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Abstract 

Climate change and species invasion are two agents of global change altering 

aquatic ecosystems worldwide. Submerged aquatic macrophytes control lake ecosystem 

processes through their direct and indirect interactions with other primary producers, but 

how their interactions may be altered by species invasions or how they function over full 

seasonal cycles in temperate lakes is poorly understood. We first addressed whether the 

presence of invasive watermilfoil (IWM) altered standing crops and gross primary pro-

duction (GPP) of other littoral primary producers (macrophytes, phytoplankton, attached 

algae or periphyton) in littoral zones of 6 Michigan lakes. We found no differences in pri-

mary producer standing crops or GPP between plots with or without IWM. Macrophyte 

standing crop predicted rates of benthic periphyton GPP and standing crops of all other 

primary producers across all study plots, along with water temperature, nutrient concen-

trations, and water clarity. Second, we studied year-round dynamics of littoral primary 

producers in 2 lakes located on the Keweenaw Peninsula of the Upper Peninsula of Mich-

igan. Standing crops of primary producers were present all year and changed seasonally, 

although they were lowest during winter. Water temperature explained 34% of phyto-

plankton GPP and 57% of plot-level GPP, which incorporated all primary producers. Wa-

ter under the ice was hypoxic during winter. Together, the results of these studies suggest 

that macrophyte biomass, temperature and ice cover are important drivers of littoral zone 

productivity among lakes and over seasons, which has implications for understanding 

possible effects of climate change on ecosystem processes in north temperate lakes. 
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1 Effects of Invasive Watermilfoil on Primary Produc-
tion in Littoral Zones of North-Temperate Lakes 

1.1 Introduction 

Eurasian watermilfoil (Myriophyllum spicatum) is an invasive aquatic macrophyte 

which has spread across the contiguous United States over the past century (Smith and 

Barko 1990) from source populations traced back to Asia (Moody et al. 2016). Eurasian 

watermilfoil invades the shallow water habitat of lakes, called littoral zones, where it can 

grow rapidly and build a canopy, suppressing other aquatic plants (macrophytes) below 

(Madsen et al. 1991; Boylen et al. 1999).  Although Eurasian watermilfoil is perennial, it 

exhibits an annual pattern of growth where in the spring shoots grow rapidly to the wa-

ter’s surface, then branch profusely throughout the growing season (Madsen and Boylen 

1989). Plants remain evergreen in the fall and overwinter with substantial biomass, allow-

ing them to grow rapidly in the spring to establish dominance early in the next growing 

season (Nichol and Shaw 1986).  Vegetative reproduction and dispersal of fragments is 

the primary vector of spread within and between waterbodies (Smith and Barko 1990). 

Eurasian watermilfoil can hybridize with native Northern watermilfoil (M. sibiricum) to 

create hybrids (Myriophyllum spicatum x sibiricum) that exhibit increased growth vigor 

and increased resistance or tolerance to herbicides (Larue et al. 2013; Parks et al. 2017; 

Thum et al. 2017). Pure Eurasian watermilfoil and its hybrids are invasive, present in 

Michigan (Moody and Les 2007), and difficult to differentiate visually (Parkinson et al. 

2011), so will be considered collectively in this study as invasive watermilfoil (IWM). 
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Dense, high biomass growths of IWM can cause deleterious effects to waterbodies by in-

hibiting recreational access and opportunities, along with altering populations of ma-

croinvertebrates and fishes (Smith and Barko 1990) and energy flow in lake food webs 

(Kovalenko and Dibble 2014). These same dense patches of IWM interact with all other 

primary producers in the littoral zone, with potential consequences for their distribution 

and production.  

Submerged macrophytes directly and indirectly interact with other primary pro-

ducers in lake littoral zone, and through these interactions can control lake ecosystem 

processes (Carpenter and Lodge 1986). In a study of lakes in Wisconsin, areas of littoral 

habitats with high macrophyte abundance contributed disproportionately to whole lake 

primary production, while those with low abundance of macrophytes had similar primary 

production as open water (pelagic) habitats (Lauster et al. 2006). Macrophytes create 

structure and substratum while also modifying light and nutrient dynamics, all of which 

can interact to affect other littoral primary producers (Figure 1.1). Macrophyte vegetative 

structure and leaf area limit light penetration in the water column and to the lake bottom 

(Binzer et al. 2006), which can reduce light availability for phytoplankton (free floating 

single cell and colonial algae), epiphytes (attached algae growing on macrophytes), and 

benthic periphyton (attached algae growing on bottom substrata). Macrophytes primarily 

take up nutrients from the sediment and are capable of large reductions in sediment pools 

of nitrogen and phosphorus (Barko et al. 1988), yet also use inorganic nutrients from the 

water column (Cattaneo and Kalff 1980; Barko and Smart 1981). In contrast, phytoplank-
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ton have high affinity for dissolved nutrients and primarily obtain nutrients from the wa-

ter column (Reuter and Axler 1992; Vadeboncoeur and Steinman 2002). Epiphytes and 

benthic periphyton have access to nutrients from their substratum, the water column, and 

internal recycling within any biofilm matrix (Carignan and Kalff 1982; Vadeboncoeur et 

al. 2006). When large amounts of dissolved nutrients are available in eutrophic lakes, 

phytoplankton standing crops increase, which induces stronger light limitation of benthic 

periphyton (Vadeboncoeur et al. 2001), epiphytes and  macrophytes (Scheffer et al. 

1993). Further complicating interactions, epiphytes can take advantage of higher light in-

tensities available at elevated positions in the water column from macrophytes, while also 

obtaining nutrients released by the macrophytes (Carignan and Kalff 1982; Carpenter and 

Lodge 1986; Burkholder and Wetzel 1990). The complex nature of these direct and indi-

rect interactions among different groups of primary producers in lake littoral zones sug-

gest that they may be particularly sensitive to invasion by macrophytes like IWM. 

IWM invasion in littoral zones may alter the biomass and production of other pri-

mary producers either by altering competition for light and nutrients, or by creating a 

novel growth substratum for attached algae. IWM invasion can change the physical struc-

ture of macrophyte assemblages through altering abundances of native macrophyte spe-

cies. IWM is not unusually productive for an invasive species, yet it can grow fast and 

earlier than other macrophytes (Smith and Barko 1990). IWM has a finely dissected leaf 

structure on elongated stems near the water surface that have a high surface area to bio-

mass ratio relative to other macrophyte species (Sher-Kaul et al. 1995), which may pro-

vide additional habitat for epiphytes. Mesocosm studies have found epiphytes to grow at 
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variable densities on macrophyte surfaces among a group of native and non-native mac-

rophyte species, and low densities on fast growing macrophyte segments (Grutters et al. 

2017). Therefore, species composition and structure of the macrophyte assemblage can 

impact the amount of epiphytes in the littoral zone. Canopy forming macrophytes de-

crease the production of epiphytes and other primary producers like benthic periphyton at 

the bottom of the water column (Lassen et al. 1997; Vis et al. 2006). Therefore, IWM 

presence may lead to shading of phytoplankton and benthic periphyton growing under 

IWM canopies, but offer epiphytes growing attached to IWM canopies better access to 

light high in the water column. We predict that presence of IWM will increase macro-

phyte standing crop and the available substratum for epiphytes. Because macrophytes and 

epiphytes can disproportionately contribute to whole-lake primary production, we further 

predict that areas with IWM will have higher rates of littoral zone primary production, 

even if shading by IWM decreases production or standing crops of phytoplankton or ben-

thic periphyton.  

The aim of this study was to determine if presence of IWM in littoral zones alters 

standing crops and rates of primary production by all primary producers. To address this 

question, we conducted a comparative study between plots where IWM was present or 

absent in littoral zones of 6 north-temperate lakes in Michigan and measured the standing 

crops of primary producers, their production rates using bottle incubations, and whole-

plot production rates using open water metabolism. We then applied a mass balance ap-

proach to determine each primary producer’s contribution to whole-plot primary produc-
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tion.  This study was designed to test the following hypotheses: 1) macrophyte and epi-

phyte standing crops will be higher in plots where IWM is present vs. those where it is 

absent due to higher biomass and vertical structure of IWM, 2) whole-plot gross primary 

production and ecosystem respiration rates will be higher in plots where IWM is present 

vs. those where it is absent due to higher standing crops or production of macrophytes 

and epiphytes, and 3) macrophytes and epiphytes will make larger contributions whole-

plot  gross primary production in plots where IWM is present vs. those where it is absent. 

1.2 Methods 

1.2.1 Study area 

This field study was conducted July – September 2017 in littoral zones of 6 lakes 

in the Upper Peninsula and northern Lower Peninsula of Michigan. Waterbodies with 

IWM were selected based on personal observation and Michigan Invasive Species Inves-

tigation Network (MISIN) database records (Michigan State University 2018). Selected 

waterbodies were oligotrophic to mesotrophic and ranged in size from small inland lakes 

to connected waterways of the Laurentian Great Lakes (Table 1.1). Torch Lake (TCH) 

was the largest and deepest lake sampled (area = 11.0 km2, mean depth 15 m), and is con-

nected to the Keweenaw Waterway, which is connected to Lake Superior on the 

Keweenaw Peninsula of the Upper Peninsula. Sturgeon sloughs of Portage Lake (SLG) is 

a littoral habitat (area = 1.0 km2, mean depth 2 m) also on the Keweenaw Waterway. Iron 

Lake (IRL) is an inland lake, 10 times smaller than Torch Lake (area = 1.6 km2, mean 

depth 6 m), located in southwest Upper Peninsula. Islington Bay of Lake Huron (LCI) is 
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an oligotrophic, shallow enclosed bay (area = 1.6 km2, mean depth 2 m) in the Les 

Cheneaux Islands region of northern Lake Huron. Horseshoe Lake (HSL) is oligotrophic 

and the smallest lake included in this study (area = 0.15 km2, mean depth 3 m), located in 

central Lower Peninsula. Lake St. Helen (STHL) is a large lake (area = 9.7 km2, mean 

depth 2 m) in central Lower Peninsula with a high percentage of littoral habitat. A paired 

plot design was used within each waterbody to investigate our hypothesized effects of 

IWM presence on littoral zone primary producers. Circular 500 m2 plots were located in 

invaded (INV) macrophyte stands based on visual presence of IWM, while uninvaded 

(UNINV) plots were placed in nearby areas with similar macrophyte stand structure that 

lacked visual presence of IWM. When determining plot locations, visual observations in-

dicated IWM stems crowded the upper water column in invaded plots of IRL, LCI, and 

TCH. Invaded plots in HSL, SLG, and STHL had sparser IWM stem densities and/or less 

occupied space, with other macrophytes also observed intermixed in the upper water col-

umn.  

To describe the physical and chemical properties on each sampling date, we used 

a YSI 6920 sonde (YSI Incorporated, Yellow Springs, Ohio) to measure vertical profiles 

of temperature (°C), conductivity (mS cm-1), optical dissolved oxygen (ODO) saturation 

(%), and ODO concentration (mg L-1). Light extinction was determined from vertical pro-

files of light intensity collected with a Li-Cor LI193SA spherical underwater quantum 

sensor with a LI-1400 datalogger (LI-COR, Inc, Lincoln, Nebraska). A horizontal water 

sampler at 0.5 m depth was used to collect water for analysis of soluble reactive phospho-

rus (SRP), nitrate+nitrite (NO3-+NO2-), ammonium (NH4+), total dissolved nitrogen 
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(TDN), and dissolved organic carbon (DOC). Water was immediately filtered using Mil-

lipore 0.45 µm nitrocellulose membrane filters into 60 mL bottles and placed on ice until 

frozen for storage in the laboratory. SRP was analyzed on a SEAL AQ2 discrete analyzer 

(SEAL Analytical, Mequon, Wisconsin) based on USEPA method 365.1 revision 2.0 

(USEPA 1993a) and APHA method 4500- P F (APHA 2005). NO3-+NO2- was analyzed 

on a SEAL AQ2 discrete analyzer (SEAL Analytical, Mequon, Wisconsin) based on 

USEPA method 353.2 revision 2.0 (USEPA 1993b) and APHA method 4500 NO3- 

(APHA 2005). NH4+ was analyzed using a fluorometric method (Holmes et al. 1999; 

Taylor et al. 2007) on a Turner Aquafluor (Turner Designs, Palo Alto California). TDN 

and DOC samples were acidified with hydrochloric acid and quantified using a Shimadzu 

TOC-VCSN (Shimadzu Scientific Instruments, Columbia, Maryland) (Appendix A). 

1.2.2 Collection of primary producers 

At each plot, aboveground macrophyte biomass was collected using fixed area 

sampling techniques. A 16.5 cm diameter double sided rake was lowered vertically to the 

lake bottom (Johnson and Newman 2011) and spun 1 revolution to collect a 0.214 m2 

sample of macrophytes; 20 of these samples were collected in a grid pattern across each 

plot to characterize plot-level standing crops. At 3-5 locations within each plot we col-

lected phytoplankton, epiphytes and benthic periphyton for production and biomass anal-

yses. Phytoplankton were collected using a horizontal water sampler lowered to 0.5 m be-

low the surface. Epiphytes were sampled from macrophytes growing 0.5 – 1 m below the 
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water surface, typically M. spicatum, Vallsneria americana, or Potomogeton spp. Epi-

phytes were collected by cutting the macrophyte stem with a razor blade and allowing it 

to float to the water surface. The stem was carefully lifted out of the water and placed 

into a 2 L container with 1.8 L of lake water and agitated side to side 40 times, inverting 

with each direction change (Marcarelli and Wurtsbaugh 2009). This method removed 

loose epiphytes that were not tightly attached to macrophytes and created an epiphyte 

slurry. The collected macrophyte from the 2L container was removed and saved for 

standing crop determination as described below.  Benthic periphyton was collected using 

a PVC sediment corer (5 cm diameter) based on a design from Gardner et al. (2009) or an 

Eckman grab sampler (Wetzel and Likens 2000). If the benthic material was sediment, a 

modified 50 mL syringe with 2.6 cm diameter open end was pushed into the sample to 

extract a subsample of the top 2 cm of benthic material. If the benthic material was or-

ganic flocculent, a 50 mL syringe was used to remove the top 2 cm of the whole core col-

lected by the PVC sediment corer. Syringes of organic flocculent material were diluted 

by a factor of 3 before use in bottle production estimates and standing crop determina-

tion.   

Sampling areas were determined for each primary producer to permit later scaling 

of production and standing crop measurements to the areal (whole-plot area) rates. The 

area of rake collections (m2) was the sampling area for macrophytes. Epiphyte sampling 

area (m2) was determined by dividing the dry mass (g) of collected macrophyte segments 

by the total macrophyte standing crop of each plot (g m-2), determined as described be-

low. Area of phytoplankton samples were scaled by dividing the sample volume (m3) by 
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the depth of the sampling location (m) to convert to surface area (m2). Area of benthic pe-

riphyton samples was the surface area of sample extracted by syringes from lake bottom 

collections (5.31 cm2 for cores and Eckman grab samples, and 6.54 cm2 for organic floc-

culent material).  

1.2.3 Bottle production estimates 

Production estimates for phytoplankton, epiphytes, and benthic periphyton were 

performed by placing collected primary producers suspended in lake water into 300 mL 

BOD (biological oxygen demand) bottles and sealing without any air bubbles. For each 

primary producer group, 3 initial bottles were filled along with 3 to 5 pairs of light and 

dark bottles. Dark bottles were tightly wrapped in heavy duty aluminum foil. Initial bot-

tles were sampled at the start of the incubation period, while light and dark bottles were 

suspended for in situ incubation from a bar at sample collection depth (0.5 m for phyto-

plankton and 0.5 m for epiphytes) (Vollenweider et al. 1969; Wetzel and Likens 2000).  

On hard lake bottoms, a bar of benthic periphyton bottles were set on the bottom, 

whereas on soft lake bottoms, bottles were suspended 0.1m above the bottom to prevent 

immersion in the benthos. To account for production of phytoplankton in the water used 

to suspend benthic periphyton in BOD bottles, we collected a second set of phytoplank-

ton samples, hereafter referred to as blanks, which were deployed at the bottom depth 

with the benthic periphyton bottles. Incubation durations were based on pre-study trials to 

determine the optimal length that would allow detection of change in dissolved oxygen 

while avoiding large changes in internal bottle conditions. Based on the results of these 
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trials, bottles with phytoplankton and blanks were incubated for 6-9 hours, while bottles 

with epiphytes and benthic periphyton were incubated for 2-4 hours.  

To measure dissolved gas concentrations in the BOD bottles (all initials, samples, 

and blanks), triplicate water samples were collected by siphoning into 12 mL Exetainers 

(Labco, Lampeter, Wales, UK) and preserving with zinc chloride (0.67 g/L final concen-

tration). Oxygen to Argon ratios (O2:Ar) from each Exetainer were determined using 

membrane inlet mass spectrometry (MIMS) (Kana et al. 1994), and triplicates were aver-

aged to calculate mean O2:Ar per bottle. For each primary producer, net primary produc-

tion (NPP) was determined for each light bottle and respiration (R) for each dark bottle. 

