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Preface

Multiple objectives were set to be accomplished for this research. First, is
developing a test cell that has the capability to run a highly instrumented torque
converter and transmission without changing the performance characteristics. A
torque converter was instrumented with 29 pressure transducers and placed in a
front wheel drive six-speed transmission instrumented to measure clutch and
operating pressures. This gives the opportunity to mimic any maneuver that is seen

in-vehicle, such as shifting gears.

Second, is developing a procedure for data collection and analysis. The
instrumentation was designed for steady state testing, but the need to measure
transient events was of interest. The methods that are used are also published
through SAE to share the knowledge to others about the capabilities of capturing
transient events with multiplexed data. Having this capability opens up the
possibilities of what could be studied with the transmission and gives a better

insight to where problems can arise.

Third, is creating test procedures that are relevant and that are similar to those in
vehicle. The procedures that are covered are baselining the torque converter, gear
shifting, and torque converter clutch being released, slipping, and applied. All test
results were completed on the same torque converter and transmission. A non-
instrumented transmission was used when developing shift and torque converter

clutch profiles to avoid damaging the instrumented transmission.

Finally, is presenting the large data sets in a manner that is easy to interpret. By
having a summary of the results that is simple improves the odds that additional
work will be built off of the results and can be referenced during future
development. This became a personal goal of mine to build my experience as well

as ensuring that the work completed is stored in a simple and useful manner.

XixX
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Abstract

A torque converter was instrumented with 29 pressure transducers to measure the
torus, clutch plate, and torque converter cavities using telemetry to transfer the
data. The torque converter was placed in a six-speed front wheel drive
transmission and a test cell was built to drive and load the transmission to mimic

in-vehicle performance.

Steady state tests were completed to establish a baseline for pressure
performance of the torque converter. The transient events tested include back
drive and gear shifting. Back drive showed how the pressure fluctuates across the
speed ratios above 1 as well as identifying the stator speed. Gear shifting
presented how large the pressure change can be between each gear state. Low
speed downshifting, where hydraulic demand can possibly exceed pump capacity,
resulted in showing the control over the torque converter clutch was still possible

and reliable. These results can be used to improve future calibrations and designs.
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1 Introduction

Transmissions are complex architectures that transfer power from one location to
another and are commonly used in the automotive industry. The constant drive to
improve fuel economy causes a large interest in improving transmission efficiency.
Transmissions also have an impact on the drive quality that is felt by the driver.
Both fuel efficiency and drive quality are controlled by gear shift and torque

converter design and calibration.

1.1 Objectives

The objective of this study is to gain an insight on how the torque converter
interacts with the transmission through steady state operation and transient
events. By understanding what is occurring inside the transmission and torque
converter, better calibration techniques can be used to improve fuel efficiency and
drive quality. All the measurements are taken using open loop controls, thus
eliminating control variation showing only impacts due to the hardware and

operation conditions. The information gained can then be applied to future designs.

To achieve this objective a test cell and control strategies had to be developed that
was capable of running the transmission through a variety of scenarios. The
transmission and torque converter were instrumented and ran through scenarios
such as back drive and gear shifting with the torque converter clutch (TCC)
applied, released, and slipping. The test scenarios were constructed to mimic, as
closely as possible, in-vehicle performance. Data analysis techniques were also
developed to handle both steady state and transient event post processing. All the

development work and results are presented in the following sections.



1.2 Torque Converter Basics

Torque converters are a turbomachine that transmit power from a driver to a driven
component via a fluid interface. There are many different architectures of torque
converters for a variety of applications, as seen by [1, 2]. A basic torque converter
is made up of three elements, the impeller, turbine, and stator, making up the torus.
The addition of a clutch plate allows for the input to be rigidly locked to the output
resulting in almost 100% efficiency in power transmission. The torque converter
used is this study is a three element, single stage, double phase torque converter
as described above [3]. Single stage means the torque converter has a single
turbine. The double phase means the torque converter can operate in two modes.
The first, is torque multiplication with the stator being fixed. The second, the stator
is allowed to freewheel via a one-way clutch. Figure 1-1 illustrates each of the
components of the torque converter and the terminology that will be used
throughout the rest of this document.

Clutch
Plate

Figure 1-1. Torque converter components
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The impeller is attached to the cover that is then mounted to the flex plate and
engine. The input power can be transmitted by a fluid or mechanical connection.
When power is being transmitted via the fluid the power is transmitted from the
impeller to the automatic transmission fluid [ATF] that then rotates the turbine. The
flow exits the turbine to the stator which either can cause torque multiplication,
during low speed ratios, or free wheel, during high speed ratios. The stator is
mounted on a one-way clutch that locks the stator during low speed ratios but will
free wheel during high speed ratios. The speed ratio is calculated by Equation 1-1,
where No is the output speed, Ni is the input speed.

SR =

No Equation 1-1
N quation 1-

i
When the power is being transmitted by mechanical coupling, the clutch plate is
locked with the cover. This is done by pressurizing the clutch plate to engage the
friction material on the clutch with the cover. During mechanical coupling the input
and output speeds are the same. Figure 1-2 shows the power flow for fluid and

mechanical coupling through the torque converter.

.&

Power OUT

Figure 1-2 Torque converter power flow torque multiplication (Left), mechanical

connection (Right)
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A torque converter performance is characterized by the K-factor and torque ratio
at each speed ratio, as illustrated in Equation 1-2 and Equation 1-3 respectively.
The K-factor is determined by the impeller speed Ni, and input torque Ti. The torque
ratio is calculated by the output torque To divided by the input torque Ti. The
efficiency of the torque converter is based on the torque ratio multiplied by the

speed ratio, as seen in Equation 1-4.

N;
KF = — Equation 1-2
N
T, i -
TR = -° Equation 1-3
T;
EFF = TR * SR Equation 1-4

An example torque converter K-factor, torque ratio, and efficiency curve are shown
in Figure 1-3. When the vehicle is not moving the torque converter is operating at
stall or a speed ratio of zero. At stall the torque converter is 0% efficient because
all the input power is converted to thermal energy and rejected via the ATF. As the
torque converter increases in speed ratio so does the efficiency. Once the speed
ratio is high enough that the stator begins to free wheel, also called the coupling
point, the efficiency increases.
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Figure 1-3. Torque converter performance example

When the impeller and turbine speeds converge the clutch plate can be applied
and essentially 100% efficiency is achieved. This higher efficiency rate is the
motivation to increase the amount of time that the torque converter clutch is applied
during operation. Figure 1-4 illustrates how the speeds converge and the larger
the speed difference the more energy the clutch has overcome. To large of speed

difference can result in glazing or damaging the clutch.

s Clutch Application

— =
—
Impeller e —— - :

_’
—

|

Speed

Turbine

Time

Figure 1-4. Concept of clutch application timing with respect to impeller and

turbine speed
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1.3 Transmission Basics

The purpose of a transmission is to transmit power from one location to another,
which can be accomplished in a variety of methods, such as gears, belts, and
clutches [4]. The unit used in this study is a step gear transmission that is an
automatic front wheel drive (FWD) 6-speed transmission. The power flow through
the transmission under study is illustrated in Figure 1-5. The power from the torque
converter is transferred through the transmission by planetary gears, a chain, final
drive, and output shafts. The gear ratio is determined by the combination of the

clutches and planetary gears.

P—]
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2 R 1.Power IN
2. Planetary Gear
1 1 ! Transfer
3. Chain Transfer
4. Final Drive
} 5. Power OUT
3 —
5 N H = 5
4
p—

Figure 1-5. Transmission cross section and power flow



The clutches are controlled by solenoid drivers where the pressure is determined
by the amount of current sent to the solenoid, as illustrated in Figure 1-6. There
are two types of drivers where one is normally low, meaning that when the current
is 0 the pressure is also 0. The second driver type is normally high, meaning when
the current is 0 the pressures is max. For this research the transmission had to
shift gears while under load, so clutch control and shift profiles had to be
developed. Gear shift modeling, solenoid pressure profile generation, and dyno
management development will be described in the methods section.

Pressure
Pressure

Current [mA] Current [mA]

Figure 1-6. Normally low solenoid driver (left), Normally high solenoid driver
(right)

1.4 Literature Review

A literature review was conducted to understand past related work and to
determine where current research is needed. It was found that there has been
extensive instrumentation done on torque converters measuring internal pressures
on the torus, but there is a lack of knowledge on pressure measurements on the
torque converter clutch. There also has been studies on torque converter and
transmission interaction, but none with the torque converter containing specialty

instrumentation that can also operate normally in a transmission. This opens up



the possibilities for taking measurements that show how the transmission and
torque converter interact. Multiple simulations have been done to predict
performance and flow information. This study also allows the ability to improve
torque converter simulations by providing a larger amount of data for validation.
The following sections are summarizing of the literature review that was used for

this study.

1.4.1 Torque Converter Experimentation

Torque converters have been instrumented and studied to improve efficiency and
reduce package size. Each component of the torus has been instrumented with
pressure transducers to visualize the flow field through the blades. The turbine has
been instrumented with pressure transducers and strain gages to observe the
loading of the blades [5, 6]. The stator has been instrumented with 72 pressure
transducers to measure the profile across the blade. All measurements were static,

meaning that the stator was in a fixed position [7].

Flow visualization has also been performed by liquid resin techniques and laser
velocimetry [8, 9]. The liquid resin is dotted along the blade and the working fluid
is then passed over smearing the resin and showing the flow direction. Laser
velocimetry used a Plexiglas torque converter with metallic coated glass particles
throughout the working fluid. An argon ion laser was then used to determine the
flow velocity during operation. All the above measurements are taken at a speed

ratio of 0.8 or lower.

An extensive amount of work has been accomplished in identifying cavitation in
torque converters [10-12]. The impeller and stator have both been instrumented
with pressure taps to verify the operating conditions that cause cavitation and how
cavitation impacts the torque converter performance. A nearfield acoustical
technique was also used to identify when cavitation occurred without the need to

instrument the torque converter.



1.4.1.1 Transient Torque Converter Testing

Transient testing has been done on torque converters to determine the
performance and reverse engineer the design parameters of the torque converter
[13]. The transient results were used to validate a nonlinear model to predict torque
converter performance. All the transient tests where done with the torque converter

clutch released.

Dynamic characterization of the hydrodynamic operation of a torque converter has
been tested by having a dynamic input torque [14]. A frequency response function
was found to show the attenuation of oscillation when the torque converter is
operating as in torque multiplication mode. A second study used the same
approach of measuring the frequency response function of the torque converter
clutch to improve fuel economy and noise, vibration, and harshness (NVH) [15].
No transient testing involving the torque converter clutch application and release

was found.

1.4.1.2 Torque Converter Clutch

The torque converter clutch has been instrumented with thermal couples and
pressure transducers to measure the temperature across the friction material [16].
The pressures transducers referenced each side of the friction material during
slipping conditions. The friction coefficient and heat rejection rate of the ATF were
calculated based on the data collected. The friction coefficient had a large spread
due to the limited pressure measurements on the clutch plate. More information

on wet clutch development and testing will be described in the following section.

The torque converter clutch operates in three conditions; released, applied, and
slipping. Released is used for launching the vehicle from a stop and allows the
engine to rotate when the vehicle is stationary. Applied is the most efficient

operating condition because the input is mechanically transmitting all the power to



the output, but can have increased NVH issues. Finally, slipping is when the clutch
is being applied but is rotating at a slower speed than the input. Slipping the clutch
is ideal for transient maneuvers because of the combination of improved efficiency,
compared to released, while also having better NVH characteristics over applied.

There are many effective strategies to achieve slip control, as seen in [17, 18].

1.4.1.3 Torque Converter Telemetry Instrumentation

Telemetry has previously been used for instrumenting individual torque converter
components such as the impeller, stator, turbine and the clutch plate [5, 10, 11,
16]. The torque converter that is under study takes all previous instrumentation
methods and combines them into a single torque converter with the impeller,
stator, turbine, clutch plate, and cover all being instrumented. This torque converter
has also been used for previous research for correlating internal pressures to a

computational fluid dynamics (CFD) model [19].

1.4.2 Torque Converter Simulation

Numerical 3-D simulations of torque converters have become more accurate as
CFD improve and the knowledge of torque converters continuously grows. The
models are validated by comparing the K-factor and TR to experimental data of
that torque converter. The pressure and flow profiles are then assumed to be
correct [20]. Other simulation studies have looked at blade passing and drive
excitations and the correlations to drivetrain NVH [21, 22]. Flow fields and clutch

lockup times have also been simulated to reduce clutch application time [23].

A previous study conducted by Edward De Jesus correlated a CFD model with
experimental data from the instrumented torque converter used in this study. The
model predicted K-factor and TR within 6% of experimental. The pressure profiles
across the blades were also found and compared to the pressure measurements

that were taken throughout the torque converter. The model pressures were within
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20% of the experimental results [24]. As experimentation on torque converters
continue, the accuracy of models can also improve allowing for faster new

development and improved prototyping.

1.4.3 Wet Friction Clutch Development

A wet clutch is when the friction material is bathed in a fluid, such as torque
converters and step transmissions that are lubricated by ATF. A large variety of
clutches have been developed for the use in automotive applications [25]. A single
surface friction material clutch is used in the torque converter and multi disk
clutches are used in the transmission under study. A major consideration during
clutch design and testing is the thermal capacity before failure. By understanding
the amount of slip time and energy absorption the clutch can withstand, and the
limits are not exceeded, the clutch can have extended life [26].

Multiple studies have been conducted that investigated friction material
characteristics during slip, clutch life cycle, and fluid interaction on friction
performance [27-30]. All these studies isolate the friction material with the clutch
or clutch pack to conduct the study. This is useful for initial research but
understanding how the clutch performs with other components is of interest for this

research.

1.4.4 Transmission Development

Transmissions have been under study for many years to improve efficiency and
improve shift quality. Automatic transmissions have been developed from 4, 5, and
6-speed transmission to the more recent 8, 9 and 10-speed transmissions [31-33].
Methods have been developed to include the impact that transmissions have on
engine operations. This was done by building upon Environmental Protection
Agency (EPA) test cell capabilities to incorporate an engine transmission package

to see the true fuel efficiency and emissions [34].
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1.4.5 Transmission Simulation

Multiple simulations have been developed to predict transmission performance to
reduce the amount of test and development time. Automatic transmission
hydraulics are a complicated system that are made up of solenoid valves, pressure
regulators, pressure control valves, and clutch actuator systems. Having
numerous components results in a nonlinear system to predict dynamic
characteristics. Studies have shown that models can be developed to predict
steady state and dynamic characteristics by validating through experimental

comparison [35, 36].

Basic models have also been developed to improve shift quality and estimate
transmission response. Some of the methods from [4, 37-40] are used for
understanding shifting techniques and development. Shifting will be described in

further detail in the methods section.
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2 Experimental Setup

This research had the opportunity of starting with an empty test cell, so a goal was
set to develop a test cell that has the capability to operate numerous models of
transmissions. The following sections explain the development of the test cell,
dynamometer controller, data acquisition, transmission instrumentation,

transmission controller, and torque converter instrumentation.

2.1 Test Cell

A test cell was built to operate the 375 Nm input torque capacity FWD 6-speed
transmission. A General Electric 380 kW DC dynamometer was used to drive the
transmission with a General Electric 540 kW AC dynamometer as the transmission
output absorber. The differential in the transmission is welded to allow the
absorbing dyno to control the output speed and torque. Figure 2-1 shows the layout
of the test with the input dyno on the left, transmission in the middle, and output

dyno on the right. The instrumentation will be described in a later section.

§ Telemetry and
- : — o Additional
| " T Instrumentation

Figure 2-1. Transmission test cell layout
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The test stand hardware was designed by a previous graduate student with the
main drawing in Appendix B [24]. The test stand is designed so that only the head
plate and shafting connections have to be customized to the transmission. A

transmission installation, from drain to refill, can be accomplished in 3 hours.

2.1.1 Data Acquisition

The test cell has the capability to record a variety of measurements including
pressures, temperatures, speeds, and torques. Figure 2-2 illustrates how each
component is connected and where each measurement is recorded. In Figure 2-2
the shaded boxes represent physical hardware, while the white boxes are
measurements and controls. Each of the lines represent the flow path of
information for physical, electrical, and trigger connections by solid, long dashed,
and short dashed lines respectively. The Universal data acquisition (DAQ), in the
diagram, records all the measurements. Note, in later sections additions will be

made to the layout to allow for transient measurements.

Trans In Temp
Trans Out Temp | »| Trans In Pressure
Trans Out Pressure —I I_ Qil Flow Rate

—_—————
l I J |Transm|55|on|

L Controller

MT_ .y
| 1 =u
| r—1 | |
Y Y
| Input Torque J Trans Telemetry L Output Torque |
& Speed Hydraulic || Transmitter & Speed
Pressures, A B, C |
| J_ —1 Turbine J
pro e —. Speed, oot —,
*Universal | [Trans Output| :Telemetry)
| baQ Speed | bAaQ :
| _— -
T |
| Test Trigger
— e —— e — — — — — —
—_— Dyno Controller - d
- a
Types of Connections: Start Test Scenario

Physical: =%
Electrical: —_—
Trigger: == m == >
Figure 2-2. Test cell measurement and communication layout
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A Scadas lll was used for data acquisition, referred to as the Universal DAQ. Each
of the channel’s calibrations can be found in Appendix C. The data was recorded
using the parameters in Table 2-1. The speeds are sampled at a higher frequency
because the measurements are a pulse train and the faster the signal is recorded
the higher the accuracy. DAQ parameters dealing with transient measurements
will be discussed in further detail in later sections. A detailed guide on how to use

the DAQ software can be referenced in Appendix D.

Table 2-1. Sampling parameters for each measurement type

Channel Type Sampling Rate
Speed 51,200 Hz
Torque 6,400 Hz

Pressure 6,400 Hz
Flow 6,400 Hz
Temperature 10 Hz

2.1.2 Dyno Controller

The drive and absorbing dynamometers are controlled by a DYN-LOC |V and an
AC2000 IGBT Digital Adjustable Speed Drive controller respectively. A custom
LabVIEW Virtual Instruments (V1) is used to communicate to the dyno controllers.
The VI has three control windows, one for the test cell status, one for manual
operation mode, and one for experiment operation mode. The status screen
contains both dynamometer’s speed and torque, the temperature and pressure of
the inlet and outlet of the transmission, and the flow rate of the oil through the

cooling loop. Figure 2-3 shows the layout for the status screen.
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Test Cell Status

Figure 2-3. Dyno control VI status screen

The dynamometers can be controlled in manual or experimental mode. In manual
mode, each dyno can be placed in speed or torque control. The user then inputs
a speed or torque value and presses commit. Dyno data can be recorded manually
by activating the start/stop button or by setting a time limit that automatically stops
the recording. The manual tab also contains the error status of the dynos to show

any current errors. Figure 2-4 shows the layout of the manual control tab.
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Figure 2-4. Dyno controller manual mode

The experimental mode automates the operation of the dyno commands. The user
writes a script, prior to the test run, by defining speed or torque mode for each
dyno, the control speed/torque command, and how long to hold conditions before
proceeding. Each step can also issue a trigger and record data. Manual record
and dyno status operate the same in manual mode. When running programs, the
data is saved to a predefined file location and can automatically increment the test
file name by selecting the “Auto-increment Filename”. There is also warm up and
cool down cycles built in by assigning a script to each button. Figure 2-5 shows the
layout of the experimental control tab. This is a brief summary of the dyno software
controller capabilities. For a detailed step by step guide reference Appendix E.
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Figure 2-5. Dyno controller experimental mode

The transmission was operated by first starting the input dyno in speed mode with
the output dyno turned off. This allows the transmission to pressurize the
hydraulics before applying any load. Once the transmission is spinning the input
and output can be changed to torque and speed mode respectively. Torque and
speed mode was selected because it mimics how a vehicle operates with the driver
requesting a certain vehicle speed via the throttle. Then the engine provides a

torque based on that throttle and load from the transmission.

2.2 Transmission Instrumentation

The 6-speed FWD transmission has the gear ratios specified in Table 2-2. The

majority of testing was completed using 5" and 6™ gear to reduce the amount of
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output torque that had to be absorbed. The turbine shaft in the transmission and
the hardware used to connect the transmission output shaft to the dyno are the
weakest points in the system. A limit of 450 Nm on the output dyno provides a
safety factor of 2 for both components. The 450 Nm was used as on operation limit

when running tests.

Table 2-2. Transmission gear ratio including final drive

Gear State | Gear Ratio
1st 15.38
2nd 9.95
3rd 6.41
4th 4.85
5th 3.36
6th 2.50
Rev -9.88

Pressure transducers were added to the solenoid body and transaxle case to
measure clutch, control, and line pressures, illustrated in Figure 2-6. The channels
that are recorded from the transmission instrumentation are listed in Table 2-3, but
the channels of interest are Line, TCC Apply, TCC Release, and all clutch
pressures. The other pressures were used for monitoring purposes. All pressures
in the transmission are measured downstream of their respective pressure

regulators.

Figure 2-6. Transmission instrumentation
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Table 2-3. Transmission measured pressures

Operation Pressures Pr(-ejlle;S?es
Trangmission Inlet CB1234
Oil Pressure
Transmission Outlet C35R
Line CB26
rateBled | o
SolenodLne | CBLR
Solenoid Feed
TCC Apply
TCC Release

2.3 Transmission Controller

A solenoid is an electrically controlled valve that controls fluid flow through the
transmission for the purpose of clutch application and torque converter
pressurization. To control the transmission a solenoid controller was required. A
commercial solenoid controller was used at the beginning of the study, but
additional functionality was required later, so a Next Gen controller was developed.

Both control systems will be described to document their capabilities.

2.3.1 Universal Solenoid Driver Il

The Universal Solenoid Driver (USD) Il is a commercial solenoid controller that
sends current to each of the solenoids. The USD Il was used at the beginning of
the research. A 12-volt power supply powers the USD Il. Figure 2-7 shows the
USD Il and power supply mounted in the control tower. The male BNC connectors

on the front of the USB Il are the current outputs to each individual solenoid.
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L

Figure 2-7. USD Il and Next Gen solenoid drivers in tower instrumentation rack

The software used to control the drivers allows the user to manually operate each
driver or run scripts for automation. In the software each driver has a separate
control where the current command can be set between 0 to 255 counts (0 to 1000
mA). Figure 2-8 is a screenshot of the software, where the boxes on the left are

the controls for each driver and on the right are the command buttons.

