
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2019

COMMUNITY DETECTION IN COMPLEX NETWORKS AND COMMUNITY DETECTION IN COMPLEX NETWORKS AND

APPLICATION TO DENSE WIRELESS SENSOR NETWORKS APPLICATION TO DENSE WIRELESS SENSOR NETWORKS

LOCALIZATION LOCALIZATION

Sakineh Yazdanparast
Michigan Technological University, syazdanp@mtu.edu

Copyright 2019 Sakineh Yazdanparast

Recommended Citation Recommended Citation
Yazdanparast, Sakineh, "COMMUNITY DETECTION IN COMPLEX NETWORKS AND APPLICATION TO
DENSE WIRELESS SENSOR NETWORKS LOCALIZATION", Open Access Dissertation, Michigan
Technological University, 2019.
https://doi.org/10.37099/mtu.dc.etdr/845

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/845
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetdr%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages

COMMUNITY DETECTION IN COMPLEX NETWORKS AND APPLICATION

TO DENSE WIRELESS SENSOR NETWORKS LOCALIZATION

By

Sakineh Yazdanparast

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2019

© 2019 Sakineh Yazdanparast

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Electrical Engineering.

Department of Electrical and Computer Engineering

Dissertation Advisor: Dr. Timothy C. Havens

Committee Member: Dr. Michael C. Roggemann

Committee Member: Dr. Jeremy P. Bos

Committee Member: Dr. Alexander E. Labovsky

Department Chair: Dr. Daniel R. Fuhrmann

Dedication

To Dr. Timothy C. Havens, Mohsen and Leah

who collectively are my greatest inspiration in my life.

Contents

List of Figures . xiii

List of Tables . xix

Preface . xxiii

Acknowledgments . xxvii

Abstract . xxix

1 Introduction . 1

1.1 Community Detection . 2

1.1.1 Non-overlapping community detection 4

1.1.2 Overlapping community detection 6

1.2 Range-Free Anchor Selection in Wireless Sensor Networks Using Com-

munity Detection . 7

1.2.1 Distributed localization in WSNs 8

1.2.2 Community detection based range-free anchor selection . . . 9

1.3 Dissertation Outline and Contributions 11

vii

2 Modularity Maximization Using Completely Positive Program-

ming . 14

2.1 Introduction . 15

2.2 Problem Definition . 19

2.2.1 Generalized modularity function 19

2.2.2 Objective function . 22

2.3 Proposed Method . 24

2.3.1 ADAL for standard SDP programming 24

2.3.2 Adding the positivity constraint 30

2.3.3 Applying the rank-1 constraint 33

2.3.4 Proposed method summary 35

2.4 DISCUSSION . 36

2.4.1 Experiments and analysis 36

2.4.2 Scalability and limitations 41

3 Supper Fast Community Detection via Hybrid Label Propagation 45

3.1 Introduction . 46

3.2 Community Detection . 51

3.2.1 Community detection and modularity 51

3.2.2 Label propagation . 54

3.3 Proposed Hybrid Label Propagation 57

3.3.1 Modularity variation objective function 57

viii

3.3.2 Hybrid label propagation . 61

3.4 Experimental Results and Discussion 63

3.4.1 Efficiency analysis . 65

3.4.2 Computational complexity analysis 73

4 Linear Time Community Detection by a Novel Modularity Gain

Acceleration in Label Propagation 77

4.1 Introduction . 78

4.2 Community Detection . 80

4.2.1 Community detection and modularity 80

4.2.2 Label propagation clustering 82

4.3 Modularity Gain Acceleration . 84

4.3.1 The MGA approach . 84

4.3.2 Computational complexity analysis 87

4.4 Experimental Results and Discussion 90

5 Overlapping Community Detection in Large-Scale Complex Net-

works via Fast Fuzzy Modularity Maximization 99

5.1 Introduction . 100

5.2 Community Detection . 104

5.2.1 Modularity . 104

5.3 Fast Fuzzy Modularity Maximization 105

5.3.1 Modularity gain objective function 106

ix

5.3.2 Efficient computation of UB̃ 108

5.4 Multi-Cycle FFMM for Large Networks 111

5.4.1 Multi-cyle FFMM . 111

5.4.2 Sub-network construction 113

5.4.3 Reform network . 115

5.4.4 Non-Overlapping membership convergence 117

5.5 Experiments . 118

5.5.1 Experiment parameters . 119

5.5.2 Experiment results . 121

6 Range-Free Anchor Selection in Wireless Sensor Networks via

Community Detection . 131

6.1 Introduction . 132

6.2 Range-Free Anchor Selection via Community Detection 133

6.2.1 Anchor selection using non-overlapping community detection 135

6.2.2 Anchor selection using overlapping community detection . . 137

6.3 Experimental Results and Discussion 138

6.3.1 Simulation parameters and methods 139

6.3.2 Results and discussions . 140

7 Conclusions . 147

7.1 Future Work . 152

x

References . 155

A Proof of Proposed Propositions at Chapter 2 179

A.0.1 Proposition 1 . 179

A.0.2 Proposition 2 . 180

A.0.3 Proposition 3 . 182

B Proof of the Proposed Modularity Gain Objective Function at

Chapter 4 . 185

C Letter of Permission . 189

xi

List of Figures

1.1 Impact of anchor selection on localization performance, (a) Location

ambiguity due to aligned anchors, (b) Large convergence area due to

close anchors, (c) Optimum selection 10

(a) Location ambiguity . 10

(b) large convergence area . 10

(c) Optimum selection . 10

2.1 Synthetic network, n = 25 and c = 4 37

2.2 Eigenvalues of X, at (a) 10th iteration, and (b) 25th iteration of CPP

algorithm on synthetic network. 38

2.3 VAT visualization of communities found in synthetic network in Figure

2.1. Block numbers indicate matching clusters across algorithms. (a)

FMM/GA [1], (b) CPP method. 40

2.4 VAT visualization of communities found in Karate network. Block

numbers indicate matching clusters across algorithms. (a) FMM/GA

[1], (b) CPP method. 40

xiii

3.1 Proposed HLP modularity convergence for small to huge real data

sets. 70

3.2 Impact of initial number of communities (c1) on algorithm performance

over 100 run(a) Average modularity value, (b) Algorithm processing

time. 71

3.3 Average NMI and modularity evaluated using LFR network with 1000

nodes(LFR1). 72

3.4 Average NMI and modularity evaluated using LFR network with 10000

nodes(LFR2). 73

3.5 HLP versus LP and Louvian : average modularity convergence versus

time.(a) Email data set, (b) Ego-Facebook data Set. 75

(a) Using non-overlapping memberships 75

(b) Using overlapping memberships 75

3.6 HLP versus LP and Louvian : average modularity convergence versus

time.(a) Email-Enron data set, (b) YouTube data set. 75

(a) Using non-overlapping memberships 75

(b) Using overlapping memberships 75

4.1 Modularity learning curve for Dolphin data set applying traditional LP

[2] and Louvain [3] versus MGA-LP and MGA-Louvain in algorithm 5

and 6 . 93

xiv

4.2 Modularity learning curve for Football data set applying traditional

LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in 5 and 6 93

4.3 Modularity learning curve for Jazz data set applying traditional LP

[2] and Louvain [3] versus MGA-LP and MGA-Louvain in algorithm 5

and 6 . 94

4.4 Modularity learning curve for Metabolic data set applying traditional

LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in algorithm

5 and 6 . 95

4.5 Modularity learning curve for Email data set applying traditional LP

[2] and Louvain [3] versus MGA-LP and MGA-Louvain in algorithm 5

and 6 . 95

4.6 Modularity learning curve for Facebook data set applying traditional

LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in algorithm

5 and 6 . 96

4.7 Modularity learning curve for Email-Enron data set applying tradi-

tional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in

algorithm 5 and 6 . 96

4.8 Modularity learning curve for Com-DLBP data set applying traditional

LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in algorithm

5 and 6 . 97

xv

4.9 Modularity learning curve for Com-YouTube data set applying tradi-

tional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in

algorithm 5 and 6 . 97

5.1 Multi-cycle FFMM process in three cycles. 115

5.2 Average ONMI for benchmark network LFR1 with various numbers of

overlapping nodes. 125

5.3 Average ONMI for benchmark network LFR2 with various number of

overlapping nodes. 126

5.4 Average ONMI for benchmark network LFR3 with various number of

overlapping nodes. 126

5.5 Detected communities of Jazz network and membership values of fuzzy

nodes. 127

5.6 Detected communities of Email network. 127

6.1 Visualization of synthetic Networks I and II, (a) nodes and anchors are

randomly distributed via uniform distribution, (b) nodes are randomly

distributed via uniform distribution where anchors are equally spaced. 140

(a) Random anchor distribution 140

(b) Equally spaced anchor distribution 140

6.2 (a) Mean and (b) Variance of normalized localization error using the

proposed range-free anchor selection over Net I. 141

(a) Mean . 141

xvi

(b) Variance . 141

6.3 (a) Mean and (b) Variance of normalized localization error using the

proposed range-free anchor selection over Net II. 143

(a) Mean . 143

(b) Variance . 143

6.4 (a) Mean and (b) Variance of normalized localization error using the

proposed range-free anchor selection over Net III. 143

(a) Mean . 143

(b) Variance . 143

6.5 (a) Mean and (b) Variance of normalized localization error using the

proposed range-free anchor selection over Net IV. 144

(a) Mean . 144

(b) Variance . 144

6.6 (a) Mean and (b) Variance of normalized localization error using the

proposed range-free anchor selection over Net V. 144

(a) Mean . 144

(b) Variance . 144

6.7 (a) Mean and (b) Variance of normalized localization error using the

proposed range-free anchor selection over Net VI. 145

(a) Mean . 145

(b) Variance . 145

xvii

List of Tables

2.1 Symbols and corresponding descriptions 20

2.2 Real-world networks used in experiments 37

2.3 Best modularity values of communities found by several algorithms on

real-world data sets . 39

2.4 Running time (second) for several algorithms for two real-world data

sets . 39

2.5 Average (AVG) and standard deviation (STD) of modularity values

over 200 runs . 40

2.6 Best modularity values of fuzzy communities found by Nepusz algo-

rithm on real-world data sets . 42

3.1 Notation and symbols . 52

3.2 Parameters of LFR networks . 64

3.3 Network characteristics and parameters used in HLP 66

3.4 Experiment results over real-world data sets–part 1, average Newman’s

modularity Qm, processing time in sec ts and the number of detected

communities C . 67

xix

3.5 Experiment results over real-world data sets–part 2, average Newman’s

modularity Qm, processing time in sec ts and the number of detected

communities C . 68

3.6 Experiment results over real-world data sets standard deviation of

Newman’s modularity (σQ) and the number of detected communities

(σC)-Part-1 . 68

3.7 Experiment results over real-world data sets standard devia-

tion of Newman’s modularity (σQ) and the number of detected

communities(σC)-Part-2 . 69

3.8 The NMI of the real-world networks with ground truth communities-

Part1. 69

3.9 The NMI of the real-world networks with ground truth communities-

Part-2. 69

4.1 Notation and symbols . 80

4.2 Required mathematical operations for calculation of modularity gain

variations to move the ith node into the qth community. 88

4.3 Network characteristics and parameters used in MGA 91

4.4 Average processing time over 100 run in sec ts and average Newman’s

modularity Qm for real-world data set. 92

4.5 Average processing time over 100 run in sec ts and average Newman’s

modularity Qm for real-world data set. 92

xx

5.1 Notation and symbols . 103

5.2 Applied simulation parameters . 120

5.3 Parameters of LFR networks . 121

5.4 Performance analysis of time complexity comparison of proposed

FMMM with FuzAg ,FMM/H2, NGTCDA 122

5.5 Simulation results over 100 runs: overlapping FFMM versus overlap-

ping FuzAg . 123

5.6 Simulation results over 100 runs: overlapping FFMM versus overlap-

ping H2 . 123

5.7 Simulation results over 100 runs: fuzzy FFMM versus non-overlapping

louvain . 124

5.8 Simulation results over 100 runs: Number of overlapping nodes . . . 124

6.1 Network parameters . 138

6.2 Simulation parameters applied for community detection approaches 140

xxi

Preface

Some chapters of this dissertation contain published material and unpublished re-

search. The following list indicates which publications and unpublished work, includ-

ing manuscripts that have been submitted but not yet accepted, were used along with

notes on author contributions.

Chapter 2

S. Yazdanparast, T.C. Havens, “Modularity maximization using completely positive

programming,“ Physica A: Statistical Mechanics and its Applications, Volume 471,

2017, Pages 20-32, ISSN 0378-4371, https://doi.org/10.1016/j.physa.2016.11.108 (See

[4]).

S. Yazdanparast is the leading researcher in this work and is the corresponding author.

The research was performed under the guidance of T.C. Havens.

xxiii

Chapter 3

S.Yazdanparast, T.C. Havens,“Super Fast Community Detection via Hybrid Label

Propagation“, In review, PHYSICAL REVIEW E covering statistical, nonlinear, bi-

ological, and soft matter physics on September 17 2018.

S. Yazdanparast is the leading researcher in this work and is the corresponding author.

The research was performed under the guidance of T.C. Havens.

Chapter 4

S. Yazdanparast, M. Jamalabdollahi, and T.C. Havens.“Linear Time Community

Detection by a Novel Modularity Gain Acceleration in Label Propagation,” In review,

IEEE Transactions on Big Data, submitted on March 12 2019.

The ideas presented in this paper are the result of discussions between all listed au-

thors. S. Yazdanparast is the corresponding author for this paper and generated the

experimental results. T.C. Havens and M. Jamalabdollahi contributed the theoretical

background.

xxiv

Chapter 5

S. Yazdanparast, T.C. Havens, and M. Jamalabdollahi (2019), “Overlapping Com-

munity Detection in Large-Scale Complex Networks via Fast Fuzzy Modularity Max-

imization,” In preparation, IEEE Transactions on Fuzzy Systems.

S. Yazdanparast is the leading researcher in this work and is the corresponding author.

The research was performed under the guidance of T.C. Havens, and M. Jamalabdol-

lahi assisted with the code written for the experiments.

Chapter 6

S. Yazdanparast, T.C. Havens, and M. Jamalabdollahi (2019), “Range Free Anchor

Selection in Wireless Sensor Networks via Community Detection,” In preparation,

IEEE Transaction on Computational Social Sysems.

S. Yazdanparast is the leading researcher in this work and is the corresponding author.

The research was performed under the guidance of T.C. Havens. Some ideas in this

work originated in conversations with M. Jamalabdollahi.

xxv

Acknowledgments

I would like to express my gratitude toward my Master and PhD advisor, Dr. Timothy

C. Havens for his support and encouragement in my work. I could not have imagined

having a better mentor for my Ph.D study. I never could have finished this dissertation

without the guidance of him.

I wish to express my great appreciation to the Dr. Michael C. Roggemann , Dr.

Jeremy P. Bos and Dr. Alexander E. Labovsky for being my thesis committee, and

for their great advice on my research and evaluating my thesis.

I wish to extend special appreciation to the ECE department faculty, staff and friends

for their support especially department chair, Dr. Daniel R. Fuhrmann.

A Heartfelt thanks to all supportive wonderful MTU members and friends. MTU for

me is so much more than a university; it is a community that I truly feel a part of, a

family and a real home, for international students.

I feel so proud to be an MTU graduate student. At the end, I would like to express

my indebtedness to my family, my parent who have given me unlimited love and care

during the completion of the thesis.

xxvii

Abstract

Network analysis is applied in numerous researches. Features and characteristics of

complex networks provide information associated with a network feature called com-

munity structure. Naturally, nodes with similar attributes will be more likely to form

a community. Community detection is described as the process by which complex

network data are analyzed to uncover organizational properties, and structure; and

ultimately to enable extraction of useful information. Analysis of Wireless Sensor

Networks (WSN) is considered as one of the most important categories of network

analysis due to their enormous and emerging applications. Most WSN applications are

location-aware, which entails precise localization of the deployed sensor nodes. How-

ever, localization of sensor nodes in very dense network is a challenging task. Among

various challenges associated with localization of dense WSNs, anchor node selection

is shown as a prominent open problem. Optimum anchor selection impacts overall

sensor node localization in terms of accuracy and consumed energy. In this thesis,

various approaches are developed to address both overlapping and non-overlapping

community detection. The proposed approaches target small-size to very large-size

networks in near linear time, which is important for very large, densely-connected

networks. Performance of the proposed techniques are evaluated over real-world data

sets with up to 106 nodes and syntactic networks via Newman’s Modularity and Nor-

malized Mutual Information (NMI). Moreover, the proposed community detection

xxix

approaches are extended to develop a novel criterion for range-free anchor selection

in WSNs. Our approach uses novel objective functions based on nodes’ community

memberships to reveal a set of anchors among all available permutations of anchors-

selection sets. The performance—the mean and variance of the localization error—of

the proposed approach is evaluated for a variety of node deployment scenarios and

compared with random anchor selection and the full-ranging approach. In order to

study the effectiveness of our algorithm, the performance is evaluated over several

simulations that randomly generate network configurations. By incorporating our

proposed criteria, the accuracy of the position estimate is improved significantly rel-

ative to random anchor selection localization methods. Simulation results show that

the proposed technique significantly improves both the accuracy and the precision of

the location estimation.

xxx

Chapter 1

Introduction

1

Network analysis is applied over a variety of research topics such as social networks,

transportation, anthropology, biology, economics, sociology, and bibliometrics studies

[5, 6, 7]. Random deployment of multiple sensors over a wireless multi-hop link in a

given area forms a network which is referred to as a Wireless Sensor Network (WSN).

WSNs are considered as a prominent and well-studied category of networks.

WSNs are used for location-aware monitoring or detection of events or measurements,

and for reporting of parameters or information. For a brief review of WSN applications

one can refer to the following topics: environmental monitoring [8], search and rescue

[9], health [10, 11] and target monitoring and tracking [12], road traffic monitoring

[13], underground monitoring [14], disaster relief [15], structure health monitoring

[16], etc.

1.1 Community Detection

Features and characteristics in complex networks provide information associated with

a network feature called the community structure. A community in a network is of-

ten defined as a group of nodes—i.e., users—that have more concentrated connections

or data in common among the group’s members than with the rest of the network.

Naturally, nodes with similar attributes will be more likely to form a community.

Community detection is one of the most important problems in network analysis.

2

The process in which complex network data are analyzed in order to uncover orga-

nizational principles, properties, and structure of complex networks, and ultimately

to enable extraction of useful information from them is called community detection.

Community detection has attracted much attention in the past two decades. Commu-

nity detection approaches can be divided into three main categories [17]: traditional

methods [18, 19], divisive algorithms [20, 21, 22], and modularity-based methods

[1, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Traditional methods, such as graph

partitioning and clustering, divide or merge clusters based on the similarity between

nodes, whereas divisive algorithms are based on removing edges that connect nodes

with lower similarity. Modularity based methods work by optimizing an objective

function such as modularity introduced by Newman and Girvan [34]. Most of the

recent works on community detection are based on maximization of the modularity

objective function proposed by Newman [23, 24, 25, 26, 31]. Other works have pro-

posed other objective functions and solved them using extrema optimization [27], ge-

netic algorithms [1, 28], simulated annealing [29, 35], expectation-maximization (EM)

[30] and convex optimization [32]. Detection of communities in a complex network

is categorized as either non-overlapping or overlapping in terms of node, i.e., ver-

tex, membership value. In non-overlapping community detection, each node belongs

to only one community; meanwhile, in overlapping community detection each vertex

can belongs to more than one community [36]. Non-overlapping community detection

3

has attracted a lot of attention [2, 3, 23, 24, 25, 26, 37, 38, 39, 40], and efficient ap-

proaches such as those proposed in [3, 40] were developed with respect to performance

(modularity) and computational complexity. Raghavan et al. proposed the linear-time

method based on Label Propagation (LP) [2], which can be considered a new category

for non-overlapping community detection, which focuses on large or even massively-

sized networks. Some works propose fast overlapping community detection [41, 42];

however, performance of their overlapping community detection is not measured in

terms of modularity. Some recent works propose faster techniques for overlapping

community detection via modularity maximization. Here, it is aimed to address both

overlapping and non overlapping community detection scenario applicable to a wide

spectrum of network sizes.

1.1.1 Non-overlapping community detection

Here, a novel LP-based technique is proposed which leads to stable and superior

solutions in terms of modularity and computational complexity. Similar to the well-

known LP-based techniques, in the proposed algorithm the optimum label for a vertex

is selected from labels of its neighbors by maximizing the modularity variation as-

sociated with each label transition. Although most LP-based techniques leverage

efficient approaches for calculation of modularity gain variation at each label (com-

munity membership) transition [3, 40, 43, 44], these methods are still computationally

4

complex in large networks, where there are hundreds or thousands of candidate labels

per node to be evaluated. Evaluation of modularity variation for all available labels

dramatically increases computational complexity of the overall community detection

procedure. Instead of calculating the actual value of modularity gain corresponding

to each label transition, a novel objective function corresponding to all candidate la-

bels is developed. The proposed objective function is simplified into two terms, called

the static and dynamic components. The static component represents the computa-

tionally complex term and is calculated via a static label list. However, the dynamic

component represents the computationally more-efficient term and is calculated via a

dynamic label list. The proposed Hybrid Label Propagation (HLP) leverages the pre-

calculated values of the static component once per each iteration, while the dynamic

component is calculated per each candidate label. This dramatically reduces the over-

all computational complexity associated with the proposed objective function. The

HLP approach produces decent performance in terms of Modularity and Normalized

Mutual Information (NMI) in near linear-time; however, a generalized version of the

proposed objective function calledModularity Gain Acceleration (MGA) is introduced

to further improve efficiency. Like the HLP approach, MGA divides the modularity

gain objective function into two components, called the Local Sum-Weight (LSW)

and the General Sum-Weight (GSW). The LSW is the lower complexity component

and is calculated per each label transition, the GSW is more computationally complex

5

and is calculated only once per each label. Then, the GSW is updated by leverag-

ing a simple process for each node-label transition, rather than direct update for all

available labels.

1.1.2 Overlapping community detection

Overlapping community detection is one of the most notable problems in this

area. Extensive research has been conducted to develop efficient methods for non-

overlapping community detection in large-scale networks, but these approaches are

not appropriate for overlapping community detection. In this thesis Fast Fuzzy Modu-

larity Maximization (FFMM) for overlapping community detection is studied. FFMM

exploits a novel iterative equation for calculation of modularity gain associated with

changing the fuzzy membership values of network vertices. The simplicity of the pro-

posed iterative modularity update equation enables efficient modifications, reducing

computational complexity to a linear function of the network size O(N), which is

advances the current state-of-the-art. In order to apply FFMM to large networks,

Multi-Cycle FFMM is proposed. Multi-Cycle FFMM is accomplished in multiple cy-

cles, each using the FFMM approach for community detection. Then, each detected

community at each cycle is considered as a sub-network for the next cycle until the

desired community resolution is acquired. Simulation results demonstrate that Multi-

Cycle FFMM produces a remarkable performance in terms of overlapping modularity

6

value. We use Overlapping Normalized Mutual Information (ONMI) as an evaluation

metric to measure quality of detected communities in large-scale networks with over

106 nodes.

1.2 Range-Free Anchor Selection in Wireless Sen-

sor Networks Using Community Detection

WSNs have a variety of applications, such as environmental monitoring [45], road

traffic monitoring [46, 47], Health [11, 48, 49], etc. For a survey of WSN applications,

see [50, 51]. Self-localization capability is highly desirable for most of the mentioned

applications. In other words, most WSN applications are location-aware, meaning

the measured data or observed events are meaningless without information about

the locations where the data are obtained or measured. Thus, the development of

approaches to localize sensor nodes in WSNs is a critical research area. Localization in

WSNs is categorized as range-free [52, 53] or range-based techniques [54, 55]. Range-

free techniques exploit network information such as connectivity while range-based

techniques use a variety of information such as Received Signal Strength Indicator

(RSSI) [56], Time-of-Arrival (ToA) [57], Time Difference of Arrival (TDoA) [58],

Angle of Arrival (AoA) [59] or combinations thereof [14]. Range-based approaches

offer higher localization accuracy; however, they impose difficulty in producing range

7

measurements, such as higher energy consumption. Energy efficiency is very vital in

WSNs. Consider that up to 80% of the consumed energy in WSNs is due to radio

communication including ranging [60]. Therefore, using a technique which reduces

ranging process is promising in WSNs terminology.

1.2.1 Distributed localization in WSNs

Here, it is aimed to develop a criteria that maintains the optimum distribution of

localization and ranging within the entire network. The goal is to optimize the range

based distributed localization in terms of trade-off between performance and com-

plexity. Considering range based localization, it is aimed to develop the optimum

anchor selection approach and study its impact on distributed localization in dense

WSNs. To this end, it is vital to study modern distributed localization approaches

to exploit the state-of-the-art methods.

Considering a WSN consisting of N sensor nodes and M anchor nodes within a D

dimensional space, the objective function that maximizes the likelihood of measured

ranges is represented by [61, 62]

[x̂1, x̂2, ..., x̂N] = arg min
x1,x2,...,xN

{
N∑
i=1

N+M∑
j=1,j �=i

1

σ2
ij

∣∣d2i,j − ‖xj − xi‖2
∣∣} , (1.1)

8

where xi =
[
x
(1)
i , x

(1)
i , ..., x

(D)
i

]
, xj =

[
x
(1)
j , x

(1)
j , ..., x

(D)
j

]
and di,j denote the coor-

dinates of the ith sensor node and the jth sensor/anchor node, and the measured

range between them, respectively. Moreover, σ2
ij represents the variance of range

measurements corresponding to the ith sensor node and the jth anchor node. How-

ever, for distributed approaches, each sensor node aims to maximizes the likelihood

of its measured ranges corresponding to its selected anchor nodes represented by

x̂i = arg min
xi

{∑
j∈Ni

1

σ2
ij

∣∣d2i,j − ‖xj − xi‖2
∣∣} , (1.2)

where Ni represents the list of selected anchor nodes of the ith node. Although using

all possible measurements may lead to precise localization, that demands for ranging

among sensor and anchor nodes which is not efficient due to high energy consumption

associated with ranging techniques [63]. In this study we develop an approach to

select the optimum set of anchor nodes using both overlapping and non-overlapping

community memberships.

1.2.2 Community detection based range-free anchor selec-

tion

Figure 1.1 depicts an example corresponding to a distributed localization scenario.

Here, the target node has the advantage of selecting multiple combinations of anchor

9

(a) Location ambiguity (b) large convergence area

(c) Optimum selection

Figure 1.1: Impact of anchor selection on localization performance, (a)
Location ambiguity due to aligned anchors, (b) Large convergence area due
to close anchors, (c) Optimum selection

nodes in its vicinity for ranging. The lack of location knowledge, however, hampers

the optimum anchor node selection. As shown, non-supervised or random anchor

selection may lead to poor anchor node selection, where location ambiguity—shown

in Figure 1.1 (a)—or large location convergence area—in Figure 1.1 (b)—is possible.

However, by using a supervised approach, it is possible to select the optimum anchor

set with minimum location convergence area.

10

In this work it is aimed to develop a novel technique for anchor selection in very

dense WSNs. An optimum anchor selection impacts overall sensor nodes localization

processes in terms of accuracy and consumed energy. In this study, we propose using

both overlapping and non-overlapping community detection approaches to develop a

range-free approach for optimum anchor selection. To this end the network is ana-

lyzed within the processing center to reveal both overlapping and/or non-overlapping

community memberships. The achieved community membership then will be used in

the corresponding objective function to reveal the optimum set of anchors for selected

nodes within the network (i.e., nodes that have at least three anchors in the network).

1.3 Dissertation Outline and Contributions

The following chapters summarize my work on the community detection problem

along with application-specific contributions to anchor selection based localization in

dense Wireless Sensor Networks (WSNs). The remainder of this section describes

each chapter more concretely and explains the novel contributions of each chapter.

