrations were determined via the ascorbic acid method within 48 hours of sample collection while ...

	3.1.3 Data Analysis
	3.1.3.1 Loading Calculation
	Mass balance surface water modeling requires a continuous time series of constituent (phosphorus) loads, which are calculated as the product of concentration (C) and discharge (Q). No tributaries in the Mona Lake watershed are gaged or monitored, yiel...
	Tributary velocity and cross-sectional area data were collected regularly for all three monitored tributaries, yielding discrete discharge values. Statistical fitting methods (least squares) were used to relate field-measured Black Creek discharge val...
	3.1.3.2 Settling Velocity
	In a surface water mass balance, the rate of particle settling is a term required in identifying the quantity (phosphorus) lost to lake sediments, and thus not present in the outflow. Sediment trap contents were used to calculate the rate of particula...
	where J = particulate phosphorus flux (mgPP/m2/d), CT = sediment trap total phosphorus concentration (mg/m3), V = sediment trap volume (m3), A = sediment trap entry area (m2), H = sediment trap height (m), t = deployment time (d), Cw = water column to...


	3.2 Modeling Methods
	Two types of modeling approaches are utilized here: a screening model (Vollenweider/Chapra Plots) to provide rapid assessment of phosphorus – phosphorus trophic state relationships and a more complex NDPZ model (LAKE2K) to support management projectio...
	3.2.1 Screening Model
	In his book on Surface Water Quality Modeling, Chapra (1997) outlines the development and evolution of phosphorus loading plots (Vollenweider) and budget models (Chapra) useful in relating phosphorus inputs to lakes with the resultant trophic state. V...
	Vollenweider (1975) developed a database of lake depth (H, m), hydraulic residence time ((, yr) and areal total phosphorus loading (Lp, gP m-2 yr-1) to examine these relationships. The resulting ‘plot’ placed a lake’s areal phosphorus loading on the ...
	Table 3-1 Morphometric and hydraulic characteristics of Lake Superior, Lake Erie, Mona Lake and Lake Pepin in the context of a Vollenweider Plot.
	Chapra (1997) presents a derivation demonstrating that the term H/(w in the Vollenweider Plot (Figure 1) is equivalent to qs, the areal hydraulic loading (m3 m-2 yr-1 or m yr-1). Chapra and Tarapchak (1976) developed a derivation of a phosphorus budge...
	𝑝= ,,𝐿-𝑝.-,𝑞-𝑠.+𝑣.
	with v being the apparent (TP-based) settling velocity (m yr-1). The budget model approach explicitly recognizes one source term (areal loading, Lp) and two sink terms (flushing (qs) and settling (v). Rearrangement of the steady state solution yields ...
	,𝐿-𝑝.= 𝑝∙(,𝑞-𝑠.+𝑣)
	with the source term (loading) on the y-axis and the sum of the sink terms (flushing and settling) on the x-axis (Figure 3-5). This format also accommodates inclusion of total phosphorus concentrations representing the boundaries between oligotrophy a...
	Figure 3-4 A Vollenweider loading plot based on Vollenweider (1975), illustrating the position of four lakes along the x-axis characterizing morphometric and hydraulic residence time.
	Figure 3-5 A Chapra budget plot based on Chapra and Tarapchak (1976), illustrating the relationship between areal total phosphorus loading, areal hydraulic loading and settling velocity and their interaction in mediating trophic state. The solid lines...