NPP (Eq.1) and R (Eq.2) rates (mg O2 m-2 h-1) were calculated as the change in O2:Ar ra-

tios from the average O2:Ar of all initial bottles using the equations below. Argon satura-

tion (Arsat) was calculated from Hamme and Emerson (2004) using the water temperature 

and barometric pressure at the time of sample collection into Exetainers. 

Eq. 1     NPP =
�� O2: Ar𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡� − (O2: Ar𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙)� ∗ Ar𝑠𝑠𝑖𝑖𝑡𝑡  ∗  BOD water volume

sampling area ∗  duration of incubation  

Eq. 2          R =
[( O2: Ar𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙) − (O2: Ar𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑)] ∗ Ar𝑠𝑠𝑖𝑖𝑡𝑡  ∗  BOD water volume

sampling area ∗  duration of incubation  

For each primary producer, GPP was calculated as mean NPP subtracted from the 

mean R. Benthic periphyton GPP rates were adjusted for phytoplankton in lake water by 

subtracting blank GPP rates, while epiphyte GPP rates were adjusted by subtracting phy-

toplankton GPP rates. Standard error of GPP rates calculated from NPP, R, and adjusted 
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for blanks was propagated as SE A±B = (SE2A + SE2B)1/2 (Taylor 1982; Carignan et al. 

1998). After calculations, any negative GPP rates were assumed to be due to bottle ef-

fects or method error and set to zero. Adjustments of GPP to zeros was done for benthic 

periphyton at IRL-INV (-32.6 ± 30.7 mg O2 m-2 h-1), LCI-INV (-12.4 ± 35.8 mg O2 m-2 h-

1), and STHL-INV (-27.2 ± 68.9 mg O2 m-2 h-1), in addition to phytoplankton at SLG-

UNINV (-4.9 ± 32.5 mg O2 m-2 h-1).  

1.2.4 Primary producer standing crop measurement 

Macrophytes from twist rake samples were separated and identified to species us-

ing Fasset (1957) and Skawinski (2014), then dried at 60°C for 48 hours to constant mass 

to determine dry weight. Species of Chara and Drepanocladus were indistinguishable in 

the field and/or very difficult to physically separate and were grouped by genera. M. spi-

catum and M. spicatum x sibiricum were grouped as IWM as stated previously. Macro-

phyte standing crops (g m-2) were determined as the means of dry weights across the 

sampling area of twist rake samples in each plot. The dominance of IWM at all plots was 

calculated using two metrics. IWM standing crops were relativized to the total standing 

crop of each plot (abundance of IWM in each plot %) and IWM standing crop was stand-

ardized to the maximum standing crop measured in the dataset (standardized abundance 

of IWM %). Macrophyte segments from epiphyte collection were identified to species 

and dried to constant mass and weighed.  

To determine standing crops of epiphytes, phytoplankton and benthic periphyton, 

subsamples from each BOD bottle used for the production estimates were filtered onto 
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pre-ashed GF/F filters (0.7 μm). Filters were frozen until laboratory analysis of chloro-

phyll a (Chla) using ethyl alcohol extraction followed by spectrophotometric analysis 

with correction for phaeophytin using a Thermo Scientific 10 s UV–Vis spectrophotome-

ter (APHA 2005). After Chla analysis, filters were analyzed for ash free dry mass 

(AFDM, g m-2), which provides an estimate of the total organic material in a sample and 

is measured as the difference between the mass of the oxidized samples and the initial dry 

samples. AFDM samples were dried at 100 °C, weighed for dry mass and then oxidized 

in a muffle furnace at 550 °C, rewetted, and dried before final weighing. All masses of 

Chla and AFDM were divided by the sampling areas of the primary producer to calculate 

standing crops.  

1.2.5 Open water metabolism 

At the center of each plot, we deployed a YSI 6920 sonde or MiniDOT logger 

(PME, Vista, California) in conjunction with surface mounted Hobo light and tempera-

ture pendant loggers (Onset, Bourne, Massachusetts) for 3-9 days spanning the day(s) of 

primary producer bottle production and standing crop sampling. All sensors were pro-

grammed to log dissolved oxygen, temperature, and light at 10-minute intervals.  A modi-

fied one-station metabolism model for multiple observation days was used to estimate 

GPP, ER, and air–water gas exchange using the following equation (Eq. 3, originally 

from Van de Bogert et al. 2007; Hotchkiss and Hall 2015). 

Eq. 3      𝑂𝑂2,(𝑡𝑡) =  𝑂𝑂2,(𝑡𝑡−1) + �
𝐺𝐺𝐺𝐺𝐺𝐺
𝑧𝑧

×
𝐿𝐿(𝑡𝑡−1)

∑𝐿𝐿24ℎ𝑑𝑑
� +

𝐸𝐸𝐸𝐸 × ∆𝑡𝑡
𝑧𝑧

+ 𝐾𝐾𝑂𝑂2 × ∆𝑡𝑡 × �𝑂𝑂2𝑠𝑠𝑖𝑖𝑡𝑡,(𝑡𝑡−1) − 𝑂𝑂2,(𝑡𝑡−1)� 



13 

In this equation, GPP and ER are positive and negative rates of O2 production, re-

spectively (g O2 m-2 d-1), L is irradiance (lux), KO2 is temperature-corrected O2 gas ex-

change rate (d-1), and O2sat is O2 saturation concentration (g O2 m-3), and the depth at the 

location of sensor deployment is z.  Posterior probability distributions of GPP, ER and K 

were simulated using Bayesian parameter estimation with uninformative priors via a ran-

dom walk Metropolis algorithm and Markov chain Monte Carlo using RSTAN 2.17.3 

(Stan Development Team 2018) in R version 3.4.4 (R Core Team 2018). Initially, the 

model was set to integrate across all measurement days to provide more robust estimates 

of K integrating day-to-date variability in environmental conditions (Appling et al. 2018). 

Yet, when there is wide variation in weather conditions among sampling dates and/or 

when physical parameters override biological signals (Winslow et al. 2016), these models 

can produce poor fits or unrealistic estimates of K, GPP or ER.  Therefore, multi-day 

model outputs were screened for fit and ecologically unrealistic values (negative GPP or 

positive ER.  First, days with no or poor model fit were removed (2 days IRL-UNINV, 1 

day TCH-INV, 3 days TCH-UNINV). All days with ecologically un-realistic values yet 

good model fits (1 day SLG-UNINV, 2 days HSL-UNINV, 1 day HSL-INV) were ana-

lyzed with single day metabolism models that estimated GPP, ER and K from 24-hour 

periods repeated for all days with complete records. Following daily models all ecologi-

cally un-realistic values remained, so those dates were removed from analyses. Net eco-

system production (NEP) of plots was calculated at the sum of GPP and ER.  
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1.2.6 Production mass balance estimates 

The components of GPP attributed to different primary producers (phytoplankton, 

epiphytes, benthic periphyton) were calculated as the daily GPP of each primary producer 

group divided by the average daily GPP of the plot. HSL-UNINV and IRL-UNINV did 

not have multiple days of metabolism results to average plot GPP, therefore only one day 

of plot GPP was used instead. Hourly GPP rates (mg O2 m-2 h-1) of primary producers 

were converted to daily GPP rates (g O2 m-2 d-1) by multiplying by the length of the daily 

photoperiod retrieved from NOAA’s solar calculator (NOAA 2018). The portion of plot 

GPP by macrophytes was estimated as the remainder of plot GPP after subtracting the 

portions due to phytoplankton, epiphytes, and benthic periphyton. When the sum of por-

tions of phytoplankton, epiphytes, and benthic periphyton exceeded the daily plot GPP, 

the sum of portions was then used as plot GPP. This occurred in HSL-INV and IRL-UN-

INV plots and the component of GPP due to macrophytes in these plots was set to zero.  

1.2.7 Statistical analyses 

To assess the integrity of our paired plot selection, plot and water characteristics 

along with IWM and native macrophyte standing crops were compared using two-sided 

paired t-tests in R 3.4.4 (R Core Team 2018). To describe the species structure of the 

macrophyte assemblages across lakes and study plots we used Non-metric Multidimen-

sional Scaling (NMS) in PC-ORD v6.30 (McCune and Mefford 2011). A NMS ordina-

tion was resolved using “slow and thorough” defaults, which uses Sorensen distance 

measures, random starting position, 250 runs of real data, and 250 runs with randomized 
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data through six to one-dimensional solutions. The main matrix was 12 sites x 25 species 

(Appendix B); to achieve a stable ordination solution it was logarithmically transformed 

to reduce extreme left skewedness of distribution of standing crops while still preserving 

the original orders of magnitudes (McCune and Grace 2002).  After transformation, rare 

species that were present only once in the matrix were removed, resulting in a trans-

formed matrix of 12 sites x 15 species (Appendix C). Rare species were removed as they 

can have disproportionate effects on multivariate analyses and contribute little to under-

standing general community relationships (Jackson and Harvey 1989). Summary statis-

tics on the main matrix were calculated using PC-ORD for species richness and evenness, 

Shannon’s diversity, and Simpson’s diversity index (Appendix D).  

Comparisons of invaded and uninvaded plots were performed using paired t-tests 

in R 3.4.4 (R Core Team 2018). When testing hypotheses that macrophyte and epiphyte 

standing crops will be higher in invaded plots vs. uninvaded plots, plot GPP and ER rates 

will be higher in invaded vs. uninvaded plots, and macrophytes and epiphytes will be 

greater components of plot GPP in invaded vs. uninvaded plots, we used one-sided paired 

t-tests with the significance level set at alpha = 0.05. All other paired comparisons for dif-

ferences between paired invaded vs. uninvaded plots were performed using two-sided 

paired t-tests.  

Stepwise multiple linear regression performed in R 3.4.4 (R Core Team 2018) was 

used to identify significant predictors of phytoplankton, epiphyte, and benthic periphyton 
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standing crops and primary production, as well as plot GPP and ER rates. Predictors ini-

tially included were light extinction, water temperature, conductivity, TDN, DOC, NH4+, 

SRP, NO3-+NO2-, and macrophyte standing crop. Additionally, phytoplankton Chla, epi-

phyte Chla, and benthic periphyton Chla were included as predictors of plot GPP. Phyto-

plankton AFDM, epiphyte AFDM, and benthic periphyton AFDM were included as pre-

dictors of plot ER. All variables were examined for normality and homoscedasticity; 

when needed variables were transformed to meet the assumptions of multiple linear re-

gression, or variables were removed if a suitable transformation was not possible. As a 

result, NO3-+NO2- , NH4+, benthic periphyton Chla, epiphyte Chla, phytoplankton Chla, 

and benthic periphyton AFDM were logarithmically transformed for analyses. SRP was 

removed due to a right skewed distribution. Prior to performing regression analysis, we 

conducted Pearson correlation analysis to identify significant correlations (p ≤ 0.05) 

among the predictor variables for each analysis (see Appendix E). For all stepwise multi-

ple linear regression analyses, conductivity, DOC, NO3-+NO2-, and NH4+ were removed 

due to significant correlations with other predictor variables (Appendix E). For stepwise 

multiple linear regression analysis of plot GPP, benthic periphyton Chla was removed 

due to correlation with macrophyte standing crop and phytoplankton Chla was removed 

due to correlation with TDN (Appendix E). Additionally, for stepwise multiple linear re-

gression analysis of plot ER, epiphyte AFDM was removed due to correlation with phy-

toplankton AFDM and benthic periphyton AFDM was removed due to correlation with 

macrophyte standing crop (Appendix E). We identified the best regression model based 

on the smallest Akaike’s information criteria (AIC, Burnham and Anderson 2002). 
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1.3 Results 

1.3.1 Comparison of study sites 

Site and water characteristics were similar but macrophyte assemblages of plots 

were different between pairs of invaded and uninvaded plots. Invaded plots and unin-

vaded plots had similar depths (2.1 m ± 0.2 vs. 1.8 m ± 0.2, paired t-test, t = 2.05, df = 5, 

p = 0.10; Table 1.1). Water characteristics, nutrients, and light extinction were not signifi-

cantly different between invaded vs. uninvaded plots (Table 1.2, Appendix A). IWM 

standing crop was 50-fold higher (paired t-test, t = 3.69, df = 5, p = 0.007) and total na-

tive macrophyte standing crop was 1-fold lower in invaded vs. uninvaded plots (paired t-

test, t = -2.20, df = 5, p = 0.04; Figure 1.2). IWM composed 61% of the macrophyte bio-

mass in invaded plots and 2% of the macrophyte biomass in uninvaded plots (Table 1.3). 

The standardized abundance of IWM in invaded plots was 31 % (Table 1.3). Species 

richness, species evenness, Shannon’s diversity, and Simpson’s diversity index was simi-

lar between invaded and uninvaded plots (Table 1.2, Appendix D). The NMS analysis of 

macrophyte assemblage produced an ordination from 87 iterations resolving a four-di-

mensional solution, stress of 1.15, and final stability < 0.00001 (Figure 1.3). 84% of vari-

ance of structure was captured by 3 of the ordination axes. Differences in ordination 

space between invaded and uninvaded plots were generally driven by differences in abun-

dance of native macrophyte species and IWM (Figure 1.3, Appendix F). The first axis 

(Axis 1) represented 57% of the variance. Macrophytes with strong positive correlation to 

Axis 1 were Potamogeton robbinsii (r = 0.77), P. amplifolius (r = 0.72), and IWM (r = 
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0.66). Macrophytes with a strong negative correlation with Axis 1 were Vallisneria amer-

icana (r = -0.83), Najas flexilis (r = -0.57), P. gramineus (r = -0.56), Ceratophyllum de-

mersum (r = -0.54), and Bidens becki (r = -0.43).  The second axis (Axis 2) represented 

11% of the variance. Macrophytes with strong positive correlation to Axis 2 were B. 

becki (r = 0.52) and P. robbinsii (r = 0.48) and strong negative correlations were Chara 

spp. (r = -0.71), N. guadalupensis (r = -0.69), P. zoosteriformis (r = -0.67), and N. flexilis 

(r = -0.51). The third axis (Axis 3) represented 16% of the variance. Macrophytes with 

strong positive correlation to Axis 3 were Elodea canadensis (r = 0.86), B. becki (r = 

0.61), Utricularia macrorhiza (r = 0.57), P. richardsonii (r = 0.54), C. demersum (r = 

0.47), and IWM (r = 0.42). Macrophytes with a strong negative correlation with Axis 3 

were N. flexilis (r = -0.49) and P. gramineus (r = -0.46) (Figure 1.3, Appendix F). 

1.3.2 Primary production rates 

GPP of primary producers was similar between invaded and uninvaded plots, but 

across all plots GPP for benthic periphyton and phytoplankton were higher in in warmer 

water. GPP rates of epiphytes, phytoplankton, and benthic periphyton were not signifi-

cantly different between invaded and uninvaded plots (epiphytes paired t-test, t = 0.41, df 

= 5, p = 0.70; phytoplankton paired t-test, t = 1.44, df = 5, p = 0.21; benthic periphyton 

paired t-test, t = -1.25, df = 5, p = 0.27) (Figure 1.4). Benthic periphyton GPP rates were 

the most variable with high standard errors (on average 56.9 ± 56.8, SE up to 217.6 mg 

O2 m-2 h-1). Stepwise multiple linear regression identified significant models that ex-

plained about 1/2 of the variation in benthic periphyton and phytoplankton GPP (Table 
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1.4).  Benthic periphyton GPP was negatively related to macrophyte standing crop and 

positively related to water temperature with R2adj = 0.50 and p = 0.02, while phytoplank-

ton GPP was positively related to water temperature with R2adj = 0.46 and p = 0.009 (Ta-

ble 1.4).   

1.3.3 Standing Crops 

Standing crops of primary producers were similar between invaded and uninvaded 

plots. Total macrophyte standing crops in study plots ranged from 16.6 - 307.7 g m-2 (Fig-

ure 1.2). Although we hypothesized higher total macrophyte biomass in invaded plots, 

the total macrophyte biomass at paired invaded vs. uninvaded plots was not significantly 

higher (Figure 1.2, paired t-test, t = 0.43, df = 5, p = 0.34). Also, epiphyte chlorophyll a 

(paired t-test, t = -0.40, df = 5, p = 0.35) and AFDM (paired t-test, t = -0.53, df = 5, p = 

0.31) were not significantly higher in invaded vs. uninvaded plots (Figure 1.5). Phyto-

plankton Chla and AFDM was not significantly different between paired invaded vs. un-

invaded plots (Chla paired t-test, t = -0.01, df = 5, p = 0.99; AFDM paired t-test, t = -

1.10, df = 5, p = 0.32). Also, benthic periphyton Chla and AFDM was not significantly 

different between paired invaded vs. uninvaded plots (Chla paired t-test, t = 0.36, df = 5, 

p = 0.73; AFDM paired t-test, t = 0.33, df = 5, p = 0.76) (Figure 1.5). Benthic periphyton 

standing crops were generally one order of magnitude higher than phytoplankton and two 

orders of magnitude higher than epiphytes, as quantified by both chlorophyll a and 
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AFDM (Figure 1.5). However, it should be noted that AFDM of benthic periphyton in-

cluded sediment organic matter collected in the core, and not strictly the benthic periphy-

ton.   