Chapter 2 studies the Alternating Direction Augmented Lagrangian (ADAL)

method for maximizing a generalized form of Newman’s modularity function. First,

Newman’s modularity is transformed into a quadratic program and then Completely

11

Positive Programming (CPP) is utilized to map the quadratic program to a linear

program. This provides the globally optimal maximum modularity cover matrix. In

order to solve the proposed CPP problem, a closed form solution using the ADAL

approach is proposed.

Chapter 3 studies the novel Hybrid Label Propagation (HLP) approach for maxi-

mizing a generalized form of Newman’s modularity function. Here, a novel objective

function is developed to maximize the modularity variation corresponding to each

label propagation. Moreover, a hybrid form of synchronous and asynchronous label

propagation is developed by using dynamic and static label lists.

Chapter 4 studies Modularity Gain Acceleration (MGA). MGA is a modified ver-

sion of the proposed objective function which is utilized to reduce complexity of

existing label propagation based approaches for community detection. The proposed

approach is extremely efficient for very large networks due to its near linear time

computational complexity.

Chapter 5 studies Fast Fuzzy Modularity Maximization (FFMM) for community

detection, which uses a novel iterative equation for calculation of modularity gain asso-

ciated with changing the fuzzy membership values of network vertices. The simplicity

of the proposed iterative modularity update equation enables efficient modifications,

12

reducing computational complexity to a linear function of the network size O(N),

which is beyond the current state-of-the-art. To apply the proposed FFMM to large

networks, multi-cycle FFMM is proposed where every detected community at each

cycle is considered as an individual sub-network for the next cycle.

Chapter 6 describes the proposed approach for range-free anchor selection based

on the proposed overlapping (FFMM) and non-overlapping (HLP) community detec-

tion methods. In this approach, sensor nodes select the optimum anchor nodes among

available candidates based on associated community structure. Here, two novel objec-

tive functions, based on overlapping and non-overlapping community membership, are

developed. Simulations over multiple networks with different structures show that the

proposed approach improves the average localization error, especially at lower range

measurement errors. Finally, Chapter 7 concludes the dissertation and discusses

future works.

13

Chapter 2

Modularity Maximization Using

Completely Positive Programming

14

2.1 Introduction

Social network analysis has recently attracted a lot of attention. Online users in social

networks such as Facebook and Twitter provide a veritable treasure trove of social

network data, facilitating significant applications, such as product recommendation

systems for on-line retail sites, political election prediction based on discussions of

certain topics on Twitter, and so on.

Network analysis is applied over varieties of research topics such as social networks,

transportation, anthropology, biology, economics, sociology and bibliometrics stud-

ies [5, 6, 7]. Features and characteristics in complex networks provide information

associated with a network feature called community structure. A community in a

network is often defined as a group of nodes—i.e., users—that have more concen-

trated connections or data in common among the group’s members than with the

rest of the network. Naturally, nodes with similar attributes will be more likely to

form a community. Community detection is one of the most important problems in

network analysis. The process in which complex network data are analyzed in order

to uncover organizational principles, properties, and structure of complex networks,

The material in this chapter was previously published in Physica A: Statistical Mechanics and its
Applications Volume 471, 1 April 2017, Pages 20-32

15

and ultimately to enable extraction of useful information from them is called commu-

nity detection. Community detection has attracted much attention in the past two

decades. Community detection approaches can be divided into three main categories

[17]: traditional methods [18, 19], divisive algorithms [20, 21, 22], and modularity

based methods [1, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Traditional methods,

such as graph partitioning and clustering, divide or merge clusters based on the sim-

ilarity between nodes, whereas divisive algorithms are based on removing edges that

connect nodes with lower similarity. Modularity based methods work by optimizing

an objective function such as Modularity introduced by Newman and Girvan [34].

Numerous approaches have been proposed for community detection. Fortunato [17]

divided them into three different categories: traditional methods [18, 19], divisive al-

gorithms [20, 21], and modularity based methods [64]-[33]. Traditional methods, such

as graph partitioning and clustering, divide or merge clusters based on the similarity

between nodes, whereas divisive algorithms are based on removing edges connecting

nodes with low similarity. Modularity based methods work by optimizing an objec-

tive function such as the modularity introduced by Newman and Girvan [34]. Most

of the recent works on community detection are based on modularity maximization

proposed by Newman [23]-[31]. Other works have proposed other objective functions

and solved them using extremal optimization [37], genetic algorithm [1, 28], simulated

annealing [29], expectation-maximization (EM) [30] and convex optimization [32].

16

Finding the partition with maximum modularity is very difficult—NP-hard [67]—

due to its non-convexity, and usually yields a sub-optimal partition, e.g., see Fast

Unfolding Algorithm [28, 68]. Some approaches, such as spectral optimization [19],

greedy methods [23, 65], and [69], extremal optimization [37], and simulated annealing

[29] have used searching to obtain solutions for crisp entries of the cover matrix.

Although some approaches such as greedy methods, extremal optimization, simulated

annealing, and spectral optimization have been used searching the global solution,

but the proposed result is crisp. In most of social networks, many of users do not

belong to a specific community which cause overlap among communities. To deal

with this problem, the crisp overlapping and fuzzy overlapping community structures

were proposed in [70]. Crisp overlapping communities let a node belong to more

than one community; however, its membership still is binary. In fuzzy overlapping

communities, memberships in communities are on the interval [0, 1], and the sum of

the memberships for each node is 1. Several works have addressed fuzzy community

detection [1, 31] and [33].

In this chapter, we present a novel model for reformulating the crisp modularity max-

imization problem. First, the objective function is converted to a linear programming

problem with completely positive and rank-1 constraints. Then Alternating Direction

Augmented Lagrangian (ADAL) is applied to solve the Completely Positive Program-

ming (CPP) problem, followed by a rank minimization procedure to impose the rank-1

17

constraint on the final crisp solution. This contribution not only results in a highly-

effective algorithm for modularity maximization, but also offers new insight on how to

effectively solve the CPP problem with minimum rank. Burer [71] proposed reforming

the standard quadratic problem with positive constraints to the linear programming

with CPP constraints. However, it does not apply the rank-1 constraint which recon-

structs the desired solution (the variable vector in the quadratic problem) from the

final solution (the variable matrix in the CPP problem). To the best of our knowl-

edge, this work is the first work to address the modularity maximization problem

by reforming its quadratic form to the linear programming problem. However, the

proposed approach for solving the quadratic problem with positive constraints can be

applied to any other standard problem. The main contributions of this chapter can

be summarized as follows:

1. Reformulation of the modularity maximization problem to a linear program

with completely positive and rank-1 constraints;

2. Use of the ADAL method to solve the CPP problem;

3. Application of rank minimization algorithm to the ADAL method to minimize

the rank of the ADAL output without contravening its optimality;

4. Application of the proposed method to several benchmark networks to investi-

gate the optimality of the obtained cover matrices;

18

5. Discussion on the limitations and scalability of the proposed algorithm for large

scale networks.

The rest of this chapter is organized as follows. Section 2.2 introduces the math-

ematical model of the community detection problem. The proposed algorithm for

community detection is presented in Section 2.3. Section 2.4 presents experiments,

analysis, and discussions. Table2.1 contains a selected list of notations and symbols

used here.

2.2 Problem Definition

2.2.1 Generalized modularity function

Every social network can be represented by a graph G = (V,E,W), where V is a

set of n vertices, E is a set of edges, and W is an n × n edge weight(or adjacency)

matrix, where wij in W denotes the weight of the edge connecting node i and node j.

Community detection for a network is the process of finding a c× n partition matrix

(or in graph theory, a cover matrix) U, where each element uki in U, k = [c]; i = [n],

is the membership of the ith node in the kth community. There are three main types

19

Table 2.1
Symbols and corresponding descriptions

Symbol Description
n Number of nodes (vertices) in network
c Number of communities
G Graph G = (V ;E;W)
b Vector of ones

R
n The n-dimensional Euclidean space

R
n
+ The nonnegative orthant of Rn

R
n×n The set of real, n× n matrices
S
n The set of symmetric matrices in R

n×n

S
n
+ The set of positive semidefinite symmetric matrices (SDP cone)

S
n∗
+ The dual of SDP cone
C The cone of completely positive matrices, (B ∈ S

n : xT
Bx ≥ 0

for all x ∈ R
n+)

C
∗ The dual of completely positive cone C

P The symmetric positive cone (the cone of n× n real symmetric
matrices with non-negative elements)

P
∗ The dual of the symmetric positive cone P

[t] The set of integers from 1 to t
W The adjacency matrix,W ∈ R

n×n

m Degree vector m = (m1, . . . ,mn)
T

B Modularity matrix B = W − (m ∗mT)/ ‖W‖
U Partition or cover matrix, U = [uij]

c×n ,uij ∈ [0, 1]
mi Degree of vertex vi
ui ith column of U

‖x‖ The norm of a vector x ∈ R
n is denoted by

√
xTx

tr(.) Denotes the sum of the diagonal entries of a matrix
〈M,N〉 The inner product of M and N or trace(MTN).
M⊗N The Kronecker product
diag(M) Vector with the diagonal of the matrix M as its entries
diag(y) Diagonal matrix with elements of the vector y as its entries
M
 0 M ∈ SDP cone(M is positive semidefinite)

A(·) The linear mapping from the symmetric cone S
c×n to R

n×1

A∗(·) The the adjoint operator of A(·)
of partitions [72]:

Mpc×n =
{
U ∈ Rc×n; 0 ≤ uki ≤ 1, ∀ k, i;

c∑
k=1

uki ≤ c, ∀ i;
n∑

i=1

uki < n, ∀ k

}
; (2.1a)

Mfc×n =

{
U ∈ Mpc×n;

c∑
k=1

uki = 1, ∀ i

}
; (2.1b)

Mhc×n = {U ∈ Mfc×n; uki ∈ {0, 1}} ; (2.1c)
20

where Mpc×n is the set of probabilistic; Mfc×n is the set of fuzzy, and Mhc×n is the

set of crisp partitions. Much work has been done on crisp community detection, i.e.,

searching for the best U ∈ Mhc×n. Other works have focused on fuzzy community

detection, i.e., searching for the best U ∈ Mfc×n. In this work, we propose a general-

ized community detection algorithm for finding partitions in Mhc×n, deriving the crisp

partition by hardening with the maximum membership rule. Recently, modularity

based methods have been very popular among social network researchers. For the

community detection problem, modularity works as the objective function to eval-

uate the goodness of a given community represented by a partition U. Modularity

was originally introduced by Newman and Girvan [73] as a way to evaluate crisp

communities in networks. It is defined as

Q =
1

‖W‖
n∑

i=1,j=1

(
wij − mimj

‖W‖
)
δ(i, j), (2.2)

where mi =
∑n

j=1 wij, i = [n], ‖W‖ =
∑n

i=1 mi and δ(i, j) = 1 if node i and node j

are in the same community; else δ(i, j) = 0. Liu [29] proposed a modified modularity

and combined it with a simulated annealing approach for fuzzy community detection.

Later, Havens et al. [36] introduced a more generalized modularity, given at (2.3),

that works for evaluating not only crisp partitions, but also fuzzy and possibilistic

partitions:

Qg =
tr
(
UBUT

)
‖W‖ , (2.3)

21

where B =
[
W − mTm

‖W‖

]
and m = (m1,m2, . . . ,mn)

T . Considering the generalized

modularity at (2.3) as the objective function for community detection, we reform it

as a standard quadratic function in the next subsection.

2.2.2 Objective function

Obtaining the extremum of the modified modularity function given at (2.3) is equiv-

alent to finding the extremum of the numerator, tr
(
UBUT

)
, as the denominator is

constant with U. Let x = vec(UT) and Q = I ⊗ B, where I refers to the identity

matrix and B is the n×n modularity matrix. The term tr(UBUT) can be formulated

as the standard quadratic form of xTQx where are x is a (c× n)× 1 vector and Q

is a (c× n)× (c× n) symmetric matrix. Applying xTQx = trace(Q× (xxT)), leads

to the standard linear programming objective function,

min
X

C •X, (2.4)

where X := xxT and C = −Q. We must also apply the summation constraint on U,

i.e.,
∑c

i=1 uij = 1, i = [n]. Considering x = vec(UT) gives
∑c

i=1 uij =
∑c

i=1 x(i−1)×n+j,

which can be represented as the matrix form Ax = b, where b denotes a vector of

ones by size n× 1 and matrix A is

22

Aij = b⊗ I =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, i = [n], j = n× (k − 1) + i, k = [c];

0, else.

(2.5)

However, any constraint on (2.4) needs to be defined on the elements of X. Multiply-

ing each side of Ax = b by its transpose, and taking the diagonal leads to Ax = b

and diag
{
AXAT

}
= b2 [74], which gives the new form of (2.4) as

min
X

C •X, s.t. diag
{
AXAT

}
= b2. (2.6)

The last constraint that needs to be applied is 0 ≤ uij ≤ 1, ∀i, j. Considering X :=

xxT and 0 ≤ uij ≤ 1 reveals two significant properties on the desired final solution for

X. First, X is a completely positive (CP) matrix, as it can be decomposed to a vector

that has only positive elements. Second, the rank of X is 1. Therefore, by applying

these two constraints, the final version of our proposed modularity maximization

objective function for crisp community detection is

min
X

C •X, s.t. diag
{
AXAT

}
= b2,

X ∈ Completely Positive Cone(C), rank(X) = 1.

(2.7)

The defined problem at (2.7) is quite similar to the standard format of semi-positive

definite (SDP) problems [75]. Several types of solvers such as SeDuMi [75] can be

utilized for solving such programming problems. However, our objective function at

23

(2.7) has the CP constraint which is a much tighter constraint than SDP; therefore,

none of the available solvers can be applied. This motivates our proposed modularity

maximization method for community detection in networks, discussed in the next

section.

2.3 Proposed Method

In this section we apply the Alternative Direction Augmented Lagrangian (ADAL)

method to develop an iterative algorithm for finding the maximum modularity par-

tition matrix. We first describe how to apply ADAL for solving the standard SDP

in Section 2.3.1, then we show how to add the CP constraint to the standard SDP

problem in Section 2.3.2. Section 2.3.3 describes our procedure for imposing the rank

1 constraint on the solution, X. The full algorithm is summarized in 2.3.4.

2.3.1 ADAL for standard SDP programming

In this section the standard SDP programming problem is introduced. We first derive

the dual problem from the primal and then derive the Karush-Kuhn-Tucker (KKT)

conditions. We then show how to apply the ADAL method for solving the SDP dual

problem.

24

The standard form of the SDP problem has the primal form

min
X

C •X, s.t. A(X) = b, X
 0, (2.8)

where X
 0 indicates that X ∈ SDP Cone(Sn
+) and A(X) : Sc×n → R

n×1 represents

the linear mapping from the symmetric cone to R
n×1 ,

A(X) = diag(AXAT) = b2. (2.9)

The adjoint operator of A(X) is A∗(y) : Rn×1 → S
c×n , such that (see Proposition1

in Appendix A)

A∗(y) = ATdiag(y)A. (2.10)

The Lagrangian function of the primal problem at (2.8) is [76]

L(X, λ) = 〈C,X〉+ 〈λ,A(X)− b〉 , (2.11)

where λ ∈ R
n×1 are the Lagrange multipliers. Applying an algebraic manipulation to

(2.11) leads to

L(X, λ) = 〈C,X〉+ 〈λ,A(X)〉+ 〈λ,−b〉 ,

= 〈C,X〉+ 〈A∗(λ),X〉+ 〈λ,−b〉 ,

= 〈C+A∗(λ),X〉+ 〈λ,−b〉 .

(2.12)

25

It can be observed that every feasible solution X∗, such that A(X∗) = b and

L(X∗,y) = 〈C,X∗〉, can be considered as the Lagrange multipliers corresponding

to the feasible solution of the dual problem that has the same Lagrangian function

(subject to X as Lagrange multipliers). Given y := (−λ), (2.12) can be considered

as the Lagrangian function of the following dual problem,

max
y

bTy, s.t. C−A∗(y) = S, S ∈ S
n∗
+ , (2.13)

where A∗(.) is the adjoint operator of A(·) at (2.10) and S
n∗
+ is the dual of the SDP

cone (Sn
+). However, the SDP cone is self-adjoint, i.e., Sn

+ = S
n∗
+ . Therefore, the dual

problem can be revised to

max
y

bTy, s.t. A∗(y) + S = C, S
 0. (2.14)

The duality gap of the primal and dual problems is

min
X

C •X−max
y

bTy = min
X

〈X,C〉 −max
y

〈b,y〉 , (2.15)

satisfying A(X) = b and A∗(y) + S = C. This leads to

min
X

〈X,A∗(y) + S〉 −max
y

〈A(X),y〉

= min
X

〈X,A∗(y) + S〉 −max
y

〈X,A∗(y)〉 .
(2.16)

26

It can be observed that minX 〈X,A∗(y) + S〉 = maxy 〈X,A∗(y)〉 when 〈X,S〉 = 0.

Therefore, the KKT conditions for the primal and dual problems are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(X) = b,X ∈ S
n
+;

A∗(y) + S = C,S ∈ S
n∗
+ ;

〈X,S〉 = 0.

(2.17)

These KKT conditions guarantee that if both problems (the primal and the dual) are

strictly feasible—A(X) = b and A∗(y) + S = C can be satisfied—then the duality

gap is zero and the dual problem can attain the optimal solution. Since finding the

optimum solution for (2.14) is much simpler, usually the dual problem is solved. The

Lagrangian function of proposed the dual problem defined in Equation (2.14) is [76]

L(y,S,X) = −bTy + 〈X,A∗(y) + S−C〉

+ 1/(2μ) ‖A∗(y) + S−C‖2 .
(2.18)

The proposed Lagrangian function at (2.18) has the standard format which applies

the constraints as penalty functions within the objective function. However, forming

the Lagrangian function is not the problem here; the main issue is how to solve for

y, X, and S, such that S
 0. Starting from X = [0], the augmented Lagrangian

method solves L(y,S,X) on the kth iteration for yk+1 and Sk+1, and then updates

27

the Lagrangian multipliers Xk+1 by applying [76]

Xk+1 = Xk +
A∗(yk+1) + Sk+1 −C

μ
. (2.19)

Finding the optimum solution of L(y,S,X) as a function of y and S is the only

remaining issue. The authors of [76] simplified this problem by minimizing L(y,S,X)

for y (given a fixed S) and then minimized L(y,S,X) for S (considering S
 0 and

fixed y) such that y∗ : ∇yL(y
∗,S,X) = 0. This leads to (see Proposition 2 in the

Appendix A)

y∗ = (AA∗)−1 [(bT −A (X)
)
μ−A (S−C)

]
. (2.20)

Here, AA∗ is an invertible matrix such that A (A∗ (y)) = (AA∗)y. Considering (2.5),

it can be shown that AAT = cI where I is the identity matrix. This leads to the

closed form solution,

A (A∗ (y)) = A (
ATdiag {y}A) ,

= diag
{
A
(
ATdiag {y}A)AT

}
,

= diag
{
AATdiag {y}AAT

}
,

= cI [diag {y}] Ic = c2Iy.

(2.21)

This indicates that for our modularity maximization problem, AA∗ = c2I and

(AA∗)−1 = 1
c2
I.

28

To find the optimum S, the Lagrangian function, L(y,S,X) must be minimized as

a function of S, fixing y. However, the SDP constraint on S hinders the application

of the same procedure used for obtaining the optimal y. Consider the Lagrangian

function,

L(S|y,X) = 〈X,S〉+ 1/(2μ) ‖A∗(y) + S−C‖2 . (2.22)

The optimum solution for S is obtained by the optimization (see Proposition 3 in the

Appendix for proof),

S∗ = min
S

{∥∥S(k) −V
(
y(k+1),X(k)

)∥∥2
F

}
, S
 0. (2.23)

The optimum solution of (2.23) is obtained by projecting V onto the SDP cone (Sn∗
+),

and is achieved by spectral decomposition of V. First, V is decomposed into its

eigenvectors with positive and negative eigenvalues,

V
(
y(k+1),X(k)

)
= QΣQ∗,

= [Q+ Q−]

⎡
⎢⎢⎣Σ+ 0

0 Σ−

⎤
⎥⎥⎦
⎡
⎢⎢⎣Q

∗
+

Q∗
−

⎤
⎥⎥⎦ .

(2.24)

29

where {Σ+,Q+} denotes the positive eigenvalues and their corresponding eigenvec-

tors, and {Σ−,Q−} denotes the negative eigenvalues and their corresponding eigen-

vectors of matrix V
(
y(k+1),X(k)

)
. This implies that S(k+1) can be achieved after

decomposition of V
(
y(k+1),X(k)

)
by applying

S(k+1) = Q+Σ+Q
∗
+. (2.25)

The final solution for the proposed dual problem at (2.14) is outlined in Algorithm 1.

2.3.2 Adding the positivity constraint

The proposed solution in Algorithm 1 is for an SDP cone; however, we expect a

matrix within the CP cone (C). The CP cone is more limited as compared to the

SDP cone; every matrix in the CP cone is in the SDP cone; however, the opposite is

not true. To achieve a solution to our problem at (2.7), the positively constraint on

Algorithm 1: Alternative Direction Augmented Lagrangian for Semi-Positive Defi-
nite Programming

Require: C,A,b
1: return X
2: Initialize μ,S(0) and X(0) .
3: while |yk+1 − yk| < εy do
4: y(k+1) = (AA∗)−1 [(bT −A (

X(k)
))

μ−A (
S(k) −C

)]
.

5: S(k+1) = Proj
Sn∗
+

(C−A∗(y(k+1))−X(k)μ).

6: X(k+1) = X(k) + (A∗(y(k+1)) + S(k+1) −C)/μ
7: end while

30

elements of X must be added to the final format of objective function as

min
X

C •X, s.t. A(X) = b,

X
 0, X ∈ Symmetric Positive Cone(P),

X ∈ SDP cone(Sn
+).

(2.26)

Here, the new constraint X ∈ Positive Cone(P) ensures that the elements of X are

positive. Similar to (2.8) the dual problem of (2.26) is [77]

max
y

bTy, s.t. A∗(y) + S+ Z = C,

S ∈ Dual of SDP Cone(Sn∗
+),

Z ∈ Dual of Symmetric Positive Cone(P∗),

(2.27)

where Z is the second slack variable of the dual problem that bounds the positivity

on X. The Lagrangian function corresponding to the objective function proposed at

(2.26) is [78]

L(y,S,Z,X) = −bTy + 〈X,A∗(y) + S+ Z−C〉

+ 1/(2μ) ‖A∗(y) + S+ Z−C‖2 .
(2.28)

Applying the same procedure optimizing the Lagrangian function as function of y,

S, Z and X, one-by-one leads to the update equation,

y∗ = (AA∗)−1 [(bT −A (X)
)
μ−A (S+ Z−C)

]
. (2.29)

31

The optimum solution of S and Z are obtained by minimizing (2.28) with respect to

S and Z. Applying the same procedure as for the SDP cone, the update equations

for S and Z are

S(k+1) = min
S

{∥∥S(k) −V
(
y(k+1),Z(k),X(k)

)∥∥2
F

}
,

= Proj
Sn∗
+

(
V
(
y(k+1),Z(k),X(k)

))
,

= Q+Σ+Q
∗
+ ;

(2.30)

Z(k+1) = min
Z

{∥∥Z(k) −V
(
y(k+1),S(k+1),X(k)

)∥∥2
F

}
,

= Proj
P∗

(
V
(
y(k+1),S(k+1),X(k)

))
.

(2.31)

However, unlike for Sn∗
+ , the P∗ cone is not self-adjoint and needs to be calculated by

applying the Moreau decomposition theorem [79], which states that, for any symmet-

ric matrix R ∈ X and for any closed convex cone such that K ∈ X ,where X denotes

a finite-dimensional Euclidean space such that Sn
+

⋂
P is non empty we have

Proj
K∗

(R) = R+ Proj
K

(−R). (2.32)

32

Algorithm 2: Alternative Direction Augmented Lagrangian for Completely Positive
Programming

Require: C,A,b
1: return X
2: Initialize μ,S(0),Z(0) and X(0).
3: while |yk+1 − yk| < εy do
4: y(k+1) = (AA∗)−1 [(bT −A (

X(k)
))

μ−A (
S(k) + Z(k) −C

)]
.

5: S(k+1) = Proj
Sn∗
+

(C− Z(k) −A∗(y(k+1))−X(k)μ).

6: Z(k+1) = Proj
P∗

(C− S(k+1) −A∗(y(k+1))−X(k)μ).

7: X(k+1) = X(k) + (A∗(y(k+1)) + S(k+1) + Z(k+1) −C)/μ.
8: end while

This leads to the final equation for Z,

Z(k+1) = Proj
P∗

(
V
(
y(k+1),S(k+1),X(k)

))
,

= V
(
y(k+1),S(k+1),X(k)

)
+ Proj

P

(−V
(
y(k+1),S(k+1),X(k)

))
.

(2.33)

The Proj
P

(V) operator replaces the negative values inV with zeros. The final solution

for the proposed dual problem at (2.27) is outlined in Algorithm 2.

2.3.3 Applying the rank-1 constraint

The last constraint that must be added to the proposed objective function at (2.26) is

the rank-1 constraint on X. This is an extremely important constraint, which allows

us to decompose X as X = xxT , and finally construct the partition matrix U from x.

However, the rank-1 cone is nonconvex and cannot be directly applied to any convex

optimization approaches, including the ADAL method. Therefore, no direct method

33

Algorithm 3: Rank Minimization

Require: X, ζ
1: return X†

2: Decompose X to find its eigenvalue matrix, VX , and eigenvector matrix, UX .
3: Set the smallest non-zero eigenvalue within VX to zero, forming V̂X.
4: X† = UXV̂XU

T
X .

5: while
||X−X†||2F

||X||2F
< ζ do

6: Set the smallest non-zero eigenvalue within V̂X to zero, forming a new V̂X .
7: X† = UXV̂XU

T
X .

8: end while
9: Return the last eigenvalue and form V̂X .
10: Compute X† = UXV̂XU

T
X as output.

exists to force the solution of the ADAL CPP method into the rank-1 cone.

The approach that is applied in this work is quite simple and effective. Here, the

calculated X at each iteration is passed through a rank minimization function which

finds the minimum rank matrix that is close to input X such that
||X−X†||2F

||X||2F
≤ ζ. This

can be implemented using Algorithm 3.

The rank minimization algorithm reduces the rank of X according to a normalized

error. At each iteration of steps 4–7 in algorithm 3, the rank of X is reduced by one.

Hence, the parameter ζ determines the acceptable error between the input X and

its rank-reduced output X†. Algorithm 3 is inserted into Algorithm 2 after step 6,

reducing the rank of X(k+1) at each iteration.

34

2.3.4 Proposed method summary

The proposed ADAL-based method for finding the optimum solution of the proposed

CPP problem at (2.26) and (2.27) consists of using Algorithm 2 to optimize the

CPP problem and Algorithm 3 for rank minimization. After reaching the stopping

criterion in Algorithm 2, the cover matrix U can be constructed using the inverse

operation of x = vec(U), i.e., the cover matrix U of size c × n can be constructed

using x, where x is the corresponding eigenvector of the only non-zero or prominent

eigenvalue of the CPP algorithm output, X. Finally, the desired crisp partition

matrix Uc = [uc
1,u

c
2, ...,u

c
n] can be constructed by hardening the calculated cover

matrix U = [u1,u2, ...,un] by

uc
k = em, m = argmax

j
ujk, j = [c], k = [n], (2.34)

where em denotes an m× 1 unity vector with 1 at its mth entry.

In the following section, the convergence of the proposed ADAL algorithm is investi-

gated by looking at community detection in a synthetic network. Moreover, the final

values of the modularity are discussed for both synthetic and real-world networks.

