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Abstract 

Exercise with blood flow restriction (BFR) allows healthy, clinical, and athletic 

populations to improve their strength and exercise capacity. The main advantages 

exercise with BFR has over traditional training are: 1) increases in muscle size, strength, 

and exercise capacity are elicited at low training loads, 2) these adaptations occur faster 

with blood flow restriction, 3) increases in muscle size and strength can be stimulated 

during both resistance and aerobic exercise. Currently, there are no standardized 

guidelines for exercise with BFR. I used a variety of experimental techniques including 

ultrasound, near-infrared spectroscopy, expired air analysis, electrical stimulation, and 

dual-energy X-ray absorptiometry to investigate how cuff pressure and as well as the type 

of exercise alter acute and chronic responses to exercise with BFR. I was the first to 

report changes in blood flow during resistance exercise with BFR, and before and after 

aerobic exercise with BFR. Additionally, I am the first to directly report differences in 

muscle size, strength, and exercise capacity following aerobic or resistance training with 

BFR. Overall, I found that the relative reduction in blood flow measured prior to exercise 

is maintained during exercise. Additionally, I found that moderate cuff pressures of ~60% 

of limb occlusion pressure increase metabolic stress without completely occluding blood 

flow, and therefore is an adequate pressure for both aerobic and resistance exercise with 

BFR. Finally, I found that aerobic exercise with BFR may be more favorable than 

resistance exercise because it results in similar increases in muscle size and strength, but 

at a lower ratings of perceived effort and pain. Taken together, these studies will enable 
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researchers, clinicians, and coaches to more effectively prescribe exercise with BFR to 

improve muscle size, strength and exercise capacity.
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1 Evidenced based guidelines for exercise with BFR 

Currently, 80% of US adults do not meet the necessary guidelines for aerobic and 

resistance training [1] . Both aerobic and resistance training have a profound impact on 

physical and mental health including a delay in all-cause mortality and a reduced risk for 

cardiovascular disease, stroke, diabetes, and some cancers [2]. The American College of 

Sports Medicine outlines effective exercise prescription as the improvement of health 

related outcomes. The dose of physical activity is defined using the FITT principle. FITT 

is an acronym for frequency, intensity, time and type of exercise. The proper dose of 

aerobic and resistance exercise for health benefits is outlined in Figure 1. 

Traditional aerobic and resistance training is not always possible for clinical 

populations where the high training intensities are contraindicated or impossible [3]. 

These populations include people post-surgery, where high loads may compromise the 

repaired tissue [4]. In addition, those with neurological disorders such as Cerebral Palsy, 

where the patient is not able to fully activate the target muscle [3]. Finally, older, 

deconditioned adults may not be able to reach the target intensity [5]. Aerobic or 

resistance exercise with blood flow restriction (BFR) is emerging as an effective 

alternative option to build strength in healthy [6-9], clinical [4, 5, 10-13], and athletic 

[14-16] populations (Table 1). This exercise modality involves the use of mechanical 

compression of the limb, usually with a pressurized cuff or tourniquet, used in 

combination with much lower loads than traditional training [17]. Although the exact 

mechanism for increased muscle function is unknown, some proposed mechanisms 
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include accelerated fatigue leading to preferential type II fiber recruitment [18], 

augmented metabolite accumulation and local hypoxia [19], and cell swelling [20]. 

Moreover, there may be an endocrine response as exercise with BFR increases serum 

growth hormone to a greater extent than traditional high load resistance training [21]. It is 

thought that this increase in growth hormone secretion occurs through the stimulation of 

chemoreceptors due to decreases in muscle perfusion [22] (Figure 2). 

The main advantages exercise with BFR has over traditional training are: 1) an 

increase in muscle size and strength elicited at low training loads, 2) these adaptations 

occur faster with blood flow restriction, 3) increases in muscle size and strength can be 

stimulated during both resistance and aerobic exercise. Despite the numerous benefits, 

there are no standardized recommendations for the application of BFR during exercise 

[17]. Injuries are rare, but improper application of BFR could result in detrimental side 

effects. Therefore, appropriate evidence-based guidelines for exercise prescription are 

warranted. 

1.1 Frequency 

Exercise training with BFR has been performed anywhere from two sessions per 

week, to two sessions per day [23]. An analysis on the use of exercise with BFR reported 

that ~40% of practitioners perform BFR exercise 1-2 days per week, whereas ~10% 

perform exercise with BFR twice daily. The majority of users ~75% practiced BFR 

between 1-4 days per week [23]. Low-load resistance exercise with BFR can be 

completed more frequently than more traditional resistance training programs because 
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exercise with BFR results in no prolonged decrement in muscle function, no prolonged 

cell swelling, no elevation in blood biomarkers indicative of muscle damage, and low 

ratings of muscle soreness [24]. To the best of my knowledge there was only been one 

study the directly assessed training frequency. Abe and colleagues [25] found that once-

daily walking training with BFR resulted in about half of the changes in muscle size and 

strength as a twice-daily training regimen (muscle size: 2.4 vs. 7% and muscle strength: 4 

vs 9% respectively). Therefore, the authors suggested that training with BFR is dependent 

on frequency of training. Additionally, a meta-analysis from Loenneke and colleagues 

[26] revealed that increases in muscle size and strength are greater when exercise with 

BFR is performed 2-3 days per week compared to 4-5 days per week (effect size: 1.25 vs 

0.53). These results could be explained by an overtraining response. More research is 

needed in order to elucidate the proper training frequency for exercise with BFR. 

1.2 Intensity 

The primary benefit of performing exercise with BFR is that exercise training is 

effective at much lower training intensities than traditional exercise. Currently, the 

majority of practitioners are performing exercise training with BFR at between 20-40% 

of one repetition max [23]. Training intensities of as little as ~10% maximal voluntary 

isometric contractions have resulted in significant increases in muscle size and strength 

[27]. Walking, bodyweight squats, and resistance band exercises with BFR have all been 

used to effectively increase muscle size and strength [4, 6, 28]. Acute studies assessing 

the effect of exercise intensity have demonstrated that increasing the load from 20% to 
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30% one repetition max increases muscle activation, increases concentrations of whole 

blood lactate [29]. Suga and colleagues [30] also suggest that exercise intensities of > 

30% of one repetitions max would be necessary to create similar intramuscular metabolic 

stress as high-load resistance training. Cook and colleagues [31], however, reported knee 

extension repetitions until failure at 20% of one repetition max resulted in greater muscle 

fatigue, and possibly greater increases in plasma growth hormone then repetitions until 

failure at 40% one repetition max. Lixandrao and colleagues [32] reported increasing the 

training intensity from 20% to 40% of 1 repetition max resulted in greater gains in 

muscle cross sectional area (effect size: 0.74, 2.54, respectively), with similar increases 

muscular strength (~12%). Additionally, Patterson and Ferguson [33] have suggested that 

increasing exercise training intensity from 25% 1 repetition max to 50% of 1 repetition 

max leads to greater increases in muscle strength. Therefore, increasing exercise intensity 

will likely result in greater gains in muscle size and strength. 

1.3 Time 

Currently, 45% of practitioners are performing resistance training with BFR in a 

repetition scheme in which 30 repetitions is performed in the first set, followed by three 

to four subsequent sets of 15 repetitions, and 32% of practitioners are performing 

repetitions until failure [23]. There are no studies directly comparing these two common 

repetition schemes. Between 15.5 – 60 seconds of rest are commonly used between sets. 

In a meta-analysis, Loenneke and colleagues [26] found significant greater gains in 

muscle strength during 30 second rest period compare to 60 second rest periods (effect 
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size: 1.22 vs. 0.25), however, the only studies utilizing 60 second rest periods used a 

different mode of exercise - walking, and therefore further research is needed regarding 

the appropriate repetition scheme and duration of rest intervals. 

 During aerobic exercise with blood flow restriction, it is common for practitioners 

to perform either multiple 1 to 3 minute walking or cycling intervals with 15 – 60 second 

rest periods between intervals (~40%), or continuous aerobic exercise (no rest periods) 

greater than 5 minutes (~20%; [23]). Corvino and colleagues [34] reported a greater 

reduction in tissue perfusion during intermittent cycling with BFR, this reduction was 

similar to that of high intensity cycling without BFR. Additionally, concentrations of 

whole blood lactate was greater and ratings of perceived exertion were lower than 

continuous cycling with BFR [34]. Therefore, the authors suggest that intermittent 

cycling with BFR may be more advantageous than continuous cycling with BFR. Data 

from study two supports this conclusion. While intermittent cycling seems to be more 

advantageous then continuous cycling, little is known about the appropriate duration of 

the intervals and rest periods. 

1.4 Type 

Exercise with BFR has been effectively combined with different modes of 

resistance and aerobic exercise to increase muscle size and strength. These modes include 

single and multi- joint upper and lower body exercise, free weight exercises, and 

machine-based exercises for resistance training. For aerobic exercise cycling, walking, 

running, and swimming with BFR have all been practiced [23]. Exercise with BFR is 
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most commonly performed using resistance exercise [23]. Although not directly 

analyzed, previous researchers suggest resistance training with BFR would result in 

significantly greater increases in strength and hypertrophy compared to aerobic training 

with BFR [17, 26, 35]. Loenneke et al. reported an effect size of 1.08 for resistance 

exercise and 0.39 for walking with BFR [26]. However, aerobic exercise with BFR has 

also been reported to increase aerobic capacity (VO2max, time until exhaustion, and onset 

of blood lactate) [10, 36-38]. Additionally, recent evidence also suggests that aerobic 

exercise with BFR elicits a lower cardiovascular response (e.g., heart rate, cardiac output, 

mean arterial pressure) [35] and perceived effort than resistance exercise with BFR [35, 

39]. Therefore, aerobic exercise with BFR is not only a two for one activity that increase 

both muscle function and aerobic capacity, but is also more tolerable than resistance 

training. To date, there has not been a comparison of training adaptations following 

aerobic and resistance training within equivalent matched groups. This would allow 

clinicians and practitioners to make a more informed decision of the type of exercise to 

perform with BFR. 