	3.2.2 Biokinetic Model
	The model used in application to Mona Lake, LAKE2K, is part of a family of platforms that also includes QUAL2K (river water quality), SED2K (sediment quality) and AT2K (river benthic algae) developed by Dr. Steven C. Chapra of Tufts University (http:/...
	Table 3-2 Physical, chemical and biological state variables accommodated in LAKE2K.
	Figure 3-6 Model kinetics and mass transfer framework. Kinetic processes used in this model calibration are oxidation (x), photosynthesis (p), respiration (r), and death (d). Mass transfer processes are reaeration (re), settling (s), sediment oxygen d...
	The modeling performed here targets the total phosphorus analyte and other state variables serving to mediate mass transport, biokinetics and trophic state impacts of that constituent. This requires specification of a physical framework and four submo...
	3.2.2.1 Physical Framework
	Physically, the Mona Lake system is divided into three layers (epilimnion, metalimnion and hypolimnion; Figure 3-7) with fully mixed conditions simulated by adjustment of vertical mixing coefficients. While LAKE2K accommodates changing layer volumes ...
	Figure 3-7 Physical framework with water balance and vertical segmentation scheme. (Chapra and Martin 2004).
	3.2.2.2 Temperature Submodel
	A heat balance is written for each of the three model layers. Where tributary discharge is received by the epilimnion, the balance includes heat inflow and outflow, air-water heat flux and heat exchange between the epilimnion and metalimnion. The heat...
	Figure 3-8 Surface heat balance.
	Solar radiation is computed as a function of the radiation at the top of the Earth’s atmosphere (varying with user-specified latitude) attenuated by atmospheric transmission, cloud cover and reflection. Atmospheric longwave radiation, resulting from h...
	where ,𝑐-1,2,3. are the heat content (cal) of the individual layers, ,𝐸-1,2-′. are the bulk turbulent diffusion coefficients at lower boundary of the two layers (m3 d-1) and V2 is the metalimnetic layer volume (m3). Values for E’ are determined by c...
	3.2.2.3 Oxygen Submodel
	The oxygen mass balance includes the contribution from phytoplankton photosynthesis and losses to oxidation of organic carbon and ammonia nitrogen and respiration by phytoplankton and zooplankton. Oxygen is further consumed by the lake bottom through...
	Figure 3-9 Oxygen mass balance.
	Here, atmospheric reaeration depends on wind speed (a model input) and temperature (calculated internally). Vertical turbulent diffusion is as determined by model calibration (see Temperature Model) and the rate of sediment oxygen demand is a user inp...
	3.2.2.4 Phosphorus Submodel
	The primary focus of the modeling effort is total phosphorus. In LAKE2K, the TP analyte is not calculated, but rather determined as the sum of its components (soluble reactive phosphorus (SRP), dissolved organic phosphorus (DOP) particulate organic p...
	where k(T) = reaction rate (1/d) at Temperature T ( C) and θ = the temperature parameter for a given reaction. The phosphorus mass balances also contain the vertical mass transport and outflow terms common to all of the temperature and constituent mas...
	Table 3-3 Source-sink terms in the phosphorus TP component mass balances.
	Figure 3-10 Mass balance processes for the components making up the total phosphorus analyte. In this illustration, the particulate organic phosphorus and phytoplankton phosphorus components are grouped together.
	3.2.2.5 Phytoplankton Submodel
	Phytoplankton are modeled by performing a mass balance on algal carbon considering photosynthesis as a source and respiration, death and zooplankton grazing as sinks. Model output as chlorophyll is determined through a user-specified carbon to chloro...
	The temperature dependence of photosynthesis, 𝑓,𝑇., is described by an asymmetrical bell-shaped curve (Figure 3-11a) where an optimum temperature (Topt) and coefficients describing the slope of the ascending ((1) and descending ((2) limbs of the re...
	𝑓,𝑇.=,𝑒-−(,𝜅-1.∙,,𝑇−,𝑇-𝑜𝑝𝑡..-2..   for T < Topt
	𝑓,𝑇.=,𝑒-−(,𝜅-2.∙,,𝑇−,𝑇-𝑜𝑝𝑡..-2..   for T > Topt
	The nutrient limitation function, 𝑓,𝑃., uses a Michaelis-Menten (Monod) approach (Figure 3-11b) based on the SRP concentration (mgSRP m-3), and a user-specified half-saturation constant (mgSRP m-3),
	𝑓,𝑃.=,𝑆𝑅𝑃-,𝐾-𝑝.+𝑆𝑅𝑃.
	Nitrate and silica limitation are not considered in this application. The light dependency of photosynthesis, 𝑓,𝐼. also uses a Michaelis-Menten (Monod) approach (Figure 3-11c) based on the mean daily photosynthetically-available radiation (PAR, lang...
	𝑓,𝐼.=,𝑃𝐴𝑅-,𝐾-𝐼.+𝑃𝐴𝑅.
	Epilimnetic mean daily PAR is determined using the Beer-Lambert Law and an internally-calculated vertical light attenuation coefficient. The interrelationship of the physical framework and the temperature, oxygen, phosphorus and chlorophyll submodels ...
	Figure 3-11 Growth mediation functions (f) for (a) temperature with Topt = 5, 15 and 25 (C and (1 and (2 equal to 0.01 and 0.05, respectively, (b) phosphorus for a value of Kp = 2 mgSRP m-3 and (c) light for a value of KI = 20 langleys d-1.
	Figure 3-12 Model framework as used in this application of LAKE2K.
	3.2.2.6 Solution Technique
	The mass balances described above are written in the form of ordinary differential equations and solved using an Euler integrator. Model output is generated in both tabular and graphical form.