5] Manual Mode _[al x|
File Sequence ScriptFile Stop Button Help

[Name: PC2 [SSB]
Fixed Mode

[raplernent / Reset x|

[Name: PC3 [SSC]
Fixed Mode Cancel
oo

[Name: PC4 [SSD]

[Fixed Mode
Counts: (]

Slot #: 4VFS

[Name: LPC [Line]

[Fixed Mode
~mts: 1

[Name: 81 [SSE]
[Fixed Mode
o R

Figure 2-8. USD II control software main screen
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To open the solenoid parameters window, double click on one of the driver boxes.

In the parameters window, the controls of interest are: mode selection, duty cycle,

and frequency. The mode selection allows the user to select between a fixed

current command to a built in operation, such a sweeps and steps. The duty cycle

is where the 0 to 255 counts is used to command the desired current. A duty cycle

is used to achieve the current level by changing the percentage the duty cycle is

on. The frequency, set to 66.66 Hz, is not a parameter that changes. Figure 2-9 is

a snapshot of the solenoid parameter window. If additional information about

operating the USD Il controller is needed, reference Appendix F.
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Units
% > HEX counts + DEC counts
v SEND

Figure 2-9. Solenoid parameters window
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2.3.2 Next Gen Transmission Controller

The USD Il is a useful solenoid controller when the transmission is kept in a fixed
gear, but having the capability to shift gears under load was of interest. Although,
the USD Il does have the capability to run scripts the software is time consuming
to create new profiles and a more versatile software was necessary. The Next Gen
transmission controller includes all the functionality of the USD II, but also allows

for gear shifting and trigger activation.

The Next Gen solenoid driver and LabVIEW VI, called SOL Commander, was
developed by Ford. SOL commander continued to undergo development
throughout the project by both Ford and the MTU team. SOL Commander sends
a command to the Next Gen solenoid driver box via a National Instruments card.
An equivalent amount of current is then sent to the solenoid. The Next Gen driver
is powered by the 12-volt power supply and both can be seen in Figure 2-7. The
amount of current being sent to the solenoids was measured from BNC outputs on

the driver.

Sol Commander started with the ability to control each solenoid separately to
active a fixed gear, same as the USD II. Each solenoid can have a different high
and low value and sweep between those values for a specified amount of time and
repeat the sweep the predefined number of times. This is useful for solenoid
control development, but for this research the sweep function was only used for
TCC application and release. Figure 2-10 shows the layout of the solenoid control
tab. The graph in the middle shows how the selected solenoid is operating. The
stacked plots on the right show what each solenoid is doing based on the shift
schedule that is loaded. The light and value indicators next to each of the graphs
show which solenoid is active and the current command value. The commands
can be implemented without sending to the transmission and this is done by
selecting the ENGAGE/DISENGAGE button.
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Figure 2-10. Individual solenoid control window

The second tab in the Sol Commander is the Shift Schedule selector and modifier.
In the shift schedule window, a schedule can be made to select which solenoids
are active for each gear. This schedule can be saved and reloaded for future use.
The shifting lever, in the center, determines the gear state and selects which
column of solenoids to activate. Loading the solenoid schedule is done prior to
spinning the transmission. Figure 2-11 is an example of how a shift schedule will
appear in the shift schedule tab. Both the solenoids and shift schedule tabs were

developed and provided by Ford.
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Figure 2-11. Solenoid shift schedule window

The additional capability to load solenoid profiles and activate based on a trigger
were required to complete the research. These were additions made to the SOL
Commander by the MTU team. An additional tab was added called Shift Profile.
Under shift profile, a stack plot was added to show a profile of each solenoid. These
profiles can be loaded for each gear having different profiles for upshifts and
downshifts. Once profiles are loaded for each gear, the set can be saved as a

group and reloaded for future use.

With the profiles loaded, they can be activated manually by moving the shifting
lever or by using the trigger activation. The user specifies if an upshift or downshift
should occur once the trigger is activated. The trigger activation is armed by
pressing Activate on Trigger, which then disables majority of the controls, except

the ability to cancel. This is a built in safety feature to ensure no unwanted changes
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are made while the SOL Commander waits for the trigger. Once the trigger is
activated, the shift profiles run and hold the last value until a new command occurs.
Figure 2-12 shows the layout of the shift profile tab. For a detailed operation guide

of SOL Commander reference Appendix G.

Solencids | Shift Schedule | Shift Profile ‘
1300

Gear State

ssacenimal N delta Time (ms)
SSB C35R [ma]
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Time SSE ON/OFF [ma]

Tcc
SSE

(((((

[ )V .. saean
SendtoSolenoids | > Engage | [ Resetall

71'

Figure 2-12. Shift profile and trigger activation window

2.4 Torque Converter Instrumentation

The torque converter was instrumented with 29 pressure transducers, 7 on the
cover and impeller, 7 on the stator, and 15 on the turbine and clutch. Transducers
were spread over multiple blades to reduce the impact the wiring and transducers
has on the flow characteristics. Two types of pressure transducers were used on
the torque converter. The Kulite XCEL-072 and Kulite LE-160 were used and can
handle operating temperature up to 235°C and a maximum Full Scale Output
(FSO) hysteresis of +0.5%. For the transducer’s specifications reference Appendix
H. Only three transmitters were used for all 29 transducers due to packaging
limitations inside the torque converter. Each transmitter transmits multiplexed data
for approximately 1 second for each transducer. Table 2-4 summarizes the

specifications for each of the transmitters.
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Table 2-4. Transmitter specifications [41]

. Number of Time Per Channel Torque Conve_rter
Transmitter Instrumentation
Channels [sec] .
Locations
Impeller and
7 1
Cover
B 7 1.013 Stator
Turbine and
C 15 1.006 Clutch Plate

An example of how the multiplexed data appears is shown in Figure 2-13. The
instrumentation was completed by IR Telemetrics located in Hancock, MI.
Telemetry was used to transmit the data allowing the torque converter to operate

normally in the transmission, which will be described in the following sections.

Ch1 Ch4 Ch1 Ch4

o) Ch2 Chs ch7 Ch2 Chs Ch7

= Ch3 Ché Ch3 Ché

=

g

3

- Marker Marker

« Time [sec] >
Figure 2-13. Example multiplexed data stream for 7 channels [41]
2.41 Impeller and Cover

Transmitter A includes 7 pressure transducers: 3 on the cover, 3 between the
impeller blades, and 1 between the impeller and turbine. Figure 2-14 illustrates the
instrumentation locations on the impeller and cover. The channel names with
square boxes are measuring the clutch cavity while those with a chamfered box

are measuring the impeller.
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Figure 2-14. Transmitter A instrumentation locations [19]

Instrumentation hardware for transmitter A is located on the outside of the cover.
This makes it the most reliable signal because the antennas in the bell house of
the transmission can pick up the signal easily. Figure 2-15 shows the hardware

located on the outside of the torque converter cover.

Figure 2-15. Transmitter A hardware for power supply and transmitter [24]
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2.4.2 Stator

Transmitter C includes 7 pressure transducers which are all located on the stator
blades. Figure 2-16 illustrates the instrumentation locations on the stator. Three
radial locations were measured across the blade. Channels near the core, blade
middle, and shell are represented by square, dashed, and chamfered boxes
respectively. Measurements were also taken on the pressure and suction side of

the blade represented by solid and hollow circles respectively.

Figure 2-16. Transmitter B instrumentation locations [19]

All the transmitters are powered via induction coils which allows for a wireless
power supply. This allows each component to spin normally without any wire
interference. Transmitter B’s induction coil is mounted below the stator blades, as

seen in Figure 2-17.
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Figure 2-17. Transmitter B induction coils and transmitter hardware [24]

For the signal to be transmitted from the inside of the torque converter, multiple
reradiating slots were cut into the impeller shell, as seen in Figure 2-18. The slot

is covered by Kevlar sheets on both sides allowing for signal to transmit through
without ATF leakage.

\ | External induction
ﬂpower supply mounted
{ onTC cover

Signal slot

Figure 2-18. Signal slot for transmitter B cut in impeller shell [24]
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2.4.3 Turbine and Clutch Plate

Transmitter C includes 15 transducers, 6 on the turbine blades and 9 on the clutch
plate/cavities. Figure 2-19 illustrates the instrumentation locations on the turbine
and clutch plate. The transducers on the turbine blade are represented by
chamfered boxes and solid and hollow triangles for pressure and suction sides of
the blade respectively. The transducers measuring the clutch plate and cavities

are represented by square and dashed boxes respectively.

-------------

____________

A S-Side
A P-Side

f ‘ 7 (o707
1 1
1 TCHOZ7 1 1 TCH13 !

Figure 2-19. Transmitter C instrumentation locations [19]

Instrumentation of the turbine and clutch plate was the most complicated due to
their location and functionality. Figure 2-20 shows the transmitters and induction
coils mounted to the clutch plate. The instrumentation on the clutch plate is
powered directly from the induction coil mounted to the plate, but the turbine

required pin connections to transmit the power and signals.
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Figure 2-20 Transmitter C induction coils [24]

Figure 2-21 shows the pin connections used to transmit power and communication
with the turbine. These pins are designed to float allowing the clutch plate to move

axially giving the ability to apply and disengage the clutch normally.
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Figure 2-21. Transmitter C induction coils and transmitter connections [24]

Two connector pin arrays were used to have redundancy, ensuring that power and

communication will always be active. Figure 2-22 shows the pin arrays mounted

to the shell of the turbine.
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Figure 2-22. Hardware for power and signal connections to transmitter B & C [24]

To transmit the data, slits had to be cut on the clutch plate and cover. Only one slit
was required on the clutch plate because the transmitters are rigidly mounted to
the plate. Multiple slits were cut around the cover providing a better opportunity for
the signal to escape the torque converter and reach an antenna mounted to the
transmission. All the slits are covered with the same Kevlar patches as on the
impeller shell. Figure 2-23 shows the slit location on the clutch plate and cover.
Photos of all the physical transducer locations and telemetry hardware can be

found in Appendix I.

Two antenna
sheets on the
pressure plate

Outer slot covered by
antenna sheet on the
inside of TC cover

Figure 2-23. Signal slot for transmitter C cut in cover [24]
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3 Methods

Multiple procedures were developed throughout this study to improve test cell
functionality and accuracy of mimicking in vehicle operation. The procedures are
broken into steady state and transient testing. The following sections describes
how each method was used and how the data is analyzed.

3.1 Steady State Testing and Analysis

Steady state testing was implemented first in the test cell to better understand the
operation of the transmission and torque converter. The instrumentation in the
torque converter is also ideal for steady state testing because of the multiplexed
data. This is because when running at steady state the conditions are assumed to
be constant and only one cycle through the channels are required to get the
pressure measurements. The software, provided by IR Telemetrics, also outputs
a document with the steady state pressure values for each channel. With the
pressure values broken up by channel, the analysis becomes trivial. The steady
state tests were used as a datum for TCC pressures, but the measurements of

real interest were transient maneuvers.

3.2 Transient Testing

To be able to take transient measurements with the multiplexed pressure data, a
method to repeat the transient event, shift the telemetry recording time, and the
ability to sync the operational and pressure data was required. The following
sections described the procedure and hardware that was developed to achieve
transient testing.
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3.2.1 Trigger Offset Module

The hardware and electronics that must be able to communicate to achieve
transient maneuvers include the transmission, dynamometer controls, telemetry
system, and universal DAQ. Figure 3-1 shows the flow of information between all
the above components with the solid, long dashed, and red short dashed lines
representing physical, electrical, and trigger connections respectively. Note that
the trigger offset module (TOM) and the delayed trigger communications are the
additions to the test cell from the previous layout that allows the test cell to acquire
transient data. Without these components, the test cell would only be capable of

collecting steady state data.
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Figure 3-1. Test cell measurement and communications with transient

capabilities
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The TOM consists of an Arduino Mega 2560, a liquid crystal display (LCD),
keypad, and three BNC jacks. The module is shown in Figure 3-2 with each of the
components labeled. The signal from transmitter A is fed into the input BNC jack
where the Arduino monitors the signal for a marker. When a marker is identified a
countdown is displayed on the LCD for the predefined time that was inputted
through the keypad (ex. 1 sec, 2sec, 3sec). When the countdown completes, a

trigger is sent to the telemetry DAQ and transmission controller.
Input: Telemetry Signal  Output: Delayed Trigger
Display —

\Delay Input &
Countdown

Figure 3-2. Trigger Offset Module (TOM)
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3.2.2 Test Scripting

A test script allows the transient event to be repeated by commanding either
dynamometer, transmission, or a combination of the two to complete a maneuver.
Manual operation can be done for very basic maneuvers, but is not recommended
because the possibility for repeatability error increases. The test script can vary
from a basic script, such as only sweeping input speed, to a complicated script,
where the input and output dynamometers change speed or torque with the

transmission shifting gears.

3.2.3 Data Acquisition Parameters

When working with triggered transient events, extra consideration and
understanding is necessary to preserve the integrity and quality of the
measurement. ldeally, the event channel sampling should be 180 samples per
cycle of the highest frequency of interest [42]. As the frequency of importance
increases towards Nyquist, the phase error will increase. The phase error in
transient acquisition is related to the sensing of the trigger event since an event
cannot be identified until the delta-t after it occurred. Phase errors due to triggering
will cause an offset between each of the channels in post processing. If timing
between channels is important the triggering error must be minimized. The
acquisition of channels which are not transient in nature can be sampled at a
reduced rate to improve data storage efficiency. Table 3-1 describes the
parameters used for testing. The maximum error that can be seen due to trigger
accuracy at 51.2 kHz is 20 microseconds. This is doubled to 40 microseconds due
to the use of two triggers per transient event. A maximum 40 microsecond delay
with the slowest telemetry sampling frequency of 11.5 kHz results in the phase
error shown in Figure 3-3. Frequencies of interest in this study are below 100 Hz
where the phase error is minimal thus no significant errors due to triggering are

anticipated.
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Table 3-1. Sampling frequency for each type of data

Transient Event 51 2 kHz
Data

Monitoring Data 6.4 kHz
Telemetry Data 11.5-32 kHz
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Figure 3-3. Phase error based on 11.5 kHz sampling frequency

3.2.4 Channel Offsetting

Channel offsetting is the process of shifting the start time when the telemetry
records data with respect to the start of the transient event. This gives the ability
to change which channel is the first in the data set. The test is repeated 16 times
to capture the transient maneuver on all the channels. 16 tests are required
because transmitter C has 15 channels plus 1 marker. Transmitter A and B only
require 8 repetitions of the test due to 7 channels plus 1 marker. Figure 3-4
illustrates a transient maneuver of sweeping input speed and how each test run is
offset by 1 channel. By changing which channel the maneuver begins on, different
channels will observe different portions of the transient event. The transient event
can be any length of time because the telemetry will continue to repeat recording
until the end of the test. A transient event of 0.5 or 30 seconds will require the

same number of test runs to capture the total event on every channel.
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Figure 3-4. Channel offset procedure

3.2.5 Testing Procedure

To collect a data set, a six step process occurs for each test run. Before running,
the test script must be ready to start and the TOM must have the required trigger
delay for that run. The six step process is broken down into a flow chart shown in
Figure 3-5. The first step is to sync the three transmitters by power cycling the
system. All three transmitters run off a single power supply allowing for all three
transmitters to be turned on simultaneously. To fully discharge the transmitters a
two-minute power off cycle is required, which is due to capacitors throughout the
system. This causes the transmitters to start on the same channel every time. If
this step is skipped, the telemetry data will start on a random channel and capturing

the transient event on every channel will not be possible.
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1. Sync Telemetry Transmitters
(Power Supply ON/OFF)

Telemetry Signal

2. Trigger Offset Module

i
Delayed Trigger

3. Operator
Watching
Countdown

4. Telemetry & Universal
DAQ Start Recording on
Delayed Trigger

5. Test Script
Start

l

6. Transient
Event Occurs

Figure 3-5. Testing procedure flow diagram

Once the transmitters are synched and powered back on, one telemetry signal is
monitored by the TOM looking for the first marker. The telemetry signal used in
this case was transmitter A because it contained the fewest number of dropouts,

reducing the possibility of false markers.

When a marker occurs, the TOM will countdown the predefined delay time. Once
the countdown is complete, triggers are sent to the telemetry receivers and
universal DAQ to begin recording for a specified amount of time. The operator also
starts the test script from watching the LCD on the TOM upon completion of the
countdown. The test script will begin to run and initiate the transient event, which
is then captured on the telemetry receiver and universal DAQ. This process is then
repeated the 16 times to fully capture the transient event by shifting the TOM delay

time by 1 sec per run.
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3.3 Transient Data Post Processing

Once a full set of test runs have been completed the data must go through multiple
processing steps to create a useable time history. This process involves dropout
removal, uniform resampling, channel identification, and a channel stitching

process.

3.3.1 Signal Dropout Removal

Dropouts are the loss of signal in the telemetry data which results in a false
recorded signal. These dropouts are caused by the transmitted signal having to
pass through the reradiating slots through the clutch plate and cover. Transmitter
A has the least amount of dropouts because the transmitted signal is on the outside
of the cover. The dropouts are one to three data points in length averaging 0.1

milliseconds of signal loss.

To remove dropouts, all data points outside of 3 standard deviations of the local
mean were identified. A 3 standard deviation range was chosen because
statistically 99.7% of the possible mean values will fall in this range [43]. No issues
were found with using this technique for the transition between channels. Once the
dropouts were identified, they were removed and replaced with the local mean.
Figure 3-6 is an example of transmitter B’s raw data stream and the dropout
removal processed data.
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Figure 3-6. Raw data trace with dropouts (top), dropout removed trace (bottom)

3.3.2 Uniform Resampling

The instrumented torque converter was developed by IR Telemetrics with their
patented telemetric signal evolution process. Figure 3-7 illustrates how the signal
is measured by the transducer, converted to a pulse width modulated (PWM)
signal, and transmitted as a microwave signal. The square wave frequency is then

recorded and reconstructed back to the original signal.
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IR Telemetrics Signal Evolution Diogram
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Figure 3-7. IR Telemetrics signal evolution diagram [44]




The reconstructed signal does not have a uniform sampling rate because a sample
is taken on every rising edge of the square wave. The frequency of the square
wave is directly proportional to the measured pressure, so as the pressure
increases so does the frequency. Figure 3-8 is an example of where the samples
are taken on the square wave, represented by stars, and shows how the sampling

rate varies with frequency.

The data was resampled to a constant sampling frequency of 52 kHz by using a
cubic spline interpolation. A uniform time vector was made and a value was
interpolated at each new time interval. The uniform resampling allows for easier

manipulation of the data for later processing and analysis.

Square Wave Frequency (10-60 kHz>

Frequency
e
9.7
97

Figure 3-8. Telemetry sampling procedure [44]

3.3.3 Channel Identification

To identify each of the channels, the marker starts and ends are required. The
channel length can be calculated by determining the marker length from the marker
start and end values for that transmitter. This accounts for the slight time per
channel variation between each of the transmitters. The data goes through a two-
step process where full channel sets are processed first and then partial channel
sets second. The full channel sets are when all 7 or 15 channels were recorded,
this is determined by a marker end to marker start. The channel set is then broken
into individual channels based on the marker length. Finally, 1% of the data points
are removed from the ends of each channel to ensure that no false data is saved
from the channel transitions. Figure 3-9 shows the channel sets and how the

channels appear after channel identification processing.
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Figure 3-9. Channel groups (top), individual channel breakdown (bottom)

The partial channel sets are only going to occur at the beginning and end of the
test run. The partial channel sets go through a similar process as the full sets, but
instead of using the marker start and end values, the beginning and end time of
the data set are used. The number of complete channels are then calculated using
the length of the marker. Then, all the complete channels are split based off of the
first and last marker for the beginning and end partial sets respectively. Again, 1%

of the data on each of the channels are removed, as illustrated in Figure 3-10.
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Figure 3-10. Data removal from start and end of channel

3.3.4 Channel Organization

The channel identification process is completed with each test run, which consists
of separating all the channels from a test run into their respective channels. For
example, all the channel 1’s and 2’s will be grouped separately into their two
respective groups. Once all the channels have been organized into the proper
groups, an ordering process is applied. The ordering is determined by the time
vectors that are associated with each of the individual channels and organized
chronologically. This ordering connects each channel creating a “continuous” time
trace. Figure 3-11 shows an example of how channel 1 was pulled from each of

the test runs and organized in the proper order.
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Figure 3-11. Channel 1 from each run stitched into a time trace
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The data processing will produce 7 or 15 individual traces depending on the
number of channels for that transmitter. Figure 3-12 shows the fully processed
data for all 7 channels of transmitter A. It is important to note that each of the
channel time histories appear to be continuous, but there are still discontinuities in
the data and cannot be treated as one continuous data set. This is mainly a
concern if additional post processing on the data is of interest, such as converting
to the frequency domain. The time histories can then be synced to the universal
DAQ data for further processing and analysis.
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Figure 3-12. Example of all channels for transmitter A after post processing

The data can still be converted to the frequency domain as long as data blocks
from the original 1 second recording are used and do not span across runs. Figure
3-11 illustrates the blocks of data that can be used for converting to the frequency
domain. Figure 3-13 is an example Fast Fourier Transform (FFT) colormap that

was created using channel 2 from transmitter A.
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Figure 3-13. FFT colormap of channel 2 from transmitter A

3.4 Back Drive Test Development

Back driving occurs when the power flow in the transmission is reversed where the
output is driving the input. This can occur when cruising down a hill without
applying the brakes or throttle. The vehicle speed increases down the hill due to
the weight of the vehicle instead of power generated by the engine. The engine is
at idle speed but since the output of the transmission is going faster than the input
a back drive condition occurs. During back drive an open torque converter can see
speed ratios larger than 1, while a locked torque converter will drive the input

engine speed up.

To create a back drive condition in the test cell, the drive dyno was set to torque
mode and the absorbing dyno to speed mode. The absorbing dyno was set to a
constant output speed, while the drive dyno oscillated between a positive and
negative torque representing engine driving the transmission and transmission
driving the engine respectively. The drive dyno did not have the capability to

operate at a constant negative torque due to being a DC dyno. Figure 3-14 is an
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example of a positive 45 to -45 Nm test where the dashed lines represent the input
and output torque and the solid lines representing the impeller and turbine speed.