1.5 Type of Cuff 

Blood flow restriction has been applied using handheld inflatable pumps, 

automatic inflatable pumps, knee wraps, Kaatsu training devices, and elastic tourniquets 

[23]. Studies assessing different cuff types have been limited to assessing the differences 

between elastic and non-elastic (nylon) pressure cuffs. Loenneke and colleagues [40] 

reported no significant differences between repetitions performed, RPE, or discomfort 



7 

 

between the elastic and nylon cuffs. In a separate study, Loenneke and colleagues [41] 

also reported similar reductions in blood flow at rest between elastic and nylon cuffs. 

Additionally, Rossow and colleagues [42] assessed differences in acute cardiovascular 

responses to using a 5 cm elastic cuff and 13.5 cm non-elastic cuff at the same absolute 

pressure (130% of systolic blood pressure). These authors reported wider, non-elastic 

cuffs increased cardiovascular and perceptual responses compared to narrower, elastic 

cuffs. These responses occurred despite less volume performed using the wide cuffs. This 

finding is likely due to the due to differences in cuff width more so than cuff type. 

The width of the pressure cuff is also an important factor to consider. A wide 

range of cuff widths (3 – >15 cm) are currently being used to restrict blood flow during 

exercise [23]. Wider cuff have been shown to increase pain, increase ratings of perceived 

exertion and decrease training volume when inflated to the same absolute pressure [42]. 

Wider cuffs also occlude blood flow at a lower absolute pressure than narrower cuffs. 

Loenneke and colleagues [43] reported that a 5 cm cuff could not completely lower limb 

blood flow in some individuals, even when inflated up to 300 mmHg. These results 

suggest that it is easier to reach the target pressure using wider cuffs, especially in the 

lower body. While the width of the cuff does change the acute response to exercise with 

BFR when set to the same absolute pressure, both Mouser et al. [44] and Laurentino et al. 

[45] reported the width of the cuff does not affect acute hemodynamic stress or changes 

in muscle size and strength respectively, when the same relative pressure is applied.   
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1.6 Cuff Pressure 

A wide range of cuff pressures are used in research and in practice (< 50 mmHg to 

> 250 mmHg) [23]. Ideally, the optimal cuff pressure should be set high enough to 

prevent the return of venous blood flow, but low enough to maintain some level of 

arterial blood flow [17]. This causes an increase in metabolic stress and an accumulation 

of fluid within the limb, both of which are thought to be responsible for training 

adaptions following exercise with BFR [3, 20]. It is common for researchers and 

practitioners to use absolute cuff pressures independent of individual differences, cuff 

width and cuff size [46]. Failure to account for these differences may lead to either 

ineffective stimulus for training adaptions if the pressure is too low, or adverse side-

affects and/or reduction in training volume if the pressure is too high [3, 47]. It is 

therefore extremely important that the cuff pressure used be individualized to the 

participant, however 44% of practitioners are currently not accounting for individual 

differences [23].  

Researchers have used various methods to individualize cuff pressure. A Doppler 

ultrasound has been used to directly measure limb arterial occlusion pressure at rest and 

use a percent of that measurement for exercise with BFR [45]. It is common for 

researchers to then apply between 40%-90% of this occlusion pressure for exercise 

training with BFR [32, 48, 49]. This range of pressure was found to result in similar 

decreases in brachial blood flow at rest [49] and similar increases in muscular size and 

strength following training [32, 48]. It should be noted that within this range of relative 
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pressures both ratings of perceived exertion, and discomfort increase as relative pressure 

increases [47, 48]. Additionally, there is evidence to support cuff pressures above 60% of 

limb occlusion pressure would not further augment training adaptions [29]. It is important 

to note that the measurement of limb occlusion pressure is influenced by body position 

[50, 51], therefore this measurement should be taken in the body position in which 

exercise with BFR will be performed. The measurement of limb occlusion pressure with 

a Doppler ultrasound, however, has little practical relevance due to the high cost and 

limited availability of the equipment [52].  

Several investigators have applied individual cuff pressure based on brachial 

systolic blood pressure. The method is controversial as studies have reported the 

relationship between systolic blood pressure and limb occlusion pressure to be moderate 

(r = 0.56, [53], poor (r = 0.49; [54]) or absent (r = 0.05 [55]; [43]). Loenneke and 

colleagues [56] have reported brachial systolic blood pressure could be taken into account 

for exercise with BFR in the upper limbs, and ankle systolic blood pressure, was found in 

this study to be a significant predictor of limb occlusion pressure in the lower limbs [43]. 

Brachial diastolic blood pressure may be predictive of limb occlusion pressure because of 

its link with peripheral resistance provided limb composition or subcutaneous adipose 

thickness is also considered [54, 56].  

Other researchers have used measurements of limb circumference to individualize 

cuff pressure. Loenneke and colleagues [43] have reported 64%, and 31% of variance in 

arterial occlusion pressure for wide (13.5 cm) and narrow (5 cm) cuffs, respectively, is 

explained by limb circumference, and recommend the following for thigh circumferences 
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<45-50 cm = 120 mmHg, 50-55 cm = 150 mmHg, 56-59 cm = 180 mmHg, and > 60 cm 

= 210 mmHg. These pressures are thought to estimate ~60% of limb occlusion pressure 

when using a 5 cm nylon pneumatic cuff in the lower limb. Similar recommendations 

have not been made for different size cuffs or for the upper body. However, Hunt and 

colleagues [54] report limb circumference has a limited impact on cuff pressure required 

for partial blood flow restriction.   

If the cuff pressure cannot be accurately measured (e.g., when knee wraps and 

elastic tourniquets are used to restrict blood flow), Wilson and colleagues [52] suggest 

the wrapping the legs at level of 7 out of 10, where “0” represents no pressure, and 10 

represent “intense pressure with pain.” This tightness was shown to maintain arterial 

blood flow and occlude venous return at rest. While this method does have practical 

applications, basing the pressure on perceived discomfort will likely result in large 

differences in relative restriction of blood flow among individuals due to differences in 

perception of pain.  

Finally, is important to consider if the cuff pressure should be maintained or release 

during inter-set rest periods. Suga and colleagues [30], reported similar increases in 

metabolite accumulation to high load resistance training only when the pressure was 

maintain during the inter-set rest periods. Theoretically, if the cuff pressure is maintained 

during the inter-set rest periods, venous outflow will be occluded and metabolite 

clearance will be drastically diminished. Moreover, additional fluid pooling in the limb 

during rest will increase cell swelling. Both of which are thought to be important 

mechanisms for adaptations following training [17]. Maintaining the cuff pressure during 
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rest does, however, result in more muscle pain and discomfort throughout training when 

compared to no cuff pressure during the inter-set rest period [57]. Anecdotal feedback 

from our participants suggests the pain experienced during the inter-set rest when the cuff 

remains inflated is greater than the pain experienced during exercise. Additionally, 

increases in muscle activation [58] and in muscle fatigue [31, 57] have been found to be 

similar following a bout of either continuously, or intermittently applied pressure. 

Fitschen and colleagues [57] reported that applying either continuous or intermittent 

pressure resulted in similar increases in muscular strength. However, the effect size 

reported in this study was minimal (effect size: 0.1). More research is needed to 

determine whether or not the cuff pressure should be maintained during the inter-set rest 

periods. 

1.7 Summary 

The purpose of this review is to summarize current practices for exercise with BFR, 

as well as outline safe and effect doses of exercise with BFR. Practitioners of exercise 

with BFR are currently using a wide range of frequencies (2x/day to 2x/week), intensities 

(10-90% of 1 repetition max), times (1 minutes) to > (5 minutes), and types of exercise 

with BFR (resistance vs. aerobic). Practitioners are also using many different cuffs of 

different widths (< 3 cm - >15 cm), inflated to a wide range of pressures (< 50 mmHg to 

> 250 mm Hg; [23]. Although injuries from exercise with BFR are rare, Nakajima and 

colleagues [59] reported side effects including bruising and numbness, and in rare cases 

venous thrombus (0.055%), pulmonary embolism (0.008%) and rhabdomyolysis 
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(0.008%). These side effects may be reduced by careful consideration of the dose of 

exercise with BFR. 

 In practice it may be beneficial to limit exercise sessions to 2-3 days per week 

[26]. A major benefit of exercise with BFR is that increases in muscle size and strength 

are stimulated at lower training loads. While increases in intensity have been shown to 

result in greater increases in muscular strength, practitioners should consider individual 

abilities when selecting an appropriate intensity. In general, intensities between 30-50% 

of 1 repetition max are effective for resistance training. Little information is currently 

known about the appropriate time for aerobic and resistance training with BFR. While the 

optimal protocol for resistance training is unknown, a common repetition scheme used in 

training is the 30 - 15 - 15 - 15 repetition scheme. Interestingly, the volume performed 

using this repetition scheme at 30% of 1 repetition max is similar to that of high intensity 

resistance exercise (e.g. four sets of five repetitions at 80% of 1 repetition max) [16]. 

