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Abstract

This thesis shows results on 3 different problems involving partial difference sets

(PDS) in abelian groups, and uses PDS to study partial geometries with an abelian

Singer group. First, the last two undetermined cases of PDS on abelian groups with

k ≤ 100, both of order 216, were shown not to exist. Second, new parameter bounds

for k and ∆ were found for PDS on abelian groups of order pn, p an odd prime, n odd.

A parameter search on p5 in particular was conducted, and only 5 possible such cases

remain for p < 250. Lastly, the existence of rigid type partial geometries with an

abelian Singer group are examined; existence is left undetermined for 11 cases with

α ≤ 200. This final study led to the determination of nonexistence for an infinite

class of cases which impose a negative Latin type PDS.
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Chapter 1

Introduction

This thesis studies partial difference sets in abelian groups and partial geometries

with abelian Singer groups, and proves a number of nonexistence results on those

two combinatorial structures. A partial difference set (in short, PDS) is a subset of

a group which satisfies certain combinatorial conditions. In 1994, S. L. Ma wrote

a survey paper on partial difference sets [15]. This paper includes many results on

partial difference sets, including a list of all possible PDSs parameter sets with k ≤ 100

which pass a set of necessary conditions (k is the size of the PDS). There were 32

cases for which existence was undetermined in that table, and in a 1997 paper [16],

S.L. Ma was able to prove nonexistence for 13 of these cases, leaving 19 cases. One

of these remaining 19 cases, the (512, 73, 12, 10)-PDS, was shown to exist in 1998

[10]. The other 18 cases remained open until 2016, when S. De Winter, Z. Wang,

and E. Kamischke derived a local multiplier theorem [6], which they combined with

variance techniques and some other ad-hoc methods to show nonexistence of every

case remaining except for two: the (216, 40, 4, 8)-PDS and (216, 43, 10, 8)-PDS.

Chapter 3 of this thesis shows the nonexistence of these two cases, a result which was

published in 2017 [7] and completed the classification of PDS which have k ≤ 100.

1



This result was proved using the local multiplier theorem, a similar variance method

to the one used by De Winter, Wang, and Kamischke [6], combined with a weighted

mapping of subsets of elements to the projective plane of order 3.

Motivated by these results on the two cases of order 216 (which is 8 ∗ 33), in 2018

S. De Winter and Z. Wang showed the nonexistence of nontrivial PDS in abelian

groups of order 8p3, where p is any odd prime [9]. Only a few other general classifi-

cation results are known on PDS in abelian groups, see for example [1], [8], or [17].

Additionally, very few PDSs have been shown to exist in abelian groups of order pn,

where p is prime and n is odd. Motivated by this observation, Chapter 4 of this thesis

studies the question of existence of partial difference sets of order pn, where p is an

odd prime, in hope to discover more about the cases where n is also odd. Using some

results of Ma, identities relating PDS parameters, and some ad-hoc methods, more

strict bounds on k were established for PDSs on abelian groups of order pn, p prime.

This bound on k led to the development of some bounds on ∆ using parameter inte-

grality conditions, examination of discriminants of quadratics obtained by observing

functions of parameters, and other ad-hoc methods (∆ is a very useful function of

three of the parameters of a PDS). These parameter restrictions were used to perform

a computer search for parameter sets which passed all necessary conditions in groups

of size p5, p prime. This search showed that the number of possible parameter sets of

non-Paley type partial difference sets in an abelian group of order p5 is sparse, with

5 potential parameter sets which pass the necessary conditions among the 54 primes

p < 250.

Partial geometries were introduced in 1963 by R. Bose to study association schemes

of partially balanced incomplete block designs using graph theoretical methods [2].

The point graph of a partial geometry, where the vertex set V is the set of points in

the geometry, and two vertices are connected by an edge if and only if they lie on

a common line, is a strongly regular graph. Thus, the study of partial geometries is
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connected to both design theory and graph theory and can proceed using techniques

from both fields. In 2006, S. De Winter [4] divided partial geometries with an abelian

Singer group into three classes based on the size of the stabilizer of each line from an

abelian group of automorphisms acting regularly on the geometry: spread type, rigid

type, and mixed type. In 2013, E. Kamischke [11] used a set of necessary conditions

for rigid type partial geometries with an abelian Singer group and determined that

there were only 11 possible parameter sets with 3 ≤ α ≤ 8 (if a point x is not on a line

L, there are α lines through x which intersect L). This thesis shows the nonexistence

of 10 of those 11 cases. It also presents an expanded table using a new computer

search which includes a necessary condition from a 2008 paper by K. Leung, S.L. Ma

and B. Schmidt [13], reaching α ≤ 200. An infinite class of partial geometries with

an abelian Singer group which pass the necessary conditions and whose point graph

induces a negative Latin square type PDS is presented; nonexistence is proved for this

class. The computer search showed 20 potential parameter sets for rigid type partial

geometries with an abelian Singer group which have α ≤ 200; 6 of these 20 cases

are shown not to exist by the infinite class nonexistence result, one case is previously

known to exist, and the nonexistence of two additional cases is shown through other

methods, leaving 11 undetermined cases with α ≤ 200.

3



Chapter 2

Preliminaries

2.1 Relevant group theory

A large number of results throughout this thesis use the language of group theory,

particularly actions on abelian groups. We begin by defining groups and stating a few

specific results on groups and important classes of groups. Multiplicative notation

will be used throughout this thesis and as such, groups are defined in that manner.

Definition 2.1.1 A group (G, ∗) is a set of elements G equipped with an operation

∗ that satisfy three properties:

• There exists an identity, often denoted 1 or e, such that for every g ∈ G,

g ∗ 1 = g.

• For each g ∈ G, there exists an inverse of g, denoted g−1, such that g−1 ∗ g = 1.

• For any g, h, k ∈ G, the associative property holds; that is (g∗h)∗k = g∗(h∗k).
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Further the group is called abelian if for each g, h ∈ G, g and h commute, that is

g ∗ h = h ∗ g.

Usually, since we use multiplicative notation, the multiplication is implied and the

operation is assumed. We now define a group action:

Definition 2.1.2 Let G be a group, and X a set. Then the mapping G×X → X :

g · x 7→ gx is called a (left) action of G on X if:

• The identity e ∈ G maps such that e · x = x for all x ∈ X.

• For all g, h ∈ G, x ∈ X, we have (gh) · x = g · (h · x).

One specific type of action is the natural action, which maps G × G → G, and the

properties of an action hold by the associativity of the group. We need one more

specific type of action in this thesis:

Definition 2.1.3 Let X be a set and G be a group. Let G × X → X be a group

action.

• If for each pair of x, y ∈ X, there exists a g ∈ G such that g · x = y, then the

action is called transitive.

• If the property that g · x = h · x implies g = h holds, then the group is called

free.

• An action which is both transitive and free is called sharply transitive.
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We will deal with sharply transitive natural actions on abelian groups throughout

this thesis. These generate automorphisms of the group involved, which when applied

to geometries are called Singer groups after James Singer [20], as we do on partial

geometries in this thesis.

2.2 Partial difference sets, strongly regular graphs,

and partial geometries

We refer to Ma’s 1994 survey paper [15] for our definitions (as well as a number of

important results). These

Definition 2.2.1 A partial difference set of order v, denoted (v, k, λ, µ)− PDS, on

a group G, with |G| = v, is a subset D ⊂ G, with |D| = k such that the expressions

gh−1; g 6= h; g, h ∈ D represent every non-identity element in D λ times and every

non-identity element not in D µ times.

This definition generalizes difference sets, which are simply partial difference sets

where λ = µ.

Definition 2.2.2 A strongly regular graph of order v, denoted srg(v, k, λ, µ) is a k-

regular graph such that any two adjacent vertices share λ neighbors, and any two

non-adjacent vertices share µ neighbors.

If a partial difference set is not a difference set, we immediately can determine some

structural information.
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Theorem 2.2.3 Let D be a (v, k, λ, µ)−PDS with λ 6= µ. Define D(−1) =
{
d−1|d ∈

D
}

. Then, D = D(−1).

Proof. Let d ∈ D; we want to show d−1 ∈ D. There are λ pairs of elements g, h ∈ D

such that gh−1 = d. But, taking the inverse of both sides, hg−1 = d−1, so there are λ

pairs generating d−1. Since λ 6= µ, d−1 ∈ D.

If the PDS satisfies that property, we notice that including or excluding the identity

of the group only changes the parameters.

Theorem 2.2.4 Let D be a (v, k, λ, µ)−PDS on an abelian group G where λ 6= µ,

and the identity of G, e ∈ D. Then, D \ {e} is also a PDS. Further, if k > 1, then

D \{e} is a (v, k− 1, λ− 2, µ)−PDS (otherwise, the new PDS is a trivial PDS with

D = ∅ and paramater set (v, 0, 0, 0)− PDS).

Proof. We notice immediately that if k = 1 that e is the only element in D, so

removing it gives D \ e = ∅. Assume otherwise that k > 1. Recall that e−1 = e; thus

the differences excluded from D \ e are those of form g · e and e · g−1. Furthermore, if

g ∈ D, then since λ 6= µ, we have g−1 ∈ D by 2.2.3, so this implies we are removing

the products g−1 · e and e · g as well, for any g ∈ D. Therefore, we have decreased

the number of representations of nonidentity elements in D by 2, while not affecting

how many times any element not contained in D appear.

These results motivate us to define a regular PDS. This definition will allow us to

look at differences as the products g · h rather than g · h−1 (since h−1 ∈ D will imply

h ∈ D, while studying partial difference sets as an independent entity of difference

sets. We will make the structural convention to exclude the identity from the PDS,

which will prove to be useful in working with strongly regular graphs:
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Definition 2.2.5 A partial difference set D on group G is regular if the identity of

G is not in D and D(−1) = D.

