
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2019

EFFECT OF SENSOR ERRORS ON AUTONOMOUS STEERING EFFECT OF SENSOR ERRORS ON AUTONOMOUS STEERING

CONTROL AND APPLICATION OF SENSOR FUSION FOR ROBUST CONTROL AND APPLICATION OF SENSOR FUSION FOR ROBUST

NAVIGATION NAVIGATION

Shuvodeep Bhattacharjya
Michigan Technological University, sbhatta2@mtu.edu

Copyright 2019 Shuvodeep Bhattacharjya

Recommended Citation Recommended Citation
Bhattacharjya, Shuvodeep, "EFFECT OF SENSOR ERRORS ON AUTONOMOUS STEERING CONTROL AND
APPLICATION OF SENSOR FUSION FOR ROBUST NAVIGATION", Open Access Master's Report, Michigan
Technological University, 2019.
https://doi.org/10.37099/mtu.dc.etdr/779

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Controls and Control Theory Commons, Navigation, Guidance, Control, and Dynamics Commons,
and the Signal Processing Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/779
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.mtu.edu%2Fetdr%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=digitalcommons.mtu.edu%2Fetdr%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.mtu.edu%2Fetdr%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages

EFFECT OF SENSOR ERRORS ON AUTONOMOUS STEERING CONTROL AND

APPLICATION OF SENSOR FUSION FOR ROBUST NAVIGATION

By

Shuvodeep Bhattacharjya

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Mechanical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2019

© 2019 Shuvodeep Bhattacharjya

This report has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE in Mechanical Engineering.

Department of Mechanical Engineering – Engineering Mechanics

 Report Advisor: Dr. Jeffrey D. Naber

 Committee Member: Dr. Jeremy Worm

 Committee Member: Dr. Darrell L. Robinette

 Department Chair: Dr. William W. Predebon

iii

TABLE OF CONTENTS

LIST OF FIGURES ...v

LIST OF TABLES ... viii

ACKNOWLEDGEMENTS ... ix

ABSTRACT ...x

1 INTRODUCTION ..1

1.1 Autonomous Vehicles ..1

1.2 Typical System Architecture for Automated Driving2

1.3 Sensors Used for Perception and Vehicle State Estimation3

1.4 Research Organization and Objective ..3

2 LITERATURE REVIEW ...5

2.1 Autonomous Steering Controllers ..5

2.2 Types of Errors in Sensors ...6

2.3 Current Work in the areas of sensors and their limitations8

2.4 Summary ..9

3 NEED FOR CONTROLLER PERFORMANCE ANALYSIS10

3.1 Experimental Setup ..10

3.2 Selection of Controller Parameters ...12

3.3 Controller Objective ...12

3.4 Sensors Used ..12

3.5 Test Results ..13

3.6 Analysis ..14

4 MODEL BASED CONTROLLER AND SENSOR ANALYSIS15

4.1 Selection of Steering Controllers for Analysis ...15

4.2 Modelling approach for sensors, actuators and vehicle kinematics18

5 SIMULATION RESULTS AND ANALYSIS ...39

5.1 Performance Analysis under Ideal Sensor Conditions39

5.2 Performance Analysis Considering Sensor Errors ...43

iv

6 IMPROVING NAVIGATION / WAYPOINT TRACKING USING STATE

ESTIMATION APPROACH ...48

6.1 Kalman Filter Equations ...49

6.2 Implementation of 1D – 2nd Order Kalman Filter for Improved Position

Feedback in Straight Line Path ...50

6.2.1 Filter Results for Various Controllers Under 1D conditions51

6.3 Implementation of 1st Order Kalman Filter for Vehicle Heading Improvement

 53

6.3.1 Filter Implementation Results for Vehicle Heading Estimation53

7 CONCLUSION AND FUTURE SCOPE OF WORK ..55

8 REFERENCES ...56

9. APPENDIX ...58

9.1 Python code used for initial vehicle test and analysis58

9.2 Hardware Specifications ...67

9.2.1 Controller Specification ..67

9.2.2 Sensor Specifications ..68

9.2.3 Test Vehicle Specification ..70

v

LIST OF FIGURES

Figure 1-1: Typical System Architecture for Automated Driving [21]2

Figure 1-2: Research Organization and Objective ...4

Figure 2-1: Vehicle Coordinate System ...7

Figure 3-1: Test Location for Getting Experimental Data ...10

Figure 3-2: Flowchart for Waypoint Navigation ...11

Figure 3-3: Test Result 1 - Comparison between Ideal Path and Actual Path13

Figure 3-4: Test Result 2 - Comparison between Ideal Path and Actual Path13

Figure 4-1: Effect of Look Ahead Distance [27] ...16

Figure 4-2: Path Parameters for Stanley Controller [3][5] ..17

Figure 4-3: Controller and Plant Model for Analysis ..18

Figure 4-4: Results for Standard Deviation Analysis in X & Y direction GPS sensor

modelling ...19

Figure 4-5: Standard Deviation Analysis for Yaw or Current Heading20

Figure 4-6: Standard Deviation Analysis of Accelerometer in X & Y Direction22

Figure 4-7: Straight Line Test @ 1m/s for Transfer Function Generation23

Figure 4-8: Standard Deviation Analysis for Gyroscope Yaw-Rate23

Figure 4-9: Circle Test Results ..24

Figure 4-10: Gyroscope (Yaw-Rate) Output for Circle Test ...25

Figure 4-11: Analysis of Test Data and Simulation Data for Transfer Function Generation

for Gyroscope...25

Figure 4-12: Schematic - Steering System Duty Cycle Decoding Process26

Figure 4-13: Schematic - Steering System Duty Cycle Verification Process27

Figure 4-14: Actual Response vs. Ideal Response Analysis for Transfer Function28

Figure 4-15: Actuator Hysteresis Modelling ...28

vi

Figure 4-16: Drivetrain Dynamics ...29

Figure 4-17: Vehicle Kinematics Model..29

Figure 4-18: Interfacing of Vehicle States with Sensor Blocks ...31

Figure 4-19: Start Stop type Speed Control ...31

Figure 4-20: Flowchart to Determine Target Heading for Waypoint Based Controllers ..33

Figure 4-21: Flowchart to Determine Path Heading for Stanley Controller33

Figure 4-22: PI Controller Implementation ...34

Figure 4-23: Look Ahead Distance for Pure Pursuit Controller ..35

Figure 4-24: Pure-Pursuit Controller Implementation ...35

Figure 4-25: Stanley Controller Implementation ...36

Figure 4-26: Custom Path ..37

Figure 4-27: Straight Path ..37

Figure 4-28: Dynamic Lane Change ..38

Figure 5-1: Path Tracking Performance of Controllers ...39

Figure 5-2: Cross Track Error of Vehicle on Custom Path ...39

Figure 5-3: Path Tracking Performance of Controllers on Straight Path...........................40

Figure 5-4: Cross Track Error of Vehicle on Straight Path ...40

Figure 5-5: Path Tracking Performance of Controllers for Dynamic Lane Change41

Figure 5-6: Cross Track Error of Vehicle for Dynamic Lane Change41

Figure 5-7: Effect of Sensor Errors and Location Specific Noise on Navigation

Performance ...43

Figure 5-8: Effect of Sensor Errors on Cross Track Error for Custom Path......................44

Figure 5-9: Effect of Stray Magnetic Fields on Magnetometer Output for Vehicle

Heading ..44

Figure 5-10: Effect of Sensor Errors Navigation Performance under 1D condition45

vii

Figure 5-112: Effect of Sensor Errors on Navigation Performance46

Figure 5-123: Effect of sensor error on Cross Track Error ..47

Figure 6-1: Controller Performance with 1D Kalman Filter, MR=1051

viii

LIST OF TABLES

Table 1-1: SAE Levels of Automated Driving [20] ...1

Table 4-1: Sensor Errors for GPS Modelling ..19

Table 4-2: Sensor Errors for Magnetometer Modelling ..20

Table 4-3: Sensor Errors for Accelerometer Modelling ..22

Table 4-4: Sensor Errors for Gyroscope Yaw-Rate Modelling ...24

Table 4-5: Sensor Errors for Wheel Speed Sensor Modelling ...26

Table 4-6: Commanded vs Actual Steering Angle ..27

Table 4-7: Sign Convention for Cross Track Error ...32

Table 5-1: Max. Cross Track Error (Meters) Results for Custom Path42

Table 5-2: Max. Cross Track Error (Meters) Results for Custom Path Considering Sensor

Errors..45

Table 5-3: Distance (Meters) between vehicle stop point and actual waypoint for straight

line test for 1D condition ...46

Table 5-4: Max. Cross Track Error (Meters) Results for Dynamic Lane Change

Considering Sensor Errors ...47

Table 6-1: Difference in distance between vehicle stop point and waypoint for various

controllers with Kalman Filter MR=10 ...51

Table 6-2: Distance (Meters) between vehicle stop point and waypoint for various

controllers with Kalman Filter MR=10 with GPS Error included52

ix

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Dr. Jeffrey D. Naber, for giving me the

opportunity to work on this research project, providing the work space and equipment, and

his guidance during the project work.

I would like to thank the rest of my committee members: Dr. Jeremy Worm, Dr. Darrell

Robinette and Christopher Morgan, for giving their valuable time to my report defense and

for technical suggestions.

My sincere thanks to Paul Dice, Research Engineer, APSRC and his team of engineers for

their guidance and technical support in this project.

My special thanks to Ahammad Basha, Phd. Student, APSRC who introduced me to this

project and to the world of autonomous vehicles. I would also like to thank my teammates

for their technical support and coordination.

My special thanks to Dilip Ati, Grad. Student, Computer Science, for providing me the

literatures and documents in the areas of sensor fusion.

Last but not least, I would like to thank my family and friends for their support and

encouragement throughout this research project.

x

ABSTRACT

Autonomous steering control is one the most important features in autonomous vehicle

navigation. The nature and tuning of the controller decides how well the vehicle follows a

defined trajectory. A poorly tuned controller can cause the vehicle to oversteer or

understeer at turns leading to deviation from a defined path. However, controller

performance also depends on the state–feedback system. If the states used for controller

input are noisy or has bias / systematic error, the navigation performance of the vehicle is

affected irrespective of the control law and controller tuning. In this report, autonomous

steering controller analysis is done for different kinds of sensor errors and the application

of sensor fusion using Kalman Filters is discussed. Model-in-the-loop (MIL) simulation

provides an efficient way for developing and performing controller analysis and

implementing various fusion algorithms. Matlab/Simulink was used for this Model Based

Development. Firstly, through experimentation the path tracking performance of the

controller was analyzed followed by data collection for sensor, actuator and vehicle

modelling. Then, the plant, actuator and controllers were modelled followed by the

comparison of the results for ideal and non-ideal sensors. After analyzing the effects of

sensor error on controller and vehicle performance, a solution was proposed using 1D-

Kalman Filter (KF) based sensor fusion technique. It is seen that the waypoint tracking

under 1D condition is improved to centimeter level and the steering response is also

smoothened due to less noisy vehicle heading estimation.

1

1 INTRODUCTION

1.1 Autonomous Vehicles

Autonomous vehicles are robots capable of operating on public roads by perceiving the

environment using sensors i.e. GPS for real time positional information, perception devices

to detect obstacles, signage, road geometry, inertial sensors for vehicle states, etc. and make

decisions using complex algorithms to follow appropriate navigational paths.

Autonomous vehicles can both be a boon and a bane for the society. Advantages of

automated driving include better safety which is due to reduction in traffic collisions and

related costs. Automated cars under certain predictable conditions tend to increase traffic

flow which results in enhanced mobility for people and can relieve travelers from driving

and navigation chores, increase fuel efficiency of a vehicle and facilitate business models

for transportation industry. The disadvantages include high initial cost due to complexity

in design, reliability under unpredictable conditions, legal framework and government

regulations, costs associated with infrastructure and loss of driving-related jobs in the

transportation industry.

Autonomous vehicles can have varying degree of automated driving i.e. from no to semi-

autonomous to completely autonomous. SAE classifies the autonomous vehicles as

follows, in table 1-1 based on different levels of driving automation [20]:

Table 1-1: SAE Levels of Automated Driving [20]

SAE

Level

Involvement of

Human

Function of Feature for

Automated Driving
Feature Example

0

Always be in control

of the vehicle

No support or automation --

1
Provide warning and prompt

for corrective action

a) Blind spot warning

b) Lane Departure Warning

c) Cruise Control

2
Provide support in the form

of steering / brake assist

a) Lane Departure Assist

b) Adaptive Cruise Control

3
Not driving when

the feature is active,

but requires human

involvement when

the feature requests

Automated driving under

certain conditions like

highways, geo-fenced

location, parking lots, etc.

a) Traffic Jam Chauffeur

b) Automated Valet Parking

4
Location specific driverless

taxi service

5

No human

involvement under

any driving scenario

The vehicle can drive under

all conditions

Driverless or Steering less

vehicle

2

1.2 Typical System Architecture for Automated Driving

Figure 1-1: Typical System Architecture for Automated Driving [21]

From figure 1.2.1, the various stages of automated driving viz. from sensing to issuing

commands for actuation is described as follows:

Stage 1: Perception and Driver Monitoring – In this stage, the environment is perceived for

pedestrians, nearby vehicles, obstacles, road geometry and signage, and the states related

to the motion and position of the vehicle is measured. A sophisticated fusion algorithm is

used to combine all the sensory data to remove noise and errors in the measured data and

give a better estimate of the vehicles states and environment. Simultaneously, the state of

driver is also perceived via. sensors or through driver inputs from HMI.