	4 Results and Discussion
	Applying budget trophic state models (Vollenweider Loading Plot, Carlson TSI) to Mona Lake indicate that the current phosphorus loading, after notable reductions (wastewater diversion, ~75%), coupled with its hydrodynamic properties, should result in ...
	4.1 Spatiotemporal Phenomenon
	The morphometry characteristic of drowned river mouth systems like Mona Lake creates hydrologic properties important to remember when performing spatiotemporal analyses. As previously identified (Evans 1992), Mona Lake has seasonally variable retentio...
	Table 4-1 Varying retention times for 2017 and 2018, periods identified. *January 1st 2018-November 1st 2018 as December 2018 USGS data not yet available.
	Figure 4-1 Summation of Mona Lake tributary discharge for 2017 and 2018, illustrating seasonal minimum discharge from May through August and maximum discharge occurring in spring and fall.
	4.1.1 Stratification and Anoxia
	Stratification in both 2017 & 2018 was present by mid-June, with well-defined oxyclines and thermoclines present at sites with sufficient depth to develop a thermal gradient (Mid, Deep East/Deep West/West). This stratification and attendant reduction ...
	During periods of anoxia, lake sediments release highly bioavailable phosphorus (SRP). Phosphorus, like oxygen, is subject to the impacts of water density (stratification) on mass transport between layers. Thus, this SRP accumulates in the hypolimnion...
	4.1.1.1 East Station
	In 2018, conditions at the shallowest sampling site (East, depth ~4 m), warmed with increasing solar radiation, remaining completely mixed with the exception of ephemeral decreases observable in August and September (Figure 4-2). A function of its min...
	Figure 4-2 East station thermal succession, 2018.
	Figure 4-3 East station dissolved oxygen succession, 2018, corrected for saturation.
	4.1.1.2 Mid Station
	Thermal succession at the Mid station (depth ~6 m) in 2018 illustrates the seasonal behavior expected of a temperate dimictic lake. The completely mixed water column (April), warms with increases in solar radiation (Figure 4-4). The penetration of sol...
	Figure 4-4 Mid station thermal succession, 2018.
	Figure 4-5 Mid station dissolved oxygen succession, 2018, corrected for saturation.
	4.1.1.3 Deep Stations
	Like the Mid station, the deeper stations (composite of Deep East, Deep West, West) transition from completely mixed waters at ice-out to a strongly stratified system (Figure 4-6), producing an anoxic zone comprising nearly half the water column by mi...
	Figure 4-6 Composite of Deep East, Deep West, and West station thermal succession, 2018
	Figure 4-7 Composite of Deep East, Deep West, and West station dissolved oxygen succession, 2018, corrected for saturation.
	Further understanding of stochastic water column thermal (mixing) dynamics was accomplished through examination of data from the temperature logger buoy string at East Deep (1 m below the surface, 1 m above lake bottom, midpoint, Figure 4-8). We can o...
	Figure 4-8 Temperature loggers, placed 1 m below surface (Top), the mid-depth point of 3.5 m below surface (Middle), and 1 m above bottom (Bottom) in 2017. Arrows and text indicate examples of observed physical mixing events attributed to entrainment ...
	Figure 4-9 Entrainment diagram, illustrating shear forces and phosphorus transport.

	4.1.2 Intrusions
	In dimictic northern temperate lakes, the epilimnion may see heating and cooling events (oscillating with meteorology, solar radiation) during the ice-free season, but the general trend is that of warming until declines leading up to fall turnover. Th...
	The thermal mass of the system must be conserved, however, and a cooling of the hypolimnion prior to fall turnover is not ascribable to entrainment, as this could only transfer warmer water. As previously noted, simultaneous cooling of the metalimnion...
	Figure 4-10 Temperature logger vertical post mean temperature data, placed in the confluence of Mona Lake and it’s channel to Lake Michigan, illustrating intrusion event frequency.
	Figure 4-11 Temperature logger vertical post mean temperature data, placed in the confluence of Mona Lake and it’s channel to Lake Michigan. Three temperature loggers were placed at top, middle, and bottom in ~2 m of water. Data displayed indicates ob...

