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Abstract 

Biomass burning aerosols are highly complex organic mixtures of thousands of 

components with consequences for global climate. Complex mixture component 

identification requires accurate mass measurement capability to separate components on a 

milli-Dalton scale, frequently using ultrahigh resolution mass spectrometry with 

electrospray ionization. Certain sample preparations and the ionization process may 

introduce artifacts that obscure the composition of the sample. Two method considerations 

were explored using isotopically labeled 15NH4OH and MeOH-d3 to track artifact 

formation in biomass burning samples. Informatics techniques and a custom molecular 

formula assignment software were used to identify the isotopic atoms in artifact products. 

Sample preparation with NH4OH was found to significantly alter the detected complex 

mixture composition, potentially by NH4
+ adduction and by reactions between NH3 and 

carbonyls. Solvation in MeOH likely induced artifact formation by converting carbonyls 

to esters and acetals/hemiacetals for non-aromatic species. In addition, Hydrogen-

Deuterium exchange using MeOH-d1 was studied to infer the presence of amino and 

hydroxyl groups, and estimate the number of carboxyl functional groups. The results have 

important implications for ultrahigh resolution mass spectrometry analyses of complex 

environmental samples and their labile H content. 
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1 Introduction 

1.1 Atmospheric Aerosol 

Atmospheric aerosols are widely accepted as significant contributors to the earth’s 

changing climate (IPCC 2014, Shiraiwa et al. 2017). These small particles are typically 

aggregates of organic or inorganic molecules that enter the atmosphere through various 

means, such as industrial coal burning, sand and dust erosion, and biomass burning (e.g. 

forest fires) (Remer and Kaufman 1998; IPCC 2014; Cohen et al. 2017). Biomass 

burning is considered to be one of the largest contributors of particulate carbon in the 

atmosphere and is becoming more severe due to increases in the number and severity of 

burning events in the last few decades (Westerling et al. 2006). Thus, it is very important 

to understand how biomass burning organic aerosol specifically contributes to the global 

radiative budget. 

Understanding the effect of aerosol on climate requires thorough analysis of its 

composition. However, aerosol samples are highly complex mixtures potentially 

consisting of thousands of unique constituents that make their analyses challenging 

(Mazzoleni et al. 2010; Mazzoleni et al 2012). Frequently the analyses tend to be sample 

limited due to the relatively small volumes of aerosol collected during campaigns due to a 

competing interest for diurnal study. Therefore, an abundant, affordable surrogate 

material is desirable to optimize method development with respect to accurate species 

detection before applying the method to an obtained sample. Although there is no 

universal standard for conducting aerosol analysis, there have been attempts to use 

similarly complex mixtures for method development. One such mixture is Suwanee River 
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Fulvic Acid (SRFA), an aqueous organic matter sample originally considered important 

due to early studies indicating its similarity to aerosol organic matter (Decesari et al. 

2003; Perdue 2013). This similarity is likely due to the influence of plant matter (e.g. 

lignin decomposition products), but there are significant differences due to terpene 

oxidation products in aerosol organic matter (Mazzoleni et al. 2012). 

A suitable alternative to SRFA to represent biomass burning aerosol is liquid 

smoke and can be used for method development experiments. Liquid smoke is a food 

additive prepared using a low temperature burning method to produce smoke from 

various wood types (mesquite, hickory). The smoke is captured and concentrated in water 

(B&G Foods, Inc. 2019; Montazeri et al.2012). Since liquid smoke is a product of wood 

burning, it is expected to contain biomass combustion species such as lignin and cellulose 

degradation products like phenols. Thus, liquid smoke is a suitable surrogate for biomass 

burning samples, and is the sample used herein for method development and evaluation 

of the potential for method artifacts. In addition, its aqueous nature makes it easier to 

work with than ambient aerosol samples. 

1.2 Ultrahigh Resolution Mass Spectrometry 

To understand the detailed compositions of complex organic mixtures, it is 

necessary to use instrumentation that can separate components as much as possible. 

Complex mixtures, including liquid smoke and atmospheric aerosol, can contain 

thousands of unique molecular formulas (Brege et al. 2018). For this reason, ultrahigh 

resolution mass spectrometry (UHRMS) is commonly used. Ultrahigh resolution mass 
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spectrometers are instruments that separate ions based on their mass to charge ratio (m/z) 

for exact measurement. In contrast, low resolution mass spectrometers measure 

components with accuracy of approximately one nominal mass unit and ultrahigh 

resolution mass spectrometers separate masses with high decimal (mDa) precision. This 

makes it possible to differentiate ions within the same nominal mass. For example, the 

ions C3H5O+ and C4H9
+ are both nominally m/z 57. However, using a high-resolution 

mass spectrometer, these two ions would yield two separate signals at m/z 57.07043 and 

m/z 57.03404 m/z. The two species have a mass difference of 0.03639 Da, or 90 ppm 

(Hoffmann 2005). Exact mass measurements with less than 3 ppm error can be used to 

determine the molecular formula (MF) of an unknown ion.  

Mass resolving power defines the separation capability of a mass analyzer. The 

ultrahigh resolution Orbitrap Elite MS is capable of analyzing ions at a resolving power 

of 240,000 at m/z 400. There are two electrodes in the Orbitrap Elite mass analyzer. The 

inner electrode is spindle-shaped and the outer electrode is bell-shaped. The shape of the 

electrodes provides a higher electrical potential at the poles and a lower electrical 

potential in the center making it highly effective at separating minute differences in m/z. 

This potential separates packets of ions by the amount of time required for the ions to 

move back and forth along the length of the electrode (Michalski et al. 2012). The ion 

signal is recorded as an image current in the time domain, and then a Fourier 

transformation is applied to convert the time domain signal to an m/z value where mDa 

differences (< 1 ppm) can be resolved. For example, the difference between C3 and SH4 

(3.4 mDa, or 0.85 ppm at m/z 400) can be detected with the Orbitrap Elite. However, 
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ultrahigh resolution cannot separate structural isomers, as they have the same exact mass. 

Structural characterization is a continuing challenge in mass spectrometry (Ramanathan 

et al. 1998; Yasmeen et al. 2011; Isaacman et al. 2012). 

1.3 Electrospray Ionization 

Ionization is one of the most important aspects to analyzing compounds with mass 

spectrometry and methods can be hard or soft. Electron ionization, for example, is often 

too energetic to preserve the analyte structures, and therefore is not suitable for analyzing 

complex mixtures, as the fragmentation would further complicate the mass spectra. Thus, 

softer ionization methods with little to no fragmentation are preferred. One common 

ionization process is known as electrospray ionization (ESI), which is known for its 

versatility in analyzing a wide variety of analytes. (Fenn et al. 1989; Smith et al. 1990; 

Kujawinski et al. 2002). ESI is an electrochemical process that produces gas-phase ions 

by desolvation. Samples are ionized in solution using a strong 2-5 kV power supply 

connected to the spray needle, where oxidation or reduction occurs. At the opposite end 

of the atmospheric pressure compartment, reduction or oxidation takes place at the 

oppositely charged plate, which has an aperture that guides ions into the mass 

spectrometer. A potential difference acts to pull solvated positive or negative charges 

away from the tip of the spray needle. This creates a cone-like shape at the tip known as a 

Taylor cone. When the solution at the end of the Taylor cone overcomes its surface 

tension a plume of solvent droplets with excess positive or negative charge is created. 

These charges reside on the surface of the droplets to minimize electrostatic repulsion. As 
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the solvent evaporates from the droplet the excess positive charges are brought closer 

together until the Rayleigh limit is reached (Taflin et al. 1989). The charge repulsion then 

overcomes the surface tension and forms a series of smaller droplets. This process 

continues until the solvent has evaporated, leaving behind individual gas-phase ions. 

These ions (e. g. [M + H]+ or [M - H]-) then enter the mass spectrometer for analysis. 

A stable electrospray plume is necessary in order to maximize the signal obtained 

from the ESI process. This can be optimized by modifying several parameters which can 

be adjusted based on the sample. The ability for analytes to desolvate is perhaps most 

important and can be modified with several different parameters, such as a drying sheath 

gas (N2), flow rate, and heat. The sample solvents also play a large role. Most ESI 

analyses utilize some combination of organic solvent and water, although the percentages 

can vary based on the sample composition and other parameters (Cech and Enke 2001a; 

Henriksen et al. 2005; Flerus et al. 2011; Novotny et al 2014). High percentages of 

organic solvent are desirable to increase the rate of desolvation. Typical solvents for 

electrospray are methanol (MeOH) and acetonitrile (ACN), which are used due to their 

small size, volatility, and moderate polarity. This makes them suitable for solvating many 

varieties of analytes while being easily evaporated (Liigand et al. 2014). Some percentage 

of water is also necessary for a stable electrospray, as its high surface tension facilitates 

the formation of a Taylor cone. It also contributes to the reduction-oxidation process for 

excess charge. However, too much water can become too difficult to desolvate and 

greatly reduce the signal (Henriksen et al. 2005). Thus, there is a fine balance that must 

exist between organic and aqueous solvent percentages. 
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 Small, weak acids or their conjugate bases can also be added to the solvent to 

enhance ionization. These species can ionize efficiently and enhance the conductivity of 

the solution, improving the ionization of analytes and the overall electrospray stability 

(Cech and Enke 2001b). Acetic and formic acid and their conjugates have been 

frequently used for this purpose. The acid or salt used depends on the sample 

composition and the electrospray polarity. 

The two electrospray polarities, positive and negative mode, ionize species 

differently and thus can be used to obtain knowledge on different species in a sample 

(Lin et al. 2018). In the negative mode, the analyte species are ionized via deprotonation 

and thus analytes must have labile protons that can be abstracted from the analyte. These 

are typically acidic species such as carboxylic acids, although it has been shown that the 

ESI response is not entirely dependent on pKa, but on analyte hydrophobicity as well due 

to easier desolvation (Henriksen et al. 2005). Thus, the negative ion mode is used 

primarily to obtain information on acidic species containing C, H, and O atoms (CHO 

species), as well as on oxidized N or S species. Conversely, positive electrospray ionizes 

species by cation adduction. Cations can include H+, alkali metal ions such as Na+ or K+, 

or polyatomic cations such as NH4
+, making positive mode analyses more difficult. Na+ 

adducts are very common in positive ESI, and are problematic because they further 

complicate the analysis of complex mixtures. Na+ adducts have been shown to be present 

more frequently in O-containing compounds than in N-containing compounds (Kruve et 

al. 2013). NH4
+ adducts are understood less than others due to a limited number of 

detailed studies although these adducts are highly relevant to atmospheric analyses 



7 

because of the prevalence of sulfate (Galloway et al. 2009; Lin et al. 2015; Hawkins et al. 

2018). However, results herein offer some evidence that NH4
+ adducts and reaction 

artifacts may also occur in some sample preparation conditions (See Chapter 3). 

Regardless of the adduct formation considerations, positive ESI is a reliable ionization 

method for basic analytes such as amines or other reduced N-containing species (CHNO) 

(Reemtsma et al. 2006; Ehrmann et al. 2008). 

Analyte deprotonation and adduct formation can be used to ionize a wide range of 

molecules. However, unfunctionalized molecules such as polycyclic aromatic 

hydrocarbons or alkanes are not suitable, as they are highly resistant to being ionized 

since ESI produces even electron species. Other ionization methods, such as atmospheric 

pressure photoionization (APPI), may be better suited for these analytes due to different 

ionization pathways (Purcell et al. 2007). The studies contained in this thesis, however, 

focus solely on species detected using ESI with the knowledge that other species may be 

present but are undetected. 

1.4 Data Analysis of Complex Mixtures – Mass Spectrometry 
Informatics 

Once ions have been created and mass spectrometric information has been 

collected and exported as a mass list, the data needs extensive post processing to 

determine the identities of the masses. It is desired to assign MF to each ion based on 

their exact mass values to understand the composition of the sample, such as fatty acid 

recalibrants (Sleighter et al). However, it is impractical to manually assign MF to each 

detected ion within a complex mixture due to the large number of ions. As a result, 
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computational and data science techniques are utilized to interpret ultrahigh resolution 

mass spectra of complex mixtures, assign MF to those ions, and understand the nature 

and characteristics of those MF and subsequently the complex sample. 

In this data-science driven approach, several steps are required to ensure the 

detected ions are assigned accurate MF for further analysis. Although the details in each 

step vary among programs and methods, the core of each method is relatively similar. 

First, it is necessary to recalibrate the mass list (Sleighter et al. 2008) by selecting 

preliminary MF within the sample. Mass measurement error is inevitable in any 

electronic instrument due to noise and electronic drift (Wu and McAllister 2003; 

Makarov et al. 2006; Brenton and Godfrey 2010). For example, in ultrahigh resolution 

mass spectrometry, higher m/z ions tend to have higher error due to the reduced mass 

resolution and tend to have a larger number of possible formulas (Ohno and Ohno 2013). 

Mass recalibration is done to minimize the overall mass error. This is done by using 

measured masses present in the sample. If the sample does not have a known set of 

masses, recalibration is performed by selecting a set of the most reliable ions in the mass 

spectrum, typically common CHO MF for biomass burning-like complex mixtures, or 

known hydrocarbons in petroleum-based samples (Sleighter et al. 2008; Kozhinov et al. 

2013). The recalibration process greatly increases the reliability of MF assignments. 

Molecular formula assignment is then performed on the recalibrated masses to 

assign the most reliable formula or formulas. This process becomes increasingly 

complicated at higher m/z values, where there can be several theoretically plausible MF 

for one given mass. Allowing multiple heteroatoms increases the number of possible MF, 
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as does more isotopes, though has not been thoroughly explored (Koch et al. 2007; Ohno 

and Ohno 2013). When multiple plausible MF are possible they are defined as 

“ambiguous formulas,” (Schum et al. 2019) and present a key challenge to the data 

interpretation (See Section 2.3.2). Although approaches to reducing MF ambiguity differ 

between methods, programs, and samples, a common goal is to remove chemically 

unreasonable formulas. The plausibility of formulas is based on various measures, such 

as atomic valence, double bond equivalents (DBE), and the number of heteroatoms (Kind 

and Fiehn 2007; Ohno and Ohno 2013; Schum 2019). In addition, complex mixtures 

resulting from one common source are generally composed of groups of molecular 

formulas that are linked through base molecular units. For example, in biomass burning 

samples, it is expected that there will be a wide range of compounds with the same 

number of O, but that differ by some number of methylene (-CH2-) groups (Kendrick 

1963; Stenson et al. 2003; Smith et al. 2009). This is an additional quality assurance (QA) 

step than can be used to simplify the data and ensure MF accuracy (Schum 2019). 

MF assignment software, such as Composer64 (Sierra Analytics), have various 

methods for assigning MF to ultrahigh resolution mass spectra and reducing ambiguity 

(Stanz 2015, Gavard et al. 2017). Composer64 reduces ambiguity by selecting the most 

hydrocarbon-like MF, although the parameters for MF assignment are relatively flexible 

and customizable. The software is reliable for most applications, but is limited with 

respect to isotope assignments and transparent ambiguity decisions. Methods for 

performing MF assignment, choosing the most likely MF, and removing unlikely 

assignments are also poorly understood or not public knowledge. This can make some 
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assignments difficult to justify or improve. In addition, these programs typically require 

specific licensing agreements. 

Due to the aforementioned reasons, a new method for molecular formula 

assignment was developed by Schum (2019). The newly designed molecular assignment 

software, MFAssignR, is available via GitHub (Schum et al. 2019). MFAssignR was 

written in R with customizable and transparent methods for MF assignment with full 

ambiguity. The functions perform a semi-automatic recalibration and assign MF to ions 

with the ability to report all chemically reasonable ambiguous MF assignments. The latter 

capability makes it suitable for isotope assignments, which is important in the scope of 

this work; MFAssignR is capable of assigning MF with 13C, 34S, 15N, and D. Due to this 

versatility, MFAssignR was the method of molecular formula assignment used in this 

work and the primary method of recalibration alongside Composer64. 

Assigned MF can be interpreted using functions within RStudio as well through 

data manipulation and extraction functions (Wickham 2016). Since data sets from the 

ultrahigh resolution MS of complex mixtures and their assigned MF are quite large 

(upwards of 5000 assigned MF with nearly 50 descriptor variables), extensive data 

science is required to provide appropriate molecular insight, which can be defined as 

‘Mass Spectrometry Informatics’. 
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1.5 Interpretation of Electrospray Ionization-Ultrahigh 
Resolution Mass Spectra and Sample Preparation 
Considerations 

With the highly complicated composition of organic mixtures, it is difficult to 

ensure analytes are properly characterized, even when using ultrahigh resolution mass 

spectrometry to separate compounds nearly identical in mass. In order to properly 

analyze and identify individual components in complex organic mixtures, it is 

exceedingly important that samples are prepared in ways that reliably extract these 

components with as little interference as possible. There are many important factors that 

can enhance analytical accuracy and reliability, including solvent factors (e.g. amount of 

organic solvent, acidity), instrumental parameters (e.g. electrospray temperature, 

voltage), and sample preparation techniques (e.g. collection and extraction methods). 

These factors are not universal, and vary based on the sample type and source. 

ESI in particular is of great interest due to the nature of the ionization process. 

Knowledge of how the ESI-MS sample analysis process affects analyte ions is somewhat 

limited due to an incomplete understanding of how the excess charge in the solution may 

introduce harsh conditions for the sample ions (Zhou et al. 2002). It is theorized that the 

pH of the solution changes drastically during the electrospray process and these effects 

have been linked to accretion interactions among protein molecules and solvents 

(Hossain and Konermann 2006). However, less is known about how ESI may force 

interactions between solvent molecules and smaller organic analytes in complex mixtures 

to create artifacts or if artifacts are arise from sample preparation methods. In either case, 



12 

due to the extensive complexity of these mixtures, it is difficult to interpret the mass 

spectra and determine the effects without the MS informatics tools previously mentioned. 

Since there are several methods that are widely utilized for the ESI-MS analysis 

of aerosols and complex mixtures such as solid-phase extraction and solvation in 

methanol, it is important to know how or if these methods impact the sample 

composition. Knowledge of these interactions, such as the exchange rate of labile protons 

in sample components, can also be used alongside data science methods to better 

understand the sample components. In addition, it is beneficial to know how or if the 

electrospray process drives any of these interactions. Ultimately, the purpose of this work 

is to offer considerations into how different methods of sample preparation may impact 

the analyses of complex organic mixtures and identification of their components. The 

steps to doing so are threefold: 1) Understand the extent to which hydrogen-deuterium 

exchange (HDX) occurs in MeOH-d1 solvent, and use it to characterize labile H in liquid 

smoke species; 2) Investigate the extent to which MeOH artifacts are formed in liquid 

smoke during either the sample preparation or electrospray processes when added as the 

solvent; and 3) Investigate the extent of NH4OH artifact or adduct formation during solid-

phase extraction (SPE) of liquid smoke. The three aforementioned goals are described in 

detail in the following sections. 
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1.5.1 Extent of Hydrogen Deuterium Exchange as a Potential Indicator of 
Functional Group Composition 

Given the variable nature of complex organic mixtures, it can be challenging to 

confirm the presence of particular functional groups or structural moieties without 

performing additional experiments. Assigning a molecular formula reveals little to no 

information about the types of bonds in the molecule, and may be composed of different 

isomers (Ramanathan et al. 1998; Yasmeen et al. 2011; Isaacman et al. 2012; Zark et al. 