Stage 2: Decision Making –Based on the inputs from the previous stage and stored road

maps, decisions are made regarding the efficient and the safest path/route required for

navigation, followed by the decisions for vehicle motion like velocity and steering angles.

The algorithms used at this stage are very complex and of robust nature such that, failure

of one sensor will not risk or affect the vehicle / driver.

Stage 3: Vehicle Motion / Drivetrain Control –Based on the velocity and steering angle

commands the required actuation signals are generated.

3

1.3 Sensors Used for Perception and Vehicle State Estimation

a.) Environment Perception Sensors – Monocular / Stereo Camera, 2D/3D LIDAR,

RADAR, Ultrasonic Sensors, Infrared Sensors.

b.) Drive State Monitoring – Camera, Infrared Sensors, Body Sensors like heart rate

monitor [21] integrated on the seats

c.) Vehicle Position and Motion Sensors – Global Positioning Systems (GPS), Wheel

Speed Sensors, Inertial Measurement Unit (IMU), Steering Angle Sensor

Processing data from all these sensors is one of the biggest challenges in the areas of

autonomous driving. Processing is generally done in two stages – conversion of bit stream

to engineering units followed by filtering of noise. The second stage requires the high

amount of processing power as it involves the use of complex algorithms to remove noise

/ unwanted data.

1.4 Research Organization and Objective

This research is organized into 7 Chapters as depicted in Figure 1-2. The overall goal of

this research is to highlight the effects of sensor errors on automatic steering control and

improve the navigation performance by application of sensor fusion. This is done by

conducting an experiment on a Remote Controlled (RC) vehicle, on which we installed the

sensors, mentioned in section 3.4 having specification as per section 9.2.2 and bypassed

the vehicle controller with our programmed controller, the specification of which is given

in section 9.2.1. The results were analyzed in Chapter 3, followed by the modeling of the

vehicle, actuators, sensors and the controllers in Chapter 4. The model was used to analyze

steering controller performance under various path conditions for both ideal sensor

feedback and noisy sensor feedback. The simulation results in Chapter 5 led to the

implementation of sensor fusion via. Kalman Filter for 1-D waypoint tracking and vehicle

heading estimation. The controller and vehicle model developed in chapter 4 is used in

chapter 6 for tuning the filter for the specific application. The simulation results will show

the improvement in waypoint tracking and vehicle heading estimation in the presence stray

magnetic fields and disturbances.

4

Figure 1-2: Research Organization and Objective

5

2 LITERATURE REVIEW

2.1 Autonomous Steering Controllers

In autonomous driving steering controls play a major part when it comes to path following

and vehicle trajectory control. It consists of an algorithm which generates the required

control outputs in the form of vehicle steering angle based on path generated and the

vehicle dynamics. Snider in [3] discusses the various steering methods used for

autonomous driving. The steering controllers are classified into various categories:

• Geometric

• Kinematic

• Optimal

• Preview / Predictive Type

A comparison between different types of controllers is made by Snider in Figure 48 of [3].

It can be seen that the Pure Pursuit controller which is a proportional controller, is robust

to disturbances, no path requirements, and is best for slow or discontinuous path driving.

However, the path tracking ability is degraded once the vehicle speed increases or if the

path has sharp corners. The Stanley controller which is a non-linear feedback controller

developed by Stanford University [5], is slightly superior to the pure -pursuit controller

when it comes to high speed driving or cornering. However, it is less robust to disturbances

and has high steady state error when speed increases. The kinematic controller, even though

it includes the kinematic model of the vehicle and does not cut corners, has very less

robustness to disturbances, requires path curvature and its two derivatives, suffers

increased steady state errors at high speed and tends to overshoot during rapidly changing

corners. The low robustness and in-accuracy of the Kinematic controller can be attributed

to the fact that it does not consider the path dynamics and other dynamic effects during

high speeds. Also, there is an increased computational cost and increased difficulty in

implementation. The Linear Quadratic Regulator (LQR) controller implements a dynamic

bicycle model of the vehicle. However, solving the LQR requires high computational

power since, it is an optimal control theory and is required to be solved for optimal gains

for every iteration. The LQR controller performs the worst compared to the previous three

controllers due to its linear nature as it excludes the non- linear path dynamics. Snider tried

to improve the controller by adding a feed-forward term which improves high speed

driving, it has the least steady state errors and does not cut corners. However, this controller

has the worst robustness to disturbances and has significant overshooting problems during

rapidly changing curvatures. The preview type controller is similar to a linear model

predictive controller which is also a type of an optimal controller with an advantage of

prediction horizon or look ahead distance similar to the Pure-Pursuit controller [3][5]

allowing to account for the path dynamics. This allows for better robustness compared to

the LQR and Kinematic controller, least steady state error and better control during high

speed driving. However, this controller has moderate overshooting issues and cutting

corners for rapidly changing vehicle speed or road curvature.

6

It can be inferred from [3] that a controller with higher number of state feedback variables

is not necessarily more robust to noise or disturbances but it definitely makes it more

complicated to implement and increases the computation requirements. Also, the results

for cross track error in [3] show that every controller performs differently for different

values of gains, vehicle speed and for the given track geometry. Another important point

which can be inferred from [3] is that, geometric controllers are better at rejecting

disturbances. One appreciable method, as described in [6] is the use of hybrid controller

between Pure Pursuit and Stanley controller. In this an adaptive weighting factor is used

for both the controllers where more weight is given to the look ahead nature of pure pursuit

during sharp changes in trajectory and as the path smoothens the weight is shifted to

Stanley controller. Other types of advance rule-based path tracking controllers like fuzzy

controllers are discussed in [14].

2.2 Types of Errors in Sensors

In general, there are two primary kinds of errors associated with sensors:

• Systematic Errors / Bias

- Can be positive or negative

- For some sensors, it can be removed by calibration

• Noise or Random Errors

- Can be reduced by the use of suitable signal filters

- Can be improved by taking the average of multiple readings of the same

parameter for the same system state, depending on sensor design and dynamics

Depending on the application and the manufacturing process, one form of error can be

dominant over the other.

Navigational sensors like Global Positioning Systems (GPS) generally, have significant

systematic errors. Section 9.2.2 of the appendix discusses the systematic error of the GPS

under various operating conditions. Various studies have been done to identify the causes

of systematic errors in GPS. Some of them are highlighted in [8] and [18]. One major

reason as mentioned by Md. R. Islam and J.M. Kim in [8] is, distortion of the GPS signal

by the US Department of Defense leading to selective availability to users. Another

important source of error is propagation delay in the GPS signal. As mentioned in [18],

humidity, hydrometeors, hygroscopic aerosol and particulates like sand, dust, aerosols, etc.

in the atmosphere introduce microwave propagation delays due to refraction, dispersion

and scattering of signal waves. This means that weather conditions like sandstorm, rain,

hail and snowfall can also induce errors in GPS signals. Other error sources include satellite

geometry i.e. number of satellite connections and their positions, multipath effect, clock

inaccuracies, rounding errors, and receiver noise.

Another sensor which is commonly used in autonomous vehicles is the Inertial

Measurement Unit (IMU). It consists of the following:

7

• Magnetometer or Digital Compass – Used to measure earth’s magnetic field there

by giving the orientation of the vehicle w.r.t the earth’s magnetic north

• Accelerometer – Used to determine the acceleration values along the x,y,z axis

• Gyroscope – Used to measure the rate of change of angle about the x,y,z axis and

derive roll(φ), pitch(ϴ) and yaw values(�̇�) as shown in figure 2-1

Figure 2-1: Vehicle Coordinate System

Errors in magnetometer is of both systematic and of random nature [23]. The systematic

sources of errors include hard irons errors, null shift errors, soft irons errors, and scale

factor errors. While the time varying errors come from nearby electronics, such as current

carrying wires, on-off transition of nearby device or stray magnetic fields.

The accelerometers and gyroscopes are Micro Electro Mechanical Sensors (MEMS) [24]

and these form the backbone of inertial measurements. As mentioned in [25], these sensors

are fabricated on a silicon wafer using integrated circuit process sequences for electronic

components and compatible micro-machining processes for micro-mechanical machining

that selectively etch away parts of the silicon wafer or add new structural layers to form

the mechanical and electromechanical devices. Since, machining is involved in its

manufacturing, stresses are induced in the components which create bias or systematic

errors in MEMS devices. Application of external forces or in-correct installations can also

affect the systematic error. Random errors or noise in MEMS devices is generally due

vibrations, errors from nearby electronics or by electro-magnetic interference (EMI).

Sometimes in MEMS devices bias stability is an issue and they tend to drift over time. This

means integration of acceleration to get velocity will induce a linear error and a quadratic

error for distance. The same principle is valid, when deriving roll, pitch and yaw values

from gyroscope.

From the above, it can be seen that navigational performance of GPS is largely affected by

systematic errors whereas IMU’s mostly have noise and drift over time. The systematic

errors in GPS can be corrected by the use of Differential GPS or Real Time Kinematic

(RTK) system which is a base station providing error correction signals to GPS. Although

these methods require investment, they provide accuracy in the range of centimeters as

mentioned in [16]. However, loss of signal or disconnection from the base-station is

possible. The systematic errors in IMU can be removed by running internal calibration

routines given by the manufacturer or by manually calibrating it by getting the mean of

8

data sampled over a large time interval and subtracting it from every data. The noises can

be removed by using appropriate filters. Some manufacturers provide a built in Kalman

Filter or Low Pass Filter which outputs processed data. However, these add to the cost of

the device.

2.3 Current Work in the areas of sensors and their limitations

Significant amount of work has been done in the areas of sensor fusion for estimating and

reducing the errors in vehicle states. The entire premise of combining multiple sensory data

is to overcome the limitation of individual sensors. As discussed in [26], the data obtained

by combining two or more sensors has lower variance in output than each of the individual

sensors. Another motivation behind sensor fusion is to derive or estimate another state

variables which cannot be measured by an individual sensor. As discussed in Chapter 1, a

large array of sensors are used for autonomous navigation. However, the cost involved is

also high, especially with perception sensors like 3D Lidar. As discussed by Vivacqua,

Vassallo, and Martins in [1], a low-cost sensor fusion method is proposed where GPS data

is combined with prior map data and with camera data by analyzing short range lane

markings, is used for localization of the vehicle. Although, this method avoids the use of

costly perception sensors, the use of camera leads to the requirement of higher processing

power. A similar method involving lane detection is implemented in [11] where a camera

detects the lane marking and the data combined with GPS data and data from road

information file is used for localization. In [4], Kalman filters are used to estimate the Error

in GPS data by combining data from camera which was used to detect curved lanes and

stop lines at intersections so as to improve waypoint following. In this again, GPS + RTK

was used to develop reference trajectory. However, it is mentioned that this method fails

in discontinuous locations of downtown areas where GPS error models are not suitable.

One low cost method discussed by Islam and Kim in [8] is the use averaging and estimation

techniques to improve GPS accuracy. However, this method improves GPS accuracy only

up to 4 meters at best, which is not suitable for autonomous driving. Another method

involving sensor fusion between GPS and IMU using Kalman Filter is discussed in [9]

where the role of IMU is to dead reckon the GPS signals. A novel concept of contextual

filtering is discussed, where to improve filter performance the bad GPS data entering the

filter is rejected. A similar approach using Kalman Filters is used in [10] where GPS and

IMU data is combined to improve navigational performance. However, in this 2 GPS are

used and the data generated for fusion is through DGPS method or via. Carrier Phase

Method, both of which can affect the filter performance when there is a loss of GPS

connection. Another work discussed in [13], involves multi-sensor fusion having GPS,

IMU, Ultrasonic Sensor, Camera and Laser Scanner. In this, combining multiple sensors

eliminates the use of DGPS and RTK systems as it considers data from both local frame

and global frame of reference. Compared to the Kalman Filter based estimation, one major

drawback of this method is robustness, as the algorithm is executed serially and failure of

one sensor can negatively affect the controller performance as there is no means of state-

estimation. Some papers have also discussed about learning based methods. One of them

is discussed in [2] which uses high precision RTK system to correct the GPS signals for

9

improving its accuracy along with high precision IMU to collect waypoints based on which

a cubic B-spline curve is generated to create a road map. This was used to provide a preview

point to the Stanley controller for improved path tracking of the generated map. Another

method in [12] involves the use of a learning based non-linear model predictive control

which is designed for navigation in GPS denied environment and minimize path tracking

errors. It uses a pre-defined vehicle model and a learned disturbance model. An on-board

stereo camera was used for learning the terrain. Since, it uses a stereo camera, the image

processing requirements are very high. In [14] a fuzzy controller is implemented for path

tracking but it uses the fusion of Camera, DGPS, IMU and RFID. However, the paper does

not discuss the fusion process or the error types associated with sensors. A study discussed

in [19] by Deilamsalehy and Havens discusses the fusion of IMU, Camera and Lidar using

an Extended Kalman Filter used to estimate the position of a vehicle in a GPS denied

environments.