Stepwise multiple linear regression identified significant models for Chla and AFDM 

of benthic periphyton and phytoplankton. Benthic periphyton Chla was positively related 

to water temperature and negatively related to macrophyte standing with R2adj = 0.49, but 

benthic periphyton AFDM was positively related to macrophyte standing crop and nega-

tively related to light extinction coefficients with R2adj = 0.47 (Table 1.4). Phytoplankton 

Chla was positively related to TDN and macrophyte standing crop with R2adj = 0.65, 

while phytoplankton AFDM was positively related to water temperature with R2adj = 0.30 

(Table 1.4). No significant models were produced for epiphyte Chla and AFDM (Table 

1.4). 

1.3.4 Open water metabolism 

Plot GPP and ER were similar between invaded and uninvaded plots. Plots had a 

wider range of ER (-2.8 to -12.5 g O2 m-2 d-1) than GPP rates (1.1 – 7.7 g O2 m-2 d-1). 

GPP (paired t-test, t = 0.62, df = 5, p = 0.28) and ER (paired t-test, t = 0.63, df = 5, p = 

0.18) rates were not significantly higher in invaded vs. uninvaded plots (Figure 1.6). Dur-

ing the time of sampling, most plots were heterotrophic with a range of NEP rates from 

2.6 to -11.4 g O2 m-2 d-1. Stepwise multiple linear regression did not identify significant 

models for GPP and ER rates of plots (Table 1.4). A model with p = 0.06 suggested that 

plot ER was negatively related to water temperature with R2adj = 0.25 (Table 1.4). 
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1.3.5 Production mass balance 

Mass balance analysis to determine the contributions of GPP from different pri-

mary producers revealed that contributions differed among lakes based on observations 

of canopy development in the study plots. Macrophytes (paired t-test, t = 1.35, df = 5, p = 

0.23) and epiphytes (paired t-test, t = -0.78, df = 5, p = 0.76) did not comprise signifi-

cantly higher portions of plot GPP in invaded vs. uninvaded plots as we hypothesized 

they would (Fig. 1.7). Additionally, portions of plot GPP from phytoplankton (paired t-

test, t = -0.32, df = 5, p = 0.76), and benthic periphyton (paired t-test, t = -1.18, df = 5, p 

= 0.29) were not significantly different between invaded and uninvaded plots. But, in-

vaded plots in IRL, LCI, and TCH showed ca. 27% lower portions of plot GPP by ben-

thic periphyton compared to uninvaded plots (Figure 1.7). The invaded plots in these 3 

lakes had higher standard abundances of IWM (30-56%) and had dense upper water col-

umn of IWM, while the other invaded plots had lower standard abundances (7-23 %) and 

sparse upper water column densities of IWM (Table 1.3). 

1.4 Discussion 

We found that IWM had limited effects on primary producer standing crops and 

rates of primary production across our north-temperate study lakes. Contrary to our hy-

potheses that IWM presence would lead to higher macrophyte and epiphyte standing 

crops, higher whole-plot GPP and ER, and higher contributions of macrophytes and epi-

phytes to whole-plot GPP, we found that standing crops, primary production by all pri-
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mary producer groups, and plot-level GPP and ER rates were not different between in-

vaded and uninvaded plots. Stepwise multiple linear regression analysis of the variables 

predicting productivity and primary producer standing crop across all study plots identi-

fied macrophyte standing crop as a driver of benthic periphyton GPP and standing crops 

of all other primary producers, along with water temperature, nutrient concentrations, and 

clarity. These findings suggest that the drivers of littoral zone primary production were 

not different from when IWM was present or absent in our study. These findings also 

agree with the findings of other studies that macrophyte standing crops can be an im-

portant control on within-lake processes in whole lakes (Lauster et al. 2006; Van de 

Bogert et al. 2012) or on the landscape scale. 

We expected to observe large differences in macrophyte and associated epiphyte 

standing crops between invaded and uninvaded plots, particularly because we sampled 

late in the summer when macrophytes tend to reach their highest biomasses. We observed 

that in our study plots, IWM generally grew integrated with the native macrophyte as-

semblage, with 1-fold lower abundances of native macrophytes. Half of the invaded plots 

had dense shoots of IWM in the upper water column, while the other half had sparse 

shoot density in the upper water column. None of our invaded plots had thick IWM cano-

pies that can form by sprawling shoots lying flat on the water’s surface. Other studies 

have documented reduced macrophyte diversity or complete displacement of native spe-

cies when IWM form these dense canopies (Madsen et al. 1991; Boylen et al. 1999). The 

lack of dense surface canopies of IWM may have led to the weak effects observed in our 
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study. Even though macrophyte standing crops of our study plots were not different, mac-

rophyte species can provide varying amounts of surface areas (Sher-Kaul et al. 1995) for 

epiphytes, which we did not quantify in our study. We sampled epiphytes from a subset 

of species that grew into the upper water column and incubated all epiphyte samples at a 

common depth, which may have homogenized estimates of epiphyte production between 

plots. Collecting and incubating epiphytes at the upper, mid, and lower depths of the 

macrophyte assemblage would have provided a more accurate estimate of epiphyte pro-

duction (Vis et al. 2006). 

 It is also unlikely that limiting factors of nutrients or the interaction between pri-

mary producers were different between paired invaded vs. uninvaded plots in our study. 

Physical and water characteristics that commonly limit production rates like nutrients, 

lake morphology, and water clarity were not significantly different among invaded and 

uninvaded plots. Effects of IWM on the standing crops or production of all other littoral 

primary producers was not detected between the paired plots. When using stepwise multi-

ple linear regression to analyze the production and standing crop of primary producers 

across all plots, macrophyte standing crop was detected as a driver of rates for benthic pe-

riphyton GPP and standing crops of all other primary producers. One likely mechanism 

for this effect is shading by macrophytes, but nutrient competition and other direct and 

indirect interactions (e.g., Figure 1.1) could also be driving these relationships. Macro-

phyte biomass was positively related to benthic periphyton AFDM, possibly due to mac-

rophyte detritus accumulating in the benthos. Phytoplankton Chla was positively related 

to macrophyte standing crop in addition to TDN concentration, and phytoplankton GPP 
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had a strong positive relation to water temperature. A possible mechanism for the rela-

tionship of phytoplankton Chla with macrophytes standing crop and TDN is the slough-

ing of epiphytes from macrophytes, but other direct and indirect interactions (e.g., Figure 

1.1) could also drive this relationship.  IWM dominance of macrophyte assemblages was 

generally low in the north-temperate lakes in this study. The distribution of species fol-

lows a universal pattern that holds true even for invasive species; species are commonly 

found in low abundances in most locations and abundant in a few (Hansen et al. 2013). 

Surveys of invasive plants of the coastal wetlands of the Great Lakes found that Eurasian 

watermilfoil was present at 61% of lakeshore segments surveyed with an average plant 

community dominance of 19% (Trebitz and Taylor 2007). In our study, invaded plots had 

an average standardized abundance (dominance) of 31%. Half of our invaded plots had 

dense upper water column of IWM and higher than average standard abundances (30-

56%). In these plots there was a pattern of decreased benthic periphyton GPP in the in-

vaded plots relative to the uninvaded plots. Our findings may be different if our study had 

captured IWM that dominated macrophyte assemblages and formed dense surface cano-

pies, but these conditions are relatively rare considering species distributions (Hansen et 

al. 2013). Alternatively, large effects of IWM presence on primary production may be 

predicted where IWM was present in an area that was previously unvegetated. For exam-

ple, invasions of IWM into unvegetated areas have been reported in the Tennessee Valley 

Association reservoirs and Lake Opinicon, Ontario (Keast 1984; Smith and Barko 1990). 

Regardless in many lakes, IWM may not dominate macrophyte assemblages, and our re-

sults suggest that in these lakes IWM presence may not alter rates of primary production 
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in littoral zones. Instead, littoral zone productivity would continue to be governed by the 

factors that commonly control lake productivity across landscapes: water temperature, 

light availability, and nutrient supply. Therefore, invasive watermilfoil may have little 

impact on primary production yet macrophyte standing crops are an important direct and 

indirect influences on lake processes. 
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2 Seasonal Dynamics of Primary Production in Littoral 
Zones of North-Temperate Lakes 

2.1 Introduction 

A better understanding of seasonal ecosystem dynamics is essential to estimate 

and predict effects of climate change on ecological processes in north-temperate lakes. 

Anthropogenic climate change has increased water temperatures in aquatic systems, and 

lakes in the northern hemisphere have experienced decreased winter ice duration coupled 

with increased strength and duration of summer water temperature and stratification (De 

Stasio et al. 1996; Magnuson 2009). The prevailing paradigm is that ice cover and low 

water temperatures during winter establish an inactive period for primary producers, but 

studies that include under-ice measurements suggest biological processes are both active 

and complex, with almost no data available currently for benthic processes (Hampton et 

al. 2016). Most winter limnology studies that occur only sample in the middle of the 

open-water pelagic zones of lakes which has limited inference of primary productivity of 

the whole lake (Van de Bogert et al. 2012). The shallow water habitat of lakes, called lit-

toral zones, are annually key locations of productivity in lakes (Vadeboncoeur et al. 

2011) because they extend from the shore to a depth where warm summer surface waters 

(Horne and Goldman 1994) and sufficient light reach the lake bottom for primary produc-

ers (Dodds and Whiles 2010). A key knowledge gap in our understanding of lakes is how 

rates of primary production vary in littoral zones through all seasons, including winter. 

The littoral zones of lakes host diverse groups of primary producers which are im-

portant to whole lake productivity. These primary producers include attached algae, 
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aquatic plants (macrophytes), and suspended phytoplankton. Phytoplankton are small free 

floating algae ranging from microscopic single cells to colonial algae the size of peas 

(Horne and Goldman 1994).  Attached algae include diatoms, filamentous green algae, 

and cyanobacteria (Horne and Goldman 1994), which can be found growing on bottom 

substrates (benthic periphyton) and attached to macrophytes (epiphytes). Macrophytes in-

clude emergent and submerged aquatic plants, which display a diversity of growth forms 

and types under different conditions. Macrophytes grow vertically in the water column, 

providing large surface areas and morphologically determined microhabitats for epi-

phytes (Ferreiro et al. 2013), while also shading primary producers growing lower in the 

water column and on the benthos. The contributions of macrophytes to primary produc-

tion are enhanced by the production of the attached epiphytes, which can be a major com-

ponent of whole lake production. For example, in a small, shallow oligotrophic lake in 

southern Michigan, phytoplankton accounted for about 25% of annual net primary pro-

duction, while attached algae contributed 22%, and macrophytes contributed 51%  

(Wetzel et al. 1972).  

Seasonal patterns of growth and production are key for understanding the dynam-

ics of the entire community of primary producers in these zones. In temperate climates, 

the overall primary production in lakes drops in autumn and into the winter, returning to 

peak productivity in spring and summer (Staehr and Sand-Jensen 2007). Although it is 

generally assumed that macrophyte production ceases seasonally due to temperature and 

light limitation (Scheffer 1998), ten macrophyte species maintained substantial biomass 

and produced 10-20% of their midsummer primary production overwinter in a New York 
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lake (Boylen and Sheldon 1976). In temperate lakes, most macrophytes grow from tu-

bers, turions, or seeds once waters warm in the spring and reach peak biomasses during 

summer. In autumn, plants senesce and decompose as the water cools (Scheffer 1998).  In 

contrast to the lack of study on macrophytes across all seasons, seasonal dynamics of 

phytoplankton in temperate, dimictic lakes are well generalized. One synthesis by the 

Plankton Ecology Group model (Sommer et al. 1986) shows that phytoplankton biomass 

is low in the winter, but blooms of diatoms occur in the spring and autumn as thermal 

stratification and destratification occurs. Nutrient limitation, resource competition, and 

predation keep phytoplankton biomass low during summer stratification (Horne and 

Goldman 1994).  The few studies of seasonal patterns of attached algae show a signifi-

cant correlation with light and water temperature, with highest primary production during 

mid-summer and low primary production in winter (Liboriussen and Jeppesen 2003). In 

Lake Memphragog (Quebec-Vermont), epiphytes on Myriophyllum spicatum had low pri-

mary production in the summer likely due to grazing yet displayed its highest primary 

production late autumn. In the same lake, epiphyte production on Potamageton richard-

sonii was minimal except during early summer (Cattaneo and Kalff 1980). Many studies 

have measured primary production in the pelagic zones across all seasons, or in littoral 

zones during the growing season. But none to our knowledge have measured production 

of all primary producers in littoral zones across seasons.   

The aim of this project was to fill key knowledge gaps of the seasonal dynamics 

of littoral primary producers including winter. We conducted a field study in two lakes to 

measure whole-plot production rates using open water metabolism, the standing crops of 
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primary producers, and the production of phytoplankton, epiphytes and benthic periphy-

ton using bottle incubations across a full year.  This study was designed to test the fol-

lowing hypotheses: 1) gross primary production (GPP) of all littoral primary producers 

will be lowest during the winter and highest during the summer due to seasonal changes 

in water temperature and light (Figure 2.1a), 2) Macrophyte standing crops will increase 

late spring, peak in the summer and diminish late autumn, 3) Epiphyte standing crops will 

be highest in late summer and diminish in autumn coincident with decreasing macrophyte 

standing crops, 4) Phytoplankton standing crop will be highest in spring and autumn due 

to water column mixing, and 5) Benthic periphyton standing crops will increase in spring, 

decrease in summer due to macrophyte shading, reach highest levels in the autumn, and 

decrease in winter (Figure 2.1b). 

2.2 Methods 

2.2.1 Study area 

This field study was conducted July 2017 – July 2018 in littoral zones of 2 small 

inland lakes in the Upper Peninsula of Michigan (Figure 2.2a). Lakes were selected based 

abundant littoral habitat and availability of public winter access with stabile ice condi-

tions. Rice Lake is 2.73 km2 in area with a maximum depth of 3 m and forested shore-

lines that are sparsely developed with cabins (Figure 2.2b). The littoral zone has sand 

substrates that switches to pulpy peat beyond the 1.5 m contour (Michigan Department of 

Natural Resources 2018). Thayers Lake is 0.47 km2 in area and 3.1 m at the deepest point 

on one half of the lake (Figure 2.2b, Michigan Department of Natural Resources 2018). 
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The shallow half of the lake is 1m deep with abundant submerged macrophytes, and the 

substrate in most of the lake is comprised of organic materials. Thayers Lake is undevel-

oped and surrounded by marsh with two creek inflows and one outflow. In each lake a 

circular 500 m2 study plot was established in the littoral habitat in greater than 1 m of wa-

ter to allow adequate water depth for winter sampling. Plots were sampled at least once 

per summer (June to August), autumn (September to November), winter (December to 

April), and spring (May). During periods of open water, a boat was used to sample plots; 

during ice cover gear was hauled out on toboggans. Holes in the ice were cut with an ice 

auger and an ice saw to collect samples and deploy equipment. 

To describe the physical and chemical properties on each sampling date, we used 

a YSI 6920 sonde (YSI Incorporated, Yellow Springs, Ohio) to measure vertical profiles 

of temperature (°C), conductivity (mS cm-1), optical dissolved oxygen (ODO) saturation 

(%), and ODO concentration (mg L-1). Light extinction was determined from vertical pro-

files of light intensity collected with a Li-Cor LI193SA spherical underwater quantum 

sensor with a LI-1400 datalogger (LI-COR, Inc, Lincoln, Nebraska) (Table 1). When ice 

cover was present light measurements captured light at the surface, and the vertical pro-

files below the ice. A horizontal water sampler at 0.5 m depth was used to collect water 

for analysis of soluble reactive phosphorus (SRP), nitrate+nitrite (NO3-+NO2-), ammo-

nium (NH4+), total dissolved nitrogen (TDN), and dissolved organic carbon (DOC). Wa-

ter was immediately filtered using Millipore 0.45 µm nitrocellulose membrane filters into 

60 mL bottles and placed on ice until frozen for storage in the laboratory. SRP was ana-

lyzed on a SEAL AQ2 discrete analyzer (SEAL Analytical, Mequon, Wisconsin) based 
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on USEPA method 365.1 revision 2.0 (USEPA 1993a) and APHA method 4500- P F 

(APHA 2005). NO3-+NO2- was analyzed on a SEAL AQ2 discrete analyzer (SEAL Ana-

lytical, Mequon, Wisconsin) based on USEPA method 353.2 revision 2.0 (USEPA 

1993b) and APHA method 4500 NO3- (APHA 2005). NH4+ was analyzed using a fluoro-

metric method (Holmes et al. 1999; Taylor et al. 2007) on a Turner Aquafluor (Turner 

Designs, Palo Alto California). TDN and DOC samples were acidified with hydrochloric 

acid and quantified using a Shimadzu TOC-VCSN (Shimadzu Scientific Instruments, Co-

lumbia, Maryland) 

2.2.2 Open water metabolism 

At the center of each plot, we deployed a YSI 6920 sonde or MiniDOT logger 

(PME, Vista, California) for 3-10 full days spanning each sampling period. Sensors were 

programmed to log dissolved oxygen and temperature at 10-minute intervals. Photosyn-

thetically active radiation (PAR) data recorded in 10-minute intervals needed for metabo-

lism models was retrieved from the GLRC Waterfront Meteorological Station (Michigan 

Technological University et al. 2018) due to its proximity to study locations (< 28 km) 

and availability of year-round measurements. A modified one-station metabolism model 

for multiple observation days to estimate GPP, ER, and air–water gas exchange using the 

following equation (Eq.4, originally from Van de Bogert et al. 2007; Hotchkiss and Hall 

2015). 