2017). However, functional groups with labile hydrogen atoms (i.e. hydroxyls, carboxyls, 

and amines) may be discerned via hydrogen exchange. In the presence of a labile 

deuterated solvent, such as D2O or MeOH-d1, acidic hydrogens within a sample can be 

replaced by deuterium, known as hydrogen-deuterium exchange (HDX).  

This phenomenon occurs readily with non-deuterated solvents, but is not 

detectable since there is no change in the molecular characteristics. With deuterium, the 

occurrence of exchange can be detected by measuring changes in mass after deuterium 

has been introduced. Specifically, if one HDX occurs, the new compound will have a 

mass increase of 1.006277 Da. Ultrahigh resolution mass spectrometry and data science 

techniques are useful tools for studying the extent of HDX for complex mixtures, because 

they provide exact mass measurements and interpretation of those measurements. 

HDX has been used in mass spectrometric analyses to a somewhat limited extent. 

The majority of the literature on HDX is focused on protein analysis, because it can be 

used to study protein conformations (Yan and Maier 2009; Oganesyan 2018; 

Kostyukevich et al. 2018). Kostyukevich et al. reported two studies on the use of HDX in 
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complex mixture analysis (Kostyukevich et al. 2013; Kostyukevich, Kononikhin, Popov, 

& Nikolaev, 2013), using Fourier-transform ion cyclotron resonance (FT-ICR) MS data 

as well as both deuterated solvents and a deuterated atmosphere. The benefit of using a 

deuterated atmosphere was that it ensured the maximum possible depth of HDX, that is, 

every labile H in a molecule could be exchanged. However, this technique requires 

knowledge of the mixture components of the mixture to generate molecular formulas. 

Conversely, the use of a deuterated solvent has a low depth and cannot relay information 

on the total number of labile hydrogens in a molecule due to the rapid back-exchange of 

deuterated molecules with water in the gas phase in ESI (Kostyukevich et al. 2013). 

However, the low depth virtually ensures the non-deuterated molecule will be detectable 

and can make it simpler to ensure correct formulas with an automatic formula assignment 

software without requiring knowledge of sample components. 

To the extent of our knowledge, there is little in the literature regarding the use of 

HDX as a technique to summarize the potential functional group composition of a 

complex organic mixture. One study by Stenson et al. (2014) used HDX to differentiate 

isomers in different ion-molecule reaction experiments using SRFA. Kostyukevich et al. 

(2013) differentiated between exchangeable and non-exchangeable O-containing groups 

based on their deuterated atmosphere technique, but they did not distinguish between 

carboxyls and hydroxyls, and they did not study other molecular parameters such as 

double bond equivalents (DBE) that could relate to the number of carboxyl groups. In 

addition, there is little knowledge regarding the molecular characteristics of liquid smoke. 

The goal of this investigation was to investigate the probable extent to which hydrogen-
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deuterium exchange (HDX) occurs when liquid smoke is solvated in hydroxyl-deuterated 

MeOH (MeOH-d1) using ultrahigh resolution MS, and determine if it can be used to 

highlight certain compounds and/or functional groups present in a sample.  

1.5.2 Solid Phase Extraction and Ammonium Artifacts 

One of the ubiquitous concerns of preparing any complex environmental sample 

is ensuring that a representative set of species are collected and analyzed. Given the 

broad ranges of compounds, it is nearly impossible to attain a complete representation of 

the sample. For example, a majority of compounds in mesquite liquid smoke (MLS) are 

water soluble, but there are also some species that require less polar solvents and 

different ionization methods despite the versatility of ESI-MS. Even among the water 

soluble components, there is a wide range of sizes, polarities, and elemental compositions 

that can make analysis difficult. 

The aerosol chemistry community has attempted to mitigate this difficulty via 

many different routes. One such method is to prepare and solvate samples using a solid 

phase extraction (SPE) technique (Lin et al 2012). This chromatography technique 

separates components using a compact SPE cartridge based on differences in interaction 

between the mobile and stationary phases. Similar to column chromatography, complex 

mixtures can separated using different SPE elution conditions. After extracting 

components from a sample filter and washing away aqueous salts that can interfere with 

the electrospray process, a small amount HCl is added to load the sample to neutralize 

organic anions and enhance their retention. Then organic material bound to the SPE 

stationary phase is washed off with an organic/aqueous solvent mix such as MeOH (L1) 
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then a small amount (0.3%) of NH4OH in elution 2 (L2). The ammonium hydroxide is 

used to recover less soluble species that are more strongly bound to the stationary phase. 

Although this procedure was proven to be effective for recovering a large amount 

organic material (Lin et al. 2012), there is a concern that ammonium in the SPE mobile 

phase interacts with sample analytes. Two potential interactions that may occur. First, 

residual NH4
+ may adduct to analytes during the ESI process, much like H+ or Na+. This 

may yield incorrect molecular formula assignments. Second, NH3, which is in 

equilibrium with NH4
+, may react with carbonyl compounds through addition or 

elimination reactions to form amines, imines, or imidazoles. It has been shown previously 

that the presence of NH3 in the atmosphere can form imine or imidazole-based artifacts 

within aerosol (Galloway et al 2009; De Haan et al. 2011; Teich et al. 2016; Hawkins et 

al. 2018) but this reactivity has not been well characterized for the SPE process. The 

reactive artifact is of particular concern because it both alters the molecular structure and 

composition of complex samples, as well as artificially introduces N. 

If these reactive artifacts occur from the addition of NH4OH to samples, the 

presence of acid could either accentuate or dampen the reaction process depending on 

how it interacts with species in solution. If the pH is low enough, the equilibrium shifts to 

favor the presence of NH4
+, making it inert as a nucleophile. However, if the acid 

interacts with the carbonyl, it could increase the electrophilicity of the carbonyl carbon 

and promote a reaction with the NH3 (Reusch 1999). The reaction pathway depends on 

the type of carbonyl. NH3 could react with ketones or aldehydes to form a hemiacetal 

then an acetal, or it could react with esters to form amides.  
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The purpose of this investigation was to characterize and quantify the extent of 

adduct or reaction artifact formation from the second elution mobile phase used in the 

SPE process with mesquite and hickory liquid smoke as test samples. This was done by 

analyzing both liquid smoke samples with regular and 15N-labeled ammonium hydroxide. 

This study has important implications for the accurate identification of components in 

complex organic mixtures. 

1.5.3 Reactive Artifacts with the Use of Methanol as a Solvent 

The solvent choice for ESI analysis is exceedingly important for accurate 

identification of complex sample components. Since analytes must be solvated for the 

ESI process, the solvent must have a balance of solvating a vast range of analytes and 

being sufficiently volatile to be removed. One such solvent is MeOH, which has been 

shown in several experiments to result in a more stable electrospray and thus an overall 

higher response compared to other common solvents such as acetonitrile (Cech and Enke 

2001; Henriksen et al. 2005). 

 Despite this, some concern has been raised with regard to its reactivity. Since 

MeOH is a small alcohol, given properly acidic or basic conditions, it could potentially 

interact with polar functional groups such as carbonyls (Reusch 1999). In one case, 

Bateman et al. (2008) observed severe MeOH-induced artifacts in limonene SOA formed 

by esterification and acetal/hemiacetal reactions between MeOH and carbonyls (Bateman 

et al. 2008). McIntyre et al. reached similar conclusions with various humic substances 

(McIntyre et al. 2002).  Other groups, such as Novotny et al. (2014), have shown that 

although these reactions exist to an extent, they do not significantly change the 
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composition of the sample. Although these reactions require sufficiently acidic conditions 

to occur, the reactions may occur within the sample itself. This could occur due to the 

large presence of carboxylic groups in complex organic matter, especially for oxidized 

aerosols (Heald et al. 2010; Ng et al. 2011; Zark et al. 2017). However, MLS is also rich 

in aromatic functional groups. Solvent interactions may be reduced in liquid smoke as the 

aromatic groups can stabilize adjacent carbonyls and reduce their reactivity. 

 The purpose of this investigation was to determine the extent of reaction artifact 

formation in mesquite liquid smoke (MLS) when using MeOH as a solvent. To do so, 

MLS was analyzed in both regular MeOH and MeOH-d3 to refine the MF list and their 

potential reactive precursors. Reactions studied were based on those proposed in Bateman 

et al., where precursors for esterification and acetal/hemiacetal reactions were located. 

This study has implications for the molecular characterization of complex organic 

mixtures with unknown analytes that may be susceptible to these reactions. 

1.6 Thesis Structure 

Each of the above-mentioned investigations are presented in separate chapters. The 

current chapter (Chapter 1) provides background information on the importance of 

complex mixtures, as well as the importance of method considerations used to measure 

and characterize them, such as the use of liquid smoke as a test sample. Chapter 2 details 

the specific materials and methods used to measure and analyze each of the 

aforementioned goals. This will include sample preparations and liquid smoke extraction 
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methods, instrumentation, and software parameters utilized for molecular formula 

assignment and data analysis. 

 Chapter 3 details an application of MS informatics, where hydrogen-deuterium 

exchanges in liquid smoke are observed and characterized. This chapter focuses less on 

artifact formation and more on how deep analysis of HDX could potentially offer insight 

into molecular functional groups or characteristics in mesquite liquid smoke sample 

components. 

Chapter 4 investigates the possibility of creating reaction artifacts or electrospray 

adducts in liquid smoke samples with NH4OH. Positive and negative ions in two different 

liquid smoke samples will be analyzed to study the likelihood and severity of NH3 

reactions or NH4
+ adducts on certain molecular formulas. 

 Chapter 5 investigates the likelihood for methanol to interact with mesquite liquid 

smoke as a reaction artifact using analyses and methods similar to that of the 

ammonia/ammonium artifact. The general goal of this chapter is to determine which 

reactions are most likely with which MF, and how extensive these reactions are. 

Chapter 6 describes the major conclusions and implications of each of the 

investigations in terms of sample preparation and analysis of complex organic mixtures. 

Potential ideas for future analyses will also be offered as the next steps to deepening the 

molecular understanding of these interactions. 
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2 Materials and Methods 

2.1 Sample Preparation 

Except where noted, all samples used in these studies were Wright’s brand 

mesquite liquid smoke (MLS) or hickory liquid smoke (HLS), commercial smoke 

additives for food. They are water-concentrated products of wood-burning that are 

composed of thermally degraded lignin and cellulose derivatives (Montazeri et al. 2013, 

B&G Foods, Inc. 2019). Liquid smoke is an inexpensive surrogate for biomass burning 

samples useful for aerosol sample method development. 

2.1.1 Hydrogen-Deuterium Exchange Sample Preparation 

2.1.1.1 Acid Mix Sample Preparation 

To understand the general mechanism for HDX in negative ESI, a mixture of four 

acids were prepared in both regular MeOH (control sample) and MeOH-d1 (MeOH with a 

deuterated hydroxyl group).  The standard compounds tested were vanillic acid (C8H8O4 

– one aromatic COOH group and one aromatic OH group), suberic acid (C8H14O4 - two 

aliphatic COOH groups), citric acid (C6H8O7 – three aliphatic COOH groups and one OH 

group), and polyacrylic acid (PAA, (C3H4O2)n with –COOH groups). Vanillic acid, 

suberic acid, and citric acid were selected based on both availability and structural 

variety. Specifically, vanillic acid is biomass burning relevant, and was used to 

investigate the impact of aromaticity on the rate of HDX. PAA was chosen to investigate 

the extent of HDX for polycarboxylic species. The “acid mix” solution was prepared by 

solvating each standard in 90:10 H2O:ACN at a concentration of approximately 1000 
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ng/µL, sonicating as necessary. 1000 µL of each standard dilution was then added to a 

single vial and mixed, then diluted with either regular MeOH or MeOH-d1 to 

concentrations of approximately 100 ng/µL for each component to make them suitable 

for injection. Samples were placed in the freezer overnight until analysis could be 

completed. 

2.1.1.2 Mesquite Liquid Smoke Sample Preparation 

Two samples of MLS were prepared by filtering insoluble material and diluting it 

100-fold into regular methanol and MeOH-d1 to make concentrations suitable for the 

instrument without further dilution. Samples were stored in a freezer when not being 

analyzed. 

2.1.2 NH4OH Sample Preparation 

Two samples of MLS and HLS each were prepared by diluting 1.0 mL of MLS or 

HLS respectively with 5 mL of LC-MS grade water. Both liquid smoke samples were a 

concentrated yellow-brown color. In addition, two lab blanks were made using 6 mL LC-

MS water. All 6 jars were mixed on a shake table at 60 rpm for 2 hours to extract them. 

Each sample was filtered with polytetrafluoroethylene (PTFE) filters to remove insoluble 

material from the liquid smoke that may have interfered with ESI-MS analysis. All LS 

samples left some brown material in the filters, indicating a significant amount of 

insoluble material present in the samples. The filtrate from each of these samples was 

refrigerated overnight. 
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 Each sample and blank was acidified with 54 µL of 1.0M HCl in preparation for 

SPE. In addition, solutions of NH4OH were prepared. The regular NH4OH solution was 

prepared by diluting 30% NH4OH into MeOH in a 1:100 (v/v) ratio, while the 15NH4OH 

solution was prepared by diluting 3N (~10%) 15NH4OH into MeOH in a 3:100 (v/v) ratio. 

 SPE was then performed on each sample and blank using Oasis HLB SPE 

cartridges. The columns were conditioned with 3 mL MeOH and 3 mL H2O (each LC-

MS grade) and the first elution was performed with previously prepared 90:10 

MeOH:H2O for all samples and collected. The second elution was then performed using 

either regular or 15N-labeled NH4OH and collected separately. 

 Each sample elution was then blown down with N2 gas to exchange the MeOH 

solvent to ACN (See Chapter 5), where samples were transferred to other vials and 

enough ACN was ultimately added to reach a final sample volume of 2 mL. Some brown 

residue was left on some sample vials, so these were rinsed with 200 µL of ACN and 

transferred again to vials before bringing the volume to 2 mL. Each sample and elution 

was then prepared for Orbitrap analysis by diluting 10-fold with ACN. The analysis was 

either done as is or with 1 µL (0.1%) of 90% formic acid (FA). 

 In addition, samples without SPE were prepared with MLS to investigate the 

effect of pH on the NH4OH artifacts. These were prepared in a similar way to the SPE 

samples, except they were extracted directly in ACN, and the NH4OH was added directly 

following this step in lieu of SPE to facilitate any adduct or reaction formation. Lab 
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blanks using water instead of MLS were also prepared. Each sample was then prepared 

for Orbitrap analysis by diluting 10-fold and adding 0%, 0.5%, or 0.1% FA.  

2.1.3 Methanol Artifact Sample Preparation 

Samples of MLS were prepared by filtering, then diluting MLS 100-fold into 

different methanol isotopes. For the purposes of this work, these will be denoted as 

MeOH or “control sample” (regular, LC-MS grade methanol) and MeOH-d3 (methanol 

with the three deuterium isotopes on the methyl group). Samples were diluted at the 

instrument if necessary to make concentrations suitable for analysis and were placed in 

the freezer when not being analyzed. 

2.2 Ultrahigh Resolution Orbitrap Elite Mass Spectrometry 
Analysis 

All data collection was performed using an ultrahigh resolution Orbitrap Elite 

hybrid mass spectrometer (Thermo Scientific) at the Michigan Technological University 

Chemical Advanced Resolution Methods (ChARM) laboratory. The instrument was 

tuned with an external calibration solution for mass accuracy each day prior to analysis. 

Data was collected with a resolving power of 240,000 using either positive or negative 

electrospray ionization (ESI) within the Xcalibur software (Thermo Scientific). Samples 

were injected directly into the instrument with a 250 µL syringe until a stable 

electrospray was achieved. 

Mass spectra for the acid mix were obtained in negative ESI mode due to their 

acidity, making them highly susceptible to deprotonation. Positive mode was not studied. 
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Four total spectra were obtained. Two spectra for each solvent (Regular MeOH and 

MeOH-d1) were collected, one with a scan range of m/z 100-800 and one with a scan 

range of m/z 100-2000.The higher scan range was obtained to analyze the HDX 

capabilities of various lengths of the PAA. 100 scans with spectrum averaging were 

collected using tune parameters that optimized the electrospray signal.  

All liquid smoke mass spectra were studied using positive and negative ESI with 

optimized tuning parameters after reaching a stable electrospray. 200 scans over the 

range of m/z 100-800 were collected with spectral averaging. 

2.3 Data Processing and Molecular Formula Assignment for 
Liquid Smoke Samples 

For the HDX and MeOH artifact studies (Chapters 3 and 5), all liquid smoke 

sample masses were initially recalibrated using the Composer64 software (Sierra 

Analytics), using an internal set of recalibrants found in the liquid smoke samples. MF 

were tentatively assigned to check the average mass error (< 1 ppm) and minimum 

standard deviation. Recalibrated masses were exported as a mass list with a noise cut 

applied. This procedure was similar for the NH4OH artifact study (Chapter 4) but 

recalibration was performed using a newly designed custom R-based software, 

MFAssignR (Schum et al. 2019). MFAssignR was used since it is capable of flexible 

recalibration and assigning molecular formulas with various isotopes, including 

deuterium and 15N. MFAssignR was also used for molecular formula assignment of all 

liquid smoke samples, where chemically unreasonable MF assignments are removed 
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through internal QA parameters (Schum et al. 2019). All samples were assigned with C, 

H, N, and O, with other heteroatoms dependent on sample and ionization mode. 

The signal-to-noise ratio and full molecular formula ambiguity were considered 

important for molecular formula assignment. The signal-to-noise ratio was calculated for 

each sample using the KMDNoise function as described by Schum (2019). Full 

ambiguity is a parameter within MFAssignR that includes all chemically reasonable 

molecular formulas for a given exact mass peak without further prioritization. With the 

incorporation of isotopes into the molecular formula assignment, full ambiguity must be 

used as it is highly likely for a CH(D)O formula to be assigned as a CHNO formula or 

vice versa. This is due to the very small mass differences that can arise between the two.  

For example, it is difficult to know whether a formula should contain C7 or O5D4, which 

have a mass difference of only 0.32 mDa, as shown in Figure 2.1. This does not occur as 

frequently with H due to the difference in mass defect between D and H. Therefore, it is 

appropriate to retain all of the chemically reasonable MF assignments in isotopically 

labeled samples and then manually filter those based on matching to the non-labeled 

control sample. The goal was to ensure that the molecular formula assignment within 

labeled solvents were as consistent as possible with the control solvents, since the 

compositions should be overall the same in both solvents with the exception of artifact 

products that include isotopes.  
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Figure 2.1. Mass error differences between O5D4 and C7-containing MF. “M” is the remainder of the 
molecular formula, constant between the two masses. 

 

2.3.1 Molecular Formula Assignment Parameters 

2.3.1.1 Hydrogen-Deuterium Exchange 

 

Molecular formulas were not assigned to the analytes of the acid mix samples 

since the compositions were relatively simple, and only select major peaks were 

investigated, including the most abundant PAA ions. 