2.4 Summary

All the sensor related works discussed in the previous section, have some form of limitation

when it comes to real-time implementation. The use of Camera or other perception devices

with GPS improves the localization of the vehicle. However, it also requires high

computational power. Also, in environments like snow covered roads and off-road regions

where there are no road features like lane, stop-line, side-walks, etc. the perception based

fusion methods can fail. The Kalman filter based methods involving the fusion of GPS /

IMU are good for navigation but have drawbacks when it comes to tuning for a specific

application and array of sensors. Some methods also use pre-defined maps or a road

information file which again creates a requirement for high storage memory and real-time

processing power. The methods used for sensor fusion have also not been tested with

different types of steering controllers in real time, as discussed in section 2.1, for

autonomous navigation.

10

3 NEED FOR CONTROLLER PERFORMANCE ANALYSIS

As discussed in previous sections, it is necessary to analyze controller performance by

considering real sensor data. Sensors give the feedback of vehicle states. The output of a

controller having a very high gain or an aggressive control action, can be affected by sensor

errors leading to poor path tracking or navigational performance of the vehicle. Sensor

noise can affect the steering ability or stability of the vehicle whereas systematic errors or

bias would never allow the vehicle to have zero cross track or lateral error. Also, in [3], [6]

& [14] the effects of steering actuator hysteresis and other dynamics are also not

considered.

This chapter investigates the need for controller performance analysis for sensor systematic

errors and noise. It is also worth investigating the effects actuator hysteresis on controller

performance.

3.1 Experimental Setup

The type of vehicle and the set of hardwares used for navigation are mentioned in section

9.2 of the Appendix. The test location was APSRC, Michigan Tech. in Calumet, MI, as

shown below in figure 3-1.

Figure 3-1: Test Location for Getting Experimental Data

A constant vehicle speed of 1m/s was used for the experiment. Due to the simple and

versatile nature of PI control algorithm, it was used for steering control and waypoint

navigation. Derivative part of the controller was not used since it would make the controller

prone to high frequency noises. The code was developed in Python language and can be

found in section 9.1 of the Appendix.

The flowchart in figure 3-2 explains the python code for the implementation of PI control.

The following terms were considered during the development of the controller.

11

- Distance to Target - Shortest straight-line distance between vehicle current

position and target point.

- Current Heading - Orientation of vehicle w.r.t North

- Target Heading - Orientation or angle of target point w.r.t to north and vehicle

position

- Heading error - Target Heading – Current Heading

Figure 3-2: Flowchart for Waypoint Navigation

12

3.2 Selection of Controller Parameters

• PI Controller Gains

P – Gain = 60/180 = 0.33 ~ 0.4 (Steering Angle / Degree Heading Error (HE)) ,

where 60° is the maximum possible angle sweep by the wheels and 180° is the

maximum possible heading error, assuming the vehicle can take a U – turn.

I – Gain was set to 0.001 to avoid unstable vehicle performance near waypoints or

when the sign of heading error would change.

• Waypoint Tolerance

It is the distance at which the vehicle stops before the waypoint. This was set to 2

meters considering the systematic errors in GPS and magnetometer. This gives the

controller a tolerance value for stopping around the waypoint.

3.3 Controller Objective

- Minimize the distance to target

- Minimize the orientation or heading error

3.4 Sensors Used

• Global Positioning System (GPS)

Specifications are given in appendix section 9.2.2

Used to give the position feedback in terms of latitude and longitude which is

converted to Cartesian coordinate system using the WGS84 model [30].

• Inertial Measurement Unit (IMU)

Specifications are given in appendix section 9.2.3

The magnetometer or the digital compass part of the IMU was used to determine

the vehicle heading or yaw w.r.t magnetic north.

13

3.5 Test Results

Figure 3-3: Test Result 1 - Comparison between Ideal Path and Actual Path

Figure 3-4: Test Result 2 - Comparison between Ideal Path and Actual Path

The path is divided into 5 segments, having a start point followed by 5 waypoints marked

in blue as shown in figures 3-3 & 3-4.

14

3.6 Analysis

From figures 3.2.1 & 3.2.2, it can be clearly seen that the path tracking / waypoint following

performance of the vehicle is severely affected by the disturbances in the sensors and data

acquisition system. There is an overshoot of approximately 5 meters in segment number 5

of the path. For all the others segments the controller struggles to match with ideal

trajectory and seems to have an offset. The bad performance of the steering controller can

be attributed to the following factors:

• Controller gains not tuned considering the dynamics of the steering actuator of the

vehicle

• Difference in update rates of the GPS @ 5 Hz and Magnetometer @ 10 Hz

• Best possible GPS positional accuracy of around 3 mtrs. as given in appendix section

9.2.2

• Presence of noise and stray magnetic fields affecting Magnetometer performance

All these factors show that there is a need for controller performance analysis for a given

vehicle and sensor combination.

15

4 MODEL BASED CONTROLLER AND SENSOR
ANALYSIS

4.1 Selection of Steering Controllers for Analysis

Based on the results in [3], [6] and the previous chapters, it can clearly be observed that

from implementation perspective geometric controllers perform better compared to other

controllers because of their simplicity and ability to be tuned for every track and velocity

conditions. It might also be worth analyzing and tuning PI controller for waypoint

navigation as they are simple and versatile when it comes SISO systems. The following

controllers were selected for analysis:

• PI Controller

- A closed-loop linear feedback controller used to control the process variable by

minimizing the error between the set point and the measured process value.

- Mathematically, PI control action can be defined as follows:

𝑢(𝑡) = (𝐾𝑝 ∗ 𝑒(𝑡)) + (𝐾𝑖 ∗ ∫ 𝑒(𝑡)𝑑𝑡) ……………… (1)

where u(t) is the controller output, e(t) is error i.e. difference set value and

process value, Kp is the proportional gain, Ki is the integral gain and dt is the

time step.

- Increasing the proportional gain Kp, increases the output value and vice-versa.

Too high proportional gain can make the system unstable or can cause a large

overshoot and too low value results in a small output response to a large input

error leading to a less sensitive controller. A highly responsive controller is

desirable for quick response to changes or disturbances in state. However, it

may also be noted that an aggressive controller also responds to the noises in

the measured variable. Proportional control action seizes to address the problem

of steady state error, since a non – zero error is always needed to generate an

output.

- Integral control allows us to reduce the steady state error since, it is the sum of

the instantaneous error over time which accumulates and provides the required

control action to reduce the steady state error. A PI controller tends to be less

responsive when the sign of the error signal changes due to the previously

accumulated error by I control. This is known as Integrator Windup and takes

time to unwind. Also, a very high value of Ki can make the system less

responsive at start but highly unstable at the end due to accumulated error.

- Implementation

1. The controller output will be steering angle used to control the direction or

current heading of the vehicle.

2. The error term will be the difference between the target heading and the

current heading.

16

3. The start and stop of the vehicle will be a rule based controller due to low

velocity application.

• Pure Pursuit Controller

- It is a waypoint based proportional controller which assumes a kinematic

bicycle model of a vehicle having Ackerman Steering geometry.

- The control law as mentioned in [3], is given by:

δ= tan-1 (
2*L* sin ∝(t)

𝐿𝑑
)……………… (2)

where δ is the commanded steering angle, L is the wheelbase of the vehicle, α

is the heading error between the vehicle’s current heading and the target point

heading measured from the vehicle, Ld is the look ahead distance.

- It can clearly be seen that steering angle is proportional to the heading error

w.r.t to the vehicle. Also, the effect of look ahead distance can be illustrated in

figure 4-1.

 Figure 4-1: Effect of Look Ahead Distance [27]

- Due to the presence of the Tan inverse function and Ld in the denominator, a

small value leads to aggressive steering control which is suitable for making 90

Degrees turns. A large value of Ld leads to smooth control suitable for straight

roads or smooth turns but will not be effective in tight corners or sharp turns.

- The advantage of look ahead distance Ld is that it gives the controller a preview

point which is similar to prediction horizon of a Model Predictive Control,

thereby allowing the controller to determine the steering angle based on the path

dynamics.

- The obvious disadvantage is that for a given value of Ld, the control action will

not be optimal for different road conditions, varying vehicle velocities and

different distance to target values.

- Implementation

➢ The optimal value of Ld will be determined as a function of velocity and

distance to target.

17

➢ The start and stop of the vehicle will be a rule-based controller due to low

velocity application

• Stanley Steering Controller

- It is a path based non-linear feedback controller. It is developed by Stanford

University and used in the DARPA Challenge. This model also assume a

bicycle model of the vehicle. As described in [3] and [5], the control law is

given by the equation 3 and figure 4-2:

𝛿 = 𝜃𝑒 + tan−1 (
𝑘∗𝑒𝑓𝑎(𝑡)

𝑣𝑥(𝑡)
)……………… (3)

 Figure 4-2: Path Parameters for Stanley Controller [3][5]

where θe is the heading error between yaw or vehicle heading and path heading,

efa(t) is the time varying cross track error or lateral path error w.r.t vehicle, vx(t)

time varying longitudinal velocity of the vehicle and k is the controller gain

which has the units of sec-1 , hence it can assumed to be similar to the time

constant of the controller. A high value of k means lower time constant, quick

response of the controller and a low value of k means higher time constant,

sluggish response of the controller.

- From the above equation, it can be seen that the Stanley controller is superior

to the previous two controllers due to the inclusion of cross track error term. As

the vehicle deviates from the path, the cross track error increases creating a

steering angle output for the vehicle so as to merge to the path.

- However, compared to Pure Pursuit Controller, it has more number of inputs,

hence, this controller will be more prone to disturbances and noise. Also, the

effects of systematic error in GPS will be more evident, since vehicle current

position is required for the calculation of the cross track error takes into account

the vehicle current position.

- Implementation

➢ A reference path is generated from the given waypoints and is used to

determine the path heading and cross track error.

➢ As mentioned in [3], different gain values are required for different vehicle

velocities, hence, the gain will be proportional to Time to Target.

18

4.2 Modelling approach for sensors, actuators and vehicle
kinematics

After the selection of controllers, it was necessary to model the sensors and the

actuator dynamics for analysis and tuning of controllers. The sensors can be

modelled by the specifications given in the Appendix or by taking real test data for

the individual sensors. The second method is chosen since, sensor output depends

on the testing and the installation condition of the sensors. Figure 4-3 shows the top

level of the model-based approach.

Figure 4-3: Controller and Plant Model for Analysis

4.2.1 Modelling approach for Global Positioning System (GPS)

For obtaining the true values of coordinates X&Y from the GPS, the following

time-based model can be used for analysis:

𝐽𝑍𝑂𝐻(𝑡) = 𝑍𝑂𝐻 (𝐽(𝑡) + 𝑏 + 𝑛) ……………… (4)

J(t) represents the ideal and continues time varying values of X&Y coordinates, b

denotes the bias/systematic error, n denotes the noise which is modelled as

Gaussian, JZOH(t) is the discretized value obtained after implementing the zero-

order hold function [29] for a sample period of 0.2 seconds / 5 Hertz.

4.2.1.1 GPS Error Analysis

The following test data was taken over a span of 20 minutes at a given position so

as to determine the random errors in the GPS. For systematic error, it was assumed

that the GPS is operating under WAAS mode and the systematic error in position

is 3 meters. This leads to an error of 2.12 m in each x and y coordinates, since

√(0 − 2.12)2 + (0 − 2.12)2 = 3 meters. For GPS, no dynamics were considered

as there is no moving element inside the sensor.

19

Figure 4-4: Results for Standard Deviation Analysis in X & Y direction GPS sensor

modelling

Table 4-1: Sensor Errors for GPS Modelling

Direction
1σ - Standard

Deviation (Meters)

Variance in

Position (Meters)

Systematic Error in

Position (Meters)

x 1.08 1.17 2.12

y 0.94 0.88 2.12

Table 4-1 summarizes the standard deviation values obtained from figure 4-4. A

random number generator takes the variance as input for modelling the GPS noise

as Gaussian.

4.2.2 Modelling approach for Magnetometer or Digital Compass

The following model is used to determine the true current or vehicle heading values:

𝐻𝑍𝑂𝐻(𝑡) = 𝑍𝑂𝐻(𝑆𝑎𝑡 (((𝑉(𝑡) ∗ 𝑄𝑓𝑎𝑐𝑡𝑜𝑟) ∗ 𝑄𝑐𝑜𝑛𝑣) + 𝑏 + 𝑛)) ……………… (5)

V(t) is the time varying voltage output from the sensor, Qfactor takes into account the

quantization factor for the 16-bit ADC, Qconv is conversion factor to convert voltage

20

to degrees, HZOH(t) is the discretized value obtained after implementing the zero-

order hold function [29] for a sample period of 0.1 seconds / 10 Hertz, b and n

represent the bias and Gaussian noise. Sat() function is used to keep the limit output

to the range of 0 to 360 degrees. It is defined as follows:

𝑆𝑎𝑡(𝐻) = {
 𝐻 𝑖𝑓 0 ≤ 𝑡 ≤ 180,

 (360 + 𝐻) 𝑖𝑓 − 180 ≤ 𝑡 < 0

……………… (6)

For magnetometer, no dynamics were considered as there is no moving element

inside the sensor.