Additionally, for aerobic exercise, performing multiple 1-3 minute intervals with 30-60 

seconds rest between intervals appears to be more beneficial than continuous training 

[34]. In practice resistance training with BFR is more common than aerobic training with 

BFR, and there may be greater gains in muscle size and strength when performing 

resistance training. However, this has not been directly tested.  

 Measures should be taken to individualize cuff pressure. Although imperfect, 

using limb circumference could be used to do this [60]. Loenneke and colleagues [43] 

outlined guidelines for doing this with a 5 cm cuff. Practitioners should use a lower 

pressure than listed if wider cuffs are used. Another option could be to use blood pressure 
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measured in the anterior tibial or popliteal artery for lower body exercise, or blood 

pressure measured in the brachial artery for upper body exercise [43, 54]. If using a type 

of cuff that does not allow for accurate measure of cuff pressure, care should be taken to 

ensure arterial blood flow is not occluded. To do this practitioners could palpate or 

auscultate an artery below the cuff to ensure blood flow is maintained, although this 

method has not been tested. Finally, maintaining the cuff pressure during the inter-set rest 

period should theoretically increase training adaptations [17], however, this has not yet 

been reported.  

1.8 Gaps and Future Directions 

Clearly more information is needed to determine the optimal dose of exercise with 

BFR., Researchers need to clearly identify their subject populations (e.g. blood pressures, 

limb circumference, training status, limb subcutaneous fat thickness, etc.) and BFR 

protocols (e.g. cuff type, cuff width, and both absolute and relative cuff pressures). This 

should allow for more careful replication in research and in practice.  

1.8.1 Study 1  

Theoretically, cuff pressure should maximize metabolic stress without completely 

occluding arterial blood flow blood flow during exercise [17]. While researchers have 

measured blood flow before and after training, there are no previous reports documenting 

changes in blood flow during exercise with BFR. The purpose of the first experiment was 

to evaluate changes in arterial blood flow, tissue perfusion, and cardiovascular responses 
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before, during, and after exercise with BFR across various pressures. Participants 

performed rhythmic handgrip exercise under cuff pressures ranging from 0-120% of limb 

occlusion pressure. We hypothesized that during exercise, blood flow would increase, 

and increasing cuff pressure will reduce blood flow during exercise. 

1.8.2 Study 2 

BFR during walking and cycling not only increases muscle size and strength but 

also improves exercise capacity (1, 3-5, 14, 16, 55). The purpose of the second 

experiment was to evaluate blood flow and tissue perfusion during intermittent trials of 

cycling with BFR. A secondary purpose was to assess changes in muscle function (i.e. 

central and peripheral fatigue) following trials of cycling with BFR. Participants 

completed four trials of cycling during in which we measured blood flow and tissue 

perfusion. Following each trial we measured changes in maximal voluntary torque and 

central and peripheral factors related to fatigue. We hypothesized that as pressure 

increases blood flow, tissue perfusion and maximal voluntary torque will decrease.  

1.8.3 Study 3 

Both aerobic and resistance training increase muscle function. Researchers have 

suggested that resistance training with BFR would lead to greater increases in muscle size 

and strength than aerobic training with BFR. However only aerobic training has been 

shown to increase exercise capacity. Additionally, aerobic exercise with BFR has a lower 

cardiovascular response (reduced heart rate, cardiac output, and mean arterial pressure) 

than resistance training with BFR (44). It is unclear which type of exercise should be 
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used with BFR. The purpose of this study was to compare chronic adaptations in 

muscular function and exercise capacity following 6 weeks of aerobic training or 

resistance training with BFR. Pre- to post-training measures of muscular size, strength 

and exercise capacity was be assessed. We hypothesized that both resistance training with 

BFR and aerobic training with BFR will increase muscle function, but only aerobic 

training will increase exercise capacity.  
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Figure 1: A summary of the FITT principle for resistance and aerobic training 
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Table 1: Brief overview of studies utilizing BFR 

Study Population Exercise 
Cuff 
pressure Duration 

Outcome 
measure 

Takarada 
et al. 
(2002) 

Rugby 
players 

Knee 
extension 

200 
mmHg 8 weeks 

↑15% size, ↑14% 
strength, ↑2-4% 
endurance 

Abe et 
al. (2005) 

Collegiate 
track and field 
athletes 

Squat and leg 
curl 

160-240
mmHg 8 days ↑4-6% size, 

↑10% strength 

Park et 
al. (2010 

Collegiate 
basketball 
athletes 

Treadmill 
walking 

120-160
mmHg 2 weeks ↑12% exercise 

capacity 

Fujita et 
al. (2008) 

Young 
healthy 

Knee 
extension 

200 
mmHg 6 days ↑2-4% size, ↑7% 

strength  
Abe et 
al. (2006) 

Young 
healthy 

Treadmill 
walking 

200 
mmHg 3 weeks ↑4-7% size, ↑8-

10% strength 

Natsume 
et al. 
(2015) 

Young 
healthy 

BFR with 
neuromuscular 
electric 
stimulation  

140-200
mmHg 2 weeks ↑4% size, ↑14% 

strength 

Abe et 
al. (2010) Elderly Treadmill 

walking 
160-200
mmHg 6 weeks ↑6-10% size, ↑7-

16% strength 
Yasuda 
et al. 
(2015) 

Elderly 
Arm curls 
triceps pull-
down 

180-270
mmHg

12 
weeks 

↑17-18% size, 
↑8-16% strength 

Ohta et 
al. (2003) 

ACL 
reconstruction 

Lower limb 
exercises 

180 
mmHg 

16 
weeks 

 ↓8-13% strength 
less than control 

Takarada 
et al. 
(2000) 

ACL 
reconstruction 

Occlusion and 
reperfusion 

200-260
mmHg 11 days  ↓10% size less 

than control 

Bryk et 
al. (2016) 

Knee 
osteoarthritis 

Knee 
extension 

200 
mmHg 6 weeks ↑42% strength,

↓pain 

Gaunder 
et al. 
(2017) 

Total knee 
arthroplasty 

Knee 
extension, leg 
press, reverse 
press 

100-150
mmHg 8 weeks ↑57-359%

strength 
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Figure 2: Conceptual model of the physiological responses and adaptations to exercise 
with blood flow restriction. 
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2 Limb Blood Flow and Tissue Perfusion during 
Exercise with Blood Flow Restriction 

2.1 Introduction 

Resistance exercise is widely recommended to restore function following injury, 

maintain health across the lifespan, and improve athletic performance. In general, 

performing resistance exercise at 65-70% of one repetition maximum (RM) 2-3 times per 

week for 8 weeks is sufficient to increase muscle size and strength [2]. This type of 

exercise, however, is not always possible because high training loads are often 

contraindicated or impossible for some populations (e.g., older adults, individuals with 

orthopedic limitations). Alternatively, implementation of resistance exercise with blood 

flow restriction (BFR) is emerging as an effective option to build muscle and improve 

strength in healthy, clinical, and athletic populations [17]. This exercise modality 

involves the use of mechanical compression of the limb to occlude blood flow, usually 

with a pressurized cuff or tourniquet, used in combination with much lower loads than 

traditional resistance training (e.g., 20% vs. 70% of 1 RM) [17]. The main advantage of 

exercise with BFR is that increases in muscle size and strength are elicited at low training 

loads which is clinically relevant when high loads are contraindicated (for a review see 

Hughes et al. 2017).  

To date, there are no standardized recommendations for the proper application of 

cuff pressure during exercise with BFR. Theoretically, cuff pressure should be set high 

enough to prevent the return of venous blood flow, but low enough to maintain some 

level of arterial blood flow [17]. Cuff pressure should also maximize metabolic stress 
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[61, 62] without completely occluding arterial blood flow and inducing excessive 

discomfort. Several previous investigators have measured blood flow at rest with BFR 

[44, 49, 54, 63]. Specifically, brachial and femoral artery blood flow decreases linearly 

with increasing cuff pressure between 80-120 and 100-250 mm Hg, respectively [54, 63]. 

When cuff pressure is set relative to individual limb occlusion pressure (LOP), a non-

linear decrease occurs with minimal changes in blood flow from 50-90% of LOP [44, 

49]. However, it is unclear if the cuff-induced changes in blood flow measured at rest 

translates to similar hemodynamic changes during exercise. Several factors including 

increase in blood pressure, activation of the skeletal muscle pump, and change in limb 

position [50, 51] during exercise may reduce the effectiveness of the cuff at restricting 

blood flow. Previous investigators have used near-infrared spectroscopy to quantify 

tissue oxygenation during exercise with BFR [34, 61, 64], which has provided indirect 

insight into the level of blood flow and metabolic stress associated with BFR cuff 

pressures. To our knowledge, there are no reports documenting changes in blood flow 

and tissue perfusion during exercise with BFR. 