Next, we want to establish a connection between partial difference sets and strongly

regular graphs, lending meaning to the shared parameters given in their definitions.

Definition 2.2.6 Let G be a group and D be a subset of G such that the identity of

G is not in D. The Cayley graph Γ(G,D) is the directed graph with an edge from g

to h if and only if gh−1 ∈ D. In other words, for each g ∈ G and h ∈ D, the edge

(g, g · h) ∈ Γ(G,D).

For D a regular partial difference set, it follows that the Cayley graph is undirected;

if g, h ∈ D, then g−1, h−1 ∈ D, so if (g, h−1) ∈ D, then (h−1, g) ∈ D. This gives

new insight as to the reason for the shared parameters in definitions 2.2.1 and 2.2.2;

the Cayley graph induced by a regular partial difference set D is a strongly regular

graph with the same parameters. The converse construction does not always exist;

not all strongly regular graphs imply the existence of a partial difference set (regular

or otherwise).

Theorem 2.2.7 Let D be a regular (v, k, λ, µ) − PDS in a group G. Then, the

Cayley graph Γ(G,D) is an srg(v, k, λ, µ).

Proof. Since the vertex set of Γ is G, it follows immediately that Γ has v vertices.

Similarly, we can see that each vertex lies on k edges, since it lies on the edge (g, gh)

for each h ∈ D.

Next, we want to show λ is the same for both structures. Let g, h ∈ G be adjacent.

Therefore, there is an a−1 ∈ D such that ga−1 = h, or gh−1 = a. Since a ∈ D, there
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are λ ways to write a = c−1d with c, d−1 ∈ D. If g and h share a neighbor z, that

implies there is a way to write z = gx = hy, or alternatively, z = x−1y = gh−1, with

x, y ∈ D. But since gh−1 = a, and a ∈ D, this difference occurs λ times.

Lastly, we need to show that µ is the same for both structures. Let g, h ∈ G be

non-adjacent, that is, there is no a ∈ D such that ga = h. We want to count the

pairs such that there is a solution to z = x−1y = gh−1, with x, y ∈ D. However, since

there is no solution to ga = h, which implies gh−1 = a−1, and since a−1 ∈ D, this

difference occurs µ times in D. �

Two general classes of partial difference sets and strongly regular graphs come from

Latin squares, constructed by Dr. P.J. Cameron and Dr. J.H. van Lint [3]. We

encounter the so-called negative Latin square type PDS class in our study of partial

geometries.

Definition 2.2.8 A partial difference set of the form (n2, r(n+ 1),−n+ r2 + 3r, r2 +

r)− PDS, where n and r are positive integers, is called a negative Latin square type

partial difference set.

A partial difference set of the form (n2, r(n− 1), n+ r2− 3r, r2− r)−PDS, where n

and r are positive integers, is called a Latin square type partial difference set.

This local multiplier theorem has been very helpful in showing the nonexistence of

many partial difference sets recently, and plays an important role in showing the

nonexistence of the (216, 40, 4, 8)-PDS and the (216, 43, 10, 8)-PDS in abelian groups:

Proposition 2.2.9 [LMT [6]] Let D be a regular (v, k, λ, µ)-PDS in an abelian group

G. Furthermore assume ∆ = (λ − µ)2 + 4(k − µ) is a perfect square. Then g ∈ G

belongs to D if and only if gs ∈ D for all s coprime with o(g), the order of g.
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For our development of the theory on partial difference sets of orders pk where k is

odd and p is prime, we need the following results:

Proposition 2.2.10 No non-trivial PDS exists in

• an abelian group G with a cyclic Sylow-p-subgroup and o(G) 6= p;

• an abelian group G with a Sylow-p-subgroup isomorphic to Zps×Zpt where s 6= t.

We need some results on adjacency matrices of strongly regular graphs in order to

obtain our nonexistence results in Chapter 3.

Definition 2.2.11 Let G = (V,E) be a graph on v vertices, named (k1, k2, ..., kv).

Then, the adjacency matrix of G, A, is the v× v matrix with Aij = 1 if vi and vj are

connected and Aij = 0 otherwise.

For strongly regular graphs, the spectrum of the adjacency matrix has been computed.

These values are important in our setup for the variance method throughout Chapter

3.

Proposition 2.2.12 Let A be the adjacency matrix of a strongly regular graph G,

srg(v, k, λ, µ). Then, the eigenvalues of A are:

ν1 = k, with multiplicity m1 = 1,

ν2 = 1
2

(
λ− µ+

√
∆
)
, with multiplicity m2 = 1

2

(
v − 1− 2k+(v−1)(λ−µ)√

∆

)
, and

ν3 = 1
2

(
λ− µ−

√
∆
)
, with multiplicity m3 = 1

2

(
v − 1 + 2k+(v−1)(λ−µ)√

∆

)
.
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If G is not a conference graph (i.e. it is not an srg(v, v−1
2
, v−5

4
, v−1

4
)), then these

eigenvalues are integers.

The next two propositions were very important in showing the nonexistence of cases

in [6]. Both give us information about how many elements of D come from different

subgroups of G; we will use the second of the two multiple times in our study of the

cases of order 216.

Proposition 2.2.13 Let H = Zrp be a subgroup of G, where p is prime. Let D be

a partial difference set on G, and call |H ∩ D| = s. Let U be a common eigenspace

for the group of matrices {P1, P2, ..., Pv} constructed by performing the action of each

element of G on the adjacency matrix A of the Cayley graph of G. Let x be the

number of vectors in U with eigenvalue 1. Additionally, let a1 be the multiplicity of

the eigenvalue ν2 − ν3 in the matrix P (A− ν3I), where P is n element of order p in

D. Lastly, let a′1 be the multiplicity of ν2 − ν3 in the matrix P (A− ν3I), where P is

n element of order p which is not in D. Then,

m2 + sa1 + (pr − 1− s)a′1 = xpr + (m2 − x)pr−1.

We can compute a1 and a′1 as the solutions to the system:

a1(ν2 − ν3)− ap(ν2 − ν3) = −ν3(f − 1) + g − k

a1 + (p− 1)ap = m2,

where f is the number of fixed points by some automorphism φ on the point graph of

G, and g is the number of points mapped to their image. Taking φ to be a sharply
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transitive morphism, we can force f = 0 and g = v for g ∈ D (the case when

calculating a1), and g = 0 for g 6∈ D (the case when calculating a′1).

This means we can readily compute m2,m3, ν2, ν3, a1, and a′1 for any given parameter

set. Since s and x must be nonnegative integers, this often gives us some restrictions

on the size of particular subgroups which we can use to our advantage when we apply

the LMT, and seems to be more useful for showing nonexistence when p is larger.

More useful for small primes (particularly p = 2, which is vital in studying the cases

of order 216) is the following result, again from S. Ma [15]:

Proposition 2.2.14 Let D be a nontrivial regular (v, k, λ, µ)-PDS in an abelian

group G. Suppose ∆ = (λ− µ)2 + 4(k − µ) is a perfect square. If N is a subgroup of

G such that gcd(|N | , |G| / |N |) = 1 and |G| / |N | is odd, then D1 = D ∩N is a (not

necessarily non-trivial) regular (v1, k1, λ1, µ1)-PDS with

|D1| =
1

2

[
|N |+ β1 ±

√
(|N |+ β1)2 − (∆1 − β2

1)(|N | − 1)

]
.

Here ∆1 = π2 with π = gcd(|N | ,
√

∆) and β1 = β − 2θπ where β = λ − µ and θ is

the integer satisfying (2θ − 1)π ≤ β < (2θ + 1)π.

S. Ma used these propositions when creating his necessary conditions in generating

his table in 1994 [15]. We find many of these results very useful in Chapter 4 where

we work on restricting parameter sets for cases of order pk, p prime.

Proposition 2.2.15 Suppose there exists a regular (v, k, λ, µ)-PDS D in a group

G. Note the parameters β = µ− λ and ∆ = (λ− µ)2 + 4(k − µ).

(a) If D 6= ∅ and D 6= G \ {e}, then 0 ≤ λ ≤ k − 1 and 0 ≤ µ ≤ k − 1.

12



(b) The parameters β and ∆ have the same parity.

(c) The PDS D is nontrivial if and only if −
√

∆ < β <
√

∆ − 2. Also, if D 6=

G \ {e}, then D is nontrivial if and only if 1 ≤ µ ≤ k − 1.

(d) If ∆ is not a square, then (v, k, λ, µ)=(4t + 1, 2t, t − 1, t) for some positive

integer t; furthermore, if G is abelian, then v = p2s+1 for some prime p ≡ 1

(mod 4).

(e) If G is abelian and D 6= ∅ and D 6= G \ {e}, then v2 ≡ (2k− β)2 ≡ 0 (mod ∆);

furthermore, if D is nontrivial, then v, ∆, and v2/∆ have the same prime

divisors.

(f) The set (G\D)\{e} is a PDS with parameters (v′, k′, λ′, µ′)=(v, v−k−1, v−

2k − 2 + µ, v − 2k + λ) called the complement of D.

(g) If D is nontrivial, then there exists a nontrivial regular (v, k+, λ+, µ+)-PDS D+

(in an abelian group of order v) with ∆+ = (λ+ − µ+)2 + 4(k+ − µ+) = v2/∆.

(The PDS D+ is called the dual of D.)

One common technique we use to demonstrate the nonexistence of certain PDS relies

on the fact that the variance of any set of real numbers must be nonnegative. We

show this in the following theorem:

Theorem 2.2.16 Let S = {x1, x2, ..., xn} be a set of real numbers. The variance of

S is nonnegative; that is n ·
∑n

i=1(xi)
2 − (

∑n
i=1 xi)

2 ≥ 0.