4.2.2.1 Error analysis for Magnetometer or Digital Compass

The North direction reference for measurement was taken with the help of an

Analog Magnetic Compass. For systematic error, the Magnetometer was aligned

towards the north & the south direction and the average of the errors were taken.

For noise, similar to GPS the test data was taken over a span of 20 minutes at the

given position and orientation so as to determine the random errors. It was ensured

that no stray magnetic field was present.

Figure 4-5: Standard Deviation Analysis for Yaw or Current Heading

Table 4-2: Sensor Errors for Magnetometer Modelling

1σ-Standard in

Deviation Orientation

(Degrees)

Variance in Orientation

(Degrees)

Systematic Error

(Degrees)

0.24 0.06 5

21

Table 4-2 summarizes the standard deviation values obtained from figure 4-5. A

random number generator takes the variance as input for modelling the

Magnetometer noise as Gaussian.

4.2.3 Modelling approach for IMU (Inertial Measurement Unit)

For modelling the various components of IMU viz. Accelerometer and Gyroscope,

the following model was used to determine the true values of acceleration (for

accelerometer) and true values of yaw-rate (for gyroscope):

𝐽𝑍𝑂𝐻(𝑡) = 𝑍𝑂𝐻(𝑆𝑎𝑡 (((𝐿−1 (𝐻(𝑠) ∗ (𝐿(𝑉(𝑡) ∗ 𝑄𝑓𝑎𝑐𝑡𝑜𝑟)))) ∗ 𝑄𝑐𝑜𝑛𝑣) + 𝑏 + 𝑛)) … (7)

V(t) is the time varying voltage output from the sensor, Qfactor takes into account the

quantization factor for the 13-bit ADC, L() is the Laplace transform to convert t –

domain to s- domain, H(s) is the transfer function taking into account the MEMS

device dynamics, L-1() is the inverse Laplace to convert s-domain to t-domain, Qconv

is conversion factor to convert voltage to engineering units, JZOH(t) is the discretized

value obtained after implementing the zero-order hold function [29] for a sample

period of 0.1 seconds / 10 Hertz, b and n represent the bias and Gaussian noise.

Sat() function is used to limit output of accelerometer and gyroscope as per the

specifications in Appendix 9.2.2. It is defined as follows:

For Accelerometer,

𝑆𝑎𝑡(𝐴𝑐𝑐) = {

−78.48
𝑚

𝑠2 𝑖𝑓 𝐴𝑐𝑐 < −78.48,

 𝐴𝑐𝑐 𝑖𝑓 − 78.48 ≤ 𝐴𝑐𝑐 ≤ 78.48,

78.48
𝑚

𝑠2 𝑖𝑓 𝐴𝑐𝑐 > 78.48

 ……... (8)

For Gyroscope (Yaw-Rate),

𝑆𝑎𝑡(𝑌𝑅) = {

−2000 𝑑𝑝𝑠 𝑖𝑓 𝑌𝑅 < −2000,
 𝑌𝑅 𝑖𝑓 − 2000 ≤ 𝑌𝑅 ≤ 2000,

2000 𝑑𝑝𝑠 𝑖𝑓 𝑌𝑅 > 2000
 ………... (9)

4.2.3.1 Error analysis for Accelerometer

Experiment 1: Standard Deviation Analysis

For the accelerometer, the test was done on a flat surface for accelerations in the x

& y directions. The flatness of the surface was ensured by a spirit level. The data

was recorded for a span of 20 minutes without changing the orientation. Since, it is

22

a MEMS device, there will also be a transfer function associated along with

systematic error and noise.

Figure 4-6: Standard Deviation Analysis of Accelerometer in X & Y Direction

Table 4-3: Sensor Errors for Accelerometer Modelling

Direction
1σ-Standard

Deviation (m/s2)

Variance (Degrees)

(m/s2)

Systematic

Error (m/s2)

X 0.074 0.0055 0.0099

Y 0.013 0.0002 0.0099

Table 4-3 summarizes the standard deviation values obtained from figure 4-6. It

should also be noted that compared to GPS the systematic errors are negligible. The

variance calculated was used for modelling the sensor noise as Gaussian.

Experiment 2: Transfer Function Derivation

In order to model the transfer function of accelerometer, the vehicle was

commanded to move on a straight path at a constant speed of 1m/s. The acceleration

plot from the test was used as basis for deriving the transfer function. The ideal

accelerometer characteristics were approximated by the fact that, initially when the

vehicle launches it will have maximum acceleration and while braking maximum

deceleration. An input of ideal data was given, and the simulation output data was

compared with real test data. Figure 4-7 shows a comparison between ideal, actual

and simulated values of acceleration.

23

Figure 4-7: Straight Line Test @ 1m/s for Transfer Function Generation

The Transfer function H(s) for accelerometer was found out to be:

H(s) =
1.08

0.007𝑠2+0.075𝑠+1
 ……………… (6)

It should be noted the above transfer function is that of the accelerometer on vehicle

and other high-resolution methods are needed to separately derive the transfer

function of the vehicle.

4.2.3.2 Error analysis for Gyroscope Yaw-Rate

The Gyroscope is similar to accelerometer since, it is also a MEMS device. Hence,

it will also have a transfer function along with systematic error and noise.

Experiment 1: Standard Deviation Analysis

Similar to the process of accelerometer, the IMU sensor was place on a flat surface

and the data was recorded for a span of 20 minutes without changing the orientation.

 Figure 4-8: Standard Deviation Analysis for Gyroscope Yaw-Rate

24

Table 4-4: Sensor Errors for Gyroscope Yaw-Rate Modelling

1σ- Standard in

Deviation Orientation

(Degrees / Sec)

Variance in Orientation

(Degrees / Sec)

Systematic Error

(Degrees / Sec)

0.058 0.003 -0.064

Table 4-4 summarizes the standard deviation values obtained from figure 4-8, from

which variance was obtained for modelling sensor noise as Gaussian.

Experiment 2: Transfer Function Derivation

In order to model the transfer function, the vehicle was tested on a circular path of

diameter 4 meters at a constant steering angle and at a constant velocity of 1m/s.

Figure 4-9: Circle Test Results

From figure 4-9, it can be seen that when the vehicle travels in a circle i.e. North

East, South and West, the yaw or current heading values go up to 360 Degrees and

then again comes down to zero. For above highlighted portion, the slope is constant

and it can be assumed that the yaw rate is constant, which can be calculated as

follows.

𝑇ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑌𝑎𝑤𝑟𝑎𝑡𝑒 =
359.5−46.9

75.43−64.73
= 29.22 𝑑𝑒𝑔/𝑠 ……………… (7)

25

Figure 4-10 gives the measured value of Yaw – Rate from the gyroscope:

Figure 4-10: Gyroscope (Yaw-Rate) Output for Circle Test

The theoretical Yaw – Rate obtained from equation (7) was used as ideal yaw rate

and was modelled as a step function and the simulation output data was compared

with real test data. Figure 4-11 shows a comparison between ideal, actual and test

values of yaw-rate.

Figure 4-11: Analysis of Test Data and Simulation Data for Transfer Function Generation

for Gyroscope

26

The Transfer function H(s) for the gyroscope was found out to be:

H(s) =
0.8𝑠+1.005

2.3𝑠2+0.8𝑠+1
……………… (8)

4.2.4 Modelling approach for Wheel Speed Sensor

The wheel speed sensor is modelled similar to GPS with a sample period of 0.1

seconds / 10 Hertz. The wheel speed sensor is a variable reluctance type sensor and

can be simply modelled as having noise and zero systematic error. The noise in the

sensor can be due to the presence of residual magnetic field. Table 4-5 summarizes

the sensor errors. Due to technical reasons, the standard deviation analysis of wheel

speed sensor could not be performed.

Table 4-5: Sensor Errors for Wheel Speed Sensor Modelling

1σ - Standard Deviation

in Speed (m/s)

Variance in

Speed (m/s)

Systematic Error

(m/s)

0.02 0.0004 0

4.2.5 Steering System Actuator

The steering actuator is a servo motor with a reduction gear ratio of 3:1, position of

which is controlled by PWM signals from the controller.

Prior to developing the actuator model, the operating range of the actuator duty

cycle was found using the methods described in figure 4-12 and 4-13, having 2

stages – decoding and verification. In order to determine the maximum range of

steering angle and duty cycle range, the vehicle was suspended in air.

 Figure 4-12: Schematic - Steering System Duty Cycle Decoding Process

27

Figure 4-13: Schematic - Steering System Duty Cycle Verification Process

A linear map between steering angle (SA) and duty cycle (DC) was created, which

is given by:

DC = (0.1667 ∗ (SA)) + 26.067 ……………… (9)

where a steering angle of -30 degrees corresponds to 21% DC and steering angle of

30 degrees corresponds to 31% DC. The steering system can be modelled as

follows:

- Having hysteresis based on a certain road condition, i.e. for a commanded

steering angle the actuator does not move exactly by that angle. The hysteresis

was measured on asphalt road and table 4-6 was derived:

Table 4-6: Commanded vs Actual Steering Angle

Direction
Commanded

Steering Angle

Commanded

Duty Cycle (DC)

Actual Steering

Angle (SA)

Left to

Right

30.0 31.0 24.0

0.0 26.2 -2.0

-30.0 21.0 -30.0

Right to

Left

-30.0 21.0 -27.0

0.0 26.2 1.5

30.0 31.0 28.0

From Table 4-6, the linear relation between duty-cycle and actual steering angle is

given as follows:

SAL-R = (5.4502*DC) – 144.73 ……………… (10)

SAR-L = (5.4518*DC) – 141.28 ……………… (11)

28

- Having a delay instead of instantaneous response. This can be modelled as a

first order transfer function. From appendix, Section 9.2.3, a 60° sweep of

wheels, takes around 0.27 seconds. Hence, the ideal response could be modelled

as a step function from 0 to 60° at a given instant, as shown in figure 4-14.

Figure 4-14: Actual Response vs. Ideal Response Analysis for Transfer Function

It can be seen the actual response reaches 58° SA at around 10.27 secs. The transfer

function for the steering system is given by:

𝐻(𝑠) =
1

0.08𝑠+1
 ……………… (12)

From equations 10 and 11, the actuator hysteresis implementation is described in

the following flowchart:

 Figure 4-15: Actuator Hysteresis Modelling

29

4.2.6 Modelling the Drivetrain

Since, the entire analysis is being done on a RC vehicle and at low speeds, the

dynamics can be modelled as a single order system with very fast dynamics shown

in figure 4-16.

Figure 4-16: Drivetrain Dynamics

4.2.7 Modelling the Vehicle Kinematics

As described in [28], a vehicle moving with low speed and having Ackermann

steering geometry can be approximated as two – wheeled model / bicycle model

with zero slip angle. Figure 4-17 shows the top-level view of the kinematics model.

Figure 4-17: Vehicle Kinematics Model

For the given values of steering angle and longitudinal speed, inverse kinematics

equations for front steered vehicle can be used to determine the angular speed of

front and rear wheels by the following equations:

𝑤𝑓 =
𝑉

𝑅∗𝑐𝑜𝑠(𝛿)
, and 𝑤𝑟 =

𝑉

𝑅
 , where wf and wr are angular velocities of front and

rear wheels, V is the longitudinal velocity, R is the wheel radius and δ is the steering

angle of the vehicle.

After obtaining, front and rear angular velocities, the forward kinematics equations

can be used to determine the velocities in longitudinal and lateral direction of the

vehicle along with angular rotation about the vehicle’s perpendicular axis. This is

shown in figure 4-18.

30

Figure 4.2.8.2: Representation of Linear and Angular Velocities [28]

𝑉𝑙𝑜𝑛𝑔 =
𝑅(𝑤𝑓 cos(∅𝑓)+𝑤𝑟)

2
 ……………… (13)

𝑉𝑙𝑎𝑡 =
𝑅 𝑤𝑓 sin (∅𝑓)

2
……………… (14)

𝑤 =
𝑅 𝑤𝑓 𝑠𝑖𝑛(∅𝑓)

𝐿
……………… (15)

All these parameters can be represented graphically on the X & Y plane by the

below figure, where θ is the Yaw or Current Heading w.r.t the X- Axis

Figure 4.2.8.3: Graphical Representation of Vehicle in 2D Cartesian Coordinates

The above velocities are in the vehicle frame of reference (X’ & Y’) and in order

to determine the position of the vehicle in the reference coordinate system (X & Y),

the components of the velocities have to be resolved in both X & Y direction.