Understanding the extent to which cuff pressure alters blood flow and tissue 

perfusion during exercise with BFR would have important implications for exercise 

prescription and training. Most notably, high cuff pressures that completely occlude 

arterial blood flow could cause harmful side effects including adverse cardiovascular 

responses, blood clotting, and muscle/nerve damage [3]. Accordingly, the purpose of this 

study was to evaluate changes in arterial blood flow and tissue perfusion before, during, 

and after rhythmic handgrip exercise with BFR across a range of cuff pressures. We 
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hypothesized that BFR-induced reductions in arterial blood flow during exercise would 

be less than those reductions during rest. We also hypothesized that application of 

moderate pressure, based on LOP, would elicit considerable metabolic stress (as 

quantified by reductions in tissue saturation index and increases in deoxygenated 

hemoglobin concentration) without completely occluding arterial blood flow.  

2.2 Methods 

2.2.1 Participants 

Ten active men between 18-44 yrs volunteered to participate in this study 

(demographic and anthropometric characteristics reported in Table 1). All participants 

self-reported that they performed physical activity at a moderate intensity at least 150 

min/week, which is consistent with the American College of Sports Medicine guidelines 

[2]. However, participants did not perform exercise with BFR on a regular basis. 

Participants were excluded from the study if they used nicotine products, had diabetes, or 

had any cardiopulmonary disorders. Following the initial screening, participants were 

informed of the purpose of the study, the risks involved, and gave informed written 

consent. This study was approved by the Institutional Review Boards at Michigan 

Technological University and Kent State University. Finally, given the effect size 

calculated from partial eta squared (0.823), an alpha level of 0.05, and a sample of 10 

participants, the statistical power was calculated to be 0.99. 
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2.2.2 Study Design and Overview 

In this investigation, we used a single-group repeated measures design. 

Participants performed rhythmic handgrip exercise across a range of cuff pressure 

conditions (0%, 60%, 80%, 100%, and 120% of LOP). Our primary outcome variable 

was brachial artery blood flow and secondary outcome variables included tissue 

saturation index and deoxyhemoglobin concentration. These variables were selected 

because level of blood flow restriction and metabolic stress are factors that likely 

contribute to the robust increases in muscle size and strength with BFR exercise training 

[34, 65]. Primary and secondary variables were assessed before, during, and after 

exercise. With this experimental design, we aimed to determine the extent to which cuff 

pressure alters blood flow and tissue perfusion during exercise with BFR. 

Participants reported to the laboratory in a resting condition, not having consumed 

alcohol or participated in vigorous exercise in the previous 24 h. Participants were asked 

to lay supine on an examination table for 10 min prior to testing and remained in this 

position for the duration of the experimental protocol. Resting heart rate, mean arterial 

pressure, and cardiac output were monitored to ensure normal physiological ranges. 

Resting brachial artery blood flow was monitored for 1 min and then LOP was 

determined. Relative pressures of 0%, 60%, 80%, 100%, and 120% of LOP were 

calculated and the order of pressures was randomized. Participants rested for 5 min for 

physiological values to return to baseline. Participants then performed rhythmic handgrip 

contractions at each pressure condition, with 5 min of rest between conditions. All testing 

was performed in a controlled thermoneutral environment (25°C).  
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2.2.3 Rhythmic Handgrip Exercise 

Prior to exercise participants performed 3 maximal voluntary contractions (MVC) 

using a handgrip dynamometer (ADInstruments, Colorado Springs, CO, USA). Handgrip 

forces were recorded using a data acquisition system (Powerlab 16, ADInstruments, 

Colorado Springs, CO, USA). The highest MVC was identified and 30% of the 

participant’s MVC force was calculated and used as the exercise intensity. The cuff was 

inflated to the desired pressure and was maintained throughout that pressure condition. 

Pre-exercise brachial artery blood flow was measured for 30 s with the cuff inflated. 

Participants then performed 30 handgrip contractions. Participants were instructed to 

perform one contraction every 2 s while exercise blood flow was recorded. A metronome 

was used to help participants match the desired contraction frequency. Force tracings 

were streamed onto a monitor so that the participants had visual feedback of the force 

they produced, which enabled them to more accurately reach the target intensity. The cuff 

remained inflated for 30 s after exercise to determine if the various cuff pressures had a 

similar impact on post-exercise blood flow as they did pre-exercise. After the cuff 

pressure was released, the participant was given 5 min of rest before the next cuff 

pressure condition.  

2.2.4 Blood Flow Calculation 

Blood velocity (Vmean) and vessel diameter (Vd) were measured with a Logic 7 

ultrasound system (General Electric Medical Systems, Milwaukee, WI) equipped with a 

linear array transducer operating at an imaging frequency of 12 MHz and Doppler 

frequency of 5 MHz. Doppler pulse wave spectrum and ultrasound images were 
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continuously recorded throughout the pre-exercise, exercise, post-exercise period. Vessel 

diameters were determined by averaging the perpendicular distance between the 

superficial and deep walls of the brachial artery at three nonconsecutive R waves during 

the last 15 s of the pre-exercise time period. Measurements of Vmean were obtained with 

the probe positioned to maintain an insonation angle of ≤ 60°. Mean blood velocity was 

averaged across 15 s intervals throughout the protocol. Importantly, blood velocity data 

obtained during exercise using Doppler ultrasound are reliable [66] which is notable 

given the complex nature of blood velocity during dynamic muscle contractions. Using 

pre-exercise mean blood velocity and arterial diameter, blood flow was calculated as 

Blood Flow = Vmean*π*(Vd/2)2*60. Blood flow was averaged over each time period, 30 s 

pre-exercise, 60 s exercise, and 30 s post-exercise within each cuff pressure. Peak blood 

flow was determined as the 15 s intervals with the highest blood flow. Relative blood 

flow was determined by normalizing blood flow at 60%, 80%, 100%, and 120% LOP to 

the 0% LOP condition within each time period.  

2.2.5 Limb Occlusion Pressure 

A 10 cm wide nylon pneumatic cuff (Hokanson, Belleview, WA, USA) was 

wrapped around the right arm at the most proximal location and pressurized with a rapid 

cuff inflator (Hokanson, Belleview, WA, USA). The ultrasound probe was positioned 

distal to the cuff and proximal to the cubital fossa. Limb occlusion pressure was 

determined by inflating the cuff to 75 mmHg, and slowly increasing the pressure until 

brachial blood velocity reached zero based on the absence of the Doppler spectrum. The 

minimum pressure required to completely occlude arterial blood flow was recorded as the 
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LOP. Finally, previous authors [67] have reported that upper-arm limb occlusion pressure 

data obtained using Doppler ultrasound are reliable.  

2.2.6 Tissue Perfusion 

A near-infrared spectroscopy (NIRS) system was used to measure tissue oxygen 

saturation (Oxymon MKIII; Artinis Medical Systems, Einsteinweg, Netherlands). The 

NIRS sensor was placed on the right forearm approximately 1/3 of the distance from the 

medial epicondyle of the humerus to the styloid process of the radius and adhered with 

double-sided tape. The sensor site was prepared by shaving hair, abrading the skin with 

sandpaper, and removing any oils or contaminants using an alcohol swab prior to sensor 

placement. Data were recorded at 10 Hz. The concentration of total hemoglobin (THB), 

oxyhemoglobin (OHB) and deoxyhemoglobin (HHB) was recorded. Tissue saturation 

index (TSI) was calculated by TSI (%) = (OHB/THB) * 100 and averaged over each time 

period. Changes in deoxyhemoglobin were calculated by assessing the difference 

between the average value in the last 15 s of each time period and the baseline values 

prior to cuff inflation. It is important to note that tissue saturation index and 

deoxyhemoglobin data obtained during handgrip exercise using NIRS are reliable [68]. 

2.2.7 Central Variables  

Beat by beat mean arterial pressure and cardiac output were measured with a 

Nexfin HD Monitor (Edwards LifeSciences, Irvine CA, USA). Heart rate was determined 

with the use of a 3-lead ECG running through a BioAmp acquisition box 

(ADInstruments, Colorado Springs, CO, USA). The finger cuff electrode was placed over 
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the middle phalanx of the left, non-exercising hand. These data were also continuously 

streamed into the power lab 16 and analyzed with Lab chart 8. Each dependent variable 

was averaged over 15 s throughout each pressure condition.  

2.2.8 Forearm Muscle Activity 

Forearm muscle activity was assessed using surface electromyography (EMG). 

Electrodes were placed on the right forearm approximately 1/3 of the distance from the 

medial epicondyle of the humerus to the styloid process of the radius as recommended by 

Davis [69]. Disposable self-adhesive electrodes were placed on the muscle in line with 

the fiber direction. The electrode site placement was prepared in the same manner as the 

NIRS sensor. EMG data were recorded at 4,000 Hz and acquired on the data acquisition 

system described above and analyzed using commercially available software (Lab Chart 

8 Pro, ADInstruments, Colorado Springs, CO, USA). The raw EMG signal was band-

pass filtered (10-450 Hz) and rectified. Afterward, a root mean squared integration was 

performed. Integrated software (Peak Analysis, Lab Chart 8 Pro, AD Instruments, 

Colorado Springs, CO, USA) was used to calculate the mean area under the curve for the 

first and last 10 contractions for each condition.  