Proof. We can expand (
∑n

i=1 xi)
2

=
∑n

i=1(xi)
2 +

∑
1≤i<j≤n(2xixj). Thus, we want

to show:

(n− 1)
n∑
i=1

(xi)
2 −

∑
1≤i<j≤n

(2xixj) ≥ 0.

13



However, we notice the second summand in this expression contains each xi n − 1

times, exactly once with each xj such that i 6= j. Our inequality becomes:∑
1≤i<j≤n

x2
i − 2xixj + x2

j =
∑

1≤i<j≤n

(xi − xj)2 ≥ 0,

but the sum of any number of squares is nonnegative (and in fact 0 if and only if each

xi = xj).

Chapter 3 uses this variance fact in much the same way as [6], but in order to show

nonexistence for the cases of order 216, we impose a projective plane with weighted

points on the structure. In order to do so, we give a taste of the underlying design

theory which leads up to projective planes by introducing balanced incomplete block

designs (BIBDs), symmetric BIBDs, and projective planes. For a more complete

reference on these combinatorial designs, one can refer to, for example, [21].

Definition 2.2.17 A balanced incomplete block design, abbreviated BIBD, with pa-

rameters (v, k, λ, r, b) is a set of b blocks of size k which are subsets of a set of v points,

such that each pair of points is contained in exactly λ blocks and each point appears

in exactly r blocks.

Some counting arguments dealing with BIBDs yield quickly that bk = vr, λ(v− 1) =

r(k − 1), and b ≥ v. The first two facts imply that (v, k, λ) fully define the BIBD,

and we can simply compute r = λ(v−1)
k−1

and b = vr
k

= λv(v−1)
k(k−1)

. Naturally, we are

interested in the cases where equality holds between v and b, and we define these as

the symmetric designs.

Definition 2.2.18 A symmetric BIBD is a BIBD where v = b (the number of points

equals the number of blocks), or equivalently, k = r (the size of each block equals the

number of blocks each point appears in).

14



One special case of the symmetric BIBD is the projective plane, which proves to be

useful in Chapter 3 to show the nonexistence of two potential parameter sets of partial

difference sets.

Definition 2.2.19 A BIBD with v = n2 + n + 1, k = n + 1, and λ = 1 with n ≥ 2

is called the projective plane of order n.

For any prime power q = pn, there exists a projective plane of order q. No non-prime

power projective planes have been constructed, but the nonexistence of projective

planes of non-prime power order in general is a problem of great interest in combina-

torial design theory.

We also will discuss some results relating partial difference sets to partial geometries

of rigid type.

Definition 2.2.20 A proper partial geometry, denoted pg(s, t, α) is a set of points

P , lines L, and incidences I ⊂ P × L such that:

• Each line contains s+ 1 points.

• Each point is incident to (or on) t+ 1 lines.

• Given any point x ∈ P , any line l ∈ L such that (x, l) 6∈ I, there are α lines

incident to x which are also incident to points on l.

• Each pair of lines intersects in at most one point. (Consequently, each pair of

points can be on at most one line.)

• α <min(s, t).
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Definition 2.2.21 The point graph G = (V,E) of a partial geometry is the graph

with V the point set of the partial geometry, and E containing the edge between two

points if and only if those two points share a line.

It turns out that a pg(s, t, α) with an abelian Singer group induces a
(
(s+1)( st+α

α
), s(t+

1), s−1 + t(α−1), α(t+ 1)
)
−PDS, which can be determined by observing the point

graph of the partial geometry.

As shown by Dr. De Winter [4], if S is a partial geometry, pg(s, t, α), and G is an

abelian Singer group acting on S (that is, G acts sharply transitively on S), then the

stabilizer of any line of S has size 1 or s+1. This dichotomy lead to the classification

of partial geometries with an abelian Singer group into 3 categories:

Definition 2.2.22 Let S be a partial geometry, pg(s, t, α), and G be an abelian Singer

group acting on S. We call the pair (S, G):

• spread type if |StabG(L)| = s+ 1 for every line of S,

• rigid type if |StabG(L)| = 1 for every line of S, and

• mixed type otherwise.

2.3 Overview of results

There were 3 main results of this thesis: the proof of nonexistence of two longstanding

cases of particular partial difference sets on abelian groups of small order; some

restrictions of the parameters k and ∆ = (λ − µ)2 + 4(k − µ), as first defined in
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2.2.9, on the class of infinite partial difference sets on groups of order pn, p prime;

and the proof of nonexistence of a number of partial geometries on rigid type partial

geometries with an abelian Singer group.

In his 1994 survey paper [15], S. Ma generated all the possible parameter sets of PDS

on abelian groups with k ≤ 100. In particular, he checked every possible parameter

set with 2 ≤ k ≤ 100 to see if it satisfied Proposition 2.2.15 parts (a), (b), (d), and

(e), as well as k ≤ v−1
2

and ∆ ≤ v (otherwise, such a PDS would be the compliment

or the dual of a PDS in the list, the two special PDS defined in parts (f) and (g) of

Proposition 2.2.15). 187 such parameter sets were found from this parameter search.

100 of them are PCP type (which are a subclass of Latin square type PDS defined

in Definition 2.2.8), which are based on partial congruence partitions. 27 of these

parameter sets are Paley type, which occur for each prime power q ≡ 1(mod 4), these

being (q, q−1
2
, q−5

4
, q−1

4
)-PDS. There are 12 parameter sets which were constructed by

other assorted methods, and 14 parameter sets which were shown not to exist. This

left 32 parameter sets which were undetermined. 13 of the remaining cases were

shown not to exist by S. Ma in [16], and the (512, 73, 12, 10)-PDS, was shown to

exist in 1998 [10], leaving 18 undetermined cases until 2016. At this point, Proposition

2.2.9 was shown, and using this result, Theorem 2.2.16, and Proposition2.2.14, S. De

Winter, E. Kamischke, and Z. Wang [6] showed the nonexistence of 16 of these 18

cases. The remaining cases, both of order 216 = 23 · 33, were left open after this

paper; the numerical parameters all worked using the methods of [6].

In Chapter 3, we show the nonexistence of these two remaining cases. We do so by

determining the possible distribution of elements in D, where D is assumed to be

either a (216, 40, 4, 8)-PDS or (216, 43, 10, 8)-PDS on an abelian group G of order

216. Particularly, we look at the elements of order 3 in G, and look at the variance of

subsets of G contained in D which ”contain” that element (that is, it is a product of

that element of order 3 with a lower-order element). This divides D into 26 disjoint
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subsets. We can make an observation which allow us to pair these sets, giving us 13

distinct subsets which we can solve for potential sizes of. Since we have 13 subsets, we

can map these to the projective plane of order 3 (which has 13 points). The lines of

this projective plane must have certain weights, which are imposed by the structure

of the partial difference set, and we show that none of the valid variance solutions

satisfy these allowable weight distributions. This result completes the classification

of PDS on abelian groups with k ≤ 100 by existence.

In Chapter 4, we try to find some general results on PDS of order pn on abelian group

G, where p is an odd prime and n is odd. Recently, S. De Winter and Z. Wang showed

the nonexistence of all PDS on abelian groups of order 8p3 and fully classified PDS

on abelian groups of order 4p2 (on which the only examples are PCP type or the (36,

14, 4, 6)-PDS) [8] [9]. Very few cases of non-Paley type PDS of order pn are known

when both p and n are odd and p is prime, and with the previous success on infinite

classes S. De Winter and Z. Wang had, these prime power cases seemed very natural

to study. Working up to the compliment of the PDS, as S. Ma assumed in generating

his table for k ≤ 100, so k < v
2
, we are able to bound k slightly lower, with the bound

being tighter the smaller ∆ is. This restriction on k was accomplished by solving for

the parameters in terms of a quadratic in λ, then a quadratic in k, looking particularly

at the sign of the discriminant. This result allowed us to show that ∆ = pd, where

d is even and d
n
> 2

3
using some of the previously known integrality conditions with

our new k bound. Specifically when n = 5, we show that ∆ = p4; by brute force,

these conditions allowed us to show that there are only 5 possible parameter sets

remaining with p ≤ 250. We predict that the tightening bound leads to the number

of parameter sets to become increasingly sparse with increasing p.

In Chapter 5, we work on rigid type partial geometries with an abelian Singer group.

The vast majority of known partial geometries are of spread type. It has been shown

that every pg with α = 1 which admits an abelian Singer group is of spread-type

18



[5], while the only pg with α = 2 of rigid type is the pg(5, 5, 2), the van Lint-

Schrijver partial geometry [4], [22]. The majority of work in the field had been done

on cases where α = 2. S. De Winter showed that there are no other rigid type partial

geometries with a Singer group when α = 2, and much work has been done in attempt

to show that there are no mixed typed partial geometries with α = 2 [13]. It is also

worth noting that there are no known partial geometries of mixed type, but these

have been much more difficult to study.

Ellen Kamischke further studied the necessary conditions for the existence of rigid

type partial geometries in her master’s thesis for larger values of α, resulting in

12 possible parameter sets with α ≤ 8, including the pg(5, 5, 2) which we know to

exist [11]. In chapter 5, this work is extended by showing the nonexistence of 10

of the 11 undetermined cases from that thesis, leaving only the potential pg(11, 23,

3) generating a PDS of order 210. The project then expanded to α ≤ 200 using a

slightly different computer search method. The nonexistence of an infinite class of

rigid type partial geometries which pass the necessary conditions, which have a point

graph imposing a negative Latin square type partial difference set, is shown. This

class accounts for 6 of our 20 cases which pass our new necessary conditions with

α ≤ 200.
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Chapter 3

Nonexistence of two partial

difference sets of order 216

The results presented in this chapter were published in September 2017 in Discrete

Mathematics, see [7]. We will expand on the details of the proof provided in that

paper in this chapter to give a full picture of the argument.