𝑉𝑥 = 𝑉𝑙𝑜𝑛𝑔 𝑐𝑜𝑠(𝜃) − 𝑉𝑙𝑎𝑡 𝑠𝑖𝑛(𝜃)……………… (16)

𝑉𝑦 = 𝑉𝑙𝑜𝑛𝑔 𝑠𝑖𝑛(𝜃) + 𝑉𝑙𝑎𝑡 𝑐𝑜𝑠(𝜃)……………… (17)

Integrating these equations gives us the X & Y coordinate of the vehicle at each

time step. Differentiating these velocities gives us the acceleration of the vehicle

w.r.t reference coordinates. Similarly,𝑌𝑎𝑤𝑓𝑖𝑛𝑎𝑙 = 𝑌𝑎𝑤𝑖𝑛𝑖𝑡𝑎𝑙 + ∫ 𝑤 𝑑𝑡
𝑑𝑡

0
, followed

by conversion from radians to degrees.

31

Figure 4-18: Interfacing of Vehicle States with Sensor Blocks

Figure 4-18 shows the ideal plant (vehicle) model states are being passed through

the sensor block which adds the errors mentioned in section 4.2.1, 4.2.2 and 4.2.3,

thereby representing the measured states or the sensor model data.

4.2.8 Controller Modelling

Controller modelling can be classified in the following parts:

- Speed Controller

- Navigation Monitoring

- Waypoint Monitoring

- Steering Controller

4.2.8.1 Speed Controller

Figure 4-19, shows a flowchart of the start-stop type speed control

Figure 4-19: Start Stop type Speed Control

32

4.2.8.2 Navigation Monitoring

This subsystem takes the current position and orientation of the vehicle and

generates the target heading, path heading, and distance to target values and

cross track-error.

The distance to target is calculated by the formula,

𝑑 = √(𝑥𝑡 − 𝑥𝑐)2 + (𝑦𝑡 − 𝑦𝑐)2 ……………… (18)

where xt yt are the target points and xc yc are the current vehicle coordinates.

In order to calculate the cross-track error (XTE), it is assumed that the path

between waypoints is a straight line. For a curved path, like real road conditions,

it will consist of multiple points and it can be linearized for every two

consecutive points to obtain a straight line. The XTE is calculated by

establishing a relation between a point and a straight line and then finding the

shortest perpendicular distance by the following relation:

𝑋𝑇𝐸 =
𝑎𝑥𝑐+𝑏𝑦𝑐+𝑐

√𝑎2+ 𝑏2
 ……………… (19)

Where a, b, c are the coefficients of the equation of the straight line given by

ax + by +c =0 between two path points x1 y1 and x2 y2. The following logic

table is used to determine the sign of the XTE:

 Table 4-7: Sign Convention for Cross Track Error

Nature of Slope Position of Point Sign of XTE

+ Above Line -

+ Below Line +

- Above Line / Right Side +

- Below Line / Left Side -

For calculating the target heading for waypoint-based controllers, the current

heading, current vehicle position and target points are used. The trigonometric

block atan2 has a range of (-Π to Π) radians. The flowchart in the figure 4-20

is used to determine the target heading for waypoint-based controllers:

33

Figure 4-20: Flowchart to Determine Target Heading for Waypoint Based Controllers

For calculating the path heading for Stanley controller, the slope between

current target point and previous target point is calculated as shown in figure 4-

21.

Figure 4-21: Flowchart to Determine Path Heading for Stanley Controller

34

Waypoint Monitoring

For waypoint monitoring, distance to target and current waypoint number

variable were taken as inputs. The following flowchart shows logic for

waypoint monitoring:

Figure 4.2.9.3.1: Flowchart Logic for Waypoint Monitoring

4.2.8.3 Steering Controller

- PI Controller

As discussed in section 4.1, the controller is modelled as follows were Kp =

1 and Ki = 0.3 are determined by Ziegler–Nichols method [17].

Figure 4-22: PI Controller Implementation

As shown in figure 4-22, the integrator and the final output of the controller is

saturated or limited by the physical limits of the steering actuator.

35

- Pure Pursuit Controller

As discussed in Section 4.1, for different velocities and road geometry, the

look ahead distance or the preview distance changes. This directly affects

the response of the controller. Based on the required simulation conditions

the look-ahead distance was defined as a function of velocity and distance

to target given by the following relation:

𝐿𝑑 =
1

𝑤1
𝐷2𝑇

+
𝑤2∗ ∆𝑡

𝑣

 ……………… (20)

Where Δt is the time-step, 𝑤1 & 𝑤2 are the weights associated distance to

target & velocity (v) term. It is also worth noticing that for a given constant

velocity, as the distance to target (D2T) of the vehicle decreases the Tan

Inverse yields a very high steering angle. Also, giving a very high weightage

to the velocity (v) term decreases the steering performance at different turns

and waypoint due to constant value of look ahead distance. Based on trial

and error, the weights 𝑤1 = 0.4 &𝑤2 = 0.6. Based on the scope of

simulation, the look ahead distance was given a saturation limit of 0.7 to 1.2

was used for optimal performance.

 Figure 4-23: Look Ahead Distance for Pure Pursuit Controller

Figure 4-23 shows the implementation of equation 20 for the calculation of

the look ahead distance.

Figure 4-24 shows the integration of look ahead distance calculator with the

steering controller.

Figure 4-24: Pure-Pursuit Controller Implementation

36

- Stanley Steering Controller

Similar to the Pure-Pursuit controller, the gain values are different for

different vehicle velocities and for different path geometries. The units of

gain is Sec-1 hence, it might be more effective to implement the gain as time

to target where, Gain k = 1 / T, where T = Time to Target given by D2T / v.

Here, D2T is the distance to target of the vehicle from the waypoint and v is

the vehicle speed. Again, based on the scope of simulation, a saturation limit

of 2 to 4 was used for optimal performance.

Figure 4-25: Stanley Controller Implementation

4.2.9 Test Cases for Controllers

All the 3 controllers were tested under 3 different path conditions, namely:

• Custom Path (Figure 4-26)

• Straight Path (Figure 4-27)

• Dynamic Lane Change (Figure 4-28)

The following sensors were used for the simulation:

• GPS – X&Y coordinates

• Magnetometer or Digital Compass – Vehicle Heading

The performance of each controller is based on the following metrics:

• Vehicle Trajectory

• Cross – Track Error (XTE) or Lateral Distance for 2D condition

• Distance between vehicle stop point and actual waypoint under 1D

condition

• Controller Response for Location Specific Noise

37

Path 1:

Figure 4-26: Custom Path

 Path 2:

Figure 4-27: Straight Path

38

Path 3:

 Figure 4-28: Dynamic Lane Change

39

5 SIMULATION RESULTS AND ANALYSIS

5.1 Performance Analysis under Ideal Sensor Conditions

5.1.1 Custom Path

Figure 5-1: Path Tracking Performance of Controllers

Figure 5-2: Cross Track Error of Vehicle on Custom Path

40

5.1.2 Straight Line

Figure 5-3: Path Tracking Performance of Controllers on Straight Path

Figure 5-4: Cross Track Error of Vehicle on Straight Path

41

5.1.3 Dynamic Lane Change

Figure 5-5: Path Tracking Performance of Controllers for Dynamic Lane Change

Figure 5-6: Cross Track Error of Vehicle for Dynamic Lane Change

42

From figures 5-1 to 5-6, the controller performance in terms of cross track error

for various paths and controllers can be tabulated in Table 5-1.

Table 5-1: Max. Cross Track Error (Meters) Results for Custom Path

Path PI Controller
Pure -

Pursuit
Stanley

Custom 1 1.00 1.00 1.00

Custom 2 -0.64 0.10 0.00

Straight -0.05 0.08 0.08

Dynamic

Lane Change
-0.05 0.08 0.08

From table 5-1, it is seen that when path dynamics are significant, the PI controller

performs the worst, as shown in section 1 and 2 for custom path in figure 5-1 and

5-2. Pure Pursuit and Stanley Controller have similar performance. It can also be

observed that all the 3 controllers perform similarly for Straight Path and Dynamic

Lane Change.

From figures 5-1 to 5-6, the path tracking performance of the controllers can be

visualized. For the custom path region 1, all the controllers have the maximum

deviation of 1 meter, but the PI controller converges very abruptly followed by an

overshoot of 0.5 meter in the opposite direction. The other two controllers i.e. Pure

Pursuit and Stanley converge smoothly converge with negligible overshoot. The

Pure-Pursuit Controller convergence is due to the presence of Look Ahead Distance

term. The Stanley controller converges faster than Pure-Pursuit Controller due to

the presence of cross track error term as feedback. The performance analysis under

ideal sensor condition validates the work done in [3] and [5].

43

5.2 Performance Analysis Considering Sensor Errors

In this, the controller analysis is done by including systematic error, noise and other

dynamics in the sensor. Also, as discussed in section 4.2.10, a location specific

random noise has been included in the custom path to consider the effects of stray

magnetic fields.

5.2.1 Custom Path

Figure 5-7: Effect of Sensor Errors and Location Specific Noise on Navigation

Performance

44

Figure 5-8: Effect of Sensor Errors on Cross Track Error for Custom Path

Figure 5-9: Effect of Stray Magnetic Fields on Magnetometer Output for Vehicle

Heading

As seen in figure 5-7 and figure 5-8, the Stanley controller is affected the least by

stray noise. From figure 5-9, the effect of stray fields can be seen in the vehicle

heading values read by the magnetometer. From figures 5-7 to 5-8, the controller

performance in terms of cross track error can be tabulated in Table 5-2.

45

Table 5-2: Max. Cross Track Error (Meters) Results for Custom Path Considering Sensor

Errors

PI

Controller

ΔXTE for

PI

Controller

Pure –

Pursuit

(PP)

ΔXTE for

PP

Controller

Stanley

ΔXTE for

Stanley

Controller

1 1.7 - 1.7 - 2 -

2 -2.6 0.9 -2.2 0.5 -2.3 0.3

3 -2.8 0.2 -2.6 0.4 -2.8 0.5

4 -0.3 2.5 -0.5 2.1 -0.9 1.9

5 -1.6 1.3 -1.6 1.1 -1.7 0.8

Data in Table 5-2 shows that systematic error in GPS majorly affects the

navigational performance of all the controllers. For a positive systematic error in

X&Y directions, the vehicle moves away from the path.

The highlighted columns in table 5-2 compare the change in max. cross track error

between the current segment and the prior segment. From Figure 5-7 and Table 5-

2, segment 4, it can be seen that the PI controller is affected the most by the noise

i.e. 2.5 meters of deviation. The circled section in figure 5-7 and 5-8 shows the

effect of stray magnetic field which causes the vehicle to take an abrupt turn.

5.2.2 Straight Line Path

Figure 5-10: Effect of Sensor Errors Navigation Performance under 1D condition

46

Table 5-3: Distance (Meters) between vehicle stop point and actual waypoint for straight

line test for 1D condition

Waypoint No. PI Pure Pursuit Stanley

1 3.00 3.00 3.00

2 2.90 2.77 2.77

3 3.20 2.93 2.94

4 2.72 2.93 2.91

5 3.03 2.90 2.88

Figure 5-10 and Table 5-3 clearly show that due systematic error in GPS x-

direction, the vehicle stops approximately 3 meters before the actual waypoint.

5.2.3 Dynamic Lane Change

Figure 5-112: Effect of Sensor Errors on Navigation Performance

47

Figure 5-123: Effect of sensor error on Cross Track Error

From figure 5-13 and 5-14, the table 5-4 is derived which sums up maximum

cross track error of the vehicle stop point from the actual path.

Table 5-4: Max. Cross Track Error (Meters) Results for Dynamic Lane Change

Considering Sensor Errors

Segment PI Controller Pure Pursuit Stanley

1 1.98 1.98 2.00

2 2.11 2.21 2.21

3 1.63 1.85 1.85

4 1.94 2.01 1.98

5 2.31 2.31 2.31

6 2.13 2.14 2.14

From table 5-4, and figures 5-13 and 5-14, it can be seen that the GPS systematic

error pre-dominates over other sensor error. After deviation from the actual path,

all the controllers maintain a similar offset from the path and follow the path

trajectory.

48

6 IMPROVING NAVIGATION / WAYPOINT TRACKING
USING STATE ESTIMATION APPROACH

As seen in the previous section, the error in GPS signal affects the path tracking

performance of the vehicle. Also, the presence of stray noise affects the steering

performance and causes the vehicle to behave abruptly as seen in section 5.2.1.

In order to improve the navigational performance of the vehicle, we need to

improve the positional / localization accuracy of the vehicle. As discussed in section

2.2, GPS has systematic error as dominant error, hence, localization using position

data from GPS will always have some offset from the true position. Sensory data

from accelerometers and wheel speed sensors can be combined with GPS Data to

improve the accuracy in navigation. This can be achieved by using the concept of

sensor fusion. Using the laws of motion and by assuming constant acceleration at

every time step, we can model the position equation as follows:

𝑆𝑓 = 𝑆𝑖 + 𝑢∆𝑡 +
1

2
𝑎∆𝑡2 ……………… (21)

where Sf = Position at t + Δt, Si = Position at time t, u = velocity at time ∆t and a =

acceleration at time step ∆t.