The liquid smoke assignment parameters were defined differently for each 

ionization mode. The negative ions in regular MeOH were assigned using two passes: 

Pass 1 assigned MF without N and a 6*SN cut; Pass 2 assigned MF with 3N. MeOH-d1 

formulas were similarly assigned with two passes: Pass 1 assigned MF without N, up to 3 
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D, a 6*SN cut, and full ambiguity; Pass 2 was the same as Pass 1, but included up to 3 N. 

The positive ions in regular MeOH were assigned with up to 3 N and 1 Na, and a 6*SN 

cut. Positive ions in MeOH-d1 were assigned similarly expect with up to 3D and full 

ambiguity. Only 3 D were assigned due to the small mass differences that can occur and 

complicate accurate assignment with 4 D. 

Since there are substantially fewer CHNO compounds than CHO compounds 

expected in the negative ion mode, it is more likely that a CH(D)O formula should be 

assigned instead of a CHNO formula. Because of this, CHO compounds were assigned 

first, then CHNO was assigned to the remaining peaks. This approach was less justifiable 

for the positive mode ions since CHNO dominate. In both cases the molecular formula 

assignments with D were matched with CHO in the control since the compositions should 

be overall the same in both solvents, with the exception of HDX. 

2.3.1.2 NH4OH Artifact 

MFAssignR was used to determine recalibrants for the NH4OH study. The 

recalibrants were found within 3 ppm mass error in negative ESI, and 6 ppm mass error 

in positive ESI. High mass measurement errors in the mass range of m/z 100-250 were 

observed for the positive ESI files. Molecular formulas (MF) were then assigned using 

the MFAssignR. Negative ion MF were assigned with up to 3 N for all files and 3 15N for 

isotopically-labelled samples. Positive ion MF were assigned with up to 5 N and 1 Na+ 

for all files, and 3 15N for isotopically-labelled samples. 3 15N were used instead of 5 to 

limit ambiguous MF assignments and reduce computational time. All MF were assigned 

after a 6*SN threshold was applied as determined using the KMDNoise function (Schum 
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et al. 2019). All MF were assigned with full ambiguity so the most likely MF could be 

selected manually. All assigned ions had an absolute mass error less than 3 ppm. 

2.3.1.3 Methanol Artifact 

A 6*SN cut was applied to all samples before formula assignment. The negative 

ions in regular MeOH were assigned with up to 3 N; negative MeOH-d1 formulas were 

assigned similarly, but included up to 6 D and full ambiguity. The positive ions in regular 

MeOH were assigned with up to 5 N; positive MeOH-d1 formulas were assigned 

similarly, but included up to 6 D, 1 Na+, and full ambiguity. 

 

2.3.2 Reducing Ambiguity and Data Size 

Accurate molecular formula assignment can be difficult when including multiple 

heteroatoms, especially alongside isotopes. For example, the more heteroatoms that are 

included, the more molecular formulas are possible for a given mass, especially at higher 

m/z values (Koch et al. 2007; Schum et al. 2019). In order to reduce this ambiguity, it is 

essential to ensure the assigned molecular formulas in isotopically labeled samples are 

comparative to others in the sample. The methods for doing so and reducing the size of 

the data sets vary by sample, solvent, and ion polarity. These methods are described in 

detail for each chapter. 

However, one universal data filter was applied for all studies. Assigned MF in the 

isotopically-labeled sample were compared to those in the non-labeled (control) sample. 

Any formula that is assigned in the labeled sample, whether or not it contains a labeled 
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atom, should have an identical, non-labeled formula in the control to be a “valid” 

formula. This simplifies the mass list and removes any interferences from different 

solvent contaminants, and is the basis of this filter. The goal was to determine the species 

most likely to do so based on a few assumptions; hence, only a subset of the most 

probable molecular formulas are considered in these studies. 
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3 Characterization of Labile Hydrogen in Mesquite 
Liquid Smoke Using Hydrogen-Deuterium Exchange 

 

The following sections discuss the results of the hydrogen-deuterium exchange 

(HDX) experiments with mesquite liquid smoke (MLS). First, the HDX capabilities of 

four acidic compounds will be investigated as a potential method for improving MF 

validity and reducing the data size in MLS. Then, the HDX capabilities of negative and 

positive ions are addressed separately, where less likely formulas are removed based on 

several justified data filters and molecular parameter trends for HDX-capable species are 

analyzed. Lastly, positive and negative HDX-capable ions are compared to understand 

similarities and differences between the two sets of ions. 

3.1 Hydrogen-Deuterium Exchange of Acid Mix 

The obtained spectra of the Acid mix are given in Figure 3.1. Notably, the low 

molecular weight standard compounds were in high abundance due to their high 

ionization efficiency and relatively higher concentration. Citric acid (m/z 193.03) is the 

most abundant peak in the spectrum and is approximately four times more intense than 

the most abundant PAA peak (m/z 473.17), due to the variable length of the PAA 

polymer. In both the regular MeOH and MeOH-d1 mass spectra, evidence of multiply  
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Figure 3.1. Reconstructed mass spectra for Acid Mix in a) Regular MeOH with m/z 100-800 scan 
range; b) MeOH-d1 with m/z 100-800 scan range; c) Regular MeOH with m/z 100-2000 scan range; d) 
MeOH-d1 with m/z 100-2000 scan range. 
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charged peaks are observed, but they were not the dominant peaks and thus were not 

considered for this analysis. For PAA, all major peaks were expected at mass intervals of 

m/z 72, indicating only singly charged species. 

There is a noticeable increase in the ion complexity with the deuterated solvent. 

All of the standard compounds have multiple peaks associated with them, indicating 

strong evidence of HDX for each species. In particular, the higher molecular weight PAA 

polymers have a higher ion density, indicating higher levels of HDX.  

Examination of each major species was done to investigate the nature of the HDX 

process, including all low-MW standards and several PAA peaks, as shown in Figure 3.2. 

Each subsequent high-intensity ion is an additional D substitution, and any low intensity 

ion in close proximity to the D peaks are 13C signatures. In all low-MW standard species, 

HDX occurs up to the supposed maximum number of exchangeable protons, i.e., 2 for 

suberic acid and 4 for citric acid. Ions with only some protons exchanged were also 

observed in all cases. However, the ions with all possible H exchanged for D are less than 

5% the intensity of the base peak for each species. This is likely due to the ionization 

mechanism for negative ESI, which requires the analyte to be deprotonated to be 

detected. The most likely ionized functional group is the most acidic one, and thus, the 

one D that would be most labile and likely to be involved in HDX.  
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Figure 3.2. Magnification of Acid Mix spectra in MeOH-d1 for (a) vanillic acid; b) suberic acid; c) citric 
acid; d) PAA with 10 acrylic units. Major peaks are labeled by number of deuterium present. Structures 
of each species are included as inserts in each spectrum. 

 

Interestingly, each low-MW standard compound had a different ion distribution 

indicating the number of exchangeable H in each. Suberic acid, for example, had a 

roughly linear decay in the intensity of subsequent D substitutions, with regular suberic 

acid having the greatest intensity and suberic acid-d1 having about 45% the D0 intensity. 

Vanillic acid, on the other hand, had regular and D1- isotopes of approximately equal 



34 

intensity. This is potentially because the carboxylic proton is easier to exchange due to 

the resonance stabilization of the benzene ring.  

Citric acid has all of the possible combinations of exchanges, with detected 

isotopes up to 4 exchanges. Unlike the previous two compounds, the relative abundance 

of each isotope follows a simple binomial Gaussian distribution, with D2 having the 

greatest abundance and other isotopes having abundances tailing in an approximately 

1:4:6:4:1 ratio. This implies that for citric acid, all labile protons have a 50% chance of 

being exchanged for D in MeOH-d1 solvent. It could be hypothesized that this occurs due 

to the lability and/or number of carboxyl O-H bonds, as it does not occur with any of the 

other low molecular weight standards. For this multi-acidic molecule, the bond strengths 

for COOH and COOD are likely very similar since the acidic hydrogens are weak, so the 

detection of H and D substitutions are equally likely. 

PAA shows a similar H/D exchange trend as observed for citric acid with each 

polymer length having a binomial distribution. However, the maximum number of 

exchanges is not the same as the maximum number of labile protons, or number of 

COOH groups in this case. For example, the PAA chain with m/z 761 is composed of 10 

monomeric units and 10 COOH groups, however, the isotope of maximum m/z with a 

relative abundance greater than 1 is the D5 formula, indicating there is an apparent limit 

to the extent of HDX. In these cases, however, the non-deuterated ion does not 

completely disappear until the polymer length is sufficiently above 1000 Da. Thus, it is 

reasonable to assume that the D0 ion of a given species that can undergo HDX should 

exist in order to be considered valid for the purposes of the liquid smoke analysis. 
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3.2 Negative ESI Analysis of Mesquite Liquid Smoke 

3.2.1 Preliminary Molecular Formula Composition 

The ultrahigh resolution mass spectra obtained for mesquite liquid smoke (MLS) 

in negative ESI mode are given in Figure 3.3; Figure 3.3a contains the ions measured in 

regular MeOH, and Figure 3.3b contains the ions measured in MeOH-d1. As expected, 

each mass spectrum is very complex due to the extensive composition of MLS. Each 

mass spectrum is separated by the elemental composition where CHO refers to molecular 

formulas containing only C, H, and O atoms, and CHNO refers to those containing only 

C, H, O, and N atoms. A few CHN and CH molecular formulas were assigned, but they 

were removed because they constituted <1% of assigned ions. Colors indicate the number 

of double bond equivalents (DBE) in the assigned molecular formula, with green 

representing CHO-only containing molecular formulas, blue representing CHNO-only 

containing formulas, and so on. An initial inspection of the MLS in MeOH mass 

spectrum indicates a high number of CHO compounds (~85% of assigned peaks), 

consistent with expectations for negative ESI analysis. Though scan ranges of m/z 100-

800 were obtained for each sample, the signal begins to taper off drastically around m/z 

350 for both regular MeOH and MeOH-d1, though assignments exist up to m/z 700 for 

MeOH and m/z 650 for MeOH-d1. Visually, the ions in MeOH-d1 are denser than those 

in regular MeOH, providing evidence of HDX in the sample. This is further supported by 

the increase in the total number of measured ions in MeOH-d1, with 2811 ions being 

observed compared to 2004 in regular MeOH. The tall CHNO ions around m/z 300 are S-

containing contaminants present in MeOH and were removed in future processing steps. 
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These were removed from analysis during future filtering steps. Likewise, the tall group 

of peaks in MeOH-d1 from m/z 250-300 are contaminants present in the blank solvent. 

These were also removed in future filtering steps. 

van Krevelen plots for MLS in each solvent are given in Figure 3.4, again 

depicting the predominance of CHO formulas, but also highlighting the presence of 

CHNO formulas. These CHNO formulas, however, are inconsistent and scattered 

throughout the VK plot, likely due to the MeOH-d1 solvent being less pure (non-LC-MS 

grade) than regular MeOH, or due to incorrect assignments.  The color scale indicates the 

DBE values up to 20, a range standard for various complex aqueous organic matter. 

There is a supposed decrease in DBE values in the MeOH-d1 sample that is likely due to 

the overall lower signal; any high DBE values in regular MeOH had abundances < 60000 

and likely fell beneath the S/N in MeOH-d1; MeOH-d1 did have a lower detected m/z 

range and overall lower intensity for high m/z peaks. 

  



37 

 

 
Figure 3.3. Reconstructed mass spectra obtained in negative ESI for (a) MLS in regular MeOH; (b) 
MLS in MeOH-d1. 
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Figure 3.4. van Krevelen plots obtained in negative ESI for a) MLS in regular MeOH; b) MLS in 
MeOH-d1. Points are sized by abundance and colored by DBE. 

 

3.2.2 Filtering Formulas 

Two data filters were applied to the MeOH-d1 data to refine the data set and 

explore molecular characteristics of only the MF most likely to undergo HDX. One filter 

compared MF assignments to the regular MeOH, and the other used results from the acid 

mix to remove unlikely D-containing MF. The resulting VK plot after applying the first 

filter is given in Figure 3.5. The CHNO molecular formulas are less scattered, and the 

MeOH-d1 molecular formulas are now more consistent with those of regular MeOH. The 

complexity of the CHO formulas is retained as expected. 
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Figure 3.5. van Krevelen plot of negative ion MLS in MeOH-d1 after applying first manual filter. Points 
are scaled by abundance and colors indicate DBE. 

 

The reconstructed mass spectra resulting after the application of the first filter are 

given in Figure 3.6, where the mass spectra indicate the number of D atoms, and 

therefore, occurrences of HDX. The relative abundance scale has been zoomed to about 

0.5% relative the tallest peak in the non-deuterated MFs to highlight the ion distribution 

patterns. D1 ions follow a similar general abundance pattern to the non-deuterated 

formulas, with more intense peaks less than m/z 300 that taper off until about m/z 600. 

There is also a distinct dip in the assignments around m/z 400. D2 and D3 ions show two 

distinct groups of peaks instead of a continuous distribution, with a more sporadic and 

inconsistent pattern. The ion cluster separation could be a result of changes in the general 

structure of HDX-capable species from m/z 300-400, or it may be due to the MeOH 

contamination peaks which may have reduced the ion signal in the m/z 300-350 range. 

Notably, there are a few D3 peaks that are more intense than their corresponding D2 
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peaks, which is chemically unlikely due to the probabilistic nature of HDX. These ions 

were likely misassigned CHNO ions due to D3 ions having masses in the nominal mass 

range of N. As a result, a second filter was needed to ensure the feasibility of these 

formulas. 

 

Figure 3.6. Reconstructed mass spectra of MLS in MeOH-d1 (negative ESI) after applying first filter. 
Plots are separated by number of D and colors indicate number of oxygen. 
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The second filter applied to the HDX data is based on the probabilistic 

assumption that HDX is an equilibrium process, as indicated by the results from the acid 

mix. At any given moment, it is possible for an exchangeable proton to either be a proton 

(H) or a deuteron (D). Given this, for a molecule with multiple exchangeable protons, it 

seems unlikely that all of these protons will be exchanged for D without a lesser number 

of exchanges also being observed. Thus, for any assigned formula containing n D atoms, 

an assigned base formula must also exist with n-1 D atoms, n-2 D atoms, and so on. As 

an example, consider citric acid (C6H8O7) from the acid mix standard. There are 4 

exchangeable protons, but only a small percentage of citric acid molecules have all four 

simultaneously exchanged (C6H4D4O7). Compounds with 3, 2, 1, and no D were also 

detected, with the D2 isotope being the most abundant. Therefore, it can be assumed that 

if the D4-citric acid formula and non-deuterated citric acid formula exist, then citric acid 

ions with 3, 2, and 1 D should also exist. This is the basis of this filter, where only the 

molecular formulas with a series of D atoms are considered “valid” formulas. 

There are some limitations to this assumption. For one, it requires the D0 peak to 

be above the SN ratio. As a result, any D-containing molecular formulas whose D0 

abundance is below the signal to noise are removed. In addition, some molecules may 

have variable rates of HDX due to variations in structural electronics, and therefore, some 

exchangeable protons will be more likely to exchange than others. This means there may 

be situations where some ions may or may not be present. However, the HDX rates of the 

model compounds, indicated that the D0 peak did not disappear until about m/z 1000. 

Lastly, the electrospray ionization mechanism for negative mode deprotonates the 
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analyte, removing that hydrogen from the molecule. Therefore, a molecule that may 

ordinarily undergo HDX may not have an observable deuterated formula in negative ESI. 

It is also possible that there are multiple isomers within one ion peak, which have 

different capabilities of HDX.  

The results after applying this filter are shown in Figure 3.7, where the plots are 

separated by the number of D in the formula. After these two filters were applied, no 

ambiguous molecular formulas were present, indicating the filters removed the ambiguity 

without manual manipulation. This filter also removed most CHNO compounds, to leave 

predominantly CHO compounds. This suggests N was not a significant factor in HDX 

rate for negative mode. The distribution of molecular formulas for each D was more 

ordered when the second filter was applied, and there is still evidence of two distinct 

groups of ions at lower and higher DBE, though it is more difficult to see in the non-

deuterated formulas.  
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Figure 3.7. Reconstructed mass spectrum after final filtering of MLS d1 data. a) CHO negative ions; b) 
CHNO negative ions. Spectra are separated by D and colors represent number of O. 
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Figure 3.7 (cont.). Reconstructed mass spectrum after final filtering of MLS d1 data. a) CHO negative 
ions; b) CHNO negative ions. Spectra are separated by D and colors represent number of O. 
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3.2.3 Trends in HDX-Capable Species 

After the data filtering QA steps to isolate the most likely HDX MF, molecular 

trends for different numbers of exchanges were examined. The histograms for the number 

of oxygen atoms, DBEs, and carbon atoms of the HDX formulas are given in Figure 

3.8(a-c). In these plots, the color scale represents the number of D atoms, with blue, cyan, 

orange, and red representing D0, D1, D2, and D3 species, respectively. In the case of D0, 

both HDX capable and non-HDX capable formulas are included in order to compare 

trends to the overall sample. Since each molecular formula with a higher D substitution 

also has a lower D substitution, each larger D is a subset of a smaller D. Thus, the count 

on the y-axis is not a proportion, but an absolute count for each D. For example, there are 

approximately 100 species in the MeOH-d1 sample that have 4 O atoms (Figure 3.8a), 

where 70 show evidence of 1 HDX and 10 show evidence of 2 HDX. There is a 

noticeable shift toward higher O numbers for and lower DBE for increasing numbers of 

D (Figure 3.8b). The increasing O count is expected; since N does not play a significant 

role in HDX in negative ESI, since any molecules capable of HDX should be more 

oxygenated. However, the decrease in DBE with increasing D seems to contradict this 

trend. One theory to explain this is that there are more molecules in MLS with multiple -

OH groups than with multiple -COOH groups, with more saturated polyols being more 

available and capable of undergoing HDX. The carbon trends plot in Figure 3.8c depicts 

a bimodal distribution of molecular formulas emphasized in the mass spectral 

distributions in Figure 3.5, with peaks around 10 and 20 carbons for the D2 and D3 

species. The bimodal distribution could be due to the influence of monoterpenes in 

biomass burning, as liquid smoke is a biomass burning surrogate (Montazeri et al.2012). 
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There is a minor shift towards fewer carbons as the number of H-D exchanges increases, 

potentially due to the propensity of lower carbon-containing species to have an increase 

in its O/C ratio, therefore being more likely to undergo multiple exchanges. 

The averages of several molecular parameters were calculated for each HDX and 

are presented in Table 3.1. These were tabulated to determine the “average” molecular 

formula capable of undergoing certain numbers of HDX in MLS. The number of 

molecular formulas decreases exponentially for each additional HDX occurrence, which 

is partly due to the second data filter. As depicted in the values for the D1 species, at least 

63% of the total, non-deuterated molecular formulas in this sample have the capability of 

undergoing HDX, with 22% and 7.5% able to perform 2 and 3 exchanges, respectively. 

The values in this table quantify previous visual trends. The O and O/C values steadily 

increase with increasing D exchange, as does the H/C ratio. This increase corresponds to 

a decrease in DBE for each additional HDX, except for D3 which is higher than D2. This 

may be due to a shift to higher molecular weight compounds as the number of HDX 

increases (Figure 3.5), making the higher DBE species more dominant at higher 

exchanges. In all, the DBE is lower for formulas capable of HDX in comparison to the 

bulk average (D0). This may indicate that HDX capability is dependent more on the 

number of OH groups as opposed to COOH groups in this sample. This can partially be 

seen by the average modified aromaticity index, or AImod, of each number of D.  