	4.1.3 Chlorophyll and Cyanobacteria
	In dimictic eutrophic lakes wherein biomass production is high, surface Chlorophyll (Chl-a; algae) levels generally increase during the ice-free period, until turnover. Decades of elevated biomass production lead to large amounts of respiration, creat...
	The transport of phosphorus and subsequent growth in Mona Lake is observable in regression of mean lake surface TP against observed Chl-a concentrations (Figure 4-12; Dillon and Rigler 1974), which peaked during a Microcystis bloom containing 360 μg/L...
	Figure 4-12 Total phosphorus and Chlorophyll-a relationship, 2018.
	Figure 4-13 Lake surface total phosphorus, Chlorophyll a, and Microcystin concentrations observed in 2018, illustrating correlation.


	4.2 External Loading
	A temporal analysis of tributary hydrology indicated the first year of field sampling (2017) was a decadal minimum phosphorus load, while the second year of field monitoring (2018) was the second highest phosphorus load since 2008 (Figure 4-14). No si...
	Figure 4-14 External loading daily average for years 2008-2018. *USGS December 2018 data unavailable.
	Figure 4-15 Total phosphorus load fractions for each tributary in the Mona Lake Watershed. ‘Other Tribs’ refers to small creek area as presented in the Mona Lake Watershed Atlas (Annis Water Resources Institute 2003).
	Figure 4-16 External loading (tributary summation) in 2018.
	4.2.1 Little Black Creek
	Upon detection of elevated SRP concentrations (2017, relative to other tributaries in the watershed) in Little Black Creek, discrete spatial monitoring was conducted in an attempt to locate a source capable of delivering a concentration ~2x higher tha...
	Figure 4-17 Little Black Creek upstream SRP sampling results, with documented MDEQ contamination sites downstream. Map is oriented North-South, while tributary discharge occurs East-West.

	4.2.2 Concentration and Discharge Relationships
	No significant relationships were seen in regression analysis of tributary discharge and concentration for either SRP or TP (Figures 4-18, 4-20, and 4-21). However, the observed high discharge two-year peak TP value for Black Creek (9.5 m3/s at 142 μg...
	Figure 4-18 Black Creek TP/SRP versus discharge plot for 20 total sampling events in 2017 and 2018.
	Figure 4-19 Black Creek PP versus discharge plot for 20 total sampling events in 2017 and 2018, explaining the observed TP increase as a PP increase at the outlier (large storm) discharge data point.
	Figure 4-20 Little Black Creek TP/SRP versus discharge plot for 20 total sampling events in 2017 and 2018.
	Figure 4-21 Cress Creek TP/SRP versus discharge plot for 20 total sampling events in 2017 and 2018.
	Figure 4-22 Mean SRP, POP, and DOP pools, with standard deviation, for 20 total sampling events in 2017 and 2018.
	Figure 4-23 Observed differences in mean TP concentrations in Black Creek, upstream and downstream of the celery flats control structures. Celery flat TP concentrations (Steinman 2009) presented for comparison.