In [15] Ma presented a table of parameters for which the existence of a regular PDS

with k ≤ 100 in an abelian group was known or could not be excluded. In partic-

ular, the list contained 32 cases where (non)-existence was not known. In [16] Ma

excluded the existence of a PDS in 13 of these 32 cases. In [10] and [12], existence

of the (512, 73, 12, 10)-PDS was shown, and De Winter, Kamischke and Wang [6]

showed nonexistence of 16 of the 18 remaining cases. This left only the existence of

a (216, 40, 4, 8)-PDS and (216, 43, 10, 8)-PDS on an abelian uncertain. This chapter

will show nonexistence of these two cases, completing the classification of PDS with

k ≤ 100 in an abelian group based on existence. We proceed by using the LMT and

variance methods, Theorems 2.2.9 and 2.2.16, in the manner of [6] combined with a
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new argument based on weighing points and lines in the projective plane of order 3

to show our result.

Theorem 3.0.1 Neither a (216, 40, 4, 8)-PDS, nor a (216, 43, 10, 8)-PDS, can exist

in an abelian group of order 216.

Proof. We handle each parameter set separately. First, assume D is a (216, 40, 4, 8)-

PDS in an abelian group G of order 216. By Proposition 2.2.10, we know that

G ∼= Z3
2 × Z3

3.

Let g1, g2, . . . , g26 be all elements of order 3 in G, and let Bgi = {agi | o(a) =

1 or 2, agi ∈ D}, and Bi = |Bgi |, i = 1, 2, . . . , 26. That is, Bi equals the number of

elements in D whose fourth power equals gi.

Now observe that the LMT implies that raising elements to the fifth power provides

a bijection between Bgi and Bg2i , since (agi)
5 = a5g5

i = ag2
i . Hence |Bgi | = |Bg2i |.

Let N be the Sylow-2-subgroup of G. We want to use Proposition 2.2.14, and can

check that gcd(|N |, |G/N |) = gcd(8, 27) = 1, and |G/N | is odd. We compute that

∆ = (λ − µ) + 4(k − µ) = 144, so π = gcd(|N |,
√

∆) = 4, ∆1 = 16, and β = −4.

Solving our inequality for θ, we get that θ = 0 and β1 = −4. This finally implies that

|N ∩D| = |D1| = 0 or 4, or that there are 0 or 4 elements of order 2 in D.

We work each of these two cases separately. First assume that D contains no elements

of order 2, that is, |D1| = 0. We see that ΣiBi = k − |D1| = 40. Counting the

differences of order 2 in D in two ways, we obtain that ΣiBi(Bi − 1) = λ(|D1|) +

µ(7− |D1|) = 56; adding these two equations gives that ΣiB
2
i = 96.

By relabeling the gi if necessary, we may assume that Cj := B2j−1 = B2j, for j =
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1, 2, . . . , 13, and C1 ≥ C2 ≥ · · · ≥ C13 because of our bijection observation. This cuts

the Bi sums in half, and we simplify to

ΣjCj = 20 and ΣjC
2
j = 48. (3.1)

We can solve the system (3.1) to find exactly the following nonnegative integer solu-

tions, listed as 13 tuples (C1, C2, . . . , C13):

(5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (5, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0),

(4, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0), (4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0),

(4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0), (4, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0),

(3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0), (3, 3, 3, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0).

Secondly, assume that D contains 4 elements of order 2. It follows that ΣiBi =

40− 4 = 36. By counting the number of ways elements of order 2 can be written as

differences of elements of D, we obtain that ΣiBi(Bi − 1) + 4 · 3 = 4 · 4 + 3 · 8, or

ΣiBi(Bi − 1) = 28. Using the same labeling as above, we now obtain

ΣjCj = 18 and ΣjC
2
j = 32. (3.2)

Once again, we solve the system of equations (3.2) and find the following nonnegative

integer solutions:

(3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0),

(2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0).
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Recall that N is the unique subgroup isomorphic to Z3
2 in G. Let P1, . . . , P13 be the

13 subgroups of G isomorphic to Z3, and let L1, . . . , L13 be the 13 subgroups of G

isomorphic to Z2
3. Now consider the incidence structure P with points the subgroups

Pi × N , i = 1, . . . , 13, of G, with blocks the subgroups Li × N , i = 1, . . . , 13, of G,

and with containment as incidence. It follows that P is a 2 − (13, 4, 1) design, or

equivalently, the unique projective plane of order 3. We next assign a weight to each

point of P in the following way: if point p corresponds to subgroup Pi ×N then the

weight of p is 1
2
|((Pi × N) \ N) ∩ D|. In this way the weights of the 13 points of P

correspond to the 13 values C1, C2, . . . , C13, that is, half of the number of elements

of order 3 or 6 from D in the subgroup underlying the given point. Without loss of

generality we may assume the labeling is such that point Pi ×N has weight Ci. The

weight of a block will simply be the sum of the weights of the points in that block.

We next count how many elements of order 3 or 6 from D a specific subgroup of the

form Li × N can contain. Assume that |(Li × N) ∩ D| = m. Let ag and bh be two

distinct elements from D, with a2 = b2 = g3 = h3 = e. Then agh−1b−1 belongs to

Li ×N if and only if gh−1 ∈ Li. It follows that if g ∈ Li there are m− 1 possibilities

for bh such that gh−1 ∈ Li, whereas if g /∈ Li there are |D|−m−2
2

possibilities for bh

such that gh−1 ∈ Li.

Counting the number of differences of elements of D that are in Li ×N in two ways,

we obtain

m(m− 1) + (k −m)(
k −m− 2

2
) = λm+ µ(71−m), (3.3)

where (k, λ, µ) = (40, 4, 8). This yields that m = 8 or 16.

Now define m′ := 1
2
|((Li ×N) \N) ∩ D|. We obtain the following table:
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Case 1: (216, 40, 4, 8)-PDS D contains 0 elements of order 2 m′ = 4 or 8

Case 2: (216, 40, 4, 8)-PDS D contains 4 elements of order 2 m′ = 2 or 6

We now note that the values m′ must be the weights of the blocks of P , and that

in both cases these weights are even. We first show that no value Ci can be odd.

Assume by way of contradiction that Ci is odd for some i. Let the weight of the four

blocks that contain Pi ×N be n1, . . . , n4 respectively. Then

13∑
j=1

Cj = Ci +
4∑
t=1

(nt − Ci).

The left hand side here is simply the sum of all the points’ weights, where the right

hand side is the sum of all the block weights excluding Ci, plus the weight of Ci. Since

each block has even weight, we deduct an odd weight an even number of times, then

add an odd number on the right hand side, this implies
∑13

j=1Cj is odd, contradicting

that
∑13

j=1 Cj = 20 or 18.

This leaves us with only the possibility (4, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0) for

(C1 . . . , C13) in case 1. In this case, by considering the four blocks through a point

with weight 2 it follows that it is not possible to distribute the thirteen given weights

in such a way that every block has weight 4 or 8 (exactly one of the points in the

block containing 4 and this 2 must be 0, but the rest of the blocks must have an even

number of 0s in it; however, there are an even number of 0s, a contradiction). This

concludes the proof for the (216, 40, 8, 12) case.

Now, let D be a (216, 43, 10, 8)-PDS on an abelian group G. By Proposition 2.2.10,

we again know that G ∼= Z3
2 × Z3

3. Call the values Bi in the same way as before.

Applying Proposition 2.2.14, we can find ∆ = 144 again, θ = 0, and β = β1 = 2.
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With this change, we can find that D1 = 3 or 7. From these, we can follow the same

computation procedure for the ΣiBi, ΣiB
2
i , ΣiCi, and ΣiC

2
i to find the values are the

same. That is, when D1 = 3, we obtain Equation 3.1 and when D1 = 7, we obtain

Equation 3.2, and so our solution sets are the same as in the (216, 40, 8, 12)-PDS

case.

Apply the same projective plane construction toD. Using Equation 3.3 with (k, λ, µ) =

(43, 10, 8), we can obtain that m = 11 or 19. We have the following table:

Case 3: (216, 43, 10, 8)-PDS D contains 3 elements of order 2 m′ = 4 or 8

Case 4: (216, 43, 10, 8)-PDS D contains 7 elements of order 2 m′ = 2 or 6

But these are the same possibilities from Case 1 and 2 respectively. Since the point

weight sets and allowable block weights are the same, we have a contradiction.
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Chapter 4

Parameter bounds for regular PDS

in abelian groups of order pn

In this chapter, more strict bounds on k and ∆ = (λ−µ)2 + 4(k−µ) are obtained for

PDS in an abelian group with order pn, where p is prime. This study was motivated

by the general lack of non-Paley type PDS on abelian groups of this type with n odd,

although the results do apply if n is even as well. These restrictions were proved

using S.L. Ma’s results from [16], particularly those in Proposition 2.2.15, studying

the discriminant of quadratic equations obtained from identities of strongly regular

graphs, integrality of the parameters, and observation of series expansions. This work

was done primarily to study cases of PDS in abelian groups of order pn where p is

prime and n is odd, due to the rarity of these cases in the literature. To observe this

more closely, the chapter ends with a computer search for parameter sets of order p5

with p an odd prime.

Throughout this chapter we will assume that p is a prime with p ≥ 5. The reason

for this is twofold: the case p = 3 already was dealt with in [7], and some of our
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arguments are only valid if p ≥ 5. Furthermore, we will always assume that D is a

nontrivial regular PDS in an abelian group.