 



47 

 
Figure 3.8. Various molecular formula trends with the number of deuterium for all formulas. Colors 
represent the number of deuterium. Plots represent number of D per (a) O; (b) DBE; (c) C. 
 
 
 

AImod is a qualitative description of the aromaticity and unsaturated character of a 

MF based on the relative numbers of each atom proposed by Koch et al (2007). The 

calculation of this value is given in Equation 3.1, where C, H, N, and O represent the 

number of that particular element in the molecular formula. In the case of the deuterated 

samples, the number of D is included with the value of H. Values are then given an 

aromaticity descriptor, with the ranges given in Equation 3.1 as well. Based on the AImod 
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values, the average values for all number of D was an olefinic value. This implies D-

containing species are rich in either carbonyl or alkene double bonds 

𝐴𝐼௠௢ௗ ൌ
ቀ1 െ 𝐶 െ 𝑂 ൅ 𝐻 ൅ 𝑁

2 ቁ

𝐶 െ 𝑂
2 െ 𝑁

, 𝑤ℎ𝑒𝑟𝑒 

𝐴𝐼௠௢ௗ ൒ 0.67 ൌ 𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑 𝐴𝑟𝑜𝑚𝑎𝑡𝑖𝑐 

0.5 ൏ 𝐴𝐼௠௢ௗ ൏ 0.67 ൌ 𝐴𝑟𝑜𝑚𝑎𝑡𝑖𝑐 

0 ൑ 𝐴𝐼௠௢ௗ ൑ 0.5 ൌ 𝑂𝑙𝑒𝑓𝑖𝑛𝑖𝑐 

𝐴𝐼௠௢ௗ ൏ 0 ൌ 𝐴𝑙𝑖𝑝ℎ𝑎𝑡𝑖𝑐 

Equation 3.1. Calculation of modified aromaticity index, AImod, from Koch et al. (2007) 

 

Table 3.1. Various parameter averages for MeOH-d1 data in negative ESI. 
 

D  Formulas  %Formulas  Mass  O  O_C 

0  969  100.00%  325.95  7.2  0.47 

1  614  63.40%  320.81  7.38  0.51 

2  213  22.00%  334.13  8.53  0.61 

3  73  7.50%  374.08  9.68  0.63 

D  H_C  DBE  ZarkCOOH*  DBE‐COOH**  AImod 

0  1.27  7.09  3.57  3.52  Olefinic 

1  1.28  6.83  3.73  3.11  Olefinic 

2  1.41  5.69  4.55  1.13  Olefinic 

3  1.42  6.16  5.27  0.9  Olefinic 

*An estimate of a sample’s overall COOH content, proposed by Zark et al. (2017). 
 **The difference between DBE and ZarkCOOH. 

  

The COOH content of a bulk sample can be estimated as outlined in Zark et al. 

(2017). This estimate takes into account the H/C and O/C ratios of the species in the 
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sample and calculates the average number of COOH groups by scaling it to the maximum 

possible number of COOH groups in the sample. Equation 3.2 shows the calculation of 

the Zark et. al estimated COOH content for this sample, denoted as ZarkCOOH. The 

difference between the DBE and ZarkCOOH value is also given as DBE-COOH. The 

estimated COOH content increases with respect to HDX ability, up to an average of 

approximately 5 COOH groups for D3 species. Conversely, the DBE-COOH value is 

decreasing with respect to the number of D, implying alkene functional groups may be 

playing a role in HDX at lower D.   

𝑍𝑎𝑟𝑘𝐶𝑂𝑂𝐻 ൌ
𝑥௠௜௡ െ 𝑥௜

𝑥௠௜௡ െ 𝑥௠௔௫
ሾ#𝐶𝑂𝑂𝐻௠௔௫ሿ 

Equation 3.2. Estimated COOH content of a sample, as described in Zark et al. (2017). 

 

The [#COOHmax] term is the maximum number of COOH groups for the ion, or 

half the maximum O count rounded down. The xi term is the O/H ratio of a particular 

formula, and xmax and xmin are the maximum and minimum O/H ratio in the sample. For 

this sample in negative ESI, this simplifies to  

𝑍𝑎𝑟𝑘𝐶𝑂𝑂𝐻 ൌ
0 െ 𝑥௜

0 െ 16
42

ሾ#𝐶𝑂𝑂𝐻௠௔௫ሿ 

The van Krevelen plot for HDX capable species is given in Figure 3.9 with 

transparent dark blue points referring to the full MeOH-d1 sample, and cyan, orange, and 

red corresponding to different numbers of HDX.  The average O/C and H/C for each D 

(Table 3.1) are also plotted on top of the data with filled triangles, each representing the 
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average species for each number of D. Each average falls in a neat line of increasing O/C 

and H/C for increasing D.  

. 

 

Figure 3.9. van Krevelen plot for filtered MLS data in MeOH-d1 in negative ESI. Colors refer to the 
number of D in the formula, where D = 0 includes all non-deuterated molecular formulas with or without 
matches to D1, and size corresponds to abundance. The colored triangles represent the average O/C and 
H/C for each D as given in Table 1. 

 

3.3 Positive ESI Analysis of Mesquite Liquid Smoke 

3.3.1 Preliminary Molecular Formula Composition 

The positive ion ultrahigh resolution mass spectra for MLS are given in Figure 

3.10, with Figure 3.10a measured in MeOH, and Figure 3.10b measured in MeOH-d1. 
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Each plot is divided by the elemental groups. CH compounds were removed plot since 

they were so few and appeared to be less reasonable formulas due to their scattered 

nature. There were some positive ion CHN assigned that appeared reasonable due to 

distinct patterns in ion distribution, so they have been grouped together with CHNO ions 

for readability. As expected, there is a much larger number of CHNO ions than negative 

ions. The CHNO species range up to m/z 770 in both MeOH and MeOH-d1 solvents. The 

ranges are significantly higher than those in negative ESI. In general, the positive CHO 

species had intensities approximately two times higher in MeOH-d1 than MeOH. There is 

also a notable number of positive ion CHN, implying many amino functional groups were 

detected. In positive mode, CHNO compounds are the dominant species in MLS despite 

the high number of CHO compounds, with 59% N-containing molecular formulas in 

MeOH. In total, 5539 unique peaks were detected in MeOH and 7111 unique peaks in 

MeOH-d1, and 2165 of these peaks were ambiguous molecular formulas. This high 

number of ambiguous molecular formulas due to the high number of heteroatoms 

required for the formula assignment (N, D, and Na). These ambiguous formulas were 

reduced in several data filtering steps described below. 
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Figure 3.10. Reconstructed mass spectra obtained in positive ESI for (a) MLS in 
regular MeOH; (b) MLS in MeOH-d1. Colors indicate the DBE of the assigned 
formula. 
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The van Krevelen plots for MLS in each solvent are given in Figure 3.11 

separated by elemental group. Most of the compounds are in the low O/C and low H/C 

space with high DBE values, indicating the presence of highly unsaturated or aromatic 

species. As shown earlier, in Figure 3.10, there is a much larger presence of positive ion 

CHNO species than observed in the negative mode. 

 
 
Figure 3.11. van Krevelen plots obtained in positive ESI for a) MLS in regular MeOH; b) MLS in MeOH-
d1. Points are sized by abundance and colors indicate DBE. 
 

 

 



54 

The range of elemental ratios of the positive ion species in MeOH-d1 match those 

of MeOH, although there are several species outside the ranges. For example, the cluster 

of low H/C CHNO ions in MeOH-d1 was not present in MeOH. Many of these MF are 

ambiguous, (Figure 3.12a), and will be removed in future data filtering steps. Most of the 

high DBE compounds are also ambiguous, although many of these will be matched to 

compositions in the MeOH. 

3.3.2 Filtering Formulas 

It is known (Kruve et al. 2013; Kruve and Kaupmees 2017) that there are multiple 

cations that can be present as adducts during positive mode ESI. Thus, it is desired to 

separate molecular formulas based on their adduct ion. The most frequent adducts are H+ 

and Na+ and provides a basis for separating the MF based on the number of sodium in the 

formula. This helps limit molecular formula assignments further. For a molecular formula 

to be considered valid in the MeOH-d1 solvent, there must be a matching base formula in 

MeOH and a matching adduct, although it is possible for some MF to have both H+ and 

Na+ adducts (Kruve and Kaupmees 2017). After this first filtering step, there were a total 

of 3039 molecular formulas with H+ adducts and 682 molecular formulas with Na+ 

adducts, although some ambiguity was still present among these formulas.  
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Figure 3.12. van Krevelen plots for MLS in MeOH-d1 obtained in positive ESI before and after filtering. 
Symbols are scaled by abundance and colored by DBE. a) Ambiguous and unambiguous MF assignments 
before filtering; b) Post-filter MF assignments, separated by their molecular group. 

 

The filtered results are shown in van Krevelen plots in Figure 3.12b, consisting 

of only H+ adducts. This first filter alone greatly reduced the complexity of the data, 

removing many (though not all) scattered CHNO formulas and leaving a lower number 

of CHO compounds as indicated in the van Krevelen plot in Figure 3.12b. The reduced 

CHO content is reasonable due to the high N content of MLS, and highlights the need to 

use positive ESI to understand the impact of N on this analysis. In addition, (Kruve et al 

2013) indicate that there is a tendency for H+ adducts to be favored by CHNO 
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compounds and for Na+ adducts to be favored by CHO compounds. There may also be 

some interactions between the deuterated solvent and the mesquite liquid smoke that 

vary from those in regular solvent; however, this would require more investigation and 

is beyond the scope of this work.  

Reconstructed mass spectra (Figure 3.13) for each number of D show the general 

abundance patterns of deuterium substituted species. The color scale indicates the number 

of O in the formula, which increases with mass. The ion abundance distributions in D1 

closely matches those of D0 and D2. However, several D3 species are taller than their 

analogous D2 formula. As before, this is unlikely based on results of the acid mix analysis 

(Figure 3.2).  
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Figure 3.13. Reconstructed mass spectra of MeOH-d1 H+ adducts of MLS after applying first data filter. 
Plots are separated by number of D. Colors indicate number of oxygen in the formula. 

 

The data for the Na+ adducted species (Figure 3.14) show some notable 

differences from those with H+. As previously mentioned, there is a tendency for Na+ 

adducts to favor CHO compounds, and thus, there is a greater number of CHO ions than 

CHNO ions in the group-separated van Krevelen plots shown in Figure 3.14a. The 
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CHNO MF appear to be more scattered, which is likely due to their low number. Notably, 

the DBE of Na+ adducts is low. 

The reconstructed mass spectra for the Na+ adducts of each number of D is given 

in Figure 3.14b. The peaks are colored by O number. D1 and D2 generally follow the 

general patterns present in the full data set (D0), while D3 has a few peaks that are more 

abundant than their analogous D2 peaks. In addition, there is a higher number of O in the 

positive ion molecular formulas. This is seen in the reconstructed mass spectra, where O 

numbers are generally higher for each D in comparison to those detected in the negative 

ion mode.  
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Figure 3.14. H+ adducts of MLS in MeOH-d1 after applying first manual filter. a) van 
Krevelen plot separated by group. Points are sized by abundance and colored by DBE; b) 
Reconstructed mass spectra separated by number of D. Peaks are colored by number of 
oxygen in the formula. 
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In the second filter, formulas were retained only if each previous D substitution 

was present. This narrowed the list of molecular formulas those most likely to undergo an 

exchange. This filter removed many of the ambiguous formulas, leaving only 88 

ambiguous MF. All but one of these ambiguous pairs had one of two differences: C3ND 

(mid-DBE) vs. H4O3 (low DBE) or C2D2 (mid-DBE) vs. H6Na (low DBE). Since these 

MF made it through previous QA steps, it is not reasonable to remove formulas with 

more assigned deuterium, as they could be correct. In this case, the higher DBE was 

retained. This is based on the van Krevelen plot in Figure 3.12, which shows a vacancy of 

high DBE unambiguous formulas. These high DBE formulas were readily assigned in the 

regular MeOH. In addition, the higher DBE formulas had an overall lower error, and 

contained either a N atom or a H+ adduct, which are more consistent with the ambiguous 

MF. 

The reconstructed mass spectra for H+ adducts from this filter are given in Figure 

3.15, separated by number of D in the molecular formula. All H+ adducts that were 

capable of HDX in positive ESI were CHN or CHNO compounds, so CHO MF are not 

included in the spectra. There are noticeable patterns in the peak distributions up to D3, 

where the few peaks present are more scattered. The DBE values for HDX-capable 

species is also relatively low. 
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Figure 3.15. Reconstructed mass spectrum of N-containing H+ adducts after final filtering of MLS MeOH-
d1 data. Spectra are separated by D and peaks are colored by number of O in the formula. 

 

3.3.2.1 Trends in HDX-Capable Species 

The histograms for O, N, DBE, and C trends of H+ adducts are given in Figures 

16(a-d) with blue, cyan, orange, and red indicating the D0, D1, D2, and D3 species, 

respectively. A large proportion of the positive ions in MLS have at least one detectable 

instance of HDX, but there are very few D3 formulas. The number of O in H+ adducts 
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(Figure 3.16a) is heavily right-skewed for D0 and D1, with a few high O formulas being 

assigned in D0. D2 and D3 have a more normal distribution centered around 5 O. 

The N trends plot in Figure 3.16b depicts most of the HDX formulas as being N1 

compounds; almost all D2 and D3 species contain only one N atom. In addition, about 

75% of the molecular formulas with 1 or 2 N were detected with HDX. Conversely, there 

are no instances of HDX for 0 and 3 N. The DBE distribution of H+ adducts in Figure 

3.16c are approximately normally distributed around 6-8 DBE and seems to shift to lower 

DBE values for higher H/D substitutions. Similarly, the carbon trends in Figure 3.16d are 

also approximately normally distributed centered around 15-16 C for the full data set 

(D0). D1 is slightly shifted to higher C numbers, while D2 and D3 shift back towards lower 

values. There are some ions at higher O and C numbers that are likely incorrect MF 

assignments, though they were not ambiguous formulas. 

Averages of molecular formula parameters are given for H+ adducts in Table 2. 

Of approximately 1500 H+ adducts observed in positive ion mode, over half of them 

exhibited evidence of HDX. D1 and D2 had a significant number of species, but less than 

1% of formulas were capable of 3 exchanges. On average, the DBE and average mass 

decreased for increasing D substitution. In addition, the O number and O/C ratio 

increased with increasing D, as did the ZarkCOOH number. The estimated number of 

carboxyl groups for a given formula was calculated via Equation 3.2. 
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Figure 3.16. Various molecular formula trends with the number of deuterium for all 
formulas. Colors are based on the number of deuterium. Plots represent number of D per 
(a) oxygen; (b) DBE; (c) carbon. 



64 

Table 3.2. Various parameter averages for H+ adducted MF in positive ESI. 
 

D  Formulas  %Formulas  Mass  O  N  O_C 

0  1535  100.00%  289.46  3.79  1.3  0.24 

1  822  53.60%  300.02  4.05  1.27  0.24 

2  214  13.90%  296.82  4.9  1.03  0.31 

3  14  0.90%  276.12  4.57  1  0.34 

D  H_C  DBE  ZarkCOOH  DBE‐COOH  AImod 

0  1.27  7.54  0.9  6.64  Olefinic 

1  1.33  7.26  0.9  6.36  Olefinic 

2  1.33  6.72  1.27  5.45  Olefinic 

3  1.22  7.07  1.3  5.77  Olefinic 
*An estimate of a sample’s overall COOH content, proposed by Zark et al. (2017). 

 **The difference between DBE and ZarkCOOH. 

 

The van Krevelen plot in Figure 3.17 indicates the relative location of each D 

species for H adducts. Colors indicate the number of D in the MF, and the symbol size 

indicates the abundance of each peak. The average O/C and H/C for each number of D 

are denoted with triangles of the respective colors. Notably, there is a shift toward higher 

O/C ratio for increasing number of D, though there is little trend in H/C.  
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Figure 3.17. Van Krevelen plot for H adducts of filtered MLS data in positive ESI. Colors refer to the 
number of D in the formula, and size corresponds to abundance. The colored triangles are the average O/C 
and H/C for each D as given in Table 2. 

 

The reconstructed mass spectra for Na+ adducts after data filtering are given in 

Figure 3.18, again separated by number of D and the elemental group. In stark contrast to 

the MF with H+ adducts, those capable of HDX with Na+ adducts are dominated by CHO 

compositions. Ion distributions of D1 and D2 match closely to the overall data set (D0), 

while there are very few formulas that display 3 exchanges. There appears to be only a 

small variation in the number of O, compared to a wider variation for H+ adducts. 
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Figure 3.18. Reconstructed mass spectrum of Na+ adducts after final filtering of MLS MeOH-d1 data. 
Spectra are separated by D and elemental group and colors indicate number of O in the formula. 
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Figure 3.18 (cont.) Reconstructed mass spectrum of Na+ adducts after final filtering of MLS MeOH-d1 
data. Spectra are separated by D and elemental group and colors indicate number of O in the formula. 

 

The histograms illustrating the O, N, DBE, and C trends of Na+ adducted MF are 

given in Figure 3.19(a-d) with the same parameters as those with H+ adducts. Since there 

are fewer Na+ adduct molecular formulas, the distributions of the 2 and 3 exchanges are 

more scattered. As with H+ adducts, there are very few D3 formulas. Despite the few 
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HDX species available, there is a noticeable shift towards higher O for increasing 

numbers of D (Figure 3.16a) and there are many molecular formulas with 2 or fewer O 

atoms that do not participate in exchange. There is also a sharp drop in the frequency of 

formulas at 6 oxygens. The reason for this is unclear and could be investigated in future 

works. 

Most Na+ adducted molecular formulas involved in HDX did not contain N atoms 

(Figure 3.19b), with about 50% of the non-N formulas undergoing HDX and only about 

25% of N1 Na+ adducted MF undergoing exchange. In addition, any MF capable of 3 

H/D exchanges did not include N atoms. The DBE distribution of Na+ adducts in Figure 

3.19(c) is more normal for D0 and D1, though distributions for D2 and D3 are more 

scattered due to low number of species. Because of this, the trends in DBE are difficult to 

interpret. The C trends in Figure 3.19(d) are equally difficult to interpret, although they 

are slightly right-skewed with a mode around 13-14 carbons.  

The molecular formula averages for Na+ adducts are detailed in Table 3, similarly 

as Table 2. Less than half of Na+ adducted MF showed any evidence of HDX, and less 

than 2% showed 2 or more exchanges. Due to the small numbers, there are not enough D3 

formulas to infer the HDX behavior. The DBE tended to increase with increasing D 

substitution while the average mass increased, with the latter being in contrast to the H+ 

adducts. As with the H+ adducts, oxygen and COOH content increased with increasing 

HDX with the COOH content being calculated identically to that of the H+ adducts. The 

DBE-COOH values are higher for fewer HDX, indicating these species may be rich in 
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alkenes. This is supported by the AImod, which indicates most HDX-capable species are 

olefinic, as are the non-deuterated molecular formulas. 