𝐸𝐸𝐸𝐸. 4     𝑂𝑂2,(𝑡𝑡) =  𝑂𝑂2,(𝑡𝑡−1) + �
𝐺𝐺𝐺𝐺𝐺𝐺
𝑧𝑧

×
𝐿𝐿(𝑡𝑡−1)

∑𝐿𝐿24ℎ𝑑𝑑
� +

𝐸𝐸𝐸𝐸 × ∆𝑡𝑡
𝑧𝑧

+ 𝐾𝐾𝑂𝑂2 × ∆𝑡𝑡 × �𝑂𝑂2𝑠𝑠𝑖𝑖𝑡𝑡,(𝑡𝑡−1) − 𝑂𝑂2,(𝑡𝑡−1)� 
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In this equation, GPP and ER are positive and negative rates of O2 production, re-

spectively (g O2 m-2 d-1), L is light data as PAR, KO2 is temperature-corrected O2 gas ex-

change rate (d-1), and O2sat is O2 saturation concentration (g O2 m-3), and the depth at the 

location of sensor deployment is z. When metabolism measurements were collected in 

spring, summer, and autumn, posterior probability distributions of GPP, ER and K were 

simulated using Bayesian parameter estimation with uninformative priors via a random 

walk Metropolis algorithm and Markov chain Monte Carlo using RSTAN 2.17.3 (STAN 

Development Team, 2018) in R version 3.4.4 (R Core Team, 2018). The Bayesian model 

was set to integrate across all measurement days to estimate K to remove the effect of 

day-to-date variability in environmental conditions. When metabolism measurements 

were collected in the winter under ice cover, we used the streamMetabolizer package ver-

sion 0.10.9 (github.com/USGS-R/streamMetabolizer) in R version 3.4.4 (R Core Team, 

2018) to run a Maximum Likelihood Estimation (MLE) model with K manually set to 

zero for all sample days to solve for GPP and ER. When there is wide variation in 

weather conditions among sampling dates and/or when physical parameters override bio-

logical signals (Winslow et al. 2016), these unconstrained models can product poor fits or 

unrealistic estimates of K, GPP or ER (Appling et al. 2018).  Therefore, model outputs 

were screened for fit and ecologically unrealistic values (negative GPP or positive ER). 

Dates with ecologically un-realistic values were removed from further analysis. This ap-

plied to 38 out of combined 152 modeled days; 22 of the 38 removed dates were from 

winter metabolism estimates.  
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2.2.3 Collection of primary producers 

Within each plot, aboveground macrophyte biomass was collected using fixed 

area sampling techniques. A 16.5 cm diameter double sided rake was lowered vertically 

to the lake bottom (Johnson and Newman 2011) and spun 1 revolution to collect a 0.214 

m2 sample to determine macrophyte standing crop. During periods without ice cover, 20 

samples were collected in a grid pattern across each plot to characterize plot-level stand-

ing crops. During winter, this was reduced to 10-12 samples collected through augured 

holes in the ice in a grid pattern. At 3-5 locations within each plot we collected phyto-

plankton, epiphytes and benthic periphyton for production and biomass analyses. Phyto-

plankton were collected using a horizontal water sampler lowered to 0.5m depth. Epi-

phytes were collected by cutting a macrophyte stem with a razor blade and allowing it to float 

to the water surface. The stem was carefully lifted out of the water and placed into a 2 L con-

tainer with 1.8 L of lake water and agitated side to side 40 times, inverting with each direc-

tion change (Marcarelli and Wurtsbaugh 2009). This method removed loose epiphytes 

that were not tightly attached to macrophytes and created an epiphyte slurry. The col-

lected macrophyte from the 2L container was removed and saved for standing crop deter-

mination as described below. Epiphytes were not collected in winter as macrophytes 

stems were laying low to the lake bottom and could not be collected in a way that would 

prevent separation of epiphytes during collection.  Benthic periphyton was collected us-

ing a PVC sediment corer (5 cm diameter) based on a design from Gardner et al. (2009) 

or an Eckman grab sampler (Wetzel and Likens 2000). If the benthic material was sedi-
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ment, a modified 50 mL syringe with 2.6 cm diameter open end was pushed into the sam-

ple to extract a subsample of the top 2 cm of benthic material. If the benthic material was 

organic flocculent, a 50 mL syringe was used to remove the top 2 cm of the whole core 

collected by the PVC sediment corer. Syringes of organic flocculent material were di-

luted by a factor of 3 before use in bottle production estimates and standing crop determi-

nation.   

Sampling areas were determined for each primary producer to permit later scaling 

of production and standing crop measurements to the areal (whole-plot area) rates. The 

area of rake collections (m2) was the sampling area for macrophytes. Epiphyte sampling 

area (m2) was determined by dividing the dry mass (g) of collected macrophyte segments 

by the total macrophyte standing crop of each plot (g m-2), as described below. Area of 

phytoplankton samples were scaled by dividing the sample volume (m3) by the depth of 

the sampling location (m) to convert to surface area (m2). Area of benthic periphyton 

samples was the surface area of sample extracted by syringes from lake bottom collec-

tions (5.31 cm2 for cores and Eckman grab samples, and 6.54 cm2 for organic flocculent 

material). 

2.2.4 Bottle production estimates 

Production estimates for phytoplankton, epiphytes, and benthic periphyton were 

performed by placing primary producers suspended in lake water into 300 mL BOD (bio-

logical oxygen demand) bottles and sealing without any air bubbles. For each primary 
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producer group, 3 initial bottles were filled along with 3 to 5 pairs of light and dark bot-

tles. Dark bottles were tightly wrapped in heavy duty aluminum foil. Initial bottles were 

sampled at the start of the incubation period, while light and dark bottles were suspended 

for in situ incubation from a bar at sample collection depth (0.5 m for phytoplankton and 

0.5 m for epiphytes) (Vollenweider et al. 1969; Wetzel and Likens 2000). On hard lake 

bottoms, a bar of benthic periphyton bottles were set on the bottom, whereas on soft lake 

bottoms, bottles were suspended 0.1m above the bottom to prevent immersion in the ben-

thos. To account for production of phytoplankton in the water used to suspend benthic 

periphyton in BOD bottles, we collected a second set of phytoplankton samples, hereafter 

referred to as blanks, which were deployed at the bottom depth with the benthic periphy-

ton bottles. Incubation durations were based on pre-study trials to determine the optimal 

length that would allow detection of change in dissolved oxygen while avoiding large 

changes in internal bottle conditions. Based on the results of these trials, bottles with phy-

toplankton and blanks were incubated for 6-9 hours, while bottles with epiphytes and 

benthic periphyton were incubated for 2-4 hours.  

To measure dissolved gas concentrations in the BOD bottles (all initials, samples, 

and blanks), triplicate water samples were collected by siphoning into 12 mL Exetainers 

(Labco, Lampeter, Wales, UK) and preserving with zinc chloride (0.67 g/L final concen-

tration). Oxygen to Argon ratios (O2:Ar) from each Exetainer was determined using 

membrane inlet mass spectrometry (MIMS) (Kana et al. 1994), and triplicates were aver-

aged to calculate mean O2:Ar per bottle. For each primary producer, net primary produc-

tion (NPP) was determined for each light bottle and respiration (R) for each dark bottle. 
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NPP (Eq.5) and R (Eq.6) rates (mg O2 h-1) were calculated as the change in O2:Ar ratios 

from the average O2:Ar of all initial bottles. Argon saturation (Arsat) was calculated from 

Hamme and Emerson (2004) using the water temperature and barometric pressure at the 

time of sample collection into Exetainers. 

Eq. 5     NPP =
�� O2: Ar𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡� − (O2: Ar𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙)� ∗ Ar𝑠𝑠𝑖𝑖𝑡𝑡  ∗  BOD water volume

duration of incubation  

Eq. 6          R =
[( O2: Ar𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙) − (O2: Ar𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑)] ∗ Ar𝑠𝑠𝑖𝑖𝑡𝑡  ∗  BOD water volume

duration of incubation  

For each primary producer, GPP was calculated as mean NPP subtracted from the 

mean R. Benthic periphyton GPP rates were adjusted for phytoplankton in lake water by 

subtracting blank GPP rates, while epiphyte GPP rates were adjusted by subtracting phy-

toplankton GPP rates. At each calculation step, addition and subtraction errors in calcu-

lating GPP rates from NPP, R, or adjusting primary producer GPP rate was accounted for 

by propagating standard error (SE) as SE A±B = (SE2A+ SE2B)1/2 (Taylor 1982; Carignan et 

al. 1998). Hourly GPP rates (mg O2 h-1) of primary producers were converted to daily 

GPP rates (g O2 d-1) by multiplying hourly rates by the length of the daily photoperiod re-

trieved from NOAA solar calculator (NOAA 2018). After calculations, any negative GPP 

rates were assumed to be due to bottle effects or method error and set to zero while keep-

ing measured SE.  This occurred most often with phytoplankton GPP affecting rate esti-

mated on 3 dates in both lakes. This also affected rates estimated on 2 dates for benthic 

periphyton in both lakes and 1 date for epiphytes in Rice Lake. GPP was scaled relative 

to plot area by dividing by sampling areas determined for each primary producer. GPP 
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rates of benthic periphyton had variable means with high error rates and not included for 

further analysis. This also prevented us from using a mass balance approach to estimate 

macrophyte GPP, as was explained and completed in Chapter 1.  

2.2.5 Primary producer standing crop measurements 

Macrophytes from twist rake samples were separated and identified to species us-

ing Fasset (1957) and Skawinski (2014), then dried at 60°C for 48 hours to constant mass 

to determine dry weight. Species of Chara and Drepanocladus were indistinguishable in 

the field and/or very difficult to physically separate and were grouped as genera. We also 

encountered a substantial standing crop of a freshwater sponge species (possibly Spon-

gilla lacustris based on descriptions in Jewell (1935)) which we included with macro-

phytes, recorded as genus Spongilla. Macrophyte standing crops (g m-2) were determined 

as the means of dry weights across twist rake samples in each plot. Macrophyte segments 

from epiphyte collection were identified to species and dried to constant mass and 

weighed.  

To determine standing crops of epiphytes, phytoplankton and benthic periphyton, 

subsamples from each BOD bottle used for the production estimates were filtered onto 

pre-ashed GF/F filters (0.7 μm).  Filters were frozen until laboratory analysis of chloro-

phyll a (Chla) using ethyl alcohol extraction followed by spectrophotometric analysis 

with correction for phaeophytin using a Thermo Scientific 10 s UV–Vis spectrophotome-

ter (APHA 2005). After Chla analysis, filters were analyzed for ash free dry mass 

(AFDM, g m-2), which provides an estimate of the total organic material in a sample and 
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is measured as the difference between the mass of the oxidized samples and the initial dry 

samples. AFDM samples were dried at 100 °C, weighed for dry mass and then oxidized 

in a muffle furnace at 550 °C, rewetted, and dried before a final weighing. All masses of 

Chla and AFDM were divided by the sampling areas of the primary producer to calculate 

standing crops. 

2.2.6 Statistical Analyses 

To describe the species structure of the macrophyte assemblages through the 

study period we used Non-metric Multidimensional Scaling (NMS) in PC-ORD v7.07 

(McCune and Mefford 2018). A NMS ordination was resolved using “slow and thor-

ough” defaults, which uses Sorensen distance measures, random starting position, 250 

runs of real data, and 250 runs with randomized data through six- to one-dimensional so-

lutions. The main matrix was 13 plots x 21 species (Appendix G). Summary statistics of 

main matrix of species richness and evenness, Shannon’s diversity, and Simpson’s diver-

sity index was calculated using PC-ORD (Appendix H). 

Seasonal trends in individual lakes were graphically analyzed and descriptive sta-

tistics calculated to assess the hypotheses outlined above. To evaluate whether production 

was linked to seasonal changes in water temperature and light availability, simple linear 

regressions were performed in R 3.4.4 (R Core Team, 2018) using data from both lakes 

combined.  In addition, we evaluated whether standing crops of epiphytes and benthic pe-

riphyton were linked to macrophyte standing crops using simple linear regressions. Vari-

ables of primary producer standing crops, primary producer GPP, water temperature, and 
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the % light at 1m depth were assessed for normality and logarithmically transformed 

when needed to meet the assumption of homoscedasticity for regression analysis. As a re-

sult, epiphyte Chla, epiphyte AFDM, benthic periphyton Chla, and macrophyte standing 

crops were all logarithmically transformed.  

To evaluate other possible environmental factors that could be related to rates of 

productivity that were not explicitly mentioned in the hypotheses, we performed stepwise 

multiple linear regressions to identify significant predictors of production and standing 

crops of all primary producers. Predictors initially included were percent light at 1m 

depth, light extinction, water temperature, macrophyte standing crop, conductivity, NH4+, 

SRP, and NO3-+NO2-. Additionally, phytoplankton Chla and benthic periphyton Chla 

were included as predictors of plot GPP. Phytoplankton AFDM and benthic periphyton 

AFDM were included as predictors of plot ER. Epiphyte AFDM and Chla was not in-

cluded as predictors of plot GPP or ER due to the limited data. All variables were exam-

ined for normality and homoscedasticity and then transformations attempted to meet 

these assumptions of multiple linear regression, or variables were removed. As a result, 

conductivity, NH4+, macrophyte standing crop, phytoplankton Chla, epiphyte Chla, ben-

thic periphyton Chla, phytoplankton AFDM, epiphyte AFDM, and plot ER were all loga-

rithmically transformed. SRP and NO3-+NO2- were removed due to non-normality that 

could not be corrected with transformation. Prior to performing regression analysis, we 

conducted Pearson correlation analysis to identify significant correlations (p ≤ 0.05) 

among the predictor variables for each analysis (see Appendix I). For all stepwise multi-
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ple linear regression analyses, percent light at 1 m depth, conductivity, and NH4+ were re-

moved due to significant correlations with other predictor variables (Appendix I). For 

stepwise multiple linear regression analysis of plot GPP, phytoplankton Chla and benthic 

periphyton Chla was removed due to correlations with other predictors (Appendix I). Ad-

ditionally, for stepwise multiple linear regression analysis of plot ER, periphyton AFDM 

was removed due to correlation with benthic periphyton AFDM (Appendix I).  Before 

each stepwise multiple linear regression analysis, a matrix of selected predictor variables 

and response variable was created, then rows with missing values in the matrix were re-

moved. We identified the best regression model based on the smallest Akaike’s infor-

mation criteria (AIC, Burnham and Anderson 2002).  

2.3 Results 

2.3.1 Site Characteristics 

 Water levels fluctuated by 0.3m in both lakes across seasons. Ice depth was 0.75m 

on Thayers Lake at the end of winter and 0.5-0.6 m on Rice Lake (Table 2.1). Water tem-

perature, percent DO saturation, and the percent of surface irradiance at 1m water depth 

all had the lowest values in the winter during ice-cover (Figure 2.3). Dissolved oxygen 

levels were hypoxic in littoral habitats at the end of winter ranging from 1.25-3.88 mg/L. 

In Thayers Lake, conductivity increased 12-fold, NH4+ increased 13-fold, NO3-+NO2- in-

creased 8-fold, and SRP increased 1-fold during the winter compared to the other dates 

(Table 2.1). In Rice Lake during the summer and winter NH4+ was 3-fold higher, NO3-
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+NO2- was 5-fold higher, and SRP was 3-fold higher compared to spring and autumn 

(Table 2.1). 

2.3.2 Standing Crops 

The species structure of macrophyte assemblages was different between Rice and 

Thayers Lake. The most common macrophyte species in Rice Lake in order were Po-

tamogeton amplifolius, Myriophyllum humile, Chara spp., Elocharis robinsii, and Bidens 

becki. The most common macrophyte species in Thayers Lake in order were Chara spp., 

aquatic moss spp., Vallisneria americana, M. heterophyllum, and Utricularia purpurea. 

The NMS analysis of macrophyte assemblages produced an ordination from 89 iterations 

resolving a two-dimensional solution, stress of 5.87, and final stability < 0.00001 (Fig. 

2.4). 91% of variance of structure was captured the ordination axes. The first axis (Axis 

1) represented 79% of the variance. Macrophytes with strong positive correlation to Axis 

1 were aquatic moss spp. (r = 0.71), M. sibiricum (r = 0.61), U. intermedia (r = 0.49), and 

U. macrorhiza (r = 0.42). Macrophytes with a strong negative correlation with Axis 1 

were M. humile (r = -0.71), P. amplifolius (r = -0.67), Chara spp. (r = -0.50), Elocharis 

robbinsii (r = -0.49), and Bidens becki (r = -0.43) (Figure 2.4; Appendix J). The second 

axis (Axis 2) represented 12% of the variance. Macrophytes with strong positive correla-

tion to Axis 2 were U. intermedia (r = 0.53), Elocharis robbinsii (r = 0.53), P. amplifo-

lious (r = 0.48), Bidens becki (r = 0.45), and Spongilla spp. (0.42). Macrophytes with a 

strong negative correlation with Axis 2 were Vallisneria americana (r = -0.68), Najas 

flexis (r = -0.63), M. heterophyllum (r = -0.50), and U. pupurea (r = -0.50) (Appendix J).  