It is also seen from the steering control laws, section 4.1, that vehicle heading

sensed by the Magnetometer is an input to the controller, but it is affected by stray

magnetic fields and sensor noise as seen in section 5.2.1. Hence, there is also a need

to implement state estimation techniques, to generate noise free states for the

controller. One method is to combine Magnetometer data with yaw-rate obtained

from Gyroscope. The vehicle heading also known as Yaw has a linear relation with

Yaw-Rate, given by,

𝜑𝑓 = 𝜑𝑖 + 𝜑′ ∆𝑡 ……………… (21)

where ψf = Yaw or Vehicle Heading at time t + Δt, ψi = Yaw or Vehicle Heading

at time t and ψ’ is Yaw-Rate at time step ∆t.

Combining sensory data allows choosing a state in between a measured value and

state obtained by prediction from a model. For dynamic conditions, it is required to

alter the weights at every time step depending upon the quality of measurement. If

sensor data is good more weight should be given to it, else for poor sensor data,

weightage is given to prediction. This can be achieved by the use of Kalman Filters.

One might say, that using a model to predict the states should be sufficient, however

system dynamics can never by modelled perfectly. Under such circumstances, even

if the initial predictions are correct, the states would diverge from actual values due

to non-linearities in the physical system. The use of measured value in the Kalman

Filter prevents the predictions to diverge.

49

6.1 Kalman Filter Equations

The Kalman Filter consists of 2 Stages:

• Prediction – Uses model equations to predict the next system state based on

current states.

• Update – Update the current states based on weights assigned to measured

values and predicted values

The State Space equation is given by 𝑥𝑡+1̅̅ ̅̅ ̅̅ = 𝐴𝑥𝑡 + 𝐵𝑢𝑡,where, 𝑥𝑡+1̅̅ ̅̅ ̅̅ = Predicted

System State at time t + 1 from previous state xt, A = State Transition Matrix, B =

Control Matrix, ut = Input Matrix

The filter will not be used to generate control inputs, so B = 0

Hence, we get, 𝑥𝑡+1̅̅ ̅̅ ̅̅ = 𝐴𝑥𝑡 ………………..(22)

�̅� = 𝐴𝑃𝐴𝑡 + 𝑄………………..(23)

�̅� = Predicted State Co-Variance Matrix and P = State Co-Variance Matrix

𝑄 = Process Noise or Noise in the Model

Equations 22 & 23 form the prediction stage

Residual, 𝑦 = 𝑍 − 𝐻 𝑥𝑡+1̅̅ ̅̅ ̅̅ ………………..(24), where Z = Measured states from

sensor, H = Measurement function to scale predicted values as per Z

Uncertainty, in measurement 𝑆 = 𝐻�̅�𝐻𝑡 + 𝑅−1 ………………..(25), where R =

Measurement Noise Vector

Kalman Gain K = �̅�𝐻𝑡𝑆−1 ………………..(25), this is the step where the filter

decides whether to give more weightage to measured value or predicted value.

Higher the value of K, more value is given to measurement.

𝑥𝑡 = 𝑥�̅� + 𝐾𝑦………………..(27), new estimated state based on the Kalman Gain

Updating the process co-variance, 𝑃 = (𝐼 − 𝐾𝐻)�̅� ………………..(28)

Equations 24, 25, 26, 27 & 28 form the update stage of the filter where the filter

estimates the new states from noisy measurements and 𝑥𝑡 & 𝑃 are used for the next

prediction.

For the initial step / iteration the P and the x, matrices are required to initialize the

filter. In the following iterations, the filter will estimate these values

50

6.2 Implementation of 1D – 2nd Order Kalman Filter for
Improved Position Feedback in Straight Line Path

The following matrices where defined and initialized:

xt = [

𝑠𝑡

𝑣𝑡

𝑎𝑡

] = [
0
0
0

] since, at t=0, all the states start from 0

A = [
1 ∆𝑡 ∆𝑡2/2
0 1 ∆𝑡
0 0 1

] using the equations of motion discussed earlier

P = [

𝜎𝑥
2 0 0

0 𝜎𝑣
2 0

0 0 𝜎𝑎
2

], where the diagonals are the sensor variances for position,

velocity and acceleration.

Q = [

∆𝑡4/4 ∆𝑡3/2 ∆𝑡2/2

∆𝑡3/2 ∆𝑡2 ∆𝑡

∆𝑡2/2 ∆𝑡 1

] .∗ ∅2 , this is the piece-wise model as discussed in

[26] for constant acceleration at a given time-step and but differs at every step. A

more accurate model as described in [26] is the continuous time noise model Qc,

which is used to find Q by integrating and for each time step using 𝑄 =

 ∫ 𝐹 𝑄𝑐 𝐹𝑇∆𝑡

0
 𝑑𝑡. This process is more computationally intensive.

Z = [

𝑠𝑚𝑒𝑎𝑠

𝑣𝑚𝑒𝑎𝑠

𝑎𝑚𝑒𝑎𝑠

] and H = [
1 0 0
0 1 0
0 0 1

]

R = [

𝜎𝑥
2 0 0

0 𝜎𝑣
2 0

0 0 𝜎𝑎
2

] .∗ 𝑀𝑅, where the diagonals are the sensor variances for

position, velocity and acceleration.

MR and Ø, are used to set Q and R matrix and tune the filter.

It should be noted that high value of R, tells the filter that the measurement is noisy,

and the filter will favor prediction at every step. A low value of Q tells the filter

that the model defined in filter perfectly defines the system and to put more weights

on the predicted value. A low value of R tells the filter that the measurement has

less noise and the filter will favor sensor data at every step. A high value for Q tells

the filter that the model is not accurate. Initially Ø = 0.05 and MR=10, since we

know that the measurements are not perfect.

51

6.2.1 Filter Results for Various Controllers Under 1D conditions

Figure 6-1: Controller Performance with 1D Kalman Filter, MR=10

Table 6-1: Difference in distance between vehicle stop point and waypoint for various

controllers with Kalman Filter MR=10

Waypoint No. PI Pure Pursuit Stanley

1 1.99 (33%) 1.99 (33%) 2.00 (33%)

2 2.09 (27%) 1.97 (29%) 2.07 (25%)

3 2.03 (36%) 2.15 (26%) 2.15 (27%)

4 2.24 (17%) 2.22 (24%) 2.22 (24%)

5 2.04 (32%) 2.19 (24%) 2.29 (21%)

Compared to the table 5-3, the filter is able to reduce the difference in distance

between the vehicle stop point and waypoint. The percentage improvement is given

in the parenthesis. However, the filter starts lagging behind due to the systematic

error in GPS affecting the filter during residual calculation. The next step would be

to include the GPS systematic error in the filter’s Z matrix. This would allow the

filter to have prior knowledge of the GPS systematic error.

Z = [

𝑠𝑚𝑒𝑎𝑠 − 𝑔𝑝𝑠_𝑠𝑦𝑠_𝑥
𝑣𝑚𝑒𝑎𝑠

𝑎𝑚𝑒𝑎𝑠

]

52

Figure 6-2: Controller Performance with 1D Kalman Filter, MR=10 with GPS Error

included

Table 6-2: Distance (Meters) between vehicle stop point and waypoint for various

controllers with Kalman Filter MR=10 with GPS Error included

Waypoint No. PI Pure Pursuit Stanley

1 0.20 0.20 0.20

2 0.10 0.07 0.18

3 0.12 0.15 0.15

4 0.12 0.12 0.13

5 0.22 0.09 0.09

Compared to the results in Table 6-2, there is significant improvement in tracking

performance and an accuracy at the centimeter level has been achieved. It should

be noted that GPS systematic error depends on the satellite orientation and the

signal quality, and this simulation shows a special case when the error in X&Y

direction is 2.12 meters.

53

6.3 Implementation of 1st Order Kalman Filter for Vehicle
Heading Improvement

xt = [
𝜑

𝜑′] = [
0
0

] A = [
1 ∆𝑡
0 1

] using the linear relationship between yaw and yaw-rate

P = [
𝜎𝜑

2 0

0 𝜎𝜑′
2] and R = [

𝜎𝜑
2 0

0 𝜎𝜑′
2] .∗ 𝑀𝑅,

where the diagonals are the sensor variances for yaw and yaw-rate

Q = [
∆𝑡4/4 ∆𝑡3/2

∆𝑡3/2 ∆𝑡2] .∗ ∅2

Z = [
𝜑𝑚𝑒𝑎𝑠

𝜑′
𝑚𝑒𝑎𝑠

] and H = [
1 0
0 1

]

From figure 5-9, it can be seen that the magnetometer readings have less noise but

is affected by stray magnetic fields. So, it can be assumed that the measurements

are of good quality when there is no noise and correction is only needed when there

is an external disturbance. Using trial and error, the value of ∅ was chosen to be 4

and the value of MR was chosen to be 0.5. The filter performance was evaluated

on the custom path for PI controller as it was affected the most by the stray noise.

6.3.1 Filter Implementation Results for Vehicle Heading
Estimation

Figure 6-3: Filter Performance for Vehicle Heading Estimation

54

From the figure 6-3, it can be seen that the filter performs well in estimating the

vehicle heading under noisy conditions.

As seen in figure 5-7 and 5-8, PI controller was affected the most by the stray

magnetic fields. So, the navigational performance was also compared for PI

controller for filtered and non-filtered condition.

Figure 6-4: PI Controller Performance for Filtered Vehicle Heading

In figure 6-4, the highlighted portion shows that, although the vehicle deviates from

path, the steering response is not abrupt in nature and is able to smoothly converge

with the trajectory of the previous controller performance.

55

7 CONCLUSION AND FUTURE SCOPE OF WORK

In this report, the effects of actuator dynamics and sensor errors for autonomous

navigation are analyzed for 3 different types of steering controllers. Initial analysis is

done from experimental data and the factors for poor navigation are identified. Based

on this, the need for model-based controller analysis was established.

Sensors, actuators and the vehicle kinematics were modelled based on actual

component test data followed by the implementation of steering controls i.e. PI, Pure-

Pursuit and Stanley controller along with Speed Controller, Navigation and Waypoint

monitoring systems. These controllers were tuned for three different path conditions

with cross-track error as the most important performance metric.

From the results, it can be seen that all the controllers deviated from the desired path

and there was an offset between vehicle trajectory and the ideal path. It can be

concluded that localization using GPS is highly biased by the presence of systematic

error. When comparing the response or control action of the controllers, Stanley

controller and Pure-Pursuit controller were superior in performance as compared to PI

controller. However, all the steering controllers were affected by stray magnetic fields,

PI controller being affected the most due to the absence of path dynamics in the control

law.

It can be seen, that by the application of Sensor Fusion between GPS, Wheel Speed

Sensor and Accelerometer via. 1D - 2nd Order Kalman Filter, the vehicle positional

accuracy improves for 1D waypoint tracking, since, the filter was able to estimate the

position of the vehicle from the noisy measurement. Also, by adding the knowledge of

GPS systematic error in the filter, accuracy at centimeter level was achieved. It is also

seen that by applying sensor fusion between Gyroscope and Magnetometer, the yaw or

vehicle heading output is improved as the estimates are less affected by the stray

magnetic fields.

In the future, a learning-based technique will be developed to provide the GPS

systematic error input for the Kalman Filter under various satellite and climatic

conditions. This would be followed by the implementation of a 2D Kalman Filter for

position estimation and localization in X&Y direction. After successful simulation

work, the model will be modified for implementation on a real time vehicle ECU.

56

8 REFERENCES
1.) Rafael Vivacqua, Raquel Vassallo, Felipe Martins. “A Low-Cost Sensors Approach

for Accurate Vehicle Localization and Autonomous Driving Application”, MDPI

Journal of Sensors, 2017.

2.) Jun Yang, Hong Bao, Nan Ma, Zuxing Xuan. “An Algorithm of Curved Path

Tracking with Prediction Model for Autonomous Vehicle”, 13th International

Conference on Computational Intelligence and Security, 2017, pp. 405 – 408.

3.) Jarrod M. Snider. “Automatic Steering Methods for Autonomous Automobile Path

Tracking”, MS Thesis, Carnegie Mellon University, 2009.

4.) Byung-Hyun Lee, Sung-Hyuck Im, Moon-Beom Heo and Gyu-In Jee. “Curve

Modeled Lane and Stop Line Detection based GPS Error Estimation Filter “, 2015

IEEE Intelligent Vehicles Symposium, Seoul, Korea, 2015. pp. 406 – 411.

5.) Stefan F. Campbell. “Steering Control of an Autonomous Ground Vehicle with

Application to the DARPA Urban Challenge”, MS Thesis, Massachusetts Institute

of Technology, 2007.

6.) Mertcan Cibooglu, Umut Karapinar, Mehmet Turan Söylemez. “Hybrid Controller

Approach for Autonomous Ground Vehicle Path Tracking Problem”. 25th

Mediterranean Conference on Control and Automation, 2017, pp. 584 - 588

7.) Pierre Pettersson. “Estimation of Vehicle Lateral Velocity”, MS Thesis, Lund

University, 2008, pp. 2 – 13, 18 – 19, 24.