 

 

 

 

 

 

Figure 3.19. Various molecular formula trends with the number of deuterium for 
all formulas. Colors are based on the number of deuterium. Plots represent number 
of D per a) oxygen; b) nitrogen; c) DBE; d) carbon. 
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Table 3.3. Various parameter averages for Na+ adducted MF in positive ESI.  
 

D  Formulas  %Formulas  Mass  O  N  O_C 

0  293  100.00%  215.74  3.59  0.35  0.32 

1  128  43.70%  227.34  4.06  0.21  0.36 

2  27  9.20%  234.44  4.7  0.3  0.44 

3  6  2.00%  187.41  4.67  0  0.6 

D  H_C  DBE  ZarkCOOH  DBE‐COOH  AImod 

0  1.22  5.77  1  4.77  Olefinic 

1  1.23  5.8  1.16  4.64  Olefinic 

2  1.37  4.81  1.4  3.41  Olefinic 

3  1.47  3.5  1.74  1.76  Olefinic 

*An estimate of a sample’s overall COOH content, proposed by Zark et al. (2017). 
 **The difference between DBE and ZarkCOOH. 

 

The van Krevelen plot in Figure 3.20 is set up identically to Figure 3.17, plotting 

the H/C and O/C ratio of Na adducts against the number of deuterium. Averages for each 

D are given in filled triangles. Though there are fewer peaks, there is a noticeable trend of 

increasing H/C and O/C for increasing D substitution.  
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3.4 Comparison of Negative and Positive HDX-Capable Species 

Detected positive and negative MLS ions show some differences in HDX-capable 

species. Negative CHO ions had high rates of HDX in comparison to negative CHNO 

ions, as indicated by the distribution of ions for each number of D post-filtering (Figure 

7). This is partially due to the significant presence of –COOH, where there were between 

3-6 COOH groups in HDX-capable species (Table 3.1). However, it is noteworthy that 

due to the ionization mechanism, some acidic species with labile protons, such as 

organonitrates, may not have been detected. In addition, negative ion N is typically 

oxidized (Fry et al. 2009; Farmer et al. 2010), and many N species may not have labile 

protons to perform the exchange.  

Figure 3.20. Van Krevelen plot for Na+ adducts of filtered MLS data in 
positive ESI. Colors refer to the number of D in the formula, and size 
corresponds to abundance. The colored triangles are the average O/C and H/C 
for each D as given in Table 3. 
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In negative ESI, 7.5% of the molecular formulas were found with 3 D atoms 

(Table 3.1). This indicates a reliable number of molecular formulas detected in negative 

mode for MLS have at least 3 labile protons. However, based on the acid mix experiment, 

there may be more protons that could display HDX than was observed. For example, 

PAA showed many instances of HDX, but never had all of its protons exchanged, 

implying that there is an inherent limit to how much exchange can occur under these 

conditions. Thus, the species that can undergo 3 exchanges are likely carboxyl-rich, 

which is supported by the increase in COOH content in Table 3.1. The difference 

between DBE and COOH decreased, indicating that species with 1 or 2 exchangeable 

protons may be influenced by alkenes. Specifically, enol groups could be responsible for 

this trend, where COOH content is not necessary to perform the exchange. An example of 

this process in MeOH-d1 is given in Figure 3.21a. Tautomerization could occur with 

carbonyl compounds (or alcohols) to move unsaturation between keto and enol forms. 

Thus, instead of having labile protons on a heteroatom, the labile protons may be on 

resonance-stabilized carbons. This could be an explanation for HDX occurring with 

olefinic species, though it is difficult to validate this without more structural information.  
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Figure 3.21. Mechanism for keto-enol tautomerization under A) basic conditions; B) acidic conditions. 

 

Several parameters may be potential predictors for HDX ability. Along with the 

increase in O content, the average mass increases with increasing D substitution for 

negative ESI. This is reasonable since the greater the number of O atoms, the greater the 

mass of the compound and the more likely there are to be labile protons. In addition, the 

H/C also increases, implying compounds that are more saturated have an enhanced HDX 

ability. This is reiterated in the van Krevelen plot in Figure 3.9, where the average O/C 

and H/C values increase linearly with an increase in H/D exchangeability. Clearly, both 

H/C and O/C are important factors in determining a compound’s propensity to undergo 

HDX, and could be used as predictors for the functionality of a particular formula.  
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Due to the general decrease in DBE, it is possible that enol-type compounds are 

important to lower amounts of HDX while carboxylic groups are important at higher 

amounts of HDX. However, there are several D3 formulas that have DBE values of less 

than 3 (Figure 3.8b), and as such, may not be fully explained by carboxyl groups. In 

addition, there are a few instances of HDX where there are more exchanges than carboxyl 

groups could account for. For example, there are some D1 formulas that are only 

associated with 1 O atom. Since carboxyl groups contain 2 O atoms, the HDX in this case 

cannot be from a carboxyl. If the O were part of an enol, however, the tautomerization 

could explain the larger number of HDX due to the relative lability of the α-C-H bonds.  

The positive ion mode of ESI has the added complication of more molecular 

formulas with different types of adducts, typically H+ and Na+. Comparison of the two 

indicates that the two types of molecular formulas behave differently in terms of HDX. 

Na+ adducted compositions in positive ESI are primarily CHO compounds (Figure 3.18). 

However, the CHO compounds observed here have lower numbers of O and have a much 

lower estimated COOH in comparison to negative mode. The overall slope of the O/C vs. 

H/C line in the van Krevelen plot containing Na+ adducted species (Figure 3.20) is very 

similar, however, it is shifted to lower O/C ratios. This implies that while the number of 

O is important for the HDX behavior in positive ions, a lower number of O atoms are 

needed to perform multiple exchanges. In this case, the Na+ adduct may be detecting the 

non-acidic oxygen atoms, such as ether and ketone functional groups. These ketones 

could potentially be converted to –OH through acidic HDX of an enol, as shown in 

Figure 3.21b. 
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Based on the reconstructed mass spectra of formulas in Figure 3.15, O does not 

play a major role in HDX for H+ adducted species. Due to the low number of CHO 

compounds with H+ adducts, it is to be expected that the O, O/C, and COOH content are 

low. It is possible that compounds are not undergoing HDX, but are instead being 

protonated with the labile D from MeOH-d1. Kostyukevich et al. investigated this case 

with their work and found that all species were ionized by a deuterium rather than a 

proton in their deuterium-rich atmosphere. However, the use of methanol instead of water 

may have prevented this from occurring so readily, as not all detected ions were 

deuterated.  

 Instead, N is the primary contributor to HDX in positive mode, which reiterates 

the preferentiality of ionizing more basic compounds like amines with positive ESI. In 

addition, this mode highlights the high N content of MLS, with at least 50% of formulas 

being detected in the positive ion mode containing N (Table 3.2). To our knowledge, this 

detailed of an investigation of HDX on N has not been explored previously. The most 

relevant work is by Kostyukevich et al. (2013) who did some work with S-containing 

compounds, but did not emphasize N. In this study, we found the number of CHNO 

compounds in positive ion mode nearly equivalent to the number of CHO compounds 

detected in negative ESI. 

The number of HDX molecular formulas drops more drastically for H+ adducts 

for increasing D, with less than 14% of formulas able to undergo 2 exchanges. This could 

imply that HDX-capable H+ adducted species are likely those that contain only one 

exchangeable H such as secondary amines, amides, or aromatic N like pyridine or 
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imidazole. Less than 1% of formulas were capable of 3 exchanges, and due to the low 

number, indicating that the detected species are less likely to have multiple labile protons.  

The O/C ratio increases for increasing HDX ability (Figure 3.17), though there is 

little trend in the H/C ratio. However, the DBE-COOH value decreases. The sample’s 

COOH content increases and its olefinic nature remains approximately constant for 

varying degrees of HDX as reported in Table 3.2. This is supported by the 

tautomerization mechanism in Figure 3.21. In addition, this mechanism occurs under both 

acidic and basic conditions, implying it could be facilitated with either electrospray 

polarity. However, more analysis would be required to confirm this. 
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4 Characterization of Ammonium Artifacts Formed 
Using a 2-Step Solid-Phase Extraction Method with 
Liquid Smoke 

 

The following section provides a summary of the various samples, ionization 

modes, and analyses performed to investigate the extent of the 15NH4
+ artifact. The 

results from negative and positive ESI data will be discussed separately using similar 

analyses. First, the SPE-prepared samples are discussed, where the general appearance of 

the samples after the initial molecular formula assignment will be considered to 

understand their general composition. The assigned molecular formulas were then filtered 

and their ambiguity was assessed to simplify the data set. Next, several potential reactive 

pathways are proposed for artifact formation. The precursors for these reactions were 

matched to further validate assigned 15N molecular formulas and determine the most 

likely reaction pathways. Then, the non-SPE samples were analyzed to investigate the 

effects of pH on artifact formation. 

4.1 Negative ESI Analysis 

4.1.1 Initial Molecular Formula Assignment 

Negative ion mass spectra for the first elution (L1) from the SPE cartridge using 

90:10 MeOH:H2O of MLS and HLS are given in Figure 4.1. These spectra highlight the 

similarities between the two samples. The intensity scale is adjusted to an intensity of 

25,000 to visualize the ion distributions of the lower intensity ions. CH and CHN 

formulas were also assigned, but were omitted due to their low frequency (Smith et al. 
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1990). Visually, the two samples are very similar in their spectral complexity with high 

intensity ions below m/z 400 in patterns comparable to biomass burning samples 

(Mazzoleni et al. 2012). The CHO ions in this range have DBE values up to about 15. 

Although lower in intensity, each sample also has similar ion distribution patterns of 

CHNO compounds. More abundant ions were detected in the m/z 250-350 range, and a 

set of ions with a Gaussian-like distribution were detected from m/z 350 onward. These 

ions tended to have lower DBE values. The taller, mid-DBE CHNO ions in HLS are 

well-known contaminants within the MeOH solvent and were omitted from analysis. In 

total, about 70% of the detected ions in both MLS and HLS L1 were CHO. In addition, 

approximately 12% more ions were detected in MLS than HLS (1968 vs. 1730, Table 

4.1), a trend observed in all of the different sample preparations. Due to the larger 

number of ions and great similarity between the samples, the following results and 

discussion will be focused on MLS and HLS can be assumed to be similar except where 

noted. 
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Figure 4.1. Reconstructed mass spectra for initial assignment of first elution (L1) liquid 
smoke samples. a) Mesquite liquid smoke; b) Hickory liquid smoke. Mass spectra are 
separated by group and colored by DBE. 
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Initial MLS mass spectra for the second elution (L2) from the SPE cartridge with 

0.3% NH4OH in MeOH are given in Figure 4.2. The mass spectra are separated by 

elemental group in addition to the type of NH4OH used. The acidified and non-acidified 

samples are also provided for comparison. The mass spectra for NH4OH and 15NH4OH 

samples looked similar with slight differences in the overall ion intensity. Due to the 

more dilute nature of L2 relative to L1, the methanol contaminant peaks are quite strong 

for these samples. However, the CHNO ions otherwise have a wide spread across the 

mass spectrum with the Gaussian-like distribution at a maximum just below m/z 500. The 

major difference between L1 (Figure 4.1) and L2 is the overall increase in DBE for L2, 

especially for CHNO compounds. 

  



81 

 

 

4.1.2  Ambiguity and Quality Assurance 

Before filtering and analyzing the data further, it was necessary to ensure there 

were no ambiguous assignments in the regular NH4OH samples, since the 15NH4OH data 

will ultimately be compared to it in order to remove unlikely formulas. Ambiguous 

assignments were limited to fewer than 50 in all NH4OH samples and a majority of them 

involved a mass difference between C12 and H4O7N2 (mass difference of 0.0019 Da). In 

these cases, the molecular formula with fewer N was selected based on several factors: 1) 

fewer heteroatoms tend to give more chemically feasible formulas (Koch et al. 2007); 2) 

Figure 4.2. Reconstructed mass spectra for MLS second elution (L2) samples. All mass spectra are 
divided by group and colors indicate DBE. a) Regular NH4OH without acid; b) 15NH4OH without 
acid. 
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CHO compounds are more likely to be detected than CHNO compounds in negative ESI 

due to poor N acidity; 3) the DBE values for formulas with fewer N are higher, and more 

representative of the overall sample; 4) the DBE-O values are closer to 7 or 8 as opposed 

to -12 or -13, which are more chemically reasonable (Herzprung et al. 2014); 5) the 

absolute error for the CHO assignments was lower than the CHNO assignments. After 

selecting the appropriate ambiguous assignments, the resulting list of formulas was 

considered the final list for the control samples. 

The 15N samples were then filtered for only molecular formulas present in the 

control sample, as described in Section 2.3.2. This filter greatly reduced the number of 

15NH4OH ions to less than the corresponding control data. There were no remaining 

ambiguous molecular formulas. The result of this filter is given in the van Krevelen plot 

in Figure 4.3. Figure 4.3a represents MLS L2 without acid, and Figure 4.3b represents the 

same with 0.1% acid. A majority of the CHNO molecular formulas with a high O/C and 

H/C were removed indicating the filter was effective. In addition, there is a noticeable 

similarity between samples with and without acid. 
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4.1.3 Composition of 15N Molecular Formulas 

The reconstructed mass spectra of the filtered results are given in Figure 4.4. It is 

clear that the species with 2 or 3 15N atoms are less reliable as they are low in abundance 

and scattered. Molecular formulas containing only one 15N have a bimodal distribution 

pattern, similar to what is seen in the control samples. This distribution is potentially due 

to oligomerization of lower molecular weight species, (Sun et al. 2010; Yasmeen et al. 

2010) and is clearly present in the isotopically-labeled samples. Figure 4.5 also indicates 

Figure 4.3. van Krevelen plots of MLS L2 with 15NH4OH molecular formulas after filtering. Plots are 
divided by group and colors indicate DBE. a) Sample without added acid; b) Sample with added acid. 
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the general absence of formulas in negative ESI containing 2 or 3 15N. There is also a 

faint trend in the 15N2 formulas with error inversely proportional to the formula mass. 

This indicates that the artifact does not significantly occur multiple times for the species 

observed as negative ions. As such, 15N2 and 15N3 molecular formulas are not further 

considered.  

Although the 15N formulas were matched to a molecular formula in the 14N 

samples, this does not necessarily mean the formulas are completely reasonable; they 

may still have unusual trends in terms of their error outside of the systematic instrument 

error. If the errors for the 15N molecular formulas do correspond to the error trends of the 

other species, then the 15N molecular formulas are more likely to be reasonable. The 

absolute error vs. mass plot is given in Figure 4.5 for MLS L2 with formic acid, sectioned 

by the number of 15N in the formula and colored by the absolute error to highlight 

distribution patterns. This sample was selected as an example because all other MLS and 

HLS samples with and without acid were similar. There are a significant number of 

molecular formulas in this sample with one 15N and the spread of the masses in the error 

plot is relatively random, closely resembling the trends of the other ions. It can then be 

concluded that these assignments are reasonable.  
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Figure 4.4. Reconstructed mass spectra of MLS L2 in 15NH4OH with acid molecular formulas. Colors 
indicate DBE and divisions are by formula based on the number of 15N atoms assigned. 

 

The breakdown of CHNO molecular formulas for each 15NH4OH sample is 

summarized in Table 4.1. This table is organized by the sample type and contains the 

total number of molecular formulas assigned after filtering against the control sample. 

Each sample is divided by the N-isotope; 14N indicates the assigned CHNO molecular 

formulas that contain only 14N atoms, and 15N indicates the assigned CHNO molecular 

formulas containing a 15N atom. In this case, the 14N molecular formulas can be 

considered representative of the “natural” amount of CHNO in the sample, while 15N 

molecular formulas are indicators of an artifact occurring. The CHNO MF and % Total 

MF represents the number of either CH14NO or CH15NO molecular formulas and the 
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percentage of these formulas compared to the total number of molecular formulas 

assigned. In addition, the total ion current (TIC) and average abundance are tabulated. 

The average abundance is calculated as the average measured abundance of all CH14NO 

or CH15NO ions and the TIC is the sum of the same values. These values are general 

measures of how significant these particular ions are within the mass spectrum.  

 

 

 

Figure 4.5. Absolute error vs. theoretical mass of MLS L2 in 15NH4OH with acid 
molecular formulas. Colors indicate DBE and plots are divided by formula based on the 
number of 15N atoms assigned. 
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For all samples, 35-45% of assigned molecular formulas contained one 15N. This 

value is significant, as regular 14N accounts for 13-23% of the assigned molecular 

formulas in all cases. This indicates that a majority of the reasonable CHNO compounds 

detected for L2 result from an artifact between the sample analytes and the NH4OH 

during the SPE process. Additionally, the total and average abundance of the 15N CHNO 

molecular formulas are between 2-10 times greater than those with 14N. Thus, the 

NH4OH artifact is not only significant in terms of number, but also in terms of ion 

abundance. Although these total abundance values are orders of magnitude less than 

those of the CHO molecular formulas, these values depict an overall increase in the 

CHNO content within these samples. This is consistent with the large number of CHNO 

compounds observed in the regular NH4OH-treated samples.  
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Table 4.1. Number of CHNO molecular formulas of different N isotopes for all samples.  
 

Sample 
Num. MF 

N 
Isotope* 

CHNO MF 
%Total 
MF** 

Total Ion 
Abundance 

Avg. Ion 
Abundance 

MLS L2, 0.1%FA 
1859 MF 

14N  404  21.7%  18030  44.6 
15N  666  35.8%  72262  109 

MLS L2, 0%FA 
1699 MF 

14N  401  23.6%  28620  71.4 
15N  762  44.8%  338525  444 

HLS L2, 0.1%FA 
1753 MF 

14N  220  13.4%  81776  372 
15N  615  37.4%  1451887  2361 

HLS L2, 0%FA 
1643 MF 

14N  274  15.6%  27913  102 
15N  775  44.2%  167187  216 

*14N represents CHNO MF with only 14N; 15N contains MF with at least one 15N. 
**Calculated as a ratio of CHNO MF to Num. MF in the first column. 

 

Several molecular trends for the isotopically-labeled MLS L2 with acid sample 

are summarized in the histograms in Figure 4.6. In all figures, the vertical axis represents 

the number of formulas with a particular variable such as oxygen number. The colors 

indicate the number of 15N atoms assigned in that molecular formula with blue 

representing formulas without 15N and cyan representing molecular formulas with one 

15N. In general, the C, O, and DBE trends for 15N formulas mirror those of the full data 

set, indicating it is difficult to attach the artifact formation to a particular molecular 

composition. The log(abundance) trends histogram depicts a mirroring effect as well; the 

15N molecular formulas have a generally lower intensity than non-labeled ones, but they 

have a very similar distribution. As a result, more steps are required to explain the nature 

of this artifact. 
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Figure 4.6. Molecular trends for CHNO ions in MLS with acid. Colors in all plots indicate molecular 
formulas containing 0 or 1 15N. All plots measure number of molecular formulas vs. a) Number of O; b) 
DBE; c) Number of C; d) ln(abundance). 