42 

Standing crops and the species structure of macrophyte assemblages in Rice and 

Thayers Lake changed seasonally. Winter macrophyte standing crops were 14% and 33% 

of the maximum standing crops for Rice and Thayers Lakes.  In Rice Lake, macrophyte 

standing crops increased from winter to summer, but standing crops in July 2018 were 

68% less than July 2017 (Figure 2.5a). In Thayers Lake, macrophyte standing crops in-

creased 2-fold from summer 2017 to autumn 2017, decreased in the winter to amounts 

similar to summer 2017, then increased again in summer 2018 (Figure 2.5b). Stepwise 

multiple linear regression analysis did not produce a useful model for macrophyte stand-

ing crops considering predictors of water temperature and water clarity (Table 2.3). NMS 

ordination successional vectors between sampling timepoints show shifts in the macro-

phyte assemblage across the study period (Figure 2.4). In the ordination, the macrophyte 

assemblage in Thayers Lake had a similar position in ordination space during summer 

2017 and summer of 2018. The macrophyte assemblage in Rice Lake from summer 2017 

and summer 2018 show different positions in ordination space with higher values on Axis 

1 in summer 2018 (Figure 2.4). In addition to changes in standing crops, macrophyte spe-

cies richness was about half in the winter compared to the maximum (occurring in sum-

mer or autumn). Common over-wintering macrophytes were aquatic moss, Chara spp., P. 

amplifolius, and M. humile (Appendix G). Macrophyte species evenness in Rice Lake 

was 50% higher in the winter compared to other seasons, but only 12% higher in winter 

compared to other seasons in Thayers Lake (Appendix H).  

Standing crops of other littoral primary producers changed seasonally across the 

study period in relation to environmental conditions and macrophyte standing crops. We 



43 

had hypothesized that epiphyte standing crops would mirror trends in macrophyte stand-

ing crops increasing in the summer and decreasing in the autumn. Standing crops of epi-

phyte Chla and epiphyte AFDM increased from spring to autumn, and decreased in the 

winter (Figure 2.5 c,d,e,f). AFDM of epiphytes was highest in Thayers Lake coincident 

with the highest macrophyte standing crops in autumn 2017. Linear regression and step-

wise multiple linear regressions showed that epiphyte AFDM was positively related to 

macrophyte standing crops, but no models significantly explained variation in epiphyte 

Chla (Table 2.2, Table 2.3). Phytoplankton Chla in the winter was equal to 4-9% of the 

maximum standing crops (Figure 2.5 c,d). Stepwise multiple linear regression identified a 

significant positive relationship between water temperature and phytoplankton Chla, but 

no significant models for   phytoplankton AFDM (Table 2.3). Benthic periphyton had the 

least variable Chla across seasons, with winter benthic periphyton Chla equal to 29% and 

62% of the maximum Chla standing crops for Rice and Thayers Lakes, respectively (Fig-

ure 2.5 c,d). AFDM of benthic periphyton in Rice Lake was slightly higher during sum-

mer and autumn compared to winter (Figure 2.5 e,f). Linear regression and stepwise mul-

tiple linear regressions of benthic periphyton standing crops showed that benthic periphy-

ton chla was positively related to macrophyte standing crops (Table 2.2, Table 2.3). No 

significant models were found for benthic periphyton AFDM (Table 2.2, Table 2.3).  

2.3.3 Open water metabolism 

Whole-plot rates of GPP and ER were lowest in the winter, and increased into the 

following summer. Winter rates of GPP were equal to 4% and 8% of the highest GPP 
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rates in Rice Lake and Thayers Lake, respectively. Winter ER rates were 4% of the high-

est ER rates in both lakes (Figure 2.6). In Rice Lake, GPP and ER were 44% and 64% 

lower in autumn 2017 than the summer 2018, while in Thayers Lake GPP and ER were 

91% and 645% higher in autumn 2017 than the summer 2018 (Figure 2.6). Stepwise mul-

tiple linear regression identified significant models showing that both GPP and ER were 

positively related to water temperature and macrophyte standing crop, explaining 57-61% 

of the variation in rates (Figure 2.6, Table 2.3). 

2.3.4 Primary production rates 

GPP of primary producers were higher in the summer and autumn, and lowest in 

the winter. In both lakes, phytoplankton GPP was highest during the summer, while epi-

phyte GPP was highest in the autumn (Figure 2.7). GPP rates of zero occurred across sea-

sons for phytoplankton in both lakes, and for epiphytes in July 2017 in Rice Lake (Figure 

2.7). Epiphytes were not collected in the winter. Simple and multiple linear regressions of 

phytoplankton GPP identified that water temperature was positively related to and ex-

plained 34-38% of variance in phytoplankton GPP (Table 2.2), but did not identify any 

significant models for epiphyte GPP (Table 2.3).  

2.4 Discussion 

While studying primary producers in north-temperate lakes across a full year, we 

found that standing crops changed seasonally and GPP rates of plots and individual pri-
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mary producer groups were positively related to water temperatures across seasons. Pri-

mary producers maintained standing crops all year, although standing crops were lower 

during winter. The highest rates of GPP were measured during the summer and autumn 

when water temperatures were 11.2 - 25.7 oC, and at the lowest rates in the winter when 

water temperatures were between 0.8 - 3.4 oC. We were limited in analysis and conclu-

sions of primary producer GPP across all seasons due to errors that propagated in sam-

pling methods, and limitations measuring primary production in the winter, in part due to 

hypoxia in the littoral zones of both lakes. Regardless, seasonal transitions of littoral pri-

mary producers and primary production was apparent in our study.  

We hypothesized that standing crops of phytoplankton would increase during 

spring and autumn water column mixing periods. We also hypothesized that macrophyte 

and epiphyte standing crops would increase across the summer until autumn senescence, 

and benthic periphyton standing crop would decrease due to shading from macrophytes. 

Our sampling dates did not capture phytoplankton standing crops during water column 

mixing periods, yet we observed phytoplankton standing crops to be the lowest during 

winter. Similar to these observations, in a global meta-analysis of under-ice lake ecology, 

50% of lakes had lower Chla in winter vs summer and their mean Chla was on average 

was 43% of the summer values (Hampton et al. 2016). Macrophyte standing crops were 

observed to be the highest in summer and autumn, and at the lowest in winter. Epiphyte 

standing crops were also high in summer and autumn, but were not collected in the winter 

due to difficulty collecting macrophytes in such a way that did not disturb attached algae.  
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Therefore, we were not able to assess our hypotheses about seasonal changes and epi-

phyte standing crop or GPP under the ice in this study.   

Rates of GPP measured in this study were lowest in the winter and increased into 

the summer and autumn, and were significantly related to water temperatures. It is well 

established that temperature effects rates of biochemical reactions that comprise meta-

bolic processes (Gillooly et al. 2001; Brown et al. 2004) and photosynthesis (Galmes et 

al. 2015). Drivers of metabolism in lakes depend on the temporal scale of analysis. At the 

daily scale, light and temperature are a primary control on GPP (Langman et al. 2010; 

Richardson et al. 2017), yet on the weekly scale storms events can be an important driver 

of GPP (Jennings et al. 2012). Seasonal changes to metabolism are largely driven by tem-

perature and light (Hansen et al. 2006; Langman et al. 2010; Yvon-Durocher et al. 2010; 

Defore et al. 2016). In a detailed study of metabolism of a Danish lake, daily GPP values 

were strongly related to temperature, but GPP was seasonally dependent on temperature 

coupled with irradiance and primary producer biomass (Staehr and Sand-Jensen 2007). 

Similarly, a meta-analysis of pelagic production of 165 lakes mostly from the northern 

hemisphere found Chla specific production of lake phytoplankton decreased in lower wa-

ter temperatures (range 5 - 25 oC) (Morin et al. 1999). Globally, seasonal patterns of GPP 

and ER in lakes is common, yet not equally pronounced in all lakes closer to the equator 

or lakes with low trophic statuses (Solomon et al. 2013). 
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Our estimates of NPP and R using bottle assays during winter were hindered by 

methodological shortcomings and the physical properties of the systems we were sam-

pling. In some lakes, oxygen concentrations slowly decrease through the winter under ice 

due to biological activity and sediment processes (Mathias and Barica 1980). Dissolved 

oxygen concentrations were 0.5 – 2.2 mg/L in Rice Lake and 1.2 – 3.4 mg/L in Thayers 

Lake during winter 2018. Water with low gas concentrations will readily absorb addi-

tional oxygen if exposed to the air, and this certainly occurred during the collection and 

preparation of BOD bottles containing primary producers as well as during analysis of 

gas concentrations with MIMS. This is supported by our observation that gas concentra-

tions would increase when analyzing via MIMS before stabile readings could be 

achieved. We suspect this was a major source of error for all bottle estimates on sampling 

dates in February, March, and April. Future studies of under-ice processes in these lakes 

should use sampling protocols and equipment adapted for collecting anoxic samples that 

minimize air-gas exchange during handling (Welch 1974; Deshpande et al. 2015). 

For a variety of reasons, what happens under the ice has often been dismissed as 

ecologically unimportant relative to the warmer summer growing periods, when most 

limnological research occurs (Powers and Hampton 2016). We found in the littoral zones 

of these north temperate lakes that rates of GPP and standing crops of all primary produc-

ers were lower in the winter than summer, but not absent or zero. Winter is often viewed 

as a season of suppression and a reset on the annual cycle, but it could also be an im-

portant time of transition for communities (Sommer et al. 2012). We detected in Thayers 

Lake that the macrophyte assemblage changed in the winter but transitioned back to a 
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similar assemblage the two summers we sampled. In Rice Lake, the macrophyte assem-

blage transitioned from the first summer to a new assemblage the second summer we 

sampled. We do not know the drivers of this assemblage shift, but winter conditions 

could play an important role. Another interesting finding was the presence of hypoxic and 

anoxic conditions that most likely extended into the sediments in the littoral zones of 

these lakes. The duration and spatial extent over which those conditions occur in each 

lake are unclear because we only sampled one location. Studies and observations of driv-

ers and changes occurring because of, and under the ice, will offer great value to our un-

derstanding lake ecology, and could help predict ecosystem impacts from climate change 

in these aquatic systems.  
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4 Tables 
 

 

Table 1.1: Locations and physical descriptions of waterbodies and study plots 

Waterbody Abbreviation Area (km2) Maximum Depth 
(m) 

Mean Depth 
(m) Plot type Coordinates 

(latitude, longitude) Plot depth (m) 

Horseshoe Lake HSL    0.15 11 3 
UNINV 44.415065, -84.277678 1.6 

INV 44.417395, -84.281130 2.1 

Lake St. Helen STHL    9.70 8 2 
UNINV 44.370373, -84.497893 1.4 

INV 44.369626, -84.499011 1.7 

Islington Bay of Lake Huron LCI     1.61* 4 2 
UNINV 45.977832, -84.358537 2.5 

INV 45.973228, -84.353715 2.6 

Sturgeon Sloughs of Portage Lake SLG     0.96* 9 2 
UNINV 47.032063, -88.485310 1.3 

INV 47.031971, -88.485941 1.2 

Iron Lake IRL   1.60 17 6 
UNINV 46.149005, -88.641917 1.5 

INV 46.151059, -88.644730 2.4 

Torch Lake TCH 11.00 37 15 
UNINV 47.133131, -88.457900 2.2 

INV 47.133346, -88.458414 2.3 
Physical descriptions of lakes were determined from measuring and visually interpreting bathymetric lake maps (Navionics; Michigan Department of Natural Resources 2018).  
Physical descriptions of Torch Lake from (Kerfoot et al. 2015).  
* area of open water around plot location reported instead of full waterbody area due to a greater relevance of physical parameters to site conditions.  
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Table 1.2: Two-sided paired t-tests results for invaded vs. uninvaded plots  
Parameter t-value Degrees freedom p- value 

Depth  2.05 5 0.10 

Light extinction coefficient -2.01 5 0.10 

Water temperature -0.01 5 0.99 

%ODO  0.89 5 0.45 

Conductivity -1.46 5 0.20 

TDN -0.23 5 0.83 

DOC -1.61 5 0.17 

NH4
+ -0.07 5 0.95 

SRP  0.02 5 0.98 

Macrophyte species richness  0.88 5 0.42 

Macrophyte species evenness  1.58 5 0.17 

Macrophyte Shannon’s diversity  1.40 5 0.22 

Macrophyte Simpson’s diversity  1.21 5 0.28 

Positive t-values indicate greater values in invaded plots  

 

Table 1.3: Dominance of IWM at plots by abundance in each plot and standardized abundance  

Waterbody Plot type Upper water column of 
IWM 

Abundance of IWM in 
plots (%) 

Standardized abundance of 
IWM (%) 

HSL 
UNINV NA   4   2 

     INV Sparse 84   7 

STHL 
UNINV NA   0  0 

     INV Sparse 35 23 

LCI 
UNINV NA   0   0 

     INV Dense 65 30 

SLG 
UNINV NA   0   0 

     INV Sparse 27 15 

IRL 
UNINV NA   5   2 

     INV Dense 68 56 

TCH 
UNINV NA   0   0 

     INV Dense 89 52 
Standardized abundance was calculated as standing crop of IWM divided by the maximum standing crop value of a 
macrophyte species (294 g/m2)  
NA = not applicable 
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Table 1.4: Stepwise multiple linear regression models selected for responses of primary producers across all plots.  Best models were 
selected for fit and parsimony by examining Akaike Information Criterion (AIC) scores 

 Coefficients of Predictors     

Response 
Light extinc-

tion 
Water tem-

perature TDN 

Macrophyte 
standing 

crop 
Epiphyte 

Chla† 
Phytoplank-
ton AFDM Intercept 

Ad-
justed 

R2 F df p 

Benthic Periphyton GPP ꟷ 23.056 ꟷ -0.64 * * -342.15 0.50 6.54 2,9 0.02 

Epiphyte GPP ꟷ ꟷ -181.86 0.21 * * 111.17 0.21 2.48 2,9 0.14 

Phytoplankton GPP ꟷ 13.86 ꟷ ꟷ * * -251.35 0.46 10.34 1,10 0.009 

Benthic Periphyton Chla† ꟷ 0.11 ꟷ -0.003 * * -0.12 0.49 6.25 2,9 0.02 

Epiphyte Chla† ꟷ ꟷ -1.48 0.002 * * 1.20 0.20 2.41 2,9 0.15 

Phytoplankton Chla† ꟷ ꟷ 1.40 0.001 * * -0.24 0.65 11.06 2,9 0.004 

Benthic Periphyton AFDM† -0.21 ꟷ ꟷ 0.001 * * 2.39 0.47 5.89 2,9 0.02 

Epiphyte AFDM ꟷ ꟷ -16.89 0.02 * * 10.44 0.20 2.39 2,9 0.15 

Phytoplankton AFDM ꟷ 0.95 ꟷ ꟷ * * -15.33 0.30 5.70 1,10 0.04 

Plot GPP† ꟷ ꟷ ꟷ ꟷ ꟷ * NA NA NA NA NA 

Plot ER‡ † ꟷ -0.08 ꟷ ꟷ * ꟷ 2.51 0.25 4.66 1,10 0.06 

Chla = chlorophyll a 
AFDM = ash free dry mass 
GPP = gross primary productivity 
ER = ecosystem respiration 
df = degrees freedom 
† log transformed 
‡ Converted to positive values from negative values 
ꟷ predictor not included in lowest AIC scored model 
* not included as a predictor for multiple linear regression analysis 
NA = not applicable, no model produced 
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Table 2.1: Locations, physical, and water characteristics of plots across sample dates 
Lake                      

(Latitude, Longitude) 
Sample 

Date 
Water + ice 
depth (m) 

Conductivity 
(mS cm-1) 

Light extinction 
coefficient 

DOC 
(mg/L) TDN (mg/L) NH4

+ (µg/L) NO3
-+NO2

- 
(µg/L) SRP (µg/L) 

             

 5/19/2017 1.60 0.020 1.398 11.59 0.339   1.8     1.6 0.9 

Thayers Lake 6/28/2017 1.76 0.020 1.368 14.30 0.408   4.0     5.0 0.9 

 10/08/2017 1.68 0.079 1.940 13.14 0.443   8.5     1.6 0.9 

(47.287142, 3/22/2018 0.83 + 0.75 0.540 1.815 ꟷ ꟷ 74.6   30.0 0.9 

-88.258384) 4/20/2018 0.77 + 0.75 0.510 1.277 ꟷ ꟷ 35.3   53.0 3.6 

 5/27/2018 1.49 0.023 ꟷ ꟷ ꟷ   2.0   14.0 0.9 

 7/22/2018 1.49 0.060 1.867 16.12 0.450   3.8     1.6 0.9 
              

 7/02/2017 1.58 ꟷ 2.571 15.11 0.389 20.6   25.0 6.6 

 9/10/2017 1.69 ꟷ 1.622 13.31 0.420 12.5     1.6 0.9 

Rice Lake 10/17/2017 1.39 0.045 1.922 12.25 0.417   9.6   31.0 0.9 

 2/22/2018 0.92 + 0.5 0.046 2.218 ꟷ ꟷ 19.4     1.6 6.7 

(47.161358, 3/08/2018 0.92 + 0.5 0.046 1.689 13.78 0.504 27.0     1.6 0.9 

-88.280696) 4/05/2018 0.75 + 0.6 0.510 1.288 ꟷ ꟷ   8.2 209.0 0.9 

 5/29/2018 1.6 ꟷ ꟷ 12.24 0.356   3.0     1.6 0.9 

 7/14/2018 1.53 0.029 2.401 ꟷ ꟷ 46.8   31.0 0.9 
            

Sample dates where measurements are missing is indicated by a dash (ꟷ) 
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Table 2.2: Simple linear regression models of primary producer responses for predictors across all plots.  