35

2.4 DISCUSSION

2.4.1 Experiments and analysis

Simulations were conducted to investigate the performance of the proposed method

for community detection. In order to show the result of the convergence of proposed

algorithm, first we apply the algorithm to a very simple, synthetic network with

n = 25 and c = 4. Then, a brief discussion on the convergence of the proposed

method is given. Finally, we applied our community detection method to several real-

world data sets as described in Table 2.2. The crisp modularity values are computed

and compared with FMM/GA [1], a leading modularity maximization algorithm to

date, and Li’s LAG [80], G-N [73], LM [81], Mincut [82], FN [83], Ncut [84] and S-A

algorithms [85]. Moreover, visual assessment of tendency (VAT) [86] visualizations

are presented to visualize the best found cover matrix.

Figure 2.1 shows the synthetic network (S) with n = 25 and c = 4. This net-

work contains different types of node and vertex combinations, such as bridge nodes

(n1, n6, n7, n10, n11, n12, n16, n18, n19, n25), nodes with high centrality (n8, n9), and low

connected nodes (n23, n24, n25). Applying the proposed method to this network, the

convergence was investigated. Figure 2.2 shows the eigenvalues of X, the output of

36

Figure 2.1: Synthetic network, n = 25 and c = 4

Algorithm 2, at the 10th and 25th iterations, respectively. As shown in Figure 2.2,

most of the eigenvalues are small, as compared to the dominant eigenvalues; never-

theless, the rate of dominance increases with the number of iterations. This indicates

that, by iterating Algorithm 2 together with Algorithm 3, X converges to a low-rank

matrix, while not violating the objective function and its constraints.

Table 2.2
Real-world networks used in experiments

Name Abbrev. |E| n = |V| Network Description

Karate K 78 34 Zachary’s karate club[87]

Dolphin D 159 62 Dolphin social network[88]

LesMis L 254 77 Co-appearances of char. in Les Miserables[89]

Jazz J 2742 198 Jazz musicians network[90]

Table 2.3 contains the modularity values of the cover matrix found by several leading

modularity maximization algorithms and our proposed algorithm. The proposed CPP

method has equal modularity value with the FMM/GA [1] for the Karate, Dolphin,

Jazz, and LesMis. data sets. Moreover, the obtained modularity values are equal

37

Figure 2.2: Eigenvalues of X, at (a) 10th iteration, and (b) 25th iteration
of CPP algorithm on synthetic network.

or slightly better than the other methods: CMDR [91], G-N [73], S-A [85], Mincut

[82] and GA [92]. Since the proposed method initializes the modularity values to

zero, it converges to the same results given specific parameters such as ζ and μ.

However, applying different values for ζ and μmay lead to different modularity values.

Therefore, to evaluate the precision of the proposed CPP method, the average and

the standard deviation of the modularity values are presented in Table 2.5, using

fixed values of ζ = 0.5 and random μ values in the interval, 0.5 ≤ μ ≤ 0.99. In [74],

the author discussed applying an update rule for μ. Although this may lead to faster

convergence, we found that such a method was not necessary. The applied numerical

CPP parameters which lead to the best modularity values in Table 2.3 are ζ = 0.1

and μ = 0.86 for all data sets.

38

Table 2.3
Best modularity values of communities found by several algorithms on

real-world data sets

Net. c CMDR Mincut LAG FN G-N S-A Ncut FMM/GA GA CPP

K 4 0.4174 0.23 0.42 0.253 0.40 0.42 0.34 0.44 0.42 0.44

D 5 0.52 0.37 0.52 0.372 0.52 0.52 0.37 0.52 0.52 0.52

L 6 – – 0.56 – 0.54 0.56 – 0.56 – 0.56

J 4 – – 0.44 – 0.40 0.44 – 0.44 – 0.44

Table 2.4
Running time (second) for several algorithms for two real-world data sets

Methods K D

Mincut [82] 0.008 0.01

FMM/GA [1] 1295 3783

FN [83] 0.031 0.078

Ncut [84] 0.021 0.027

CPP 100.93 265.821

Table 2.4 contains the running time of corresponding modularity values proposed in

CPP method. Simulations are implemented on MATLAB and executed on a Corei7,

@3.4GHZ CPU and 8GBytes of RAM desktop computer.

Figure 2.3 shows the Visual Assessment of Tendency (VAT) [86] representation of the

communities found by the FMM/GA algorithm [1] and the proposed CPP method

for the synthetic network shown in Figure 2.1. As depicted by the numbers in each

block, the detected communities found by each algorithm are the same; they are also

equivalent to the expected communities shown in Figure 2.1. Figure 2.4 shows the

VAT visualizations of the communities found by FMM/GA [1] and proposed CPP

method for the Karate networks. It can be observed for the Karate network, the

algorithms finds the same community structure (also known to be the overall max

modularity community structure for Karate).

39

Figure 2.3: VAT visualization of communities found in synthetic network
in Figure 2.1. Block numbers indicate matching clusters across algorithms.
(a) FMM/GA [1], (b) CPP method.

Figure 2.4: VAT visualization of communities found in Karate network.
Block numbers indicate matching clusters across algorithms. (a) FMM/GA
[1], (b) CPP method.

Table 2.5
Average (AVG) and standard deviation (STD) of modularity values over

200 runs

Network S K D J L

CPP (AVG) 0.46 0.39 0.50 0.35 0.45

CPP (STD) 0 0.07 0.03 0.05 0.04

40

2.4.2 Scalability and limitations

Maximizing modularity based on a linear objective mathematical model and analysis

of network communities in large data sets remain open challenges for the proposed

model. The main computational hurdle is the eigen-decomposition for satisfying the

rank-1 constraint. Therefore we have a need for algorithmic acceleration in this op-

eration. The eigen-decomposition of an n × n square matrix has time complexity

O(n3) [93]. Thus, in this work we will not claim that we have completely solved this

NP-hard optimization problem for large-scale networks. Instead, we stress that the

main motivation of this work is to show a successful reformulation of the modularity

maximization problem from the viewpoint of linear programming with a completely

positive constraint, which is significantly different from the existing models in terms

of the objective function. It also should be noted that we are particularly interested

in discovering more efficient algorithms for dealing with large scale networks, which

is of big interest in the field. For large networks, new approaches should be employed

to satisfy the rank-1 constraint which are faster than our proposed rank minimization

algorithm. Therefore the main implementation issue is that the efficiency of CPP de-

pends on satisfying the rank-1 constraint. This constraint is also the only bottleneck

in our algorithm—the remaining steps of the algorithm are very efficient. Another

point that should also be stated is that the CPP algorithm is proposed by emphasiz-

ing more the computational accuracy than the computational scalability, as compared

41

Table 2.6
Best modularity values of fuzzy communities found by Nepusz algorithm

on real-world data sets

Network K D L J

Modularity value 0.13 0.26 0.08 0.25

to parallel algorithms for community detection in massive networks [94]. The exper-

iments we performed using both synthetic and real-world networks have shown that,

in terms of modularity value, the accuracy of the CPP algorithm is competitive with

other well-known methods. We believe there is a trade-off between maximizing modu-

larity and computational time for community detection. Such work as [33] emphasize

efficiency in discovering the community structure, but at a much poorer modularity

value compared with existing methods. Table 2.6 shows the modularity values found

by the algorithm proposed by Nepusz et al. [33]. This algorithm is very fast, but

performs poorly in terms of modularity. Our aim in the future is to find compromise

between the optimal algorithm we have proposed and the efficient approach in [33].

Summary of Completely Positive Programming In this study, the modularity

maximization problem for crisp community detection was addressed. We transformed

the constrained quadratic problem to a linear programming problem, where the solu-

tion was constrained to the intersection of the completely positive and rank-1 cones.

Hence, we took the original non-convex problem and produced a (mostly) convex op-

timization solution, where all but the rank-1 constraint was convex. To solve the new

42

objective, we used the Alternating Direction Augmented Lagrangian method. Exper-

iments on synthetic and real-world network data showed that our method is superior

to state-of-the-art modularity maximization methods at finding max-modularity crisp

communities in networks. Proof of copyright permission for the necessary publications

used in this dissertation are provided in Appendix C.

43

Chapter 3

Supper Fast Community Detection

via Hybrid Label Propagation

The material in this chapter is submitted for publication in PHYSICAL REVIEW E covering sta-
tistical, nonlinear, biological, and soft matter physics on September 17, 2018.

45

3.1 Introduction

Most of the recent works on community detection are based on maximization of

the modularity objective function proposed by Newman [23, 24, 25, 26, 31]. Other

works have proposed other objective functions and solved them using extrema op-

timization [27], genetic algorithms [1, 28], simulated annealing [29, 35], expectation-

maximization (EM) [30] and convex optimization [32]. More discussion on state-of-

the-art approaches in community detection is available in [95].

Although some of the proposed techniques can produce acceptable performance in

terms of modularity, they cannot be applied to large networks due to their high com-

putational complexity. Raghavan et al. proposed the linear-time method based on

label propagation (LP) [2], which can be considered as a new category for commu-

nity detection that focuses on large or even massively-sized networks. The idea is

to update the label of each vertex by selecting the most frequent label among its

neighbors. However, it has been shown that this approach converges to local min-

ima [96] and performance suffers due to the random vertex selection. In [35], the

Newman’s modularity function was optimized using simulated annealing. Although

this technique performs well for small networks, it is too complex for large networks.

Several versions of LP have been proposed in order to improve its performance or

attain more computational efficiency [38, 97, 98, 99, 100, 101]. Some works [97, 98]

46

exploited the synchronized label propagation. Moreover, some other works replaced

the quantitative cost function by a qualitative cost function, such as vertex impor-

tance [99, 100] or a modularity-based cost function [38, 101, 102]. However, most

of these techniques are not stable, especially for large complex networks [103, 104].

Recently, some other works [105, 106] proposed the multi-label propagation algorithm

(MLPA), where each vertex in a network can take multiple labels. However, these

techniques are not efficient due to high computational complexity and required mem-

ory space, especially for large and massive networks. Blondel et al. [3] proposed a

fast greedy hierarchical clustering algorithm based on LP called Louvain, showing

higher performance by substituting detected communities with super-nodes at each

iteration by modularity optimization technique. This algorithm has proven to pro-

duce good community structures with complexity of O(N log(N)). This work inspired

others to propose modified versions of Blondel’s technique [40, 107]. Substituting the

detected communities at each iteration with super-nodes dramatically decreases the

computationally complexity by reducing the size of network. However, the Louvain

technique is still complex at its first iteration, where every single node in the network

is optimized subject to all available labels at its neighbors.

Network analysis is a very well researched topic in graph theory. Recently, commu-

nity discovery for complex networks has drawn numerous attention. Community is a

prominent structure in networks which refers to group of nodes that happens to have

more connections (edge) among themselves relative to edges that connect them to the

47

rest of the network. Community detection and graph clustering are categorized as

NP-complete problems with no globally optimal solution [108]. Applications of com-

munity detection include social network analysis, online commodity recommendation

system, user clustering, biology, communication networks analysis, engineering, eco-

nomics, etc. Over the decades numerous community detection algorithms have been

proposed. Modularity-based clustering is one of the most prominent approaches in

community detection [17]. Modularity based techniques optimize a quality objective

function such as modularity introduced by Newman and Girvan [34] with respect to

networks community. According to Newman’s criteria, communities leading to higher

modularity value have denser connections between the nodes within them compared

to nodes of other communities [23, 26, 109].

Non-modularity based techniques are a category of community detection. Meyerhenke

et al. [110] proposed high quality graph partitioning by using a parallel evolutionary

algorithm to the coarsest graph. Recently, Qiao et al. [111] introduced approximate

optimization to achieve parallel community detection for complex networks. Other

works, such as [28, 29, 32, 35], have used non-modularity clustering objective functions

to find the best graph clusters. Recently, Berahmand et al. [112] proposed a new fast

local clustering approach called ECES which is based on the detection and expansion

of core nodes through extended local similarity of nodes.

Although modularity based techniques provide competitive results, some of them,

48

such as [1, 105, 106], are not feasible approach for huge networks due to high compu-

tational complexity. Among existing methods, label propagation (LP) [2] introduced

a high performance computationally efficient community discovery algorithm for large

scale networks. In order to improve the efficiency of LP approach, several modified

versions of LP have been introduced [38, 98, 99, 100]. The authors in [2] consid-

ered the quantity of labels, or the weighted quantity based on the adjacency matrix

[38, 100] and label influence [113]. However, the best results (in terms of modularity)

are presented where each label is evaluated by its impact on the modularity improve-

ment [3, 40, 107]. Blondel et al. [3] proposes an extremely-fast high-performance

unsupervised modularity-based clustering technique by applying LP in two iterative

phases, known as the Louvain algorithm. Although the Louvain approach and all

other modified versions [40, 43, 44, 107] propose robust performance, they still suffer

from high computational complexity. In [3, 40, 107] a modified version was exploited

for calculation of modularity gain achieved by label transition instead of its direct

calculation, but the proposed formula is still complex for very large scale networks

where millions of candidate labels should be evaluated.

Here, a novel LP-based technique is proposed that gives stable and superior solutions

in terms of modularity and computational complexity. Similar to the well-known LP-

based techniques, in our algorithm the optimum label for a vertex is selected from

labels of its neighbors by maximizing the modularity variation associated with each

label transition. Although most LP-based techniques leverage efficient approaches for

49

calculation of modularity variation at each transition [3, 40, 43, 44], these methods

are still computationally complex in large networks, where there are hundreds or

thousands of candidate labels per node to be evaluated for each node. Evaluation

of modularity variation for all available labels dramatically increases computational

complexity of the overall community detection procedure. Here, a novel method for

label propagation based on optimizing the Newman’s modularity variation associated

with each transition is proposed. Instead of calculating the actual value of modularity

gain corresponding to each label transition, a novel objective function corresponding

to all candidate labels are developed. The proposed objective function is simplified

into two terms, called the static and dynamic components. The static component

represents the computationally complex term and is calculated via a static label list.

However, the dynamic component represents the computationally more-efficient term

and is calculated via a dynamic label list. The proposed Hybrid Label Propagation

(HLP) technique leverages the pre-calculated values of the static component once per

each iteration, while the dynamic component is calculated per each candidate label.

This dramatically reduces the overall computational complexity associated with the

proposed objective function.

The performance of the proposed HLP technique is evaluated over real world data

sets including millions of nodes and compared with state-of-the-art techniques such

as the original LP algorithm [2], Danon [35] and Louvain [3]. Moreover, HLP is

compared with the non-modularity based technique, Infomap [114]. The obtained

50

results show that the proposed HLP technique produces competitive performance in

terms of modularity value in a more computationally efficient manner, as compared

to existing techniques over small to large size real-world data sets.

The rest of the paper is organized as follows. Section 3.2 introduces the mathematical

model of the community detection problem and discusses the LP method and tradi-

tional modularity variation function. The proposed HLP technique is presented in

Section 3.3. Section 3.4 presents experiments, analysis, and discussions, Section 3.4.2

describes HLP efficiency analysis.Table 3.1 describes select symbols and notations

used throughout out this article.

3.2 Community Detection

3.2.1 Community detection and modularity

Graph G = (V,E,W) represents a network, where V is a set of N vertices (nodes),

E is a set of edges, and W is an N × N edge weight (or adjacency) matrix. Here,

the ith row and jth column of W, wij, denotes the weight associated with the edge

connecting vertices i and j, for i, j = [N]. The process of community detection aims

to find a c × N partition (cover) matrix U, where the element in the ith row and

the jth column in U, uki, for k = [c] and i = [N], represents the membership of the

51

Table 3.1
Notation and symbols

Symbol Description
G graph G = (V,E,W) of network including N nodes
Q Modularity maximization function introduced by Newman and Girvan

[34]
N total number of nodes
U partition matrix of network (graph) G
ui ith column of the partition matrix U
upq element at pth row and qth column of U
Uli partition matrix of G denoting l as label of the ith node

Ũn partition matrix U with all zeros at the nth column
W adjacency matrix of network G
mn degree of the nth vertex

m degree vector m = [m1,m2, ...,mn]
T

B modularity matrix, B = W −mTm/
∑

m
bn nth column of modularity matrix B
bli element at lth row and ith column of B
Ni the set of neighbor’s labels of the ith node
L′

i the set of labels at vicinity of the ith node
Li L′

i ∪ �i
ci number of communities at the lth iteration U
ls the static labels list
ld the dynamic labels list
K total number of iterations

[N] the set of integers from 1 to N
\ {i} remove ith element from the integer set

k positive integer number

ith vertex in the kth community. In LP-based techniques, non-overlapping partitions

prevail. Non-overlapping partitions are denoted as U, such that

uki ∈ {0, 1} ,
c∑

k=1

uki = 1. (3.1)

Much work has been done on non-overlapping community detection, i.e., searching

52

for the best U satisfying (3.1). In this work, HLP is proposed which exploits a novel

and computationally efficient scheme to associate the optimal community (label) to

each vertex corresponding to the best achievable modularity gain. The modularity

value is a metric to evaluate the correctness of an associated community represented

by a partition U [27]. Modularity was originally introduced by Newman and Girvan

[34] as a way to evaluate non-overlapping communities in networks, and is defined as

Q =
1

‖W‖
N∑

i=1,j=1

(
wij − mimj

‖W‖
)
δ(i, j), (3.2)

where mi =
∑N

j=1 wij, i = [N], ‖W‖ =
∑N

i=1 mi, and δ(i, j) = 1 if vertex i and

vertex j are in the same community, else δ(i, j) = 0. Liu [29] proposed a modified

modularity and combined it with a simulated annealing approach for overlapping

community detection. Later, Havens et al. [36] introduced a more generalized mod-

ularity, given at (3.3), that works for evaluating not only non-overlapping partitions,

but also overlapping partitions.

Qg =
tr
(
UBUT

)
‖W‖ , (3.3)

where B =
[
W − mTm

‖W‖

]
is the so called the modularity matrix for

m = (m1,m2, . . . ,mN)
T for mi =

∑N
j=1 wij, i = [N]. Considering the generalized

modularity at (3.3), a novel equation for evaluation of modularity variation is pro-

posed. The proposed equation is simple to implement and computationally efficient

53

compared to the existing state-of-the-art [3, 40, 107].

3.2.2 Label propagation

The LP algorithm starts with an initialization phase where each vertex in the graph

is allocated a unique label representing its community. Hence, for graph G = (V,E),

where V is a set of N vertices and E is a set of edges, there would be N unique labels

at initialization. Then, the main body of the LP algorithm starts with an iterative

process where at each iteration all labels of the graph vertices are updated. The

main idea of LP is to select the best label for each vertex among the set of labels of

its neighbors. This iterative process continues until no further improvement in the

modularity variation.

Consider the label of the ith vertex at the kth iteration of LP algorithm, represented

by �k (i); its update is performed by

�k (i) = f(�k (Ni)), (3.4)

where f is the function which selects the best label among the input labels and

Ni is the set of labels corresponding to the neighbors of the ith vertex. Different

approaches are proposed to select the best label among the available labels. Some

works [2, 97, 103] considered the quantity of labels, or the weighted quantity based

54

on the adjacency matrix [38, 100, 101] and label influence [113]. However, the best

results (in terms of modularity) are produced when each label is evaluated by its

impact on the modularity improvement [3, 40, 107]. The computational complexity

of the network modularity calculation for each label transition is the main drawback

of this approach, especially for large and massive networks. Nevertheless, some works

applied a new approach to calculating modularity gain, such as [3]

ΔQ (i, p → q) =

[
Σin + ki,in

‖W‖ −
(
Σtot + ki
‖W‖

)2
]

+

[
Σin

‖W‖ −
(

Σtot

‖W‖
)2

−
(

ki
‖W‖

)2
]
,

(3.5)

where Σin is sum of the weights of between nodes labeled q, Σtot is the sum of the

weights of the nodes labeled q, ki is the sum of the weights of node i, ki,in is the sum

of the weights of the links from node i to nodes labeled q and ‖W‖ is defined at (3.2).

Recently, a modified version of modularity variation was proposed by [40],

ΔQ (i, p → q) =
σ (i, q\ {i})− σ (i, p\ {i})

‖W‖ +
(Σ (p\ {i})− Σ (q\ {i})) vi

2 ‖W‖2 , (3.6)

where ΔQ (i, p → q) is the acquired modularity variations by re-labeling the ith node

from p to q, and σ (i, p) =
∑

n,j:�(j)=p wn,j, vi =
∑

n,j:j∈Ni
wn,j + 2wn,n, and Σ (p) =

∑
∀j �(j)=p vj.

Considering (3.5) or (3.6), the objective function to select the best label for the ith

55

vertex at the kth iteration of the LP algorithm is

�
(k+1)
i = argmax

�j

{
ΔQ

(
i, �

(k)
i → �j

)}
, ∀j ∈ Ni, (3.7)

where ΔQ (i, p → q) is defined in (3.5) or (3.6) and �j and Ni represent the label

of the jth vertex and the set of neighbors of the ith node, respectively. Another

important parameter in the LP algorithm is the updating sequence which is usually

determined by random permutation of the N network vertices at each iteration. Here,

the term iteration denotes a cycle where all nodes in the network have been evaluated

for re-labeling using (3.7). The community or label transition process can be applied

synchronously [97] or asynchronously [2, 3, 38, 100, 101], where in synchronous label

transition all nodes are updated at the end of each iteration, and in asynchronous

label transition nodes are updated immediately. Here, a hybrid scheme to track label

transitions is considered. At the beginning of each iteration, a static label list is

updated based on label transitions of the previous iteration. The static label list is

exploited for computation of static components of modularity variation corresponding

to each label transition. Meanwhile, each label transition is tracked and stored in

the dynamic label list which is utilized for calculation of dynamic components of

modularity variation for each label transition.

56

3.3 Proposed Hybrid Label Propagation

In this section the HLP approach is explained in detail. First, the objective function

corresponding to modularity variation attained by label transition is proposed in

Section 3.3.1. Then, the HLP technique is discussed in Section 3.3.2.

3.3.1 Modularity variation objective function

Considering (3.3), the modularity variation attained by changing the community (la-

bel) of the ith vertex from the current label �i to the new label �j is

ΔQ (i, �i → �j) =
tr
(
U�i→�jBU�i→�j

T −U�iBUT
�i

)
‖W‖ , (3.8)

where B is defined at (3.3), and U�i→�j represents the partition matrix U defined at

(3.2), when the community label of the ith node is replaced by the label of the jth

node. Also, U�i implies that the community partition does not change for the ith

node. Substituting (3.8) into (3.7) leads to

�
(k+1)
i = argmax

�j

{
tr(U�i→�jBU�i→�j

T −U�iBUT
�i
)

}
, �j ∈ L′

i, (3.9)

57

where L′
i is the set of candidate labels in the vicinity of the ith node such that

L′
i = {�j, ∀j ∈ Ni}. Defining U�i→�j = Ũi + Ǔ�i→�j , where

Ũi = [u1, ...,ui−1,0c×1,ui+1, ...,uN] (3.10a)

Ǔ�i→�j = [0c×1, ...,0c×1, e(j),0c×1, ...,0c×1] , (3.10b)

and e(j) denotes a c× 1 vector where ei(j) = 1 for i = j and ei(j) = 0 for i �= j.

Thus

argmax
�j

{
tr(U�i→�jBU�i→�j

T −U�iBUT
�i
)

}
=

argmax
�j

{
tr

(
ŨiBŨT

i + ŨiBǓT
�i→�j

+

Ǔ �i→�jBŨT
i + Ǔ�i→�jBǓT

�i→�j
− ŨiBŨT

i −

ŨiBǓT
�i
− Ǔ�iBŨT

i − Ǔ�iBǓT
�i

)}
, �j ∈ L′

i. (3.11)

Considering tr(A) = tr(AT) and tr
(
Ǔ�i→�jBǓT

�i→�j

)
= tr

(
Ǔ�iBǓT

�i

)
= bii, which

does not change regarding to �j, (3.11) can be simplified to

argmax
�j

{
2tr

(
ŨiBǓT

�i→�j
− ŨiBǓT

�i

)}
, �j ∈ L′

i. (3.12)

58

The second component at (3.12) is constant and does not change regarding to �j,

leading to

�
(k+1)
i = argmax

�j

{
tr
(
ŨiBǓT

�i→�j

)}
, �j ∈ L′

i. (3.13)

It should be noted that (3.13) maximizes label transitions from �i into �j for �j ∈ L′
i

which can lead to lower overall modularity. Therefore, in order to prevent transitions

with negative impact (i.e., overall modularity gain), the proposed objective function

at (3.13) must be evaluated for the current label �i as well,

�
(k+1)
i = argmax

�j

{
tr
(
ŨiBǓT

�i→�j

)}
, �j ∈ Li, (3.14)

where Li represents the union of the current label of the ith node and L′
i (the set of

candidate labels at the vicinity of the ith node), i.e., Li = {�i, �j, ∀j ∈ Ni}.

using tr
(
ŨiBǓT

�i→�j

)
=
∑

n\{i} u�jnbni and the definition of the modularity matrix

B, substituting bni = wni − mnni

‖W‖ into (3.14) leading to

tr
(
ŨiBǓT

�i→�j

)
=

∑
n\{i}

u�jnwni − mi

‖W‖
∑
n\{i}

u�jnmn. (3.15)

Applying wni = 0 for n /∈ Ni, the modularity variation objective function can be

reduced to

�
(k+1)
i = argmax

�j

{ ∑
n∈Ni

u�jnwni − mi

‖W‖
∑
n\{i}

u�jnmn

}
, �j ∈ Li, (3.16)

59

In (3.16), the first sum S1,�j ,i =
∑

n∈Ni
u�jnwjn aggregates the edge weights corre-

sponding to those nodes in the vicinity of the ith node labeled as �j. That is a sim-

ple process which requires search over |Ni| elements and |{k ∈ Ni, and �k = �j}| − 1

summations per each candidate label for each vertex. However, the second sum

S2,�j ,i =
∑

n\{i} u�jnmn is more complex as it requires search over all nodes to find

those labeled as �j, then aggregates their corresponding m. That entails search over

N elements and |{k ∈ [N], and �k = �j}| − 1 summations per each candidate label

for each vertex. Therefore, the computational complexity of the second sum is much

more than the first sum, especially for large N . Here, the pre-calculated values of

S2,�j ,i for all available labels are exploited. However, S2,�j ,i depends on either �j and

i which makes it very computational complex and also expensive to save for large

networks. Hence, the element excluding notation (\{i}) is removed from S2,�j ,i. This

does not affect S2,�j ,i for �j �= �i as u�jn = 0. However, for � = �i, the impact of one

additional i which is added by removing the element excluding notation (\{i}) from

S2,�j ,i, must be subtracted from the modified S2,�j ,i. Therefore, the final form of our

modularity variation objective function is

�
(k+1)
i = argmax

�j

⎧⎪⎪⎨
⎪⎪⎩
S1,�j ,i − mi

‖W‖S2,�j , ∀�j, j ∈ Ni,

S1,�j ,i − mi

‖W‖
(
S2,�j −mi

)
, �j = �i,

(3.17)

where

S1,�j ,i =
∑
n∈Ni

u�jnwjn, S2,�j =
∑
n

u�jnmn. (3.18)

60

3.3.2 Hybrid label propagation

The HLP algorithm leverages the foundations of standard LP techniques [2], as de-

scribed in Section 3.2.2, with three main differences. First, the efficient modularity

variation objective function proposed at (3.17) is exploited. Second, the hybrid form

of label transitions, using static and dynamic label lists is utilized. Finally, a cen-

tralized update order is instantiated where each node and its neighbors are updated

sequentially at each iteration.

Algorithm 4 details the proposed HLP technique. The algorithm starts with initializa-

tion of the dynamic label list ld by random distribution of labels (line 2 in Algorithm

4). Once the dynamic label list is initialized, the update list q is constructed (line 3 in

Algorithm 4), where qi ∈ {1, 2, ..., N}. The first element of q, denoted as q1, is picked

randomly, while its corresponding neighbors are concatenated right after q1 in the

updating order vector. Then, the second node is picked (randomly from remaining

nodes) and added to q and its neighbors that have not already been included in q are

concatenated. The procedure is followed until all nodes are added into the updating

order vector. This process is called the centralized update order.