2.2.9 Statistical Analysis  

To test the hypothesis that BFR-induced reductions in arterial blood flow during 

exercise would be less than those reductions during rest, we used a two-way repeated 

measures analysis of variance (ANOVA) procedure to evaluate the effects of time (pre-

exercise, exercise, post-exercise) and pressure (0%, 60%, 80%, 100%, and 120% of LOP) 
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on the primary outcome variable brachial artery blood flow. Note that, changes in both 

absolute and relative blood flow were assessed. Additionally, to test the hypothesis that 

application of moderate cuff pressure would elicit considerable metabolic stress, we used 

separate two-way repeated measures (ANOVA) procedures to evaluate the effects of time 

and pressure on secondary outcome variables of tissue saturation index and 

deoxyhemoglobin concentration. Repeated measures ANOVA procedures were also used 

to assess changes in select cardiovascular response variables (heart rate, mean arterial 

pressure, cardiac output). When the assumption of sphericity was violated a Greenhouse-

Geisser correction was used. If there were any significant main effects or interactions 

identified then subsequent post-hoc tests (Fisher’s least significant difference) were used 

to explore where differences occurred. Paired samples t-tests were used to assess 

differences in forearm muscle activation for all cuff pressure conditions. Partial eta 

squared (ηp²) values were calculated as a measure of effect sizes with ηp² ≥ 0.01 

indicating small, ≥ 0.059 medium, and ≥ 0.138 large effects, respectively [70]. Statistical 

procedures were performed using IBM SPSS 24 (Chicago, IL, USA). Data are reported as 

mean ± standard deviation and alpha was set to 0.05. 

2.3 Results 

2.3.1 Limb Occlusion and Cuff Pressure 

Mean limb occlusion pressure was 130 ± 12 mm Hg. Cuff pressures for the 60%, 

80%, 100%, and 120% LOP conditions corresponded to 81 ± 11, 108 ± 15, 135 ± 19, and 

162 ± 23 mm Hg, respectively.  
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2.3.2 Blood Flow 

Absolute blood flow kinetics are illustrated in Figure 3A for descriptive purposes. 

The repeated measures ANOVA procedures revealed significant main effects of pressure 

(P < 0.01, ηp² = 0.839) and time (P < 0.01, ηp² = 0.823), as well as a pressure x time 

interaction (P < 0.01, ηp² = 0.725). At rest prior to exercise, blood flow generally 

decreased with increased cuff pressure: 0% > 60% ≈ 80% > 100% ≈ 120% (Figure 3B). 

During exercise, blood flow decreased with increased cuff pressure: 0% > 60% > 80% > 

100% > 120% (Figure 3B). The pressure-blood flow relationships during exercise were 

also maintained after exercise (Figure 3B). For the 0%, 60%, and 80% LOP conditions, 

blood flow increased from rest during exercise (all P < 0.05, Figure 3C). Blood flow 

decreased after exercise for the 60% and 80% LOP conditions (all P < 0.05, Figure 3C). 

For the 100% and 120% LOP conditions, blood flow did not differ before, during, or after 

exercise. Note that, pressure-blood flow relationships for peak blood flow followed the 

same patterns as those for mean blood flow. 

Relative blood flow kinetics are illustrated in Figure 4A for descriptive purposes. 

The repeated measures ANOVA procedures revealed significant main effects of pressure 

(P < 0.01, ηp² = 0.927) and time (P < 0.01, ηp² = 0.564), as well as a pressure x time 

interaction (P < 0.01, ηp² = 0.339). The relative reductions in blood flow before exercise 

did not differ from those during exercise (Figure 4B). Specifically, blood flow in the 60% 

LOP condition was reduced by 22 ± 3% before exercise and remained reduced by 22 ± 

2% during exercise (Figure 4C). Similarly, blood flow in the 80% LOP condition was 

reduced by 47 ± 2% and 48 ± 2% before and during exercise, respectively (Figure 4C). 
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After exercise blood flow for both the 60% and 80% LOP conditions was reduced even 

further (52 ± 2% and 71 ± 1%, respectively, both P < 0.05, Figure 4C). In the 100% and 

120% LOP condition there were no differences in relative blood flow.  

2.3.3 Tissue Perfusion 

Changes in tissue saturation index are illustrated in Figure 5A for descriptive 

purposes. The repeated measures ANOVA procedures revealed significant main effects 

of pressure (P < 0.01, ηp² = 0.682) and time (P < 0.01, ηp² = 0.782), as well as a pressure 

x time interaction (P < 0.01, ηp² = 0.588). At rest prior to exercise, there were no 

differences in tissue saturation index with increased pressure. There were trends for the 

60%, 100%, and 120% LOP conditions to be lower than 0% LOP condition (P = 0.08, P 

= 0.06, P = 0.07, respectively). During exercise, tissue saturation index generally 

decreased with increased pressure: 0% > 60% ≈ 80% > 100% ≈ 120% (Figure 5B). After 

exercise, all pressure conditions were different (all P < 0.05) except for 80% and 100% 

(0% > 60% > 80% ≈ 100% > 120%, Figure 5B). For the 0% condition, tissue saturation 

index decreased only after exercise (P = 0.04, Figure 5C). For the 60%, 80%, 100, and 

120% LOP conditions, tissue saturation index decreased from rest during exercise and 

decreased further after exercise (all P < 0.05, Figure 5C). 

Changes in deoxyhemoglobin are illustrated in Figure 6A for descriptive 

purposes. The repeated measures ANOVA revealed significant main effects of pressure 

(P < 0.01, ηp² = 0.812) and time (P < 0.01, ηp² = 0.916), as well as a pressure x time 

interaction (P < 0.01, ηp² = 0.796). At rest prior to exercise, deoxyhemoglobin increased 

with the initial increase in pressure but did not increase at pressures higher than 60% 
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LOP: 0% < 60% ≈ 80% ≈ 100% ≈ 120% (Figure 6B). During exercise, deoxyhemoglobin 

increased with the initial increases in pressure but did not increase at pressures higher 

than 80% LOP: 0% < 60% < 80% ≈ 100% ≈ 120% (Figure 6B). The pressure-

deoxyhemoglobin relationships during exercise were generally maintained after exercise. 

For the 0% condition, deoxyhemoglobin increased from rest during exercise and 

remained elevated after exercise (both P < 0.05, Figure 6C). For the 60%, 80%, 100, and 

120% LOP conditions, deoxyhemoglobin increased from rest during exercise and 

increased further after exercise (all P < 0.05, Figure 6C). 

2.3.4 Central Variables 

For cardiac output and heart rate there were no significant main effects for time (P 

= 0.54, ηp² = 0.081, P = 0.22, ηp² = 0.145, respectively) or pressure (P = 0.8, ηp² = 0.279, 

P = 0.22, ηp² = 0.156, respectively) or pressure x time interactions (P = 0.07, ηp² = 0.219, 

P = 0.54, ηp² = 0.077, respectively). For mean arterial pressure there was a significant 

effect of time (P < 0.01, ηp² = 0.625), but not for cuff pressure (P = 0.59, ηp² = 0.058) or 

the cuff pressure x time interaction (P = 0.14, ηp² = 0.151). Mean arterial pressure 

increased during exercise in all LOP conditions (all P < 0.05), but only decreased post-

exercise in 0% and 60% LOP conditions (both P < 0.05; Figure 7).  

2.3.5 Forearm Muscle Activity 

Forearm EMG activity for the first 10 to last 10 contractions did not differ for any 

pressure condition (all P > 0.05).   
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2.4 Discussion  

The purpose of this study was to evaluate changes in arterial blood flow and tissue 

perfusion before, during, and after rhythmic handgrip exercise with BFR across a range 

of occlusion pressures. The key findings were that: 1) at pressures below LOP the 

cardiovascular system was able to overcome the external pressure and increase blood 

flow to the working muscles during exercise, 2) relative reductions in blood flow at rest 

were similar to those during exercise, and 3) cuff pressures of 60 and 80% LOP reduced 

tissue saturation index and increased deoxyhemoglobin concentrations, which is 

consistent with an increase in metabolic stress and metabolite accumulation [71, 72], 

without completely occluding arterial blood flow. Taken together, these findings provide 

novel insight into hemodynamic changes during exercise with BFR and have important 

implications. Specifically, the relative level of blood flow occlusion measured at rest may 

approximate the degree of occlusion during exercise and application of moderate cuff 

pressure seems to offer an appropriate BFR occlusion stimulus for small muscle mass 

exercise.  

2.4.1 Assessment of Blood Flow during Exercise 

To the best of our knowledge, we are the first group to report alterations in blood 

flow before, during, and after exercise with BFR. Previous research has focused on 

examinations of blood flow at rest [44, 49, 54, 63] and immediately after exercise [73, 

74] with BFR. However, measurement of blood flow during exercise is very difficult as 

the motion of the exercising limb may influence the artery being examined and 

consequently give rise to motion artifacts [73]. To circumvent this limitation, we 
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implemented BFR during rhythmic handgrip exercise; an exercise modality that is often 

used to measure blood flow to exercising muscles and assess peripheral vascular health 

[75-77]. Our brachial artery blood flow data at rest and during exercise without occlusion 

(0% LOP) are consistent with previously reported data on blood flow during handgrip 

exercise [78, 79]. Thus, we are confident that our assessment of blood flow during 

handgrip exercise yielded reliable results and that changes in blood flow with BFR were 

due to the occlusion pressure.  