 

4.1.4 Potential Adduct and Reactive Artifact Pathways 

 Given the evidence for artifact formation in liquid smoke L2 samples, analysis to 

determine the nature of this artifact is needed. Ideally, the reaction pathways and 

precursor species can be determined. Although ammonia is well-known to be a versatile 

reactant, this preliminary investigation will focus on its interactions with carbonyl 

compounds. This is because CHO molecular formulas and carbonyl functional groups are 

important aspects in most biomass burning aerosol. (Baugh et al. 1987; Zhang and Smith 

1999)  
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 Typically, the reactions of carbonyls require acidic conditions to be favorable 

with a moderate nucleophile such as NH3. However, since some of the 15N molecular 

formulas are presumed to be reactive artifacts, the electrospray polarity does not 

necessarily restrict their formation. Reactions requiring a proton-donating catalyst may 

still occur prior to the electrospray process, especially since a small amount of water is 

present in the samples. 

 In negative ESI, three different artifact forming reaction pathways were studied, 

all involving NH3 interacting with a carbonyl compound. These general reactions are 

summarized in Scheme 1. In Scheme 1a, the oxygen of a ketone or aldehyde is replaced 

by NH to form an imine (Schiff base), via nucleophilic addition of NH3 to the carbonyl 

carbon and eventually transferring protons to the oxygen to eliminate H2O. Typically, this 

reaction favors mildly acidic conditions (Reusch 1999). This reaction is referred to as 

“Imine” for the remainder of this chapter. The reaction in Figure 4.7b is a less favored 

conversion of a carboxyl to an amide. Due to competing acid-base interactions between 

NH3 and the acid, this reaction requires high temperatures (>100oC) in order to proceed 

forward, which may be reached within the electrospray, but is unlikely to occur in 

solution. In addition, it is difficult to differentiate between this reaction and the reaction 

in Figure 4.7a, since the mass difference from precursor to product is identical in both 

cases (Loss of OH and addition of NH2). Figure 4.7c is theoretically the most likely 

reaction to occur, because it does not require an acid catalyst. This reaction pathway 

converts esters to amides via nucleophilic substitution, releasing a stable alcohol as a 

leaving group. A methyl ester is used as an example below, but this reaction can occur 
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with a variety of esters. This reaction route will be labeled as “Ester” for the remainder of 

this chapter. 

 

Figure 4.7. Potential reactive pathways for producing ammonia artifacts in liquid smoke. 

 

To determine if these particular reactions occurred, the 15N formulas were 

screened for the presence of one of the viable precursors within the MLS L2 0.1%FA 

sample as an example, as results for other samples were similar. For each reaction in 

Figure 4.7, the theoretical exact mass difference between the precursor and product was 

calculated and used to locate the potential precursors in the sample. For the 15NH4OH 

samples, the mass differences were based on the addition of 15N, while 14N was used for 

the control samples. The mass differences for the reactions involving both 14NH3 and 

15NH3 are given in Table 4.2. These mass differences were calculated as product mass 

minus the precursor mass. As stated previously, the mass differences for the imine 
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formation and the carboxylic acid hydrolysis are identical, so they cannot be 

differentiated in this manner. As such, due to the high energy requirements for the acid 

reaction, this analysis will be focused on the more favorable imine formation. For the 

ester to amide conversion, only the mass differences for methyl esters (OCH3) were 

considered. Although not included here, this procedure could easily be extended to other 

esters. 

 

Table 4.2. Mass differences between the organic products and reactants for reactions in Figure 4.7 used to 
locate potential precursors for 15N artifacts. 
 

Reaction 
Pathway 

Elements 
Added 

Elements 
Removed 

N14 Mass 
Difference 

N15 Mass 
Difference 

Imine 
Formation 

NH3  H2O  ‐0.98402  0.01302 

Acid to 
Amide 

NH3  H2O  ‐0.98402  0.01302 

Methyl 
Ester to 
Amide 

NH3  CH3OH  ‐14.99967  ‐14.00263 

 

Once the 15N samples were screened for precursors in each reaction pathway, an 

additional level of QA was performed to keep only molecular formulas most likely to 

occur from that pathway. The screening was performed on the control samples using 14N 

mass differences. Similar to the QA filter applied to the 15N data, the exact 

precursor/product reaction pairs needed to be present in the control samples as well. 

Following this filter, of the original 666 15N formulas, 586 could be traced to imine 

formation and 586 could be traced to a methyl ester hydrolysis. Surprisingly, these two 
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numbers were identical. Note that there is significant overlap between the two pathways, 

indicating some molecular formulas could have resulted from one or the other, or 

potentially both. 

In addition, the relative abundances of the product and the precursor were 

compared to determine the average extent of the equilibrium for artifact formation. Since 

there is such a breadth of molecular formulas and the exact conditions during the 

electrospray process are not well understood, there were no preconceived expectations. 

The boxplot distribution of the ratios of artifact abundance to precursor abundance are 

given in Figure 4.8. The red dot represents the mean abundance ratio for the sample. The 

left figure represents the ratio distribution for the imine formation pathway for the 

14NH4OH sample, and the right represents the same for the 15NH4OH sample. The 

vertical axis is scaled by the natural log of the abundance ratio, so positive numbers 

indicate a more abundant artifact ion while negative numbers indicate a more abundant 

precursor ion. 

Both the 15N and 14N samples have nearly identical distributions, again 

confirming that the NH3 artifact is replicable between the 14N and 15N samples. In 

addition, the distributions are each centered around a ratio of 2.5 with more than 75% of 

the data greater than 0, indicating that the reaction artifact for this proposed pathway is 

typically more abundant than the precursor. This implies that the equilibrium for this 

process favors the N-containing products, and that the reaction artifact significantly 

decreases the abundance of the present CHO precursor when it should be the dominant 

species. These trends also hold for the ester hydrolysis data. 
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Figure 4.8. Boxplots of the artifact-to-potential precursor abundance ratios in acidified MLS samples for a) 
imine formation; and b) ester hydrolysis. 0 and 1 N15 refer to the control and labeled NH4OH, respectively. 

 

To go one step further, it was desirable to assign potential artifact formulas to one 

particular reaction pathway when both pathways were possible to differentiate molecular 

formulas that may be more likely one or the other. Though there was no definitive 

method for doing so in such a complex mixture, artifact molecular formulas could be 

classified by their likelihood based on a comparison of their relative abundances. For 

molecular formulas where a potential artifact could be the result of both imine formation 

and ester hydrolysis in the 15N sample, the ratio of product/precursor abundance for each 

reaction was compared via a second ratio to the same reaction and product/precursor pair 



95 

in the regular sample. The reaction with this second ratio closer to 1 was then selected as 

the “assigned” reactive pathway for this artifact, as this pathway was more representative 

of abundance ratios in the regular NH4OH sample. Then, the pathway was assigned with 

a qualifier based on how different the abundance ratios of the two reaction pathways 

were. The meaning of these qualifiers are summarized in Table 4.3. 

 

Table 4.3. Definitions of qualifiers used in comparing likelihoods of each reaction.  
 

Qualifier  Description* 

Unambiguous 
Only one of the reactive pathways leads to this 

artifact. 

Good 
The percent difference in the abundance ratios 

in comparison to the control is > 100% 

Likely 
The percent difference in the abundance ratios 

in comparison to the control is 50‐100% 

Possible 
The percent difference in the abundance ratios 

in comparison to the control is 10‐50% 

Inconclusive 
The percent difference in the abundance ratios 

in comparison to the control is < 10% 
*Percent differences are a measure of how precursor-artifact abundance ratios compare between 15NH4OH 
and 14NH4OH for each reaction pathway. 

  

It is clear that this step is a large generalization that makes several assumptions. 

Although only the ratio closest to 1 is selected as the final product, it is entirely possible 

that both reactions do, in fact, occur in the same sample to yield the same CHNO 

molecular formula.  In addition, this assumes that 100% of the 15N peak is caused by a 

reactive artifact and 100% of the corresponding peak in the regular sample is due to the 

artifact as well. Although the former may be a reasonable assumption, the latter 
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assumption may not be, as there may be some naturally occurring amount of a particular 

CHNO compound that did not come from a reaction during SPE. The purpose of this 

investigation was to find any differences in the molecular parameters between the two 

reactive pathways, given molecular formulas that were likely to be associated with one 

pathway or the other. Because liquid smoke is such a complex mixture, it is still quite 

difficult to determine the true source of these artifacts. Though there are several precursor 

peaks that lead to valid formation pathways, confirming these pathways is nearly 

impossible for such a sample. 

  The results from this tagging and analysis are depicted in Table 4.4, where the 

averages of several molecular parameters are calculated for the potential artifact 

precursors in both MLS and HLS. The table is separated based on the reaction pathway as 

well as the likelihood of this reaction being dominant over the other pathway. Only the 

top three categories (Unambiguous, Good, and Likely) are included to contrast the two 

reaction pathways as much as possible. Despite this, there are great similarities between 

the two reactions based on these loose definitions. Across all likely reaction pathways, 

there is little difference in the molecular characteristics, even though there is a difference 

in the number of molecular formulas capable of undergoing each pathway, especially in 

the case of HLS. Interestingly, there are more Imine molecular formulas in MLS, but 

significantly more Ester formulas in HLS. The most notable differences between 

pathways are in HLS, where Ester precursors have a slightly higher average mass and 

number of oxygen. In MLS, this relationship is reversed and the Imines have more 
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precursors with a higher average mass and higher number of O. Clearly, this indicates 

subtle molecular differences between HLS and MLS.  

 Unambiguous molecular formulas for each pathway also indicate differences 

between the reactive species. Since there are so few Good and Likely formulas, these 

were not considered. Although the overall trends in theoretical mass and O number were 

different for MLS and HLS, both samples show the same trends for Unambiguous 

formulas, where the molecular mass and the number of oxygens are greater for the Imine 

reactions. In addition the DBE is slightly higher, indicating more unsaturation in the 

Imine precursors. This appears counterintuitive since Ester precursors naturally have two 

O atoms per functional group, while Imine precursors (ketones and aldehydes) have only 

one. This could either indicate that this method of separating reactions provides a weak 

representation of the molecular formulas potentially involved or that there are other 

factors that go into determining the most likely reactive pathway that have not been 

considered. 
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Table 4.4. Averages and counts of molecular formula parameters in MLS and HLS L2 with acid for 
precursors of each reaction pathway and likelihood. 
 

MLS ‐ L2 with Acid  Averages 

Rxn  Likelihood  Formulas 
Theoretical 

Mass 
O  N  O/C  H/C  DBE 

Ester 

All  293  381  7.60  0.01  0.39  1.00  11.1 

Unambiguous  71  392  7.76  0.04  0.39  0.98  11.6 

Good  10  489  10.80  0.00  0.44  0.83  14.9 

Likely  3  312  7.33  0.00  0.49  0.74  10.7 

Imine 

All  325  406  8.33  0.01  0.41  0.97  11.7 

Unambiguous  77  403  8.30  0.04  0.41  0.92  12.2 

Good  11  428  9.27  0.09  0.45  1.05  11.5 

Likely  10  539  11.80  0.00  0.44  0.93  14.7 

HLS ‐ L2 with Acid  Averages 

Rxn  Likelihood  Formulas 
Theoretical 

Mass 
O  N  O/C  H/C  DBE 

Ester 

All  445  411  8.24  0.01  0.39  1.03  11.3 

Unambiguous  96  442  8.93  0.02  0.39  1.00  12.4 

Good  26  467  10.30  0.04  0.44  0.89  13.6 

Likely  14  368  8.21  0.00  0.44  0.98  10.6 

Imine 

All  248  397  7.90  0.02  0.39  1.00  11.2 

Unambiguous  94  454  9.28  0.03  0.40  0.99  12.8 

Good  6  401  8.33  0.33  0.38  0.83  12.7 

Likely  3  341  8.00  0.00  0.62  1.00  8.33 

 

 

 To supplement these trends, Figure 4.9 summarizes the trends in abundance, O, 

DBE, and C for the possible precursor molecular formulas with some evidence of 

artifact-formation separated by the assigned reaction pathway. All of the molecular 

formulas in these plots correspond to species labeled as “unambiguous”. Again, there is 

little notable difference between reactive pathways, especially with a much smaller set of 

the data. The most noteworthy observation from these plots is the staggering number of 

molecular formulas containing 5 O atoms in comparison to other O numbers (Fig 4.9b). It 
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is uncertain why this particular oxygen number is so high and may be the focus of a 

future investigation. 

 Although there is clear evidence for artifact formation during the SPE process, it 

is still rather ambiguous how these artifacts are forming, as there is little distinctive 

difference between precursors of different reaction pathways. In addition, it is difficult to 

know what species are responsible for the artifact with such a complex mixture. 

 

 
Figure 4.9. Molecular trends for potential artifact precursors in MLS with acid. All plots are 
colored by reactive pathway, and only includes those unique to that reaction. a) Number of 
formulas vs. ln(abundance); b) Number of formulas vs. number of O; c) Number of formulas 
vs. DBE; d) Number of formulas vs. number of C. 
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4.2 Positive ESI Analysis 

4.2.1 Initial Molecular Formula Assignment 

The data analysis for the positive ions was similar to the negative ions, however, 

additional intermediate steps were performed to prepare and filter the data due to the 

greater overall positive ion mass spectral complexity. For similar reasons, only MF less 

than m/z 500 were included in positive ion analysis. The goal was to determine the 

presence of the most likely 15N artifact ions and not to attain a complete understanding of 

liquid smoke composition. Focusing on the lower mass range reduced data complexity 

inherent at higher mass ranges and potentially increased the reliability of the results, 

though limits the conclusions to lower mass ions. The ion distribution of L1 MLS is 

illustrated in Figure 4.10. HLS had similar complexity and can be assumed to have 

similar trends, so MLS will be the focus for the remainder of the chapter. There are large 

numbers of CHO and CHNO ions, as well as a significant number of CHN ions. Both 

CHO and CHNO compositions show a wide distribution of masses and DBE values; as a 

result, resolving ambiguity required additional steps for the L2 samples. 
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4.2.2 Ambiguity and Quality Assurance 

Similar to the negative ions, a reduction of the ambiguous MF assignments is 

necessary even without the 15N considerations. This is due to the large number of 

heteroatoms and inclusion of Na+ during molecular formula assignment, especially 

impacting higher m/z values. Thus, there are more chemically reasonable molecular 

formulas for a given measured mass within 3 ppm mass error. The chemically reasonable 

MF could be considered correct without applying other methods to validate them. 

Figure 4.10. Positive mode reconstructed mass spectra for the initial assignment of 
the first elution (L1) MLS sample. Mass spectra are separated by group and colored 
by DBE. 
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Ambiguity was reduced in the control samples based on two factors. First, all MF 

with a DBE-O (DBE minus number of oxygens) value below -10 were removed. This is 

based on the work of Herzsprung et al. (2014), which concluded MF assignments can be 

validated by their DBE-O values. This was based on the compositions of water-soluble 

dissolved organic matter, where species had DBE-O values between -10 and 10. Species 

with a large number of O and a very small DBE value, or highly negative DBE-O values, 

can be considered chemically unreasonable. In addition, due to the concentrated brown 

color of liquid smoke, it is inferred that these samples are very light absorbing, and thus 

are expected to contain large amounts of phenols, pyridines, or other aromatic moieties, 

as liquid smoke is a product of wood burning (Montazeri et al.2012). This implies that 

the lower DBE ions are less likely to be detected than higher ones for these samples.  

Second, any MF with Na+ adducts associated with CHNO compounds were 

removed if the DBE > 12. This was done because Na+ adducts were less likely to be 

associated with N among the unambiguous formulas (Kruve et al. 2013). The caveat of 

removing those with DBE > 12 is based on the molecular characteristics of the 

unambiguous MF for all samples, where if a positive ion CHNO had a Na+ adduct, its 

DBE was below 13. This step is fairly arbitrary and was based only on trends in the 

unambiguous MF.  

If a MF was still ambiguous after these steps, it was removed entirely from 

analysis for simplicity, since both formulas were deemed to be chemically feasible with 

similar numbers of heteroatoms and difficult to choose a more correct one. Less than 50 

ambiguous formulas were removed as a result. The resulting molecular formulas after 
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these filters were then considered “unambiguous”, and were added to the original list of 

unambiguous assignments as the final regular NH4OH data set. 

Formulas in the 15NH4OH samples were then filtered against the unambiguous 

formulas in the analogous control samples as was done previously to simplify the mass 

list and remove ions that are not present in the control. This also served to automatically 

remove most of the ambiguous 15NH4OH MF, reducing the ambiguity from over 2500 

molecular formulas to below 400 for MLS L2 without formic acid. Many of the 

remaining ambiguous pairs had differences in the number of heteroatoms including O, N, 

and 15N. Typically, the MFAssignR software takes this into account during the MF 

assignment and automatically removes the formula with a greater total of heteroatoms 

from consideration. This is based on the idea presented by Koch et al. (2007), where 

compounds with fewer heteroatoms are more likely to be chemically feasible due to rules 

of valence. However, since it was desirable to manually sort the ambiguous formulas due 

to the inclusion of 15N, this parameter was ignored until there was more confidence that 

crucial 15N or non-15N assignments weren’t preemptively removed. However, it was 

deemed reasonable at this point in the filtering process to remove ambiguous formulas 

based on the heteroatom count. Thus, for any remaining ambiguous pairs, the one with 

the lowest sum of O, N, and 15N were kept. Ambiguous formulas remaining after this step 

(usually less than 5% the total number of formulas in the sample) were then removed 

completely as with the regular NH4OH data.  

Results after the filters were applied filters are shown in the elemental group 

separated van Krevelen plots in Figure 4.11, where Figure 4.11a summarizes the MLS L2 
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with acid sample and Figure 4.11b summarizes the MLS L2 without acid sample. This 

filter successfully removed molecular formulas outside of the control sample range to 

simplify the data set in both cases. Most of the higher DBE species are now absent from 

the plots, which was expected due to the removal of MF > m/z 500. The acidified and 

non-acidified samples each have similar distributions of ions, although the acidified 

sample appears to have a greater density of both positive CHO and CHNO ions. This is 

consistent with the general trend where the acidified LS samples yielded more detectable 

ions than the non-acidified samples, since H+ facilitates ionization.  

 

Figure 4.11. Positive mode van Krevelen plots of MLS L2 with 15NH4OH molecular formulas after 
filtering. Plots are divided by group and colors indicate DBE. a) Sample without added acid; b) Sample 
with added acid. 
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4.2.3 Composition of 15N Molecular Formulas 

As with the negative ion mode, the absolute error plots (Figure 4.12) were used to 

determine the nature of the 15N-containing formulas, and whether their assignments 

showed a similar trend as non-labeled MF or if they could be considered incorrect 

assignments. The MF in the plot are separated by the number of 15N. In this case, the 15N0 

plot refers to any molecular formula without 15N atoms, including both CHO and natural 

CH14NO MF. There is a noticeable jump in measurement error for the 15N0 formulas 

below m/z 200. With this spike in consideration, 15N1 and 15N2 formulas generally follow 

the 15N0 error trend, indicating that both of these molecular formulas are likely the correct 

assignments. There are fewer 15N3 formulas, but they also follow the general trend of 15N0 

MF. Due to these reasons, all three groups of molecular formulas containing 15N were 

considered valid during the following assessment of the artifact composition.  
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Figure 4.12. Absolute error vs. theoretical mass of MLS L2 in 15NH4OH with acid molecular formulas. 
Colors indicate error and plots are divided by formula based on the number of 15N atoms assigned. Data 
is given in positive ESI mode. 