The iterative procedure (lines 4-20 in Algorithm 4) starts by moving the dynamic label

list ld into the static label list ls. Then, the static label list ls is used to calculate

61

S2,� as described at line 7 in Algorithm 4. Once S2,� is calculated for all available

labels in ls, the label propagation procedure starts by evaluation of the modularity

variation objective function corresponding to available labels of the node’s neighbors

(∀�j, j ∈ Ni) and node’s current label (�i), using (3.17) as shown in Algorithm 4 lines

10-16.

Once the modularity variations corresponding to all candidate labels are evaluated,

the best label is selected and the dynamic label list ld is updated (line 17 in Algorithm

4). After all vertices have been updated, the number of remaining labels is tallied as

cl+1 for the next iteration (line 19 in Algorithm 4).

The main novelties of our proposed HLP are the use our modularity variation objec-

tive function at (3.17) instead of computing the actual value of modularity variation,

and the use of the static version of the label list to calculate its second component

S2,�j , while the dynamic labels list is updating at each iteration and is utilized in

calculation of the dynamic component S1,�j ,i. In the next section, community de-

tection results on a benchmark network and real world data sets are discussed to

reveal the efficiency and feasibility of the proposed HLP technique over existing com-

munity detection approaches, such as standard LP [2], Danon [35], Infomap [114],

and state-of-the-art techniques such as Louvain [3], over small, medium, and large

networks.

62

Algorithm 4: Hybrid Label Propagation(HLP)

Require: adjacency matrix W; initial no. of communities c1
1: return ld
2: Uniformly distribute c1 labels in ld,
3: Construct update order list q
4: for k = 1, ..., K do
5: ld → ls
6: for � = 1, 2, ..., cl do
7: S2,� =

∑
n u�nmn, using ls.

8: end for
9: for i ∈ q1, q2, ..., qN do
10: for j ∈ Ni do
11: if �j is equal to �i then
12: ΔQ�j =

∑
n∈Ni

u�jnwni − mi

‖W‖
(
S2,�j −mi

)
13: else
14: ΔQ�j =

∑
n∈Ni

u�jnwni − mi

‖W‖S2,�j

15: end if
16: end for
17: Update ld(i) = argmax

�j

{ΔQ�},
18: end for
19: cl+1 = |ld|
20: end for

3.4 Experimental Results and Discussion

Experimental results are conducted to investigate the overall performance of the pro-

posed HLP technique in terms of clustering performance (Newman’s modularity and

the number of communities), stability (standard deviation of modularity value), and

scalability (processing time) for a variety of real world data sets. Moreover, the evalu-

ation procedure is applied to leading state-of-the-art community detection techniques

63

Table 3.2
Parameters of LFR networks

Network N Cmin Cmax kavg kmax γ β μ
LFR1 1000 10 50 25 100 2 1 [0.1− 0.9]
LFR2 10000 20 100 50 200 2 1 [0.1− 0.9]

to provide a comparison with our proposed HLP algorithm for the purpose of compar-

ison. Here, the undirected and unweighted benchmark network called Lancichinetti-

Fortunato-Radicchi (LFR) [115, 116] is selected to evaluate performance of the pro-

posed technique for a network with known community structure. Table 3.2 describes

the important parameter for LFR synthetic networks.

LFR benchmarks are capable to generate networks which contain common feature

with the real-world data sets by assigning various values to the parameters represented

by the Table 3.2. Here N denotes the number of nodes; Cmin is the number of the

nodes within the smallest community; Cmax is the number of the nodes within the

largest community; kavg is the average degree of the nodes; kmax is the maximum

degree of the nodes in the network; γ is the exponent for the degree sequence and

β is the exponent for the community size distribution; also μ is a mixing parameter

coefficient in the LFR network denotes the average rate of edges that connect nodes

from different communities. That means by increasing value of μ, the strength of the

community structure decreases and makes the community detection more difficult.

To this end, normalized mutual information (NMI) [117], which lies in the ranges

[0, 1], has been employed to quantify the ability of the algorithm to discover the

64

known community structure. An NMI = 0 represents two independent partitions,

were NMI = 1 refers to identical partitions. For the real-world data sets, modularity

Q is used to measure the quality of the detected communities. Duch et al [27] showed

that higher modularity value represents more accurate detected partition. Meanwhile,

NMI is evaluated for two ground-truth networks, Dolphin and Football.

3.4.1 Efficiency analysis

Table 3.3 contains the characteristics of the real-world networks used in the exper-

iments and the parameters used for HLP. Different network sizes were selected to

explore the performance and the scalability of the proposed technique compared to

the state-of-the-art methods such as Louvain [3], Danon [35], classic LP [2] and In-

fomap [114]. Here, the Infomap approach is selected as a non-modularity based

state-of-the-art technique with which to compare. Modularity and NMI are selected

as for evaluation of the detected communities. The experiments are run on the same

machine to develop a fair comparison of running time. The experiments are coded

and executed in MATLAB (Danon, LP, Louvain and HLP) and C (Infomap), using

a laptop incorporating an i7-6560U processor @2.20GHz with 16GB of memory.

Tables 3.4 and 3.5 shows the average modularity values, processing time, and the

number of detected communities for the real-world data sets. Here, it is observed that

65

Table 3.3
Network characteristics and parameters used in HLP

Network Nodes Edges c1 Iteration K Ground Truth
Dolphin [88] 62 159 50 5 Yes
Football [118] 115 613 50 5 Yes
Jazz [90] 198 2742 50 5 No
Metabolic [27] 453 4,596 50 5 No
Email [119] 1,133 5451 50 5 No
Ego-Facebook [120] 4,039 88,234 100 5 No
Email-Enron [121] 36,692 183,831 2000 5 No
Com-dblp [121] 317,080 1,049,866 20000 5 Yes
Com-youtube [121] 1,134,890 2,987,624 20000 5 Yes

the proposed HLP technique produces competitive results as compared to Louvain

[3], Danon [35], and classic LP [2] techniques in terms of average modularity value,

but in a much shorter processing time. Although Infomap [114] seems faster, it

should be considered that the proposed processing time in Table 3.5 corresponds to C

implementation which is usually faster than MATLAB, which was used for simulation

of the other methods. Moreover, it is observed that the Infomap technique leads to

smaller modularity value for large networks such as Com-dblp and Youtube data sets.

Authors in [122] illustrated that Infomap suffers from the field-of-view limit for large

communities and fails to detect large communities.

Comparing the number of detected communities, it is observed that the HLP method

converges to a smaller number of communities in comparison to the classic LP and

Infomap. This could be seen as a desirable result, as it may help further analysis and

interpretation of the features or characteristics of the communities [123, 124]. These

result would be expected as the propagation of labels in original LP happens more

66

Table 3.4
Experiment results over real-world data sets–part 1, average Newman’s
modularity Qm, processing time in sec ts and the number of detected

communities C

Algorithm Louvain Danon LP
Network Qm ts C Qm ts C Qm ts
Dolphin 0.519 0.102 5 0.5136 0.0038 4 0.4994 0.0137
Football 0.604 0.105 9 0.5714 0.011 6.7 0.5769 0.0274
Jazz 0.443 0.152 3 0.4393 0.0317 3 0.4316 0.067
Metabolic 0.424 0.131 9 0.413 0.193 9.3 0.3845 0.0985
Email 0.540 0.379 11 0.5408 4.6 10.8 0.4927 0.2941
Ego-Facebook 0.8323 3.86 15.60 0.8124 382 13 0.8154 2.67
Email-Enron 0.5845 54.58 1185.3 *** � 10e6 *** 0.5572 50.24
Com-dblp 0.8099 1186.8 143.4 *** � 10e6 *** 0.684 2664.5
Com-youtub 0.6987 21082 3262.4 *** � 10e6 *** 0.6235 42351

often due to the impact of each label transition into the calculation of modularity

variations. Meanwhile, in HLP, the label transitions are not applied into the static

label list which is used for calculation of modularity variations. However, the Louvain

approach usually converges to fewer communities as it combines detected nodes within

communities to construct a super-node. That prevents label transition of each node

at former iterations and leads to fewer communities.

Tables 3.6 and 3.7 contains the standard deviation of Newman’s modularity and the

number of detected communities evaluated over 100 runs (10 runs for Com-YouTube

network). Compared to the modularity score itself, the modularity standard deviation

is very low for all the community detection algorithms. The proposed HLP does

produce a slightly higher standard deviation than the others, though the difference

overall is negligible. As it is shown next, the HLP essentially trades a slightly degraded

clustering performance and standard deviation for a significant boost in scalability

67

Table 3.5
Experiment results over real-world data sets–part 2, average Newman’s
modularity Qm, processing time in sec ts and the number of detected

communities C

Algorithm LP Infomap HLP
Network C Qm ts C Qm ts C
Dolphin 8.85 0.5259 0.0064 5 0.5106 0.0109 7.25
Football 11.5 0.6032 0.008 11 0.5721 0.0213 9.12
Jazz 6.3 0.4421 0.0209 5 0.4427 0.0506 5.59
Metabolic 37.5 0.4061 0.0283 27 0.4032 0.0607 25.47
Email 46.3 0.5367 0.073 48 0.5113 0.1472 28.17
Ego-Facebook 59.8 0.7051 0.525 6 0.8051 0.9362 35.58
Email-Enron 1831.7 0.5293 3.08 1077 0.5535 7.4865 1143
Com-dblp 19637 0.671 31.5 24318 0.6953 243.02 5564.6
Com-youtub 19838 0.557 148.6 23466 0.6113 5902.3 13308

Table 3.6
Experiment results over real-world data sets standard deviation of

Newman’s modularity (σQ) and the number of detected communities
(σC)-Part-1

Algorithm Louvain [3] Danon [35] Original LP [2]
Network σQ σC σQ σC σQ σC

Dolphin 0.0091 0.5975 0 0 0.0092 0.8567
Football 0.0090 0.8591 0.0061 0.4785 0.0175 1.3304
Jazz 0.0125 0.5385 0.0020 0 0.0090 0.9241
Metabolic 0.0057 1.0724 0.0020 0.7616 0.0118 2.8334
Email 0.0068 0.9055 0.0039 0.5196 0.0138 1.7972
Ego-Facebook 0.0061 1.0909 0.0025 0.6557 0.0039 3.7868
Email-Enron 0.0091 4.6690 *** *** 0.0101 5.4836
Com-dblp 0.0046 3.4496 *** *** 0.0047 7.4766
Com-youtub 0.0038 9.32 *** *** 0.0093 6.324

and efficiency, enabling performance for very large networks.

Tables 3.8 and 3.9 shows the NMI values for the ground-truth real world data sets,

Dolphin and Football. These results demonstrate that HLP performs on par with the

other community detection approaches. If we were to pick, the Louvian method is the

68

Table 3.7
Experiment results over real-world data sets standard deviation of

Newman’s modularity (σQ) and the number of detected
communities(σC)-Part-2

Algorithm Infomap [114] HLP
Network σQ σC σQ σC

Dolphin 0.0346 0.7759 0.0130 1.0392
Football 0.0021 0.6356 0.0205 1.4213
Jazz 0.0787 0.8075 0.0058 0.8118
Metabolic 0.0245 2.7386 0.0075 2.8100
Email 0.0073 2.8071 0.0158 3.5763
Ego-Facebook 0.0019 2.3087 0.0079 3.3690
Email-Enron 0.0048 5.4222 0.0175 5.8762
Com-dblp 0.0056 7.7910 0.0191 9.6469
Com-youtub 0.0038 11.316 0.0379 13.49

Table 3.8
The NMI of the real-world networks with ground truth communities-Part1.

Network No. Nodes No. Edges No. Groups Louvain Danon
Dolphin 62 159 2 0.5498 0.5742
Football 115 613 12 0.9200 0.8084

Table 3.9
The NMI of the real-world networks with ground truth communities-

Part-2.

Network No. Nodes No. Edges No. Groups Original LP Infomap HLP
Dolphin 62 159 2 0.4425 0.4880 0.4917
Football 115 613 12 0.9293 0.9522 0.9129

overall winner in this test. But the message here is that HLP is a good community

detection algorithm and when the efficiency of HLP is considered, it clearly shines

above the rest.

Figure 3.1 illustrates the average modularity values versus algorithm iterations for

various real-world data sets. It is observed that HLP converges fast and produces a

69

1 2 3 4 5 6 7 8 9 10
Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
od

ul
ar

ity
 (Q

)

facebook
com-dlbp
youtube
Email-Enron
football
email
dolphin
jazz
metabolic

Figure 3.1: Proposed HLP modularity convergence for small to huge real
data sets.

steady behavior after the 5th iteration for most of the available data sets.

Figure 3.2 depicts the impact of the initial number of communities on (a) modularity

value and (b) running time for Facebook and Email-Enron networks. As shown, the

modularity performance is not sensitive to the number of initial communities c1. This

can be observed in Fig. 3.2(a) where values in 20 ≤ c1 ≤ 200 for Email data set and

50 ≤ c1 ≤ 200 for Facebook network approximately lead to the same results. As

expected, increasing the number of initial communities increases the computational

complexity due to more available labels over which to search for each node in early

iterations. For instance, increasing c1 for Facebook network from 10 to 100 leads to

a 50% increase in overall processing time.

Figure 3.3 shows the average NMI and modularity values for the LFR network [115,

116], with 1,000 nodes and variable mixing parameters μ. An average degree of 25 and

70

50 100 150 200
Number of intitial communities

(a)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

M
od

ul
ar

ity
 (Q

) Facebook Net
Email Net

50 100 150 200
Number of intitial communities

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tim
e

(s
ec

)

Facebook Net
Email Net

Figure 3.2: Impact of initial number of communities (c1) on algorithm
performance over 100 run(a) Average modularity value, (b) Algorithm pro-
cessing time.

maximum degree of 100 were selected. As shown in Figure 3.3(a), the HLP approach

leads to NMI> 0.9 for μ ≤ 0.6. Although the NMI value drops for μ > 0.6, HLP

outperforms the Infomap [114], Louvain [3], and Danon [35] techniques for μ > 0.6.

Comparing the modularity values shown in Figure 3.3(b), it is observed that the

original LP, Louvain, Infomap, and HLP perform nearly the same for μ < 0.6, while

the Infomap approach fails to detect available large communities. It is also observed

that by increasing mixing parameter μ and the size of the network graphs, the overall

performance decreases as expected. Again, these results show that HLP is a good

community detection algorithm.

Figure 3.4 shows the average NMI and modularities for the LFR network [115, 116]

with 10,000 nodes and variable mixing parameters μ. An average degree of 50 and

71

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mixing Parameter ()

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Infomap
Original LP
HLP
Louvain
Danon

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mixing Parameter ()

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
od

ul
ar

ity

Infomap
Original LP
HLP
Louvain
Danon

Figure 3.3: Average NMI and modularity evaluated using LFR network
with 1000 nodes(LFR1).

maximum degree of 200 were selected. As shown in Figure 3.3(a), the HLP approach

leads to NMI> 0.9 for μ ≤ 0.65. Although the NMI value drops for μ > 0.65, HLP

outperforms the Infomap, Louvain and Danon techniques for μ > 0.6. Comparing the

modularity values plotted in Figure 3.4(b), it is also observed that the original LP,

Louvain, Infomap, and HLP perform nearly the same for μ < 0.7, while the Infomap

approach fails to detect available large communities for μ ≥ 0.8.

Summarizing the overall results, it is observed that the HLP provides feasible com-

munity detection solutions in terms of modularity and NMI in small to huge net-

works. However, the main contribution of HLP is its ability to quickly partition huge

networks, as shown in Tables 3.4 and 3.5. In the next section, the computational

complexity of the proposed HLP approach is discussed analytically.

72

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mixing Parameter ()

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Infomap
Original LP
HLP
Louvain

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mixing Parameter ()

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
od

ul
ar

ity

Infomap
Original LP
HLP
Louvain

Figure 3.4: Average NMI and modularity evaluated using LFR network
with 10000 nodes(LFR2).

3.4.2 Computational complexity analysis

Considering (3.5) and (3.6), it is observed that the traditional methods for calculation

of modularity variation require an N element search to find all nodes labeled the same

as the current (p) and the candidate (q) labels. Moreover, Nk, k ∈ {p, q}, sums are

required to calculate the total sum-weights, such as Σtot at (3.5) or σ(i, k) at (3.6),

where Nk denotes the number of nodes labeled as k within the entire network. The

same procedure is required for calculation of Σin and ki,in at (3.5) and Σ(p) at (3.6).

These components are calculated per candidate label transition. In HLP, calculation

of S2,� requires an N -element search and an N�-size sum which is executed only once

73

per each label, using the static label list. Moreover, calculation of the dynamic com-

ponent, S1,�,i, requires an Ni-element search and ni,� sums, where Ni and ni,� denote

the number of neighbors of the ith node and those labeled as �, respectively. There-

fore, it is concluded that the overall number of operations required for calculation of

modularity variation for all nodes is O(N2) for the proposed approaches at (3.5) and

(3.6) versus O(N) for HLP.

Figures 3.5 and 3.6 depict the convergence of HLP, Louvain, and original LP over

multiple iterations in terms of average modularity for the Email, Facebook, Email-

Enron, and YouTube data sets. As shown in Fig. 3.6, it is observed that HLP

converges to the final solution prior to the first iteration of Louvain and LP methods

for large networks. This is because the main computational complexity of the LP-

based techniques, such as Louvain and original LP, correspond to the calculation of

modularity gain variations which are dramatically decreased in HLP. Therefore, as

a quantitative comparison, it can be observed that HLP always outperforms Danon,

LP, and Louvain in term of processing time, and produces competitive modularity

values.

Summary of Hybrid Label Propagation In this study, community detection via

a novel hybrid label propagation approach was proposed. We developed a label prop-

agation method that exploited static and dynamic labels to reduce the computation

at each iteration. The proposed technique selects the optimum label by maximizing a

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (sec)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
od

ul
ar

ity

HLP
Louvain
LP

(a) Using non-overlapping memberships

0 1 2 3 4 5
time (sec)

0.6

0.65

0.7

0.75

0.8

0.85

M
od

ul
ar

ity

HLP
Louvain
LP

(b) Using overlapping memberships

Figure 3.5: HLP versus LP and Louvian : average modularity convergence
versus time.(a) Email data set, (b) Ego-Facebook data Set.

0 50 100 150 200 250
time (sec)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
od

ul
ar

ity

HLP
Louvain
LP

(a) Using non-overlapping memberships

0 2 4 6 8 10
time (sec) 104

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
od

ul
ar

ity

HLP
Louvain
LP

.pdf
(b) Using overlapping memberships

Figure 3.6: HLP versus LP and Louvian : average modularity convergence
versus time.(a) Email-Enron data set, (b) YouTube data set.

novel modularity variation objective function, which then optimizes the overall mod-

ularity gain for a given label propagation. In the proposed objective function, the

75

dynamic labels are used for calculating low complexity components of the objective

function for each candidate label transition. Meanwhile, the static labels are used

for off-line calculation of the computationally expensive components of the objective

function for each available label.

It was observed that the performance of the proposed HLP was very competitive

in terms of modularity and normalized mutual information as compared to exist-

ing techniques for small to medium sized networks, and with a lower computational

complexity. For large networks, HLP converged to acceptable solutions (although,

sometimes slightly sub-optimal) in a far faster time than existing methods. There-

fore, it was concluded that the proposed HLP is a proper remedy with acceptable

computation time to discover high-quality community structure in large-scale net-

works, where most recent existing methods are highly computationally expensive for

that application and thus are not a feasible solution for massive networks.

76

Chapter 4

Linear Time Community Detection

by a Novel Modularity Gain

Acceleration in Label Propagation

The material in this chapter was submitted for publication to IEEE Transactions on Big Data on
March 12, 2019.

77

4.1 Introduction

In this chapter a novel strategy for calculation of modularity gain associated with

label transitions is discussed. The proposed approach is called Modularity Gain Ac-

celeration (MGA), as it is inspired by analysis of the general closed form model of

Newman’s modularity shown at (4.2). Unlike the traditional method proposed in

[3, 40, 43, 44, 107], here, a new formulation of the modularity gain objective function

is developed corresponding to the available candidate labels. Using mathematical

manipulations, the proposed objective function is simplified into two components:

the Local Sum-Weight (LSW) and the General Sum-Weight (GSW). The LSW is the

lower complexity component and is calculated once per each candidate label tran-

sition, for each node. The GSW is the computationally complex component and is

calculated only once per each label at the initiation phase. However, the GSW needs

an updating procedure to keep up with the network’s community membership varia-

tions throughout the LP procedure. Therefore, an update scheme is conducted over

the GSWs corresponding to the source and destination communities at each label

transition. This update process requires only two additions, which leads to a huge

efficiency gain compared to direct calculation of GSW per each label transition.

The efficiency of the proposed technique is evaluated analytically by examining the

required mathematical operations and compared with traditional approaches in [3, 40,

78

43, 44, 107]. Moreover, the efficiency of the proposed technique is evaluated over real

world data sets with millions of nodes, using the proposed MGA in state-of-the-art

LP-based community detection techniques, such as Louvain [3] and traditional LP [2].

The obtained results show that the MGA produces the same performance in terms

of modularity, as expected; however, it offers significant speed-up proportional to the

size of network. Simulation results on a real world data set with millions of nodes

demonstrates that our method outperform most existing modularity based clustering

approaches in term of both time complexity and modularity performance.

The rest of the chapter is arranged as follows. Section 4.2 introduces the mathemat-

ical model of the community detection and discusses the LP method, including the

traditional approach for so-called effective calculation of modularity gain variation.

Then the proposed MGA technique is presented in Section 4.3 followed by an analyt-

ical evaluation of computational complexity associated with the proposed MGA and

traditional approach. Section 4.4 presents experiments, analysis, and discussions.

Table 4.1 contains the selected symbols and notations used throughout this chapter.

79

Table 4.1
Notation and symbols

Symbol Description
G graph G = (V,E,W) of network including N nodes
U partition matrix of network (graph) G
ui ith column of the partition matrix U
uli element at lth row and ith column of U
Uli partition matrix of G indicating l as label of node i

Ũn partition matrix U with all zeros at the nth column
W adjacency matrix of network G
mn degree of the nth vertex

m degree vector m = [m1,m2, ...,mn]
T

B modularity matrix
bn nth column of modularity matrix B
bli element at lth row and ith column of B
Ni the set of neighbor’s labels of the ith node
L′

i the set of candidate labels for node i
Li L′

i ∪ �i
[N] the set of integers from 1 to N

\ {i} remove ith element from the integer set

4.2 Community Detection

4.2.1 Community detection and modularity

Consider a network as an undirected graph G = (V,E,W), where V is a set of N

vertices (nodes), E is a set of edges, and W is an N × N adjacency matrix. Here,

the ith row and jth column of W, wij, denotes the weight associated with the edge

connecting vertices i and j, for i, j = [N] 1. The process of community detection aims

1Note that the notation [N] means the set of integers from 1 to N .

80

to find a c×N partition matrix U, where the element in the kth row and ith column

of U, uki, for k = [c] and i = [N], represents the membership of the ith vertex in the

kth community. Crisp partitions are U, such that uki ∈ {0, 1} and
∑c

k=1 uki = 1.

The modularity value is a metric to evaluate the correctness of an associated com-

munity [27] represented by a partition U. It was by Newman and Girvan [34] as a

metric to evaluate quality of non-overlapping communities in graph clustering, and is

defined as

Q =
1

‖W‖
N∑

i=1,j=1

(
wij − mimj

‖W‖
)
δ(i, j), (4.1)

wheremi =
∑N

j=1 wij, i = [N], ‖W‖ =
∑N

i=1 mi. δ(i, j) = 1 if vertex i and vertex j are

in the same community, else δ(i, j) = 0. Liu et al. [29] introduced a new modularity

objective function for overlapping community detection in networks. Havens et al.

[36] is developed a more generalized modularity metric, given at (4.2), that works for

evaluating either overlapping or non-overlapping partitions.

Q =
tr
(
UBUT

)
‖W‖ , (4.2)

where B =
[
W − mTm

‖W‖

]
is the modularity matrix, m = (m1,m2, . . . ,mN)

T , andmi =

∑N
j=1 wij, i = [N]. In this chapter the proposed form od modularity at (4.2) is utilized

to develop a new approach for calculation of modularity gain achievable by a label

transition in LP-based community detection.

81

4.2.2 Label propagation clustering

The LP algorithm starts with an initialization phase where each vertex in the graph

is allocated a unique label representing its community. Hence, for graph G = (V,E),

there would be N unique labels at the initialization step. Then, the main body of

the LP algorithm starts with an iterative process where at each iteration all labels

of the graph vertices are updated. The LP approach selects the best label (among

all available labels in a node’s neighborhood) with respect to the best gain in term

of modularity value that can be obtained for each candidate label transition. This

iterative process will be continued until no further improvement in modularity gain.

This demands evaluation gain corresponding to every candidate label. In very large

scale networks, numerous numbers of label transitions have to be evaluated at each

iteration, which leads to huge computational complexity.

Consider traditional modularity gain

ΔQ (i, p → q) =

[
Σin + ki,in

‖W‖ −
(
Σtot + ki
‖W‖

)2
]
+

[
Σin

‖W‖ −
(

Σtot

‖W‖
)2

−
(

ki
‖W‖

)2
]
,

(4.3)

where Σin is sum of the weights between nodes labeled q, Σtot is the sum of the weights

corresponding to nodes labeled q, ki is the sum of the weights of node i, ki,in is the

82

sum of the weights of the links from node i to nodes labeled q and ‖W‖ is defined at

(4.1). Recently, a modified version of modularity gain was proposed [40]

ΔQ (i, p → q) =
σ (i, q\ {i})− σ (i, p\ {i})

‖W‖ +

(Σ (p\ {i})− Σ (q\ {i})) vi
2 ‖W‖2 ,

(4.4)

where ΔQ (i, p → q) is the acquired modularity gain by re-labeling the ith node from p

to q, and σ (i, p) =
∑

i,j:�(j)=p wi,j, and Σ (q) =
∑

∀i∈νq vi for vi =
∑

i,j:j∈Ni
wi,j +2wi,i,

where νq represents the set of all nodes labeled as q.

Considering (4.3) or (4.4), the objective function for selecting the best label for the

ith vertex at the kth iteration of the LP algorithm is

�
(k+1)
i = argmax

�j

{
ΔQ

(
i, �

(k)
i → �j

)}
, ∀j ∈ Ni, (4.5)

where ΔQ (i, p → q) is defined at (4.3) or (4.4) and � (j) and Ni represent the label

of the jth vertex and the set of neighbors of the ith node, respectively.

In this work, an efficient approach called MGA is introduced which selects the best

available label among the labels of neighbors, according to the new modularity gain

of label transitions.

83

4.3 Modularity Gain Acceleration

In this section the proposed MGA approach is explained in detail. First, the objective

function corresponding to the attained modularity gain by label transition is proposed.

Then the computational complexity of the proposed objective function is studied

analytically.

4.3.1 The MGA approach

Consider a label transition of the ith node from current label �i to the new label �j

based on (4.2); the modularity gain ΔQ is obtained by (see Appendix B for proof)

�
(k+1)
i = argmax

�j

{ ∑
n∈Ni

u�jnwni−

mi

‖W‖
∑
n\{i}

u�jnmn

}
, �j ∈ Li,

(4.6)

where the first sum, S1,�j ,i =
∑

n∈Ni
u�jnwjn, represents the LSW, which aggregates

the edge weights corresponding to those nodes of the neighbors of the ith node labeled

as �j. That is a low computationally complex process which requires search over |Ni|

elements and (|{k ∈ Ni, and �k = �j}| − 1) summations per each candidate label for

each node. However, the second sum, S2,�j ,i =
∑

n\{i} u�jnmn, represents the GSW, is

84

a significant time consuming process as it requires search over all nodes to find those

labeled as �j, then summation of their corresponding m which requires to search over

N elements and (|{k ∈ [N], and �k = �j}| − 1) summations per each candidate label

for each vertex. Here, the pre-calculated values of GSWs or S2,�j ,i are exploited for

all available labels. However, S2,�j ,i depends on either �j and i which makes it very

computationally complex and also expensive to save for large scale networks.