All the back drive tests were completed in 5™ gear.
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Figure 3-14. Dyno operation between positive and negative torque

Using this back drive method, speed ratios between 0.96 and 1.3 can be achieved.
Figure 3-15 shows the speed ratios that are achieved from the test scenario shown
in Figure 3-14. By creating test scripts, as described earlier, the speed ratios can
be reproduced repeatability.
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Figure 3-15. Back drive speed ratios
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3.5 Gear Shifting

3.5.1 Transmission Power Flow

Before calibrating for a gear shift an understanding of the layout and power flow of
the transmission is required. Figure 3-16 is a stick diagram of the 6 speed
transmission understudy. There are three planetary gear sets and six clutches.
The power flow starts on the left from the turbine shaft as the input of the
transmission. Depending on the combination of clutches the power will be
transmitted across the three planetary gear sets creating different gear ratios. The
output is a chain drive to the final drive ending on the left of Figure 3-16. By
visualizing the transmission power flow, an understanding between oncoming and

off-going clutches for calibration becomes clearer.
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Figure 3-16. Stick diagram of transmission under study
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3.5.2 Calibration Strategy

The work done with gear shift calibration was to mimic previous vehicle shift
maneuvers as closely as possible. It is important to note that the calibrations used
for these tests where modified to accommodate the test cell and were not
developed by a transmission calibration engineer. This results in calibrations that
are good for representing the hydraulic interaction during a shift but may not be

vehicle quality shifts.

The combination of clutches that are on and off determines the gear ratio of the
planetary gear sets. The simplest strategy to transition from one gear to the next
is by having one off-going clutch and one oncoming clutch. Off-going and
oncoming mean that a clutch is losing or gaining capacity to hold torque, which is
controlled by the clutch pressure. There are four shifts types that can occur in an
automatic transmission: power-on upshift, power-on downshift, power-off upshift,
and power-off downshift [4]. Power-on means that the input driver is applying
power to the transmission, while power-off is low or no throttle conditions where
there is no power to the transmission. This study only looked at power-on upshifts
and downshifts. Each shifting strategy uses similar principles but there are some

slight differences.

During a shift there are two phases that occur, torque and inertia phase. Torque
phase is when the torque is being transferred from one clutch to another without
having an input speed change. Inertia phase is when the input speed changes
from the starting gear speed to the ending gear speed. During inertia phase, the
inertia of the input is playing a role in the final amount of transitional torque that the

on-coming clutch must carry.

For this study the input torque and output speed were held constant. Having a
constant output speed is not abnormal during a gear shift because of the large

vehicle mass, but ideally the input torque would have additional torque
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management to get a constant output torque. Having a constant input torque was
done to simplify the maneuver and reduce calibration time, but still retained the
key hydraulic information of interest. An example of a typical power-on upshift
calibration strategy, used for this study, is shown Figure 3-17. During the torque
phase the off-going clutch decreases to zero while the on-coming clutch increases
to hold input torque capacity. At the end of torque phase, the end gear state is
achieved and the output torque decreases to the end gear state torque value. Once
inertia phase begins the input speed decreases causing a large torque fluctuation
in the output torque. The oncoming clutch has to increase torque capacity to
accommodate the output torque fluctuation until the input speed reaches the end
gear speed. At the end of inertia phase, the oncoming torque capacity is reduced

because the output torque is reduced.

Upshift

Input Speed

Input Torque

Output Torque

Offg Torque

Onc Torque

Torque Phase Inertia Phase

Figure 3-17. Power-on upshift calibration strategy for constant input torque
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A power-on downshift is the reversed process of completing a power-on upshift.
The downshift first begins with the inertia phase with an input speed increase. Due
to a constant input torque, the output torque drops caused by a reduction in off-
going clutch torque capacity to allow input speed to increase. At start of torque
phase, the input speed has reached the end gear state speed. The off-going clutch
torque capacity increases to stop the input speed from increasing. The off-going
clutch then reduces torque capacity as the on-coming clutch torque capacity
increases. The output torque increases with the oncoming clutch until the end gear
has been reached. Figure 3-18 illustrates the calibration strategy for a power-on
downshift.

Downshift

Input Speed

Input Torque

Output Torque

Offg Torque

Onc Torque

Inertia Phase Torque Phase

Figure 3-18. Power-on downshift calibration strategy for constant input torque
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3.5.3 AmeSIM Transmission Model

A 1-D model of the transmission was built in LMS Amesim to develop shift profiles
before attempting with the hardware. The model consists of the transmission
inertias, stiffness, damping, planetary gears, and friction clutches. The component
connection layout can be seen in Figure 3-19. This model does not contain a torque
converter model, so the shift represents what occurs when the TCC is applied.
Having the TCC applied is the worst case scenario for torque fluctuation during a
gear shift because the large input dyno inertia has a big impact on the torque
fluctuation during the inertia phase of the shift. When the torque converter is open,
the input and output dynos are not mechanically coupled and free to transition
slowly. The model was used to reduce the fluctuation while mimicking the shift
calibration profile from the vehicle data.

Command 81234
k [ 3 (]

Current to Solenoid Pressure to Clutch
Pressure Conversion Torque Capacity Conversion

Figure 3-19. Transmission 1-D model layout
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3.5.3.1 Shift Model Parameters

The parameters that were used in the model are estimates for mass and stiffness
of the transmission components. To control the clutches, a conversion from
electrical current command to pressure and then pressure to clutch friction torque
was done. Figure 3-20 show the calibration curves that were used for both normally

low and high solenoids to convert from a current command to a pressure.

Pressure [kPa]

200 300 400 500 600 700 800

Current Command [mA]

—— Normally Low Solenoid —@— Normally High Solenoid

Figure 3-20. Current command conversion to pressure

The pressure is then fed into a calibration curve for each clutch. The calibration
curves are dependent on the gear state because each clutch has to hold a different

amount of torque based on the gear ratio. Figure 3-21 are the calibration curves
for clutches C456 and CB26 for 6" gear.
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Torque [Nm]
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Pressure [kPa]
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Figure 3-21. Solenoid pressure conversion to friction clutch torque capacity

3.5.3.2 Shift profiles

The starting shifting profiles were taken from vehicle data based off the regulator
pressure. Multiple shifts from the data were averaged to get a general shift profile.
The pressure was then converted to a current command. A profile was made for
each of the clutches. Figure 3-22 and Figure 3-23 are example current command
profiles for the oncoming clutch controlled by a normally low or high solenoid
respectively. The off-going clutches were calibrated to decrease capacity linearly
during the torque phase following the same calibration strategies that were

discussed above in Figure 3-17 and Figure 3-18.
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Current [mA]

Time [sec]

—Ford Cal

Figure 3-22. Example current command profile for a normally low solenoid

Current [mA]

Time [sec]

—rFord Cal

Figure 3-23. Example current command profile for a normally high solenoid
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3.5.3.3 Shift Model Results

Both speed and torque for the input and output are taken from the model to verify
that the shift is properly calibrated. The output torque is the main concern to ensure
that the limit of 450 Nm is not exceeded. The input speed is also of interest to see
how long the shift takes. Ideally the transition period for the input speed should
take between 0.3-0.6 seconds. Due to the large inertia from the input dyno these
times were not met but kept in mind to get the shift as short as possible without
damaging the transmission. Figure 3-24 are the results from the model for a

downshift.
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[null] CB26 Command Torque [Nm]
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0 T T T T T T T "1
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1.0 1.2 1.4 1.6 1.8 2.0 2.2 24 2.6 2.8
X: Time [s]
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[Nm] — Output Torque [Nm]
400 7

] j/‘—:

200

L e
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V2 =TT T T T T T T T 1
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X: Time [s]

Figure 3-24. Example model results of a downshift from 6th to 5th gear
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3.5.4 Dyno Torque Management

Once the shift profile is finalized, the profile is then taken to the test cell to verify
the shift is occurring properly. Torque management was also developed to
compensate for the large output fluctuation that was seen in the above shift
calibration strategy. Torque management is accomplished by writing a script that
changes the input dyno torque as the transmission is shifting. The torque
management and shift are synced by a trigger that activates the shift once the dyno
script has been initiated. With torque management the output torque can be
reduced to a smooth transitional torque reduction. Figure 3-25 illustrates the
calibration strategy for adding torque management to an upshift. During an upshift
the input torque is reduced during the inertia phase to help decrease the input
speed. Once inertia phase is over the input torque returns to the starting torque

value.

Upshift with Torque Management

Input Speed

Input Torque

Output Torque

Offg Torque

Onc Torque

Torque Phase Inertia Phase

Figure 3-25. Upshift calibration strategy with torque management
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A similar torque management strategy is used for downshifts. The difference is
during the inertia phase, instead of an input torque reduction there is a torque
increase. By increasing the input torque this helps increase the input speed. Once
inertia phase is completed, the input torque returns to the starting torque through
the torque phase. Note for vehicle shift calibration the ideal output torque is kept
constant throughout for drivability and driver comfort. The output torque was not
kept constant for the tests because the more complex torque management
strategy could not be replicated well due to the slow response of the

dynamometers.

Downshift with Torque Management

Input Speed

Input Torque

Output Torque /

Offg Torque

Onc Torque

Inertia Phase Torque Phase

Figure 3-26. Downshift calibration strategy with torque management
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3.6 Torque Converter Clutch Controls

The TCC was controlled by using the SOL Commander software. SOL
Commander has the capability to do steady state and transient TCC testing. For
the scope of this research all TCC testing was done as steady state in released,
slipping, or applied. The slipping conditions were determined manually by adjusting
the slip between the input and turbine speed until the desired amount of slip was
met. The command current needed to get a specific amount of slip under certain
load is repeatable and can be used with the transient testing methods that were

discussed in previous sections.
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4 Results

A variety of test scenarios were completed for this study. A summary of the tests

that are presented in the following sections are given in Table 4-1.

Table 4-1. Summary of tests and operating conditions

Operating Conditions

Input Dyno Output Dyno Transmission
Test Name Purpose [Speed or Torque | [Speed or Torque | Gear State
Mode] Mode]

Steady State Tests

To acquire a baseline
pressure for each channel

Zero Load Pressure | without loading effects, only Speed Mode- Freewheeling 5th
- 500-3000 RPM
charge and centripetal
pressure.
To ensure that a constant
Control and religﬁ?rsoTlprZZg::Z t;?ttv[\::en Torque Mode- Speed Mode- 6th
Application Pressure P 20-120 Nm Constant 400 RPM

regulator to the application
pressure in the TC
To validate the pressure
measurements on the TCC | Torque Mode- Speed Mode- 6th
compared to preivious work 20-120 Nm Constant 400 RPM
and design requirements

TCC Clutch Capacity
and Friction Material
Coeffcient

To understand the centripetal
impact on the measurements

. ; Torque Mode- Speed Mode-
Centripetal Pressure| and to seg how consstgnt 30-100 Nm 100-400 RPM 5th, 6th
the centriptal pessure is
across a variety of conditions
To visualize the pressure
Clutch Pressures | profile across the TCC and | Torque Mode- Speed Mode- 5th 6th
and Force calculate the resultant force 30-100 Nm 100-400 RPM ’
acting on the TCC
Transient Tests
To understand how an open
. TC pressures can fluctuate Torque Mode- Speed Mode-
Back Drive when turbine is driving 45 to -45 Nm | Constant 500 RPM Sth
impeller
Cruising Speed Baseline shift events where
Power-c?n Upp and transmission hyrdualics have | Torque Mode- Speed Mode- 5th-6th
enough capacity to feed all 30 Nm Constant 500 RPM

Downshifts
systems properly

To observe possible
hyrdualic deficiencies and Torque Mode- Speed Mode- 5th-6th
what systems may have 30 and 100 Nm | Constant 400 RPM

reduced capacity

Low Speed Power-
on Up and
Downshifts
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4.1 Steady State

Steady state testing was conducted to build a base understanding of the systems
normal operating conditions. The steady state results provide a datum to compare

to the transient tests to see if abnormalities occur and if relations can be connected.

4.1.1 Torque Converter Performance Validation

To validate that the torque converter was operating according to specification a
performance test was conducted. Speed ratios were tested from 0.1-0.9 by
keeping a constant 75 Nm input torque and changing the output speed with the
transmission in 5" gear. Figure 4-1 shows the results for the torque converter
performance test. The lower solid curve is the K-factor specifications with the
tolerance limits shown by dashed lines with the test data overlaid as the gray line
with circle markers. The upper curve is the torque ratio using the same formatting
as the K-factor for specification and tolerance limits. Both curves are within the

tolerance limits so the torque converter was deemed to be operating properly.

Torque Ratio

K-Factor (SI)
Torque Ratio

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Speed Ratio

Figure 4-1. Torque converter performance validation
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4.1.2 Zero Load Pressure

Determining the pressures of the torque converter when the transmission is in zero
load condition provides the baseline for pressure based on charge and centripetal
pressure. This baseline can be compared to loaded conditions to compare
variations in the pressure. The transmission was placed in neutral with a constant
line pressure current command. The input speed was swept from 750-3000 RPM
with the output dynamometer freewheeling. Results for TCC released, slipping,
and applied can be seen in Figure 4-2, Figure 4-3, and Figure 4-4 for the impeller,
stator and turbine respectively. Each figure contains the line and charge pressure
where the line pressure is the feed pressure for the whole transmission and the
charge pressure is the feed pressure for only the torque converter. As the speed

increases so does the pressure which is due to the centripetal pressure change.
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Figure 4-2. Zero load transmission pressure values for impeller and cover: top to
bottom- TCC Released, TCC Applied, TCC Slipping
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Figure 4-3. Zero load transmission pressure values for stator: top to bottom- TCC
Released, TCC Applied, TCC Slipping
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Figure 4-4. Zero load transmission pressure values for turbine and TCC: top to
bottom- TCC Released, TCC Applied, TCC Slipping

67



4.1.2.1 Centripetal Pressure

A test was done to see how the much variation there is in the charge pressure
when running a constant current command instead of a constant pressure. This is
of interest because the transmission controls are open looped and have no
feedback. Without any feedback the pressure would have to be manually adjusted
for each test condition. Figure 4-5 shows the results of the pressure change for
line and TCC control as a function of speed. The target line pressure was 1172
kPa (170 PSI) and was set for 1500 RPM as majority of the testing will occur
between 1000-2000 RPM. At 500 RPM the charge pressure is low and this is due
the system not having the capability to pressurize the torque converter. This is not
a concern because this is below idle speed of an engine and will not be an area of
testing.

1600

1400

1200

-
o
(=)
o

Pressure [kPa]
[e:]
o
o

0 500 1000 1500 2000 2500 3000 3500
Input Speed
— —Constant Line Pressure —— Constant Current Command Line

— —Constant TCC Release Pressure Constant Current Command TCC Release

Figure 4-5. Line (top) and TCC control (bottom) pressures
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To normalize the data, the charge pressure was removed to show the centripetal
component of the pressure. Figure 4-6 is an example of how the centripetal
pressures are radially and speed dependent. The larger the radial location and
speed the higher the centripetal pressure. This trend follows for all other sensors

on the stator, turbine, and TCC.
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Figure 4-6. Centripetal pressure for each impeller and cover channel

4.1.2.2 Centripetal Pressure Calculation and Accuracy

The centripetal pressure was calculated using Equation 4-1 and Equation 4-2.
Equation 4-1 calculates the pressure at each radius based on the oil density p,
radial location r, oil feed starting radius ro, charge pressure Pcharge, and the angular
velocity w. The angular velocity is calculated using Equation 4-2 where N is
rotational speed in revolutions per minute. Note that the angular velocity and radial
location are squared which is seen in the centripetal pressure results seen in

Figure 4-6.



1 ; _
P(r) = EP(UZ(TZ _ 7'02) + Pcharge Equation 4-1
2 .
w=N * 675 Equation 4-2

A pressure was calculated for each instrumented location and compared to the
test results. The associated error for each channel can be seen in Figure 4-7. In
summary the calculated pressures are within £15% of measured value. The errors
show an underestimate in pressure at lower speeds and overestimate in pressure
at higher speeds. This calculation can be used for initial design to give estimate
pressures because of how quick results can be calculated. For final designs a more
technical model should be used for final pressure values. This equation will be

used as a comparison in later analyzes as a design comparison.

It is important to note that these calculations are valid for when the torque converter
is operating past the coupling point and not in torque multiplication mode. In torque

multiplication there are additional fluid dynamics that contribute to the pressure.
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Figure 4-7. Calculation error for each channel compared to test results
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4.1.3 TCC Control and Charge Pressure

A study was conducted to characterize the interaction of the TCC control pressure
and the pressures seen in the torque converter. This test was completed with the
TCC slipping at a constant 20 RPM varying input torque from 20-120 Nm and a
constant output speed of 400 RPM in 6" gear. The test showed that the torque
converter internal pressure is constant in relationship to the charge pressure at a
constant output speed. This was done as a validation study to ensure that the
understanding of how the torque converter may vary was recorded. The results for
all three transmitters are shown in Figure 4-8, Figure 4-9, and Figure 4-10 are the
results of the measured pressure minus the charge pressure for the impeller/cover,
stator, and turbine/TCC respectively. The dashed lines are the channels that are
in the torus or between the TCC and turbine shell. The solid lines are the channels
between the TCC and cover. The results show that the dashed line pressures have
a constant centripetal pressure across the range of charge pressures, while the
solid line pressures decrease. This is due to the charge pressure is only seen by
the dashed line channels because the TCC is applied cutting off the charge
pressure from the solid line pressures. Since the charge pressure increases a

larger difference is seen when compared to the solid line pressures.
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Figure 4-8. Impeller and cover centripetal pressures across multiple TCC control

pressures
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Figure 4-9. Stator centripetal pressures across multiple TCC control pressures
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Figure 4-10. Turbine and TCC centripetal pressures across multiple TCC control

pressures

4.1.4 Torque Converter Clutch Capacity and Friction Material Coefficient

Testing the TCC capacity and friction material coefficient was of interest to
characterize the TCC in comparison to other literature and design parameters. The
TCC capacity should have a linear trend, so as the charge pressure increases so
does the amount of torque the clutch can transmit. This was tested by sweeping
input torque from 20-120Nm with a constant output speed of 400 RPM in 6" gear.
The charge pressure was increased until the clutch begins to drive the input speed
down. Figure 4-11 shows the results of the clutch capacity test and how there is a

linear correlation between charge pressure and clutch capacity.
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Figure 4-11. Torque converter clutch capacity

This agrees with [4] when slip across a frictional clutch is small there is a linear
correlation to the capacity. This can be explained by Equation 4-3 were T is torque
capacity, p is pressure across the surface, p is friction coefficient of friction
material, r is radius along the surface, integrated between ro outer radius and ri

inner radius. There is a linear correlation between torque capacity and pressure.

To
T = f 2mpur? dr Equation 4-3
Ti

The friction coefficient for the TCC was determined by running three different tests
to cover the areas of operation for a TCC. The TCC was tested during slip of 5-10
RPM, when the clutch begins to make contact with the cover and pull the input
speed down, and when the clutch is disengaging from the cover and releasing
torque capacity. The friction coefficient was calculated by using Equation 4-3 and
then averaged for each condition. The friction coefficient for the TCC was found to
be an average of 0.19, which is in the range for possible friction coefficients of

paper material [45].
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Table 4-2. Friction coefficient estimates for TCC friction material

Test Condition Friction Coefficient
Slip 5-10 RPM 0.0605
Start of Contact with Cover 0.3132
Releasing Contact with Cover 0.2057

4.1.5 Clutch Pressures and Forces

The clutch pressures across the TCC, channels 5-11, were used to determine the
resultant force acting on the TCC during slipping and applied conditions. A
quadratic curve fit was applied to the pressure measurements on each side of the
TCC. The pressures were subtracted between the front and rear of the TCC to get
a pressure profile representing the acting pressure across the clutch. An example
pressure profile can be seen in Figure 4-12 with the circles representing the
pressure measurements with the dotted line being the curve fix to the data. The
dashed line is showing the resulting pressure profile across the clutch with the solid
lines indicating the location of the friction material. It is assumed that the pressure
across the friction material is negligible because only a small amount of ATF can

travel across the friction material.
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Figure 4-12. Pressure profile across TCC
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The force due to pressure is calculated at each radius along the clutch by using

Equation 4-4. Equation 4-4 uses all the same parameters as Equation 4-1 above.

r? 12 :
F(r) = nr? lpwz (T _ %> + Pintl Equation 4-4
An example force profile is given in Figure 4-13 with the dashed line showing the
force profile and the solid line is where the resultant force is acting. The resultant

force is where there is an equal amount of force on each side of the line.
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Figure 4-13. Force profile across TCC

The pressure profiles and resultant force were measured at 30 and 100 Nm in 6t
gear across 300-500 RPM. The results are illustrated by an example graphic

shown in Figure 4-14 with a summary on interpretation listed below.
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Clutch pressures and resultant force were measured for with the TCC released,
slipping 20 rpm, and applied. Figure 4-15 show the results for TCC released.
Looking at the pressures between the front and back of the clutch, the pressures
are equally opposed causing the clutch to be open. This is expected and the
resultant forces mean nothing in the case of TCC released because the clutch is

not touching the cover.

In the case when the TCC is applied the resultant force location is of importance.
When the TCC is applied, the pressures on the front of the clutch have a lower
pressure than the charge pressure. Since the TCC is applied the input speed is
decreased, compared to the TCC released case, and has less centripetal pressure
impact. There is also a large pressure difference across the clutch causing the
TCC to be applied. The resultant forces were found to be located towards the
center of the TCC with similar magnitudes of application force. This shows that
since the charge pressures were the same the input torque has no impact on the

resultant force. The results can be seen in Figure 4-16

The area of really interest is when the TCC is slipping because minor changes in
operating points and charge pressure can have a large impact on TCC slip.
Remember the goal is to apply the clutch as quickly as possible while also
maintaining good drive quality with low NVH. By having the TCC slip the clutch can
be partially applied through changing operating conditions, such as gear shifting.
Figure 4-17 show the results for the TCC slipping 20 RPM. The charge pressure
changes from 103.4 kPa (15 PSI) for low loads to 262 kPa (38 PSI) for medium
loads to be able to handle the higher torque capacity. This causes a large pressure
difference across the clutch for the medium loaded case compared to the low load.
For the medium load case the resultant force is located at the center of the clutch,
like when the TCC is applied, but the low load case shows that the resultant force
is located at a large radius. By using the friction coefficient found from above the
torque capacity of the clutch for each force is found to be equal to the 30 and 100
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Nm input torque. The thing of interest is that if the resultant force is located a larger
radius and moves when a larger torque occurs there will be a delay for the
transition and slip control may fluctuate. Further analysis is required to understand

the possible impacts.

Additional cases were completed in 5" gear showing similar results as in 6" gear
drawing the same conclusions. The 51" gear results can be seen in Appendix K

along with the raw data values for each case.
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4.2 Transient

Transient events are the main interest in this study because controllability of
transient events can be challenging. By increasing the knowledge about a transient
event better calibration or hardware design can be implemented. Two main

transient events were studied: back driving the transmission and gear shifting.