 Coefficients of Predictors     

Response Percent light at 1m depth Water Temperature Macrophyte standing crop† Intercept Multiple R2 F DF p 

Phytoplankton GPP 336.01 ꟷ ꟷ   -92.48 0.13 1.53 1,10 0.24 

Phytoplankton GPP ꟷ 45.32 ꟷ -517.46 0.38 7.30 1,12 0.02 

Epiphyte GPP 185.60 ꟷ ꟷ   -14.10 0.05 0.27 1,5 0.63 

Epiphyte GPP ꟷ -7.82 ꟷ  272.83 0.07 0.55 1,7 0.48 

Epiphyte Chla† ꟷ ꟷ 0.71     -0.78 0.29 2.92 1,7 0.13 

Epiphyte AFDM† ꟷ ꟷ 1.00     -1.23 0.69 15.70 1,7 0.005 

Benthic Periphyton Chla† ꟷ ꟷ 0.74      0.42 0.52 12.05 1,11 0.005 

Benthic Periphyton AFDM ꟷ ꟷ 23.26  216.30 0.06 0.76 1,11 0.40 

Chla = chlorophyll a 
AFDM = ash free dry mass 
GPP = gross primary productivity 
DF = degrees freedom 
† log transformed 
ꟷ predictor not included in model 
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Table 2.3: Stepwise multiple linear regression models selected for responses of primary producers across all plots. Best models were se-
lected for fit and parsimony by examining Akaike Information Criterion (AIC) scores. 

  Coefficients of Predictors  

Response Light Extinction 
Water Temper-

ature 
Macrophyte 

standing crop† 
Benthic Periph-

tyon AFDM Intercept 
Adjusted 

R2 F DF p 

Epiphyte GPP ꟷ ꟷ 294.8 * -293.8 0.33 3.99 1,5 0.10 

Phytoplankton GPP ꟷ 47.63 ꟷ * -661.33 0.34 6.25 1,9 0.03 

Benthic Periphyton Chla† ꟷ ꟷ 0.75 * 0.41 0.44 8.69 1,9 0.02 

Epiphyte Chla† ꟷ -0.06 ꟷ * 1.43 0.27 3.21 1,5 0.13 

Phytoplankton Chla† ꟷ 0.03 ꟷ * -0.05 0.35 5.86 1,8 0.04 

Benthic Periphyton AFDM ꟷ ꟷ ꟷ * NA NA NA NA NA 

Epiphyte AFDM† ꟷ ꟷ 1.00 * -1.15 0.78 22.11 1,5 0.005 

Phytoplankton AFDM† -0.38 0.01 ꟷ * 1.10 0.43 3.98 2,6 0.08 

Macrophyte standing crop ꟷ ꟷ * * NA NA NA NA NA 

Plot GPP ꟷ 0.07 0.78 * -0.76 0.57 6.99 2,7 0.02 

Plot ER‡ † ꟷ 0.07 0.82 -0.01 -0.40 0.61 5.66 3,6 0.03 

Chla = chlorophyll a 
AFDM = ash free dry mass 
GPP = gross primary productivity 
ER = ecosystem respiration 
DF = degrees freedom 
† log transformed 
‡ Converted to positive values from negative values 
□ predictor not included in lowest AIC scored model 
* not included as a predictor for multiple linear regression analysis 
NA = not applicable, no model produced  
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5 Figures 
 

 

 

Figure 1.1: Interactions among littoral primary producers and their limiting resources in 
lakes. Hierarchical levels are labeled in italics (left) and area delineated by horizontal 
dashed lines. Primary producers are in bold. Arrows determine directions of interactions 
among entities but do not differentiate between positive or negative effects.  
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Figure 1.2: Mean standing crops of macrophytes in paired invaded (INV) and uninvaded 
(UNINV) plots, scaled per m2 of plot surface area. Other macrophytes represents the sum 
of mean standing crops of all native macrophyte species in each plot.    
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Figure 1.3: NMS ordination of paired plots in species space. Shaded symbols represent 
invaded plots and unshaded symbols represent uninvaded plots for each respective water-
body (different shape for each; abbreviations in Table 1.1). Lines represent joint plots of 
macrophyte species variables (r2 cutoff = 0.40, Appendix F). Species shown are Vallis-
neria americana (Axis 1 R2 = 0.69, Axis 3 R2 = 0.10), Elodea canadensis (Axis 1 R2 = 
0.01, Axis 3 R2 = 0.74), IWM (Axis 1 R2 = 0.44, Axis 3 R2 = 0.18), Potomogeton rob-
binsii (Axis 1 R2 = 0.59, Axis 3 R2 = 0.00), and P. amplifolius (Axis 1 R2 = 0.51, Axis 3 
R2 = 0.13). Not shown are Chara spp. (Axis 2 R2 = 0.50), P. zosteriformis (Axis 2 R2 = 
0.45), and Najas guadalupensis (Axis 2 R2 = 0.50). 
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Figure 1.4: GPP measured in light-dark bottles and scaled per plot area of (a) epiphytes, (b) phytoplankton, and (c) benthic pe-
riphyton. Means ± 1SE are represented by symbols with error bars. Shaded symbols represent invaded plots and unshaded sym-
bols represent uninvaded plots for each respective waterbody (different shape for each; abbreviations in Table 1.1). Lines con-
necting symbols illustrate differences in paired invaded (INV) and uninvaded (UNINV) plots. Symbols are offset horizontally to 
aid in interpretation of error bars. 
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Figure 1.5: Standing crops of chlorphyll a and ash free dry mass (AFDM) for (a,d) epi-
phytes, (b,e) phytoplankton, and (c,f) benthic periphyton. Means ± 1SE are represented 
by symbols with error bars. Shaded symbols represent invaded plots and unshaded sym-
bols represent uninvaded plots for each respective waterbody (different shape for each; 
abbreviations in Table 1.1). Lines connecting symbols illustrate differences in paired in-
vaded (INV) and uninvaded (UNINV) plots. Symbols are offset horizontally to aid in in-
terpretation of error bars. 
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Figure 1.6: Mean (a) GPP, (b) ER, and (c) NPP rates of paired invaded (INV) and unin-
vaded (UNINV) plots measured using the open-water technique and averaged over de-
ployment periods. Means ± 1SE are represented by symbols with error bars. Shaded sym-
bols represent invaded plots and unshaded symbols represent uninvaded plots for each re-
spective waterbody (different shape for each; abbreviations in Table 1.1). Lines connect-
ing symbols illustrate differences in paired plots. Symbols are offset horizontally to aid in 
interpretation of error bars. 
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Figure 1.7: Portions of plot GPP by epiphytes, phytoplankton, benthic periphyton, and es-
timated macrophytes in paired invaded (INV) and uninvaded (UNINV) plots. Portions of 
GPP from macrophytes that were set to zero are indicated with (*); see section 1.2.6 for 
related methods. 
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Figure 2.1: Hypothesized trends of the combined productivity of all primary producers 
(a) and standing crops of littoral primary producers (b) across a typical year in north-tem-
perate lakes. The shaded background indicates when lakes would have ice cover. 
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Figure 2.2: Location of Rice and Thayers Lake in the Upper Peninsula of Michigan (a). Bathymetric maps and study locations of 
Rice and Thayers Lake (b). Lakes are drawn to scale, but true distance between lakes is not represented in (b). Depth contours are 
labeled in meters and adapted from Michigan DNR inland lake maps (2018). 
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Figure 2.3: Physical characteristics of plots from summer 2017 to summer 2018. The surface light detected at 1m depth and DO 
saturation are reported as percent on the second y-axis. The shaded background indicates when lakes had ice cover. 
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Figure 2.4: NMS ordination of plots in species space. Plots are depicted as circles for 
each respective waterbody and gray arrows indicate successional vectors between plots at 
sampled timepoints (plots dated). Inset in the lower left corner is the same NMS ordina-
tion with joint plots of macrophyte species variables (r2 cutoff = 0.30). Macrophytes spe-
cies explaining ordination space are Potamogeton amplifolius (Axis 1 R2 = 0.45, Axis 2 
R2 = 0.23), Myriophyllum sibiricum (Axis 1 R2 = 0.37, Axis 2 R2 = 0.17), aquatic moss 
spp. (Axis 1 R2 = 0.50, Axis 2 R2 = 0.00), Najas flexilis (Axis 1 R2 = 0.14, Axis 2 R2 = 
0.39), Vallisneria americana (Axis 1 R2 = 0.10, Axis 2 R2 = 0.46), and  M. humile (Axis 1 
R2 = 0.50, Axis 2 R2 = 0.11) (Appendix J).  
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Figure 2.5: Standing crops of epiphytes, phytoplankton, benthic periphyton, and macro-
phytes on sample dates from 2017-2018. Benthic periphyton values are graphed on the 
secondary y-axis for Chla and ash free dry mass (AFDM) standing crop. The shaded 
background indicates when lakes had ice cover.  
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Figure 2.6: Open water metabolism rates of GPP and ER in Rice and Thayers Lake from 
2017 to 2018. The shaded background indicates when lakes had ice cover. 
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Figure 2.7: GPP rates of epiphytes and phytoplankton on sample dates from 2017-2018. 
The shaded background indicates when lakes had ice cover. 
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A Appendix 

Appendix A: Water characteristics and nutrients of uninvaded (UNINV) and invaded (INV) plots in Chapter 1 

Plot Light extinction 
coefficient 

Water tempera-
ture (oC) 

Conductivity 
(mS cm-1) TDN (mg/l) DOC (mg/l) NO3

-+NO2
- (µg/l) NH4

+ (µg/l) SRP (µg/l) 

HSL-UNINV 0.563 23.91 0.244 0.444 7.27 6.0 18.11 0.89 

HSL-INV 0.612 22.31 0.243 0.446 7.48 1.6 24.08 0.89 

STHL-UNINV 1.277 22.37 0.179 0.542 14.89 9.0 9.89 0.89 

STHL-INV 1.190 22.14 0.179 0.577 14.32 1.6 16.80 11.10 

LCI-UNINV 0.395 20.67 0.208 0.187 3.05 30.0 8.46 0.89 

LCI-INV 0.366 20.35 0.209 0.218 3.21 71.0 6.72 2.00 

SLG-UNINV 1.545 18.21 0.125 0.305 9.15 4.0 1.84 0.89 

SLG-INV 0.989 18.98 0.124 0.342 9.17 46.0 3.99 3.10 

IRL-UNINV 1.647 20.32 0.074 0.523 13.33 5.0 26.92 0.89 

IRL-INV 0.990 20.83 0.073 0.533 11.89 6.0 12.00 0.89 

TCH-UNINV 1.050 20.15 0.150 0.418 8.05 14.0 7.32 0.89 

TCH-INV 0.882 20.99 0.149 0.259 6.70 71.0 7.64 8.10 
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Appendix B: Matrix of macrophyte species standing crops (g m-2) at study plots in Chapter 1 
 Species 

Plots 

Utricu-
laria 

macro-
rhiza 

Chara 
spp. 

P. rich-
ardso-

nii 

Cera-
tophyl-
lum de-

mer-
sum 

Ranun-
culus 
flam-
mula 

Vallis-
neria 

ameri-
cana 

Elodea 
cana-
densis 

IWM P. rob-
binsii 

P. zos-
ter-

formis 

Isoetes 
lacus-

tris 

P. am-
plifolius 

P. oak-
esi-

anus 

P. per-
foliatus 

Stucke
nia 

pecti-
nata 

Najas 
flexilis 

P. pu-
sillus 
spp. 

Najas 
guada-
lupen-

sis 

Isoetes 
tenella 

P. gra-
mineus 

P. 
vaseyi 

Ranun-
culas 
aquat-

ilis 

Bidens 
becki 

Heternt
hera 
dubia 

Nym-
phaea 

odorata 

HSL-INV 0 0.36 0 0 0 0 0 20.55 0 1.12 0 0 1.03 0 0 1.09 0 0.04 0 0.37 0 0 0 0 0 

STHL-INV 0 6.28 0 0 0 0 28.98 67.93 84.15 4.14 0 0 0 1.5 0 0 0 3.43 0 0 0 0 0 0 0 

TCH-INV 0 0 0 0 0 7.77 2.47 154.57 0 4.75 0 0 0 0 0.49 0 0.19 0 0 1.83 0 0 0.75 0 0 

SLG-INV 0.56 13.45 2.42 1.09 0 63.99 17.09 45.47 0 0 0 0 0 0 0 0 0 0 0 0 0.82 0.16 23.41 1.39 0 

LCI-INV 0 3.63 0 0.69 0 25.14 3.26 87.23 0 8.59 0 0 0 0 0 6.18 0 0 0 0.48 0 0 0 0 0 

IRL-INV 0 0 0 0 0 0 0 164.27 64.99 0 0 10.74 0 0 0 0 0 0 0 0 0 0 0 0 0 

HSL-NAT 0 109.59 0.77 0 0 0 0 5.27 0 2.66 0 0 0 0 0 0.13 0 1.97 0 0 0 0 0 0 0 

STHL-NAT 0.01 0 0 0 0 0.14 0.16 1.04 294.73 0 0 0 0 0 0 0 0 0 0 9.75 0 0 1.52 0 0.39 

TCH-NAT 0 0.03 0 0.03 0.31 7.38 0 0 0 0 0.43 0 0 0 0 0.05 0 0 0.8 6.48 0 0 0.13 0 0 

SLG-NAT 0 2.18 8.11 0.31 0 120.82 0.3 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0.37 0.01 0 

LCI-NAT 0 2.18 0 0 0 1.83 0 0 0 0 0 0 0 0 0 28.47 0 0 0 121.54 0 0 0 0.06 0 

IRL-NAT 0 2.54 0 0 0 0 0 4.34 15.96 0 0 60.62 0 0 0 0 0 0 0 0 0 0 0 0 0 

P. = Potamogeton 
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Appendix C: Reduced and logarithmic transformed matrix of macrophyte species used for NMS ordination analysis in Chapter 1 
 Species 

Plots Utricularia 
macrorhiza Chara spp. P. richardso-

nii 

Ceratophyl-
lum demer-

sum 

Vallisneria 
americana 

Elodea cana-
densis IWM P. robbinsii P. zoster-

formis P. amplifolius Najas flexilis Najas guada-
lupensis P. gramineus Bidens becki Heternthera 

dubia 

HSL-INV 0 2.56 0 0 0 0 4.31 0 3.05 0 3.04 1.57 2.56 0 0 

STHL-INV 0 3.78 0 0 0 4.46 4.83 4.93 3.62 0 0 3.54 0 0 0 

TCH-INV 0 0 0 0 3.89 3.39 5.19 0 3.68 0 0 0 3.26 2.88 0 

SLG-INV 2.75 4.12 3.38 3.04 4.81 4.23 4.66 0 0 0 0 0 0 4.37 3.14 

LCI-INV 0 3.56 0 2.84 4.40 3.51 4.94 0 3.93 0 3.79 0 2.69 0 0 

IRL-INV 0 0 0 0 0 0 5.22 4.81 0 4.03 0 0 0 0 0 

HSL-NAT 0 5.04 2.89 0 0 0 3.72 0 3.43 0 2.13 3.30 0 0 0 

STHL-NAT 0.81 0 0 0 2.14 2.14 3.02 5.47 0 0 0 0 3.99 3.18 0 

TCH-NAT 0 1.53 0 1.48 3.87 0 0 0 0 0 1.71 0 3.81 2.11 0 

SLG-NAT 0 3.34 3.91 2.50 5.08 2.47 0 0 0 0 2.15 0 0 2.56 1.15 

LCI-NAT 0 3.34 0 0 3.26 0 0 0 0 0 4.45 0 5.08 0 1.77 

IRL-NAT 0 3.40 0 0 0 0 3.64 4.20 0 4.78 0 0 0 0 0 
P. = Potamogeton 
Logarithmic transformation follows this equation 𝑏𝑏𝑙𝑙𝑖𝑖 =  log10 �𝑥𝑥𝑙𝑙𝑖𝑖 + log−1(Int(log (Min(𝑥𝑥)))� − (Int(log (Min(x))) where: Min(x) is the smallest nonzero value in the data and Int(x) is a function that truncates x to an integer with no decimal 
places (McCune and Grace 2002). 
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Appendix D: Diversity indices of the macrophyte assemblages for uninvaded (UNINV) and in-
vaded (INV) plots in Chapter 1 