Here, we propose to use simple mathematical manipulations as follow to remove the

node index subscript i for the proposed GSW. To this end, we need to remove the

element excluding notation (\{i}) from S2,�j ,i or
∑

n\{i} u�jnmn. This does not affect

S2,�j ,i for �j �= �i as u�ji = 0. However, for �j = �i, the impact of one additional i

which is added by removing the element excluding notation (\{i}) from S2,�j ,i, must

be subtracted from the modified S2,�j ,i. Thus, the modularity objective gain function

can be simplified to

�
(k+1)
i = argmax

�j

⎧⎪⎪⎨
⎪⎪⎩
S1,�j ,i − mi

‖W‖S2,�j , ∀�j, j ∈ Ni,

S1,�j ,i − mi

‖W‖
(
S2,�j −mi

)
, �j = �i,

(4.7)

where

S1,�j ,i =
∑
n∈Ni

u�jnwjn, (4.8a)

S2,�j =
∑
n

u�jnmn, (4.8b)

85

As mentioned, (4.8b) is only computed once at the initialization stage. However, by

propagating labels throughout the LP process, the membership of vertices are sub-

jected to change. Therefore, the pre-calculated values of GSWs proposed at (4.7) are

no longer valid. This problem is addressed by an efficient updating stage, which com-

pensates for the impact of each label transition through the procedure. Considering

label transition of the ith node from the �ith to the �jth community, the following

update rule must be applied to the pre-calculated GSWs corresponding to �i and �j:

S2,�j +mi → S2,�j , (4.9a)

S2,�i −mi → S2,�i , (4.9b)

where S2,�i and S2,�j represent the GSWs corresponding to the old (�i) and the new

(�j) labels associated to the ith node, respectively, and mi is defined at (4.1).

The proposed equations at (4.7) and (4.8) along with the updating equations at (4.9)

present the main contribution of this chapter. The main novelty of this work is

reforming the GSW such that the node subscripts are removed, which allows off-line

calculation of the GSW per each label (S2,�j) following by an update process instead of

on-line calculation of the GSW for all available labels of all nodes (S2,�j ,i). Algorithms

5 and 6 detail the process of deploying the MGA technique into the original LP [2]

and Louvain [3], respectively.

86

Algorithm 5: MGA Label Propagation (MGA-LP)

Require: adjacency matrix W; initial no. of communities c1
1: return label list l
2: initialize vertices communities � = 1, 2, ..., cl
3: S2,� =

∑
n u�nmn, using initialized communities.

4: while Qnew > Qold do
5: for i = 1, 2, ..., N do
6: for j ∈ Ni do
7: if �j is equal to �i then
8: ΔQ�j =

∑
n∈Ni

u�jnwni − mi

‖W‖
(
S2,�j −mi

)
9: else
10: ΔQ�j =

∑
n∈Ni

u�jnwni − mi

‖W‖S2,�j

11: end if
12: end for
13: Update l(i) = argmax

�j

{ΔQ�},
14: S2,�j +mi → S2,�j

15: S2,�i −mi → S2,�i

16: end for
17: end while

4.3.2 Computational complexity analysis

In this section the number of mathematical operations required for calculation of

modularity gain variations associated with a label transition is evaluated analytically.

The traditional approaches, proposed at (4.3) or (4.4), and the proposed MGA scheme

are evaluated. Table 4.2 reviews the number of operations including summation,

multiplication, and search required to calculate a modularity gain at (4.3) or (4.4),

and the MGA approach proposed at (4.7). In (4.4), Σin and ki,in are the most

complex components. First, N search operations must be applied to extract a set

of nodes labeled as q, or νq, such that {�j = q, ∀j ∈ νq}. Then kj = |Nj| searches

87

Algorithm 6: MGA Louvain Algorithm (MGA-Louvain)

Require: adjacency matrix W;
1: return label list l
2: Initialize each node as single community and set Nc = N
3: while Qnew > Qold do
4: for � = 1, 2, ..., Nc do
5: S2,� =

∑
n u�nmn, using initialized communities.

6: end for
7: for i = 1, 2, ..., Nc do
8: for j ∈ Ni do
9: if �j is equal to �i then
10: ΔQ�j =

∑
n∈Ni

u�jnwni − mi

‖W‖
(
S2,�j −mi

)
11: else
12: ΔQ�j =

∑
n∈Ni

u�jnwni − mi

‖W‖S2,�j

13: end if
14: end for
15: Update l(i) = argmax

�j

{ΔQ�},
16: S2,�j +mi → S2,�j

17: S2,�i −mi → S2,�i

18: end for
19: Set Nc with the number of available communities
20: Construct supper nodes for i = [Nc]
21: Set each supper node as single community
22: end while

Table 4.2
Required mathematical operations for calculation of modularity gain

variations to move the ith node into the qth community.

Operation traditional (4.3) or (4.4) MGA (4.7)
Search

∑
j∈νq |Nj|+ |Ni|+N |Ni|

Summation
∑

j∈νq

∣∣∣N (q)
j

∣∣∣+ ∣∣∣N (q)
i

∣∣∣+ 4
∣∣∣N (q)

i

∣∣∣+ 4

Multiplication 3 2

per each node in νq are needed to reveal the set of weights corresponding to the

neighbors labeled q, or w
(q)
j,j′ , such that {j, j′ ∈ νq, j′ ∈ Nj}. Then

(∣∣∣N (q)
j

∣∣∣− 1
)

summations are needed to aggregate weights in w
(q)
j,j′ , ∀j ∈ νq. Therefore,

∑
j∈νq |Nj|

searches and
∑

j∈νq

(∣∣∣N (q)
j

∣∣∣− 1
)
summations are needed to calculate Σin. Moreover,

88

calculation of ki,in requires ki = |Ni| search operations to reveal the set of weights

corresponding to the neighbors labeled q, or w
(q)
i,i′ , such that {i, i′ ∈ νq, i

′ ∈ Ni}. Then,(∣∣∣N (q)
i

∣∣∣− 1
)
summations are needed to aggregate weights in w

(q)
i,i′ . Therefore, overall

ki = |Ni| search operations and
(
|N (q)

i | − 1
)

summations are needed to calculate

ki,in. Furthermore, (Σtot requires |νq| − 1 summations to aggregate total weights of

nodes labeled q. The rest of components, such as ki and ‖W‖, are constant values

and can be calculated off-line. Additionally, 6 summations and 3 multiplications are

need to calculate the final value of ΔQ at (4.3).

Taking a closer look at (4.4), it is observed that the modularity gain value is derived

with respect to the same components at (4.3). The Σ(i, q\ {i}) component at (4.4)

represents the sum of weights among nodes in νq, or Σin at (4.3). Moreover, the

σ(i, q\ {i}) component at (4.4) represents the weights between the ith node and nodes

in νq, or ki,in at (4.3). However, the most complex part at (4.7) is the LSW or

S1,�j ,i which like the ki,in, demands ki = |Ni| search operations and
(
|N (q)

i | − 1
)

summations.

As shown in Table 4.2, traditional approaches, such as (4.3) or (4.4), have overall

computational complexity that depends on the size of the network N and the size of

each community or |νq|, which usually increases with the size of network. However, for

the proposed MGA approach, the overall computational complexity is on the order of

the node neighborhood size, |Ni|, which usually depends on network topology rather

89

than its size. Practical evaluation of traditional approaches and MGA for real-world

data sets is presented next.

4.4 Experimental Results and Discussion

Experiments are conducted to investigate the performance of the proposed MGA

technique in terms of computational complexity. It should be noted that as the

proposed MGA leads to the same modularity gain as the traditional method, it thus

leads to the same final modularity value—and the same communities. Therefore, here

the final network topology (in terms of Newman’s modularity) is evaluated beside the

computational complexity (in terms of processing time). The evaluation process is

conducted for the classic LP [2] and the Louvain [3] techniques using the proposed

MGA (Algorithms 5 and 6). In order to assess the quality of the proposed technique

on real-world data sets versus state-of-the-art approaches, we also present the most

recent non-LP algorithm, called ECES [112].

Table 4.3 shows the characteristics of the real-world networks used in the experiments

and the parameters used for MGA over 100 runs. Here, different sizes of networks

are selected to explore the performance and the scalability of the proposed technique

compared to the state-of-the-art methods. The experiments are executed 100 times

for each network on the same machine to develop a fair comparison. The experiments

90

Table 4.3
Network characteristics and parameters used in MGA

Network Nodes Edges c1 (LP) Ground Truth
Dolphin [88] 62 159 50 Yes
Football [118] 115 613 100 Yes
Jazz [90] 198 2742 100 No
Metabolic [27] 453 4,596 100 No
Email [119] 1,133 5451 100 No
Ego-Facebook [120] 4,039 88,234 100 No
Email-Enron [121] 36,692 183,831 2000 No
Com-Dblp [121] 317,080 1,049,866 2000 Yes
Com-Youtube [121] 1,134,890 2,987,624 10000 Yes

are coded and executed in MATLAB, using a laptop with an i7-6560U processor

@2.20GHz with 16GB of memory. Note that ECES [112] is implemented in ANSI

C++ using a PC with an i5 CPU (2.8 GHz) and 6GB of memory.

Tables 4.4 and 4.5 show the average convergence time over 100 runs of the tradi-

tional LP and Louvain approaches versus the proposed MGA-LP and MGA-Louvain

methods in Algorithm 5 and 6, respectively. Moreover, the results of the ECES [112]

technique are presented to compare the classic LP and Louvain using the MGA with

a state-of-the-art technique.

Figures 4.1-4.9 depict the learning curve of the traditional LP [2] and Louvain [3],

versus the LP and Louvain techniques using the MGA proposed in Algorithms 5 and

6. As expected and shown in Table 4.4, the modularity values at each iteration are the

same. However, it can observed that the proposed MGA-Louvain technique converges

to the final solution before even the first iteration of the traditional approaches, for

91

Table 4.4
Average processing time over 100 run in sec ts and average Newman’s

modularity Qm for real-world data set.

Algorithm ECES [112] LP [2] MGA-LP
Network ts Qm ts Qm ts Qm

Dolphin 3 0.495 0.0184 0.4902 0.0164 0.4902
Football 5 0.549 0.0243 0.5740 0.0201 0.5740
Jazz 5 0.291 0.0847 0.437 0.0713 0.437
Metabolic 9 0.403 0.2219 0.3835 0.1428 0.3835
Email 14 0.480 0.7381 0.4886 0.4094 0.4886
Facebook 22 0.524 4.143 0.8086 1.255 0.8086
Email-Enron 150 0.517 2038.1 0.5531 22.69 0.5531
Com-dlbp 480 0.728 1,5361 0.6496 258.4 0.6496
Com-YouTube 3240 0.569 91,769 0.6273 671.4 0.6273

Table 4.5
Average processing time over 100 run in sec ts and average Newman’s

modularity Qm for real-world data set.

Algorithm Louvain [3] MGA-Louvain
Network ts Qm ts Qm

Dolphin 0.102 0.519 0.0316 0.519
Football 0.105 0.604 0.0365 0.604
Jazz 0.152 0.443 0.0545 0.443
Metabolic 0.131 0.424 0.1085 0.424
Email 0.379 0.540 0.4073 0.540
Facebook 3.86 0.8323 1.232 0.8323
Email-Enron 54.58 0.5845 9.499 0.5845
Com-dlbp 1186.8 0.8099 296.2 0.8099
Com-YouTube 21082 0.6987 2,589 0.6987

N > 1000 (see Figures 5.6–4.9). The same results are observed for LP when N > 4000

(see Figures 4.6–4.9).

The most interesting result of MGA is the linearity of the computational complexity

with respect to the size of the network. That makes MGA more superior to the tra-

ditional approaches when the size of the network increases. For instance, by applying

92

0 0.005 0.01 0.015 0.02
time (sec)

(a)

0.3

0.35

0.4

0.45

0.5

0.55

M
od

ul
ar

ity

Proposed LP
LP

0.015 0.02 0.025 0.03 0.035 0.04
time (sec)

(b)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.1: Modularity learning curve for Dolphin data set applying tra-
ditional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in algo-
rithm 5 and 6

0.005 0.01 0.015 0.02 0.025
time (sec)

(a)

0.45

0.5

0.55

0.6

M
od

ul
ar

ity

Proposed LP
LP

0.015 0.02 0.025 0.03 0.035 0.04
time (sec)

(b)

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.2: Modularity learning curve for Football data set applying tra-
ditional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in 5 and
6

93

0 0.02 0.04 0.06 0.08 0.1
time (sec)

(a)

0.32

0.34

0.36

0.38

0.4

0.42

0.44

M
od

ul
ar

ity

Proposed LP
LP

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time (sec)

(b)

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.3: Modularity learning curve for Jazz data set applying traditional
LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in algorithm 5
and 6

MGA, the computational complexity is reduced more than 100 times for traditional

LP and about 8 times for Louvain for the YouTube data set shown in Table 4.4 and

Figure 4.9. The difference between the computational time reduction between LP

and Louvain in large networks is due to the size reduction that happens when con-

structing the super nodes in the Louvain approach. Meanwhile, the first iteration of

the Louvain approach is still too complex (about 65% of overall complexity) which

leads to an 85% reduction of computational complexity for a network with around 1.1

million nodes. Moreover, it is observed that the proposed MGA-Louvain approach

always outperform ECES in terms of time complexity and final modularity.

94

0 0.05 0.1 0.15 0.2 0.25
time (sec)

(a)

0.2

0.25

0.3

0.35

0.4

0.45

M
od

ul
ar

ity

Proposed LP
LP

0.06 0.08 0.1 0.12 0.14 0.16
time (sec)

(b)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.4: Modularity learning curve for Metabolic data set applying
traditional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in
algorithm 5 and 6

0 0.2 0.4 0.6 0.8
time (sec)

(a)

0.3

0.35

0.4

0.45

0.5

0.55

M
od

ul
ar

ity

Proposed LP
LP

0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (sec)

(b)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.5: Modularity learning curve for Email data set applying tradi-
tional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in algo-
rithm 5 and 6

95

0 1 2 3 4 5
time (sec)

(a)

0.65

0.7

0.75

0.8

0.85
M

od
ul

ar
ity

Proposed LP
LP

1 2 3 4 5
time (sec)

(b)

0.6

0.65

0.7

0.75

0.8

0.85

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.6: Modularity learning curve for Facebook data set applying tra-
ditional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in algo-
rithm 5 and 6

0 50 100 150 200
time (sec)

(a)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
od

ul
ar

ity

Proposed LP
LP

0 10 20 30 40 50 60
time (sec)

(b)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.7: Modularity learning curve for Email-Enron data set applying
traditional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in
algorithm 5 and 6

96

0 5000 10000 15000
time (sec)

(a)

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

M
od

ul
ar

ity

Proposed LP
LP

200 400 600 800 1000 1200
time (sec)

(b)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.8: Modularity learning curve for Com-DLBP data set applying
traditional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in
algorithm 5 and 6

0 2 4 6 8 10
time (sec)

(a)
104

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
od

ul
ar

ity

Proposed LP
LP

0 0.5 1 1.5 2
time (sec)

(b)
104

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
od

ul
ar

ity

Proposed Louvain
Louvain

Figure 4.9: Modularity learning curve for Com-YouTube data set applying
traditional LP [2] and Louvain [3] versus MGA-LP and MGA-Louvain in
algorithm 5 and 6

97

Summary of Linear Time Modularity Gain Acceleration In this study, we

introduced a novel objective function for calculation of the attained modularity gain

corresponding to label transitions. The proposed technique is efficient as it offers

linear computational complexity (with respect to the size of the network) associated

with calculation of modularity gain variation per each vertex label transition. The

computational complexity of the proposed technique was assessed analytically and

compared with traditional approaches developed for the calculation of modularity

gain. Then, real-world data sets, containing up to millions of nodes, were tested

with two non-overlapping LP-based community detection schemes that incorporated

traditional and the proposed MGA approaches for modularity gain variations. The

proposed technique is applied to selected state-of-the-art LP-based community detec-

tion methods and the resulting network modularity and execution time are compared

with traditional methods. By applying MGA to LP-based methods, the run-time

is significantly reducedsometimes finishing before the traditional approach even fin-

ishes one iterationand the same modularity result and number of communities, i.e.,

community detection result, is obtained. The MGA approach leads to significant effi-

ciency improvements by reducing time consumption up to 85% relative to the original

algorithms with the exact same quality in terms of modularity value.

98

Chapter 5

Overlapping Community Detection

in Large-Scale Complex Networks

via Fast Fuzzy Modularity

Maximization

The material in this chapter is in preparation for submission to IEEE Transactions on Fuzzy Systems.

99

5.1 Introduction

As discussed in Chapter HLP, community detection approaches are categorized as

either non-overlapping or overlapping in terms of node—i.e., vertex—membership

value. In non-overlapping community detection, each node belongs to only one

community; meanwhile, in overlapping community detection each vertex can be-

long to more than one community [36]. Non-overlapping community detection

has attracted a lot of attention [2, 3, 23, 24, 25, 26, 37, 38, 39, 40], and ef-

ficient approaches such as those proposed in [3, 40] were developed in terms of

performance (modularity) and computational complexity. However, these tech-

niques cannot produce true membership values corresponding to nodes with high

between-ness [36]. Therefore, many works discuss overlapping community detection

[4, 28, 29, 30, 31, 32, 33, 36, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134]. Although

some of these techniques have acceptable performance in terms of modularity, most

of them suffer from high computational complexity and only are applied to small or

medium size networks [4, 31, 33, 36, 125, 126, 127, 128, 133, 134, 135].

Some works propose fast overlapping community detection [41, 42]; however, perfor-

mance of their overlapping community detection is not measured in terms of modular-

ity. Some recent works propose faster techniques for overlapping community detection

via modularity maximization. In [129] the authors proposed a method based on fuzzy

100

label propagation which still is much more complex than non-overlapping community

detection due to the higher number of available communities to be tested and high

computational complexity of the fuzzy modularity change value compared to that of

the non-overlapping form. In [130] the authors proposed a game theory based method

which is too complex for very large networks—on the order of hundreds of minutes

for networks less than 105 nodes. In [134], the authors proposed a fuzzy agglomerative

(FuzAg) approach for community detection that iteratively updates membership de-

gree of nodes. The time complexity of the FuzAg algorithm is O(n2). Note, however,

that the FuzAg algorithm has impressive performance in term of modularity value

for small real world data sets. Su and Havens [125] proposed several heuristics for

soft modularity maximization. Similar to [134], the proposed FMM/H2 has great

performance in terms of modularity value, but is only appropriate for small data sets

due to its time complexity of O(n2).

In this chapter, overlapping community detection via Fast Fuzzy Modularity Maxi-

mization (FFMM) is proposed. First, a novel objective function for calculation of

modularity gain associated with changing the membership values of each vertex (a

column of the partition matrix) is introduced. Then, the FFMM technique is devel-

oped by optimizing this objective function—i.e., modularity gain—subject to node

fuzzy memberships. The efficiency of the proposed objective function is enhanced by

incorporating the pre-calculation of static components at each iteration. Moreover,

multi-cycle FFMM is introduced which breaks networks into multiple sub-networks

101

and applies the FFMM to detect their communities. Then, the detected communities

at each sub-network are considered as sub-networks for the next cycle.

The proposed multi-cycle FFMM technique offers remarkable performance in terms

of modularity and overlapping normalized mutual information (ONMI) in near linear

time with respect to network size and initial number of communities to be detected.

Studies over real-world data sets and the Lancichinetti-Fortunato-Radicchi (LFR)

[115, 116] benchmark network show that multi-cycle FFMM is much faster (on the

order of network size) as compared to the state-of-the-art techniques, such as [125,

130, 134], with impressive modularity and remarkable ONMI values.

The rest of the chapter is organized as follows. Section 5.2 introduces the mathemat-

ical model of the community detection problem and discusses both non-overlapping

and fuzzy approaches. Section 5.3 details the proposed FFMM technique. Multi-cycle

FFMM is introduced in Section 5.4. Simulation results and discussions are proposed

in Section 5.5. Table 5.1 contains selected notation and symbols used throughout this

chapter.

102

Table 5.1
Notation and symbols

Symbol description
G graph G = (V,E,W) of network including N nodes

G
(l)
j graph of jth sub-network at lth cycle
U partition matrix of network (graph) G
un the nth column of the partition matrix U
ukn element at kth row and nth column of U

U
(l)
j partition matrix of jth sub-network at the lth cycle

u
(l)
j,n the nth column of the partition matrix U

(l)
j

u
(l)
j,kn element at the kth row and nth column of U

(l)
j

Ũ[n] partition matrix U with all zeros at the nth column
W adjacency matrix of network G
mn degree of the nth vertex

m degree vector m = [m1,m2, ...,mn]
T

B modularity matrix, B = W −mTm/
∑

m
bn the nth column of modularity matrix B
bkn element at the kth row and the nth column of B

B̃ modularity matrix B with all zero diagonal elements
Nn the set of neighbors of the nth node in G
C total number of communities of U

C(l) total number of communities at the lth cycle
c(l) resolution at the lth cycle

c
(l)
j number of target communities of the jth sub-network at the lth

cycle

N
(l)
j number of nodes in the jth sub-network at the lth cycle
[t] the set of integers from 1 to t
n0 non-negative integer number
k positive constant number
L number of cycles

103

5.2 Community Detection

5.2.1 Modularity

Every network can be represented by a graph G = (V,E,W), where V is a set of n

vertices, E is a set of edges, and W is an n × n edge weight (or adjacency) matrix,

where wij in W denotes the weight of the edge connecting vertex i and vertex j.

Community detection for a network is the process of finding a c× n partition matrix

U, where each element uki in U, k = [c], i = [n], is the membership of the ith vertex

in the kth community.

The value of modularity denotes the accuracy of communities represented by a parti-

tion U. Modularity was originally introduced by Newman and Girvan [34] as a way

to evaluate non-overlapping communities in networks, which is defined as

Q =
1

‖W‖
n∑

i=1,j=1

(
wij − mimj

‖W‖
)
δ(i, j), (5.1)

where mi =
∑n

j=1 wij, i = [n], ‖W‖ =
∑n

i=1 mi, and δ(i, j) = 1 if vertex i and vertex j

are in the same community, else δ(i, j) = 0. In this work, the generalized modularity

104

objective function proposed by Havens et al. [36] is used;

Qg =
tr
(
UBUT

)
‖W‖ , (5.2)

where B =
[
W − mTm

‖W‖

]
and m = (m1,m2, . . . ,mN)

T for mi =
∑N

j=1 wij, i = [N].

The proposed modularity objective function at (5.2) works for evaluating not only

non-overlapping partitions, but also overlapping partitions. For non-overlapping par-

titions, (5.2) is equivalent to (5.1). Considering the generalized modularity at (5.2),

we propose a novel formula for evaluation of modularity gain. The proposed formula is

simple to implement and computationally efficient as compared to the state-of-the-art

[3, 40, 107].

5.3 Fast Fuzzy Modularity Maximization

In this section the FFMM approach is introduced in detail. First, the objective func-

tion corresponding to modularity gain attained by changing a vertex membership—a

column of the partition matrix U—is proposed in Section 5.3.1. Then, a recursive

equation is proposed for updating the partition matrix via maximizing the modularity

gain subject to vertex fuzzy membership. The reduced complexity recursive equation

for updating the fuzzy partition matrix applicable to large networks is discussed in

Section 5.3.2.

105

5.3.1 Modularity gain objective function

FFMM leverages a simple idea: update each column of the partition matrix—i.e.,

vertex fuzzy membership values—such that the modularity value increases at each

update. Given graph W, described in Section 5.2, the modularity gain acquired by

updating the nth column of the partition matrix at the (k−1)th iteration, from u
(k−1)
n

to u
(k)
n , is achieved via (see Appendix for proof)

ΔQ
(
u(k−1)
n → u(k)

n

)
=

1∑
m

[
2
(
u(k)
n − u(k−1)

n

)T ×

Ũ
(k−1)
[n] bn + bnn

[(
u(k)
n

)T
u(k)
n − (

u(k−1)
n

)T
u(k−1)
n

]]
,

(5.3)

where

Ũ
(k−1)
[n] =

[
u
(k−1)
1 , ...,u

(k−1)
n−1 ,0c×1,u

(k−1)
n+1 , ...,u

(k−1)
N

]
(5.4)

and bn is the nth column of the modularity matrix B defined at (5.2). Here, it is

aimed to update each column of the partition matrix such that the modularity gain

associated with the updated column is maximized. This is achieved by taking the

derivative of (5.3) subject to u
(k)
n ,

∂
[
ΔQ

(
u
(k−1)
n → u

(k)
n

)]
∂
(
u
(k)
n

)T
= 2Ũ

(k−1)
[n] bn + bnnu

(k)
n = 0, (5.5)

106

leading to the solution

u(k)
n =

−2Ũ
(k−1)
[n] bn

bnn
, n = [N]. (5.6)

Equation (5.6) is the key equation of FFMM. Considering the fact that the diagonal

elements of the adjacency matrix W are zero, the diagonal elements of the modularity

matrix B =
[
W − mTm

‖W‖

]
are negative, i.e., bnn < 0 for n = [N]. This leads to

u(k)
n =

2Ũ
(k−1)
[n] bn

|bnn| , n = [N]. (5.7)

The proposed update at (5.7) may lead to negative values. Here, the negative ele-

ments are set to zero, then positive elements are normalized to satisfy
∑c

i=1 uin = 1.

Applying the normalization on (5.7) enables us to remove |bnn| at (5.7). That simpli-

fies (5.7) into

u(k)
n = Ũ

(k−1)
[n] bn, n = [N], (5.8)

where Ũ(k−1) and bn are defined at (5.3). It can be inferred that

u(k)
n = Ũ

(k−1)
[n] bn = U(k−1)b̃n, n = [N], (5.9)

where U(k−1) is the partition matrix at the (k − 1)th iteration and b̃n represents the

nth column of modularity matrix B, with zeros at its nth element.

Using (5.9) instead of (5.8) enables constructing the matrix form for updating the

107

Algorithm 7: Fuzzy Modularity Maximization (small networks)

Require: B̃, C
1: return U
2: Initialize U by uniformly distributed and normalized C ×N matrix
3: for k = 2, 3, ..., K do
4: U(k) = U(k−1)B̃
5: Eliminate negative elements of U(k)

6: Normalize columns of U(k) to one
7: end for
8: Return U(k)

entire partition matrix simultaneously. The final update equation is

U(k) = U(k−1)B̃, (5.10)

where B̃ represents the modularity matrix B with an all zeros diagonal.

Algorithm 7 details the proposed FFMM. It performs the overlapping modularity

maximization in a single cycle by optimizing the initial (random) partition matrix

and then iterating (5.10). However, for large networks (N ≥ 104), computation of

UB̃ would be complex. In the next section, an efficient technique to reduce the

computational complexity associated with calculation of UB̃ is discussed.

5.3.2 Efficient computation of UB̃

As mentioned in Section 5.3.1, the main computational complexity in Algorithm 7

is associated with UB̃. Here, we reduce the computational complexity of UB̃ via

108

a pre-computation of its static components. Using the definition of the modularity

matrix B, we have

UB = UW −U
mTm∑

m
. (5.11)

The nth column of UB is

Ubn = Uwn − UmTmn∑
m

, (5.12)

where mn is the nth element of the degree vector m. Here, the term UmT is the

static component at all columns of UB and can be pre-calculated for each update of

the partition matrix, rather than at each column update. However, (5.10) exploits

UB̃ rather than UB, where B̃ represents the modularity matrix B with an all-zero

diagonal. Considering that the diagonal elements of the adjacency matrix are zero,

the diagonal elements of the modularity matrix can be computed by bnn = − m2
n∑
m

for

n = [N], where m is the degree vector and mn is the nth element of m. This leads to

bn = b̃n − m2
nen∑
m

, (5.13)

where en denotes an 1 × N vector with ei = 1 for i = n and ei = 0 for i �= n.