 

Mass spectra for each number of 15N in Figure 4.13 highlight the general ion 

abundance and DBE trends for each number of 15N. In this case, 15N0 refers to any 

molecular formula with no 15N atoms. 15N1 MF above m/z 300 have a notably higher ion 

abundance than those in the non-labeled MF. This could be due to artifact products with 

an especially high ionization efficiency, differences in the solvent composition, or CHO 

ions being misassigned as CH15NO.15N2 MF were also detected at the higher m/z range, 

but ion abundances generally followed trends in 15N0 where the most abundant ions were 
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below m/z 200. Similarly, 15N3 MF were generally less than m/z 200, although it was 

difficult to describe their trends due to the low numbers and intensities of these ions. 

These are not shown for clarity. Overall, the compositions of MF with different numbers 

of 15N are very different from each other. 

 

Figure 4.13. Positive mode reconstructed mass spectra of MLS L2 in 15NH4OH without acid molecular 
formulas. Colors indicate DBE and divisions are by formula based on the number of 15N atoms assigned. 
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 The number of CHNO molecular formulas for each L2 sample separated by N 

isotope are given in Table 4.5, which tabulates the number of formulas for each isotope 

of N and their percentages with respect to the entire data set. Total and average ion 

abundances of each are defined as the sum and average of the ion abundances of each 

isotopic CHNO molecular formula. Since multiple 15N atoms per MF were possible for 

positive ESI, the 15N rows includes all 15N1, 15N2, and 15N3 MF. All samples had a similar 

or greater number of 15N MF than 14N with 15N having up to 12.7% more molecular 

formulas than 14N. Based on these percentages, the NH4OH-sample interaction 

contributes more than one-third of the total number of MF, and at least half of all 

detected CHNO ions. 15N MF contribute a significant amount to the total ion abundance, 

although this difference is not as extreme as it was for negative ESI. The average 

abundance for 15N is also higher than 14N in all samples, which is expected based on the 

abundances of 15N1 ions in Figure 4.13. 

 

Table 4.5. Number of positive ion CHNO molecular formulas of different N isotopes for all samples. 
 

Sample 
Num. MF 

N 
Isotope* 

CHNO 
MF 

%Total 
MF** 

Total Ion 
Abundance 

(x107) 

Avg. Ion 
Abundance 

(x104) 

MLS L2, 0.1%FA 
3571 MF 

14N  1244  34.8%  1.75  1.41 
15N  1284  36.0%  1.46  2.37 

MLS L2, 0%FA 
3095 MF 

14N  1200  38.8%  1.44  1.20 
15N  1331  43.0%  1.05  1.72 

HLS L2, 0.1%FA 
2957 MF 

14N  971  32.8%  1.09  1.12 
15N  1260  42.6%  2.54  5.84 

HLS L2, 0%FA 
3321 MF 

14N  995  30.0%  0.94  0.94 
15N  1419  42.7%  6.11  1.58 

*14N represents CHNO MF with only 14N; 15N contains MF with at least one 15N. 
**Calculated as a ratio of CHNO MF to Num. MF in the first column. 
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Various trends with respect to the number of 15N formulas are given in Figure 

4.14, where 15N0 is inclusive of natural CHNO ions. The most significant difference in 

the distributions is in the abundance trends plot in Figure 4.14a, where there is a clear 

shift in the ion abundance with changing 15N, as observed in Figure 4.13. Molecular 

formulas without 15N still show a slightly lower abundance overall, but the 15N1 MF have 

a unique ion abundance distribution. Trends in O, DBE, and C (Figures 4.14(b-d)) are 

very similar among most numbers of 15N, with the exception of 15N3 since there are fewer 

observed ions, which tended to center around lower DBE and C numbers.  
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4.2.4 Potential Adduct and Reaction Artifact Pathways 

As discussed in Section 4.1.4, it is desirable to investigate the possible reaction 

pathways for the formation of 15N species given the positive ion electrospray conditions. 

Positive ESI is an acidic process, so it was hypothesized that it may be more favorable for 

acid-catalyzed reactions. The reactive artifacts considered for the negative mode ions 

(Ester hydrolysis and imine formation) were also considered for the positive ions with 

two additional pathways. One additional pathway was the adduction of NH4
+ to an 

Figure 4.14. Positive mode molecular trends for MLS with acid. Colors in all plots indicate 
molecular formulas containing 0 or 1 15N. All plots measure number of molecular formulas vs. a) 
ln(abundance); b) Number of O; c) DBE; d) Number of C. 
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analyte during the ionization process. Since NH4
+ is a cation, it can potentially adduct to 

analytes similar to H+ or Na+. This would be considered an electrospray artifact rather 

than a reaction artifact. The second additional pathway is the formation of imidazole, a 

five-membered dinitrogen heterocycle. Imidazole has been found to be an important 

product for aqueous phase processing of isoprene secondary organic aerosol (Galloway et 

al. 2009; Lin et al. 2015; Hawkins et al. 2018) when in the presence of ammonium 

sulfate. The reaction as detailed in Scheme 2 involves aqueous NH3 and glyoxal 

derivatives to produce substituted imidazoles of varying identities. Although many 

different substitutions are possible, the focus in this study was placed on the formation of 

the final product in Figure 4.15 – an imidazole with no substitution on C2. 

 These additional adducts and reactive artifacts were studied in a similar manner as 

described in Section 4.1.4 using exact mass searches for potential precursors for the 15N 

molecular formulas. The precursors were located with a specific theoretical mass based 

on the theoretical mass difference between the precursor and the imidazole or adduct. 

Ester hydrolysis and imine formation were also considered in a similar way. The 

differences used for adduct and imidazole formations are summarized in Table 4.6.  
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Figure 4.15. Potential mechanism for imidazole artifact formation. Based on mechanisms proposed in 
Galloway et al. (2009).  

 

Table 4.6. Mass differences between the organic products and reactants for adduct and imidazole reactions 
used to locate potential precursors for 15N artifacts. 
 

Reaction Pathway 
Elements 
Added 

Elements 
Removed 

14N Mass 
Difference 

15N Mass 
Difference 

NH4
+ Adduct  NH4

+  H+  17.02655  18.02358 

Imidazole 
Formation 

N2CH2  O2  10.03197  12.02604 

 

 The additional QA step performed with the negative mode ions (Section 4.1.4) 

was performed with the positive mode ions, where the precursor-product pair was 

considered valid only if the same pair was present in the control sample. This was the 

final QA step since it was more difficult to determine which reaction was the most likely 

for a given precursor. The results of these exact mass searches are summarized in Table 

10, where the data for MLS and HLS without acid are given as examples. NH4
+ adduct 

formation was the most likely artifact pathway based on this screening approach in both 

samples, followed closely by methyl ester hydrolysis. Although the theoretical masses of 
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all reaction precursors were very similar, NH4
+ adduct formation occurred at a slightly 

lower theoretical mass on average. This is likely due to the requirement of more oxygen 

and subsequently a larger mass for the reaction to occur, whereas adducts can 

theoretically form with a wider range of compounds. The greater amount of oxygen for 

the reaction artifacts supports this. Imidazole precursors had the greatest amount of 

oxygen of all reactive artifacts, which is justifiable since the precursor requires two 

carbonyl groups instead of just one. As with the negative ion data, it is difficult to 

separate Esters and Imines by molecular parameters, with the only minor difference 

between the two being a marginal increase in DBE for imines.  Fewer MF match to 

imidazole reaction precursors, which is expected since only MF with 15N2 or 15N3 have 

the potential to be imidazoles from artifact formation.  
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Table 4.7. Averages and counts of molecular formula parameters in MLS and HLS L2 with acid for 
precursors of each reaction pathway. 
 

MLS ‐ L2 without Acid  Averages 

Rxn  Formulas  Theoretical Mass  O  N  O/C  H/C  DBE 

Adduct  457  229  3.45  0.17  0.27  0.99  7.66 

Ester  438  241  3.82  0.21  0.30  1.11  7.16 

Imidazole  226  243  4.39  0.18  0.37  1.10  6.94 

Imine  400  239  3.96  0.20  0.31  1.06  7.37 

HLS ‐ L2 without Acid  Averages 

Rxn  Formulas  Theoretical Mass  O  N  O/C  H/C  DBE 

Adduct  688  223  3.68  0.10  0.31  1.01  7.16 

Ester  642  238  4.08  0.13  0.33  1.15  6.59 

Imidazole  175  228  4.34  0.07  0.38  1.14  6.17 

Imine  468  233  4.01  0.14  0.33  1.08  6.88 

  

The average DBE of the adduct precursors is generally higher than that of the 

reaction artifact precursors, even though DBE is not a requirement for adduct formation 

as it is for reaction artifacts. This could indicate many of the ions that preferentially 

undergo adduct formation are more aromatic, as these double bonds would be inert to the 

reaction process. This is confirmed in Figure 4.16, where each reaction is plotted in a bar 

plot against the number of potential precursors for the MLS without acid sample. Colors 

represent the modified aromaticity index (AImod), which is a qualitative description of the 

aromaticity and unsaturated character of a MF based on the relative numbers of each 

atom proposed by Koch et al (2007). The calculation of this value was given in Equation 

3.1, where in the case of the 15N samples, the number of 15N is included in the number of 

N. The number of aromatic or condensed aromatic formulas is significantly higher for the 

adduct formulas than those in reaction artifacts, indicating adducts are more likely to 

form than reactive artifacts for aromatic species. This could also be explained by the 
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stability of aromatic compounds. Since the reactive artifacts involve interaction with the 

electrophilic carbon of a carbonyl, it follows that a more reactive carbonyl will be more 

susceptible to attack by NH3. However, if this carbonyl is adjacent to an aromatic ring, 

the ring would be capable of stabilizing the partial positive charge on the carbon, making 

it less reactive and therefore less capable of undergoing reactions. 

 

Figure 4.16. Number of formulas vs. reaction pathway in positive mode MLS L2 without acid. Colors 
indicate modified aromaticity index (AImod). 

  

Elemental trends for MLS positive ions without acid are shown in Figure 4.17 and 

provide little distinction between the reaction types. Most, if not all, distributions among 

the reactions are visually similar, as might be expected based on Table 4.7. There is a 
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sharp decrease in the number of molecular formulas for all reactions starting with O = 5, 

then again at O = 7.  This may be a result of the cutoff applied at m/z 500. 

 Although there are a large number of MF that can be traced to one or more 

different reactions or adducts, it is difficult to discern the true pathways for the formation 

of 15N products. Based on methods here, there is a difference in the aromaticity between 

potential adduct and reaction precursors, but there is little difference between the 

molecular characteristics among potential reaction pathway precursors.  

 
Figure 4.17. Molecular trends for potential positive mode artifact precursors in MLS with acid. All plots 
are colored by reactive pathway, and includes all possible precursors for each reaction. Plots measure 
number of molecular formulas vs. a) ln(abundance); b) Number of O; c) DBE; d) Number of C. 
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5 Characterization of Artifacts Formed in Methanol-
Solvated Liquid Smoke Using Electrospray Ionization 

 

To connect the artifact produced analytes with a reaction pathway and determine 

their extent several steps are required. A preliminary assessment of the initial molecular 

formula composition was performed and used as a starting point for removing unlikely 

MF in the MeOH-d3 sample. Then, molecular formulas with D were connected to 

potential reaction precursors and verified through several quality assurance steps and 

assumptions. Lastly, differences in the composition of the precursors for each reaction 

pathway were investigated to understand the molecular characteristics susceptible to 

artifact production. 

5.1 Preliminary Molecular Formula Composition 

Mass spectra for the preliminary assignment of both positive and negative ions in 

the regular MeOH sample are given in Figures 1a and 1b, which are separated by 

elemental group. CH and CHN molecular formulas are excluded due to lower numbers 

and they are less relevant to the reactions studied. The MeOH-d3 mass spectra are not 

included due to the high ambiguity during the initial MF assignment. The abundance axes 

scaled to show the ion distributions at higher m/z values, and the abundance values are 10 

times higher in the positive mode than negative mode due to the greater ion intensities. 

This is related to the amount of reduced N in biomass burning samples (Laskin et al. 

2009). Ions are well distributed past m/z 700 in both ionization modes with increasing 

DBE for increasing mass. The bimodal distribution in negative CHO ions is typical for 
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biomass burning samples and is a result of oligomerization due to monoterpene 

influences (Zhao et al. 2013). As expected, there is a greater number of positive CHNO 

ions than negative CHNO ions due to the N basicity. The tall ions around 300 are S-

containing contaminants present in MeOH and were removed in future processing steps. 

Also, there is a noticeably high density of positive CHNO ions up to m/z 600, which are 

likely polynitrogen species (Galloway et al 2009; Hawkins et al. 2018). Generally, the 

positive ion mass spectra are more complex than the negative ion spectra, due primarily 

to the larger number of ions and the possibility of multiple adduct ions (H+ and Na+). 
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Figure 5.1. Reconstructed mass spectra for MLS in a) negative ion mode, and b) positive ion mode. Ions 
are divided by elemental group and colors represent DBE. 
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 van Krevelen plots for the negative (Figure 5.2a) and positive (Figure 5.2b) ion 

molecular formulas highlight the complexity of the MeOH-d3 MF assignment. The 

figures are divided by elemental group and solvent. The regular MeOH samples have van 

Krevelen distributions expected for biomass burning complex mixtures (Brege et al. 

2019), with assignments generally following a trend line of increasing H/C for increasing 

O/C and the highest DBE values at H/C < 1 and O/C < 0.5. This indicates the samples 

have many aromatic constituents, which is expected since the liquid smoke samples are 

expected to have many phenolic compounds (Montazeri et al.2012).  The positive CHNO 

ions are more complex with many assignments in the aliphatic region of the plot. MeOH-

d3 plots are additionally more complex than MeOH with unusually high densities of ions 

in many regions, such as the cluster centered around 1.3 H/C and 0.5 O/C for positive 

CHNO ions. This is due to the ambiguous assignments, which were removed in future 

filtering steps. 

 A comparison of MF assignments before reducing the ambiguity are given in 

Table 5.1. The data is divided by ion polarity and solvent. There are generally more MF 

assignments of positive ions even with ambiguity considered, which is consistent with 

Figures 5.1 and 5.2. More MF were also assigned in MeOH-d3 for both polarities due to 

ambiguity. However, fewer positive CHNO ions were assigned in MeOH-d3 than regular 

MeOH, potentially due to CHNO ions with D3 being misassigned as CHO. There is a low 

number of CHN and CH assignments in both polarities (< 2% their respective totals), and 

although are likely correct assignments, they were omitted from the analysis. 
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Figure 5.2. Initial van Krevelen plots for a) negative mode ions, and b) positive mode ions. Plots are 
divided by elemental group for each sample and colors represent DBE. The leftmost plots in both a) and 
b) represent ions in regular MeOH, and the rightmost plots represent ions in MeOH-d3. 
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Table 5.1. Ambiguous and unambiguous molecular formula for each elemental group in each solvent with 
respect to the ionization polarity. 
 

 Negative Ions  Positive Ions 

Group  MeOH  MeOH‐d3  MeOH  MeOH‐d3 

CHO  1743  2083  2164  2781 

CHNO  277  1509  3623  3050 

CHN  1  10  74  49 

CH  1  7  13  10 

Total  2022  3609  5874  5890 

 

5.2 Preliminary Filtering of Formulas 

As with the NH4
+ artifact, molecular formulas were filtered to simplify the data 

set and limit the analysis to only the most likely molecular formulas. Although several 

filters were applied to the data, this section discusses two preliminary filters to refine the 

data set and explore molecular characteristics.  

The first filter applied to the MeOH-d3 sample was to remove MF with 

unexpected numbers of D. The reactions of interest would include the per-deuterated 

methyl group and thus the most likely artifact molecular formulas should only contain D 

in multiples of 3. Therefore, only MF containing 0, 3, or 6 D were considered as 

potentially valid. For the second filter, MeOH-d3 MF were compared to the control 

formulas as described in Section 2.3.2. This filter removes all of the remaining ambiguity 

from both polarities of MeOH-d3 ions. These filters greatly reduced the complexity of the 

MeOH-d3 data (Figure 5.3) making them more comparable to the regular MeOH data, as 

expected.  
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Figure 5.3. van Krevelen plots of MeOH-d3 after filtering against regular MeOH in a) negative mode; b) 
positive mode. Plots are divided by group and colors indicate DBE. 

 

The improved reconstructed mass spectra post-filtering are given in Figure 5.4a 

and 5.4b representing negative and positive ions, respectively. The mass spectra are 

divided by the number of D in the assigned MF. Both polarities display lower deuterated 

ion densities. These MF are also generally lower in intensity, which is to be expected 

based on the nature of the reactions of interest, as they typically require a strong acid to 

proceed (Reusch 1999). While there are few noticeable trends for the negative ions, there 

is a marked overall reduction in the DBE values for the positive deuterated ions, 

providing evidence for a reaction artifact. A significant difference between the positive 

and negative ions is due to the presence of D6 ions, which were absent in the negative 
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ions. This implies the electrospray process may have some impact in shifting the 

direction of the equilibrium for the artifact reactions. 

The numbers of MF, total abundance, and average abundance for each ionization 

mode are summarized in Table 5.2. Ion type is separated by the number of D, and the 

%total MF was calculated relative to the total number of MF in that ionization mode. The 

TIC (Total ion current) represents the sum of the total abundance. About 15-20% of the 

MF in both ionization modes are deuterated with a slightly larger percentage for negative 

ions. However, positive D3 and D6 ions compose a larger amount of the positive TIC than 

negative D3 ions do for the negative mode. In addition, the average abundance of 

deuterated ions is more significant for positive mode. This indicates that even though 

there are more D formulas in negative mode, they may have more impact in positive 

mode. However, these are raw numbers of D-containing formulas; and these numbers 

were reduced after connecting MF to potential reaction precursors. 
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Figure 5.4. Reconstructed mass spectra for filtered MeOH-d3 data obtained in a) negative mode; b) positive 
mode. Molecular formulas are divided by number of D, and colors represent DBE. 
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Figure 5.4 (cont.) Reconstructed mass spectra for filtered MeOH-d3 data obtained in a) negative mode; 
b) positive mode. Molecular formulas are divided by number of D, and colors represent DBE. 
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Table 5.2. Number of molecular formulas with each number of D for negative and positive ions.  
 

Ionization 
Mode 

Total MF 

Number 
of D 

MF 
%Total 
MF* 

Total Ion 
Abundance 

(x108) 

Avg. Ion 
Abundance 

(x105) 

Negative Ions 
1567 MF 

0  1266  80.8%  88.23  69.69 

3  301  19.2%  0.78  2.60 

Positive Ions 
3542 MF 

0  2960  83.6%  630.88  213.14 

3  386  10.9%  59.07  153.02 

6  196  5.5%  11.10  56.63 
*Calculated based on Total MF in the first column. 