4.2.1 Back Drive

Back drive was completed with the TCC released with the input torque sweeping
between 45 to -45 Nm with a constant output speed 550 RPM in 5t gear. The back
drive tests used the transient testing methodology described in chapter 3.
Methods. Figure 4-18 and Figure 4-19 show the test conditions for the 45 to -45
Nm sweep scenario and the resulting speed ratios throughout the test respectively.
Back drive tests were also completed for 35 to -35 Nm, 25 to -25 Nm, and 15 to -
15 Nm sweeps. The torque levels used are low to represent the back drive scenario

where the engine is not driving or creating small amounts of torque.
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Figure 4-18. 45 to -45 Nm test scenario for back drive
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Figure 4-19. Speed ratio achieved during 45 to -45 Nm test

The stitched time histories for the 45 to -45 Nm for the impeller/cover, stator,
turbine, and TCC are given in Figure 4-20, Figure 4-21, Figure 4-22, and Figure
4-23 respectively. Each channel’s time history has arrows pointing to the sensor’s
location in the torque converter. The gray areas on the time history plots represent
the time when the input torque is negative. The pressures in the impeller, turbine,
and TCC see a decrease in pressure as the speed ratio increases from 0.95to 1.3
while the pressure on the stator increases. The reason for increased pressure

across the stator will be explained in a later section.
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Figure 4-20. Back drive stitched time history for impeller and cover channels
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Figure 4-21. Back drive stitched time history for stator channels
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Figure 4-23. Back drive stitched time history for torque converter clutch channels

The pressures were pulled from the time history at speed ratios of 0.98, 1.1, and
1.2 and the mean pressures at each speed ratio were averaged for both positive
and negative torques. This was done for all torque sweeps and complied for each
channel to show the change in pressure across positive and negative torques.
Figure 4-24, Figure 4-25, and Figure 4-26 are channels from the impeller, stator,
and turbine respectively that were selected to show the effects at each location
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through the torque converter. Each graph is split up for each speed ratio and for a
reference the neutral pressure for TCC open are shown on the right. The neutral
pressures provide a range of how much the input speed can affect the pressure at
that location. The impeller and turbine show how the pressure decreases as the
speed ratio increases and as the torque decreases. The stator shows the opposite
where the pressure increases slightly as speed ratio increases but no change is

seen based on torque. The results for each channel can be seen in Appendix L.
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4.2.1.1 CFD Correlations

The CFD correlations were completed with another graduate student that built the
model of the torque converter. It was of interest to simulate the back drive tests to
show how well the model correlates to high speed ratios. This is an addition to the

research that was completed by [24].

The 45 to -45 Nm case was used as the parameters for the 0.98, 1.1, and 1.2
speed ratios. The impeller, turbine, and stator speeds were used as the input
parameters to the model. The torque on each element is an output. The stator
speed was estimated by finding the speed where there is zero torque on the stator
because it is freewheeling at these speed ratios. The parameters and results are

summarized in Table 4-3.

Table 4-3. CFD parameters and results summary

T;f;ﬁe SR 'gﬁ;!gr TS“‘;':: de Stator Speed | CFD Impeller | CFD Turbine |  CFD Stator
Direction [RPM] [RPM] Estimate [RPM] Torque [Nm] | Torque [Nm] Torque [Nm]
+45Nm | 0.98 1806 1890 1703 -4 4 -0.01
-45Nm | 0.98 1933 1777 1717 -8 8 -0.04
+45Nm | 1.10 1663 1836 2079 9 -10 -0.08
-45Nm | 1.10 1693 1860 2090 10 -10 -0.04
+45Nm | 1.20 1535 1846 2141 12 -12 0.01
-45Nm | 1.20 1555 1860 2172 12 -12 -0.07

The torques seen in the CFD results show a lower torque than what is seen by the
test data. This is due to the CFD being a steady state calculation instead of a
transient. To achieve a steady state condition of -45 Nm the speed would have to
be much higher and this can be determined by using the affinity law given in
Equation 4-5. Table 4-4 show the speeds required to achieve -45 Nm at the higher

speed ratios.
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Speeddesired = Speedknown * <

N[

Torquedesired

)

Torqueknown

Equation 4-5

Table 4-4. Steady state speeds required to achieve -45 Nm

Speed Ratio Impeller Turbine
1.1 3652 RPM 4017 RPM
1.2 2993 RPM 3591 RPM

A comparison between the pressures for the test and -45 Nm steady state for the

impeller, turbine, and stator are shown in Figure 4-27 for 1.1 and 1.2 speed ratios.

Transducer 7 on the turbine is not shown because in the model the measurement

location is deadheaded against another surface where fluid cannot be modeled.
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Figure 4-27. CFD comparison of test vs. steady state values to achieve -45 Nm

Figure 4-28 shows the how well the CFD correlates to the test data. As the speed

ratio increases the CFD error increases. To see the results for all channels

reference Appendix M. One key point to illustrate for the results is how the flow

changes across the stator blade. Figure 4-29 shows the pressures across the

stator blade for the test and CFD results for 45 and -45 Nm. The test results are
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higher than the CFD but the CFD does capture how the fluid field is acting across
the blade. This is shown by looking at the middle of the blade and seeing how the
pressures cross one another creating a figure 8 pattern between the pressure and
suction sides of the blade. This can be seen in the test and the CFD meaning that

the CFD can be used for stator blade design and development.
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Figure 4-28. CFD correlation to high speed ratios
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4.2.1.2 Stator Speed Identification

The key information used from the CFD relevant to the transient testing research
is the stator speed estimates, provided in Table 4-5. These values were used to
compare to the test data to determine the stator speed when looking at a FFT color

map.
Table 4-5. Stator speeds for each speed ratio
Speed Ratio Impeller Speed [RPM] Statolgiip;ﬁ :tde CFD
0.98 % 1865 ~1700 (28.3 Hz)
1.10 % 1675 ~2080 (34.7 Hz)
120 * 1550 ~2150 (35.8 Hz)

Identifying the stator speed is of interest because understanding what happens to
the stator at high speed ratios can drive innovation and calibration techniques. To
identify the stator speed using the pressure data the stitched time history was split
into blocks. Only the data that was recorded continuously can be placed in a block.
Data blocks cannot contain data where stitching occurs. An FFT was taken on
each of these blocks to create a color map showing the frequency on the x-axis
and time on the y-axis. The primary frequency of the stator can be found by
applying this process on one of the stator channels, as seen in Figure 4-30. The
primary frequency is determined by Equation 4-6 where N is the rotational speed
in RPM and F is the primary frequency in Hz. The stator speeds obtained from the
CFD are indicated by stars along the color map. This verifies that expensive
instrumentation is not needed to estimate stator speed instead cheaper models

can be used.

- Equation 4-6
F &0 q
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Figure 4-30. Stator speed identification using pressure data FFT color map

4.2.1.3 Hydraulic Pump Frequency Content

A frequency was noticed to appear on all channel color maps and was identified
to be the hydraulic pump. Figure 4-31 shows the color map for the line pressure
measurement where the hydraulic pump has the largest impact. The hydraulic
pump primary frequency was identified to be between 24-32.5 Hz, which is also
the impeller primary frequency because the pump in concentrically driven by the
impeller. The second order of the hydraulic pump primary frequency is 48-65 Hz
as seen in Figure 4-31. This second order from the hydraulic pump is what can be
seen across all other channels in the torque converter. Seeing the hydraulic pump
appear on the other color maps is not a surprise since the hydraulic pump is the
primary excitation to the ATF. This means modifications made to the hydraulic
pump performance, such as changing the number of lobes on gerotor gear, can

be seen and impact the pressures in the torque converter.
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Figure 4-31. Hydraulic pump primary frequency

Additional frequencies caused by the hydraulic pump were found at higher
frequencies ranging from 95-260 Hz. The frequency with the highest amplitude is
gear mesh frequency of the inner rotor of the gerotor hydraulic pump. Multiple other
frequencies were also seen for different number of lobes. These frequencies are
identified on the color map seen in Figure 4-32. Additional research is required to
better understand the frequencies caused by the gerotor pump. All channel color
maps can be found in Appendix N.
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Figure 4-32. Multiple frequencies associated with the hydraulic pump

4.2.2 Gear Shift

Being able to achieve gear shifting while under load was of interest to study how
the hydraulics from the transmission interact with the torque converter during the
shift. Both power-on upshifts and downshifts were completed for a medium and
low load input torque at both cruising and low speeds. The operating conditions for
each shift scenario are summarized in Table 4-6.

Table 4-6. Gear shifts completed operating conditions

Vehicle Speed
Case Input Torque Equivalent
Low Load, Cruising
Speed 30 Nm [22.1 ft-Ib] 88.5 kph [55 mph]
Medium Load, Low
Speed 100 Nm [73.7 ft-Ib] 48.3 kph [30 mph]
Low Load, Low Speed 30 Nm [22.1 ft-Ib] 48.3 kph [30 mph]
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4.2.2.1 Test Repeatability

To be able use the multiplexed telemetry transient data method that was
developed the shift must be repeatable so the pressure time history can be stitched
together properly. Each shift maneuver was verified to be repeatable and the
pressure data can be stitched together. Figure 4-33 and Figure 4-34 are 16 test
runs overlapped showing the test repeatability. The figures include the dyno
speeds, TCC slip speed, dyno torques and clutch pressures. Note there is some
variation in the output dyno torque and this is due to the transmission triggering
activating a delta time after seeing the trigger event. The output torque variation is
noticeable because by changing when the shift occurs in relationship to the torque
management a smaller or larger output torque can occur. This variation in output

torque was considered acceptable and the shift strategy was used.

The torque management used for down and upshift can be seen on the input
torque in Figure 4-33 and Figure 4-34. The torque does not match the step
response examples that were described in the methods because the dyno controls
take time to adjust for the inertia. This creates a smoother torque curve. To
compensate the torque management is started prior to the shift to allow the dyno

to reach the proper torque to achieve the shift safely.

During the shift the TCC slip varies from the control of 20 RPM. This is due to the
control pressure is being held constant throughout the shift without any feedback
controls. By having a constant charge pressure the TCC does not have the
capacity to hold the fluctuating torque. Once the shift is completed and the torque
returns to its starting value, the TCC has the capacity to maintain 20 RPM of slip

once again.
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Figure 4-33. TCC slipping downshift repeatability verification
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4.2.2.2 Shift Command Profile Comparison

To ensure that the shifts used in this study were comparable to in-vehicle
performance an average pressure profile was used to validate the profiles. Vehicle
data for clutch pressures during a shift were averaged together for each gear state
and converted to a current profile. The averaged current profile and test current
profile were overlaid to validate that the pressure measurement would represent
the shift properly. Figure 4-35 and Figure 4-36 show the current command profiles
for the in-vehicle and test calibration. Majority of the current command profile was
identical other than the end of the shift. The test calibration has a shallower slope
to aid in accommodating for the large input inertia from the dynamometer. By
having a less aggressive inertia phase the output torque fluctuation will be less.
This variation at the end of the shift was considered acceptable because the clutch

fill and torque phase pressures would mimic in-vehicle performance properly.

Current [mA]

Time [sec]

Test —In-Vehicle Cal

Figure 4-35. C35R current command profile comparison
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Figure 4-36. CB26 current command profile

4.2.2.3 Low Speed Shifting

Only the low load, low speed downshift results are presented here because these
test conditions are the most likely to induce low hydraulic capacity to the torque
converter. The low load, low speed upshift was tested but not reported here
because calibrating for an upshift that results in an engine speed of approximately
1000 RPM is not common, but it is possible for a downshift if the vehicle is slowing
down. All other testing conditions presented in Table 4-6 were used to develop a
base understanding of what the pressures may appear to look like when the

system has enough hydraulic capacity to feed all clutches and torque converter.

Figure 4-37, Figure 4-38, and Figure 4-39 are the results for a low load, low speed
downshift with the TCC released, applied, and slipping respectively. When the
TCC is released the input and output dynamometer are not mechanically
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connected, which allows the input dyno to transition slowly during the shift event.
This can be seen in Figure 4-37 where the turbine speed has completed the shift
but the input is slowly ramping up to the final speed. The torque fluctuation seen
during the shift is low with the TCC open because the torque is being transmitted
via the ATF instead of a mechanical connection through the TCC. There is a
fluctuation on the line pressure due to the change in gear clutch pressures and the
fluctuation can be seen on the clutch pressures, but is not seen on the charge or
torque converter pressures. All the torque converter pressures are higher than the
charge pressure because all locations in the torque converter are affected by the

charge pressure when the TCC is released.

When the TCC is applied the input and turbine speeds are identical with little to no
slip across the TCC. The torque fluctuation is the largest when the TCC is applied
because the dynamometers are mechanically connected via the TCC and the
output dyno has to compensate for the additional inertia on the input to achieve
the commanded control speed. A similar line pressure fluctuation is seen as
compared to having the TCC open. The torque converter pressures now have
channels that are lower than the charge pressure. These channel locations are
between the TCC and cover where the charge pressure does not impact. All other

torque converter pressures are above the charge pressure.

When the TCC is slipping the input and turbine speed were held at a constant 20
RPM slip for the starting conditions. When the torque management for the shift
was active the slip speed increases because the clutch capacity is held constant
but the input torque increases and cannot maintain the 20 RPM slip. Once the shift
and torque management are complete the slip across the TCC returns to 20 RPM.
The torque fluctuation during the shift is lower because the TCC is not transmitting
all the torque between the dynamometers resulting in a smoother torque profile.
The torque converter pressures are seen to be lower because the charge pressure
is low, compared to TCC applied and released, to achieve a slipping clutch
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condition. It was determined that the transmission still had the hydraulic capacity

at low speed, low load to control the TCC properly.
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4.2.2.4 Pressure Shift Profiles Using Zero Load Estimates

Shift profiles were estimated by using the zero load pressure measurements are
shown in Figure 4-2, Figure 4-3, and Figure 4-4. The estimate pressure profiles
were compared to the test results for the low load, low speed downshift to see if

there is a correlation between speed, load, and pressure.

The estimated pressure profile for when the TCC is released is illustrated in Figure
4-40. The turbine speed was used as the estimation speed because the input
speed has a long transition period and does not follow the speed of the shift
quickly. The turbine speed can be used because all the zero load data is steady
state with a high speed ratio of 0.95 or higher. By using the turbine speed a decent
correlation is seen between the zero load estimate and the measured pressure
results. The measure pressures have the change in pressure earlier than the
estimated profile, which is attributed to the pressures changes occur first and the
then the speed follows. The estimated pressure matches well with the measured
pressure when in 5" gear, but underestimates the pressure when in 6. This could
mean that each gear has different zero load pressures, but additional research is

required to verify this hypothesis.
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Figure 4-40. Low load, low speed shift with TCC released pressure data

comparison

The comparison between the zero load estimate profile and the measured
pressures for when the TCC is applied can be seen in Figure 4-41. Since the TCC
is applied the input and turbine have the same speed and the input can be used to
estimate the pressure profile. Again, the pressure estimate profiles match the
measured pressures when in 5" gear, but now overestimate the pressure when in

6" gear.
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The pressure profile comparison for when the TCC is slipping can be seen in
Figure 4-42. The estimated pressure appears to underestimate the measured
pressure, which can be attributed to the how the zero load slip pressures were
measured. Since there is zero load it is difficult to cause the clutch to slip because
torque is required to break the clutch away from the cover. To achieve slip in a
zero load condition only a small amount of charge pressure is required, thus giving
lower pressure estimates. Although the pressures are lower than measured the

estimated profile follows the same trend as the measured.
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Figure 4-42. Low load, low speed shift with TCC slipping pressure data

comparison

By knowing that the zero load pressures can an estimate the pressures during a
shift only one measurement is required. A shift can be measured once and by
using the input and turbine speed estimate the profile shape and magnitude. This
would reduce the measurement time from 16 repeated runs to a single shift
measurement. Further research should be conducted on other gears to validate

this method and reduce the errors seen in 6™ gear.
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4.2.2.5 TCC Oscillation

Oscillation was seen on every channel caused by the hydraulic pump, but channel
7 had a larger magnitude than the others when the TCC was applied. An FFT,
using a hanning window on the data, was computed for channel 7, channel 6, and
the line pressure for the low load, low speed downshift, shown in Figure 4-43,
Figure 4-44, and Figure 4-45 respectively. Channel 6 was selected because it is
the next closest measured location to channel 7. An FFT was computed before,
during, and after the shift to see how the frequency may change across the shift
profile. In each of the figures the primary operating frequency of the impeller is
shown by a (*). Note each figure has different y axis magnitudes to be able to

identify the frequency content.

Both Figure 4-43 and Figure 4-44 show that the primary frequency has the largest
magnitude. The primary frequency can be seen in Figure 4-45 for the line pressure
but is smaller in magnitude compared to the gerotor pump equivalent gear mesh
frequency that was identified in the back drive results. Although the mesh
frequency can be identified on the line pressure, channel 7 and 6 show little no

excitation for that frequency.

Channel 7 can be a channel of interest because if the clutch is oscillating between
applied and released the oscillation would be noticeable as a frequency not
associated with the gerotor pump. This tool should be used for future analysis

when testing power-off downshifts where TCC controllability may be reduced.
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5 Summary and Conclusions

5.1 Steady State Results Summary

e Centripetal pressure can be calculated to be within £15% of true pressure and

can be used for quick design calculations or estimates.

e There is a constant relationship between charge pressure and internal torque
converter pressure. As the charge pressure increases at a constant speed the
torque converter pressures will increase the identical amount. If the TCC is
applied the pressure between the cover and clutch will not be affected by the

charge pressure.

e The TCC capacity was verified to follow a linear trend, as charge pressure
increases the more torque capacity available. The friction coefficient was
found to be 0.19 which is within the range for design specifications and other

literature.

e The pressure profiles acting on the TCC were characterized and the resultant
force was found to act on the center of the clutch. When the TCC is slipping
the resultant force acts on the center when under medium loads of torque
(similar to TCC applied), but under low loads the force was found to be acting
at a larger radial location closer to the friction material. This transition of
resultant force location between medium and low loads may have an impact

when calibrating transitional points.

5.2 Transient Results Summary

e A procedure to use multiplexed telemetry data for transient events was
developed and implemented. The procedure allows for the 1 sec channels to

capture different portions of a transient event and then are stitched together to
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show a full time history of the event. The data may appear to be continuous

but the time history is POINT DATA and must be treated as separate blocks.

A back drive scenario was achieved to have the turbine drive the impeller
resulting in speed ratios up to 1.3. The impeller and turbine pressures were
found to decrease in pressure during the high speed ratios (1-1.2) while the
stator increased in pressure. This is due to the stator inlet changing from the

turbine to the impeller.

A CFD model, created by [24], was correlated to the back drive test results
showing good pressure estimate at SR 0.98 and increased in error as speed
ratio increased. The torque results were underestimated by the CFD because
the CFD is a steady state calculation, while the test is a transient
measurement. Using the CFD stator speeds were estimated and used for

verification.

The stator speed was identified by using a FFT color map created from the
pressure measurements taken on the stator. The stator speed was verified by
comparing the speed estimates acquired from the CFD results. By being able
to identify the stator speed and verify that the CFD can estimate the speed

accurately future development can use the model results reliably.

The pressure oscillations created in the gerotor hydraulic pump were identified
throughout the whole torque converter. Changes made to the hydraulic pump

will have an impact on torque converter pressures.

Gear shifting while under load was achieved using the dynamometers as a
driver and absorber to the transmission. The hydraulic shift profile was
implemented to mimic in vehicle shifting strategies as close as possible.
Limitations to completing the shift as quickly as in vehicle were found due to

the large inertia for the input dynamometer.

114



The shift events were repeatable to allow for the telemetry transient procedure
of repeating the test 16 times could be used.

Power-on up and downshifts with the TCC released, slipping, and applied were
completed. The results showed that the hydraulic system is capable of keeping
the system saturated during medium and low load. The TCC was able to be

controlled properly during all maneuvers tested.

Zero load pressures were compared to the measured pressures during a shift
to show that by using the input and turbine speed the pressure profile can be
estimated. Good correlation was found when in 5" but not in 6" gear. By using
the zero load pressure profile estimates only one test run is required to
estimate the pressures during the shift instead of the current 16 repeated test
runs. Additional research is needed to see how zero load pressures change

between gears.

A large pressure oscillation was found on the sensor between the clutch plate
and turbine output wall when the TCC is applied. At this location the ATF is
blocked and the frequencies from the hydraulic pump can be seen, such as in
the back drive color maps. The lower frequencies were found to be present
while the higher were not. This is not a concern at the moment but should be

an area to continue looking as future research is conducted.
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6 Recommendations

6.1 Testing Recommendations

e Reduce the amount of time that the instrumented torque converter is ran.
The torque converter instrumentation has a finite life and it has been seen
that channel 15 on the turbine is already intermittent. Run test scenarios on
the non-instrumented torque converter and then repeat test on the

instrumented.

e Install a smaller inertia drive dynamometer and apply similar control strategy
as developed for torque converter research [46]. This setup would allow for
oscillating excitation as an input instead of a constant drive torque. An
oscillating input torque would mimic closer to that of an engine and may
open the window for more detailed analysis of the hydraulic interaction

between the torque converter and transmission.

e Continued shift profile development is necessary as only a selected few
were studied. Other operating conditions may show additional insight to the
hydraulics. Power-off shifts was determined to be a point of interest late into

the research and was not able to be part of this study.

e Replace the NI 9234 card that is currently being used for triggering the shift
events with a NI card that has built in triggering capabilities, such as NI 9205
or 9206. Purchase this for the test cell if continued testing is of interest

because NI 9234 is on loan from Dr. Blough.
6.2 Instrumentation Recommendations

e On future instrumentation projects, the addition of thermal couples for the

inlet and outlet of the torque converter would provide additional insight. By
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knowing the temperature for the torque converter a better understanding of
what the instrumentation is experiencing can give a better estimation on

instrumentation life.

When dealing with transient testing, try to get as many key transducers to
be simultaneous. It is understood that packaging is the reason for the
multiplexed transmitted data. When packaging limitations are not restricted
simultaneous channels should be used. For example, since the transmitter
for the impeller and cover are on the outside of the torque converter cover.
By having simultaneous channels, the number of times to repeat a test can
be reduced and additional correlations, such as cross-spectrums and

frequency response functions, can be calculated.