Substituting (5.13) into (5.12) leads to

Ub̃n = Uwn − UmTmn∑
m

+U
m2

nen∑
m

. (5.14)

109

Applying some mathematical manipulations leads to the final form

Ub̃n = Uwn +

(
unmn −UmT

)
mn∑

m
, (5.15)

where the term UmT is the static component, as it is independent of n and can be

pre-calculated once for all columns of UB̃. Moreover, the first component of (5.15)

is simplified to

Uwn =
∑
l∈Nn

wlnuml,m = [c], n = [N], (5.16)

where Nn represents the set of all neighbors of the nth node. Therefore, the final

format for calculation of the nth column of UB̃ is

Ub̃n =
∑
l∈Nn

wlnuml +

(
unmn −UmT

)
mn∑

m
. (5.17)

Therefore, the reduced complexity calculation of UB̃ incorporates pre-computation

of the static part UmT , then computation of (5.17) for n = [N] to construct all

columns ofUB̃. In the following section multi-cycle FFMM is proposed, which reveals

overlapping communities of networks by applying FFMM proposed in Algorithm 7 in

detected sub-networks (communities) at each cycle.

110

5.4 Multi-Cycle FFMM for Large Networks

Multi-cycle FFMM incorporates two modifications applied to the FFMM technique

introduced in Algorithm 7. First, direct computation of UB̃ is replaced by its re-

duced complexity version proposed at (5.17). Second, FFMM is applied in multiple

cycles. The idea is to use the original FFMM at multiple cycles, where the detected

communities at each cycle are considered as the sub-networks to be processed—via

FFMM—at the next cycle.

At the first cycle, FFMM is applied to reveal a few super communities, each containing

multiple sub-communities. At the next cycle, each super community is considered as

a single sub-network and FFMM is applied to detect its communities within. This

procedure is repeated to detect communities with higher-and-higher resolutions.

5.4.1 Multi-cyle FFMM

Algorithm 8 details the proposed multi-cycle FFMM for overlapping community de-

tection in large networks.

† Step 1: Multi-cycle FFMM starts by applying the FFMM technique to reveal

c(1) sub-networks (line 3 of Algorithm 8). Here, FFMM is implemented via

111

Algorithm 7 and provides the overlapping partition matrix denoted by U(1).

† Step 2: The number of detected sub-networks is set for the first cycle via

C(1) = c(1) before starting the second cycle (lines 4 and 5 of Algorithm 8).

† Step 3: The sub-network construction algorithm proposed in Section 5.4.2 is

applied to the partition matrix derived from previous cycle, i.e. U(l) (line 6

of Algorithm 8). The sub-network construction algorithm aims to develop the

adjacency matrix associated with each detected sub-network.

† Step 4: A normalized and randomly distributed partition matrix U
(l)
j ∈

R
c
(l)
j

×N
(l)
j

is initialized for each constructed sub-network. Here, N
(l)
j represents

the number of nodes of the jth sub-network at the lth cycle. Moreover, c
(l)
j

is the number of target communities to be detected in the jth sub-network at

the lth cycle. The numbers of target communities for all sub-networks at the

lth cycle are derived based on the pre-defined maximum community number

associated with that cycle or c(l);

c
(l)
j = c(l)

N
(l)
j

max
i

(
N

(l)
i

) , j = [C(l−1)], l ≥ 2, (5.18)

where j is the index of sub-networks, c(l) is the predefined maximum community

112

number of the lth cycle, and N
(l)
j is the size (i.e., number of vertices) of the jth

sub-network at the lth cycle (line 8 of Algorithm 8).

† Step 5: Apply FFMM into all available sub-networks to reveal c
(l)
j communities

for j = [C(l−1)] (line 9 of Algorithm 8).

† Step 6: The partition matrix corresponding to the entire network U (l) is

constructed, incorporating the proposed technique in Section 5.4.3 (line 11 of

Algorithm 8).

† Step 7: The number of all detected communities (number of sub-networks for

the next cycle) C(l) =
∑C(l−1)

j=1 c
(l)
j (see (5.18) for c

(l)
j) is calculated and the next

cycle starts from Step 3 (line 12 of Algorithm 8).

5.4.2 Sub-network construction

The main purpose of the sub-network construction process (line 7 in Algorithm 8)

is to remove edges among sub-networks. This process is vital as each sub-network

is processed individually via FFMM. As shown in Figure 5.1, the input of the sub-

network construction process is the network cover matrix U(l). Then after applying

113

Algorithm 8: Multi-cycle FFMM

Require: Network Adjacency, c(1), c(2), ..., c(L)

1: return U(L)

2: Initialize U(1) by c(1) ×N matrix,
3: Apply FFMM to U(1) to reveal c(1) communities
4: Set C(1) = c(1)

5: for l = 2, ..., L do
6: Construct C(l−1) sub-networks i.e. W

(l)
j for j = 1, 2, ..., C(l−1), from each

detected community at the (l − 1)th cycle as described in Section 5.4.2
7: for j = 1, 2, ..., C(l−1) do
8: Initialize U

(l)
j by c

(l)
j ×N

(l)
j matrix using (5.18)

9: Apply the FFMM to W
(l)
j to detect the c

(l)
j communities or U

(l)
j .

10: end for
11: Reform U(l) incorporating U

(l)
j , j = 1, 2, ..., C(l−1) via algorithm described in

Section 5.4.3
12: Set C(l) =

∑C(l−1)

j=1 c
(l)
j

13: end for

FFMM, the sub-network construction process generates an adjacency matrix for each

detected sub-network, i.e., W
(1)
1 and W

(1)
2 (the adjacency matrices of the black and

blue sub-networks in Figure 5.1). In this process each node only keeps those edges that

are connected to other nodes of the sub-network. For instance, as shown at the second

cycle of Figure 5.1, the node j shares edges with nodes of both detected communities.

Therefore, the edges among node j and all other nodes within the second sub-network

(i.e. node n) must be removed from the first sub-network, represented by W
(1)
1 .

Likewise, the edges among node j and all other nodes within the first sub-network

(i.e. node m) must be removed from the second sub-network, represented by W
(1)
2 .

114

Cycle 1

Cycle 3

W

FFMM

U(1)

Construct Sub-networks

W1(2) W2(2)

FFMM FFMM

U1(2) U2(2)

Reform Network

U(2)

Construct Sub-networks

W1(3) W2(3)

U1(3) U2(3)

Reform Network

W3(3) W4(3)

FFMM FFMM

U3(3) U4(3)

FFMM FFMM

U(3)

Cycle 2

j
k

m

n

j
k

Input: Network Adjacency

Final cover matrix

j
k

Figure 5.1: Multi-cycle FFMM process in three cycles.

5.4.3 Reform network

The reform network process aims to re-attach the sub-networks by forming the overall

network partition matrix. Here, the term overall network partition matrix denotes

115

the partition matrix associated with the original full network, i.e., W. Merging

partition matrices associated with sub-networks is a straightforward process in the

case of non-overlapping detected communities, where each node is associated with a

single community and, therefore, only one element of each column of the main parti-

tion matrix is nonzero. However, FFMM delivers overlapping communities including

nodes that are associated into multiple sub-networks in the following cycle; hence,

the reforming process is more complicated.

For example, assume u
(1)
1,j =

[
u
(1)
1,1j, u

(1)
1,2j

]T
is the membership vector of the jth node

at the first cycle. Here, the subscript 1 indicates the index of the sub-network (only

one network is available at the first cycle). At the second cycle, FFMM is applied to

both detected sub-networks. As shown in Figure 5.1, the first (black) and the second

(blue) sub-networks are divided into two other communities. Therefore, at each sub-

network a membership vector is associated to the jth node, i.e. u
(2)
1,k (the kth column

of U
(1)
1) and u

(2)
2,m (the mth column of U

(1)
2), where k and m represent the indices of

the jth node in the first and the second sub-networks, respectively. Note that k and

m could be the same or different depending on node indexing in each sub-network.

The reform network process multiplies the overlapping memberships of the previous

cycle into the current cycle membership vectors. This normalizes the jth column of

overall network partition matrix to unity. Therefore, at the end of the second cycle

the overall membership vector of the jth node corresponding to the four detected

communities would be u
(2)
j =

[
u
(1)
1,1j

(
u
(2)
1,k

)T

, u
(1)
1,2j

(
u
(2)
2,m

)T
]T

.

116

In general, if node n is associated with communities i1 and i2 within the jth sub-

network at the (l − 1)th cycle, then u
(l−1)
j,i1n

�= 0 and u
(l−1)
j,i2n

�= 0. At the lth cycle, the

nth column of the overall partition matrix u
(l)
n is

u(l)
n =

[
0, ..., 0, u

(l−1)
j,i1n

(
u
(l)
i1,k

)T

, 0, ..., 0, u
(l−1)
j,i2n

(
u
(l)
i2,m

)T

, 0, ..., 0

]T

(5.19)

where u
(l)
i1,k

and u
(l)
i2,m

represent the kth and the mth column of the partition matrices

U
(l)
i1

and U
(l)
i2
, respectively. Moreover, m and k represent the indices of the nth node

at the i1 and i2 sub-networks at the lth cycle, respectively.

5.4.4 Non-Overlapping membership convergence

The fuzzy nature of FFMM produces large numbers of overlapping nodes with mem-

bership values close to non-overlapping (crisp) values of 1 or 0. These memberships

converge to the non-overlapping values by increasing the number of iterations (K in

Algorithm 7); however, they can be forced to the closest crisp value after passing a

pre-defined threshold, denoted as τ . Therefore, at the lth cycle (where l �= L), nodes

with membership values satisfying
(
u
(l)
kn − 1

C(l)

∑
i uin

)
> τ will be forced to non-

overlapping membership in the community with the highest membership value. Here,

τ is a predefined value selected as 0.1 in all simulations. This approach guarantees

more fuzzy memberships of vertices with higher community ambiguity (lower standard

117

deviation for membership value) or betweenness, and non-overlapping (crisp) mem-

bership values for nodes with lower community ambiguity (higher standard deviation

for membership value).

5.5 Experiments

Experiments were conducted to verify the effectiveness and efficiency of the proposed

technique. Here, the proposed method is evaluated by analyzing small, medium-size,

and large real-world data sets. Moreover, the undirected and unweighted benchmark

network called Lancichinetti-Fortunato-Radicchi (LFR) [115, 116] is selected to eval-

uate performance of the proposed technique for a network with known overlapping

community structure. Selected performance metrics include Newman’s modularity

value, overall computation time, and the number of fuzzy nodes for real world data

sets. The number of fuzzy nodes in the final community structure is important for

real-world analysis of the communities. Fuzzy nodes often are used to find commu-

nity members that are between communities, such as important conduits in criminal

networks or people that are advantageous to advertise to in word-of-mouth marketing

campaigns. Hence, there is a trade-off between the modularity value of the communi-

ties found and the number of fuzzy nodes discovered in those communities. Thus, we

wish to find high-modularity community structure while maximizing the number of

fuzzy nodes. Moreover, Overlapping Normalized Mutual Information (ONMI) [136]

118

is evaluated for the benchmark LFR networks. The parameters used in the exper-

iments are discussed in detail next to ease reproduction of our results. Then, then

performance of our proposed multi-cycle FFMM is evaluated against state-of-the-art

techniques in Section 5.5.2.

5.5.1 Experiment parameters

Table 5.2 contains the details of the data sets we used and their corresponding al-

gorithm parameters. The third column of Table 5.2 indicates applied resolution at

each cycle, [c(1), c(2), ..., c(L)]. As shown in Table 5.2, FFMM (single-cycle FFMM)

is applied to small networks such as Dolphin through Email; meanwhile, for larger

networks, multi-cycle FFMM is used. The fourth column of Table 5.2 indicates the

number of iterations K of Alg. 8. We also measure the computation time of multi-

cycle FFMM and compare to the state-of-the-art. Here, the experiments are run on

the same machine to develop a fair comparison. The experiment was conducted on a

laptop with an i7-6560U processor @2.20GHz with 16GB of memory and all software

was coded in Matlab.

Table 5.3 describes selected parameters for the LFR synthetic networks. The LFR

benchmark generates networks that contain common features of real-world data sets

by assigning various values to the parameters in the Table 5.3. Here, N denotes the

119

Table 5.2
Applied simulation parameters

Network N [c(1), c(2), ..., c(L)] K Type
Dolphin [88] 62 5 50 Small
Football [118] 115 10 50 Small
Jazz [90] 198 4 50 Small
Metabolic [27] 453 9 50 Small
Email [119] 1,133 11 50 Small
Facebook [120] 4,039 15 50 Small
Email-Enron [121] 36,692 10,100 50 Large
Com-dlbp [121] 317,080 20,100 75 Huge
Com-youtube [121] 1,134,890 20,100 75 Huge
LFR1 [115] 1e3 100 50 Small
LFR2 [115] 1e4 10,100 50 Large
LFR3 [115] 1e5 20,100 50 Large

number of nodes; Cavg is the average number of nodes within network communities;

Cmax is the number of nodes within the largest community; kavg is the average degree

of the nodes; kmax is the maximum degree of the nodes in the network. Moreover, μ

represent the mixing parameter in the LFR network. The mixing parameter denotes

the average rate of edges that connect nodes from different communities. Therefore, it

is expected that by increasing the value of μ the strength of the community structure

decreases and makes the community detection more difficult. Some parameters such

as τ = 1 (the exponent for the degree sequence) and β = 2 (the exponent for the

community size distribution), are set to the same value for all generated benchmark

LFR networks.

120

Table 5.3
Parameters of LFR networks

Net. N Cavg Cmax kavg kmax μ
LFR1 1e3 50 100 25 100 [0.1− 0.9]
LFR2 1e4 100 200 50 200 [0.1− 0.9]
LFR3 1e5 200 500 50 200 [0.1− 0.9]

5.5.2 Experiment results

Tables 5.5 and 5.6 present performance of multi-cycle FFMM compared to state-

of-the-art overlapping community detection approaches, such as Multi-cut Spectral

FCM (H2) [125] and Fuzzy Agglomerative Community Detection (FuzAg) [134], for

a variety of benchmark real-word networks [88, 90, 118, 119, 120, 121]. It is observed

that FFMM outperforms H2 in terms of modularity value with a much lower execution

time. The FuzAg approach produces slightly better modularity values; however, the

associated time complexity is way too high to handle networks larger than the Email

data set.

Table 5.7 presents performance of multi-cycle FFMM compared to non-overlapping

Louvain [3]. Here, the Louvain approach is selected to compare the computational

complexity associated with both techniques. It should be noted that the non-

overlapping nature of detected communities from (non-overlapping) approaches such

as Louvain leads to higher Newman’s modularity values as compared to fuzzy ap-

proaches such as multi-cycle FFMM, H2 [125], or FuzAg [134]. However, it is observed

121

Table 5.4
Performance analysis of time complexity comparison of proposed FMMM

with FuzAg ,FMM/H2, NGTCDA

Algorithm FMMM FuzAg FMM/H2 NGTCDA
Time Complexity O(N) O(N2) O(N2) O(N2)

that multi-cycle FFMM presents modularity values comparable with the Louvain ap-

proach at lower computational time. In [130] the new game-theoretic community

detection algorithm (NGTCDA) is proposed as a fuzzy community detection tech-

nique using modularity maximization. In [130] the authors obtained 0.7708/0.2708

and 0.6417/0.0239 values for maximum/final modularity values at 67 and 364 min-

utes for Facebook and Email-Enron networks, respectively. Comparing these results,

it can be observed that multi-cycle FFMM obtains higher modularity values with

higher numbers of fuzzy nodes at a running time about a thousand times faster. We

also use non-overlapping Louvain heuristic method [3] for compression with proposed

overlapping FFMM for the same data-sets. It should be emphasized that the Louvain

approach [3] is one of best performing non-overlapping modularity-based approaches

for large data set to date; most recent modularity-based overlapping methods, such

as NGTCDA [130], have poor performance in term of computational time and fi-

nal modularity value. Furthermore, other overlapping approaches can be difficult or

impossible to apply to large data sets, such as H2 [125] and FuzAg [134], due to

computational complexity. To our knowledge, multi-cycle FFMM has, by far, the

best performance and fastest execution time of all overlapping community detection

approaches.

122

Table 5.5
Simulation results over 100 runs: overlapping FFMM versus overlapping

FuzAg

Network FuzAg [134] (multi-cycle) FFMM
Parameter Q Avg. t (sec) Avg. CAvg. Q Avg. t (sec) Avg. C Avg.
Dolphin 0.6642 323 7 0.5285 0.002 5
Football 0.6915 715 14 0.592 0.004 10
Jazz 0.4624 3,381 6 0.440 0.005 4
Email 0.5681 28,123 14 0.560 0.063 10
Facebook - - - 0.825 2.65 15
Email-Enron - - - 0.4505 17.2 694.2
Com-dlbp - - - 0.7173 305.3 1,974.6
Com-youtube - - - 0.5254 685.9 622.3

Table 5.6
Simulation results over 100 runs: overlapping FFMM versus overlapping H2

Network H2 [125] (multi-cycle) FFMM
Parameter Q Avg. t (sec) Avg. C Avg. Q Avg. t (sec) Avg. C Avg.
Dolphin 0.5285 35 5 0.500 0.002 5
Football 0.6046 77 10 0.592 0.004 10
Jazz 0.4452 135 4 0.440 0.005 4
Email 0.5491 8221 9 0.560 0.063 10
Facebook - - - 0.825 2.65 15
Email-Enron - - - 0.4505 17.2 694.2
Com-dlbp - - - 0.7173 305.3 1,974.6
Com-youtube - - - 0.5254 685.9 622.3

Table 5.8 presents the number of overlapping nodes detected by FFMM. Figure 5.2

plots ONMI versus mixing parameter for the benchmark network LFR1, described

in Table 5.3. Here, various number of overlapping nodes Nov are incorporated for

(a) cov = 2 and (b) cov = 5, where cov denotes the number of associated overlapping

communities for each node. For this experiment, single-cycle FFMM was used to

detect communities. As shown, FFMM performs very well (ONMI > 0.9) in terms

of ONMI for Nov = 10, 20, 50 at cov = 2 for a wide range of mixing parameter values.

123

Table 5.7
Simulation results over 100 runs: fuzzy FFMM versus non-overlapping

louvain

Network Louvain [3] (multi-cycle) FFMM
Parameter Q Avg. t (sec) Avg. C Q Avg. t (sec) Avg. C Avg.
Dolphin 0.519 0.102 5 0.500 0.002 5
Football 0.604 0.105 9 0.592 0.004 10
Jazz 0.443 0.152 3 0.440 0.005 4
Email 0.540 0.859 11 0.560 0.063 10
Facebook 0.8323 4.06 15.60 0.825 2.65 15
Email-Enron 0.5845 54.58 1185.3 0.4505 17.2 694.2
Com-dlbp 0.8102 1086.8 149.4 0.7173 305.3 1,974.6
Com-youtube 0.712 1037.7 – 0.5254 685.9 622.3

Table 5.8
Simulation results over 100 runs: Number of overlapping nodes

Network Multi-cycle FFMM
Parameter No Avg.
Dolphin 4.2
Football 2.3
Jazz 11.4
Email 60.7
Facebook 104
Email-Enron 381.3
Com-dlbp 2055.4
Com-youtube 5083.8

The same results are observed for LFR networks with cov = 5 for Nov = 10and20.

Although, it is noted that increasing the number of overlapping nodes Nov degrades

the overlapping community detection process. But more overlapping nodes means

less overall community structure; hence, this result is expected.

Figure 5.3 shows ONMI versus mixing parameter for the benchmark network LFR2

described in Table 5.3. Here, various numbers of overlapping nodes Nov are incorpo-

rated for (a) cov = 2 and (b) cov = 5. The multi-cycle FFMM approach proposed in

124

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75
Mixing paramter ()

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1

O
N

M
I

Nov = 10, cov = 2
Nov = 20, cov = 2
Nov = 50, cov = 2
Nov = 100, cov = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75
Mixing paramter ()

(b)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
N

M
I

Nov = 10, cov = 5
Nov = 20, cov = 5
Nov = 50, cov = 5
Nov = 100, cov = 5

Figure 5.2: Average ONMI for benchmark network LFR1 with various
numbers of overlapping nodes.

Algorithm 8 was used to detect communities. As shown, FFMM performs very well

(ONMI > 0.9) in terms of ONMI for Nov = 50, 100, 200and500 at cov = 2 for a wide

range of mixing parameter values. The same results are observed for LFR networks

with cov = 5 for Nov = 50, 100and200.

Figure 5.4 shows ONMI versus mixing parameter for the benchmark network LFR3,

described in Table 5.3. Here, various number of overlapping nodes Nov are incor-

porated for (a) cov = 2 and (b) cov = 5. Multi-cycle FFMM performs very well

(ONMI > 0.9) for all scenarios. Moreover, it is observed that due to increasing

mixing parameter, the numbers of overlapping nodes Nov, i.e., the numbers of over-

lapping communities per node cov, increases. Subsequently, ONMI decreases, which

is expected.

125

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75
Mixing paramter ()

(a)

0.85

0.9

0.95

1

O
N

M
I

Nov = 50, cov = 2
Nov = 100, cov = 2
Nov = 200, cov = 2
Nov = 500, cov = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75
Mixing paramter ()

(b)

0.7

0.75

0.8

0.85

0.9

0.95

1

O
N

M
I

Nov = 50, cov = 5
Nov = 100, cov = 5
Nov = 200, cov = 5
Nov = 500, cov = 5

Figure 5.3: Average ONMI for benchmark network LFR2 with various
number of overlapping nodes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75
Mixing paramter ()

(a)

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

O
N

M
I

Nov = 50, cov = 2
Nov = 100, cov = 2
Nov = 200, cov = 2
Nov = 500, cov = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75
Mixing paramter ()

(b)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

O
N

M
I

Nov = 50, cov = 5
Nov = 100, cov = 5
Nov = 200, cov = 5
Nov = 500, cov = 5

Figure 5.4: Average ONMI for benchmark network LFR3 with various
number of overlapping nodes.

Figure 5.5 visualizes four detected communities found by FFMM and corresponding

126

Figure 5.5: Detected communities of Jazz network and membership values
of fuzzy nodes.

Figure 5.6: Detected communities of Email network.

127

membership values of fuzzy nodes in the Jazz network [90]. As shown, fuzzy mem-

bership values are allocated to nodes with high betweenness and lower centrality.

Moreover, the second community, which shares fewer connections with other commu-

nities, includes only 2 fuzzy values; these are lower than 10% of all network fuzzy

membership values. Figure 5.6 depicts the community detection found by FFMM for

the Email network [119]. Here, 10 communities are detected, which are visualized

in various colors. Nodes with fuzzy membership are highlighted in black to stress

their contribution in various communities. Moreover, several fuzzy nodes with high

betweenness are pulled out to show the effectiveness of FFMM technique in detecting

highly overlapping nodes. The visualized networks in Figs. 5.5 and 5.6 are examples of

real world networks indicating efficiency of FFMM to segregate network communities,

while highly overlapped nodes share multiple communities.

Summary of Multi-Cycle FFMM In this study, an approach for overlapping

community detection was introduced called FFMM. The FFMM method uses a re-

cursive equation derived from optimization of the modularity change associated with

changing a column of the partition matrix. Then, multi-cycle FFMM was proposed as

a feasible solution for community detection in large networks. Our results over real-

world data sets and benchmark networks demonstrated the efficiency of multi-cycle

FFMM in terms of modularity, computational complexity, and overlapping NMI, as

128

compared to existing solutions. Moreover, near linear computational time of multi-

cycle FFMM introduced a new breakthrough for fuzzy community detection for large

and huge networks.

129

Chapter 6

Range-Free Anchor Selection in

Wireless Sensor Networks via

Community Detection

The material in this chapter is in preparation for submission to IEEE Transactions on Computational
Social Systems.

131

6.1 Introduction

Range measurements such as time of arrival (ToA) [137] are vital for Wireless Sen-

sor Network (WSN) localization. On average, more range measurements leads to

higher location accuracy, but more measurements incur higher energy consumption.

In distributed localization, range measurements are applied between the target nodes

(i.e., nodes with unknown locations) and anchor nodes (i.e., nodes with known lo-

cations). In a dense WSN, such as in smart cities, large buildings, airports, etc.,

target nodes are able to find large numbers of anchor nodes in their vicinity. Al-

though applying range measurements with all anchor nodes may lead to higher loca-

tion accuracy, this increases energy consumption and network traffic load. Because

of this, there is much research on anchor selection approaches in WSNs. A few

works studied anchor selection in range-free localization [138, 139, 140]. Some other

works have discussed the anchor selection approaches for range-based localization

[141, 142, 143, 144, 145, 146, 147]. In [141], localization is conducted by selecting

anchors with the strongest received signals strength. However, stronger received sig-

nal strength indicator (RSSI) or closer range does not guarantee the best anchors

selection for localization accuracy. Authors of [145] and [147] exploited range to se-

lect anchors with the smallest measured distance. Moreover, in [146] both measured

ranges and also the information about their coarse variances were exploited for best

anchor selection. However, the use of range for anchor selection increases ranging

132

cost and does not guarantee ambiguity-free and accurate localization.

In this chapter, both non-overlapping and overlapping memberships of target nodes

and anchor nodes are utilized for anchor selection for distributed localization of dense

WSNs. Two objective functions, based on non-overlapping and overlapping detected

communities, are proposed. The proposed objective functions exploit the community

membership of each node and its neighbors. Here, classic label propagation (LP) [2],

HLP discussed in chapter 3, and Louvain [148] community detection methods are

utilized for non-overlapping community detection to detect nodes’ crisp community

memberships. FFMM and Multi-Cycle FFMM, discussed in chapter 5, are utilized

to detect nodes’ fuzzy community memberships.

6.2 Range-Free Anchor Selection via Community

Detection

This section discusses in detail the proposed range-free anchor selection approach via

community detection. Here, it is assumed that all sensor nodes in the network (in-

cluding anchor nodes) can communicate directly with other nodes/anchors in their

vicinity and can route data into a processing center or hub. The nth node/anchor

is considered as the neighbor of the mth node if they can detect the beacon asso-

ciated with each other. It is assumed that each node transmits a unique ID which

133

differentiates it from all other nodes within the network.

Once each node reveals available nodes/anchors in their vicinity, they communicate

the detected IDs received into the processing center. The processing center constructs

a network based on this connection information and runs a community detection ap-

proach to associate a overlapping or non-overlapping community membership to each

node. The processing center then executes the proposed anchor selection algorithm

to select the optimum anchor set among all available combinations, and routes back

the results (IDs of selected anchor nodes) to each sensor node. Once the sensor nodes

receive the selected anchors’ IDs, the ranging process is initialized. Then, each node

would be able to run distributed localization using its associated range measurements.

In the following sections, the objective function corresponding to both non-

overlapping and also overlapping community detection is studied in detail.

134

6.2.1 Anchor selection using non-overlapping community de-

tection

The range-free anchor selection approach is developed based on maximizing the com-

munity distance (minimizing community membership coherence) among selected an-

chors while the community distance is minimized (maximizing community member-

ship coherence) among selected anchors and the target nodes. This approach is devel-

oped based on the fact that the probability of choosing anchors in only one geometric

area (which leads to location ambiguity) decreases when they are selected from dif-

ferent communities. Their community distance are minimized with the target node

so that each target node has nearby anchors. Hence, the algorithm seeks to maximize

the overall coverage of the anchors, while maintaining a dense network of anchors to

improve localization accuracy.

Consider Sk as the candidate set of anchor nodes within the vicinity of the kth node.