4.1 Parameter Restrictions

4.1.1 Restriction on k

By part (f) of Proposition 2.2.15 we may assume that k ≤ v/2. By part (g) of Proposi-

tion 2.2.15, we may assume that ∆ ≤ v. Since the Cayley graph of a (v, k, λ, µ)–PDS

is a (v, k, λ, µ)-strongly regular graph, we have

k(k − λ− 1) = µ(v − k − 1). (4.1)

By substituting k(k−λ−1)
v−k−1

for µ into ∆ = (λ− µ)2 + 4(k − µ), we get

∆ =

(
λ− k(k − λ− 1)

v − k − 1

)2

+ 4

(
k − k(k − λ− 1)

v − k − 1

)
. (4.2)

Lemma 4.1.1 If a non-trivial (v, k, λ, µ)-PDS exists in an abelian group with v = pn,

p ≥ 3 a prime, ∆ = pd and k ≤ v
2
, then we have k ≤ 1

2
(pn − 1)

(
1−

√
1− pd

pn

)
.

Proof. Setting ∆ = pd and v = pn in Equation (4.2), and solving the obtained

quadratic equation for λ, we get

λ =
(1 + k − pn)

(
3k + k2(pn−2)

1+k−pn ±
√

4k2pn − 4kpn(pn − 1) + pd(pn − 1)2
)

(pn − 1)2
.

As λ is an integer, the discriminant must be nonnegative, hence

4k2pn − 4kpn(pn − 1)− pd(pn − 1)2 ≥ 0. (4.3)
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Solving the quadratic equation 4k2pn − 4kpn(pn − 1)− pd(pn − 1)2 = 0 for k yields

k =
1

2

(
pn − 1± p−n

√
(pn − 1)2(pn − pd)pn

)
.

The bigger root is greater than pn/2 = v/2, but we already know k ≤ v/2. This

means that for Inequality (4.3) to hold, we have

k ≤ 1

2
(pn − 1− p−n

√
(pn − 1)2(pn − pd)pn =

1

2
(pn − 1)

(
1−

√
1− pd

pn

)
.

�

4.1.2 Restriction on ∆

From this bound on k we can obtain obtain a bound on ∆:

Lemma 4.1.2 If a non-trivial (v, k, λ, µ)-PDS exists in an abelian group with v = pn,

p ≥ 3 a prime, ∆ = pd and k ≤ v
2
, then d > 2

3
n.

Proof. Set ∆ = pd and v = pn, and note that by Proposition 2.2.15 part (e), we

have 2k − β ≡ 0 (mod p
d
2 ). We obtain k = β+xp

d
2

2
for some integer x. By Equation

4.1 combined with the fact that ∆ = (λ− µ)2 + 4(k− µ), we obtain µ = x2−1
4pn−d , so we

know either 2pn−d|(x − 1) or 2pn−d|(x + 1). We can thus write x = 2tpn−d ± 1, t a

positive integer. It then follows:

k =
2tpn−

d
2 ± p d

2 + β

2
, µ =

(2tpn−d ± 1)2 − 1

4pn−d
= t2pn−d + t.

By Proposition 2.2.15 part (c), we have −pd/2 < β < pd/2 − 2, so we obtain

kmin >
2tpn−

d
2 − 2p

d
2

2
= tpn−

d
2 − p

d
2 .
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From Lemma 4.1.1 and performing a series expansion on the square root term:

k ≤ (pn + 1)

(
1

4p(n−d)
+

1

16p2(n−d)
+

1

32p3(n−d)
+

5

256p4(n−d)
+ · · ·

)
.

Combining these two inequalities gives us:

t <
1

pn
+ p

d
2

(
1

4p(n−d)
+

1

16p2(n−d)
+

1

32p3(n−d)
+

5

256p4(n−d)
+ · · ·

)
However, if d

2
≤ n−d, this implies t < 1, contradicting the requirement t is a positive

integer. Thus,
d

2
> n− d =⇒ d >

2

3
n.

�

4.2 Computer search for non-Paley type PDS of

order p5 in an abelian group

The above restrictions severely restrict the number of possibilities for ∆ for any non-

Paley type PDS in a prime power order abelian group. In particular, when n = 5, we

have that ∆ = p4:

Lemma 4.2.1 If D is a regular (v, k, λ, µ)-PDS in an abelian group with v = p5

and D is not a Paley type PDS, k ≤ v/2 and ∆ ≤ v then ∆ = p4.

Proof. Since D is not a Paley type PDS, by Ma’s Proposition 2.2.15 (d) and (e),

∆ must be a square, and v, ∆, v2/∆ have the same prime divisors. It follows that

∆ = p2 or ∆ = p4. Now, by Lemma 4.1.2, ∆ 6= p2, so it must be true that ∆ = p4. �

Using these new restrictions, a program was written to generate cases with p <

250 which satisfy these necessary conditions, listed in Table 4.1, and generated with
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the following Mathematica code. Only 5 of the 54 primes less than 250 yielded a

parameter set which pass these conditions.

Table 4.1: Cases which pass the necessary conditions for a PDS of order p5, p prime,

p < 250.

Case No. p v = p5 k λ µ ∆ = p4

1 3 243 22 1 2 81

2 19 2476099 27180 149 300 130321

3 31 28629151 207900 1199 1512 923521

4 113 18424351793 38963232 79661 82404 163047361

5 191 254194901951 271720900 274815 290472 1330863361
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Code for generating cases of order p5 with p < 250, p prime:

Clear[V, K, L, p, a, b, c, d, v, x, y, z, \[Lambda], \[Mu], r, t]

V[x_] := x^5

M[x_, y_, z_] := x*(x - y - 1)/(z - x - 1)

del[a_, b_, c_] := (b - c)^2 + 4*(a - c)

Eig1[a_, b_, c_] := ((b - c) + a)/2

mult1[a_, b_, c_, d_] := (d - 1)/2 - (2*a + (d - 1)*(b - c))/(2*p^2)

L[x_, y_, u_, v_] :=

1/(u - 1)^2 ((1 + y - u) (3 y + (y^2 (u - 2))/(1 + y - u) +

x*Sqrt[4*y^2*u - 4*y*u (u - 1) + p^v*(u - 1)^2]))

For[p = 2, p < 250, p++,

If[IntegerQ[p/10], Print[p]];

If[PrimeQ[p],

v = V[p];

For[ a = 1, a < 3, a++,

For[K = Ceiling[N[Sqrt[v + 1], 1]] ,

K < 1/2 (v - 1) (1 - N[Sqrt[1 - 1/p], 50]), K = K + 1,

If[Mod[K, p - 1 ] == 0,

\[Lambda] = L[(-1)^a, K, v, 4];

\[Mu] = M[K, \[Lambda], v];

If[ del[K, \[Lambda], \[Mu]] == p^4 &&

IntegerQ[\[Lambda]] && \[Lambda] > 0 &&

IntegerQ[ \[Mu]] && \[Mu] > 0 &&

IntegerQ[mult1[K, \[Lambda], \[Mu], v]] ,

Print["p = ", p, ": (", v, ",", K , ",", \[Lambda],

",", \[Mu], ") Delta = ", p^4]

]

]

]

]

]

]
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Chapter 5

Results on rigid type partial

geometries with an abelian Singer

group

This chapter builds on the work done in 2013 by E. Kamischke in her master’s thesis

on rigid type partial geometries with abelian Singer groups [11]. This chapter expands

on that prior work in three major ways. First, it shows nonexistence for 10 of the 11

undetermined parameter sets listed in E. Kamischke’s thesis. This is accomplished

using the combination of a result from K. Leung, S.L. Ma and B. Schmidt from 2008

[13] and techniques similar to those in Chapter 3 which show the PDS associated with

the partial geometry’s point graph doesn’t exist. The only remaining undetermined

case with α ≤ 8 is of prime power order, the pg(11, 23, 3), which has 1024 = 210

points.

Second, this chapter uses the K. Leung, S.L. Ma and B. Schmidt result and a reworked

form of the necessary conditions from E. Kamischke’s thesis in order to expand the

32



computer search for parameter sets from α ≤ 8 to α ≤ 200. This search yielded

only 20 parameter sets for which a rigid type partial geometry with an abelian Singer

group could exist. Observing these cases also led to the discovery of an infinite class

of cases which pass our necessary conditions and yield a point graph which has the

parameters of a negative Latin square type PDS, that is, it satisfies Definition 2.2.8.

Finally, the third part of this chapter proves the nonexistence of this infinite class

using a generalized form of the variance method used in Chapter 3 and shows the

nonexistence of 8 cases found in the α ≤ 200 computer search. 6 of the cases from

the table are of this negative Latin square type and are eliminated by the general

nonexistence proof, 2 cases are shown not to exist by other ad-hoc methods, and 1

case is known to exist (the so-called van Lint-Schrijver partial geometry, see [22]),

leaving only 11 undetermined cases of partial geometries with abelian Singer groups

and α ≤ 200.

5.1 Some necessary conditions

We begin this section by deriving some necessary conditions for parameter sets of

rigid-type partial geometries with an abelian Singer group. First, we cite a Benson-

type theorem from S. De Winter [4].

Theorem 5.1.1 Let S be a partial geometry pg(s, t, α) and let θ be any automor-

phism of S. Let f be the number of fixed points of S under θ and g be the number of

points x of S for which x is collinear with xθ , where xθ denotes the image of x under

θ. Then, (1 + t)f + g ≡ (1 + s)(1 + t) (mod s+ t− α + 1).

Let S be a rigid-type partial geometry with an abelian Singer group G. Since G is
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sharply transitive, for any nonidentity element, there are no fixed points. Further-

more, there exists an automorphism which maps each point to non-collinear points,

so we obtain f = g = 0 in Theorem 5.1.1. This implies that (s + 1)(t + 1) ≡ 0

(mod s+ t− α + 1) for rigid type partial geometries with an abelian Singer group.