When multiplexed transmitted data is required use the same number of
channels, preferably all 7 channel transmitters instead of 15, to reduce the
number of times a test has to be reran. It was also found that the 7 channel
transmitters take less time to power down to resync than the 15 channel

transmitter, thus reducing the total test time.
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C Channel Calibration List

Channel
Number
3
4

5

10

11
12

13
14

15
16
17

18

19

20

21

22

23

24

25

26

Channel Name

Tachometer- Input
Dyno
Tachometer-
Output Dyno
Torque- Input Dyno

Torque- Output
Dyno
Tachometer-
Turbine Speed
Sensor
Tachometer-
Output Speed
Sensor
Pressure-
Transmission Inlet
Pressure-
Transmission Outlet
Pressure- Line

Pressure- Variable
Bleed Solenoid
TCC
CB26 Pressure

Pressure- Solenoid
Feed
Pressure- CB 1234

Pressure- CBLR

Pressure- TCC
Apply
Pressure- TCC
Release
Solenoid Driver-
SSA
Solenoid Driver-
SSB
Solenoid Driver-
SSC
Solenoid Driver-
SSD
Solenoid Driver-
Line
Solenoid Driver-
TCC
Solenoid Driver-
SSE
Flow Meter

DAQ Name
DC _Tach
AC_Tach

DC_Torque

AC_Torque

TSS Tach

0OSS_Tach

Trans_IN_Pressure

Trans_OUT_Pressure

LINE_Pressure

VBS_TCC_Pressure

CB26_Pressure

SOL_FEED_Pressure

CB1234_ Pressure
CBLR_Pressure

TCC_APPLY_Pressure

TCC_REL_Pressure

SD1_SSA
SD2_SSB
SD3_SSC
SD4_SSD
SD5_Line
SD6_TCC
SD7_SSE

Flow_Meter

125

Sensitivity
1.001
-1.033
-4.936

1.2147

Units Offset

mV/RPM  35.836

mV/RPM | 41.423
mV/Nm -
12.316
mV/Nm -
0.2309

36 pusles per revolution

24 pusles per revolution

33.3163

33.3.3156

33.317
33.27

33.33
33.335

36.116
33.587
31.97

32.299

1000

1000

1000

1000

1000

1000

1000

1000

mV/PSI 0
mV/PSI 0
mV/PSI 0
mV/PSI 0
mV/PSI 0
mV/PSI 0
mV/PSI 0
mV/PSI 0
mV/PSI 0
mV/PSI 0
mV/V 0
mV/V 0
mV/V 0
mV/V 0
mV/V 0
mV/V 0
mV/V 0
mV/V 0



27

28
29
31
32
33

34

Tachometer-
Output Dyno Extra
tach for transient
events
Dyno Trigger

TOM Trigger
C35R Pressure
C456 Pressure

One Pulse Per
Revolution
Tachometer- Input
Dyno (DC)
One Pulse Per
Revolution
Tachometer-
Output Dyno (AC)

AC_Tach2

Dyno _Trigger
Arduino_Trigger
C35R_Pressure
C456_ Pressure
DC _One_Tach

AC _One_Tach
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60 pulses per revolution

1000 mV/V
1000 mV/V
33.33 mV/PSI
33.33 mV/PSI

1 pulse per revolution

1 pulse per revolution



D Siemens Test Lab Guide

DISCLAIMER: Test Lab has numerous functionalities and a variety of ways to
achieve the same task. This guide is only to describe the methods that were used
to acquire data for this research. A previous understanding about digital signal
processing is required to set all parameters properly as this guide does not cover
every setting in detail. It is very likely that there is additional functionality built into

Test Lab that was missed and not used.

1. Turn on Scadas Il DAQ and open Signature Acquisition on main desktop.
The DAQ may take a few moments to initialize before the software will

connect.

2. A new project is started when Signature Acquisition opens.

jow Help
VaXEbaRe w e
+ - %1 HER

creste s petre...| (]| ) o] e o i ) o] =] i ) ] 1+ o ][ E5]4

create apctre... | [0 im0+

How to display data?

Learn more

LMS Test.Lab
NUM

Figure D-1. Navigation pane for Test Lab

3. Open Transmission DAQ Setup saved in the Testing folder. At the bottom

of the page there is a tab selector that switches between windows
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4. To setup new or edit existing channels select Channel Setup

’ Acquisition Setup Online Processing Time Data Selection Time Data Processing

Figure D-2. Navigation bar to select Test Lab window

5. In the channel setup the channels can be toggled on/off, names assigned,

coupling type (AC, DC, ICP) selected, calibration values set, units applied

and voltage operation range of the signal.

U

N —

[ File Edit View

[D @& 8 rsmmwees <] BX [ RB RS D P
Channel Setup

Status:

Data

Verification OK

Window

Help

Save as Referes

PhysicalChanne#d
Input1
Input2
Input3
Inputs
Inputs
Inputs
Input?
Inputs
Inputg

Input10
Input1
Inputi2
Input13
Inputi4.
Inputis
Inputis
Inputi?.
Inputs
Inputs
Input20
Input21
Input22.
Input23
Input24.
Input2s.
Input26.
Input27.
Input2g
Input2g
Input30
Inputa1
Input32
Input33
Input34.
Inputas.
Input3s
Inputa7.
Input3g
Inputas
Inputd0

T399I TIYIIIIIIIII|IAIAIAIPIAIIAITTT

Channe/Groupi¢

WVibration
WVibration
WVibration
WVibration
WVibration
WVibration
Acoustic
Acoustic
WVibration
WVibration
WVibration
WVibration
WVibration
WVibration
WVibration
WVibration
WVibration
WVibration
WVibration
WVibration
Wibration
Vibration
WVibration
WVibration
Wibration
Vibration
Acoustic
Acoustic
Acoustic
WVibration
WVibration
WVibration
Acoustic
Acoustic
WVibration
WVibration
WVibration
WVibration
WVibration
WVibration

Point
Pointt
Foint2
DC_Tach
AC_Tach
DC_Torque
AC_Torque
TSS _Tach
0s5_Tach
Trans_N_Pressure.
Trans_OUT Pres.
LINE_Pressure
VBS_TCC_Press.
CB26_Pressure
SOL_FEED_Pres:
CB1234_Pressure
CBLR_Pressure
TCC_APPLY Pre.
TCC_REL Presst.
SD1_5SA
SD2_SSB
SD3_ssC
504 55D
SD5_Line.
sD6_TCC
SD7_SSE
Flow_Meter
AG_Tach2
Dyno_Trigger
Arduino_Trigger
Impeler_Tel
CIsR_Pressure
C456_Pressure
DC_One_Tach
AC_One_Tach
Arduino_Trigger
Point3s.
Pointa7
Point3z
Pointag.
PointdD

Input mode:
Voltage AC
Voltage AC
Voltage DC
Votage DG
Vokage DC
Vokage DC
Voltage DC
Vottage AC
Vokage DC
Vokage DC
Voltage DC
Vokage DG
Vokage DC
Vokage DC
Voltage DC.
Vokage DC
Vokage DC
Vokage DC
Voltage DC.
Vokage DC
Vokage DC
Vokage DC
Votage DC.
Vokage DC
Vokage DC
Vokage DC
Vottage AC
Vokage DC
Vokage DC
Voltage DC
Votage DC.
Vokage DC
Voltage AC
Veliage AC
Votage DC.
Voltage AC
Voltage AC
Veliage AC
Vottage AC
Voltage AC

Heasured Quanity
RotationalSpeed
RotationalSpeed
RotationalSpeed
RotationalSpead
HomentOfForce
MomentOfForce
Volage
Votage
Pressure.
Pressure.
Pressure
Pressure.
Pressure.
Pressure.
Pressure.
Pressure.
Pressure.
Pressure.
Vottage
Votage
Votage
Vottage
Votage
Votage
Votage
Vottage
Votage
Votage
Votage
Volage
Pressurs.
Pressure.
Votage
Volage
Votage
Acceleration
Acceleration
Acceleration
Acceleration

Accekeration

Electrical Unit
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv
mv

Actual senstiviy

100
100
1.001
1022
-29%
1.2147
1000
1000
33163
333158
B’UT
3327
3333
3335
36.116
33587
397
32299
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
3333
3333
1000
1000
1000
100
100
100
100
100

miirpm
miirpm
miirpm
mivirpm
mVNm
VN
mvv
mvv
mVipsi
mVipsi
mVipsi
mvipsi
mVipsi
mVipsi
mipsi
mVipsi
mVipsi
mVipsi
mvv
muA
v
mvy
mvv
v
v
mvy
mvv
v
v
mvv
mvipsi
mVipsi
v
mvv
mvv
mvig
Vi
mvig
mvig
g

Offset EU

[}
[}
35536
41423
-12.318
02308

< < <

FrontEndWeighting
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear

Linear

Figure D-3. Channel setup window

Pre-weighting
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear

Linear

Range

alb Lo [l o ol oo Lo Lo f e [ oo Lo o Lo Lo [ s o Lo o Lo e oL o Lo e oo Lo o Lo o Lo o e

6. The calibration type is used if sensors are being calibrated

Lab or, if the calibration values are known, the values can

channel setup.

R e R P e e e e e e P R P e e R e R e e e P R e N e e A A P A P

live with Test
just be set in

7. Under Tracking Setup, tachometer channels can be setup, such as turbine

and output speed. The parameters are assigned using the controls on the
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right. For each tach channel the number of pulses per revolution must to get
an RPM value.

8. The desired time length for recording data is set under Duration. To have
recording set for trigger activation select Use Triggered Start. The recording

can also end by a second trigger instead of a time limit by activating Use

Triggered Stop.

s Output_Speed (T2) -1
t 000 o
o 1T | . . 1 . | . | . . 1 . I . | .
P o [
oy
Parameter
] selection for
> &[o00]
- each tach
channel
o 5 w5
s N N (& [@) ||| T
i Calibration JCRIIND) Acquisition Setup H Online Processing LMS Test.Lab
o

Figure D-4. Tracking setup window with turbine and output speed windows

showing

9. Under Acquisition Setup window the sampling rate can be set for each
channel type (Vibration, Acoustic, or Other). The current setup has the
vibration and acoustic channels set to 6400 and 51200 Hz respectively.
Acoustic channels include tachometer channels that are not measured

using the tach card.
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Multiple
sample rate
settings

rrrrrrrrr

£ E g

o » |

LMS Test.Lab
N

Figure D-5. Acquisition setup window pointing out sampling parameter settings

10.The Measure window is the most used when testing. This is where data is
monitored and acquired. Once arming the DAQ the data will begin to stream
across the plots. No data is recorded until commanded. Labeling in the
green blocks describes what the system is currently doing and provides

warnings.
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Keyboard Information

Press <F2> to prepare fo measuring

LMS Test.Lab

Figure D-6. Measurement window with pressure plot tab open

11.There are 3 tabs with different plots of data. First is pressure, second
tachometers, and third dyno data. Additional or new channels can be added
through Data Explorer.

12.0nce data has been collected it can be analyzed in Test Lab or exported to
Matlab. In the navigator window, select the Throughput from the test run
and right click to export to Matlab. Figure D-7 shows the export process.
Currently, each test run has to be exported individually, but a better method

of exporting may be a worthwhile exploration.
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g LMS Test.Lab Desktop Advanced - Low_Speed_Shifting - 6th Shift 100 Nm Locked
(i File Edit View Data Tools Window Help

| D & B/ [sthsht 100m Lodked

VX dE B Re ®
WREENI A - %1 HEE

o
‘e

Navigator | X"

O |[O][ ]| [Brs [ P || @ - |[@][S
Address: | C:\Users\dshDesktop\032119_Low_Speed_Shift_CorrectiLow_Speed_Shifting6th Shift 100 Nm 20 Slip\test 1\Throughput
= (7 6th Shift 100 Nm 20 Slip R [Feen ~|
CLL gt;' o #H3:DC_Tach
® ixed sampling G .
o 5. M e
@ [ test2 View\Change LDSF name... C_Torque
7  Tarnua
@ @ test3 Export to B Codox.
@ I test 4 . .
& [ test 5 Copy Universal File...
@ (= test 6 SDF...
® [ test 7 Latiz MatLab...
G test 8 R DynaWorks...
@ i test 9
- Add to Input Basket Text...
@ (= test 10
@ () test 11 Replace in Input Basket GPS
@ (5 test 12 Edit Properties... Wav
® test 13 )
i Ig_j = Properties... el
@ [ test 14 — LDSF.
@ [ test 15 15001 am
# (3 test 16 #4420:5D2 558
2 :g :92 1; #421:5D3 s5C
W - #22:5D4_55D
@ :g :ei ;ﬁ #423:5D5 Line
L o t;t o 4 24:506_TCC
+* [
& [ test 22 4 25:5D7_SSE
5 [ test 23 MZG:FIOW_Mcter
@ test 24 ?ﬂza:ﬂyno_Trigger
T (o test 25 {4 20:Arduino_Trigger
@ (= test 26 {##{31:C35R_Pressure
) (= test 27 M‘]BZ:C456_Pressure
@ I test 28 #4{33:DC_One_Tach
[+ [/ test 29 v MM:AC_One_Tach
34 item(s) in list

Figure D-7. Exporting data to Matlab in Navigator window
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E Test Cell Startup and Operation Procedure

1. Connect transmission output shaft to absorbing dyno and bolt shaft guard.

2. Turn on dyno power cabinets on upstairs.
3. Check oil pressure gauge on blue AC Dyno that journal bearings are

pressurized.
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4. Check oil pressure through looking glasses on each end of tan DC Dyno.

Small drops of oil should be dripping if oil pressure is on.
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6. Turn power supply ON, then transmission controller on transmission control

tower.

4 Turn on 2nd-
Next Gen

Drivers

a

let

Turn on 15t
12V Power
Supply

7. Turn instrumentation ON sitting on shelf




8. Remote desktop in to dyno control tower computer on middle computer.

Monitor
Computer

Test Lab
DAQ
Computer

Dyno
Control
Computer

9. Open Transmission LabVIEW VI.

Torque Converterai

Transmission

Telemetry
Computer

Offset for
Turbine

| Scadas I

: ‘.m!\

Telemetry
Offset
Module

Control
Computer

BN E=R/E<E

File Edit Wiew Help

ES

&

K]

]

=

5

£

k3 Drive

L Dyno
Torque —+ l—
T - =+ Temp In 171487 F(C)
Speed -+ PressureIn 499412 | psitkPa)
1594 rpm

3 Flauy Iz‘wsae gpmiLpm}

Ternp Out Im.sss FiC)
Pressure Qut Irs‘uuu; psifkPa)

Transmission

Drive Dyna Status and Cantrol

Absorber Dyno Status and Control

Bbsatber
Dyne

Torque
-0,49285 N
Speed

Im.szg tprm

Torque is Negative | ) -

U803 Connected to 03503
Motoring Dyna (_J

DTC-1 Attached and Powered @
Dyne On' )

LAC Resdy (rarp cormplets) )
Computer Controlled |

ssorb Only @

05/US trip @

Lacked

Speed Mode |
- . -

Fl [ b

m

Status

Master Fault @

Auilliaries Fault{ )

Speed Made () Torque Mode ) @
Readyto Run )

Reset

»

Sensor Graph 1

E 2z
St 3

ensar Graph

1

1

| Cornpleted reservoir warmning cycle
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10.Turn top computer monitor ON for test cell cameras.

11.Turn power supply and Scadas Il frontend system ON.

12.0Open Signature Acquisition Test Lab on left computer.

13.0nce channels are checked ON in Test Lab, verify channels are ready by

looking for green lights on Scadas frontend.

14.0n far right computer remote desktop into Transmission Control tower
computer and open Transmission Controller LabVIEW VI.

15. Transmission is ready to operate. Use manual or experiment mode to run.
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F USDB Il Operation Guide

1. Connect the USD Il rack mount to the transmission and turn on the power

supply

Figure F-1. Solenoid driver and power supply mounted in transmission control

tower

2. Open Univo600 on the remote desktop to the transmission control tower
3. The USD II will open a window with a control box for each solenoid on the
left and command buttons on the right.
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5 Manual Mode _ O] x|

File Sequence ScriptFile Stop Button Help

[Name: PC2 [SSB]
[Fixed Mode
‘ounts:

Irnplernent f Reset X

[Name: LPC [Line]
Fixed Mode
‘onnts:

[Name: TCC
[Fixed Mode
P

[Name: 581 [SSE]
[Fixed Mode
P

Figure F-2. Control window for USD Il software

4. Setthe pressure level by using SET DUTY CYCLE. Count range is 0 to 255

for off to max pressure, depending on if normally low or high solenoid.

51 Manual Made =10 x|

File Sequence ScriptFile Stop Button Help

Slot# VFS Solenoid Parameters x|
Solenoid Name: |FC1 [SSA] ‘
Select Action
[Fixed Mode -l
- Set Duty Cycle S Uiy Gyl SiopIDiy Gy
(counts) -] founst - foums) -
o 0 0
:1 [x]
Frequency—— —DownGonnt— -Sucephaiiih— -BWEep ik
Hz) .| (wllises - fovunisl . fpountsl -
66.66 ~ 4095 1 1
s m m
Uni
’V o % © HEX counts  # DEC counts ‘
| 'DK I ‘xl:ance\l ‘ SEND |

Name: 1CC
[Fixed Mode
0 .

Figure F-3. Solenoid command window for each solenoid
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5. The default action for each of the drivers is FIXED MODE. Multiple modes

can be selected from the list of built in operations. Each mode has a variety
of commands that need to be filled in.

5 Manual Mode o m] P3|

]

Slot# WS Solenoid Parameters

Solenoid Name: ‘pm [SSA] |

Select Action

[Fixed Mode -l
Re-initialize

Fixed Mode

Sweep Continuously H
Sweep Continuously Between Limits
Sweep Once From Start to Stop

Go to Start, Down Count, Go to Stop J J
L Stack Functions VY
Sweep From Current To Stop{increment Stack

From Current, Down Count, Jump to Stopfincrement Stack
Sweep Once From Start To Stop/Increment Stack J

Preview Mode Test Mode
%

7 HEXcounts * DEC counts

|¢u»<| |ernceI| ‘ SEND |

Name: 1CC

Fixed Mode
0 .

Figure F-4. Possible built in operations

6. The window will light up to indicate that commands are on standby to be

sent to the transmission. Multiple commands can be stacked to be sent all
at one time.
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= Manual Made N [=] F3|

File Sequence Scriptfile Stop Button Help

Implement / Reset H|
ancel

Figure F-5. Control window light up indicating commands are ready to send to

transmission

7. Use the sequencer to write scripts to run multiple commands in a string. The
sequence can be saved to be used later.

) Manwal Mode _[3]x]

File Sequence ScriptFile Stop Button Help

En:ﬂkpuinl I

f 1

1

Q.

Single Step
Cancel

[Name: PC2 [SSB]
Fixed Mode

Trnplernent / Reset x|

[Name: LPC [Line]
Fixed Mode
(0 ' 1

[Name: TCC
Fixed Mode
™ y

[Name: 551 [SSE]
[Fixed Mode
0 ]

Figure F-6. Sequencer window to create a string of commands to runin a

sequence.
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G SOL Commander Guide

There are three tabs in SOL Commander. Each that have unique controls that are
used dependent on the necessary operation. The first control window is
SOLENOIDS, which has similar capabilities as those of the USDB. Here each
solenoid can be controlled individually and set to a specified current. A high and
low limit can be set to have the solenoid sweep between the two values. All the
solenoids can be synched together to have them sweep together. The sweep can
be repeated by specifying the number of times to repeat the maneuver. The
monitor window only shows the currently selected solenoid command. None of the
commands are sent to the transmission until the ENGAGE button is activated.

These controls are good for fixed gear testing.

Solenoids ‘ Shift Schedule | Shift Profile |\ Tab Se|ecti0n

Current Command
- . 507
sepup & up =
stepDown | & Down | 1200+
High Level = mT‘: [ma]] 1000-
LowLeveIt: 0 \ E E 800~
sieotigre[ 2] 1| || [mal)| § o Monitor
SlepWidlh:fﬁ: E E . Window
Hold Time High f T\ E e 0
Hold TimeLew [E[ 0| E
:| Repeat | fmg-
N Repeats 2 ﬁ
’W State avp[ & up
r| a :C“"‘P"“E" hIIanni'_I‘ Down Synch
507 || current AllRepeat | [ Repeat | Controls
:I 1E+3 ]NSleps ‘ = : —
| Repeat Mode - e
) Repeat Controls Solenoid
SSA ] Engagement

— : '\ Solenoid , \ i
| 1,000 ms Solenoid Control Loop Time Send to Solenolds | B»  Engage ..u] Reset All

Selection ]
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The second control window is SHIFT SCHEDULE. These controls specify which
solenoid will be active for each gear state. First the number of speeds and
solenoids are set for the application. Each solenoid is activated by turning the
indicator ON/OFF for the respective gear. Labels can be added to identify the
solenoids and gears for ease of array selection. Once a shift schedule is made it

can be saved and reused for later testing.

Array Settings

3
=3
=
3

Solenoid Array
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The final control window is called SHIFT PROFILE. This window is where shift
profiles can be sent to the transmission and complete a shift during operation
without damaging the transmission. The profiles are placed in a text file with the
values and time steps for each of the solenoids, as shown in the table below. The
table of values can be loaded by using the LOAD NEW PROFILE and a profile can
be set for each gear by using the shift lever (described in detail in later section).
Only one profile can be loaded for each gear so only an upshift or downshift can
be accomplished for that gear. (Additional development should be done so both
upshift and downshift profiles can be loaded simultaneously). When profiles have
been loaded for each gear they can be saved as a group and reloaded for reuse.
The profiles will be loaded back to their respective gears as when they were saved.
The profiles can be seen in the profile viewer and will show the profiles associated

with selected gear state.

Time [sec] |SSA CB1234 [mA] [SSB C35R [mA] [SSC CB26 [mA] |SSD CBLR/C456 [mA] |LINE [mA] |TCC [mA] [SSE ON/OFF [mA]
0.00 0.00 1000.00 1000.00 0.00 500.00 0.00 0.00
0.01 0.00 1000.00 1000.00 0.00 500.00 0.00 0.00
0.02 0.00 1000.00 1000.00 0.00 500.00 0.00 0.00
0.03 0.00 1000.00 1000.00 0.00 500.00 0.00 0.00
0.04 0.00 539.00 698.40 0.00 500.00 0.00 0.00
0.05 0.00 539.00 696.80 0.00 500.00 0.00 0.00
0.06 0.00 539.00 695.20 0.00 500.00 0.00 0.00
0.07 0.00 539.00 693.60 0.00 500.00 0.00 0.00
0.08 0.00 539.00 692.00 0.00 500.00 0.00 0.00
0.09 0.00 539.00 690.40 0.00 500.00 0.00 0.00
0.10 0.00 539.00 688.80 0.00 500.00 0.00 0.00
0.11 0.00 539.00 687.20 0.00 500.00 0.00 0.00
0.12 0.00 645.84 685.60 0.00 500.00 0.00 0.00
0.13 0.00 645.04 684.00 0.00 500.00 0.00 0.00

To send the profile command to the solenoids both the ENGAGE and ACTIVATE
SHIFTER must be pressed. The ENGAGE button sends the command to the
solenoids while ACTIVATE SHIFTER enables the shift lever to run the profile when
the shift lever changes. A shift can be done manually, using the shift lever, or by
having a trigger activation. To have the shift activate on a trigger, select to have
an UP or DOWNSHIFT from the current gear occur when the trigger is seen. When

the settings are satisfactory press ACTIVATE TRIGGER, which will gray out and
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disable all controls so no changes can be made at this point. When the trigger is
seen the profile commands will be sent and the shift will be completed. Once the

shift is complete all controls will be re-enabled and further testing can be

completed.