	4.3 Screening Models
	Synthesis of initial conclusions from the above results begins with application of updating screening models previously applied in water quality assessment (Vollenweider and Chapra loading models, Trophic State Index). Contemporary conditions (2017 an...
	The trophic state observed in years 2017 and 2018 is classifiably eutrophic, as verified by TSI/TP concentration analysis (Figures 4-26 and 4-27), also observed by MDEQ (staff report on Algal Toxin Monitoring in Michigan Inland Lakes 2017). While a de...
	Figure 4-24 Vollenweider and Chapra plots for historical 1972, 2017 and 2018 trophic state predictions.
	Figure 4-25 Vollenweider and Chapra plots from 10 year average loading estimates.
	Figure 4-26 Trophic state index calculation for historical data, 1972 (Freedman et al 1979), 1981 (Limnotech 1982), and monitoring years observations (2017 and 2018).
	Figure 4-27 Total phosphorus historical data, 1972 (Freedman et al 1979), 1981 (Limnotech 1982), and monitoring years observations (2017 and 2018).
	4.3.1 Internal Loading
	As previously noted, spring discharge delivers higher phosphorus loads to Mona Lake. Mean tributary TP in April 2018 was 24 μg/L, 35 percent less than the mean lake concentration. While monitoring began later in 2017 (June), the same tributary-lake di...
	Figure 4-28 Mean tributary TP (2017/2018) and mean epilimnetic TP (2017 and 2018), illustrating lake surface water concentrations higher than discharge concentrations, pointing to internal loading sources. Solid line indicates tributary mean while sha...
	Figure 4-29 Mean tributary TP (2017/2018) and mean hypolimnetic TP (2017 and 2018), illustrating lake bottom water concentrations higher than discharge concentrations, pointing to the source of internal loading. Solid line indicates tributary mean whi...
	Figure 4-30 Mean tributary SRP (2017/2018) and mean hypolimnetic SRP (2017 and 2018), illustrating lake bottom water concentrations higher than discharge concentrations, pointing to the source of internal loading. Solid line indicates tributary mean w...
	Figure 4-31 Mean tributary particulate phosphorus (2017/2018) and mean epilimnetic particulate phosphorus (2017 and 2018), illustrating lake bottom water concentrations higher than discharge concentrations, attributing the internal source to increases...
	Figure 4-32 Percent TP as SRP for 2018, aligned temporally with the deep sites (East Deep, West Deep, West) dissolved oxygen succession map.


	4.4 Biokinetic Model
	Screening models, such as those developed by Vollenweider (1975) and Chapra and Tarapchak (1976), have found favor in supporting water quality assessment for over 40 years. These are simple frameworks, with input requirements well within reach of most...
	One of the objectives in applying the biokinetic model, here LAKE2K, is to test model performance by comparing model output with field observations. In this process, termed calibration, model parameters are adjusted over a reasonable range to yield a...
	The LAKE2K platform as applied here (Figure 3-12) includes a physical framework and four submodels: Temperature, Oxygen, Phosphorus and Phytoplankton (Chlorophyll). The development of the physical framework, model inputs (e.g. meteorological condition...
	Figure 4-33 The trade-off between model complexity, model reliability and funding for model development and application. Adapted from Chapra (1997).
	Table 4-2 Biokinetic coefficients utilized in this application of LAKE2K. Bold face indicates coefficients adjusted in model calibration. Phytoplankton groups are small green algae (SG), large green algae (LG) and cyanobacteria (Cy).
	4.4.1 Temperature Submodel
	The model was calibrated to 2018 monitoring data, as field efforts in 2018 began in March as opposed to mid-June in 2017 and provided a more complete calibration dataset. Meteorological data (air temperature, dew-point temperature, wind speed, cloud ...
	Figure 4-34 Comparison of measured (symbols) and modeled (lines) layer-average water temperature for 2018. The epilimnion is represented by open symbols and a solid black line, the metalimnion by gray symbols and a gray line and hypolimnion by black s...

	4.4.2 Oxygen Submodel
	Tributary discharge (oxygen loading, assuming saturation) and meteorological data inputs (wind speed; reaeration calculation) are also utilized in the Oxygen Submodel (Figure 4-35). The Oxygen Submodel mass balance includes tributary loads to the epil...
	As thermal stratification strengthens, vertical mass transport is reduced and hypoxia and anoxia are observed in the metalimnion and hypolimnion (Figure 4-35). Model output for epilimnetic oxygen tracks the seasonal temperature trend impacting saturat...
	Figure 4-35 Comparison of measured (symbols) and modeled (lines) layer-average dissolved oxygen concentration for 2018. The epilimnion is represented by open symbols and a solid black line, the metalimnion by gray symbols and a gray line and the hypol...