Plot Species richness Evenness Shannon’s diversity 
index 

Simpson’s diversity 
index 

HSL-UNINV 6 0.23 0.44 0.18 

HSL-INV 7 0.36 0.70 0.30 

STHL-UNINV 8 0.10 0.21 0.08 

STHL-INV 7 0.63 1.32 0.67 

LCI-UNINV 5 0.38 0.62 0.34 

LCI-INV 8 0.55 1.15 0.54 

SLG-UNINV 8 0.18 0.37 0.16 

SLG-INV 11 0.67 1.61 0.75 

IRL-UNINV 4 0.58 0.81 0.43 

IRL-INV 3 0.69 0.75 0.46 

TCH-UNINV 9 0.52 1.13 0.60 

TCH-INV 8 0.24 0.50 0.20 
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Appendix E: Pairwise comparison of variables for stepwise multiple linear regressions in Chapter 1. Pearson correlations (r) are on the 
lower left and p values listed are gray on the upper right shaded in grey for each pairwise comparison. Significant collinearity was deter-
mined as p ≤ 0.05 (bold) 
 

Light ex-
tinction 

Water 
temper-

ature 

Conduc-
tivity TDN DOC NO3-

+NO2- † NH4+ † 

Macro-
phyte 

standing 
crop 

Benthic 
periphy-

ton 
Chla† 

Epi-
phyte 
Chla† 

Phyto-
plankton 

Chla† 

Benthic 
periphy-

ton 
AFDM† 

Epi-
phyte 

AFDM† 

Phyto-
plankton 
AFDM† 

Benthic 
periphy-
ton GPP 

Epi-
phyte 
GPP† 

Phyto-
plankton 

GPP 

GPP 
plot† 

ER 
plot†‡ 

Light extinction * 0.25 0.01 0.08 0.00 0.17 0.70 0.65 0.56 0.89 0.09 0.20 0.35 0.86 0.35 0.68 0.51 0.82 0.92 
Water temperature -0.36 * 0.04 0.15 0.66 0.22 0.01 0.70 0.23 0.34 0.19 0.45 0.40 0.04 0.21 0.36 0.01 0.95 0.06 

Conductivity -0.72 0.61 * 0.45 0.11 0.97 0.51 0.54 0.53 0.31 0.22 0.27 0.73 0.20 0.08 0.46 0.32 0.72 0.32 
TDN 0.52 0.45 -0.24 * 0.00 0.01 0.05 0.54 0.99 0.27 0.00 0.74 0.14 0.11 0.99 0.14 0.09 0.90 0.25 
DOC 0.79 0.14 -0.49 0.88 * 0.05 0.39 0.17 0.42 0.55 0.00 0.87 0.21 0.42 0.39 0.37 0.58 0.86 0.44 

NO3-+NO2- † -0.43 -0.38 -0.01 -0.71 -0.58 * 0.13 0.71 0.35 0.22 0.13 0.17 0.10 0.11 0.40 0.23 0.05 0.57 0.46 
NH4+ † -0.12 0.75 0.21 0.58 0.27 -0.46 * 0.64 0.07 0.32 0.09 0.89 0.24 0.22 0.32 0.22 0.01 0.17 0.63 

Macrophyte standing crop 0.15 0.13 -0.20 0.20 0.43 0.12 -0.15 * 0.03 0.19 0.17 0.05 0.38 0.96 0.04 0.20 0.59 0.32 0.74 
Benthic periphyton Chla† -0.19 0.37 0.20 0 -0.25 -0.29 0.54 -0.61 * 0.65 0.94 0.06 0.65 0.80 0.05 0.73 0.74 0.23 0.76 

Epiphyte Chla† -0.04 -0.30 -0.32 -0.34 -0.19 0.38 -0.31 0.40 -0.15 * 0.65 0.53 0.00 0.04 0.25 0.00 0.07 0.35 0.04 
Phytoplankton Chla† 0.51 0.41 -0.38 0.80 0.80 -0.47 0.51 0.42 0.03 -0.15 * 0.75 0.28 0.33 0.22 0.49 0.31 0.44 0.30 
Benthic periphyton 

AFDM† -0.40 0.24 0.34 -0.11 -0.05 0.43 0.05 0.58 -0.56 0.20 -0.10 * 0.42 0.78 0.52 0.58 0.49 0.78 0.85 

Epiphyte AFDM† -0.30 -0.27 -0.11 -0.45 -0.39 0.50 -0.37 0.28 -0.15 0.92 -0.34 0.26 * 0.03 0.40 0.00 0.08 0.42 0.10 
Phytoplankton AFDM† -0.06 0.60 0.40 0.49 0.26 -0.49 0.38 -0.02 0.08 -0.60 0.31 -0.09 -0.62 * 0.27 0.02 0.01 0.73 0.08 

Benthic periphyton GPP -0.30 0.39 0.53 0 -0.27 -0.27 0.31 -0.61 0.57 -0.36 -0.38 -0.21 -0.27 0.34 * 0.32 0.08 0.64 0.32 
Epiphyte GPP† -0.13 -0.29 -0.24 -0.45 -0.29 0.37 -0.38 0.40 -0.11 0.95 -0.22 0.18 0.91 -0.67 -0.32 * 0.09 0.41 0.13 

Phytoplankton GPP -0.21 0.71 0.32 0.51 0.18 -0.57 0.70 -0.18 0.53 -0.54 0.32 -0.22 -0.52 0.71 0.53 -0.51 * 0.80 0.07 
GPP plot† -0.07 -0.02 0.12 0.04 0.06 -0.18 -0.43 0.32 -0.37 0.15 -0.25 0.09 0.26 0.11 0.15 0.26 0.08 * 0.39 

ER plot†‡ 0.03 -0.56 -0.31 -0.36 -0.25 0.24 -0.16 -0.11 -0.10 0.59 -0.33 0.06 0.50 -0.53 -0.32 0.47 -0.54 -0.27 * 

Chla = chlorophyll a 
AFDM = ash free dry mass 
GPP = gross primary productivity 
ER = ecosystem respiration 
† log transformed 
‡ Converted to positive values from negative values 
* Not applicable 
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Appendix F: Correlations of macrophyte species with NMDS ordination axes in Chapter 1 
 Axis 1 Axis 2 Axis 3 

Species r R2 r R2 r R2 

Utricularia macrorhiza -0.09 0.01  0.26 0.07  0.57 0.32 

Chara spp. -0.09 0.01 -0.71 0.50  0.13 0.02 

Potamogeton richardsonii -0.27 0.07 -0.29 0.08  0.54 0.29 

Ceratophyllum demersum -0.54 0.29  0.04 0.00  0.47 0.22 

Vallisneria americana -0.83 0.69  0.29 0.08  0.32 0.10 

Elodea canadensis -0.11 0.01  0.09 0.01  0.86 0.74 

Myriophyllum spicatum  0.66 0.44 -0.17 0.03  0.42 0.18 

Potamogeton robbinsii  0.77 0.59  0.48 0.23  0.00 0.00 

Potamogeton zosteriformis  0.10 0.01 -0.67 0.45  0.26 0.07 

Potamogeton amplifolius  0.72 0.51  0.29 0.08 -0.36 0.13 

Najas flexilis -0.57 0.33 -0.51 0.26 -0.49 0.24 

Najas guadalupensis  0.35 0.12 -0.69 0.48  0.18 0.03 

Potamogeton gramineus -0.56 0.32  0.27 0.07 -0.46 0.21 

Bidens becki -0.43 0.19  0.52 0.27  0.61 0.37 

Heteranthera dubia -0.39 0.15  0.07 0.01  0.28 0.08 
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Appendix G: Matrix of macrophyte species standing crops (g m-2) at study plots in Chapter 2 
  Species 

Plots Date 

Myriophyl-
lum al-
terniflo-

rum 

Aquatic 
Moss 
spp. 

Chara 
spp. 

Utricu-
laria 

macro-
rhiza 

Ranun-
culus 
flam-
mula 

Vallis-
neria 

ameri-
cana 

Utricu-
laria in-
terme-

dia 

Spon-
gilla 
spp. 

Isoetes 
lacustris 

Utricu-
laria 
pur-

purea 

Po-
tamo-
geton 

amplifo-
lious 

Myriophyl-
lum hu-

mile 

Myriophyl-
lum sibiri-

cum 

Po-
tamo-
geton 
epihy-
drus 

Elocharis 
robbinsii 

Najas 
flexilis 

Utricu-
laria mi-

nor 

Po-
tamo-
geton 
gra-

mineus 

Myriophyl-
lum heter-
ophyllum 

Bidens 
becki 

Ny-
phmaea 
odorata 

Thayers Lake 7/28/2017 0.29 0 0.04 0 0 0 0 0 0 0 18.58 10.35 0 0 0.25 0 0 2.42 0 0.58 0 

Thayers Lake 10/8/2017 0 0 6.41 0 0 0 0 0.77 0 0 66.42 13.66 0 0 5.79 0 0 0 0 9.71 0 

Thayers Lake 3/22/2018 0 0 11.18 0 0 0 0 0 0 0 11.28 6.29 0 0 0 0 0 0 0 1.31 0 

Thayers Lake 4/20/2018 0 0 12.38 0 0 0 0 0 0 0 18.33 7.19 0 0 0 0 0 0 0 0 0 

Thayers Lake 5/29/2018 0 0 5.04 0 0 0 0 0 0 0 45.14 3.84 0 0 6.67 0 0 0 0 0.94 0.46 

Thayers Lake 7/18/2018 0 0 1.86 0 0 0 0.02 0 0 0 20.48 14.60 0 0 4.35 0 0 0 0 3.79 0 

Rice Lake 7/3/2017 0 0 12.24 0 0 0.50 0 0 0 0 10.31 0 0 1.47 0 0 0 0 0 0 0 

Rice Lake 9/10/2017 0 0 3.73 0 0 3.76 0 0 0.04 2.61 6.68 0 0 0 0 0.05 0 0 3.32 0 0 

Rice Lake 10/25/2017 0 1.03 1.87 0 0 0 0 0 0.23 0 17.37 0 0 0 0 0 0 0 0 0 0 

Rice Lake 3/8/2018 0 1.09 0.20 0 0 0 0.55 0 0 0 0.03 0 0.49 0 0 0 0 0 0 0 0 

Rice Lake 4/11/2018 0 3.73 0.85 0 0 0 0 0 0.11 0 0 0 0 0 0 0 0 0 0 0 0 

Rice Lake 5/29/2018 0 5.35 1.32 0 0.10 0 0 0 0.75 0 2.94 0 0 0 0 0 0.02 0 0 0 0 

Rice Lake 7/19/2018 0 2.13 0.78 0.29 0 4.17 0 0 0.07 0 0.05 0 0.14 0 0 0.09 0 0 0 0 0 
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Appendix H: Diversity indices of the macrophyte assemblages for uninvaded (UNINV) and in-
vaded (INV) plots in Chapter 2 

Plot Date Species rich-
ness Evenness Shannon’s diver-

sity index 
Simpson’s diver-

sity index 
Thayers Lake 7/28/2017 7 0.53 1.04 0.57 

Thayers Lake 10/8/2017 6 0.64 1.15 0.55 

Thayers Lake 3/22/2018 4 0.87 1.20 0.68 

Thayers Lake 4/20/2018 3 0.94 1.03 0.62 

Thayers Lake 5/29/2018 6 0.53 0.95 0.45 

Thayers Lake 7/18/2018 6 0.72 1.29 0.67 

Rice Lake 7/3/2017 5 0.60 0.96 0.57 

Rice Lake 9/10/2017 7 0.81 1.58 0.78 

Rice Lake 10/25/2017 4 0.40 0.56 0.27 

Rice Lake 3/8/2018 5 0.80 1.28 0.68 

Rice Lake 4/11/2018 3 0.53 0.58 0.33 

Rice Lake 5/29/2018 6 0.67 1.21 0.64 

Rice Lake 7/19/2018 8 0.60 1.24 0.62 
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Appendix I: Pairwise comparison of variables for stepwise multiple linear regressions in Chapter 2. Pearson correlations (r) are on the lower 
left and p values listed are gray on the upper right shaded in grey for each pairwise comparison. Significant collinearity was determined as p 
≤ 0.05 (bold) 
 

% light 
at 1m 
depth 

Light 
extinc-

tion 

Water 
tem-
pera-
ture 

Con-
ductiv-

ity† 
NH4

+† 

Macro-
phyte 
stand-

ing 
crop† 

Phyto-
plank-

ton 
Chla† 

Epi-
phyte 
Chla† 

Benthic 
periph-

yton 
Chla† 

Phyto-
plank-

ton 
AFDM† 

Epi-
phyte 

AFDM† 

Benthic 
periph-

yton 
AFDM 

Phyto-
plank-

ton 
GPP 

Epi-
phyte 
GPP 

Plot 
GPP 

Plot 
ER† 

% light at 1m depth * 0.54 0.00 0.19 0.07 0.11 0.00 0.56 0.16 0.25 0.68 0.10 0.24 0.63 0.01 0.00 

Light extinction 0.20 * 0.17 0.46 0.37 0.84 0.26 0.60 0.41 0.10 0.41 0.40 0.24 0.65 0.28 0.24 

Water temperature 0.88 0.42 * 0.00 0.02 0.53 0.01 0.09 0.75 0.81 0.18 0.41 0.08 0.50 0.00 0.00 

Conductivity† -0.46 -0.26 -0.80 * 0.04 0.58 0.30 0.01 0.28 0.71 0.19 0.71 0.80 0.05 0.33 0.27 

NH4
+ † -0.54 0.28 -0.60 0.62 * 0.34 0.31 0.75 0.56 0.91 0.95 0.86 0.26 0.75 0.17 0.15 

Macrophyte standing 
crop† 0.51 0.07 0.19 0.20 -0.29 * 0.70 0.13 0.01 0.51 0.01 0.40 0.17 0.08 0.07 0.11 

Phytoplankton Chla† 0.79 0.37 0.71 -0.37 -0.31 0.13 * 0.22 0.10 0.14 0.91 0.36 0.33 0.39 0.02 0.05 

Epiphyte Chla† 0.27 -0.24 -0.60 0.92 0.12 0.54 0.45 * 0.02 0.19 0.01 0.58 0.46 0.01 0.14 0.16 

Benthic periphyton Chla† 0.44 -0.26 0.09 0.36 -0.17 0.72 0.48 0.76 * 0.04 0.12 0.12 0.33 0.00 0.10 0.31 

Phytoplankton AFDM† 0.40 -0.55 0.08 0.14 -0.04 0.23 0.48 0.56 0.61 * 0.15 0.04 0.87 0.34 0.43 0.77 

Epiphyte AFDM† 0.19 -0.37 -0.49 0.62 -0.02 0.83 0.04 0.83 0.56 0.60 * 0.69 0.40 0.03 0.18 0.38 
Benthic periphyton 
AFDM 0.49 -0.27 0.24 0.13 -0.05 0.25 0.28 -0.21 0.44 0.60 -0.15 * 0.45 0.90 0.41 0.47 

Phytoplankton GPP 0.36 0.37 0.49 -0.09 -0.32 0.40 0.30 -0.29 0.28 -0.05 -0.32 0.22 * 0.93 0.10 0.14 

Epiphyte GPP 0.23 -0.21 -0.26 0.81 -0.13 0.60 0.33 0.82 0.85 0.42 0.72 -0.05 0.04 * 0.03 0.07 

Plot GPP 0.76 0.36 0.75 -0.32 -0.41 0.54 0.66 0.57 0.48 0.27 0.53 0.25 0.47 0.74 * 0.00 

Plot ER ‡ † 0.78 0.38 0.78 -0.32 -0.42 0.48 0.57 0.55 0.31 0.10 0.36 0.22 0.43 0.67 0.89 * 
Chla = chlorophyll a 
AFDM = ash free dry mass 
GPP = gross primary productivity 
ER = ecosystem respiration 
† log transformed 
‡ Converted to positive values from negative values 
* Not applicable 
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 Appendix J: Correlations of macrophyte species with NMDS ordination axes in Chapter 2 

 Axis 1 Axis 2 

Species r R2 r R2 

Myriophyllum alterniflorum -0.30 0.09 0.01 0 

Aquatic Moss spp. 0.71 0.50 0.03 0 

Chara spp. -0.50 0.25 -0.26 0.07 

Utricularia macrorhiza 0.42 0.18 -0.38 0.14 

Ranunculus flammula 0.24 0.06 0.06 0 

Vallisneria americana 0.32 0.10 -0.68 0.46 

Utricularia intermedia 0.49 0.24 0.53 0.28 

Spongilla spp. -0.27 0.07 0.42 0.18 

Isoetes lacustris 0.33 0.11 0.01 0 

Utricularia purpurea 0.01 0 -0.50 0.25 

Potamogeton amplifolious -0.67 0.45 0.48 0.23 

Myriophyllum humile -0.71 0.50 0.33 0.11 

Myriophyllum sibiricum 0.61 0.37 0.41 0.17 

Potamogeton epihydrus -0.13 0.02 -0.32 0.10 

Elocharis robbinsii -0.49 0.24 0.53 0.29 

Najas flexilis 0.37 0.14 -0.63 0.39 

Utricularia minor 0.24 0.06 0.06 0 

Potamogeton gramineus -0.3 0.09 0.01 0 

Myriophyllum heterophyllum 0.01 0 -0.50 0.25 

Bidens becki -0.43 0.19 0.45 0.20 

Nyphmaea odorata -0.23 0.05 0.30 0.09 
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	Abstract

	Climate change and species invasion are two agents of global change altering aquatic ecosystems worldwide. Submerged aquatic macrophytes control lake ecosystem processes through their direct and indirect interactions with other primary producers, but ...