*Cancel button currently returns transmission to neutral, so be wary when using.

Further development needs to be completed to improve cancel operations.

Solenoids | Shift Schedule Shift Profile ‘

Gear State
5

.
Profile
[rccutpotie st | Controls

Activate Shifter

1300-

Shift in Progress

Cancel Shift

Shift
Controls

ij 0 Delay (ms)

From Current Gear

2 Upshift

Activate on Trigger o

SS& CB1234 [md) ]
SSE C35R [mA] /]
SSC CB26 [ma) |~/
ssD CBLR/C456 (ma] RN

LINE [mA] |~

Al p TCC [mA)] /]
00:00 . . 00:00 lic
Profile Preview SSEON/OFF (] ERR

| 1000 ms Solenoid Control Loop Time

Send to Solenoids = Engage :j Reset All
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The image below shows how the window appears during a trigger activated shift.
All controls are grayed out so no changes can be made. When the shift is activate,
the SHIFT IN PROGRESS and trigger indicator will light up.

BDD;
-100-

Shift Profile |
1300

Log-
1300 -

Gear State
6

Load Mew Profile

Save Profile Set

Recall Profile Set
Activate Shifter

Shift in Progress

-100-
1300-
.100; Cancel Shift
1300-
: 1] Delay (rns)
Frorm Current Gear
-100- i
13002 | Upshift
Activate on Trigger .
0 ssaceiz4[mal AN
1300- 55B C35R [ma] ]
SSC CB26 [mA] ]
53D CBLR/C456 [ma] AN
100 LIME [rnds] N
- T 1
00:00 aosng | TECImaAl [~
Time ssEon/OFF [ma] AN

1000  ms Solenoid Control Loop Time
Send to Solenoids
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Next to all the windows are universal controls and solenoid status screen. The
profile viewer shows the commands for all solenoids at the same time. These
commands are not sent to the solenoids until the ENGAGE button is activated. The
indicators and values next to the command viewer shows the current value of the
solenoid. It is possible for the solenoid status and command viewer values to not
be equal. When the ENGAGE button is activate, the solenoid status and command
viewer values will match. When the ENGAGE button is disabled, the solenoid
status will show the last values sent to the controller and the the command viewer

will show the current commands sent from the software.

The shift lever is used to change gears and view/load profiles in the SHIFT
PROFILE window. Value override allows the user to change a single solenoid
value on the fly. This was mainly used to set the TCC slip conditions before a shift.
The “Blip” override commands an addition of current for a specified amount of time.

These controls were used to see the sensitvity of the TCC pressure .

Solenoid Status |

J
1000
. J
Shift —
Lever
o
[
)
0 Command
Viewer
J
Va | ue Overide Value 500
Override | "o ®
- b
—
delta‘ Current !mA)
o ) SSA
“ B I i p!! d:l‘tal Time (ms) 500 SSB -
’ g ssc M
Override | sinon ° |
> " e BM
g Tcc -
count SSE /]
. e ]

Start Path
i) C:\Users\tgocheno\Documents\Projects\RICALabYIEWAMTU\Schedules

v
g
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H Pressure Transducer Specifications

H.1 Kulite XCEL-072

kulite

HIGH TEMPERATURE
MINIATURE PRESSURE TRANSDUCER
XCEL-072 SERIES
* Wide Temperature Capability -65°F To 525°F
® Designed For Harsh Environments
* |deal For Turbine Engine Probes and Wind Tunnel Applications
* Patented Leadless Technology VIS®
* Designed For Both Static and Dynamic Response
* Suitable For Use in Most Conductive Liquids and Gases
The XCEL-072 design features Kulite's patented leadless technology. This allows for a very rugged
package suited for probes, pressure rakes and other similar test set ups. This transducer is well suited
for both dynamic and stalic pressure measurements in benign or harsh environments. Its wide operating
temperature range (-65°F to +525°F) makes it ideal for numerous applications in Aerospace and other
areas of Industry.
Kulite recommends the KSC-2 signal conditioner to maximize the measurement capability of the XCEL-072 transducer.
074 PRESSURE REFERE NCE TUBE
irol B SCREEN STANDARD 01620 X1TIONG
M SCREEN CPTIONAL LK ae ok SACE & COMPENSATION MODLLE
110 DIA. X 17 (2.8 X 25.4)
LONG FOR 38 AWG LEADS
L; 375 (9 8) 44
LETER LT
WIRING BEFORE COMP. MODULE
GCOLOR DESIGNATION
FED +INPUT
4 LEADS TEFLON INSULATED
BLAGK -INPUT
#36 AWG 12" 305] LONG
CREEN + QUTPLT AFTER COMP. MODULE
WHITE “QUTPUT NOTE: FOR INTERNAL COMPENSATION CONSULT FACTCRY
P R 07 1.0 17 35 7 14 21 35 70 BAR
ressure Range 10 15 25 50 100 200 300 500 1000 PSI
Absolute, Gage, Absolute, Gage, Sealed Gage,
Operational Mode Differential Differential Absolute, Sealed Gage
. Over Pressure 2 Times Rated Pressure
2 Burst Pressure 3 Times Rated Pressure
2
Pressure Media Most Conductive Liquids and Gases - Please Consult Factory
Rated Electrical Excitation 10 VDC/AC
Maximum Electrical Excitation 12VDC/AC
Input Impedance 1000 Ghms (Min.)
Output Impedance 1000 Ohms (Nom.)
Full Scale Output (FSO) 100 my (Nom )
Residual Unbalance +=5mV (Typ.)
Combined Non-Linearity, Hysteresis
'5 and Repeatability +0.1% FSOBFSL (Typ), +0.5% FSO (Max.)
a
5 Resolution Infinitesimal
S Natural Frequency of Sensor
Without Screen (KHz) (Typ.) 175 200 240 300 380 550 575 700 1000
Acceleration Sensitivity % FS/g
Perpendicular 1.0x10° 8.5x10 5.0x10% 3.0x10% 1.5x10* 1.1x10* 9.0x10° 6.0x10° 4.0x10°
Insulation Resistance 100 Megohm Min. @ 50 VDC
Operating Temperature Range -65°F to +525°F (-55°C to +273°C)
-
E Compensated Temperature Range +80°F to +450°F (+25°C to +235°C)
UEJ Thermal Zero Shift +1% FSA00°F (Typ.)
-
8 Thermal Sensitivity Shift + 1% /100°F (Typ.)
% Steady Acceleration 10,000g. (Max.)
Linear Vibration 10-2000 Hz Sine, 100g. (Max.)
;:‘ Electrical Connection 4 Leads 36 AWG 36" Long
3]
z Weight 2 Gram (Nom) Excluding Module and Leads
E Pressure Sensing Principle Fully Active Four Arm Wheatstone Bridge Dielectrically Isolated Silicon on Silicon Patented Leadless Technol ogy
Note: Custom pressure ranges, ies and i fgurations available. Dimensions are in inohes. Dimensions in is are in mill All dimensions nominal. (Q)
i and of our products may result in specification changes without notice. Copyright @ 2014 Kulite Semiconductor Products, Inc. All Rights Reserved.

Kulte miniature pressure transducers are Intended for use in test and research and development programs and are not necessarlly designed to be used in produiction applications. For procucts
designed to be Used In production programs, please consult the factory.

KULITE SEMICONDUCTOR PRODUCTS, INC. » One Willow Tree Road « Leonia, New Jersey 07605 « Tel: 201 461-0900 « Fax: 201 461-0990 e« htip://www.kuilite.com
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H.2

Kulite LE-160

@kulite

MICROLINE STRESS ISOLATED SURFACE MOUNT

PRESSURE TRANSDUCER

LQ-160 SERIES LE-160 SERIES

Designed For Direct Blade Surface Mounting
Silicon on Silicon Integrated Sensor VIS®
High G Loading

Low Base Strain Sensitivity
High Natural Frequency
High Temperature Operation Up To 450°F (LE Series)

The LQ/LE-1680 Series microline pressure transducer represents the latest build standard in a long line of
sensors designed and developed for direct mounting onto engine blades. Using a unique isolation technique to

reduce base sirain sensitivity effects, the LQ/LE-160 Series are the smallest, lightest units yet developed. With
a maximum height of less than 0.025 inch, these units may be mounted in locations on the blade previously
inaccessible with a packing density previously impossible

Kulite recommends the KSC-2 signal conditioner to

the

it ility of the LQ-160 and LE-160 transducers.

75 (9.5) le 24" |
1©19)
L— 500 —-‘ ‘
T —m
10 2:%:-
{41 o
l N
conemronsone
110 DI X 1" IONG NOM. ALEADS #38 ANG
"B SCREEN <4 EADS #38 AWG (28x25.4 TEFLON CABLE 12" (305) LONG
TEFLOM CABLE 24" (610 LONG
WIRING
COLOR DESIGNATION gig :/
RED +INPUT ! )
BLACK “INPUT > =t
GREEN & OUTPUT oo oz 3:\§
WHITE —OUTPUT
0.35 0.7 1.7 3.5 7 17 35 BAR
Pressure Range 5 10 25 50 100 250 500 PS
Operational Mode Absolule Absolute, Sealed Gage
Over Pressure 2Times Raled Pressure
§ Burst Pressure 3Times Raled Pressure
Z | Pressure Media All Nonconduetive, Noncorrosive Liquids or Gases
Rated Electrical Excitation 10VDC
Maximum Electrical Excitation 12vDC
Input Impedance 1000 Ghms (Min )
Oulput Impedance 1000 Ghms (Nom )
Full Scale Gutput (FSO) 100 my (Nom.)
Residual Unbalance +£5mv (Typ)
Gombined Non-Linearity, Hysteresis
. |2and Repeatability +0.1% FSO BFSL (Typ), + 05% FSO (Max)
Z | Resolution Infinitesimal
=
> | Nalural Frequency of Sensor
O | without Screen (KHz) (Typ.) 150 175 240 300 380 550 700
Acceleration Sensitivity % FS/g
Perpendicular 1.5x10° 1.0x10° 5.0x10* 3.0x10* 1.5x10 1.0x10°* 6.0x10°
Base Sirain Sensilivity Less Than 5% FSQ for 1000 Microsirain
Insulation Resislance 100 Megohm Min. @ 50 VDG
" LQ SERIES -65°F to +250°F (-65°C 1o +120°C)
3 Operaling Temperature Range LE SERIES -65°F to +450°F (-55°C {0 +235°C) Sensor Only
[= LQBERIES +80°F to +180°F (+25°C to +80°C)
=
i | Compensaled Temperalure Range LE SERIES +80°F 10 +450°F (+25°C 10 +235°C) Sensor Only
Z [Thermal zero shin +2.0% FSM00°F (Typ)
o]
£ | Thermal Sensitivity Shift +2.0% M00°F (Typ)
E Linear Vibration 10-2,000 Hz Sine, 100g. (Max )
Mechanical Shock 20g half Sine Wave 11 msec. Duration
&I Electrical Conneclion 4 Conductor # 38 AWG Shielded Teflon Cable 24" to Module, 12" After
[¢]
o | Weight 1 Gram (Nom.) Excluding Module and Leads
5=
T | Pressure Sensing Principle Fully Active Four Arm Wheatstone Bridge Dielectrically Isolated Silicon on Silicon
Note: Custom pressure ranges, and avaiiable. are in inches. Dimensions in is are in mill . All i nominal. (4}
Conti and of our products may result in specification changes without notice. Copyright @ 2015 Kulite Semiconductor Products, Inc. All Rights Reserved.

Kulite miniature pressure transducers are intended for use in test and research and development programs and are not necessarily designed te be used In production applications. For products
designed to be used in production programs, please consult the factory.

KULITE SEMICONDUCTOR PRODUCTS, INC. o One Willow Tree Road « Leonia, New Jersey 07605 « Tel: 201 461-0900 o Fax: 201 461-0090 o hitp//www kulite.com
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I Torque Converter Instrumentation Photos

Figure I-1. Left to right: shaft coupler, transmitter induction coil, head plate,

receiver coil on flex plate

Figure I-2. Powering induction coil on head plate, receiving induction coil on flex

plate
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Figure I-4. Transmitter and hardware for turbine transmitter mounted on clutch

plate
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Figure I-6. Power and signal pin arrays mounted to shell of turbine
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Figure |-8. Stator trailing edge side with receiver induction coil and transmitter

hardware mounted in center
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Figure 1-10. Stator laying on top of turbine
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Figure I-12. Stator laying on top of impeller
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Figure I-13. Impeller transmitter hardware mounted to cover. Kevlar patches to

allow turbine transmitter signal to escape the torque converter

Figure I-14. Turbine transmitter induction coil and Kevlar patches on inside of

cover
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Figure I-16. Impeller channel 1 location, leading edge between blades
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Figure I-18. Impeller channel 3 location, trailing edge between blades
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Figure 1-20. Cover transducer locations
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Figure I-22. Stator transducer locations

160



Figure 1-24. Stator channel 2 location, trailing edge/middle/pressure side
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Figure 1-26. Stator channel 4 location, leading edge/core/pressure side
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Figure 1-28. Stator transducer locations
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Figure 1-30. Stator channel 7 location, trailing edge/middle/suction side
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Figure |-32. Turbine channel 1 location, middle of blade suction side
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Figure 1-33. Turbine channel 2 location, trailing edge pressure side

o
. o
. O .
- .
e 1" l"é

Figure I-34. Turbine channel 3 location, leading edge pressure side
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Figure 1-36. Turbine channel 14 location, leading edge suction side
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Figure 1-37. Turbine channel 15 location, middle blade pressure side

Figure 1-38. Turbine channel 4 and 13 locations, back of turbine under plate
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Figure 1-40. Clutch channel 5 location, outer radius past friction material
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Figure I-41. Clutch channel 9 location, middle radius

Figure I-42. Clutch channel 10 location, outer radius before friction material
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Figure |-44. Clutch plate transducer locations
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Figure 1-46. Clutch channel 7 and 8 locations, inner and outer radius respectively
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J Telemetry Setup Procedure

1. Connect extension cable from transmission to power supply on computer

control stand outside and power on.

% POWER BQFOE§$M POWER DISABLE FREQUENCY .

A '{m

%POWER

TEST INPUT Q

Figure I-1. Power supply for telemetry

2. Turn on the three receivers, one at a time, in the test cell.

Figure |-2. Receivers for each transmitter

3. Open three Digital FV software windows.
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4. Connect the DFV 2 window to each of the receivers.

Square Wave Frequency Vs Time

g
=

§

]
-

,:,l_;....l....l....l....

File Connect Settings Utilities

Current Config File Read Progress Frocess Progress

Mext File: | Pé, | Freq |

Time
0o

_ o |
_ s |

10 [ Timed Acquire

Wl Receiver Interface

Recerver Status
f[===== e [

o 2546 thz Stark

Stopped
2566 tdhz Stop

Figure 1-3. Digital FV windows- chart display (top), receiver controller (middle),

and receiver readout (bottom)
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5. Open configuration file associated with each receiver by selecting File >

Open Configuration

Square Wave Frequency Wz, Time

100000.0 —

750000

:

]
:

(=]
(=]
g|_L|||||||||||||||||||

Wl DFV 2,18.030 - Receiver RF02613A Connected!
File Connect Settings Utilities

IEurrent Config File jad Progress Process Progress

Purnip_ i EI6TE_hat_Dynamic

Newt file: [Manual] | P, | Fieq | F'si.ﬂ‘-.vg| Pai fwvg

Instant -
Time
0o

[0 v Timed Acquire

F Receiver Status
- 2481.26 Mhz 4 dBc
1-———- | -——-- [
o o 2480 Mhz Start
Stopped
8 2510 Mhz Stop

Figure |-4. Receiver connected
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6. Use dropdown menu and select streaming or on sync depending on test
scenario. Streaming for steady state, On Sync for transient. Signal strength

can be monitored on Receiver Interface window.

11T}
Square ‘Wave Frequency Vs, Time
100000.0
75000.0 —
500000 —
250000 —
00 —’J 1 | 1 | 1 | 1 | 1 | 1 J
0 2 4 6 8 10 12
4 1
Wl DRy 2,18.030 - Receiver RFD26134A Connected! — O *
File Connect Settings Utilities
Current Config File Read Progress Process Progress
Pump_u'B3616_hot_Dynarmic
Mest file: (Manual] | P | Freq] Psidvg| Psifvg
CH1
CH2
; CH3
Arm Digky
Q’m “ CH4
CHE
CHE
CH?
a0 v Ti
< >
e
m - .
B Fizmias Toms Receiver Status
- 2496 .90 Mhz 40 dBc
1----ai---—- 0
- o 2480 Mhz Start
& 2510 Mhz Stap

Figure |-5. Receiver showing signal strength and recording options
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7. Under Settings > File Options to set the filename to auto increment. Set
record time to stop after specified time by checking Timed Acquire and
typing the amount of times. Record telemetry data by pressing Arm DigFV
and then Acquire.

Wl pigital FV Chart Display b4
Square W ave Frequency Vs Time
1000000 _-
750000 ~
500000 —
250000 —
i L L LI
0 0 —ﬁ 1 1 1 1 1 1 J
1] 3 10 15 20 25 30
4 L]
1111}
File Connect Settings Utilities
Current Config File Fiead Progress Process Progress
Pump_uwEB9E616_hot_Dynamic 11 KR 703 KB
Mext file: (banual] | Pa | Freq | Psifwg| Psifvg
CH1 100 12461 a1 81
CHz2  100% 12814 100 10.0
- CH3 100 12,453 a5 85
CH4  100% 12,532 a6 8.6
W CHE 1003 12,540 a7 a7
4 CHE< 100 12,540 a4 8.4
Tirne CH? 100 12442 82 a2
30.05
30 v Tirmed Acquire
L4 >

™ Remate Tune Receiver Status

- 2496.83 Mhz 40 dBc
1----- I----- [

o r 2480 Mhz Start
& 2510 MhzStop

Figure I-6. Example of streamed data
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K Torque Converter Clutch Pressures

K.1 Raw Data for 6" Gear
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K.2 5t Gear TCC Pressure Graphics

K.2.1 TCC Released

TCC Release TCC Release

Charge Pressure Charge Pressure

28 Nm: 388 [kPa]

[ L}

98 Nm: 396 [kPa]
wla

Input Speed
1512/1762 [RPM]

28 Nm: 424 [kPa]

[ ISR}

98 Nm: 408 [kPa]
W

Input Speed
1853/1977 [RPM]

[ |
7

Output Speed Output Speed

527 [RPM] 421 [RPM]

275 kPa = 275 kPa =

TCC Release

\% Charge Pressure

28 Nm: 376 [kPa]

( }’ 88 Nm: 412 [kPa]
W

Input Speed

28 Nm: 380 [kPa]

|y

98 Nm: 416 [kPa]
wa

Input Speed

1177/1686 [RPM] 1016/1662 [RPM]

(/'
{Aj Output Speed Output Speed

315 [RPM] 265 [RPM]

275 kPa = 275 kPa =
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K.2.2 TCC Applied

%—f Q[ b

TCC Apply

{7]\’\\’\\ Charge Pressure

29 Nm: 937 [kPa]

/ \ By

I A .

f; %mﬁ 99 Nm: 932 [kPa]
34.7 kN

Wl

Input Speed
1771/1772 [RPM]

J Output Speed
A 527 [RPM]
T

i 275 kPa =
‘[j —

. R
= \\_‘l ./#g//,i, /
NN 758.5 27/
MO
J amm WA

SN TCC Apply

=

, '%\\ Charge Pressure

29 Nm: 946 [kPa]
\\\ By
! 99 Nm: 943 [kPa]
: Wl

Input Speed

f
! l‘ -
/ 3a2ﬁ~‘§gf106111063[RPM]
I 7

e k Output Speed
315 [RPM]

~
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—’l L TCC Apply

”HUN'{\Z Charge Pressure

29 Nm: 933 [kPa)

B

99 Nm: 930 [kPa]

W

Input Speed

& 1417/1418 [RPM]
| /i

{J Output Speed
N 421 [RPM]

29 Nm: 945 [kPa]

T

90 Nm: 940 [kPa]
W

Input Speed
890/891 [RPM]

J Output Speed
265 [RPM]

275 kPa =



K.2.3 TCC Slip

TCC Slip
Charge Pressure

. 28 Nm: 114 [kPa]

Y\ o

98 Nm: 263 [kPa]

"l

Input Speed
1788/1787 [RPM]

P
- Qutput Speed
527 [RPM]

275 kPa =

TCC Slip
Charge Pressure

28 Nm: 104 [kPa]

BAA

98 Nm: 268 [kPa]
L\

Input Speed
1081/1080 [RPM]

Output Speed
315 [RPM]

275 kPa =
|
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TCC Slip
Charge Pressure

28 Nm: 113 [kPa]

[ TE

98 Nm: 269 [kPa]
- o

Input Speed
1440/1434 [RPM]

- Output Speed
421 [RPM]

275 kPa =
|

TCC Slip
Charge Pressure

28 Nm: 102 [kPa]

| mam

89 Nm: 235 [kPa]

@l

Input Speed
921/911 [RPM]

- Output Speed
265 [RPM]
275 kPa =



K.3 Raw Data for 5" Gear
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L Back Drive Pressure Results

L.1 Impeller Results
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L.2 Stator Results
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L.3 Turbine Results
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M Back Drive CFD Comparison

M.1 Impeller +45 Nm CFD Comparison
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M.2 Impeller -45 Nm CFD Comparison
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M.3 Stator +45 Nm CFD Comparison

[--] wBua ape|g paziewion

[--1 wiBuaT apeig paziewioN

[--] wBuaT apeig paziewion

3 g0 o 3 S0 0 3 S0 S0 0 3 S0 o 3 g0 0 3 g0 o b g0 o b S0

ooz ooz 00e ooe ooz ooz ooz ooz ooe

05z 05z 05z sz 05z 05z 05z 05z 05z
ooe oog 00€E 0og ooe oog ooe ooe 00 ¢
W
0SE -+ 0SE 0SE 0ge 0%E 0%E 0gE =
— - [+] o
oor o S A Y g 3
mv f=] oot oof oo¥ % & oor oot 00 F A oor e 0 oo¥ &
& M ¥ g
0sv sy @ 0S¥ 0S¥ 0sv ¢ sy sy sy 0S¥ @
: =
005 005 00§ 005 005 005 005 005 005 %