  

Various molecular characteristics for the positive ions are given in Figure 5.5, 

where the number of MF with respect to abundance, number of O, DBE, and number of 

C are plotted for D0, D3, and D6 ions. Negative ions are not included as the D3 trends 

closely matched the trends of D0 and did not offer new information on the molecular 

characteristics in the sample. The positive ion D3 and D6 MF follow the general 

abundance trend of the positive D0 MF, where there is a large variability in abundance 

(Figure 5.5a). The D6 MF are shifted to a lower abundance than the D3 MF, which is 

expected based on the reaction pathway. Oxygen numbers (Figure 5.5b) tended to be 

lower in the deuterated MF than in non-deuterated MF, although they had roughly 

equivalent modes around 4-5 O. Also there is a small, secondary mode for D3 ions. This 

could potentially be due to the characteristics of the sample, although this feature was 

more prominent for negative ions. Carbon numbers (Figure 5.5c) were similar to the 

oxygen numbers, although the primary mode was around 12 C and the secondary mode 

was not present. Also, D3 formulas were not measured at higher carbon numbers unlike 

they were with higher oxygen. However, there were a few outlier D3 and D6 MF around 
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24 C, which cannot be explained by the bimodal distribution. The cause of these outliers 

is unclear. 

 DBE values (Figure 5.5d) show a more distinct trend for deuterated ions. All D3 

ions had DBE values < 9 and a majority of D6 formulas showed this trend as well with 

the exception of outliers above 10. Although the shape of the D distributions is roughly 

similar to the D0 distribution, it is possible that D may not interact with the sample 

species at higher DBE values. This could indicate that these reactions may not occur in 

the presence of highly unsaturated species, such as aromatic systems. This will be 

explored further as these MF are evaluated for their potential reaction pathways.  
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Figure 5.5. Molecular trends for positive mode MeOH-d3. Colors in all plots indicate the number of D in 
each molecular formula. All plots measure number of molecular formulas vs. a) ln(abundance); b) 
Number of O; c) Number of C; d) DBE. 

 

5.3 Potential Pathways of Artifact Formation 

With the evidence of the MeOH-d3 interactions with the MLS analytes, the next 

step was to determine if these artifacts were a result of certain reaction pathways, and if 

so, what molecular characteristics were most likely to promote this artifact formation. 

The focus of this investigation was restricted to reactions with carbonyls due to their 

prevalence in biomass burning processes and by extension MLS. 
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 As with the NH4
+ artifact formation, these reactions are expected to occur 

predominantly in acidic conditions and have the potential of occurring in solution. 

However, the ESI process can alter the pH of the solution by inducing an excess charge 

in solution, which concentrates the droplets (Zhou et al. 2002). Therefore, it is possible 

that positive ESI may accelerate this reaction. As such, it was necessary to study these 

reactions in both polarities to understand the dominant factor in controlling the artifact 

formation.  

 Three related reactions were studied in positive ESI based on the studies of 

Bateman et al. (2008). All methanol reactions involve a carbonyl group with either acyl 

addition or substitution, and thus all steps are in equilibrium (Figure 5.6). Reaction A 

involves a molecule of methanol reacting with a carboxylic acid via nucleophilic acyl 

substitution to eliminate water and form a methyl ester. The results from this reaction are 

subsequently labeled “Ester”. Reaction B is the nucleophilic addition of a molecule of 

methanol across the carbonyl of a ketone or aldehyde. This results in a hemiacetal 

product, where an ether and alcohol are bound to the same carbon. The results from this 

reaction are subsequently labeled “Hemi”. Reaction C is a continuation of reaction B, 

where the hemiacetal product reacts with another molecule of methanol to eliminate 

water and form an acetal, with two ethers bound to the same carbon. Since it requires a 

hemiacetal to be present, reaction C should be less likely than A and B. Reaction C will 

be labeled “Acetal” for the remainder of this work. Only reactions A and B were assessed 

for the negative ions since no D6 MF passed the filtering steps. In addition, only negative 

CHO ions were investigated since there were few negative CHNO ions. 
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Figure 5.6. Proposed mechanisms of potential reactions between MeOH and carbonyls leading to 
deuterated formulas. A) Fischer Esterification from a carboxylic acid; B) Hemiacetal formation from a 
ketone/aldehyde; C) Acetal formation from a hemiacetal formed in B). 

 

 To determine if these reactions were potentially occurring, all filtered D3 and D6 

molecular formulas in MeOH-d3 were screened against D0 formulas to determine if the 

precursors existed for these reactions based on theoretical mass differences, as described 
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in Section 4.1.4 for 15N molecular formulas. Regular MeOH MF were treated similarly, 

but the D0 mass difference was used instead of the deuterated mass difference. The mass 

differences for D0 and D3 (or D6) are summarized in Table 5.3. Reactions A and B were 

evaluated for D3 MF, and Reaction C was evaluated for D6 MF, since acetals would 

theoretically add two CD3OH groups to the precursor.  

Once the matches for each reaction were found in MeOH-d3, these matches were 

again filtered by applying three additional criteria. First, any artifact-precursor pair in 

MeOH-d3 was required to exist in regular MeOH, as was done with the 15NH4OH 

samples prior. Second, the relative abundances of each reaction ion were evaluated 

against the potential precursor, and only those with a product ion abundance less than that 

of the precursor were kept. Since these reactions require sufficiently acidic conditions to 

promote the equilibrium to shift, it was assumed that the precursor should be more likely 

to exist than the produce. Most precursor/product pairs displayed this trend. Third, acetal 

precursors were retained only if the same Hemi precursor was present. Since acetal 

formation is an equilibrium process, this reaction was not expected to occur without the 

hemiacetal intermediate also being detected. (Reusch 1999; Bateman et al. 2008) 

 Of the 386 positive D3 MF, 272 had a potential Hemi precursor, while 229 had a 

potential Ester precursor. In addition, 66 of the 196 positive D6 MF had a potential Acetal 

precursor. The numbers were similar for the negative ions, although no D6 MF existed. 

There was a large amount of overlap between Ester and Hemi MF, indicating these 

molecular formulas could have resulted from both reaction pathways.  
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Table 5.3. Mass differences used to locate potential precursors for each reaction in regular and MeOH-d3. 
 

Reaction 
Pathway 

Elements 
Added 

Elements 
Removed 

MeOH Mass 
Difference 

MeOH‐d3 Mass 
Difference 

Ester  CH3OH  H2O  14.01565  17.03448 

Hemi  CH3OH  N/A  32.02621  35.04504 

Acetal  2 CH3OH  H2O  46.04186  52.07952 

 

 Due to the amount of overlap, it was desirable to determine the reaction pathway 

most likely to lead to the production of an artifact ion for those with both possible 

precursors. This was performed similarly to the 15NH4OH artifact evaluation (Section 

4.1.4). Briefly, MeOH-d3 ions were assigned to reactive precursors based on how closely 

each reaction’s precursor/product ratios matched to the same precursor/product pair in the 

regular solvent. Labels were assigned based on the percent difference between each 

reaction to denote their likelihood. All acetal formulas were automatically unambiguous, 

since D6 MF were only evaluated for acetal precursors. It is possible there are D6 ions 

resulting from two successive methanol reactions (either Reaction A or Reaction B in 

Figure 5.6) in the same molecule, however, these reaction combinations were not studied. 

 Compared to unambiguous MF, there were very few reaction artifacts with Good 

or Likely classifications. As a result, only the unambiguous assignments for each reaction 

are provided in Table 5.4, which tabulates the averages of several molecular 

characteristics in both negative and positive mode. This was additionally done to 

investigate the most different reaction precursors. The column “Rxn % RA” refers to the 
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average percentage of the deuterated, post-reaction ion abundance compared to the 

potential precursor abundance. In the negative mode, there were over three times more 

unambiguous Ester reactions than Hemi reactions, although both had relatively low 

numbers. On average, negative mode Hemi reactions had a greater precursor mass, 

number of O, and DBE. This indicates the precursors for negative mode tended to be 

more oxygenated, unsaturated, and had higher mass. For the positive mode, the trends in 

the number of MF, mass, and oxygen content are reversed. Ester reactions had fewer MF, 

were typically larger, and had more oxygen. The major difference was the DBE value, 

where the average DBE for a species capable of undergoing an esterification reaction was 

less than 3. The DBE values for Hemi and Acetal reactions were also relatively low 

compared to negative mode ions with averages just greater than 4. Acetal precursors had 

slightly lower average mass than Hemi precursors, but the O/C was slightly higher for 

Acetal precursors. This indicates Acetal reactions are more likely to occur with smaller, 

oxygen-rich species. 

 The relative abundances of the reaction artifacts compared to the precursors for 

each reaction in positive mode were noticeably different. As expected, the Acetal 

reactions have lower average percent relative abundance than Hemi reactions, as Acetal 

reactions should only occur to a small extent with formed hemiacetals. In comparing the 

ester formation to the hemiacetal formation however, it appears the Ester reactions result 

in more abundant products than Hemi reactions, even though there are fewer 

unambiguous Ester precursors. This could indicate that there are fewer species in MLS 

capable of undergoing esterification, but when they do, the equilibrium is driven more 
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towards the ester product. The reason for this requires further investigation. Although the 

overall percentages differ between the reactions, they are likely not extremely significant 

based on the TIC in Table 5.2, as positive D-containing ions only represent about 10% of 

the total abundance. In addition, the ions connected to a reactive pathway would make an 

even smaller percentage of this total abundance. For a large majority of the post-reaction 

MF in MeOH-d3, unambiguous or not, the same product MF in the control sample had a 

larger % RA (not shown). This implies that even if it is assumed that some of the post-

reaction MF did result from a reaction, there is still an amount of the ion abundance that 

did not, indicating it was natural in the sample. Thus, although the reaction may occur to 

some extent, it is not severe, as the reactive product MF is already present in the sample.  

 

Table 5.4. Molecular formula parameter counts and averages for potential reaction precursors defined as 
Unambiguous. 
 
Negative Mode  Averages ‐ Unambiguous Formulas 

Rxn  MF  Precursor Mass  O  N  O/C  H/C  DBE  Rxn % RA 

Ester  51  363  8.55  0.00  0.51  1.25  7.51  24.30 

Hemi  15  438  10.70  0.00  0.55  1.31  8.20  25.44 

Positive Mode  Averages – Unambiguous Formulas 

Rxn  MF  Precursor mass  O  N  O/C  H/C  DBE  Rxn % RA 

Ester  45  330  9.04  0.51  0.73  1.73  2.84  33.90 

Hemi  88  262  5.50  0.75  0.48  1.49  4.35  20.60 

Acetal  68  252  5.40  0.37  0.50  1.40  4.49  6.86 

 

 Based on the averages in Table 5.4, it seemed molecular formulas capable of 

undergoing reactive artifacts had relatively low DBE values. To investigate this further, 

all D-containing molecular formulas in MeOH-d3 were plotted against the non-deuterated 
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formulas in the van Krevelen space for the negative ions (Figure 5.6a) and the positive 

ions (Figure 5.6b). The plots are divided by elemental group. The gray points indicate the 

non-deuterated MF in the MeOH-d3 sample, while the colored points indicate D-

containing MF in the same sample, where the colors indicate the DBE value. Notably, 

negative D-containing MF are restricted to CHO ions due to the low number of CHNO 

MF and positive D-containing MF are present in for both CHO and CHNO. Negative D3 

ions appear to have no discernable pattern with the MF present in the center of the D0 MF 

and with varied DBE values. However, most MF had DBE values below 15. Positive D-

containing ions showed a more distinct pattern with most ions above an H/C ratio of 1.5 

and low DBE values for both CHO and CHNO ions. This is consistent with the low DBE 

values described in Table 4 and implies many of these MF are more aliphatic than 

aromatic.  
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The histograms of the MF aromaticity for all positive and negative MeOH-d3 MF 

are summarized in Figure 5.7. All vertical axes are the number of molecular formulas and 

colors indicate the calculated modified aromaticity index (AImod), as described in Section 

3.2.3. The histograms indicate either the number of D in the MF (Figure 5.7a and 5.7c), 

or the reaction pathway (Figure 5.7b and 5.7d). The reaction pathway includes the AImod 

of the reaction precursors and not the reaction products. Although there was little trend in 

 
Figure 5.7. van Krevelen plots of deuterated ions versus non-deuterated ions in a) negative ion MeOH-
d3 and b) positive ion MeOH-d3. Plots are divided by elemental group. Gray points represent non-
deuterated formulas, while points in color represent deuterated (D3 or D6) ions, where colors indicate 
DBE. 
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the DBE values for the negative ions, it is clear the deuterated MF are generally non-

aromatic, even though there is evidence of aromatic and even condensed aromatic ions 

for non-deuterated MF. The same is true for positive ions; in fact, most D-containing 

positive ions were calculated to be aliphatic. Few of the reaction precursors in each mode 

were classified as aromatic and only Hemi and Acetal reactions included aromatic MF for 

positive ions. This indicates that these reaction artifacts may be more likely to occur with 

aliphatic molecules. In other words, aromatic compounds are less reactive under these 

conditions. This has significant implications since MLS and biomass burning samples are 

rich in phenolic products and other aromatic compounds, and thus they are less 

susceptible to methanol reaction artifact formation. 
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Figure 5.8. Aromaticity plots for each ionization mode, with bars colored by calculated aromaticity 
index (Koch et al. 2007). Figures 5.8a and b) display negative ions, while c) and d) display positive 
ions. Figures 5.8a and c) represent all assigned MF in MeOH-d3, grouped by number of D, while 
Figures 5.8b and d) represent only the unambiguous precursors of MF assigned to a reaction pathway, 
separated by reaction. 
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6 Conclusions 

 

Evidence that sample preparation and the electrospray ionization process can 

change the detected composition of biomass burning samples was observed using an MS 

informatics approach and new tools. It is especially necessary to use caution when adding 

NH4OH, because NH3 or NH4
+ can interact with liquid smoke species to artificially 

introduce N through adduction or carbonyl reactions. Methanol solvent can also 

potentially alter the functionalities of carbonyls, although it is less severe due to the lower 

abundances of D3 and D6 species. However, using isotopically labeled solvents or 

reagents in tandem with ultrahigh resolution MS and data science tools can also offer 

insight into complex sample composition. For example, based on the HDX studies, it is 

likely that there are significant numbers of enol, secondary N, and carboxylic acid species 

in mesquite liquid smoke. In addition, the artifact studies suggest there may be significant 

numbers of carbonyl compounds, although it is difficult to confirm these functionalities 

without more structural information. 

 

6.1 Hydrogen-Deuterium Exchange Conclusions 

Hydrogen deuterium exchange (HDX), a process where labile protons are 

exchanged for deuterium, occurs readily in mesquite liquid smoke with up to 3 labile 

hydrogens being exchanged in some cases. There is a difference between positive and 

negative ions, as well as between H+ and Na+ adducted species in positive mode. HDX is 

significantly detected for negative CHO compounds. Species with high numbers of HDX 
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may be rich in carboxyl functional groups and species with lower numbers of HDX may 

have fewer carboxyl groups and be more influenced by enols due to tautomerization. 

Similarly, Na+ adducted HDX-capable species had solely CHO compositions, but were 

less significant since there were fewer Na+ formulas and formulas capable of exchange. 

H+ adducted positive ions favored N-containing compounds with less correlation from O 

and H/C values. These species tended to have lower numbers of exchange, implying 

secondary amines, amides, or aromatic N species. In all, it is necessary to use both 

ionization modes in order to see the full range of compounds capable of undergoing 

exchange. 

Currently, the presence of HDX was investigated for only the most likely 

compounds, which involved omitting many molecular formulas from analysis that may 

have been chemically valid. Future investigations could involve an application of more 

decisive filters for formula assignment to increase the confidence in higher numbers of 

exchange and determining the difference between OH and COOH groups. Relative 

abundance, for example, could be used to filter molecular formulas further, as was found 

in the standard mix experiment, where several acidic organic compounds were found to 

have differences in their HDX abundance patterns. More information on HDX rates in 

individual compounds is needed to consider relative abundance. 
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6.2 NH4OH Artifact Conclusions 

The use of NH4OH during the solid-phase extraction of complex organic mixtures 

results in significant reaction artifacts or adducts between CHO/CHNO ions in the sample 

and NH3 from the NH4OH. These interactions impact the analysis of samples obtained in 

both positive and negative mode ESI, specifically for liquid smoke samples, which are 

biomass burning surrogates. Analyses utilizing SPE sample prep will need to be 

concerned with interpreting the second elution data, as the use of NH4OH significantly 

alters the sample composition by converting CHO compounds into CHNO compounds. 

Because this reaction can proceed through many different reaction routes, it is difficult to 

be certain if one reaction occurs preferentially over the other based on the available data. 

The molecular formula composition of the potential precursors is very similar in terms of 

the average DBE, number of O, and mass. Adduct formation precursors, however, can be 

distinguished from reaction artifact precursors based on aromaticity. 

 Although non-SPE samples with prepared with varying amounts of formic acid, 

the results for these samples were inconclusive for both ion polarities. The effect of 

acidity was considered in this work due to previous analysis, where preliminary evidence 

suggested that adding formic acid reduced the severity of the artifact formation. 

However, this was not observed here. In this regard, it is worth investigating other 

samples using similar parameters to further investigate this phenomenon. Additional 

concentrations of acid could also be used to determine when acid does significantly 

influence the artifact formation. 
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 To improve the differentiation of the various possible reaction pathway 

precursors, future work could apply predictive separation methods such as principal 

component analysis to distinguish which parameters influence the possibility of one 

reaction occurring over another, especially in terms of ester hydrolysis and imine 

formation. Regardless, it is difficult to generate a detailed understanding of the true 

artifact reaction pathway due to the very complex nature of these mixtures. Since many 

of the observed reaction precursors exist naturally in complex mixtures and their 

abundances are so variable, the route for artifact production may vary from sample to 

sample. Future investigations could also be performed using 15NH4OH to study the 

formation and reactivity of different functional groups, such as imidazoles.  

 To obtain an improved understanding of the mechanism of NH4OH artifacts, 

future analysis could be done on samples with different methods of ionization, such as 

atmospheric pressure chemical ionization or photoionization. These methods produce 

ions from more volatile species and may offer additional insight into whether these 

artifacts are truly dependent on reactions in solution or during the ionization.  

 

6.3 Methanol Artifact Conclusions 

Reaction artifacts in MeOH-solvated mesquite liquid smoke occur in detectable 

amounts, as indicated by the significant number of D-containing formulas that were 

traceable to reaction precursors using MeOH-d3. This occurs in both positive and 

negative ESI, indicating that the reaction artifact occurs in solution, although there is 

evidence suggesting the positive electrospray process accelerates the reactions. The 
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overall extent of artifact formation is relatively minor, as the total ion intensities were 

relatively low in comparison to the natural amounts of the reaction products in regular 

MeOH. In addition, reactions tended to occur with the more aliphatic and olefinic ions 

and was not deemed to be significant for aromatic species. This indicates that methanol 

reactions with carbonyls are less likely in aromatic species due to the increased electronic 

stability of the adjacent aromatic rings which impacts the carbonyl stability. Methanol 

reaction artifacts do not significantly impact the observed composition of mesquite liquid 

smoke. In turn, this implies that biomass burning compositions are not significantly 

affected by these reaction pathways, as they are rich in phenols and other aromatic 

species. 

 Although only the most likely reaction precursors were found, it is possible that 

MeOH may promote other reactions. Some D-containing formulas of significant intensity 

(i.e. more intense than the found precursor) were removed from this analysis, and they 

could be linked to such reactions. This would require a more thorough investigation with 

more potential reaction pathways and could be the focus of future work. More accurately 

separating the products of the ester and hemiacetal pathways could also be the focus of 

future study.    
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