Second, we can show that t+1 = x(s+1) for all rigid type partial geometries with an

abelian Singer group. Let S be a partial geometry pg(s, t, α) and G an abelian Singer

group of S. Suppose that the pair (S, G) is of rigid type. Pick any point p0 and any

line L containing p0 from S. Assume that p0, p1, · · · , ps are the s + 1 points on L.

Since G acts sharply transitively on S, for any two collinear points p0 and pi, there

exists a unique gi ∈ G such that pgii = p0. Since |StabG(L)| = 1, {L,Lg1 , Lg2 , · · · , Lgs}

is a set of s + 1 lines through the point p0. As there are t + 1 lines passing through

the point p0, we have t+ 1 = x(s+ 1) for some positive integer x.

Combining (s+ 1)(t+ 1) ≡ 0 (mod s+ t− α+ 1) and t+ 1 = x(s+ 1) for rigid type

pgs, we have x(s+ 1)2 ≡ 0 (mod s+ t− α + 1). Rewriting t in the modulo gives:

x(s+ 1)2 ≡ 0(mod (s+ 1)(x+ 1)− (α + 1)).

Multiplying by (x+ 1)2 and subtracting x(α + 1)2:

x((x+ 1)2(s+ 1)2 − (α + 1)2) ≡ −x(α + 1)2 (mod (x+ 1)(s+ 1)− (α + 1)), so

x
((

(x+ 1)(s+ 1)− (α + 1)
)(

(x+ 1)(s+ 1) + (α + 1)
))
≡ −x(α + 1)2

(mod (x+ 1)(s+ 1)− (α + 1)).

But now the left hand side is equivalent to 0, and we have x(α + 1)2 ≡ 0 (mod (x+

1)(s + 1) − (α + 1)). Since x(α + 1)2 is positive, we obtain x(α + 1)2 ≥ (x + 1)(s +
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1) − (α + 1). Subtracting x and using the fact that α < s in any proper partial

geometry, we can simplify our inequality to find s < (α + 1)2 − 1. These facts were

used to compute the possible parameter sets for α ≤ 8 by a computer search on the

parameters s, x, and α by E. Kamischke in her thesis [11].

5.2 Cases with α ≤ 8

One of the goals of this project was to expand on the research in Ellen Kamischke’s

master thesis [11], which worked on rigid type partial geometries. In that thesis, the

existence of rigid type partial geometries with an abelian Singer group was explored,

and parameter sets were computed using necessary conditions in a program for α ≤ 8.

First, we show nonexistence of all but one undetermined case from her thesis. Table

5.2 shows the details of these remaining cases; throughout this section we refer to this

table to label these 12 cases.

5.2.1 Direct nonexistence by Ma’s proposition

Henceforth, assume D is a (v, k, λ, µ)-PDS in an abelian group G, with |G| = v.

By Proposition 2.2.10, if v is not itself prime, we cannot have any primes to the

first power in the decomposition of v (otherwise, the corresponding Sylow-p group

would be cyclic of order p). This eliminates cases 3, 6, 7, 10, and 11 immediately,

as they contain cyclic Sylow-2, Sylow-2, Sylow-5, Sylow-5, and Sylow-2 subgroups

respectively.

35



Table 5.1: Cases for rigid type partial geometries with an abelian Singer group which

pass the necessary conditions for α ≤ 8, from [11].

Case number s t α x v k λ µ

1 5 5 2 1 81 = 34 30 9 12

2 11 23 3 2 1024 = 210 264 56 72

3 14 14 4 1 750 = 2 · 3 · 53 210 55 60

4 19 59 4 3 5625 = 32 · 54 1140 195 240

5 29 119 5 4 20736 = 28 · 34 3480 504 600

6 27 27 6 1 3430 = 2 · 5 · 73 756 161 168

7 34 69 6 2 13720 = 23 · 5 · 73 2380 378 420

8 41 209 6 5 60025 = 52 · 74 8610 1085 1260

9 55 335 7 6 147456 = 214 · 32 18480 2064 2352

10 44 44 8 1 10935 = 37 · 5 1980 351 360

11 62 188 8 3 91854 = 2 · 38 · 7 11718 1377 1512

12 71 503 8 7 321489 = 38 · 72 35784 3591 4032

5.2.2 Application of Leung/Ma/Schmidt corollary

We have an immediately useful result relating
√

∆ = δ =
√

(λ− µ)2 + 4(k − µ) =

s+ t− α + 1 to s:

Proposition 5.2.1 [13] Suppose srg(s, t, α) is of rigid type, and s > 2α− 1. Then,

every prime divisor of δ also divides s+ 1.

We can show non-existence 4 more cases by applying Proposition 5.2.1 :

• In case 4, we have s = 19, t = 59, α = 4, and δ = s+ t−α+ 1 = 75. But, 3 | 75

and since s+ 1 = 20 and 3 - 20, this case can be excluded.
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• In case 8, we have s = 41, t = 209, α = 6, and δ = 245. But, 5 | 245 and since

s+ 1 = 42 and 5 - 42, this case can be excluded.

• In case 9, we have s = 55, t = 335, α = 7, and δ = 384. But, 3 | 384 and since

s+ 1 = 56 and 3 - 56, this case can be excluded.

• In case 12, we have s = 71, t = 503, α = 8, and δ = 567. But, 7 | 567 and since

s+ 1 = 72 and 7 - 72, this case can be excluded.

5.2.3 Case 5: A variance method

The methods described above do not eliminate the possibility of case 5 existing, so we

use a new method. We know that the variance of any set must be positive, by Theorem

2.2.16. If we can guarantee that any PDS with the given parameters will break the

elements of D into subsets which together have a negative variance of differences of a

particular type generated, we can exclude the existence of such a PDS. In this case,

we will show that the differences which have order 2i will be broken up into subsets

generating a negative variance if the parameters of the PDS are to hold.

AssumeD is a (28·34, 3480, 504, 600)-PDS on an abelian group G, as would be required

for the existence of Case 5. We begin analyzing the structure of D using Proposition

2.2.14 to determine the number of elements of order 2i in D. Let N be the Sylow-

2 subgroup of G; we have |G|/|N | = 81 and |N | = 256. Since δ = 144, we have

π = gcd(144, 256) = 16. Thus ∆1 = 162 = 256, and since β = −96, we can obtain

θ = −3, as −7π = −112 ≤ −96 < −80 = −5π. This gives us β1 = 0 and |D1| = 120

or 136, that is, D contains either 120 or 136 elements of N .

We now make an observation on how elements g, h ∈ G can have o(gh−1) = 2i.

Denote the elements of order 3 or 9 in G as g1, g2, ..., g80. Denote the sets:
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Bi = {gix
∣∣(gix)28·7 = gi, gix ∈ D}

Call |Bi| = Bi. We break into two cases now:

Case 5.1: |D1| = 120

We know that there are k elements in D, so, there are k − 120 elements of order not

equal to a power of 2. Thus:

∑80
i=1Bi = 3480− 120 = 3360.

The only way to get a difference with order a power of 2 is to use differences of two

elements of order 2i or from the same Bi subset of D. Thus:

∑80
i=1 Bi(Bi − 1) + 120 ∗ 119 = λ(120) + µ(255− 120),

∑80
i=1 Bi(Bi − 1) = 127200

Adding these two, we obtain:

∑80
i=1 Bi

2 = 130560.

However, we observe the variance is negative:

80
∑80

i=1Bi
2 − (

∑80
i=1 Bi)

2
= −844800, a contradiction.
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Case 5.2: |D1| = 136

This is analogous to the previous case:

∑80
i=1Bi = 3480− 136 = 3344.∑80

i=1 Bi(Bi − 1) + 136 ∗ 135 = λ(136) + µ(255− 136) = 121584,∑80
i=1Bi(Bi − 1) = 121584.

Adding these two, we obtain:

∑80
i=1 Bi

2 = 124928.

However, we observe the variance is negative:

80
∑80

i=1Bi
2 − (

∑80
i=1Bi)

2
= −1188096, a contradiction.

5.2.4 Final conclusions

From van Lint and Schrijver, we know that case 1 does, in fact, exist, see [22]. Thus,

we only have case 2, the pg(11, 23, 3) remaining undetermined, whether a pg(11, 23,

3) with an abelian Singer group exists:

Theorem 5.2.2 If a rigid type partial geometry permits an abelian Singer group

with 2 ≤ α ≤ 8, then either it is a pg(5, 5, 2), which exists, or it is a pg(11, 23, 3), for

which existence is still uncertain.
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It is worth noting that two abelian (210, 264, 56, 72) − PDS have been constructed

by J. Polhill in the groups Z10
2 and (Z2)6 × (Z4)2, see [18], [19]. However, we cannot

construct a pg(11, 23, 3) with an abelian Singer group from these PDS because they

contain an element of order 2.

Theorem 5.2.3 Let G be an abelian group and D be a regular partial difference set

in G. Let the Cayley graph of D be a pseudo-geometric (s, t, α)-graph, and (s + 1)

doesn’t divide |G|. If D contains an element of order 2, then the Cayley graph of D

is not geometric, that is, the Cayley graph of D is not the point graph of a pg(s, t, α).

Proof: We will prove it by contradiction. Assume on the contrary that D contains

an element g of order 2, and the Cayley graph is the point graph of a partial geometry

S with parameters (s, t, α). Since D is a regular partial difference set in G, it follows

that G acts sharply transitively on the Cayley graph of D by mapping d to gd, g ∈ G,

and thus G acts sharply transitively on S.