8.) Md. Rashedul Islam, Jong-Myon Kim. “An Effective Approach to Improving Low-

Cost GPS Positioning Accuracy in Real-Time Navigation”. The Scientific World

Journal Volume 2014, Article ID 671494.

9.) Francois Caron, Emmanuel Duflos, Denis Pomorski, Philippe Vanheeghe.

“GPS/IMU data fusion using multi-sensor Kalman filtering: introduction of

contextual aspects”. Elsevier Journal, pp. 221 – 230, 2004.

10.) Hang Guo, Min Yu, Chengwu Zou, Wenwen Huang. “Kalman filtering for

GPS/magnetometer integrated navigation system”. Elsevier Journal, pp. 1350 –

1357, 2010.

11.) Teawon Han, Yanghyun Kim, Kisung Kim. “Lane Detection & Localization for

UGV in Urban Environment”. IEEE 17th International Conference on Intelligent

Transportation Systems (ITSC), 2014, Qingdao, China, pp. 590 – 596.

12.) Chris J. Ostafew, Angela P. Schoellig, Timothy D. Barfoot. “Learning-Based

Nonlinear Model Predictive Control to Improve Vision-Based Mobile Robot Path-

Tracking in Challenging Outdoor Environments”. IEEE International Conference

on Robotics & Automation (ICRA) Hong Kong Convention and Exhibition Center,

2014, pp. 4029 – 4036.

13.) Malavika Panicker, Tanzeela Mitha, Kalyani Oak, Ashwini M. Deshpande.

“Multisensor Data Fusion for an Autonomous Ground Vehicle”. Conference on

Advances in Signal Processing (CASP) Cummins College of Engineering for

Women, Pune, 2016, pp. 507 – 512.

14.) J. Pérez, J. Godoy, V. Milanés, J. Villagrá, E. Onieva. “Path following with

backtracking based on fuzzy controllers for forward and reverse driving”.

57

Intelligent Vehicles Symposium Alcalá de Henares, Spain, June, 2012, pp. 1108 –

1113.

15.) Martin Lundgren. “Path Tracking for a Miniature Robot”. MS Thesis, Umeå

University, 2003.

16.) M. Pe´rez-Ruiz, J. Carballido, J. Agu¨era, J. A. Gil. “Assessing GNSS correction

signals for assisted guidance systems in agricultural vehicles”. Springer Science,

Precision Agric , 2011, pp. 639 – 652.

17.) Aidan O'Dwyer. “PI and PID controller tuning rules: an overview and personal

perspective”. Dublin Institute of Technology, 2006.

18.) Fredrick S. Solheim, Jothiram Vivekanandan1, Randolph H. Ware, Christian

Rocken. “Propagation Delays Induced in GPS Signals by Dry Air, Water Vapor,

Hydrometeors and Other Particulates”. Journal of Geophysical Research, 104,

9663-9670, 1999.

19.) Hanieh Deilamsalehy, Timothy C. Havens. “Sensor Fused Three-dimensional

Localization Using IMU, Camera and LiDAR”. IEEE Journal, 2016

20.) SAE Levels of Automated Driving - https://www.sae.org/news/press-

room/2018/12/sae-international-releases-updated-visual-chart-for-its-

%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-

driving-vehicles

21.) Typical System Architecture-

https://www.slideshare.net/KiranKumar1455/autonomous-cars-61077075

22.) Ford Heart Rate Monitoring Seat -

http://www.medtees.com/content/ecg_seat_fact_sheet_2.pdf

23.) Zhiping Liu, Mingjing Zhu. “Calibration and Error Compensation of

magnetometer”. 26th Chinese Control and Decision Conference, 2014, pp. 4122 –

4126

24.) Minha Park and Yang Gao. “Error and Performance Analysis of MEMS-based

Inertial Sensors with a Low-cost GPS Receiver”. MDPI Journal of sensors,2008
25.) MEMS Technology - https://www.memsnet.org/mems/what_is.html
26.) Concept Behind Sensor Fusion - https://github.com/rlabbe/Kalman-and-Bayesian-

Filters-in-Python/blob/master/04-One-Dimensional-Kalman-Filters.ipynb
27.) Effect of Look Ahead Distance on Pure Pursuit Controller -

https://www.mathworks.com/help/robotics/ug/pure-pursuit-controller.html
28.) Forward and Inverse Kinematics -

https://www.mathworks.com/matlabcentral/fileexchange/66586-mobile-robotics-

simulation-toolbox
29.) Zero Order Hold - https://en.wikipedia.org/wiki/Zero-order_hold
30.) WGS84 Model - http://earth-

info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf

https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.slideshare.net/KiranKumar1455/autonomous-cars-61077075
http://www.medtees.com/content/ecg_seat_fact_sheet_2.pdf
https://www.memsnet.org/mems/what_is.html
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/04-One-Dimensional-Kalman-Filters.ipynb
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/04-One-Dimensional-Kalman-Filters.ipynb
https://www.mathworks.com/help/robotics/ug/pure-pursuit-controller.html
https://www.mathworks.com/matlabcentral/fileexchange/66586-mobile-robotics-simulation-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/66586-mobile-robotics-simulation-toolbox
https://en.wikipedia.org/wiki/Zero-order_hold
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf

58

9. APPENDIX

9.1 Python code used for initial vehicle test and analysis

#Import Libraries

import Adafruit_BBIO.ADC as ADC

import Adafruit_BBIO.GPIO as GPIO

import Adafruit_BBIO.PWM as PWM

import serial

import math

import Adafruit_BBIO.UART as UART

import time

from time import sleep

#Initialization of UART

UART.setup("UART1") #Initialize UART1

UART.setup("UART4") #Initialize UART4

ser=serial.Serial('/dev/ttyO1',19200) #Initialize Serial Port at 19200 for Garmin GPS

ser1=serial.Serial('/dev/ttyO4',115200) #Initialize Serial Port at 115200 for UM7

#Assign DI, DO and PWM

start_button="P8_8"

okled_pin="P8_10" #red LED

runled_pin="P8_12" #yellow LED

esc_pin = "P9_21"

ser_pin = "P8_13"

GPIO.setup(okled_pin, GPIO.OUT)

GPIO.setup(runled_pin, GPIO.OUT)

GPIO.setup(start_button, GPIO.IN)

GPIO.output(okled_pin, GPIO.LOW)

GPIO.output(runled_pin, GPIO.LOW)

#Reset PWM to default conditions

dc_fbeep = 13.93

dc_stop=11

ser_dc = 26.2

esc_f=90.9

ser_f=181.2

PWM.start(esc_pin, dc_fbeep, 90.9) #starting frequency and duty cycle for esc_pin

time.sleep(3)

PWM.start(ser_pin, ser_dc, 181.2) #starting frequency and duty cycle for ser_pin

time.sleep(0.1)

PWM.set_duty_cycle(esc_pin,float(dc_fbeep))

PWM.set_duty_cycle(ser_pin,float(ser_dc))

59

PWM.stop(esc_pin)

PWM.stop(ser_pin)

#Initialize ESC and servo

PWM.start(esc_pin, dc_fbeep, 90.9)

time.sleep(3)

PWM.start(ser_pin, ser_dc, 181.2) #starting duty cycle for ser_pin

throttle=30 #Percentage of throttle

throttle_dc=(0.0107*throttle)+13.93 #Throttle to duty cycle Linear Map

steering_angle=0 # Initial steering position

ser_dc=(0.1667*steering_angle)+26.2 #Steering Angle to duty cycle Linear Map

#Open file for write

f=open("Test.txt","a")

f.write("LoopTime WaypointNo. CurrLat CurrLong TargetLat TargetLong TargetHeading

CurrentHeading HeadingError distanceToTarget Speed Yaw_rate Ax Ay Az Magx Magy

Magz\n")

Way point/map parameters

WAYPOINT_DIST_TOLERANCE = 2

HEADING_TOLERANCE = 10

TarLat = [47.169502,47.169640,47.169795,47.169917,47.169934]

TarLong = [-88.507541,-88.507583,-88.507640,-88.507768,-88.508037]

x0 = 47.169502 # Vehicle start point

y0 = -88.507711

n=4 #number of waypoints, zero position being the first waypoint

i=0

t1=0

t2=0

#Empty the serial buffers for serial input

ser.flushInput()

ser.flushoutput()

#General Parameters

gpscount=3

count=1

d0=0 #starting point distance

d_cal=0

delta=0

starttime=0

looptime=0

z=1

speed=0

integral=0

60

#Class for GPS Data Read

class GPS:

 def read(self):

 ser.flushInput()

 ser.flushOutput()

 while ser.inWaiting()==0:

 pass

 self.NMEA1=ser.readline()

 while ser.inWaiting()==0:

 pass

 self.NMEA2=ser.readline()

 NMEA1_array=self.NMEA1.split(',')

 NMEA2_array=self.NMEA2.split(',')

 if NMEA1_array[0]=='$GPGGA':

 self.latDeg=NMEA1_array[2][:-8]

 self.latMin=NMEA1_array[2][-8:]

 self.latHem=NMEA1_array[3]

 self.lonDeg=NMEA1_array[4][:-8]

 self.lonMin=NMEA1_array[4][-8:]

 self.lonHem=NMEA1_array[5]

 if NMEA1_array[7]==' ' or NMEA1_array[7]==0:

 self.sat=0

 else:

 self.sat=NMEA1_array[7]

 if NMEA2_array[0]=='$GPRMC':

 self.latDeg=NMEA2_array[3][:-8]

 self.latMin=NMEA2_array[3][-8:]

 self.latHem=NMEA2_array[4]

 self.lonDeg=NMEA2_array[5][:-8]

 self.lonMin=NMEA2_array[5][-8:]

 self.lonHem=NMEA2_array[6]

 if NMEA2_array[7]==' ' or NMEA2_array[7]==0:

 self.speed=0

 else:

 self.speed=NMEA2_array[7]

 if NMEA2_array[0]=='$GPGGA':

 self.latDeg=NMEA2_array[2][:-8]

 self.latMin=NMEA2_array[2][-8:]

 self.latHem=NMEA2_array[3]

 self.lonDeg=NMEA2_array[4][:-8]

 self.lonMin=NMEA2_array[4][-8:]

 self.lonHem=NMEA2_array[5]

61

 if NMEA2_array[7]==' ' or NMEA2_array[7]==0:

 self.sat=0

 else:

 self.sat=NMEA2_array[7]

 if NMEA1_array[0]=='$GPRMC':

 self.latDeg=NMEA1_array[3][:-8]

 self.latMin=NMEA1_array[3][-8:]

 self.latHem=NMEA1_array[4]

 self.lonDeg=NMEA1_array[5][:-8]

 self.lonMin=NMEA1_array[5][-8:]

 self.lonHem=NMEA1_array[6]

 if NMEA1_array[7]==' ' or NMEA1_array[7]==0:

 self.speed=0

 else:

 self.speed=NMEA1_array[7]

#Class for IMU Data Read

class UM7():

 def read(self):

 ser1.flushInput()

 ser1.flushOutput()

 ser1.flushInput()

 ser1.flushOutput()

 time.sleep(0.1) #Time delay to serial input / output buffers

 while ser1.inWaiting()==0:

 pass

 self.NMEA3=ser1.readline() #Read NMEA1

 NMEA3_array=self.NMEA3.split(',')

 while ser1.inWaiting()==0:

 pass

 self.NMEA4=ser1.readline() #Read NMEA2

 NMEA4_array=self.NMEA4.split(',')

 while ser1.inWaiting()==0:

 pass

 self.NMEA5=ser1.readline() #Read NMEA3

 NMEA5_array=self.NMEA5.split(',')

 while ser1.inWaiting()==0:

 pass

 self.NMEA6=ser1.readline() #Read NMEA4

 NMEA6_array=self.NMEA6.split(',')

62

 if NMEA3_array[0]=='$PCHRP': # Statement to check the condition of

first NMEA sentence

 if NMEA3_array[0]=='$PCHRP':

 self.yaw=NMEA3_array[7] #Yaw or current heading

 if NMEA4_array[0]=='$PCHRS':

 self.yaw_rate=NMEA4_array[5] #Yaw Rate

 if NMEA5_array[0]=='$PCHRS':

 self.ax=NMEA5_array[3] #Acceleration in X Direction

 self.ay=NMEA5_array[4] #Acceleration in Y Direction

 self.az=NMEA5_array[5] #Acceleration in Z Direction

 if NMEA6_array[0]=='$PCHRS':

 self.magx=NMEA6_array[3] #Mag Sensor value in X

Direction

 self.magy=NMEA6_array[4] #Mag Sensor value in Y

Direction

 self.magz=NMEA6_array[5] #Mag Sensor value in Z

Direction

myGPS=GPS()

imu=UM7()

time.sleep(1)

lat=0

sat=0

flag=0

total_gain=0

j_max=100

sum_yaw_rate=0

sum_ax=0

sum_ay=0

sum_az=0

Self routine having 100 iterations to check for GPS and IMU data integrity

for j in range(0,j_max):

 myGPS.read()

 imu.read()

 latprev=lat

 myGPS.latMin=float(myGPS.latMin)

 myGPS.latDeg=float(myGPS.latDeg)

 myGPS.latMin = myGPS.latMin * 0.01666667 #Convert Minutes to Degrees

for latitude

63

 lat = myGPS.latDeg + myGPS.latMin

 GPIO.output(okled_pin, GPIO.LOW)

 status=0

if lat-latprev!=0: #Check GPS Data before proceeding

 GPIO.output(okled_pin, GPIO.HIGH)

 flag=1

else:

 GPIO.output(okled_pin, GPIO.LOW)

 flag=0

while(status==0 and flag=1): #Wait for the start button to be switched on

 status=GPIO.input(start_button)

 GPIO.output(okled_pin, GPIO.HIGH)

 old_status=status

 time.sleep(0.5)

Accelerometer and Gyroscope Self-Calibration routine

for j in range(0,j_max):

 imu.read()

 yaw_rate=float(imu.yaw_rate)

 sum_yaw_rate=sum_yaw_rate+yaw_rate

 ax=float(imu.ax)*9.81

 sum_ax=sum_ax+ax

 ay=float(imu.ay)*9.81

 sum_ay=sum_ay+ay

 az=float(imu.az)*9.81

 sum_az=sum_az+az

yaw_rate_cal=sum_yaw_rate/j_max

ax_cal=sum_ax/j_max

ay_cal=sum_ay/j_max

az_cal=sum_az/j_max

#Main loop

while(i<=n and status==1):

 GPIO.output(okled_pin, GPIO.LOW)

 GPIO.output(runled_pin, GPIO.HIGH)

 PWM.set_duty_cycle(esc_pin,float(throttle_dc))

 t1=time.time()

64

 imu.read()

 curr_hdng_deg=float(imu.yaw)

 if curr_hdng_deg<0:

 curr_hdng_deg=curr_hdng_deg+360

 yaw_rate=(float(imu.yaw_rate))-yaw_rate_cal

 ax=(float(imu.ax)*9.81)-ax_cal

 ay=(float(imu.ay)*9.81)-ay_cal

 az=(float(imu.az)*9.81)-az_cal

 magx=float(imu.magx)

 magy=float(imu.magy)

 magz=float(imu.magz)

 if z==1:

 x = x0 # Vehicle start point #center point of the APSRC road

 y = y0

 d = d0

 z=z+1

 else:

 myGPS.read()

 myGPS.latMin=float(myGPS.latMin)

 myGPS.lonMin=float(myGPS.lonMin)

 myGPS.latDeg=float(myGPS.latDeg)

 myGPS.lonDeg=float(myGPS.lonDeg)

 speed=round(((float(myGPS.speed))*0.514444),2)

 sat=float(myGPS.sat)

 myGPS.latMin = myGPS.latMin * 0.01666667 #Convert Minutes to

Degrees for latitude

 myGPS.lonMin = myGPS.lonMin * 0.01666667 #Convert Minutes to

Degrees for longitude

 CurrLat = myGPS.latDeg + myGPS.latMin

 CurrLong = myGPS.lonDeg + myGPS.lonMin

 if myGPS.latHem=='S': #Convert latitude to -ve if in southern

hemisphere

 CurrLat = CurrLat * -1

 if myGPS.lonHem=='W': #Convert longitude to -ve if in western

hemisphere

 CurrLong = CurrLong * -1

 x=CurrLat

 y=CurrLong

 #Now calculations for Distance to Target

 TarLat1 = math.radians(TarLat[i])

 TarLong1 = math.radians(TarLong[i])

 CurrLat1 = math.radians(x)

65

 CurrLong1 = math.radians(y)

 delta = CurrLong1 - TarLong1

 sdlong = math.sin(delta)

 cdlong = math.cos(delta)

 slat1 = math.sin(CurrLat1)

 clat1 = math.cos(CurrLat1)

 slat2 = math.sin(TarLat1)

 clat2 = math.cos(TarLat1)

 delta1 = (clat1 * slat2) - (slat1 * clat2 * cdlong)

 delta1 = math.pow(delta1,2)

 temp = clat2 * sdlong

 delta1 = delta1 + math.pow(temp,2)

 delta1 = math.sqrt(delta1)

 denom = (slat1 * slat2) + (clat1 * clat2 * cdlong)

 delta2 = math.atan2(delta1, denom)

 distanceToTarget = delta2 * 6372795

 #Now calculations for Target Heading

 dlon = TarLong1-CurrLong1

 a1 = math.sin(dlon) * math.cos(TarLat1)

 a2 = math.sin(CurrLat1) * math.cos(TarLat1) * math.cos(dlon)

 a2 = math.cos(CurrLat1) * math.sin(TarLat1) - a2

 a2 = math.atan2(a1, a2)

 if a2 < 0.0:

 a2 = a2 + (2*math.pi)

 targetHeading = math.degrees(a2)

 #Calculate heading error for PID controller

 headingerror = targetHeading - curr_hdng_deg

 # adjust for compass wrap

 if headingerror < -180:

 headingerror = headingerror+360

 if headingerror > 180:

 headingerror = headingerror-360

 # Steering system PID controller

 p_gain = (headingerror*0.4)

 integral = integral + headingerror*looptime

 i_gain = 0.001*integral

 # i_gain=0

 total_gain=p_gain+i_gain

 if distanceToTarget > WAYPOINT_DIST_TOLERANCE:

 if abs(headingerror) <= HEADING_TOLERANCE:

66

 steering_angle=0 # -30 Degrees is extreme left and +30 degrees is

extreme right

 ser_dc==(0.1667*steering_angle)+26.2

 else:

 steering_angle = steering_angle + ((total_gain))

 ser_dc==(0.1667*steering_angle)+26.2

 # Logic to Saturate the duty cycle within operating range

 #21 being extreme left and 31 being extreme right # If heading error is

negative turn servo to left and vice versa

 if ser_dc<=21:

 ser_dc = 21

 if ser_dc>=31:

 ser_dc = 31

 PWM.set_duty_cycle(ser_pin,float(ser_dc))

 time.sleep(0.1)

 elif distanceToTarget <= WAYPOINT_DIST_TOLERANCE:

 PWM.set_duty_cycle(esc_pin,float(dc_stop))

 time.sleep(3)

 i=i+1

 #Calculation of loop-time

 t2=time.time()

 looptime=t2-t1

 # Write to file

 f.write("%0.2f %0.1f %0.8f %0.8f %0.8f %0.8f %0.2f %0.2f %0.2f %0.2f %0.2f

%0.4f %0.2f %0.2f %0.2f %0.2f %0.2f %0.2f\n"

%(looptime,i,x,y,TarLat[i],TarLong[i],curr_hdng_deg,targetHeading,headingerror,distan

ceToTarget,speed,yaw_rate,ax,ay,az,magx,magy,magz))

 # Monitor Emergency Stop Button Status

 newstatus=GPIO.input(start_button)

 if newstatus==0:

 GPIO.output(okled_pin, GPIO.HIGH)

 GPIO.output(runled_pin, GPIO.LOW)

 time.sleep(1)

 break

while True:

 PWM.set_duty_cycle(esc_pin,float(dc_stop))

 PWM.set_duty_cycle(ser_pin,float(26.2))

 PWM.stop(esc_pin)

 PWM.stop(ser_pin)

 PWM.cleanup()

 f.close()

67

9.2 Hardware Specifications

9.2.1 Controller Specification

Figure 9.2.1.1: Beaglebone Black Micro-Controller - https://beagleboard.org/black

Hardware Details:

• Processor: AM335x 1GHz ARM® Cortex-A8

• 512MB DDR3 RAM

• 4GB 8-bit eMMC on-board flash storage

• 3D graphics accelerator

• NEON floating-point accelerator

• 2x PRU 32-bit microcontrollers

• USB client for power & communications

• USB host

• Ethernet

• HDMI

• 2x 46 pin headers

Software Details:

• OS: Debian / Ubuntu

• Coding: C /C++ / Python

https://beagleboard.org/black
https://www.ti.com/product/am3358

68

9.2.2 Sensor Specifications

GPS – Global Positioning System

Figure 9.2.2.1: GPS - Garmin 18x - 5Hz - https://buy.garmin.com/en-

US/US/p/13195#overview

PHYSICAL CHARACTERISTICS

Size Φ 61mm , H=19.5mm

Weight 161.6 grams

ELECTRICAL CHARACTERISTICS

Input Voltage 4.0 – 5.5 V

Input Current 65mA @ 5.0V

Signal Output Levels Asynchronous Serial, RS 232

Supported Baud Rates 4800, 9600, 19200, 38400 bps

ENVIRONMENTAL CHARACTERISTICS

Operating Temperature -30°C to +80°C

Storage Temperature -40°C to +90°C

GPS PERFORMANCE

Reacquisition Time < 2 seconds

Update Rate 5 Hz

Accuracy: GPS Standard Positioning Service (SPS) < 15 mtrs. 95%

Accuracy: Wide Area Augmentation System (WAAS) < 3 mtrs. 95%

Table 9.2.2.1: GPS - Garmin 18x - 5Hz Specification -

http://static.garmin.com/pumac/GPS_18x_DoC.pdf

Commonly Used Output Data – Latitude, Longitude, Hemisphere, GPS Fix Type, No. of

Satellites, Speed

Output Type – NMEA Sentences or Binary Output

https://buy.garmin.com/en-US/US/p/13195#overview
https://buy.garmin.com/en-US/US/p/13195#overview
http://static.garmin.com/pumac/GPS_18x_DoC.pdf

69

IMU – Inertial Measurement Unit

Figure 9.2.2.2: IMU - Redshift Labs UM7 - https://www.redshiftlabs.com.au/sensors/um7

PHYSICAL CHARACTERISTICS

Dimensions 27mm x 26mm x 6.5mm

Weight 11 grams

ENVIRONMENTAL CHARACTERISTICS

Operating Temperature -40°C to +85°C

PERFORMANCE

Max. Binary Packet Output Rate 255 Hz.

Max. NMEA Packets Output Rate 100 Hz

HEADING SPECIFICATIONS

Static Accuracy – Pitch and Roll ± 1 Degree *

Dynamic Accuracy – Pitch and Roll ± 3 Degree *

Static Accuracy – Yaw or Current Heading ± 3 Degree *

Dynamic Accuracy – Yaw or Current Heading ± 5 Degree *

Repeatability 0.5 Degree *

Resolution < 0.01 Degree *

GYROSCOPE SPECIFICATIONS

Rate Noise Density 0.005 deg/s/rtHz *

Total RMS Noise 0.06 deg/s-rms *

Dynamic Range ± 2000 Deg/s

Non-Linearity 0.2%

ACCELEROMETER SPECIFICATIONS

Rate Noise Density 400 µg / rtHz *

Dynamic Range ± 8 g

https://www.redshiftlabs.com.au/sensors/um7

70

MAGNETOMETER SPECIFICATIONS

Initial Scale Factor Tolerance ± 4%

Initial Bias Tolerance ± 300 µT

Dynamic Range ± 1200 µT

ELECTRICAL SPECIFICATIONS

Input Voltage 5 V

Current Consumption 50mA @ 5V

Signal Output 3.3V TTL UART, 3.3V SPI

Default Baud rate 115200 bps

Table 9.2.2.2: IMU - Redshift Labs UM7 - Technical Specification -

https://www.redshiftlabs.com.au/files/index/download/id/1471348551/

* Data taken from catalog, actual parameters depend on installation and other operating

conditions. Always perform tests on sensors to analyze data before using it for

experimentation. Other specs. can be taken from the datasheet

Commonly Used Output Data – Euler Angles (Yaw), Gyro Data, Accelerometer Data

Output Type – NMEA Sentences or Binary Output

9.2.3 Test Vehicle Specification

Figure 9.2.3.1: Test Vehicle - https://www.horizonhobby.com/desert-buggy-xl-e--1-5th-

4wd-eletric-rtr---black-los05012t1

• Vehicle Type – 1/5 Scale RC Car, 4WD, Electric, 13.8 Kg. (30.5 lbs.), 844 x

501 x 308mm

• Motor – Non-Sensor Brushless Type, 800Kv, built in 160A Electronic Speed

Controller ESC, Motor Gear Ratio – 3.33:1

• Drivetrain – 4WD, Final Drive Ratio – 12.81 : 1

• Steering Servo – Torque: 30 kg-cm @ 6.0V

 Response: 0.27 Sec / 60 Degree (On Dirt)

https://www.redshiftlabs.com.au/files/index/download/id/1471348551/
https://www.horizonhobby.com/desert-buggy-xl-e--1-5th-4wd-eletric-rtr---black-los05012t1
https://www.horizonhobby.com/desert-buggy-xl-e--1-5th-4wd-eletric-rtr---black-los05012t1

	EFFECT OF SENSOR ERRORS ON AUTONOMOUS STEERING CONTROL AND APPLICATION OF SENSOR FUSION FOR ROBUST NAVIGATION
	Recommended Citation

	Michigan Tech Report Template