The proposed range-free anchor node selection objective function is

Sk = argmax
n

⎧⎨
⎩

∑
i∈ak,n

∑
j∈ak,n,j �=i

(1− δl(i, j))− γ
∑

j∈ak,n

(1− δl(i, j))

⎫⎬
⎭

= argmin
n

⎧⎨
⎩

∑
i∈ak,n

∑
j∈ak,n,j �=i

δl(i, j)− γ
∑

j∈ak,n

δl(k, j)

⎫⎬
⎭

(6.1)

where ak,n denotes the nth column of the anchors permutation matrix in the vicinity

135

of the kth node, i.e., Ak. Moreover, γ and δl(i, j) represent the weight coefficient

and the Dirac delta function of nodes’ community memberships, where δl(i, j) = 1

when the ith and the jth anchor are within the same community (i.e. li = lj), and

δl(i, j) = 0 elsewhere (i.e. li �= lj). Here, the weight coefficient γ aims to increase

impact of the overall community distance among all members of the candidate sub-

set of anchors (first term of proposed object function) to guarantee each individual

anchor of candidate sub-set is belong to a different community, over to the community

distance of each anchor of that sub-set of anchor nodes with respect to the target node

(second term of proposed object function).

Using (6.1) may lead to multiple solutions due to the same overall value of objective

function. In such cases, an additional range-free objective function is added to select

the best solution between candidates associated with (6.1);

Sk = argmax
m

⎧⎨
⎩

∑
i∈ãk,m

∑
j∈ãk,m

‖Xi −Xj‖2
⎫⎬
⎭ (6.2)

where ãk,m represents the set of solutions obtained by (6.1) (if more than one solution

is derived) and Xi are the coordinates of the ith anchor node.

136

6.2.2 Anchor selection using overlapping community detec-

tion

When overlapping community detection, such as FFMM, is used, the objective func-

tion of anchor selection aims to maximize the community distance among the anchors

and minimize the community distance among anchors and the target nodes. However,

the membership value in non-overlapping community detection is represented by a c

vector, where c represents the number of communities. Therefore, the candidate set

of anchor nodes in the vicinity of the kth node (Sk) can be computed by

Sk = argmax
n

⎧⎨
⎩

∑
i∈ak,n

∑
j∈ak,n,j �=i

‖ui − uj‖1 − γ
∑

j∈ak,n

‖uk − uj‖1

⎫⎬
⎭ (6.3)

where ak,n is defined at (6.1) and ui represents the fuzzy membership values of the

ith node or the ith column of the detected community cover matrix U. Moreover the

‖.‖1 notation represents the �1-norm of a vector.

It should be noted that by using overlapping community detection approaches, such as

FFMM, some nodes (usually more than 50%) would have non-overlapping community

memberships (i.e., not 0 or 1). Therefore, it is probable that all of the anchors within

a selected set have non-overlapping membership, which may lead to more than one

solution to (6.3). We believe that the probability of such cases is more slim than in the

137

Table 6.1
Network parameters

Network N Na Dimensions Type
Net. I 500 200 [-500,500] Random node and anchor
Net. II 500 152 [-500,500] Random node fixed anchor
Net. III 2000 500 [-1000,1000] Random node and anchor
Net. IV 2000 252 [-1000,1000] Random node fixed anchor
Net. V 10000 500 [-1000,1000] Random node and anchor
Net. VI 10000 252 [-1000,1000] Random node fixed anchor

use of the non-overlapping objective (6.1); however, for such cases the proposed sub-

objective at (6.2) is used to select the final solution between the (possible) multiple

candidates obtained by (6.3).

6.3 Experimental Results and Discussion

Simulations are conducted to study the performance of the proposed range-free anchor

selection approach for a variety of randomly generated dense WSNs. Here, CVX tools

[149] are used to simulate the distributed localization via a semi-definite program

(SDP) solver. Table 6.1 contains the parameters used for six different simulated

networks. The parameters N and Na represent the number of target and anchor

nodes, respectively.

138

6.3.1 Simulation parameters and methods

As shown in Table 6.1, two different types of networks are considered for simulation.

For both types, target nodes are randomly distributed using uniform distributions.

Networks with random target and anchor nodes aim to simulate WSNs with ad-hoc

properties, where most of anchor nodes are actually part of network and may change

their locations over time. However, networks with random target nodes and equally-

spaced anchors aims to simulate distributed WSNs in environments such as smart

cities or airports, where supervised anchor node placement is practical. Figure 6.1

depicts examples of the two network types with random and equally-spaced anchor

distribution. Table 6.2 contains the parameters of community detection approaches

used, including LP, HLP and (Multi-Cycle) FFMM. The average normalized location

error is selected as the performance benchmark, which is computed as follows,

Error =
1

N

N∑
k=1

∥∥∥Xk − X̂k

∥∥∥2
‖Xk‖2

. (6.4)

139

Table 6.2
Simulation parameters applied for community detection approaches

Approach (H)LP (Multi-Cycle) FFMM

Network c K [c(1), c(2)] K τ
Net. I 10 10 10 50 0.2
Net. II 10 10 10 50 0.2
Net. III 20 10 [5, 10] 50 0.2
Net. IV 20 10 [5, 10] 50 0.2
Net. V 20 10 [10, 10] 50 0.2
Net. VI 20 10 [10, 10] 50 0.2

-500 -250 0 250 500
X(m)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y
(m

)

Sensor node
Anchor node

(a) Random anchor distribution

-500 -250 0 250 500
X(m)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y
(m

)

Sensor node
Anchor node

(b) Equally spaced anchor distribution

Figure 6.1: Visualization of synthetic Networks I and II, (a) nodes and
anchors are randomly distributed via uniform distribution, (b) nodes are
randomly distributed via uniform distribution where anchors are equally
spaced.

6.3.2 Results and discussions

Figures 6.2(a,b) depict the average and variance of normalized error corresponding

to Network 1 using both non-overlapping and overlapping community detection ap-

proaches. As shown, localization error is compared with a random selection of a set of

140

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.02

0.04

0.06

0.08

0.1

0.12

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r M

ea
n

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(a) Mean

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r V

ar
ia

nc
e

random selection (0.05 2
e)

Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(b) Variance

Figure 6.2: (a) Mean and (b) Variance of normalized localization error
using the proposed range-free anchor selection over Net I.

Ka = 3 anchors and also to using all anchors, i.e., full anchor measurements. Simula-

tion results demonstrate that the proposed technique is quite effective in terms of both

mean and variance of location error. However, it is observed that non-overlapping

communities via LP and HLP produce slightly better results, especially for lower

range measurement noise levels.

Here, various weight coefficients (γ) are evaluated for both objective functions: (6.1)

and (6.3). Simulation results show that the performance of all selected coefficients

are nearly the same; however, the best results are obtained with γ = 1 with the

non-overlapping objective, and and γ = 0.5 with the overlapping objective.

Figures 6.3(a,b) depict the mean and variance of normalized location error corre-

sponding to Network 2. The difference between of the performance of the random

141

sub-set anchors selection and all anchors measurements observed in Figures 6.2 (a)

and (b). However, by using the proposed anchor selection technique illustrate signif-

icantly performance improvements (or decreasing order of normalized location error

mean and variance) specifically at lower range measurement noise.

Figures 6.4, 6.5, 6.6 and 6.7 depict the average normalized error corresponding to

Networks 3–6, respectively. It is observed that by increasing the number of nodes

the difference of performance between the random selection and full anchor measure-

ments shrinks. Meanwhile, the proposed technique performs very well, especially at

lower range measurement noise levels. This is due to the fact that the proposed tech-

nique aims to minimize the error imposed by location ambiguity, which is not the

major component of error at noisy range measurements. However, at lower range

measurement noise, the localization error imposed by range measurements is not the

main driver of error; instead, the location ambiguity is the major part of the average

localization error. Therefore, the proposed technique has much more influence at

lower range measurement noise levels, where the major error—location ambiguity—is

addressed via the proposed approach.

Summary of Range-Free Anchor Selection via Community Detection In

this study, a variety of community detection approaches were applied to the localiza-

tion problem in WSNs. As a novel application of community detection, a range-free

anchor selection method was developed that can utilize both overlapping and also

142

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.01

0.02

0.03

0.04

0.05

0.06

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r M

ea
n

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(a) Mean

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r V

ar
ia

nc
e

10-3

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(b) Variance

Figure 6.3: (a) Mean and (b) Variance of normalized localization error
using the proposed range-free anchor selection over Net II.

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r M

ea
n

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(a) Mean

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.5

1

1.5

2

2.5

3

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r V

ar
ia

nc
e

10-3

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(b) Variance

Figure 6.4: (a) Mean and (b) Variance of normalized localization error
using the proposed range-free anchor selection over Net III.

non-overlapping community detection. The proposed technique exploited a proposed

community membership distance objective function to select the best anchor nodes

143

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r M

ea
n

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(a) Mean

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.002

0.004

0.006

0.008

0.01

0.012

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r V

ar
ia

nc
e

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(b) Variance

Figure 6.5: (a) Mean and (b) Variance of normalized localization error
using the proposed range-free anchor selection over Net IV.

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r M

ea
n

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(a) Mean

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r V

ar
ia

nc
e

10-3

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(b) Variance

Figure 6.6: (a) Mean and (b) Variance of normalized localization error
using the proposed range-free anchor selection over Net V.

among a set of candidate nodes in a network. Simulation results over a variety of net-

works demonstrated that the proposed technique is efficient and effective, especially

in networks with low relative range measurement error where location ambiguity is

144

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r M

ea
n

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(a) Mean

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1/ r (dB)

0

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 L
oc

at
io

n
Er

ro
r V

ar
ia

nc
e

10-3

random selection
Louvain, = 0.75
Louvain, = 1
Louvain, = 1.25
LP, = 0.75
LP, = 1
LP, = 1.25
HLP, = 0.75
HLP, = 1
HLP, = 1.25
FFMM, = 0.25
FFMM, = 0.5
FFMM, = 0.75
all anchors

(b) Variance

Figure 6.7: (a) Mean and (b) Variance of normalized localization error
using the proposed range-free anchor selection over Net VI.

the largest driver of localization error.

145

Chapter 7

Conclusions

147

Community detection is an important problem in complex network analysis. Com-

munity detection and graph clustering are categorized as NP-complete problems with

no globally optimal solution. Most community detection approach found in the lit-

erature suffer from high computational complexity throughout the detection process

or low performance in terms of modularity, NMI or ONMI. This research targeted

the development of non-overlapping and overlapping community detection algorithms

which are capable of producing high quality detection accuracy while minimizing time

consumption throughout the detection process. Also, in this work it is aimed to de-

velop a novel technique for anchor selection in very dense WSNs. We propose using

both overlapping and non-overlapping community detection approaches to develop

range-free approach for optimum anchor selection. The following items are summary

of our research on the topics addressed in this dissertation.

Completely Positive Programming In this study, a novel method forModularity

Maximization (MM) for community detection is presented which uses the Alternating

Direction Augmented Lagrangian (ADAL) method for maximizing a generalized form

of Newman’s modularity function. We first transform Newman’s modularity function

into a quadratic program and then use Completely Positive Programming (CPP) to

map the quadratic program to a linear program, which provides the globally optimal

maximum modularity partition. In order to solve the proposed CPP problem, a

closed form solution using the ADAL merged with a rank minimization approach is

148

proposed. The performance of the proposed method is evaluated on several real-world

data sets used for benchmarks community detection. Simulation results shows the

proposed technique provides outstanding results in terms of modularity value for crisp

partitions.

Hybrid Label Propagation In this study, community detection via a novel hybrid

label propagation approach was proposed, which utilizes a novel hybrid label propa-

gation (HLP) approach for maximizing a generalized form of Newman’s modularity

function. The proposed technique leverages an efficient approach to select the best

label transition. Here, a novel objective function is developed to maximize the modu-

larity variation corresponding to each label propagation. Moreover, a hybrid form of

synchronous and asynchronous label propagation is developed by exploiting dynamic

and static label lists. The static label list is utilized for pre-calculation of static com-

ponents associated with the modularity variation objective function; meanwhile, the

dynamic label list is used to update components with lower computational complexity

at each iteration. Efficiency, stability, and scalability of the proposed technique are

investigated for both synthetic graphs and empirical data sets and compared with

state-of-the art techniques in terms of modularity, normalized mutual information

(NMI), and computational complexity. Simulation and real-world network results

prove the efficiency of the proposed approach which produces competitive modularity

and NMI values at a lower computational complexity, specifically for large networks.

149

Linear Time Modularity Gain Acceleration In this study, we introduced a

novel objective function for calculation of the attained modularity gain correspond-

ing to label transitions. Here, modularity gain calculations are replaced with an

objective function that quantifies available label transitions; we call our approach the

Modularity Gain Acceleration (MGA) approach. The proposed technique is simpli-

fied and divided into two components, the local and global sum-weights. The Local

Sum-Weight (LSW) is the component with lower complexity and is calculated for

each candidate label transition. However, the General Sum-Weight (GSW) is more

computationally complex, and is calculated only once per each label. GSW is updated

by leveraging a simple process for each node-label transition, instead of for all avail-

able labels. The proposed technique is applied to selected state-of-the-art LP-based

community detection methods and the resulting network modularity and execution

time are compared with traditional methods. By applying MGA to LP-based meth-

ods, the run-time is significantly reduced—sometimes finishing before the traditional

approach even finishes one iteration—and the same modularity result and number

of communities, i.e., community detection result, is obtained. The MGA approach

leads to significant efficiency improvements by reducing time consumption up to 85%

relative to the original algorithms with the exact same quality in terms of modularity

value.

150

Multi-Cycle FFMM In this study, an approach for overlapping community de-

tection was introduced called FFMM. FFMM uses novel iterative equations to cal-

culate the gain associated with changing the fuzzy membership values of network

vertices. The simplicity of the proposed scheme enables efficient modifications, re-

ducing computational complexity to a linear function of the network size and the

number of communities. Moreover, to further reduce the complexity of FFMM for

large size networks, the multi-cycle FFMM is proposed. Multi-cycle FFMM reduces

complexity by breaking network into multiple sub-networks and applying FFMM to

detect their communities. Performance of the proposed techniques are studied exploit-

ing real-world data sets and the Lancichinetti-Fortunato-Radicchi (LFR) benchmark

networks. Results proves that the multi-cycle FFMM produces a remarkable perfor-

mance in terms of overlapping modularity, computational time, number of detected

overlapping nodes, and Overlapping Normalized Mutual Information (ONMI).

Range-Free Anchor Selection via Community Detection In this study, a

variety of community detection approaches include non-overlapping and overlapping

methods were applied to the distributed localization problem in dense WSNs. As

a novel application of community detection, a range-free anchor selection approach

was proposed that can utilize both overlapping and also non-overlapping community

detection. The proposed technique used a proposed community membership distance

objective function to select the best subset of anchor nodes among a set of candidate

151

nodes in a network. Simulation results over a variety of networks illustrated that the

proposed technique is efficient and effective, especially in networks with low relative

range measurement noise where location ambiguity is the largest driver of localization

error.

7.1 Future Work

The following ideas are candidates for future research on the topics addressed in this

dissertation.

Completely Positive Programming Future work will focus on studying the in-

teraction of the convex completely-positive problem and the rank-1 constraint, with

an aim to develop a more efficient solution for finding max-modularity communities.

Furthermore, we plan to improve computing efficiency of our algorithm for tackling

large real-world social network data.

Hybrid Label Propagation In this study, the proposed HLP was applied to real-

world data sets and benchmark networks to detect non-overlapping communities.

Meanwhile, some of these networks included overlapping communities which cannot

be detected with non-overlapping label propagation methods, such as the approaches

152

in this chapter. Therefore, in the future, we will develop HLP-based overlapping

label propagation methods. This future work will have important implications for

problems where discovery of overlapping community structure is important.

Linear-Time Modularity Gain Acceleration The results on real-world data

sets validated the linear computational complexity of MGA. This opens a new era for

all LP-based community detection techniques for very large data sets, where previous

approaches were prone to fail due to very high computational complexity. Moreover,

applications of the proposed criteria on overlapping LP-based approaches can be

considered, which is left for future study.

Multi-Cycle FFMM Multi-cycle FFMM introduces vast potential for research in-

corporating applications of parallel processing for fuzzy community detection in large

networks. Moreover, studying other distributions (rather than uniform) or methods

to calculate the number of target communities of detected sub-networks is another

open problem for future work.

Range-Free Anchor Selection via Community Detection In this chapter, ap-

plication of community detection for range-free anchor selection with distributed lo-

calization was studied. However, cooperative (centralized) localization enables many

more possible anchor/sensor combinations. Exploiting community detection for this

153

problem opens a new area of research in smart-ranging to select the best set of an-

chors/sensors for effective cooperative localization. Furthermore, community detec-

tion could be used to cluster a large network into multiple sub-networks for optimal

hybrid cooperative localization. Also tuning weight coefficient γ according to machine

learning approaches is desired.

154

References

[1] J. Su and T. C. Havens, “Fuzzy community detection in social networks using

a genetic algortihm,” in 2014 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), July 2014, pp. 2039–2046.

[2] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to de-

tect community structures in large-scale networks,” Physical Review E, vol. 76,

no. 3, p. 036106, 2007.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding

of communities in large networks,” Journal of Statistical Mechanics: Theory

and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[4] S. Yazdanparast and T. C. Havens, “Modularity maximization using completely

positive programming,” Physica A: Statistical Mechanics and its Applications,

vol. 471, pp. 20–32, 2017.

[5] J. Piero, A. Berenstein, A. Gonzalez-Perez, A. Chernomoretz, and L. I. Furlong,

155

“Uncovering disease mechanisms through network biology in the era of next

generation sequencing,” Scientific Reports 6,, 2016.

[6] R. Ding, N. Ujang, H. b. Hamid, and J. Wu, Complex Network Theory Applied

to the Growth of Kuala Lumpurs Public Urban Rail Transit Network. Public

Library of Science, 10 2015, vol. 10.

[7] L. Weng, F. Menczer, and Y.-Y. Ahn, “Virality prediction and community

structure in social networks,” Scientific Reports volume 3, 2013.

[8] D. Dardari, A. Conti, C. Buratti, and R. Verdone, “Mathematical evaluation

of environmental monitoring estimation error through energy-efficient wireless

sensor networks,” Mobile Computing, IEEE Transactions on, vol. 6, no. 7, pp.

790–802, 2007.

[9] E. Cayirci, H. Tezcan, Y. Dogan, and V. Coskun, “Wireless sensor networks

for underwater survelliance systems,” Ad Hoc Networks, vol. 4, no. 4, pp. 431 –

446, 2006.

[10] J. Wu, S. Yuan, S. Ji, G. Zhou, Y. Wang, and Z. Wang, “Multi-agent system

design and evaluation for collaborative wireless sensor network in large structure

health monitoring,” Expert Systems with Applications, vol. 37, no. 3, pp. 2028–

2036, 2010.

[11] M. Jamalabdollahi and S. R. Zekavat, “OFDMA-based high resolution sensor

node ToA estimation in non-homogenous medium of human body,” in 2016 10th

156

International Symposium on Medical Information and Communication Technol-

ogy (ISMICT), March 2016, pp. 1–5.

[12] W. Xue, W. Sheng, and B. Daowei, “Distributed visual-target-surveillance sys-

tem in wireless sensor networks,” Systems, Man, and Cybernetics, Part B: Cy-

bernetics, IEEE Transactions on, vol. 39, no. 5, pp. 1134–1146, 2009.

[13] J. Zhou, C. L. P. Chen, L. Chen, and W. Zhao, “A user-customizable urban

traffic information collection method based on wireless sensor networks,” In-

telligent Transportation Systems, IEEE Transactions on, vol. PP, no. 99, pp.

1–10, 2013.

[14] M. Jamalabdollahi and S. Zekavat, “ToA ranging and layer thickness computa-

tion in nonhomogeneous media,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 55, no. 2, pp. 742–752, Feb 2017.

[15] S. M. George, Z. Wei, H. Chenji, W. Myounggyu, L. Yong Oh, A. Pazarloglou,

R. Stoleru, and P. Barooah, “Distressnet: a wireless ad hoc and sensor network

architecture for situation management in disaster response,” Communications

Magazine, IEEE, vol. 48, no. 3, pp. 128–136, 2010.

[16] L. Qing, T. Zhi, Y. Yuejun, and L. Yue, “Localized structural health monitoring

using energy-efficient wireless sensor networks,” Sensors Journal, IEEE, vol. 9,

no. 11, pp. 1596–1604, 2009.

157

[17] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486,

no. 3, pp. 75 – 174, 2010.

[18] Z. Gao and N. Jin, “Detecting community structure in complex networks based

on k-means clustering and data field theory,” in Control and Decision Confer-

ence, 2008. CCDC 2008. Chinese. IEEE, Conference Proceedings, pp. 4411–

4416.

[19] Y. van Gennip, B. Hunter, R. Ahn, P. Elliott, K. Luh, M. Halvorson, S. Reid,

M. Valasik, J. Wo, and G. E. Tita, “Community detection using spectral cluster-

ing on sparse geosocial data,” SIAM Journal on Applied Mathematics, vol. 73,

no. 1, pp. 67–83, 2013.

[20] Y. Jiang, C. Jia, and J. Yu, “An efficient community detection method based

on rank centrality,” Physica A: Statistical Mechanics and its Applications, vol.

392, no. 9, pp. 2182–2194, 2013.

[21] S. Jia, L. Gao, Y. Gao, and H. Wang, “Anti-triangle centrality-based community

detection in complex networks,” IET systems biology, vol. 8, no. 3, pp. 116–125,

2014.

[22] J. Cheng, L. Li, M. Leng, W. Lu, Y. Yao, and X. Chen, A divisive spectral

method for network community detection, vol. 2016, no. 3, p. 033403.

[23] M. E. Newman, “Fast algorithm for detecting community structure in net-

works,” Physical review E, vol. 69, no. 6, p. 066133, 2004.

158

[24] G. Agarwal and D. Kempe, “Modularity-maximizing graph communities via

mathematical programming,” The European Physical Journal B-Condensed

Matter and Complex Systems, vol. 66, no. 3, pp. 409–418, 2008.

[25] V. d. F. Vieira, C. R. Xavier, N. F. Ebecken, and A. G. Evsukoff, Modularity

Based Hierarchical Community Detection in Networks. Springer, 2014, pp.

146–160.

[26] T. Evans and R. Lambiotte, “Line graphs, link partitions, and overlapping

communities,” Physical Review E, vol. 80, no. 1, p. 016105, 2009.

[27] J. Duch and A. Arenas, “Community detection in complex networks using ex-

tremal optimization,” Phys. Rev. E, vol. 72, p. 027104, Aug 2005.

[28] D. Jin, D. He, D. Liu, and C. Baquero, “Genetic algorithm with local search

for community mining in complex networks,” in Tools with Artificial Intelli-

gence (ICTAI), 2010 22nd IEEE International Conference on, vol. 1. IEEE,

Conference Proceedings, pp. 105–112.

[29] J. Liu, “Fuzzy modularity and fuzzy community structure in networks,” The

European Physical Journal B-Condensed Matter and Complex Systems, vol. 77,

no. 4, pp. 547–557, 2010.

[30] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed member-

ship stochastic blockmodels,” in Advances in Neural Information Processing

Systems, Conference Proceedings, pp. 33–40.

159

[31] J. Su and T. C. Havens, A Generalized Fuzzy T-norm Formulation of Fuzzy

Modularity for Community Detection in Social Networks. Springer, 2014, pp.

65–76.

[32] T. Cai and X. Li, “Robust and computationally feasible community detection in

the presence of arbitrary outlier nodes,” arXiv preprint arXiv:1404.6000, 2014.

[33] T. Nepusz, A. Petrczi, L. Ngyessy, and F. Bazs, “Fuzzy communities and the

concept of bridgeness in complex networks,” Physical Review E, vol. 77, no. 1,

p. 016107, 2008.

[34] M. E. Newman and M. Girvan, “Finding and evaluating community structure

in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[35] L. Danon, A. Dı́az-Guilera, and A. Arenas, The effect of size heterogeneity on

community identification in complex networks. IOP Publishing, 2006, vol. 2006,

no. 11, p. P11010.

[36] T. C. Havens, J. C. Bezdek, C. Leckie, K. Ramamohanarao, and

M. Palaniswami, “A soft modularity function for detecting fuzzy communi-

ties in social networks,” Fuzzy Systems, IEEE Transactions on, vol. 21, no. 6,

pp. 1170–1175, 2013.

[37] J. Duch and A. Arenas, “Community detection in complex networks using ex-

tremal optimization,” Physical review E, vol. 72, no. 2, p. 027104, 2005.

160

[38] M. J. Barber and J. W. Clark, “Detecting network communities by propagating

labels under constraints,” Physical Review E, vol. 80, no. 2, p. 026129, 2009.

[39] T. Chao, N. Jianwei, W. Jinming, X. Zhongyu, and P. Fu, “Weighted label prop-

agation algorithm for overlapping community detection,” in Communications

(ICC), 2015 IEEE International Conference on, 2015, Conference Proceedings,

pp. 1238–1243.

[40] C. Staudt and H. Meyerhenke, “Engineering parallel algorithms for commu-

nity detection in massive networks,” Parallel and Distributed Systems, IEEE

Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[41] S. Bandyopadhyay, G. Chowdhary, and D. Sengupta, “Focs: Fast overlapped

community search,” IEEE Transactions on Knowledge and Data Engineering,

vol. 27, no. 11, pp. 2974–2985, 2015.

[42] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of overlap-

ping communities,” in Proceedings of the 2013 ACM SIGMOD international

conference on Management of data. ACM, 2013, pp. 277–288.

[43] L. Speidel, T. Takaguchi, and N. Masuda, Community detection in directed

acyclic graphs. Springer, 2015, vol. 88, no. 8, p. 203.

[44] Y. Sun, B. Danila, K. Josić, and K. E. Bassler, Improved community structure

detection using a modified fine-tuning strategy. IOP Publishing, 2009, vol. 86,

no. 2, p. 28004.

161

[45] W. Sun, Z. Wang, M. Jamalabdollahi, and S. A. R. Zekavat, “Experimental

study on the difference between acoustic communication channels in freshwa-

ter rivers/lakes and in oceans,” in 2014 48th Asilomar Conference on Signals,

Systems and Computers, Nov 2014, pp. 333–337.

[46] A. Pascale, M. Nicoli, F. Deflorio, B. Dalla Chiara, and U. Spagnolini, “Wireless

sensor networks for traffic management and road safety,” Intelligent Transport

Systems, IET, vol. 6, no. 1, pp. 67–77, 2012.

[47] H. Will, K. Schleiser, and J. Schiller, “A real-time kernel for wireless sensor

networks employed in rescue scenarios,” in Local Computer Networks, 2009.

LCN 2009. IEEE 34th Conference on, Conference Proceedings, pp. 834–841.

[48] Lo, x, G. pez, V. Custodio, and J. I. Moreno, “Lobin: E-textile and wireless-

sensor-network-based platform for healthcare monitoring in future hospital en-

vironments,” Information Technology in Biomedicine, IEEE Transactions on,

vol. 14, no. 6, pp. 1446–1458, 2010.

[49] M. Jamalabdollahi, S. Zekavat, and K. Pahlavan, “High resolution OFDM-

based sensor node ranging within in-homogeneous media of human body,” IEEE

Transactions on Wireless Communications, pp. 1–1, 2019.

[50] I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor

networks: A survey,”Wireless Communications, IEEE, vol. 14, no. 6, pp. 32–39,

2007.

162

[51] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422.

[52] V. Kaseva, T. D. Hamalainen, and M. Hannikainen, “Range-free algorithm for

energy-efficient indoor localization in wireless sensor networks,” in Design and

Architectures for Signal and Image Processing (DASIP), 2011 Conference on,

Conference Proceedings, pp. 1–8.

[53] X. Qingjun, X. Bin, C. Jiannong, and W. Jianping, “Multihop range-free lo-

calization in anisotropic wireless sensor networks: A pattern-driven scheme,”

Mobile Computing, IEEE Transactions on, vol. 9, no. 11, pp. 1592–1607, 2010.