Since g2 = e, as an automorphism, g maps the point g to g2 = e and maps the

point e to g. As there is a unique line L0 through g and e, as an automorphism, g

stabilizes L0, thus |StabG(L0)| > 1. On the other hand, since a partial geometry with

an abelian Singer group either has |StabG(L)| = 1 or |StabG(L)| = s + 1, we have

|StabG(L)| = s + 1. Since StabG(L) is a subgroup of G, we have |StabG(L)| = s + 1

divides |G|, contradicting the assumptions. �

Now, observe the two abelian (210, 264, 56, 72)− PDS constructed by J. Polhill, and

note that they both contain an element of order 2. If the Cayley graph of an abelian

(210, 264, 56, 72) partial difference difference is a pseudo-geometric (s, t, α)-graph,

then we have:

(s+ 1)(
st+ α

α
) = 210, s(t+ 1) = 264, s− 1 + t(α− 1) = 56, α(t+ 1) = 72.
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As s/α = 264/72 = 11/3, we know that α must be a multiple of 3, and we can

verify that α = 3 because t ≥ s. Thus the Cayley graph of a (210, 264, 56, 72) is a

pseudo-geometric (11, 23, 3) graph. In this case, s+1 = 12, and 12 doesn’t divide 210,

and D contains elements of order 2, by Theorem 5.2.3 the Cayley graph of D with

parameters (210, 264, 56, 72) constructed by Polhill is not geometric.

5.3 Expanding to α ≤ 200

After showing nonexistence for all but one undetermined case in her table (which

has shown to be difficult due to it being of prime order), this project set the goal

to expand the program to α ≤ 200. In order to do so, we explored the necessary

conditions further to try and reduce them to a more easily computable form with

fewer cases to check. We begin from the previously derived necessary condition for a

rigid type partial geometry, (α + 1)2x ≡ 0 (mod (x + 1)(s + 1) − (α + 1)), implying

for some positive integer c,:

(α + 1)2x = c((x+ 1)(s+ 1)− (α + 1)).

Solving for c and using the condition that α < s for any proper partial geometry, this

gives us

c =
x(α + 1)2

(x+ 1)(s+ 1)− (α + 1)
<

x(s+ 1)2

(x+ 1)(s+ 1)− (s+ 1)
=
x(s+ 1)2

x(s+ 1)
= s+ 1

.

We can also solve for x using the same expression to find x = c(s−α)
(α+1)2−cs−c . This allows
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us to use the following Mathematica code to determine possible parameter sets of

rigid type partial geometries (which also satisfy Proposition 5.2.1):

For[\[Alpha] = 2, \[Alpha] < 200, \[Alpha]++,

For[s = \[Alpha] + 1, s < (\[Alpha] + 1)^2 - 1, s++,

For[c = 1, c < s + 1, c++,

If[(\[Alpha] + 1)^2 - c*s - c > 0,

x = (c (s - \[Alpha]))/((\[Alpha] + 1)^2 - c*s - c);

If[x == Ceiling[x],

If[Mod[(\[Alpha] + 1)^2*x, (s + 1)*x + s - \[Alpha]] == 0,

t = (s + 1)*x - 1;

If[Mod[(s + 1)*(t + 1), s + t - \[Alpha] + 1] == 0,

v = (s + 1)*(s*t + \[Alpha])/\[Alpha];

\[Delta] = s + t - \[Alpha] + 1;

If[Mod[v, \[Delta]] == 0,

If[Min[Last /@ FactorInteger[v]] > 1 ,

If[

s <= 2*\[Alpha] ||

SubsetQ[First /@ FactorInteger[s + 1],

First /@ FactorInteger[\[Delta]]],

k = s*(t + 1);

\[Lambda] = s - 1 + t*(\[Alpha] - 1);

\[Mu] = \[Alpha]*(t + 1);

Print[MatrixForm[{{s, t, \[Alpha], x, v,

k, \[Lambda], \[Mu]}}]];

If[PrimeNu[v] == 1,

Print[v = Superscript @@@ FactorInteger[v]],

Print[v =

CenterDot @@ (Superscript @@@

FactorInteger[v])]]]]]]]]]]]]

Print["done"]

This code produces the list of cases shown in Table 5.3.
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Table 5.2: Cases for rigid type partial geometries with abelian Singer group which

pass the necessary conditions for α ≤ 200.

Case No. s t α x v k λ µ

1 5 5 2 1 34 30 9 12

2 11 23 3 2 210 264 56 72

3 29 119 5 4 28 · 34 3480 504 600

4 89 719 9 8 210 · 54 64080 5840 6480

5 119 119 14 1 22 · 35 · 52 14280 1665 1680

6 39 39 15 1 212 1560 584 600

7 305 4895 17 16 212 · 38 1493280 78624 83232

8 1121 35903 33 32 214 · 174 40248384 1150016 1184832

9 4289 274559 65 64 216 · 34 · 114 1177587840 17576064 17846400

10 839 1679 69 2 24 · 55 · 73 1409520 115010 115920

11 254 1274 84 5 22 · 52 · 173 323850 105995 107100

12 455 1367 95 3 212 · 36 622440 128952 129960

13 4752 4752 96 1 52 · 72 · 973 22586256 456191 456288

14 272 272 104 1 34 · 74 74256 28287 28392

15 944 2834 104 3 34 · 52 · 74 2676240 292845 294840

16 16769 2146559 129 128 218 · 54 · 134 35995664640 274776320 276906240

17 234 2114 140 9 23 · 472 494910 294079 296100

18 3407 6815 141 2 25 · 72 · 712 23222112 957506 961056

19 373 747 153 2 29 · 112 279004 113916 114444

20 3023 9071 188 3 22 · 38 · 75 27424656 1699299 1705536

5.4 Nonexistence of a family of negative Latin square

PDSs and their associated pgs

When this project began with the goal to expand Table 5.2, the program used to

generate the Table 5.3 did not use Proposition 5.2.1, and along with the cases that
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remain on the table, there was a case for each value of alpha which imposed a negative

Latin square type partial difference set. This trend can be seen for small values of α

in Table 5.2 by observing cases 1, 2, 4, 5, 8, 9, and 12. To further observe why these

cases existed, the parameters for a negative Latin square PDS with n = (α+1)2(α−1)

and r = α2− 1 (as observed in the table) were equated to the parameters of the PDS

implied by the point graph of the pg(s, t, α) with an abelian Singer group. Our goal

is to show that these yield a pg(α(α + 1)− 1, α(α(α + 1)− 1), α):

(s+ 1)(s ∗ t+ α)

α
= n2 = (α + 1)4(α− 1)2 (5.1)

s(t+ 1) = r(n+ 1) = (α2 − 1)((α + 1)2(α− 1) + 1) (5.2)

s− 1 + t(α− 1) = −n+ r2 + 3r = −((α + 1)2(α− 1)+(α2 − 1)2 + 3(α2 − 1) (5.3)

α(t+ 1) = r2 + r = (α2 − 1)2 + α2 − 1 (5.4)

Using Equation 5.4, we can obtain that t + 1 = α(α2 − 1). Substituting this result

in, from Equation 5.2 we obtain that s+ 1 = α(α+ 1), as we wanted. Further, notice

that for α > 1, s > 2α− 1, so we can use Proposition 5.2.1. We can compute as well

that
√

∆ = δ = s+ t−α+1 = (α+1)2(α−1) = n. By Proposition 5.2.1, every prime

divisor of (α− 1)(α + 1)2 must also divide s+ 1 = α(α + 1). Notice that 2|α(α + 1)

for all α, but for any larger prime p|α− 1, p 6 |α(α+ 1), so if such a partial geometry

with an abelian Singer group exists, α − 1 = 2k for some nonnegative integer k. We

now show that these potential parameter sets cannot allow such a geometry if k ≥ 2.

Theorem 5.4.1 Let α = 2n + 1 and n ≥ 2. The negative Latin square type PDS

imposed by m = (α + 1)2(α − 1) and r = α2 + 1 does not exist on an abelian group,

and thus there is no pg(α(α+ 1)− 1, (α− 1)(α)(α+ 1)− 1, α) with an abelian Singer

group.
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Proof. Assume D is an (m2, r(m + 1),−m + r2 + 3r, r2 + r)-PDS on an abelian

group G, where m = (α + 1)2(α − 1), r = α2 − 1, α = 2n + 1, and n ≥ 2. We

want to use Proposition 2.2.14 to determine |D1|, the number of elements of the

Sylow-2 subgroup in D. Let N be the Sylow-2 subgroup of G. Notice that this gives

|N | = 22n+4 and |G/N | = (2n−1 + 1)4. This also gives us gcd(|N |, |G/N |) = 1 so long

as n > 1. We can compute directly that δ = 2n+2(2n−1 + 1)2, π = 2n+2, π2 = 22n+4,

and β = −23n − 22n+1.

To calculate θ, we notice that (2θ − 1)π ≤ β < (2θ + 1)π implies that θ − 1
2
≤

−2n−2 − 22n−3 < θ + 1
2
. But since the inside of this inequality is an integer, θ must

also be that integer. Therefore, we obtain θ = −2n−2 − 22n−3, and we can again

calculate β1 = 0, and thus |D1| = 22n+3 ± 2n+1, that is, there are 22n+3 + 2n+1 or

22n+3 − 2n+1 elements of the Sylow-2 subgroup of G contained in D.

Label the nonidentity elements of G/N as g1, g2, ..., g(2n−1+1)4−1. Let c be a solution

to the congruence 1 ≡ c · 22n+4 (mod (2n−1 + 1)4), (which exists by the Chinese

Remainder theorem since |N | and |G/N | are relatively prime), and define:

Bi = {gix
∣∣(gix)c·2

2n+4

= gi, gix ∈ D}

Call the cardinalities |Bi| = Bi. We want to show that the variance of these cardi-

nalities is negative, and thus that the partial difference set cannot exist. Note that

all summations in these cases are across all the Bi, that is they range from i = 1 to

i = (2n−1 + 1)4 − 1. We compute the variance in general, then apply our two |D1|

values.