2.4.2 Alterations in Blood Flow 

Prior to exercise, there were no significant differences in blood flow between the 

60% and 80% and the 100% and 120% LOP conditions. These data are in agreement with 

that of Mouser and colleagues [44, 49] who demonstrated that under relative occlusion 

pressure, the reduction in blood flow does not linearly decrease with increasing pressure; 

as they reported similar blood flow values between 50-90% of LOP. This non-linear 

decrease in blood flow is unique to relative pressures as previous reports indicate a linear 

decrease in blood flow with absolute increases in cuff pressures above 80 mmHg [54, 

63]. These differences are likely due to individual differences in LOP and variations in 

absolute and relative cuff pressures. For example, an absolute pressure of 140 mmHg 

would range from approximately 80-105% LOP for the participants in this study, which 

would completely occlude blood flow in the majority of participants (7 of 10). According 

to a recent questionnaire on the use of exercise with BFR, only 12% of practitioners are 

currently basing cuff pressure on LOP when implementing exercise with BFR [23]. 
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These findings re-enforce the need to individualize pressures before performing exercise 

with BFR to ensure user safety and facilitate consistent training adaptations.   

During exercise, blood flow increased in the 0%, 60%, and 80% LOP conditions 

from rest. Thus, at pressures below LOP the cardiovascular system increased blood flow 

to the working muscles even despite the mechanical compression. However, blood flow 

was minimal (<10 ml/min) during the 100% and 120% LOP conditions. At these 

pressures, the cardiovascular system cannot overcome the external pressure. Moreover, 

while the absolute blood flow increased during exercise with the lower cuff pressures the 

relative reduction in blood flow due to the applied pressure at rest was, for the most part, 

maintained during exercise. Specifically, at 60% LOP blood flow was reduced by ~20% 

at rest as well as during exercise. Likewise, at 80% LOP blood flow was reduced by 

~45% at rest and during exercise. This finding is important as these two pressures are 

often reported in the literature and shed light on previous speculations that cuff pressure 

would have to be increased during exercise to maintain the same level of blood flow 

restriction [54].  

In the 0% LOP control condition blood flow remained elevated following 

exercise, however, this hyperemic response was blunted by the cuff across all cuff 

pressures. Post-exercise absolute blood flow decreased in the 60% and 80% LOP 

conditions from the exercise values. This is in contrast to the work by Downs and 

colleagues [73] as these authors speculated that post-exercise blood flow would be 

similar to blood flow during exercise due to the low loads used, or higher, due to post-

exercise reactive hyperemia. Although the 60% and 80% LOP conditions did reduce 
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blood flow during exercise by ~20% and ~45% compared to the 0% control condition, 

the post-exercise reductions during these two conditions were much greater. Specifically, 

post- exercise blood flow was reduced by ~50% and ~70% during the 60% and 80% LOP 

conditions, respectively. These results may be explained by the skeletal muscle pump, 

which during exercise would increase venous return and allow for greater arterial blood 

flow. Following exercise, the absence of the skeletal muscle pump’s assistance with 

venous return would augment venous pooling and venous pressure thus reducing the 

pressure gradient needed to achieve post-exercise hyperemia. If the goal of exercise with 

BFR is to maintain the relative reduction in blood flow, then cuff pressure should be held 

constant before and during exercise and reduced between sets. Alternatively, if the goal is 

to keep the reduction in absolute blood flow constant, then the cuff pressure set at rest 

should be increased during and after exercise, but to a greater extent during exercise. A 

long-term training intervention is required to elucidate the best strategy for restricting 

blood flow during exercise with BFR. 

2.4.3 Tissue Perfusion 

Results indicated that increased pressure reduced tissue saturation index. This 

relationship is similar to blood flow, which seems logical as blood flow and tissue 

perfusion are highly correlated [80, 81]. There were, however, no differences in 

deoxyhemoglobin in the 80%, 100%, and 120% LOP conditions. Although not measured 

in this study, this could be because pressures above 80% LOP completely occlude venous 

blood flow, and therefore there was no deoxyhemoglobin clearance from the muscle in 

these conditions. Ganesan and colleagues [71] proposed that BFR-induced hypertrophy is 
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due to localized hypoxia and metabolite accumulation. With this in mind, our data 

suggest that cuff pressures above 60% LOP do cause tissue hypoxia and increase 

metabolite accumulation. Moreover, the finding that pressures greater than 80% LOP do 

not increase deoxyhemoglobin suggests that these higher pressures may not be entirely 

necessary. Higher pressures would likely increase discomfort and risk for adverse 

cardiovascular responses [82] without increasing metabolite accumulation. Based on the 

above results, cuff pressures between 60-80% LOP seem appropriate for increasing 

metabolic stress and metabolite accumulation without completely occluding blood flow 

and compromising individual safety.  

In all pressure conditions above 0% LOP, tissue saturation index continued to 

decrease post-exercise. These results are consistent with previous reports on tissue 

saturation index following knee extension exercise with BFR [71, 73]. Suga and 

colleagues [30] reported that metabolic stress and metabolite accumulation induced from 

multiple-sets of BFR exercise is similar to that of high-intensity exercise, only if the cuff 

pressure is maintained during the rest period. If the goal of exercise with BFR is to create 

a hypoxic environment within the muscle and to increase the accumulation of metabolites 

to a similar level of high-intensity exercise, then the cuff pressure should be maintained 

between sets. Such a strategy would limit post-exercise hyperemia and consequently 

decrease tissue saturation index and increase metabolite build-up. 

2.4.4 Mean Arterial Pressure 

There were no differences in mean arterial pressure across different cuff 

pressures. This may be due to the small muscle mass used or the type of exercise used. It 
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is possible that there would be a change in mean arterial pressure across pressures during 

dynamic exercise with larger muscle masses. Mean arterial pressure increased from 

before exercise to exercise in all conditions, and returned to pre-exercise levels within the 

post-exercise time period in the 0% and 60% LOP condition and nearly returned for the 

80% LOP condition. However, in the 100% and 120% LOP conditions mean arterial 

pressure remained elevated during the post-exercise time period. These results are in 

agreement with Shoemaker and colleagues [83] who demonstrated that mean arterial 

pressure remained elevated with post-exercise circulatory occlusion following handgrip 

exercise. These differences can be explained by the muscle metaboreflex which is 

activated due to the accumulation of metabolites, and or the reduction in oxygen delivery 

[84], both of which were found to be elevated at higher pressures (80%, 100%, 120% 

LOP). Thus, these pressures would have more fully activated this reflex, causing mean 

arterial pressure to remain elevated post-exercise [82]. It is important to note that this 

reflex is exaggerated in disease states in which perfusion to the muscle is impaired 

including hypertension, heart failure, and peripheral artery disease [82]. Therefore, 

caution should be taken before using BFR exercise in these populations, including using 

lower occlusion pressures (e.g., < 60% LOP), and normalizing the restrictive stimulus to 

the individual.  

2.4.5 Implications 

Exercise with BFR is gaining popularity among practitioners in clinical and applied sport 

training settings [23]. However, more care is needed to ensure that current practice 

matches the research to ensure the safety of this exercise modality [23]. With this in 
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mind, our findings have implications for researchers, clinicians, coaches, and athletes. 

Specifically, researchers who use exercise with BFR may be able to better standardize 

their BFR stimulus before exercise without needing to measure blood flow during 

exercise, which is difficult. These results benefit clinicians by demonstrating that 

moderate cuff pressures (≤ 80% LOP) do not occlude blood flow during small muscle 

mass exercise with BFR. Because deoxyhemoglobin concentration was the same at 

pressures above 80% LOP, higher cuff pressures may be unnecessary. Moreover, the use 

of higher cuff pressures could cause MAP to remain elevated during the rest period which 

would be contraindicated for populations that have an exacerbated blood pressure 

response to exercise. Finally, coaches and athletes including exercise with BFR in 

training programs may need to consider that individual LOP differs, which affects the 

stimulus for BFR induced improvements in muscle size and strength. It is recommended 

that practitioners base the cuff pressure on LOP if possible [17]. Accordingly, careful 

standardization of BFR stimulus during rest may facilitate more consistent training 

adaptations during exercise. 

2.4.6 Limitations  

We implemented BFR during rhythmic handgrip exercise, an exercise modality 

that is often used to measure blood flow to exercising muscles. This allowed us to 

measure blood flow during exercise with BFR for the first time. Handgrip exercise is, 

however, not without its limitations. Our findings relating to the hemodynamics of BFR 

with handgrip exercise are limited by the type of muscle contraction (quasi-isometric) 

and small muscle mass engaged. Thus, these findings may not be entirely transferrable to 
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more dynamic exercises with BFR involving a larger muscle mass. More common 

exercises used in conjunction with BFR such as knee extension, bench press, and elbow 

flexion, would likely increase acute cardiovascular responses (i.e., heart rate, mean 

arterial pressure, cardiac output) to a much greater extent than that measured in this 

study. Thus, relative reductions in blood flow from various occlusion pressures are likely 

specific to the limb and exercise involved. Also, we did not measure vessel diameter 

during exercise, which may have impacted our blood flow data. However, if diameter did 

change during exercise, it is far more likely to increase rather than decrease; resulting in 

an underestimation of blood flow. Considering that the purpose of this exercise modality 

was to restrict, but not completely occlude arterial blood flow, this would result in 

conservative estimates for an overall effect. It is also important to note that we indirectly 

quantified metabolic stress by changes in tissue saturation index and deoxyhemoglobin 

concentration as opposed to a more direct assessment. Therefore, our interpretation of 

metabolic stress associated with BFR is limited to an indirect estimation. 