131 8PISS O 1Sl BpISS O 1S2L9PISS o
0S5 I e g 105 085 0S5 F O apme g 1958 085 0S5 [ s g 1058 085
009 | FELEPSE O Jggg 009 009 | SRLEPIS G lggg 009 00g + FRLEPSE & Jgpg 009
Q40 2PI5d & Q402PI5d 4 Q40 2PI5d 4
fulege] 059 0g9 059 fulege] 059 0s9 0s9 059
112us SPPIN 2100 lsus SPPIN alog l12us SIPPIN alog
z'1=Ms LL=¥s 36°0=YS
uonNgusig aInssald speig 1oiEls uonNgu)sig aInssald spEIg 103EIS uonNgqu)sig ainssald spE|g 103eElS
Jgonpsuel| Jaohpsuel] Jsonpsuel |
L 9 g ¥ € 4 b L 9 g 14 € Z 3 FA 9 S ¥ € 4 L

- : r T 0 T T T T 0 - - - - 0

0oz 00e
.}lll\“lll]'“l..oo.v _-|F|rlllﬂ|ﬂ\ﬂl.llllﬂ|n_
o o o o 0ot
009 009
el O 1591 O 1591 o
043 —=— a40—=— a40—=—
: — - : . 008 - - 008 008
¢'l=4§s lojeig L' 1=ys la0jelg 86°0=NS 10115

lI3ys pue
B|PPIN ‘210D

[edy]@inssald oneis

sjguuey) ||y

202



M.4 Stator -45 Nm CFD Comparison
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M.5 Turbine +45Nm CFD Comparison
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M.6 Turbine -45 Nm CFD Comparison
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N Back Drive FFT Color Maps

N.1 Impeller Color Maps
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N.3 Turbine Color Maps
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O Key Analysis Tools
LMS Data to Matlab

function LMS_Data_to_Matlab(varargin)

Required Format:

NO INPUTS - will ask user to select path and file Tocation
path- 1st input: path to file

file- 2nd input: file name

R X R R R

OUTPUTS - Test lab channel names with respective data

R R R

Purpose of Code:
Takes a Test lab Throughput that was exported to matlab and adds all
channels to workspace with proper names and respective data

R R

if isempty(varargin)
% User Interface to ask for file location
answer = questdlg('cChoose LMS Matlab File',...
'Data File Selection',...
'Browse', 'Cancel’', 'Cancel');
% Handle Response
switch answer
case 'Browse'
selection = 1;
case 'Cancel'
selection = 0;
end
if selection ==
[file,path] = uigetfile('*"');
else
return
end

% Saving file to a know structure name
combined = Toad(fullfile(path,file));

else

% Saving file to a know structure name

combined = Toad(fullfile(varargin{l},varargin{2}));
end

% Identifing number of signal channels in data file and storing structure
% information

nameField = fieldnames(combined);

% Pulling first structure from combined structure
struct_1l = getfield(combined,cell2mat(nameField(1)));

% Caculating Time vector for all signals
dt = struct_l.x_values.increment;
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Time = (0:dt:(struct_1l.x_values.number_of_values-1)*dt)"';
assignin('base', 'Time"',Time)

for ii = 1l:Tength(nameField)
% extracting current field to pull variables from
struct_curr = getfield(combined,cel12mat(nameField(ii)));

% Pulling channel names and data
Names = struct_curr.function_record.name;
Ch_Matrix = struct_curr.y_values.values;

if ischar(Names)
% Clearing previous interations
New_name_raw = [47];
% Split the Names up from the channel numbers
New_name_raw(l,:) = strtrim(strsplit((Names)',':"'));

% Assisning data to variable names
assignin('base',cel12mat(New_name_raw(1l,2:end)),Cch_Matrix(:,1))
else
for jj = 1l:length(Names)
% Split the Names up from the channel numbers
New_name(jj,:) = strtrim(strsplit(cell2mat(Names(jj))"',":"'));

% Assisning data to variable names
assignin('base',cell2mat(New_name(jj,2)),Ch_Matrix(:,jj))
end
end
end
end

Published with MATLAB® R2018a

0.1 Telemetry Average Pressure

DatA FIlES oo

Loop foreach test run .........coooiimiiiiiie e

% Purpose of Code:

% Takes .csv output files from telemetry and averages all the same test run
% values and output an .xIsx file with pressures, channel name, and run

% name

Data files

clear
clc

% selecting file with data to be processed
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answer = questdlg('sSelect .csv Files In Folder to be Processed',...
'Data File Selection',...
'Browse', 'Cancel', 'Cancel');

% Handle Response

switch answer
case 'Browse'

selection = 1;
case 'Cancel'
selection = 0;
end
if selection == 1
[file,path] = uigetfile('*.*','Select One or More Files',...
'Multiselect','on');
else
return
end

% Selecting Impeller, Turbine, or Stator for channel naming

Tist = {'Impeller' 'sStator' 'Turbine'};

Names = (listdlg('PromptString','Select test location:', 'SelectionMode',...
'single', 'Liststring',Tist));

% Defines number of channels

if Names ==
ch = 15;
else
ch = 7;
end

Loop for each test run

delete Telemetry_Pressure_Averaged_Results.xIsx % Deletes file to ensure no data is from
old processing

% Splits each file name apart and determines number of test runs completed
A = cell(3,1length(file));
for ii = l:length(file)
AC:,i1) = split(file{ii},'_");
end
B = unique(A(d,:));

% Organizing each test into the proper column
test_run = cell(1,Tength(B));
count = 1;
for jj = 1l:length(B)
for ii = 1l:length(file)
if isequal(a(l,ii),B(33))
test_run(count,jj) = file(ii);
count = count + 1;
else
count = 1;
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end
end
end

Pressure_Average = zeros(length(test_run(l,:)),Cch);

count = 1;
offset = 0;
for jj = l:length(test_run(l,:))

% finds the number of runs for each test excluding zero cells from
% total
x = sum(~cellfun(@isempty,test_run(:,3jjd)));

Holder = zeros(x,Ch);
for ii = (1+offset): (x+offset)
% Loading Csv data file
test = importdata(fullfile(path,file{ii}));

Average = nanmean(hampel(test.data,100));
Average = reshape(Average,3,[]);
Holder(ii-offset,:) = Average(2,:);

disp(['Processed Run ', num2str(count), ' of ', num2str(length(file))])
count = count + 1;

end

offset = offset + x;

Pressure_Average(jj,:) = mean(Holder,1);

x1swrite('Telemetry_Pressure_Averaged_Results.x1sx',test_run(l,jj),strcat('A',num2str(jj+
D, " :A" ,num2str(3j+1)));

end

x1swrite('Telemetry_Pressure_Averaged_Results.x1sx',Pressure_Average,l,'B2');

if Names == 1
Titles = {'Run Name', 'Chl Inlet [PSI]', 'Ch2 Impeller-Turbine oD [PSI]', 'Ch3 Exit
[ps1]', 'Ch4 middle [PpsI]',...
'Ch5 Cover oD [PSI]', 'Ch6 Cover Middle [PSI]', 'Ch7 Cover ID [PSI]'};
elseif Names ==
Titles = {'Run Name', 'Chl Pside Lead Mid [PSI]', 'Ch2 Pside Trail mid [PSI]', 'ch3
Pside Mid shell [PsI]', 'Ch4 Pside Lead Core [PSI]',...
'Ch5 Pside Trail Core [PSI]', 'Ch6 Sside Lead Mid [PSI]', 'Ch7 Sside Trail Mmid
[PST]'};
else
Titles = {'Run Name', 'Chl Sside Mid Mid [PSI]', 'Ch2 Pside Trail mid [PSI]', 'ch3
Pside Lead Mid [PSI]', 'ch4 shell outer ob [PSI]',...
'Cch5 Clutch side oD Past Friction Material [PSI]', 'Ch6 Turbine Side Middle
[ps1]', 'Ch7 Turbine side 1D [PSI]',...

'Ch8 Turbine Side ob [PSI]', 'Ch9 Clutch side Middle [PSI]', 'Cchl0 Clutch Side oD
Before Friction Material [PSI]',...
'Chll Turbine Side ID [PSI]', 'Chl2 Sside Trail Mid [PSI]', 'Ch1l3 shell outer ID
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[Ps1]', 'Chl4 sside Lead mid [PSI]',...
'Chl5 pPside Mid mid [PSI]'};
end

x1swrite('Telemetry_Pressure_Averaged_Results.x1sx',Titles);
disp('Processing Completed')

Published with MATLAB® R2018a

0.2 Telemetry Stitcher

Asking User to Define File Location ...............ccceiiiiiiiiiiiiiicieeee e, 225
Asking User to Define Impeller, Stator, or Turbine Data........................... 226
Data PrOCESSING .....uuuuuiiiiiiiiiiiiiiii e 226
Sorting Time and Pressure Data ... 227

function [Time_Stitched,Pressure_Stitched,Sync] = Telemetry_Stitcher

R

Required Format:

Time- 1st input: 3D time matrix associated with the pressure matrix
Pressure- 2nd input: 3D pressure matrix

Time_Stitched- 1st output: Time vector for each channel
Pressure_Stitched- 2nd output: Pressure vector for each channel

R R R X R R

Purpose of Code:
Takes each channel from a set of tests and stitches the data into a
single time trace for each channel

R R

Asking User to Define File Location

answer = questdlg('select Telemetry Files to be Processed',...
'Data Folder Selection',...
'Browse', 'Cancel', 'Cancel');
% Handle Response
switch answer
case 'Browse'
selection = 1;
case 'Cancel'
selection = 0;

end
if selection == 1
[file,path] = uigetfile('*','select One or More Files',...
'Multiselect','on');
else
return
end
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Asking User to Define Impeller, Stator, or Turbine Data

List dialog to define what data set

Tist = {"Impeller' 'sStator' 'Turbine'};
set = (Tistdlg('PromptString','Select a Data Set', 'SelectionMode',...
'single', 'ListString',Tist));

% Defines the number of channels to expect in the data sets

if set ==
Ch_num = 15;
else
Ch_num = 7;
end

% Checking if there are multiple files and to load the files properly

% depending on the variable type (string vs cell)

if ischar(file)
file_length

else
file_length

1;

Tength(file);
end

Data Processing

sync = zeros(file_length,1);
for ii = 1:file_length
% Loads each file that was selected in the user dialog
% Checking if there are multiple files and to load the files properly
% depending on the variable type (string vs cell)
if dischar(file)
Data = csvread(fullfile(path,file),1,0);

else
Data = csvread(fullfile(path,cell2mat(file(ii))),1,0);
end
fs = 52000; % [Hz]
desired sampling frequency for the data to be resampled at
t =0:1/fs:30; % [sec] time

vector that Pressure will be mapped too
% commanding subroutine to remove dropouts and resample the data set
[ty,y] = Dropout_Resample(pata(:,1),Data(:,2),fs);

% commanding subroutine to organize the data by channels and 3D matrix
[Time,Frequency] = Telemetry_organizer(ty,y,Ch_num);

% %temp
% Time_order(:,:,ii)= Time;

% Frequency_order(:,:,ii)= Frequency;

% commanind subroutine to calibrate each of the channels
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Pressure = Telemetry_Calibration(Frequency,Set);

% Clearing the holder variables for new information of a different size
if i1 ==
else
clear Time_holder Pressure_holder
end

% Adding a zero layer to pressure to match time 3D matrix

if length(Pressure(1,1,:)) < length(Time(1,1,:))
Pressure(:,:,end+1) = zeros(size(Time(:,:,1)));

end

% Looping through each channel and gathering all channel info
Time_save = zeros(length(Time)*Tength(Time(1,1,:)),Ch_num);
Pressure_save = zeros(length(Pressure)*length(Pressure(l1,1,:)),Ch_num);
for jj = 1:Ch_num

Time_holder = squeeze(Time(:,jj,:));

Pressure_holder = squeeze(Pressure(:,jj,:));

Time_holder = reshape(Time_holder,[],1);

Pressure_holder = reshape(Pressure_holder,[],1);

Time_save(:,jj) = Time_holder;

Pressure_save(:,jj) = Pressure_holder;
end

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 00%

% Placing the held information from every file together
if i1 ==
Time_Stitched = Time_save;
Pressure_Stitched = Pressure_save;
else
Time_Stitched = vertcat(Time_Stitched,Time_save);
Pressure_Stitched = vertcat(Pressure_Stitched,Pressure_save);
end

% sync average from each test run
ss = find(pata(:,3)== 5000,1);
Ssync(ii) = pata(ss,l);

disp(['Processed Run ', num2str(ii), ' of ', num2str(file_length)])

end

Sync = mean(Sync);

Sorting Time and Pressure Data

[Time_Stitched,index] = sort(Time_Stitched);

for ii = 1:Tength(index(1,:))

A(:,ii) = Pressure_Stitched(index(:,i1),i1);

end

% Replacing the sorted data over the unorganized values
% only saving the values that are not all zero rows
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Pressure_Stitched = A(any(A,2),:);
Time_Stitched = Time_Stitched(any(Time_Stitched,2),:);

end

Published with MATLAB® R2018a

0.3 Dropout Resample

RemMOVING DIOPOULS ......oeeiiieieeee et e e 228

function [ty,y] = Dropout_Resample(t,A,fs)

R

Required format:

t - 1st input: is the time vector associated with A

A - 2nd 1input: 1is the vector to have dropouts removed and resampled

fs - 3rd input: is desired sampling frequency for vector to be resampled at
ty - 1st output: is the resampled time vector

y - 2nd output: is the resampled, dropouts removed vector

R R R X R X

%Purpose of Code:
% Removes drop outs and resamples the data to a specified sampling
% frequency

Removing Dropouts

B = hampel(A,1000);
B = hampel(B,1000);
% p =5, upsampling parameter, q = 10, downsampling parameter

y = resample(B,t,fs,5,10);
ty = 1/fs:1/fs:length(y)*1/fs;

end

Published with MATLAB® R2018a

0.4 Telemetry Organizer

FINAING MATKET ... 229
D= L= T Y= ) 232
Partial Data Sets at Beginningand End ... 232

function [Time,Frequency] = Telemetry_oOrganizer(Time_raw,Freq_raw,Ch_num)
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R

Required Format:
Time_raw - 1st input: time vector associated with the freq_raw vector
Freg_raw - 2nd input: raw frequency vector

R X R R R

are each channel (7 or 15)

R

Purpose of Code:

R R

size and Tocation. The data is placed in a 3D matrix for each channel

R R

Last Update: Mark woodland 03/22/2019

R R

Updates: 03/22/19- ch 15 on turbine is no Tonger working which means
marker start cannot be identified. Using marker ends with channel length
provided by IRT to determine number of samples per channel

R R

Finding Marker

thresh = 10000;

threshold Tevel for marker

fs = 1/(Time_raw(2)-Time_raw(1));
sampling frequency

Marker_start = find(Freq_raw(l:end-1)>thresh...
& Freg_raw(2:end)<thresh);

marker location

Marker_end =  find(Freq_raw(1l:end-1)<thresh...
& Freg_raw(2:end)>thresh);

marker location

% Removing all partial starting markers that can be at end of data set
Marker_start(Time_raw(Marker_start)>Time_raw(end)-1) = [];

% Removing all parital ending markers that can be at beginning of data set
Marker_end(Time_raw(Marker_end)<Time_raw(1)+1) = [];

% Verifying is Marker Start and Ends are Markers and not dropouts
% Marker starting
Marker_remove = zeros(l,length(Marker_start));
for ii = 1l:Tength(Marker_start)
% Checking values after the start of marker
if(mean(Freg_raw(Marker_start(ii):Marker_start(ii)+fs*.01))<thresh)
1% of the sampling frequency as the number of points to verify marker
Marker_remove(ii) = 1;
keep marker values
end
end
Marker_start(Marker_remove<l)=[];
dropout values from

% Looking for dropouts inside of marker and removing as marker starts
count = 0;
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Time_Freq - 1st output: Time matrix associated with the frequency matrix
Frequency - 2nd output: Frequency matrix- rows contain frequency, columns

Takes a multiplexed data set and spilts the data according to the marker

% [Hz]

% [Hz]

% start of

% End of

% Looking for

% Logic to

% Removing



if Ch_num ==

Limit = floor(Time_raw(end)/8)+1;
else

Limit = floor(Time_raw(end)/16)+1;
end

% Always check the first marker for dropouts inside the marker
count = count+l;
Marker_remove = [ones(l,count) Time_raw(Marker_start(count+l:end))-...

Time_raw(Marker_start(count))]; % 1 placed as a

place holder to ensure first value is kept
Marker_start(Marker_remove<0.98) = [];

% Continues looking at other markers for dropouts if necessary
if Ch_num == 15
else
while length(Marker_start)>Limit
count = count+1;

Marker_remove = [ones(1l,count) Time_raw(Marker_start(count+l:end))-...

Time_raw(Marker_start(count))];
placed as a place holder to ensure first value is kept
Marker_start(Marker_remove<0.98) = [];
end
end

% Marker ending
Marker_remove = zeros(l,length(Marker_end));
for ii = 1l:Tength(Marker_end)
% Checking values prior to end of marker
if(mean(Freg_raw(Marker_end(ii)-fs*.01l:Marker_end(ii)))<thresh)
1% of the sampling frequency as the number of points to verify marker
Marker_remove(ii) = 1;
keep marker values
end
end
Marker_end(Marker_remove<1)=[];
dropout values

count = 0;

% Always check the first marker for dropouts inside the marker

count = count+l;

Marker_remove = [ones(1l,count-1) Time_raw(Marker_end(count:end))-...
Time_raw(Marker_start(count))];

a place holder to ensure first value is kept

Marker_end(Marker_remove<0.98) = [];

if Time_raw(Marker_end(1))+Ch_num+1 <= Time_raw(end)
% Looking for dropouts inside of marker and removing as marker ends
while length(Marker_end)>Limit
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% 1

% Looking for

% Logic to

% Removing

% 1 placed as



count = count+1;
% condition to end loop if there is a dropout really close to the end
% of the marker and will not be removed otherwise
if count > Limit
Marker_end = Marker_end(l:Limit);
break
end
% Removing bad end markers based off of correct start markers
Marker_remove = [ones(1l,count-1) Time_raw(Marker_end(count:end))-...
Time_raw(Marker_start(count))]; % 1
placed as a place holder to ensure first value is kept
Marker_end(Marker_remove<0.98) = [];
end

% Final check to remove end markers that are near the ends that are

% dropouts

index =[0 Time_raw(Marker_end(1l:end-1))+Ch_num+0.8>Time_raw(Marker_end(2:end))];
Marker_end(index>0) = [];

else
% Final check to remove end markers that are near the ends that are
% dropouts
index =[0 Time_raw(Marker_end(1l:end-1))+Ch_num+0.8>Time_raw(Marker_end(2:end))];
Marker_end(index>0) = [];

end

% Determining locations for marker locations

Marker_time = Time_raw(sort([Marker_start; Marker_end])); % [sec] Time
of each marker location sorted in order from Towest to highest
Marker_length = Marker_time(2:end)-Marker_time(l:end-1); % [sec] Time

between each value True marker and time between markers

% Counting number of full channel sets
if Ch_num == 15
Ch_time = 1.003; % [sec]
Tength of Turbine channels
Marker_start = zeros(length(Marker_end),1);
for ii = 1l:Tength(Marker_end)
if Marker_end < Ch_time

else
Marker_start(ii) = find(Time_raw >= (Time_raw(Marker_end(ii))-Ch_time),1);
end
end
else
Ch_time = mean(Marker_length(Marker_Tlength<2)); % [sec]
Length of each channel (~1 sec)
end
ch_Tength = mean(Marker_length(Marker_length>2)); % [sec]
Length of each set of channels (~7 or 15 sec)
%Ch_num = round(Ch_length/Ch_time); % Number of

231



channels 1in each channel set
Ch_sets = length(Marker_end)-1; % Number of
full channel sets

% Counting number of data points per channel

v = find(Marker_end>Marker_start(1),1); % Finding
first marker pair
Ch_point = round(mean(Marker_end(v:end)-Marker_start)); % Number of

data points in each channel

Data Matrix

Creating 3D matrix for data

Frequency = zeros(Ch_point-1000,Ch_num,Ch_sets+2); % ROWS-
remove 500 data point for ends, Column- # of CH, Layers- Add two for possible partial
data sets at begining and end

Time = Frequency; % Time matrix
associated with the Frequency Matrix
if Ch_sets == % If there

are no full data sets just skip this portion of code and go to partial data sets code
else
for ii = l:Ch_sets
A = Freq_raw(Marker_start(ii)+Ch_point:Marker_start(ii)...
+Ch_point*(Ch_num+1)-1); % Pulling
full channel set from data
B = Time_raw(Marker_start(ii)+Ch_point:Marker_start(ii)...
+Ch_point*(Ch_num+1)-1);
A_m = reshape(A, []1,Ch_num); % Reshaping
data to splilt each channel
B_m = reshape(B, [],Ch_num);

A_m(1:500,:) = [1; % Removing
first 500 data points
A_m(end-499:end,:) = []; % Removing

Tast 500 data points
B_m(1:500,:) = []1;
B_m(end-499:end,:) = [];

Frequency(:,:,1i+1) = A_m; % Assigning
values to 3D Results Matrix, Keep first layer open for possible partial data
Time(:,:,ii+1) = B_m;
end
end

Partial Data Sets at Beginning and End

Finding if partial set at beginning of data
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if Time_raw(Marker_start(1l)) < Ch_num+Ch_time

Ch_comp = floor(Time_raw(Marker_start(1))/Ch_time); % Number of
full 1 sec channels 1in uncompleted data set
if Ch_comp == % Do nothing
if there are no complete channels of data in partial data set
Frequency(:,:,1)=[]; % If there is

no partial data remove the first zero matrix layer
Time(:,:,D=[];
else
Data = Freg_raw((Marker_start(1l)-Ch_comp*Ch_point):...
(Marker_start(1)-1)); % Extracting
channels from partial set
Data_B = Time_raw((Marker_start(1l)-Ch_comp*Ch_point):...
(Marker_start(1)-1));
Data_m = reshape(bata, [],Ch_comp); % Creating a
matrix of channels (n by # of CH)
Data_mB = reshape(bata_B, [],Ch_comp);

o

o

Data_m(1:500,:) = []; % Removing
first 500 data points
Data_m(end-499:end,:) = []; % Removing