Since the set D contains k elements and |D1| are from the Sylow-2 subgroup,

∑
Bi = k − |D1|.

Double counting the number of differences of order a power of 2 which occur in the
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PDS, we find:∑
Bi(Bi − 1) + (|D1|)(|D1| − 1) = (|D1|) · λ+ (|N | − 1− |D1|) · µ.

By adding these two expressions and simplifying, we can find:∑
B2
i = λ(|D1|) + µ(|N | − 1− |D1|)− |D1|2 + k.

By Theorem 2.2.16, we know the variance of the Bi is V (Bi) = (|G/N | − 1)
∑
B2
i −

(
∑
Bi)

2. In each case for the possible values of D1, we can compute using |N | = 22n+4,

|G/N | = (2n−1 +1)4, |D1| = 22n+3 +2n+1 or 22n+3−2n+1 in the two cases respectively,

and using the k, λ, and µ definitions, we compute in the two cases:

V (Bj) = −22n+4(2n + 2)(7 · 22n − 3 · 2n+1 − 8)(24n + 15 · 23n + 22n+5 + 3 · 2n+2 − 16);

V (Bj) = −24n−4(2n + 2)(7 · 2n − 2)(23n + 15 · 22n + 9 · 2n+2 + 28).

We can observe further that the first variance is negative for all values of n > 0,

and the second is negative for all values of n > 0.67. Since the variance is forced to

be negative for all n ≥ 2, we have a contradiction, and this type of PDS (and thus

partial geometry) cannot exist. �

The argument shows the nonexistence of an infinite class of cases which originally

passed the necessary conditions, and specifically 6 cases from Table 5.3 (cases 3, 4, 7,

8, 9, and 16). Now, we show nonexistence for some of the remaining individual cases.

5.5 Other cases with α ≤ 200

5.5.1 Case 12: (212 · 36, 622400, 188925, 129960)-PDS

For this we use the same method as Case 5 in the α ≤ 8 case.
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Assume D is a (212 · 36, 622440, 128952, 129960)-PDS on an abelian group G. We

begin analyzing the structure of D using Proposition 2.2.14 to determine the number

of elements of order 2i in D. Let N be the Sylow-2 subgroup of G; we have |G|/|N | =

729 and |N | = 4096. Since δ = 1728, we have π = gcd(4096, 1728) = 64. Thus

∆1 = 642 = 4096, and since β = −1008, we can obtain θ = −8, as −17π = −1088 ≤

−1008 < −960 = −15π. This gives us β1 = 16 and |D1| = 1512 or 2600, that is, D

contains either 1512 or 2600 elements of N .

Denote the sets (since 212 ∗ 118 ≡ 1 (mod 36)):

Bi = {gix
∣∣(gix)212·118 = gi, gix ∈ D}

Call |Bi| = Bi. We break into two cases now:

Case 12.1: |D1| = 1512

All sums will be over the range from 1 to 728, as there are 728 elements which of

order 3k, k ≥ 1. We know that there are k elements in D, so, there are k − 1512

elements of order not equal to a power of 2. Thus:

∑
Bi = 622400− 1512 = 620888.

The only way to get a difference with order a power of 2 is to use differences of two

elements of order 2i or from the same Bi subset of D. Thus:

∑
Bi(Bi − 1) + 1512 ∗ 1511 = λ(1512) + µ(4095− 1512), so

∑
Bi(Bi − 1) = 528377472
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Adding these two, we obtain:

∑
Bi

2 = 528998360.

We observe a negative variance:

728
∑
Bi

2 − (
∑
Bi)

2 = −391102464, a contradiction by Theorem 2.2.16.

Case 5.2: |D1| = 2600

Following the same arguments, we see

∑
Bi = 622400− 2600 = 619800.

∑
Bi(Bi − 1) + 2600 ∗ 2599 = λ(2600) + µ(4095− 2600), so

∑
Bi(Bi − 1) = 522808000

Adding these two, we obtain:

∑
Bi

2 = 523427800.

However, we observe the variance is negative:

728
∑
Bi

2 − (
∑
Bi)

2 = −3096601600, a contradiction. Thus, there is no PDS with

this parameter set, and equivalently no pg(455, 1367, 95).
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5.5.2 Case 14: (34 · 74, 74256, 28287, 28392)-PDS

For this case, we use Propositions 2.2.12 and 2.2.13. AssumeD is a (34·74, 74256, 28287, 28392)-

PDS. We find ν2 = 168, ν3 = −273, m2 = 120224, and m3 = 74256. Using the note

after Proposition 2.2.13 we can obtain that a1 = 17408 and a′1 = 17030. Therefore,

we have (where s7 is the number of elements of order a power of 7 in D):

120224 + 17408s7 + 17030(2400− s7) = 2401x+ 343(120224− x), implying

s7 =
49x+ 5824

9

This implies s7 ≡ 2 (mod 9), but the LMT, Proposition 2.2.9, implies s7 ≡ 0 (mod

6), a contradiction.

49



Bibliography

[1] K.T. Arasu, D. Jungnickel, S.L. Ma, and A. Pott, Strongly regular Cayley graphs

with λ− µ = −1. J. Combin. Thoery Ser. A 67, 116-125 (1994).

[2] R. C. Bose, Strongly regular graphs, partial geometries, and partially balanced

designs. Pacific J. Math, 13, 389-419, (1963)

[3] P.J. Cameron and J.H. van Lint. Designs, Graphs, Codes and Their links. Cam-

bridge University Press (1991)

[4] S. De Winter, Partial geometries pg(s,t,2) with an abelian Singer group and a

characterization of the van Lint-Schrijver partial geometry. J. Alg. Combin 24,

285–297, (2006)

[5] S. De Winter, K. Thas, Generalized Quadrangles with an Abelian Singer Group.

Designs, Codes, Cryptogr. 39, 81–87 (2006)

[6] S. De Winter, E. Kamischke and Z. Wang, Automorphisms of strongly regular

graphs with applications to partial difference sets, Designs, Codes, Cryptogr. 79,

471–485 (2016)

[7] S. De Winter E. Neubert and Z. Wang, Non-existence of two types of partial

difference sets, Discrete Mathematics 340, 2130–2133 (2017)

50



[8] S. De Winter and Z. Wang, Classification of partial difference sets in Abelian

groups of order 4p2, Designs, Codes and Cryptography, 84, Issue 3, 451–461, (2017)

[9] S. De Winter, Z. Wang, Non-existence of non-trivial regular partial difference sets

in Abelian groups of order 8p3. Designs, Codes and Cryptography, 10.1007/s10623-

018-0508-z (2018)

[10] F. Fielder and M. Klin, A strongly regular graph with the parameters (512, 73,

12, 10) and its dual graph, Preprint MATH-AL-7-1998, Technische Universität

Dresden, 23 pp. (1998)

[11] E. Kamischke, Benson’s Theorem for Partial Geometries, Master’s Thesis, Michi-

gan Technological University, (2013)

[12] A. Kohnert, Constructing two-weight codes with prescribed groups of automor-

phisms, Discr. Appl. Math. 155, 1451–1457 (2007)

[13] K. Leung, S.L. Ma and B. Schmidt, Proper partial geometries with Singer groups

and pseudogeometric partial difference sets, J. Combin. Theory Ser. A 115, 147–

177 (2008)

[14] S. L. Ma, Partial difference sets, Discrete Mathematics 52, 75-89 (1984)

[15] S.L. Ma, A survey of partial difference sets, Designs, Codes, Cryptogr. 4, 221-261

(1994)

[16] S.L. Ma, Some necessary conditions on the parameters of partial difference sets,

J. Statist. Plann. Inference 62, 47-56 (1997)

[17] R. E. A. C. Paley, On orthogonal matrices. J. Math. Phys., 12, 311–320, (1933)

[18] J. Polhill, New negative Latin square type partial difference sets in nonelementary

abelian 2-groups and 3-groups, Designs, Codes and Cryptography 46, no. 3, pp

365?377 (2008)

51



[19] J. Polhill, Negative Latin Square Type Partial Difference Sets and Amorphic

Association Schemes with Galois Rings, Journal of Comb. Designs 17 266-282

(2009)

[20] J. Singer, A Theorem in Finite Projective Geometry and Some Applications to

Number Theory, Transactions of the American Mathematical Society, 43 No. 3,

377–385 (1938)

[21] D. Stinson, Combinatorial Designs: Constructions and Analysis, 1st ed. Springer.

ISBN 0-387-95487-2. (2004)

[22] J.H. van Lint, A. Schrijver, Construction of strongly regular graphs, two-weight

codes, and partial geometries by finite fields, Combinatorica 1 63-73 (1981)

52


	Some results on partial difference sets and partial geometries
	Recommended Citation

	Author Contribution Statement
	Abstract
	Introduction
	Preliminaries
	Relevant group theory
	Partial difference sets, strongly regular graphs, and partial geometries
	Overview of results

	Nonexistence of two partial difference sets of order 216
	Parameter bounds for regular PDS in abelian groups of order pn
	Parameter Restrictions
	Restriction on k
	Restriction on 

	Computer search for non-Paley type PDS of order p5 in an abelian group

	Results on rigid type partial geometries with an abelian Singer group
	Some necessary conditions
	Cases with 8
	Direct nonexistence by Ma's proposition
	Application of Leung/Ma/Schmidt corollary
	Case 5: A variance method
	Final conclusions

	Expanding to 200
	Nonexistence of a family of negative Latin square PDSs and their associated pgs
	Other cases with  200
	Case 12: (21236, 622400, 188925, 129960)-PDS
	Case 14: (34 74, 74256, 28287, 28392)-PDS


	References