We acknowledge that multiple sets are commonly used during exercise with BFR 

(e.g., 30 reps x 3 sets) [23]. There was no change in forearm EMG activity for the first 10 

to last 10 contractions suggesting that one set of handgrip exercise did not cause fatigue 

in the forearm muscles. These results are likely due to the light intensity (30% MVC) 

utilized. Exercise with BFR involving larger muscle masses over multiple sets would 

likely increase EMG activity. Therefore, further investigation into the mechanisms of 

blood flow during exercise with BFR utilizing dynamic exercise, with multiple sets, in 

larger muscle groups is warranted. Lastly, we should note that these data were collected 
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in a supine position, which is not the same position for most upper-body exercises that 

are performed seated or standing. This reiterates the need for future research exploring 

exercise with BFR during varying dynamic exercise. 

2.4.7 Summary 

During exercise with BFR, blood flow to the working muscles increased even 

despite the external pressure. Relative reductions in blood flow prior to exercise were 

generally maintained during exercise with BFR. Occlusion pressures ranging from 60-

80% LOP provided considerable metabolic stress while still maintaining partial arterial 

blood flow, thus lowering relative risk of adverse cardiovascular responses to exercise 

with BFR, including prolonged increases in MAP during recovery. Overall, these 

findings provide novel insight into hemodynamic changes during exercise with BFR and 

serve as an important step for creating better BFR exercise guidelines.  
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Table 2: Participant demographic and anthropometric characteristics (n = 10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Variable Value 

Age (yr)  27 ± 4 

Body mass (kg)   82 ± 14 

Height (m) 1.77 ± 0.1 

Body mass index (kg∙m-2)  26 ± 3 

Systolic blood pressure (mm Hg) 118 ± 5 

Diastolic blood pressure (mm Hg)   75 ± 7 

Triceps Skinfold (mm)   10 ± 3 

Biceps Skinfold (mm)     5 ± 1 

Upper arm circumference (cm)   32 ± 3 

Upper arm muscle area (cm2)a     59 ± 13 
Values are reported as Mean ± SD 
a estimated bone-free arm muscle area 
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Figure 3: Time course of alterations in absolute brachial artery blood flow across 
different cuff pressures (A). Brachial artery blood flow measured during pre-exercise, 
exercise, and post-exercise with the cuff inflated (B). Blood flow different from 0%, 
60%, 80%, 100%, and 120% (P<0.05) are indicated by A, B, C, D, and E, respectively. 
Brachial artery blood flow measured at each cuff pressure for pre-exercise, exercise, and 
post exercise (C). Blood flow different than pre-exercise and exercise (p<0.05) are 
indicated by * and #, respectively. Data are as reported mean ± SD. Note that, blood flow 
measured at 120% LOP was minimal. 
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Figure 4: Time course of alterations in relative brachial artery blood flow across 
different cuff pressures (A). Brachial artery blood flow measured during pre-exercise, 
exercise, and post-exercise with the cuff inflated (B). Blood flow different from 0%, 
60%, 80%, 100%, and 120% (P<0.05) are indicated by A, B, C, D, and E, respectively. 
Brachial artery blood flow measured at each cuff pressure for pre-exercise, exercise, and 
post exercise (C). Blood flow different than pre-exercise and exercise (p<0.05) are 
indicated by * and #, respectively. Blood flow different than exercise (p<0.05). Data are 
reported as mean ± SD. Note that, blood flow measured at 120% LOP was minimal. 
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Figure 5: Time course of alterations in tissue saturation index (A) across different cuff 
pressures. Tissue saturation index measured during pre-exercise, exercise, and post-
exercise with the cuff inflated. (B) Tissue saturation index different from 0%, 60%, 80%, 
100%, and 120% (P<0.05) are indicated by A, B, C, D, and E, respectively. Tissue 
saturation index measured at each cuff pressure for pre-exercise, exercise, and post 
exercise (C). Tissue saturation index different than pre-exercise and exercise (p<0.05) are 
indicated by * and #, respectively. Data are reported as mean ± SD. 
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Figure 6: Time course of alterations in concentration of deoxyhemoglobin (A) across 
different cuff pressures. Concentration of deoxyhemoglobin measured during pre-
exercise, exercise, and post-exercise with the cuff inflated (B). Concentration of 
deoxyhemoglobin different from 0%, 60%, 80%, 100%, and 120% (P<0.05) are indicated 
by A, B, C, D, and E, respectively. Concentration of deoxyhemoglobin measured at each 
cuff pressure for pre-exercise, exercise, and post exercise (C). Concentration of 
deoxyhemoglobin different than pre-exercise and exercise (p<0.05) are indicated by * 
and #, respectively. Data are reported as mean ± SD. 
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Figure 7: Alterations in mean arterial pressure (MAP) by time. Mean arterial pressure 
different than pre-exercise and exercise (p<0.05) are indicated by * and #, respectively. 
Data are reported as mean ± SD.   



46 

 

3 Acute Cardiovascular, Metabolic, and Neuromuscular 

Effects of Cycling with Blood Flow Restriction  

3.1 Introduction 

Exercise with blood flow restriction (BFR) is emerging as a safe and effective 

method for increasing muscle size and strength [26, 85]. This exercise uses a pressurized 

cuff or tourniquet to partially restrict blood flow to and from the working muscles [17]. 

Blood flow restriction is usually combined with low-load resistance exercise training 

(e.g., 20-30% of 1 repetition maximum) [23]. Similarly, low-intensity aerobic exercise 

training with BFR (e.g., cycling at 40% of VO2max) increases muscle size and strength as 

well as VO2max, time until exhaustion, and onset of blood lactate [6, 10, 25, 36-38, 86]. 

Thus, aerobic exercise with BFR may offer a unique 2-for-1 stimulus for improving both 

muscular and cardiovascular function. Recent evidence also suggests that aerobic 

exercise with BFR elicits a lower cardiovascular response (e.g., heart rate, cardiac output, 

mean arterial pressure) than resistance exercise with BFR [35]. With these factors in 

mind, several authors have proposed some novel applications for aerobic exercise with 

BFR. For example, this exercise mode could offer a more feasible option for individuals 

with cardiovascular risk factors [35] as well as an appropriate adjunct countermeasure for 

astronauts enduring long-duration space flight [87].  

 There are no standardized recommendations for the proper application of exercise 

with BFR. Theoretically, cuff pressure should be high enough to prevent the return of 

venous blood flow but low enough to maintain some arterial blood flow [88]. Further, 
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cuff pressure should maximize metabolic stress [61, 62] (e.g., tissue desaturation, 

metabolite accumulation) without inducing excessive discomfort. Previous investigators 

[73] have assessed blood flow and tissue perfusion (oxygen availability, metabolite

accumulation) before and after resistance exercise with BFR. Results indicated that post-

exercise blood flow was higher than pre-exercise blood flow when using lower cuff 

pressures, but not when using higher cuff pressures. Additionally, tissue perfusion 

decreased with BFR during exercise and did not recover following exercise when the cuff 

remained inflated. It is unclear if changes in hemodynamics during resistance exercise 

with BFR can be applied to aerobic exercise with BFR because there are differences in 

blood pressure, cardiac output, and the cyclical nature of the movement between the two 

exercise modes. To the best of our knowledge, no previous authors have reported changes 

in blood flow and tissue perfusion associated with aerobic exercise with BFR. 

Understanding how pressure affects blood flow and tissue perfusion is critical for 

maximizing the occlusion training stimulus and implementing aerobic exercise with BFR 

safely and effectively.  

Reductions in blood flow during BFR exercise also contribute to the development 

of neuromuscular fatigue (i.e., reduction in maximal voluntary torque) [89]. Typically, 

greater neuromuscular fatigue is associated with increased growth hormone 

concentrations which may play a role in training adaptations [21, 90]. While there is 

evidence of neuromuscular fatigue after resistance exercise with BFR [31, 91-93], 

previous reports documenting changes in neuromuscular function following aerobic 

exercise with BFR are mixed. Ogawa and colleagues [94] reported no change in isometric 
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knee extensor torque following 30 min of walking with BFR. Conversely, Kim and 

colleagues [8] reported significant reductions in isometric knee extensor torque following 

cycling with BFR until failure. However, according to the authors, these reductions were 

not outside the measurement error. Nevertheless, any potential reductions in knee 

extensor torque could be due to factors that reside in the brain and spinal column (central 

fatigue), the muscles themselves (peripheral fatigue), and/or some combination of the two 

(central and peripheral fatigue). Given these varied results [8, 94] and the task-specific 

nature of fatigue [95], additional research is needed to confirm how aerobic exercise with 

BFR influences both the development and recovery of neuromuscular fatigue.  

 The purpose of this study was to compare changes in blood flow, tissue perfusion, 

and neuromuscular function to acute cycling exercise with and without BFR. 

Specifically, comparisons were made between: 1) low-load cycling (40% VO2max), 2) 

low-load cycling with moderate BFR, 3) low-load cycling with high BFR, and 4) high-

load cycling (80% VO2max). We hypothesized that low-load cycling with BFR would 

decrease blood flow and tissue saturation index and increase concentrations of 

deoxyhemoglobin. These responses would be further exacerbated by increased cuff 

pressure. We also hypothesized that cycling with BFR would impair end exercise 

maximal knee extensor isometric torque. Based on previous reports [31, 91] we 

hypothesized that these impairments in neuromuscular function would be mainly due to 

peripheral mechanisms. 



49 

3.2 Methods 

3.2.1 Participants 

Ten active men between 18-44 yrs volunteered to participate in this study (Table 

1). All participants self-reported that they performed aerobic exercise at moderate to 

high-intensity for at least 150 min/week, which is consistent with ACSM guidelines [96]. 