	4.4.3 Phosphorus Submodel
	The Phosphorus Submodel begins with a mass balance on soluble reactive phosphorus, accommodating inputs from tributary loads, conversion of dissolved organic phosphorus and sediment release, as well as sinks including phytoplankton uptake and lake flu...
	Dissolved organic phosphorus is the second of three components of the Phosphorus Submodel, with a mass balance accommodating inputs from tributary loads and conversion of particulate organic phosphorus. DOP sinks include hydrolysis to soluble reactive...
	The particulate phosphorus mass balance accommodates inputs from tributary loads and accounts for uptake of soluble reactive phosphorus by phytoplankton. As a particle bound form of phosphorus, it settles, in addition to hydrolysis and flushing. Its d...
	The mass balances for SRP, PP, and DOP are summed to yield the TP mass balance. TP is the primary state variable for evaluating trophic state response to management actions, integrating tributary loads, sediment phosphorus release and in-lake process...
	Figure 4-36 Comparison of measured (symbols) and modeled (lines) layer-average soluble reactive phosphorus for 2018. The epilimnion is represented by open symbols and a solid black line and the hypolimnion by black symbols and a dashed black line.
	Figure 4-37 Comparison of measured (symbols) and modeled (line) epilimnetic, layer-average soluble reactive phosphorus for 2018. This figure provides a scale expansion from the figure illustrating both epilimnetic and hypolimnetic concentrations.
	Figure 4-38 Comparison of measured (symbols) and modeled (line) epilimnetic, layer-average dissolved organic phosphorus for 2018.
	Figure 4-39 Comparison of measured (symbols) and modeled (line) layer-average, epilimnetic particulate phosphorus for 2018.
	Figure 4-40 Comparison of measured (symbols) and modeled (lines) layer-average total phosphorus for 2018. The epilimnion is represented by open symbols and a solid black line and the hypolimnion by black symbols and a dashed black line.
	Figure 4-41 Comparison of measured (symbols) and modeled (line) epilimnetic, layer-average total phosphorus for 2018. This figure provides a scale expansion from the figure illustrating both epilimnetic and hypolimnetic concentrations.

	4.4.4 Phytoplankton (Chlorophyll) Submodel
	In the Phytoplankton (Chlorophyll) Submodel, up to three phytoplankton groups, each having a characteristic assemblage of growth-mediating kinetic coefficients, may be user-identified. In this model application, three groups are simulated: small green...
	Figure 4-42 Model-predicted contributions to epilimnetic chlorophyll by each of three phytoplankton groups over the 2018 field season
	Figure 4-43 Comparison of measured (symbols) and modeled (lines) epilimnetic chlorophyll for 2018. Measurements are represented by symbols and model output by a line.


	4.5 Management Scenario Modeling
	As was outlined previously, stakeholders desired assembly of a model framework capable of simulating phosphorus management scenarios for Mona Lake. Successful model calibration (Section 4.4) allows for confidence in the ability to predict trophic stat...
	4.5.1 Internal Loading Reduction
	In the absence of anoxia induced sediment phosphorus release, model predictions indicate a 19 percent decrease in average epilimnetic TP concentrations (Figure 4-44), reflected also in a predicted Chlorophyll-a decrease of 48 percent (Figure 4-45). Wi...
	Figure 4-44 Model predicted total phosphorus concentrations if sediment released phosphorus were managed (zero). Black line indicates baseline (calibrated model) while grey line indicates prediction of baseline model sans sediment release. Eutrophic t...
	Figure 4-45 Model predicted Chlorophyll-a concentrations if sediment released phosphorus were managed (zero). Black line indicates baseline (calibrated model) while grey line indicates prediction of baseline model sans sediment release. Eutrophic thre...

	4.5.2 External Loading Reduction
	With the above management simulation illustrating the governance of seasonal loading (high spring load), external load reduction scenarios of 10, 25, 50, and 75 percent were simulated (Figure 4-46) while sediment phosphorus release remained at its cal...
	Figure 4-46 Total phosphorus predictions resulting from external load reductions of 10, 25, 50, and 75 percent. Baseline shown in black and eutrophic threshold indicated at 20 μg/L.
	Figure 4-47 Chlorophyll-a predictions resulting from external load reductions of 10, 25, 50, and 75 percent. Baseline shown in black and eutrophic threshold indicated at 10 μg/L.

	4.5.3 Combined Reduction
	Previously tested management scenarios, addressing external and internal loading independently, showed promising improvements in predicted water quality. However, neither predicted an entirely satisfactory improvement in trophic state (eutrophic to me...
	Figure 4-48 Total phosphorus predictions resulting from an external load reduction of 25 percent paired with internal loading control (no sediment release). Baseline shown by solid line and eutrophic threshold indicated at 20 μg/L.
	Figure 4-49 Chlorophyll-a predictions resulting from an external load reduction of 25 percent paired with internal loading control (no sediment release). Baseline shown by solid line and eutrophic threshold indicated at 10 μg/L.