Tlast 500 data points
Data_mB(1:500,:) = [];
Data_mB(end-499:end,:) = [];
Frequency(:, (Ch_num-Ch_comp+1) :end,1) = Data_m; % Adding
partial data to beginning of matrix
Time(:, (Ch_num-Ch_comp+1) :end,1) = Data_mB;
end

o

end

% Finding if partial set at end of data
if Time_raw(Marker_end(end)) < Time_raw(end)

Ch_comp = floor((Time_raw(end)-Time_raw(Marker_end(end)))/Ch_time); % Number of
full 1 sec channels 1in uncompleted data set
if Ch_comp == 0 % Do nothing
if there are no complete channels of data in partial data set
Frequency(:, :,end)=[]; % If there is
no partial data remove the last zero matrix Tlayer
else
Data = Freq_raw((Marker_end(end)+1):...
(Marker_end(end)+Ch_comp*Ch_point)); % Extracting

channels from partial set
Data_B = Time_raw((Marker_end(end)+1):...
(Marker_end(end)+Ch_comp*Ch_point));
Data_m = reshape(Data, [],Ch_comp); % Creating a
matrix of channels (n by # of CH)
Data_mB = reshape(Data_B, [],Ch_comp);

Data_m(1:500,:) = []; % Removing
first 500 data points
Data_m(end-499:end,:) = []; % Removing

Tast 500 data points
Data_mB(1:500,:) = [];
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Data_mB(end-499:end,:) = [];
Frequency(:,1:Ch_comp,end) = Data_m;
partial data to beginning of matrix
Time(:,1l:Ch_comp,end) = Data_mB;
end
end

end
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0.5 Telemetry Calibration

CaliDrAtION - oo

function [Pressure] = Telemetry_cCalibration(Frequency,cal_set)

R

Required Format:
Frequency- 1st input: is the demultiplexed 3D matrix that is built from
the Telemetry Organizer code
cal_set- 2nd input: determines if the data set is 1l-Impeller, 2-Stator,
or 3-Turbine cal factors
Pressure- output: calibrated 3D matrix of pressures

R R X R R R R

Purpose of Code:
Calibrates the telemetry frequency to a pressure (PSIa)

R

Calibration

loads the calibration values for the appropriate data set

if cal_set ==
load('Impeller_calibration.mat")
cal = Impeller_calibration;
Ch_num = 7;

elseif cal_set ==
load('stator_cCalibration.mat')
cal = stator_cCalibration;
Ch_num = 7;

else
load('Turbine_calibration.mat")
cal = Turbine_calibration;
Ch_num = 15;

end

% Loops through each channel and applies the calibration
Pressure = zeros(size(Frequency));
for jj = 1l:Tength(Frequency(l,1,:))
for ii = 1:Ch_num
Pressure(:,ii,jj) = Frequency(:,ii1,jj)*cal(ii,)+cal(ii,2);
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end
end

% Replacing all negative calibrated values with zero
Pressure(Pressure<0) = 0;

end
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0.6 Tach to RPM

function [ts,RPM,ts_raw,RPM_Raw] = Tach_to_RPM(Tach,thresh,Pulse_Rev,dt)

IS

Treshhold values:
DC One Tach: -0.6
AC One Tach: -0.6
TSS Tach:0.03

0SS Tach:0.03

DC Dyno Tach: N/A
AC Dyno Tach: 0

R R R X R R

%Pulse per revolution

% DC One Tach: 1

% AC One Tach: 1

% TSS Tach: 36

% 0SS Tach: 24

% DC Dyno Tach: DC Offset value 1mV/RPM
% AC Dyno Tach: 60

% User Changes Vvaribales
% Tach = 0SS_Tach;

% thresh = 0.03;

% Pulse_Rev = 24;

CODE BEGINNING 0/0/0
% Code is built to convert a tachometer signal into a RPM

t = ((1:1ength(Tach))*dt)'; %Total time of data set
tal = Tach(l:(length(Tach))-1); %Trailing value

ta2 = Tach(2:(length(Tach))); %Leading value

v = find(tal>=thresh & ta2<thresh); %Locating each period

z(1:2)= [v(1) v(];
for i = 3:Tength(v)

if z(i-1) ==
if (v(@)-v(i-2)) >= (.75*(v(2)-v(1)))
z(i) = v(i);
else
z(i) = 0;
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end

else
if (v@)-v(@G-D) >= (.75*(v(Q)-v(D)))
z(i) = v(i);
else
z(i) = 0;
end
end
end
z(z<1) = [1;
vs = Tach(z); %Tach values where peaks occur
ts = t(2); %Time when peak occurs

% RPM Calculation
RPM = zeros(1l,length(ts)-1);
for i = 1:(length(ts)-1);
RPM(i) = (60/(ts(i+1)-ts(i)))/Pulse_Rev;
end

% Raw RPM Calculation
vs_raw = Tach(v);
ts_raw = t(v);

RPM_Raw = zeros(1l,length(ts_raw)-1);
for i = 1:(Tength(ts_raw)-1);

%Tach values where peaks occur
%Time when peak occurs

RPM_Raw(i) = (60/(ts_raw(i+1)-ts_raw(i)))/Pulse_Rev;

end

R

R R

subplot(2,1,D)
plot(t,Tach,ts,vs,'o")
xTabel('Time[sec]"')
ylabel('RPM")

R X R R R

% Plotting RPM Signal
subplot(2,1,2)
plot(ts(2:end),RPM)
xTabel('Time[sec]"')
ylabel('RPM")

end

R R R R
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0.7 Clutch Capacity

Datafiles...cocoveeeeeiieeieee,

disp([ 'Average Speed- ', num2str(mean(RPM)), ' RPM'])

Plotting Tach Signal with pulled values to calculate RPM
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CalCUIALIONS . .o 238

% Purpose of Code:
% Takes averaged pressure data and creates a clutch capacity curve

Data files

close all
clear
clc

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0,

%
% opening excel file with averaged pressures for each channel
%

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0,

% selecting file with data to be processed
answer = questdlg('Select Averaged Pressure Results',...
'Data File Selection',...
'Browse', 'Cancel’', 'Cancel');
% Handle Response
switch answer
case 'Browse'
selection = 1;
case 'Cancel'
selection = 0;

end
if selection ==
[file,path] = uigetfile('*.*"');
else
return
end
0/0/0/0/0/0 0/0/0/0/0 0/0/0/0/0/0 0/0/0/0/0 0/0/0/0/0/0 0/0/0/0/0

%
% Opening all corresponding dyno data
%

% selecting file with data to be processed
answer = questdlg('Select Test Lab Data',...
'Data File Selection',...
'Browse', 'Cancel', 'Cancel');
% Handle Response
switch answer
case 'Browse'

selection = 1;
case 'Cancel'
selection = 0;

end
if selection ==
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[file2,path2] = uigetfile('*.*','Select One or More Files',...
'MultiSelect','on");
else
return
end

% selecting Impeller, Turbine, or Stator for channel naming

Tist = {'Impeller' 'Stator' 'Turbine'};

Names = (listdlg('PromptString','Select test Tlocation:', 'SelectionMode',...
'single', 'Liststring',Tist));

Calculations
Pressure = importdata(fullfile(path,file));
count = 0;

Results = zeros(length(file2),length(Pressure.data(l,:))+5);

for ii = 1:Tength(file2)
LMS_Data_to_Matlab(path2,file2{ii})

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0,

0y
%
% Pressure Conversions (Pa to PSI)
0y
%

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0,

conv = 6894.757;

C35R_Pressure = C35R_Pressure/Conv;
C456_Pressure = C456_Pressure/conv;
CB1234_Pressure = CB1234_Pressure/Conv;
CB26_Pressure = CB26_Pressure/conv;
CBLR_Pressure = CBLR_Pressure/conv;
LINE_Pressure = LINE_Pressure/cConv;
SOL_FEED_Pressure = SOL_FEED_Pressure/conv;
TCC_APPLY_Pressure = TCC_APPLY_Pressure/conv;
TCC_REL_Pressure = TCC_REL_Pressure/conv;
Trans_IN_Pressure = Trans_IN_Pressure/cConv;
Trans_OUT_Pressure = Trans_OUT_Pressure/conv;

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0,

%
% Speed Multipled by Factor of 10 to get correct speed
%

96966067676 9696760676, 969676067676 9696760676, 969676067676 96967676

AC_Tach = AC_Tach*10;

DC_Tach DC_Tach*10;

TSS_RPM TSS_RPM*10;
output_Speed = Output_Speed*10;
STip = s1ip*10;
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0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0,

%
% Averaged values of interest
%

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0,

LINE_Pressure = mean(LINE_Pressure);
TCC_APPLY_Pressure = mean(TCC_APPLY_Pressure);
TCC_REL_Pressure = mean(TCC_REL_Pressure);
DC_Tach = mean(DC_Tach);

Ooutput_Speed = mean(Output_Speed);

STlip = mean(Slip);

DC_Torque = mean(DC_Torque);

AC_Torque = mean(AC_Torque);

0/0/0/0/0/0/0/0/0/0, ‘0/0/0/0/0, 0/0/0/0/0/0, ‘0/0/0/0/0, '0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0,
%

% Delta pressure between each channel and TCC Apply and Rel pressure
%

0/0/0/0/0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0,

if TCC_APPLY_Pressure > TCC_REL_Pressure
dP = Pressure.data(ii,:) - TCC_APPLY_Pressure;
Charge_Pressure = TCC_APPLY_Pressure;

else
dP = Pressure.data(ii,:) - TCC_REL_Pressure;
Charge_Pressure = TCC_REL_Pressure;

end

Results(ii,:) = [DC_Tach DC_Torque Output_Speed AC_Torque Charge_Pressure dpP];
disp(['Processed Run ', num2str(ii), ' of ', num2str(length(file2))])
end

0000000000%%%%00 00%%%00 00%%%%00 '0/0/0/0/0, '0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0,
%

% Clutch capacity Calculations

%

%6%6%660606262626%6%6696%6, %67606%6, Q60676060606 76%667606 0667606667606 060676066676 06676%6 96676060676 76%6676

% Radial distance for sensors on clutch plate
% Ch 5 through 11 in order
Radial_Location = [127 62.5 25.9 96.7 62.5 96.7 25.9]'/1000; % [mm] to [m]

F_loc = zeros(length(Results(:,1)),1);
Force = F_loc;

P_profile = zeros(205,length(F_Toc));
F_profile = zeros(204,length(F_Toc));

for ii = 1l:Tength(Results(:,1))
[F_loc(ii),Force(ii),x,P_profile(:,ii),F_profile(:,ii)] =...
Resultant_Force(Radial_Location,Results(ii,10:16),0);
end
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0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0,

0/0/0/0,

%
% Friction Coefficient Calculations
%

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0,
r_o = 0.1235; % [m] outer effective radius of TCC, outer radius of friction
material
r_i = 0.0215; % [m] inner radius of TCC

r = 0.0215:0.0005:0.1235; % m

c = 3/QR*pi*(r_oA3 - r_iA3));

mu = (Results(:,2)./((mean(P_profile)' + Results(:,5))*6894.757))*c;

c = ((P_profile(2:end,:) + Results(end,5))*6894.757).*repmat((r(2:end).A3-r(1l:end-

1).A3)",1,11);

mu_profile = (3*Results(end,2))./(2*pi*sum(c));

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0,

0/0/0/0,

%
% Clutch capacity Plots
%

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0,

0/0/0/0,

figure

box on

hold on
plot(Results(:,5),Results(:,2),'0")

p = polyfit(Results(:,5),Results(:,2),1);
y = polyval(p,Results(:,5));
plot(Results(:,5),y)

y1lim([0 140])

x1abel('TCC Apply Pressure [PSI]')
ylabel('Torque [Nm]")

title('Torque Converter Clutch Capacity')

yyaxis right
plot(Results(:,5),mu_profile,'d")
ylabel('Friction Coefficient [--]1")

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0,

0/0/0/0,

%
% Force Location Plots
%

0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0,

0/0/0/0,
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figure

box on

hold on
scatter(Results(:,5),F_loc,Force*10)
p = polyfit(Results(:,5),F_loc,1);

y = polyval(p,Results(:,5));
plot(Results(:,5),y)

plot([Results(1,5)-10 Results(end,5)+10],[0.108 0.108],"

xT1im([15 551)

y1im([0.0215 0.1235])

xlabel('TCC Apply Pressure [PSI]')
ylabel('Resultant Force Location [m]')
title('Torque Converter Clutch Force')

0/0/0/0/0/0/0/0/0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0,

k")

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0,

%
% Pressure Plots
%

0/0/0/0/0/0/0/0/0/0/0/0/0/0, 0/0/0/0/0, 0/0/0/0/0/0, 0/0/0/0/0,

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0,

% Plots for either turbine 15 channels or 7 channels

if Names ==
figure
box on
plot(Results(:,5),Results(:,6:9),"'--k")
plot(Results(:,5),Results(:,16:end),"'--k")
hold on
plot(Results(:,5),Results(:,10:16), 'k")
ylim([-40 40])
xlabel('TCC Apply Pressure [PSI]')
ylabel('Effective Pressure [PSI]')
title('Turbine")

elseif Names ==
figure
box on
plot(Results(:,5),Results(:,6:end), " '--k")
ylim([-40 40])
x1abel('TCC Apply Pressure [PSI]')
ylabel('Effective Pressure [PSI]')
title('stator')

else
figure
box on
plot(Results(:,5),Results(:,6:end-2),"'--k")
hold on
plot(Results(:,5),Results(:,end-1:end), k")
y1lim([-40 40])
x1abel('TCC Apply Pressure [PSI]')
ylabel('Effective Pressure [PSI]')
title('Impeller')

end
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0.8 Resultant Force

function [F_loc,Force,x1,P_profile,F_profile] = Resultant_Force(Radial_Location,Data,on)
Required Format:

Radial_Location - 1st input: radial distance on the clutch plate for each

sensor

Data - 2nd input: Open, Slip, or Locked Data

on - 3rd input: on means the TCC 1is in the open condition

F_loc - 1st output: Radial location where the resultant force is acting

Force - 2nd output: resultant force from the pressure in kN

R R R X R R R X R

Purpose of Code:
Finds the resultant force from experimental pressure data on clutch plate

xR

% Back

% Largest raduis of friction material on clutch plate is 123.5 mm
% Smallest radius of clutch plate is 21.5 mm

x1 = 0.0215:0.0005:0.1235; % m

p = polyfit(Radial_Location(1:4),Dbata(1,1:4)',2);

yl = polyval(p,x1);

% Front
if on ==
x2 = 0.0215:0.0005:0.1235; % m
else
% Max radius to friction material is 108 mm
x2 = 0.0215:0.0005:0.108; % m
end
p = polyfit(Radial_Location(5:end),Data(l,5:end)',2);
y2 = polyval(p,x2);

% Pressure profile acting on the clutch plate
P_profile = yl(1l:length(y2))-y2;
P_profile = [P_profile yl(length(y2)+1l:end)];

A = 2*pi*x1(2:end) .A2-2*pi*x1(1l:end-1).A2; % mA2
F_profile = P_profile(2:end).*6894.757.%A; % N
Force = cumsum(F_profile);
F_loc = find(Force >= max(Force)/2,1);
F_loc = x1(F_1o0Q);
if isempty(F_loc)

F_loc = x1(1);

end
Force = max(Force)/1000; % kN
end
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0.9 Shape Graphing

function RGB = Shape_Graphing(I,x,mag,mag_max)

R

Required Format:
I - 1st input: imread('image name')

R X R R R

RGB - output: Info for imshow(RGB)

R R

Purpose of Code:

R

R
-
]

imread('TC Clutch.png');

25;

% Bottom Right Channel
if mag(1,3) < 0

RGB =
x],'color', 'cyan', 'Opacity',1);
else

RGB =
x],'color', 'red', 'opacity',1);

end

if mag(2,3) < 0

RGB = insertShape(RGB, 'Filledrectangle',[270
x],"'Color','blue', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledRectangle',[270
x],"'Color', 'green', 'Opacity',1);

end

% Middle Right Channel
if mag(1,2) < 0

RGB = insertShape(RGB, 'FilledRectangle', [220
x],"'Color','cyan', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledRectangle', [220
x],"'Color','red', 'Opacity',1);

end

if mag(2,2) < 0

RGB = insertShape(RGB, 'FilledRectangle', [220
x],"'Color', 'blue', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledRectangle',[220
x],'color', 'green', 'Opacity',1);

end
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x- 2nd input: width of rectangles (default 25 for TC)
mag - 3rd input: pressure mags of ch 5-11 for turbine
mag_max - 4th input: maxium value for all pressures in maq matrix

Create a frame of the pressures across the TC clutch plate

insertShape(I, 'FilledrRectangle',[270 725-x abs(mag(l,3))/mag_max*100

insertShape(I, 'FilledrRectangle',[270 725-x mag(l,3)/mag_max*100

725 abs(mag(2,3))/mag_max*100

725 mag(2,3)/mag_max*100

485-x abs(mag(l,2))/mag_max*100

485-x mag(l,2)/mag_max*100

485 abs(mag(2,2))/mag_max*100

485 mag(2,2)/mag_max*100



% Top Middle Right Channel
if mag(1,4) < 0

RGB = insertShape(RGB, 'FilledRectangle',[180 270-x abs(mag(l,4))/mag_max*100
x],"'Color','cyan', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledRectangle',[180 270-x mag(l,4)/mag_max*100
x],"'Color','red', 'Opacity',1);
end

if mag(2,4) < 0

RGB = insertShape(RGB, 'FilledRectangle',[180 270 abs(mag(2,4))/mag_max*100
x],"'Color', 'blue', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledRectangle',[180 270 mag(2,4)/mag_max*100
x],'color', 'green', 'Opacity',1);
end

% Top Right Channel
if mag(1,1) < O

RGB = insertShape(RGB, 'FilledRectangle',[170 90-x abs(mag(l,1))/mag_max*100
x],"'Color','cyan', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledrRectangle',[170 90-x mag(l,1)/mag_max*100
x],"'Color','red', 'Opacity',1);
end

if mag(2,1) < 0

RGB = insertShape(RGB, 'FilledrRectangle',[170 90 abs(mag(2,1))/mag_max*100
x],'Color', 'blue', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledrRectangle',[170 90 mag(2,1)/mag_max*100
x],'color', 'green', 'Opacity',1);
end

% Top Left channel
if mag(1,6) < O

RGB = insertShape(RGB, 'FilledrRectangle', [160-abs(mag(1l,6))/mag_max*100 270-x
abs(mag(1,6))/mag_max*100 x], 'Color','cyan', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledrRectangle', [160-mag(1l,6)/mag_max*100 270-x
mag(1,6)/mag_max*100 x],'Color','red', 'Opacity',1);
end

if mag(2,6) < O

RGB = insertShape(RGB, 'FilledrRectangle', [160-abs(mag(2,6))/mag_max*100 270
abs(mag(2,6))/mag_max*100 x],'color', 'blue', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledrRectangle',[160-mag(2,6)/mag_max*100 270
mag(2,6)/mag_max*100 x],'Color','green','Opacity',1);
end
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% mMiddle Left Channel
if mag(1,5) < O

RGB = insertShape(RGB, 'FilledRectangle', [180-abs(mag(l,5))/mag_max*100 490-x
abs(mag(1,5))/mag_max*100 x],'Color','cyan','Opacity',1);
else

RGB = insertShape(RGB, 'FilledRectangle',[180-mag(1l,5)/mag_max*100 490-x
mag(1,5)/mag_max*100 x],'Color','red', 'Opacity',1);
end

if mag(2,5) < 0

RGB = insertShape(RGB, 'FilledRectangle', [180-abs(mag(2,5))/mag_max*100 490
abs(mag(2,5))/mag_max*100 x], 'Color','blue', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledRectangle',[180-mag(2,5)/mag_max*100 490
mag(2,5)/mag_max*100 x],'Color','green','Opacity',1);
end

% Bottom Left Channel
if mag(1,7) < 0

RGB = insertShape(RGB, 'FilledRectangle',[250-abs(mag(1l,7))/mag_max*100 720-x
abs(mag(1,7))/mag_max*100 x], 'Color','cyan', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledrRectangle',[250-mag(1l,7)/mag_max*100 720-x
mag(1,7)/mag_max*100 x],'Color','red', 'Opacity',1);
end

if mag(2,7) < 0

RGB = insertShape(RGB, 'FilledRectangle', [250-abs(mag(2,7))/mag_max*100 720
abs(mag(2,7))/mag_max*100 x], 'Color','blue', 'Opacity',1);
else

RGB = insertShape(RGB, 'FilledrRectangle',[250-mag(2,7)/mag_max*100 720
mag(2,7)/mag_max*100 x],'Color','green','Opacity',1);
end
end
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0.10 Text Graphing

function RGB = Text_Graphing(I,Data,Cond)

Required Format:

I - 1st input: imread('image name')

Data - Open, Slip, or Locked Data

Ccond - Condition the TC 1is 1in; Open, Slip, Locked

R R X X R R

Purpose of Code:
Add text to a frame with input, output, and charge pressure information

R
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RGB = insertText(I,[590 30],['TCcC '
Cond], 'FontSize', 36, 'BoxOpacity',1, 'BoxColor', 'white');
RGB = insertText(RGB,[530 100], 'Charge
Pressure', 'FontSize',36, 'BoxOpacity',1, 'BoxColor', 'white');
RGB = insertText(RGB,[530 175],['30 Nm: ' num2str(Data(l,17),'%0.1f') ' [psIa]l'],...
'FontSize', 30, 'BoxOpacity',1, 'BoxColor','white');
insertText(RGB, [530 240],['75 Nm: ' num2str(Data(2,17),'%0.1f') ' [psIa]l'],...
FontSize', 30, 'BoxOpacity',1, 'BoxColor', 'white');
RGB = insertText(RGB, [550 310], 'Input Speed',...
'FontSize',36, 'BoxOpacity',1, 'BoxColor','white');
RGB = insertText(RGB, [550 380], [num2str(Data(l,18),'%0.0f"'),"'/"’
num2str(pata(2,18),'%0.0f'), ' [RPM]'],...
'FontSize', 30, 'BoxOpacity',1, 'BoxColor','white');
RGB = insertText(RGB, [550 460], 'Output Speed',...
'FontSize',36, 'BoxOpacity',1, 'BoxColor','white');

RGB

RGB = insertText(RGB, [590 530], [num2str(Dpata(l,1),'%0.0f') ' [RPM]'],...
'FontSize', 30, 'BoxOpacity',1, 'BoxColor','white');
RGB = insertText(RGB,[600 600],'40 PSI =',...

FontSize', 30, 'BoxOpacity',1, 'BoxColor', 'white');
RGB = insertShape(RGB, 'FilledrRectangle',[620 650 100 25],'color', 'black', 'Opacity',1);

end
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