[54] M. Jamalabdollahi and S. Zekavat, “Energy efficient ranging in wireless sensor

networks via a new time slot-based round-trip algorithm,” in Aerospace Con-

ference, 2014 IEEE, Conference Proceedings, pp. 1–7.

[55] Z. Sahinoglu and S. Gezici, “Ranging in the ieee 802.15.4a standard,” in Wire-

less and Microwave Technology Conference, 2006. WAMICON ’06. IEEE An-

nual, Conference Proceedings, pp. 1–5.

[56] C. Alippi and G. Vanini, “A rssi-based and calibrated centralized localization

technique for wireless sensor networks,” in Pervasive Computing and Commu-

nications Workshops, 2006. PerCom Workshops 2006. Fourth Annual IEEE

International Conference on, Conference Proceedings, pp. 5 pp.–305.

163

[57] M. Jamalabdollahi and S. A. R. Zekavat, “Joint neighbor discovery and time of

arrival estimation in wireless sensor networks via OFDMA,” Sensors Journal,

IEEE, vol. 15, no. 10, pp. 5821–5833, 2015.

[58] A. Tsalach, I. Steinberg, and I. Gannot, “Time difference of arrival based can-

cer tumor localization using magnetic nano-particles induced acoustic signals,”

Thesis, 2012.

[59] P. Rong and M. L. Sichitiu, “Angle of arrival localization for wireless sensor net-

works,” in Sensor and Ad Hoc Communications and Networks, 2006. SECON

’06. 2006 3rd Annual IEEE Communications Society on, vol. 1, Conference

Proceedings, pp. 374–382.

[60] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “Mac essentials for wire-

less sensor networks,” Communications Surveys and Tutorials, IEEE, vol. 12,

no. 2, pp. 222–248, 2010.

[61] S. Hong, D. Zhi, S. Dasgupta, and Z. Chunming, “Multiple source localiza-

tion in wireless sensor networks based on time of arrival measurement,” Signal

Processing, IEEE Transactions on, vol. 62, no. 8, pp. 1938–1949, 2014.

[62] Y. Kehu, W. Gang, and L. Zhi-Quan, “Efficient convex relaxation methods for

robust target localization by a sensor network using time differences of arrivals,”

Signal Processing, IEEE Transactions on, vol. 57, no. 7, pp. 2775–2784, 2009.

164

[63] M. Jamalabdollahi and S. A. R. Zekavat, “Joint neighbor discovery and time

of arrival estimation in wireless sensor networks via OFDMA,” IEEE Sensors

Journal, vol. 15, no. 10, pp. 5821–5833, Oct 2015.

[64] K. Steinhaeuser and N. V. Chawla, “Identifying and evaluating community

structure in complex networks,” Pattern Recognition Letters, pp. 413–421, 2010.

[65] M. Ovelgnne, A. Geyer-Schulz, and M. Stein, “Randomized greedy modularity

optimization for group detection in huge social networks,” in Proceedings of the

fourth SNA-KDD Workshop, KDD 2010, July, vol. 25, Conference Proceedings,

pp. 1–9.

[66] Y. Zhang and D.-Y. Yeung, “Overlapping community detection via bounded

nonnegative matrix tri-factorization,” in Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, Con-

ference Proceedings, pp. 606–614.

[67] U. Brandes, D. Delling, M. Gaertler, R. Grke, M. Hoefer, Z. Nikoloski, and

D. Wagner, “Maximizing modularity is hard,” arXiv preprint physics/0608255,

2006.

[68] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding

of communities in large networks,” Journal of Statistical Mechanics: Theory

and Experiment, vol. 2008, no. 10, p. P10008, 2008.

165

[69] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and

D. Wagner, “On modularity clustering,” Knowledge and Data Engineering,

IEEE Transactions on, vol. 20, no. 2, pp. 172–188, 2008.

[70] S. Gregory, “Fuzzy overlapping communities in networks,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2011, no. 02, p. P02017, 2011.

[71] S. Burer, “Optimizing a polyhedral-semidefinite relaxation of completely pos-

itive programs,” Mathematical Programming Computation, vol. 2, no. 1, pp.

1–19.

[72] J. Keller, R. Krisnapuram, and N. R. Pal, Fuzzy models and algorithms for

pattern recognition and image processing. Springer Science and Business Media,

2005, vol. 4.

[73] M. Girvan and M. E. Newman, “Community structure in social and biological

networks,” Proceedings of the National Academy of Sciences, vol. 99, no. 12,

pp. 7821–7826, 2002.

[74] S. Burer, Copositive programming. Springer, 2012, pp. 201–218.

[75] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization over sym-

metric cones,” Optimization methods and software, vol. 11, no. 1-4, pp. 625–653,

1999.

166

[76] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented lagrangian

methods for semidefinite programming,” Mathematical Programming Computa-

tion, vol. 2, no. 3-4, pp. 203–230, 2010.

[77] M. V. Ramana, L. Tunel, and H. Wolkowicz, “Strong duality for semidefinite

programming,” SIAM Journal on Optimization, vol. 7, no. 3, pp. 641–662, 1997.

[78] L. Yang, D. Sun, and K.-C. Toh, “Sdpnal +: A majorized semismooth newton-

cg augmented lagrangian method for semidefinite programming with nonnega-

tive constraints,” arXiv preprint arXiv:1406.0942, 2014.

[79] J.-J. Moreau, “Dcomposition orthogonale dun espace hilbertien selon deux cnes

mutuellement polaires,” CR Acad. Sci. Paris, vol. 255, pp. 238–240, 1962.

[80] W. Li, “Revealing network communities with a nonlinear programming

method,” Information Sciences, vol. 229, pp. 18–28, 2013.

[81] B. Yang, J. Liu, and J. Feng, “On the spectral characterization and scalable min-

ing of network communities,” Knowledge and Data Engineering, IEEE Trans-

actions On, vol. 24, no. 2, pp. 326–337, 2012.

[82] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical

Journal, vol. 23, no. 2, pp. 298–305, 1973.

[83] M. Newman, “Fast algorithm for detecting community structure in networks,”

Physical Rev. E, vol. 69, no. 6, p. 066133, 2004.

167

[84] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 8, pp. 888–905,

2000.

[85] R. Guimera and L. A. N. Amaral, “Cartography of complex networks: modules

and universal roles,” Journal of Statistical Mechanics: Theory and Experiment,

vol. 2005, no. 02, p. P02001, 2005.

[86] J. C. Bezdek and R. J. Hathaway, “Vat: A tool for visual assessment of (clus-

ter) tendency,” in Neural Networks, 2002. IJCNN’02. Proceedings of the 2002

International Joint Conference on, vol. 3. IEEE, Conference Proceedings, pp.

2225–2230.

[87] W. W. Zachary, “An information flow model for conflict and fission in small

groups,” Journal of anthropological research, pp. 452–473, 1977.

[88] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.

Dawson, “The bottlenose dolphin community of doubtful sound features a large

proportion of long-lasting associations,” Behavioral Ecology and Sociobiology,

vol. 54, no. 4, pp. 396–405, 2003.

[89] D. E. Knuth, D. E. Knuth, and D. E. Knuth, The Stanford GraphBase: a

platform for combinatorial computing. Addison-Wesley Reading, 1993, vol. 37.

[90] P. M. Gleiser and L. Danon, “Community structure in jazz,” Advances in com-

plex systems, vol. 6, no. 04, pp. 565–573, 2003.

168

[91] M. Gong, J. Liu, L. Ma, Q. Cai, and L. Jiao, “Novel heuristic density-based

method for community detection in networks,” Physica A: Statistical Mechanics

and its Applications, vol. 403, pp. 71 – 84, 2014.

[92] R. Guimera and L. A. N. Amaral, “Functional cartography of complex metabolic

networks,” Nature, vol. 433, no. 7028, pp. 895–900, 2005.

[93] G. Golub and C. Van Loan, “The pseudo-inverse,” Matrix Computations (3rd

edition), The Johns Hopkins University Press, pp. 257–258, 1996.

[94] C. Staudt and H. Meyerhenke, “Engineering parallel algorithms for community

detection in massive networks.”

[95] A. Lancichinetti and S. Fortunato, “Community detection algorithms: a com-

parative analysis,” Physical review E, vol. 80, no. 5, p. 056117, 2009.

[96] G. Tibly and J. Kertsz, “On the equivalence of the label propagation method

of community detection and a potts model approach,” Physica A: Statistical

Mechanics and its Applications, vol. 387, no. 1920, pp. 4982–4984.

[97] G. Cordasco and L. Gargano, “Community detection via semi-synchronous label

propagation algorithms,” in Business Applications of Social Network Analysis

(BASNA), 2010 IEEE International Workshop on, Conference Proceedings, pp.

1–8.

169

[98] L. Xin and T. Murata, “Community detection in large-scale bipartite net-

works,” in Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT

’09. IEEE/WIC/ACM International Joint Conferences on, vol. 1, Conference

Proceedings, pp. 50–57.

[99] M. He, M. Leng, F. Li, Y. Yao, and X. Chen, A Node Importance Based Label

Propagation Approach for Community Detection. Springer, 2014, pp. 249–257.

[100] X. Jierui and B. K. Szymanski, “Community detection using a neighborhood

strength driven label propagation algorithm,” in Network Science Workshop

(NSW), 2011 IEEE, Conference Proceedings, pp. 188–195.

[101] X. Liu and T. Murata, “Advanced modularity-specialized label propagation

algorithm for detecting communities in networks,” Physica A: Statistical Me-

chanics and its Applications, vol. 389, no. 7, pp. 1493–1500, 2010.

[102] K. Berahmand and A. Bouyer, LP-LPA: A link influence-based label propagation

algorithm for discovering community structures in networks, no. 06, p. 1850062,

exported from https://app.dimensions.ai on 2018/10/25.

[103] M. Leng, Y. Yao, J. Cheng, W. Lv, and X. Chen, “Active semi-supervised

community detection algorithm with label propagation,” in Database Systems

for Advanced Applications. Springer, Conference Proceedings, pp. 324–338.

[104] X. Jierui and B. K. Szymanski, “Labelrank: A stabilized label propagation

170

algorithm for community detection in networks,” in Network Science Workshop

(NSW), 2013 IEEE 2nd, Conference Proceedings, pp. 138–143.

[105] D. Qiguo, G. Maozu, L. Yang, L. Xiaoyan, and C. Ling, “Mlpa: Detecting

overlapping communities by multi-label propagation approach,” in Evolutionary

Computation (CEC), 2013 IEEE Congress on, Conference Proceedings, pp.

681–688.

[106] S. Song, C. Yuzhong, F. Mingyue, L. Wanhua, and Shining, “A hierarchical

multi-label propagation algorithm for overlapping community discovery in social

networks,” in Web Information System and Application Conference (WISA),

2014 11th, Conference Proceedings, pp. 113–118.

[107] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Generalized louvain

method for community detection in large networks,” in Intelligent Systems De-

sign and Applications (ISDA), 2011 11th International Conference on, 2011,

Conference Proceedings, pp. 88–93.

[108] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified np-complete

problems,” in Proceedings of the Sixth Annual ACM Symposium on Theory of

Computing, ser. STOC ’74, 1974, pp. 47–63.

[109] J. Hou Chin and K. Ratnavelu, “A semi-synchronous label propagation algo-

rithm with constraints for community detection in complex networks,” Scientific

Reports, vol. 7, no. 45836.

171

[110] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph partitioning for

complex networks,” IEEE Transactions on Parallel and Distributed Systems,

vol. 28, no. 9, pp. 2625–2638, Sept 2017.

[111] S. Qiao, N. Han, Y. Gao, R. Li, J. Huang, J. Guo, L. A. Gutierrez, and X. Wu,

“A fast parallel community discovery model on complex networks through ap-

proximate optimization,” IEEE Transactions on Knowledge and Data Engi-

neering, vol. 30, no. 9, pp. 1638–1651, Sept 2018.

[112] K. Berahmand, A. Bouyer, and M. Vasighi, “Community detection in complex

networks by detecting and expanding core nodes through extended local simi-

larity of nodes,” IEEE Transactions on Computational Social Systems, vol. 5,

no. 4, pp. 1021–1033, Dec 2018.

[113] Y. Xing, F. Meng, Y. Zhou, M. Zhu, M. Shi, and G. Sun, “A node influence

based label propagation algorithm for community detection in networks,” The

Scientific World Journal, vol. 2014, 2014.

[114] M. Rosvall and C. Bergstrom,Maps of information flow reveal community struc-

ture in complex networks, 2007.

[115] A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing

community detection algorithms. American Physical Society, Oct 2008, vol. 78,

p. 046110.

172

[116] A. Lancichinetti and S. Fortunato, Benchmarks for testing community detec-

tion algorithms on directed and weighted graphs with overlapping communities.

American Physical Society, Jul 2009, vol. 80, p. 016118.

[117] L. Danon, A. Daz-Guilera, J. Duch, and A. Arenas, Comparing community

structure identification, vol. 2005, no. 09, p. P09008.

[118] M. Girvan and M. E. J. Newman, “Community structure in social and biological

networks,” Proceedings of the National Academy of Sciences of the United States

of America, vol. 99, p. 78217826, 2002.

[119] A. D.-G. F. G. R. Guimer‘a, L. Danon and A. Arenas, “Self-similar community

structure in a network of human interactions,” Phys. Rev. E, vol. 68, 2003.

[120] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in ego net-

works,” in Advances in Neural Information Processing Systems 25, F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates,

Inc., 2012, pp. 539–547.

[121] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset

collection,” %urlhttp://snap.stanford.edu/data, Jun. 2014.

[122] S. Emmons, S. Kobourov, M. Gallant, and K. Brner, Analysis of Network Clus-

tering Algorithms and Cluster Quality Metrics at Scale. Public Library of

Science, 07 2016, vol. 11.

173

[123] C. Pizzuti, “A multiobjective genetic algorithm to find communities in complex

networks,” IEEE Transactions on Evolutionary Computation, vol. 16, pp. 418–

430, 2012.

[124] P. Bedi and C. Sharma, “Community detection in social networks,” Wiley In-

terdisciplinary Reviews: Data Mining and Knowledge Discovery 6, vol. 3, pp.

115–135, 2016.

[125] J. Su and T. C. Havens, “Quadratic program-based modularity maximization

for fuzzy community detection in social networks,” IEEE Transactions on Fuzzy

Systems, vol. 23, no. 5, pp. 1356–1371, 2015.

[126] W. Luo, Z. Yan, C. Bu, and D. Zhang, “Community detection by fuzzy rela-

tions,” IEEE Transactions on Emerging Topics in Computing, 2017.

[127] F. Breve and L. Zhao, “Fuzzy community structure detection by particle com-

petition and cooperation,” Soft Computing, vol. 17, no. 4, pp. 659–673, 2013.

[128] N. Binesh and M. Rezghi, “Fuzzy clustering in community detection based on

nonnegative matrix factorization with two novel evaluation criteria,” Applied

Soft Computing, 2017.

[129] H. Zhang, X. Chen, J. Li, and B. Zhou, “Fuzzy community detection via mod-

ularity guided membership-degree propagation,” Pattern Recognition Letters,

vol. 70, pp. 66–72, 2016.

174

[130] P. Chopade and J. Zhan, “A framework for community detection in large net-

works using game-theoretic modeling,” IEEE Transactions on Big Data, vol. 3,

no. 3, pp. 276–288, Sep. 2017.

[131] H. K. Shakya, K. Singh, and B. Biswas, “An efficient genetic algorithm for

fuzzy community detection in social network,” in Advanced Informatics for

Computing Research. Springer, 2017, Book Section, pp. 63–72.

[132] M. Hajiabadi, H. Zare, and H. Bobarshad., “An integrated approach for over-

lapping and non-overlapping community detection,” Knowledge-Based Systems,

vol. 123, pp. 188 – 199, 2017.

[133] X. L. W. Wang, D. Liu and L. Pan, “Fuzzy overlapping community detection

based on local random walk and multidimensional scaling,” Physica A, vol. 392,

p. 6578 6586, 2013.

[134] A. Biswas and B. Biswas, “Fuzag: Fuzzy agglomerative community detection by

exploring the notion of self-membership,” IEEE Transactions on Fuzzy Systems,

vol. PP, no. 99, pp. 1–1.

[135] D. Chen, M. Shang, Z. Lv, and Y. Fu, “Detecting overlapping communities of

weighted networks via a local algorithm,” Physica A: Statistical Mechanics and

its Applications, vol. 389, no. 19, pp. 4177–4187, 2010.

175

[136] A. F. McDaid, D. Greene, and N. Hurley, “Normalized mutual informa-

tion to evaluate overlapping community finding algorithms,” arXiv preprint

arXiv:1110.2515, 2011.

[137] M. Jamalabdollahi and S. R. Zekavat, “High resolution ToA estimation via

optimal waveform design,” IEEE Transactions on Communications, vol. 65,

no. 3, pp. 1207–1218, March 2017.

[138] S. Lee, B. Koo, and S. Kim, “Raps: reliable anchor pair selection for range-free

localization in anisotropic networks,” IEEE Communications Letters, vol. 18,

no. 8, pp. 1403–1406, 2014.

[139] H. Woo and C. Lee, “A novel multihop range-free localization algorithm based

on reliable anchor selection in wireless sensor networks.” KSII Transactions on

Internet & Information Systems, vol. 10, no. 2, 2016.

[140] M. Šimek, “Reference nodes selection for anchor-free localization in wireless

sensor networks,” Vysoké učeńı technické v Brně, ČR, 2010.

[141] O. Oshiga, X. Chu, Y.-W. Leung, and J. Ng, “Anchor selection for localization

in large indoor venues,” in 2018 IEEE/ACM 26th International Symposium on

Quality of Service (IWQoS). IEEE, 2018, pp. 1–6.

[142] P. Zhang and Q. Wang, “Anchor selection with anchor location uncertainty in

wireless sensor network localization,” in 2011 IEEE International Conference

176

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011, pp. 4172–

4175.

[143] Q. Chang, H. T. Hou, X. H. Zeng, Q. Li, and W. P. Wang, “An anchor selection

algorithm in wireless sensor network,” in Applied Mechanics and Materials, vol.

380. Trans Tech Publ, 2013, pp. 3962–3965.

[144] H. Woo and C. Lee, “Geometric range-free localization algorithm based on op-

timal anchor node selection in wireless sensor networks,” International Journal

of Distributed Sensor Networks, vol. 10, no. 4, p. 509892, 2014.

[145] I. Guvenc, S. Gezici, F. Watanabe, and H. Inamura, “Enhancements to linear

least squares localization through reference selection and ml estimation,” in

2008 IEEE Wireless Communications and Networking Conference. IEEE, 2008,

pp. 284–289.

[146] Y. Wang, F. Zheng, M.Wiemeler, W. Xiong, and T. Kaiser, “Reference selection

for hybrid toa/rss linear least squares localization,” in 2013 IEEE 78th vehicular

technology conference (VTC Fall). IEEE, 2013, pp. 1–5.

[147] S. Wu, J. Li, and S. Liu, “Improved localization algorithms based on reference

selection of linear least squares in los and nlos environments,” Wireless personal

communications, vol. 68, no. 1, pp. 187–200, 2013.

[148] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding

177

of communities in large networks,” Journal of Statistical Mechanics: Theory

and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[149] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex pro-

grams,” in Recent Advances in Learning and Control, ser. Lecture Notes in

Control and Information Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds.

Springer-Verlag Limited, 2008, pp. 95–110.

178

Appendix A

Proof of Proposed Propositions at

Chapter 2

A.0.1 Proposition 1

The adjoint operator of linear operator A(X) := diag(AXAT) = b2 is A∗(y) :=

ATdiag(y)A.

179

〈X,A∗(y)〉 =
c×n∑
i,j=1

Xij (A∗(y))ji ,

=
c×n∑
i,j=1

Xij

n∑
k=1

AkiykAkj,

=
n∑

k=1

yk

c×n∑
i,j=1

AkiXijAkj = 〈A(X),y〉 .

(A.1)

A.0.2 Proposition 2

The solution for y in the dual Lagrangian at (2.18) is

y = (AA∗)−1 [(bT −A (X)
)
μ−A (S−C)

]
. (A.2)

We begin by differentiating (2.18) with respect to y:

∇yL(y,S,X) = −bT +
∂

∂y
〈X,A∗(y) + S−C〉 ,

+
∂

∂y
1/(2μ) ‖A∗(y) + S−C‖2 ,

(A.3)

180

where

∂

∂y
〈X,A∗(y) + S−C〉 =

∂

∂y

{
c×n∑
i,j=1

Xij (A∗(y))ji +
c×n∑
i,j=1

Xij (S−C)ji

}
,

=
∂

∂y

{
c×n∑
i,j=1

Xij

n∑
k=1

AkiykAkj

}
,

=
c×n∑
i,j=1

AkiXijAkj = A (X) .

(A.4)

and

∂

∂y

{
1/(2μ) ‖A∗(y) + S−C‖2} =

1

2μ

∂

∂y

c×n∑
i,j=1

(
n∑

k=1

AkiykAkj + Sij −Cij

)2

,

=
1

2μ

∂

∂y

c×n∑
i,j=1

[(
n∑

k=1

AkiykAkj

)2

+

2
n∑

k=1

AkiykAkj (Sij −Cij) + (Sij −Cij)
2

]
,

(A.5)

=
1

2μ

c×n∑
i,j=1

[
2

(
n∑

k=1

AkiykAkj

)
AkiAkj + 2AkiAkj (Sij −Cij)

]
,

=
1

μ
[AA∗ (y) +A (S−C)] .

(A.6)

Combining (A.4) and (A.5) results in

∇yL(y,S,X) = −bT +A (X) +
1

μ
[AA∗ (y) +A (S−C)] = 0. (A.7)

181

Solving for y completes the proof.

A.0.3 Proposition 3

The optimum solution for S in (2.18) is obtained by the optimization

S∗ = argmin
S

{‖S−V (y,X)‖2F
}
, S
 0, (A.8)

where V (y,X) = (C−A∗ (y)− μX).

Minimizing (2.18) with respect to S gives

min
S

{L(S|y,X)} =

min
S

{
c×n∑
i,j=1

XijSij +
1

2μ

c×n∑
i,j=1

(
(A∗ (y))ij + Sij −Cij

)2
}
,

= min
S

{
1

2μ

c×n∑
i,j=1

[
2
(
μXij + (A∗ (y))ij −Cij

)
Sij + S2

ij

]}
,

= min
S

{
c×n∑
i,j=1

[
2
(
μXij + (A∗ (y))ij −Cij

)
Sij + S2

ij

]}
.

(A.9)

182

Considering ‖S− (C−A∗ (y)− μX)‖2F , it is easy to show that

min
S

{‖S− (C−A∗ (y)− μX)‖2F
}
=,

min
S

{
c×n∑
i,j=1

(
Sij − (C−A∗ (y)− μX)ij

)2
}
,

= min
S

{
c×n∑
i,j=1

(
2Sij (−C+A∗ (y) + μX)ij + S2

ij

)}
,

= min
S

{
c×n∑
i,j=1

[
2
(
μXij + (A∗ (y))ij −Cij

)
Sij + S2

ij

]}
.

(A.10)

which is the same as that derived in (A.9).

183

Appendix B

Proof of the Proposed Modularity

Gain Objective Function at

Chapter 4

In this section, we outline the proofs of the proposed modularity gain objective func-

tion at (4.6). Considering (4.2), the modularity gain (ΔQ) associated with changing

the community membership (label) of the ith node from current label �i to the new

label �j is

ΔQ (i, �i → �j) =
tr
(
U�i→�jBUT

�i→�j
−U�iBUT

�i

)
‖W‖ , (B.1)

185

here B is defined at (4.2), and U�i→�j represents the partition matrix U defined at

(4.2), when the community membership (label) �j is dedicated to the ith node. Also,

U�i entails that label of ith node is �i. By substituting(4.4) into (4.5), we can write

�
(k+1)
i = argmax

�j

{
tr(U�i→�jBU�i→�j

T−

U�iBUT
�i
)

}
, �j ∈ L′

i,

(B.2)

Here L′
i is the set of available membership labels, where L′

i = {�j, ∀j ∈ Ni}. Speci-

fying U�i→�j = Ũi + Ǔ�i→�j ,

Ũi = [u1, ...,ui−1,0c×1,ui+1, ...,uN] , (B.3a)

Ǔ�i→�j = [0c×1, ...,0c×1, e,0c×1, ...,0c×1] , (B.3b)

where e is a c× 1 vector, where ei = 1, for i = �j, and ei = 0 for i �= �j. Hence,

argmax
�j

{
tr(U�i→�jBU�i→�j

T −U�iBUT
�i
)

}
=

argmax
�j

{
tr

(
ŨiBŨT

i + ŨiBǓT
�i→�j

+ Ǔ �i→�jBŨT
i +

Ǔ�i→�jBǓT
�i→�j

− ŨiBŨT
i −

ŨiBǓT
�i
− Ǔ�iBŨT

i − Ǔ�iBǓT
�i

)}
, �j ∈ L′

i. (B.4)

186

where B, and L′
i are defined at (4.2) and (4.9), respectively, and Ũi and Ǔ�i→�j

are defined at (B.3). Applying simple mathematical manipulations it can be show

that tr
(
Ǔ�i→�jBǓT

�i→�j

)
= tr

(
Ǔ�iBǓT

�i

)
= bii. Considering the very fact that bii is

constant, then (B.4) is simplified to

argmax
�j

{tr
(
ŨiBǓT

�i→�j
+ Ǔ �i→�jBŨT

i +

− ŨiBǓT
�i
− Ǔ�iBŨT

i

)}
, �j ∈ L′

i. (B.5)

In (B.5) ŨiBǓT
�i→�j

and Ǔ �i→�jBŨT
i are the only components subject to change with

respect to �j. Therefore, applying tr(A) = tr(AT) and the very fact that B = BT ,

(B.5) is simplified to

�
(k+1)
i = argmax

�j

{
tr
(
ŨiBǓT

�i→�j

)}
, �j ∈ L′

i, (B.6)

Since (B.6) maximizes label transitions from �i into �j for �j ∈ L′
i, this can lead to

lower overall modularity. Therefore, in order to prevent transitions with negative

impact, the proposed objective function at (B.7) is also evaluated for the current

label �i, or

�
(k+1)
i = argmax

�j

{
tr
(
ŨiBǓT

�i→�j

)}
, �j ∈ Li, (B.7)

where Li = {�i, �j, ∀j ∈ Ni}.

187

Substituting bni = wni − mnmi

‖W‖ , represented by the definition of modularity matrix

proposed at (4.2), into tr
(
ŨiBǓT

�i→�j

)
=
∑

n\{i} u�jnbni, leads to

tr
(
ŨiBǓT

�i→�j

)
=

∑
n\{i}

u�jnwni − mi

‖W‖
∑
n\{i}

u�jnmn. (B.8)

Considering wni = 0 for n /∈ Ni, the modularity gain objective function can be

evaluated by

�
(k+1)
i = argmax

�j

{ ∑
n∈Ni

u�jnwni−,

mi

‖W‖
∑
n\{i}

u�jnmn

}
, �j ∈ Li.

(B.9)

188

Appendix C

Letter of Permission

189

3/8/2019 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet 1/1

Title: Modularity maximization using

completely positive
programming

Author: Sakineh Yazdanparast,Timothy
C. Havens

Publication: Physica A: Statistical Mechanics
and its Applications

Publisher: Elsevier
Date: 1 April 2017
© 2016 Elsevier B.V. All rights reserved.

LOGINLOGIN

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or
dissertation, provided it is not published commercially. Permission is not required, but please ensure
that you reference the journal as the original source. For more information on this and on your other
retained rights, please visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-
rights

Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Permission letter for content in Chapter 2.

190

	COMMUNITY DETECTION IN COMPLEX NETWORKS AND APPLICATION TO DENSE WIRELESS SENSOR NETWORKS LOCALIZATION
	Recommended Citation

	Sakineh_Yazdanparast_Thesis-4-24-2019.pdf