	5 Summary and Recommendations for Future Work
	As Dr. Steve Chapra has noted, “Lakes function as watershed settling basins in which man’s past and present impacts are recorded.” Project objectives and accomplishments are detailed below, followed by recommendations for future work.
	5.1 Summary
	Decades of nuisance algal growth in the Mona Lake watershed are the result of cultural eutrophication (urbanization, agriculture). Historical external loading (tributaries prior to wastewater diversion) delivered high loads of phosphorus, stimulating ...
	5.1.1 Black Creek
	Prior to discharge restriction, the celery flats were shown to contribute 1.6x and 2.6x downstream SRP and TP increases, respectively (Steinman & Ogdahl 2011). In this effort, the first study after the installation of discharge restrictors (2015), a n...

	5.1.2 Little Black Creek
	While only 9 percent of the hydrologic contribution to Mona Lake, Little Black Creek is responsible for 12 and 18 percent of the TP and SRP load, respectively. With management solutions likely still requiring external loading reduction, the upstream p...

	5.1.3 Internal Loading
	Sediment released phosphorus has been shown to account for ~68 percent of the mass total phosphorus to Mona Lake (Steinman et al. 2009). The impacts (both in the presence and absence of) this internal source of phosphorus have been quantified in the m...


	5.2 Recommendations
	Multiple stochastic and ephemeral forces (meteorological) impact the dynamics of Mona Lake. Its erratic behavior applies greatly to its geochemical characteristics (external loading, variable retention time). Thus, a management approach aimed at impro...
	5.2.1 Tributary Monitoring
	As noted above, there exists initial evidence for celery flat discharge control structure success. However, without continuous monitoring, final conclusions should not be drawn on the percent efficacy. Prior to discharge control structure installation...

	5.2.2 Intrusion Monitoring
	Detection of intrusions from Lake Michigan (physically and chemically) propose an area of thought crucial in considering when evaluating sediment release treatment and respective effectiveness. While hypothesized to strengthen stratification, intrusio...

	5.2.3 Sediment Release Study
	In the management modeling presented above, it was shown that while external loading reductions (some unrealistic) would drastically improve the mean trophic state of Mona Lake, sediment release control (the absence of internal loading) would continue...
	Various internal lake management techniques will have ranging efficacies, due to the stochastic mixing properties of Mona Lake. It is recommended that internal loading treatment technologies be evaluated based on their ability to treat and interact wi...
	Phosphorus release inactivation may be accomplished through chemical flocculation, oxidation, and/or binding methods:
	o Aluminum salts (alum; Cooke et al. 2005), forms an aluminum hydroxide barrier that persists even in the presence of continued anoxia, although nearby Spring Lake has shown diminishing inactivation with this method in an 11 year post-treatment study ...
	o Phoslock, a lanthanum modified bentonite clay, bonds with phosphorus released during anoxia (SRP) and has been shown to maintain its binding capacity longer than alum (Robb et al. 2003).
	o Sediment oxidation (Riplox) enhances denitrification, retaining the phosphorus binding capabilities of iron in the sediments (Cooke et al. 2005).
	Physical manipulation leading to phosphorus release inactivation may be accomplished through aeration or mixing:
	o Hypolimnetic aeration, effective at increasing dissolved oxygen in the hypolimnion without causing destratification accomplished through submersion of a lift device, bringing hypolimnetic water to the surface, exchanging it with gases (oxygen), and ...
	o Artificial circulation, preventing stratification, improves water column dissolved oxygen (prevents anoxia). Furthermore, this technique can alter the seasonal succession of algae, neutralizing seasonal nutrient dynamics favoring blue-greens later i...
	o Hypolimnetic withdrawal, accomplished through siphoning or pumping of hypolimnetic water to areas of low-nutrient concentration have been shown to accelerate phosphorus export (flushing) while reducing the entrained phosphorus capabilities (Cooke et...


	5.3 Conclusion
	The above summary of observations and subsequent production of a model capable of simulating management strategies, offers a contemporary, system-wide understanding of spatiotemporal trophic state dynamics. While the impact of legacy deposits is felt ...
	“Let us put our minds together and see what kind of life we can make for our children.”
	Sitting Bull
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