	1 Effects of Invasive Watermilfoil on Primary Production in Littoral Zones of North-Temperate Lakes
	1.1 Introduction
	Eurasian watermilfoil (Myriophyllum spicatum) is an invasive aquatic macrophyte which has spread across the contiguous United States over the past century (Smith and Barko 1990) from source populations traced back to Asia (Moody et al. 2016). Eurasian...
	Submerged macrophytes directly and indirectly interact with other primary producers in lake littoral zone, and through these interactions can control lake ecosystem processes (Carpenter and Lodge 1986). In a study of lakes in Wisconsin, areas of litto...
	IWM invasion in littoral zones may alter the biomass and production of other primary producers either by altering competition for light and nutrients, or by creating a novel growth substratum for attached algae. IWM invasion can change the physical st...
	The aim of this study was to determine if presence of IWM in littoral zones alters standing crops and rates of primary production by all primary producers. To address this question, we conducted a comparative study between plots where IWM was present ...

	1.2 Methods
	1.2.1 Study area
	This field study was conducted July – September 2017 in littoral zones of 6 lakes in the Upper Peninsula and northern Lower Peninsula of Michigan. Waterbodies with IWM were selected based on personal observation and Michigan Invasive Species Investiga...
	To describe the physical and chemical properties on each sampling date, we used a YSI 6920 sonde (YSI Incorporated, Yellow Springs, Ohio) to measure vertical profiles of temperature ( C), conductivity (mS cm-1), optical dissolved oxygen (ODO) saturati...

	1.2.2 Collection of primary producers
	At each plot, aboveground macrophyte biomass was collected using fixed area sampling techniques. A 16.5 cm diameter double sided rake was lowered vertically to the lake bottom (Johnson and Newman 2011) and spun 1 revolution to collect a 0.214 m2 sampl...
	Sampling areas were determined for each primary producer to permit later scaling of production and standing crop measurements to the areal (whole-plot area) rates. The area of rake collections (m2) was the sampling area for macrophytes. Epiphyte sampl...

	1.2.3 Bottle production estimates
	Production estimates for phytoplankton, epiphytes, and benthic periphyton were performed by placing collected primary producers suspended in lake water into 300 mL BOD (biological oxygen demand) bottles and sealing without any air bubbles. For each pr...
	To measure dissolved gas concentrations in the BOD bottles (all initials, samples, and blanks), triplicate water samples were collected by siphoning into 12 mL Exetainers (Labco, Lampeter, Wales, UK) and preserving with zinc chloride (0.67 g/L final c...
	Eq. 1     NPP =,,, ,,O-2.:Ar-𝑙𝑖𝑔ℎ𝑡..−,,,O-2.:Ar-𝑖𝑛𝑖𝑡𝑖𝑎𝑙...∗,Ar-𝑠𝑎𝑡. ∗ BOD water volume-sampling area∗ duration of incubation.
	Eq.2          R =,,, ,,O-2.:Ar-𝑖𝑛𝑖𝑡𝑖𝑎𝑙..−,,,O-2.:Ar-𝑑𝑎𝑟𝑘...∗,Ar-𝑠𝑎𝑡. ∗ BOD water volume-sampling area∗ duration of incubation.
	For each primary producer, GPP was calculated as mean NPP subtracted from the mean R. Benthic periphyton GPP rates were adjusted for phytoplankton in lake water by subtracting blank GPP rates, while epiphyte GPP rates were adjusted by subtracting phyt...

	1.2.4 Primary producer standing crop measurement
	Macrophytes from twist rake samples were separated and identified to species using Fasset (1957) and Skawinski (2014), then dried at 60 C for 48 hours to constant mass to determine dry weight. Species of Chara and Drepanocladus were indistinguishable ...
	To determine standing crops of epiphytes, phytoplankton and benthic periphyton, subsamples from each BOD bottle used for the production estimates were filtered onto pre-ashed GF/F filters (0.7 μm). Filters were frozen until laboratory analysis of chlo...

	1.2.5 Open water metabolism
	At the center of each plot, we deployed a YSI 6920 sonde or MiniDOT logger (PME, Vista, California) in conjunction with surface mounted Hobo light and temperature pendant loggers (Onset, Bourne, Massachusetts) for 3-9 days spanning the day(s) of prima...
	Eq. 3      ,𝑂-2,,𝑡..= ,𝑂-2,,𝑡−1..+,,𝐺𝑃𝑃-𝑧.×,,𝐿-(𝑡−1).-,,𝐿-24ℎ𝑟....+,𝐸𝑅×∆𝑡-𝑧.+,𝐾-,𝑂-2..×∆𝑡×,,𝑂-2𝑠𝑎𝑡,(𝑡−1).−,𝑂-2,(𝑡−1)..
	In this equation, GPP and ER are positive and negative rates of O2 production, respectively (g O2 m-2 d-1), L is irradiance (lux), KO2 is temperature-corrected O2 gas exchange rate (d-1), and O2sat is O2 saturation concentration (g O2 m-3), and the de...

	1.2.6 Production mass balance estimates
	The components of GPP attributed to different primary producers (phytoplankton, epiphytes, benthic periphyton) were calculated as the daily GPP of each primary producer group divided by the average daily GPP of the plot. HSL-UNINV and IRL-UNINV did no...

	1.2.7 Statistical analyses
	To assess the integrity of our paired plot selection, plot and water characteristics along with IWM and native macrophyte standing crops were compared using two-sided paired t-tests in R 3.4.4 (R Core Team 2018). To describe the species structure of t...
	Comparisons of invaded and uninvaded plots were performed using paired t-tests in R 3.4.4 (R Core Team 2018). When testing hypotheses that macrophyte and epiphyte standing crops will be higher in invaded plots vs. uninvaded plots, plot GPP and ER rate...
	Stepwise multiple linear regression performed in R 3.4.4 (R Core Team 2018) was used to identify significant predictors of phytoplankton, epiphyte, and benthic periphyton standing crops and primary production, as well as plot GPP and ER rates. Predict...


	1.3 Results
	1.3.1 Comparison of study sites
	Site and water characteristics were similar but macrophyte assemblages of plots were different between pairs of invaded and uninvaded plots. Invaded plots and uninvaded plots had similar depths (2.1 m ± 0.2 vs. 1.8 m ± 0.2, paired t-test, t = 2.05, df...

	1.3.2 Primary production rates
	GPP of primary producers was similar between invaded and uninvaded plots, but across all plots GPP for benthic periphyton and phytoplankton were higher in in warmer water. GPP rates of epiphytes, phytoplankton, and benthic periphyton were not signific...

	1.3.3 Standing Crops
	Standing crops of primary producers were similar between invaded and uninvaded plots. Total macrophyte standing crops in study plots ranged from 16.6 - 307.7 g m-2 (Figure 1.2). Although we hypothesized higher total macrophyte biomass in invaded plots...
	Stepwise multiple linear regression identified significant models for Chla and AFDM of benthic periphyton and phytoplankton. Benthic periphyton Chla was positively related to water temperature and negatively related to macrophyte standing with R2adj =...

	1.3.4 Open water metabolism
	Plot GPP and ER were similar between invaded and uninvaded plots. Plots had a wider range of ER (-2.8 to -12.5 g O2 m-2 d-1) than GPP rates (1.1 – 7.7 g O2 m-2 d-1). GPP (paired t-test, t = 0.62, df = 5, p = 0.28) and ER (paired t-test, t = 0.63, df =...

	1.3.5 Production mass balance
	Mass balance analysis to determine the contributions of GPP from different primary producers revealed that contributions differed among lakes based on observations of canopy development in the study plots. Macrophytes (paired t-test, t = 1.35, df = 5,...


	1.4 Discussion
	We found that IWM had limited effects on primary producer standing crops and rates of primary production across our north-temperate study lakes. Contrary to our hypotheses that IWM presence would lead to higher macrophyte and epiphyte standing crops, ...
	We expected to observe large differences in macrophyte and associated epiphyte standing crops between invaded and uninvaded plots, particularly because we sampled late in the summer when macrophytes tend to reach their highest biomasses. We observed t...
	It is also unlikely that limiting factors of nutrients or the interaction between primary producers were different between paired invaded vs. uninvaded plots in our study. Physical and water characteristics that commonly limit production rates like n...
	IWM dominance of macrophyte assemblages was generally low in the north-temperate lakes in this study. The distribution of species follows a universal pattern that holds true even for invasive species; species are commonly found in low abundances in mo...


	2 Seasonal Dynamics of Primary Production in Littoral Zones of North-Temperate Lakes
	2.1 Introduction
	A better understanding of seasonal ecosystem dynamics is essential to estimate and predict effects of climate change on ecological processes in north-temperate lakes. Anthropogenic climate change has increased water temperatures in aquatic systems, an...
	The littoral zones of lakes host diverse groups of primary producers which are important to whole lake productivity. These primary producers include attached algae, aquatic plants (macrophytes), and suspended phytoplankton. Phytoplankton are small fre...
	Seasonal patterns of growth and production are key for understanding the dynamics of the entire community of primary producers in these zones. In temperate climates, the overall primary production in lakes drops in autumn and into the winter, returnin...
	The aim of this project was to fill key knowledge gaps of the seasonal dynamics of littoral primary producers including winter. We conducted a field study in two lakes to measure whole-plot production rates using open water metabolism, the standing cr...

	2.2 Methods
	2.2.1 Study area
	This field study was conducted July 2017 – July 2018 in littoral zones of 2 small inland lakes in the Upper Peninsula of Michigan (Figure 2.2a). Lakes were selected based abundant littoral habitat and availability of public winter access with stabile ...
	To describe the physical and chemical properties on each sampling date, we used a YSI 6920 sonde (YSI Incorporated, Yellow Springs, Ohio) to measure vertical profiles of temperature ( C), conductivity (mS cm-1), optical dissolved oxygen (ODO) saturati...

	2.2.2 Open water metabolism
	At the center of each plot, we deployed a YSI 6920 sonde or MiniDOT logger (PME, Vista, California) for 3-10 full days spanning each sampling period. Sensors were programmed to log dissolved oxygen and temperature at 10-minute intervals. Photosyntheti...
	𝐸𝑞.4     ,𝑂-2,,𝑡..= ,𝑂-2,,𝑡−1..+,,𝐺𝑃𝑃-𝑧.×,,𝐿-(𝑡−1).-,,𝐿-24ℎ𝑟....+,𝐸𝑅×∆𝑡-𝑧.+,𝐾-,𝑂-2..×∆𝑡×,,𝑂-2𝑠𝑎𝑡,(𝑡−1).−,𝑂-2,(𝑡−1)..
	In this equation, GPP and ER are positive and negative rates of O2 production, respectively (g O2 m-2 d-1), L is light data as PAR, KO2 is temperature-corrected O2 gas exchange rate (d-1), and O2sat is O2 saturation concentration (g O2 m-3), and the d...

	2.2.3 Collection of primary producers
	Within each plot, aboveground macrophyte biomass was collected using fixed area sampling techniques. A 16.5 cm diameter double sided rake was lowered vertically to the lake bottom (Johnson and Newman 2011) and spun 1 revolution to collect a 0.214 m2 s...
	Sampling areas were determined for each primary producer to permit later scaling of production and standing crop measurements to the areal (whole-plot area) rates. The area of rake collections (m2) was the sampling area for macrophytes. Epiphyte sampl...

	2.2.4 Bottle production estimates
	Production estimates for phytoplankton, epiphytes, and benthic periphyton were performed by placing primary producers suspended in lake water into 300 mL BOD (biological oxygen demand) bottles and sealing without any air bubbles. For each primary prod...
	To measure dissolved gas concentrations in the BOD bottles (all initials, samples, and blanks), triplicate water samples were collected by siphoning into 12 mL Exetainers (Labco, Lampeter, Wales, UK) and preserving with zinc chloride (0.67 g/L final c...
	Eq.5     NPP =,,, ,,O-2.:Ar-𝑙𝑖𝑔ℎ𝑡..−,,,O-2.:Ar-𝑖𝑛𝑖𝑡𝑖𝑎𝑙...∗,Ar-𝑠𝑎𝑡. ∗ BOD water volume-duration of incubation.
	Eq.6          R =,,, ,,O-2.:Ar-𝑖𝑛𝑖𝑡𝑖𝑎𝑙..−,,,O-2.:Ar-𝑑𝑎𝑟𝑘...∗,Ar-𝑠𝑎𝑡. ∗ BOD water volume-duration of incubation.
	For each primary producer, GPP was calculated as mean NPP subtracted from the mean R. Benthic periphyton GPP rates were adjusted for phytoplankton in lake water by subtracting blank GPP rates, while epiphyte GPP rates were adjusted by subtracting phyt...

	2.2.5 Primary producer standing crop measurements
	Macrophytes from twist rake samples were separated and identified to species using Fasset (1957) and Skawinski (2014), then dried at 60 C for 48 hours to constant mass to determine dry weight. Species of Chara and Drepanocladus were indistinguishable ...
	To determine standing crops of epiphytes, phytoplankton and benthic periphyton, subsamples from each BOD bottle used for the production estimates were filtered onto pre-ashed GF/F filters (0.7 μm).  Filters were frozen until laboratory analysis of chl...

	2.2.6 Statistical Analyses
	To describe the species structure of the macrophyte assemblages through the study period we used Non-metric Multidimensional Scaling (NMS) in PC-ORD v7.07 (McCune and Mefford 2018). A NMS ordination was resolved using “slow and thorough” defaults, whi...
	Seasonal trends in individual lakes were graphically analyzed and descriptive statistics calculated to assess the hypotheses outlined above. To evaluate whether production was linked to seasonal changes in water temperature and light availability, sim...
	To evaluate other possible environmental factors that could be related to rates of productivity that were not explicitly mentioned in the hypotheses, we performed stepwise multiple linear regressions to identify significant predictors of production an...


	2.3 Results
	2.3.1 Site Characteristics
	Water levels fluctuated by 0.3m in both lakes across seasons. Ice depth was 0.75m on Thayers Lake at the end of winter and 0.5-0.6 m on Rice Lake (Table 2.1). Water temperature, percent DO saturation, and the percent of surface irradiance at 1m water...

	2.3.2 Standing Crops
	The species structure of macrophyte assemblages was different between Rice and Thayers Lake. The most common macrophyte species in Rice Lake in order were Potamogeton amplifolius, Myriophyllum humile, Chara spp., Elocharis robinsii, and Bidens becki. ...
	Standing crops and the species structure of macrophyte assemblages in Rice and Thayers Lake changed seasonally. Winter macrophyte standing crops were 14% and 33% of the maximum standing crops for Rice and Thayers Lakes.  In Rice Lake, macrophyte stand...
	Standing crops of other littoral primary producers changed seasonally across the study period in relation to environmental conditions and macrophyte standing crops. We had hypothesized that epiphyte standing crops would mirror trends in macrophyte sta...

	2.3.3 Open water metabolism
	Whole-plot rates of GPP and ER were lowest in the winter, and increased into the following summer. Winter rates of GPP were equal to 4% and 8% of the highest GPP rates in Rice Lake and Thayers Lake, respectively. Winter ER rates were 4% of the highest...

	2.3.4 Primary production rates
	GPP of primary producers were higher in the summer and autumn, and lowest in the winter. In both lakes, phytoplankton GPP was highest during the summer, while epiphyte GPP was highest in the autumn (Figure 2.7). GPP rates of zero occurred across seaso...


	2.4 Discussion
	While studying primary producers in north-temperate lakes across a full year, we found that standing crops changed seasonally and GPP rates of plots and individual primary producer groups were positively related to water temperatures across seasons. P...
	We hypothesized that standing crops of phytoplankton would increase during spring and autumn water column mixing periods. We also hypothesized that macrophyte and epiphyte standing crops would increase across the summer until autumn senescence, and be...
	Rates of GPP measured in this study were lowest in the winter and increased into the summer and autumn, and were significantly related to water temperatures. It is well established that temperature effects rates of biochemical reactions that comprise ...
	Our estimates of NPP and R using bottle assays during winter were hindered by methodological shortcomings and the physical properties of the systems we were sampling. In some lakes, oxygen concentrations slowly decrease through the winter under ice du...
	For a variety of reasons, what happens under the ice has often been dismissed as ecologically unimportant relative to the warmer summer growing periods, when most limnological research occurs (Powers and Hampton 2016). We found in the littoral zones o...
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