Body composition and lower limb lean mass were assessed using dual energy x-ray 

absorptiometry (Discovery Wi, Hologic Inc, Marlborough, MA, USA). Participants were 

excluded from the study if they used nicotine products, had diabetes, or had any 

cardiopulmonary disorders. Following the initial screening, participants were informed of 

the purpose of the study, the risks involved, and gave informed written consent. This 

study was approved by the Institutional Review Board at Michigan Technological 

University. 

3.2.2 Study Overview 

In this investigation, we used a single group repeated measures design. 

Participants reported to the laboratory on 5 separate days separated by at least 48 hrs. 

Subjects were told not to perform at vigorous physical activity, or use any drugs, alcohol, 

or tobacco for 12 hours prior to each session. All laboratory visits performed at 

approximately the same time of day, in a thermoneutral environment (25º C). During the 

initial laboratory visit, participants were familiarized with the measurement of 

neuromuscular function, performed a submaximal cycling protocol, and completed a 

graded exercise test for determination of maximum oxygen consumption (VO2max). For 

the remaining experimental laboratory visits, participants completed one of the four 
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cycling conditions which were presented in a randomized fashion. The conditions 

consisted of: 1) low-load cycling at 40% VO2max (LL), 2) low-load cycling at 40% 

VO2max with BFR set at 60% limb occlusion pressure (BFR60), 3) low-load cycling at 

40% VO2max with BFR set at 80% occlusion pressure (BFR80), and 4) high-load cycling 

at 80% VO2max (HL). Prior to each cycling trial, baseline neuromuscular function was 

assessed and limb occlusion pressure was identified. Participants then completed an 

intermittent cycling protocol (6 sets of 2 min cycling intervals with 1 min recovery 

between sets). Tissue perfusion and gas exchange data were recorded throughout the 

cycling trial. Blood flow was measured during the recovery periods. Immediately after 

the cycling trial, neuromuscular function was assessed again (Figure 8).  

3.2.3 Oxygen consumption and Peak Aerobic Power 

To establish a linear relationship between steady-state VO2 and power output, 

participants completed a submaximal cycling protocol on an electromagnetically braked 

cycle ergometer (Velotron Elite; RacerMate Inc., Seattle, WA, USA). Specifically, 

participants cycled at 40, 80, 120, and 160 W for 4 min using a self-selected pedaling 

rate. Gas exchange data were measured continuously using open-circuit spirometry (True 

Max 2400; Parvo Medics, Sandy, UT, USA). The metabolic measurement system was 

calibrated with a 3L calibration syringe and medical gases of known concentrations 

(16.00% O2, 4.00% CO2, balanced N2). Heart rate was measured continuously using a 

Polar transmitter (Polar Electro OY, Kempele, Finland). Gas exchange and heart data 

were averaged every 15 s throughout the test. After a 15 min break, participants then 

performed a graded exercise test until task failure as described by Lucia and colleagues 
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[97]. The protocol began at 40 W and increased 5 W every 12 s. The test was terminated 

voluntarily by the participant, or when pedaling rate could no longer be maintained at 70 

rpm, despite verbal encouragement. The highest 30 s average of VO2max and heart rate 

achieved during the test were recorded. Power outputs that elicited 40% and 80% of 

VO2max were estimated by interpolating the linear relationship between VO2 and power 

output.  

3.2.4 Cycling Exercise 

Prior to the intermittent cycling protocol, participants rested on the cycle ergometer 

for 5 min for collection of baseline responses. Following this baseline period, the cuff 

was inflated to 60 or 80% limb occlusion (BFR conditions only) while participants rested 

for 1 min. Note that, for the LL and HL cycling conditions 1 min of rest was also 

provided. Subsequently, participants completed 6 sets of 2 min of cycling intervals with 1 

min between sets. An intermittent cycling protocol was selected because previous 

research suggests that work-rest periods while keeping the pressure cuff inflated has 

benefits over continuous cycling with BFR [34]. For the BFR cycling conditions, blood 

flow was restricted in each leg using a 10 cm wide nylon pneumatic cuff (Hokanson, 

Belleview, WA, USA) wrapped around the thigh at the most proximal location. The cuff 

pressure was set and maintained using a rapid cuff inflator (Hokanson, Belleview, WA, 

USA). The pressure in the cuff was sustained throughout the entire cycling protocol and 

deflated immediately after the participant completed the last set of cycling.  
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3.2.5 Blood Flow 

Blood flow velocity (Vmean) and vessel diameter (Vd) were measured with a Logiq 

e ultrasound system (General Electric Medical Systems, Milwaukee, WI, USA) equipped 

with a linear array transducer operating at an imaging frequency of 12 MHz and Doppler 

frequency of 5 MHz. Doppler pulse wave spectrum and ultrasound images were 

continuously recorded throughout each time period. Vessel diameters were determined by 

averaging the perpendicular distance between the superficial and deep walls of the 

superficial femoral artery at three nonconsecutive R waves during the last 15 s of each 

recording. Measurements of Vmean were obtained with the probe positioned to maintain an 

insonation angle of ≤ 60°. Mean blood velocity was averaged across 15 s intervals 

throughout the recording. Importantly, blood velocity data obtained with Doppler 

ultrasound are reliable [66] which is notable given the complex nature of blood velocity 

during dynamic muscle contractions. Using arterial diameter and mean blood velocity, 

blood flow was calculated as Blood Flow = Vmean*π*(Vd/2)2*60 in accordance with the 

methods described by Wray and colleagues [98]. Blood flow was averaged throughout 

the 1 min recovery interval.  

Limb occlusion pressure was determined while the participant was seated on the 

cycle ergometer. Their right foot was positioned on a stool next to the ergometer. Their 

hip was abducted slightly and their knee angle was ~90°. The pressure cuff was wrapped 

around the right thigh, at the same position as exercise. The ultrasound probe was 

positioned distal to the cuff over the superficial femoral artery. Limb occlusion pressure 

was identified by inflating the cuff to 75 mmHg, and slowly increasing the pressure until 
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blood flow velocity reached zero based on the absence of the Doppler spectrum. The 

minimum pressure required to do this was recorded as the limb occlusion pressure. The 

measurement of limb occlusion pressure using this method in our laboratory was reliable 

across exercise sessions (ICC = 0.89; 95% CI 0.80-0.94). 

3.2.6 Tissue Perfusion 

A continuous-wave near-infrared spectroscopy device (PortaLite; Artinis Medical 

Systems BV, Elst, The Netherlands) was utilized to detect changes in the concentrations 

of oxygenated hemoglobin and deoxygenated hemoglobin. Wavelengths (760 and 850 

nm) were emitted from LEDs with an inter-optode distance of 3.5 cm. A differential path-

length factor of 4.0 was used to correct for photon scattering within the tissue. Data were 

collected at 10 Hz (Oxysoft; ArtinisMedical Systems BV, Elst, The Netherlands). The 

sensor was placed midway between the anterior superior iliac spine and the proximal 

patella parallel to the muscle fibers. The sensor was attached with double-sided tape and 

wrapped in an opaque bandage to prevent ambient light from reaching the sensor. Tissue 

saturation index (tissue saturation index = oxyhemoglobin / [deoxyhemoglobin + 

oxyhemoglobin]) was calculated using integrated software (Oxysoft; ArtinisMedical 

Systems BV, Elst, The Netherlands). The average tissue saturation index over the last 10 

s of each time period was recorded. Changes in deoxyhemoglobin were assessed by 

calculating the difference between the average value of the last 10 s of each time period 

and the last 10 s of data recorded prior to inflating the cuff. This near-infrared 

spectroscopy system is reliable for measurement of tissue saturation index during leg 

exercise [99]. 
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3.2.7 Metabolic, Cardiorespiratory, and Perceptual Responses 

Oxygen consumption, ventilation, and heart rate were recorded using the 

metabolic measurement system described above. These data were averaged over the last 

30 s of the exercise and recovery time periods. Perceptual responses (rating of perceived 

exertion and pain) were recorded during the last 30 s of each exercise and recovery 

period. Whole body rating of perceived exertion was assessed using a Borg 6-20 scale 

[100]. Pain was assessed using an 11-point numeric rating scale [101]. A blood sample 

was collected from the fingertip (5μl) during baseline and 1 min after the final exercise 

interval from which blood lactate concentration was determined (Lactate Plus; Nova 

Biomedical, Waltham, MA, USA).  

3.2.8 Neuromuscular Function 

Participants were positioned on an isokinetic dynamometer (Biodex 4, Biodex 

Medical Systems, NY, USA), at a hip angle of 85°, and a knee angle of 90°. A seat belt 

and ankle strap were used to minimize hip and ankle movement. To measure knee 

extension maximal voluntary isometric contraction (MVIC) torque, participants were 

instructed to “push as hard and as fast as possible” against an immoveable pad. 

Standardized verbal encouragement was provided to the participant. Evoked torque was 

elicited by transcutaneous electrical stimulation over the knee extensors using a 

computer-controlled stimulator (D185; Digitimer, Welwyn Garden City, UK). The 

stimulating cathode was placed over the quadriceps femoris 10 cm distal to the anterior 

superior iliac spine and the anode was placed 2 cm proximal to the proximal border of the 

patella [102]. An electrical pulse (singlet, square wave, 100-μs duration) was used to 
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elicit a superimposed twitch at the peak torque level during the MVIC, and an additional 

potentiated resting twitch was triggered upon relaxation (~2 s) following the MVIC. 

Stimulation intensity was determined based off no increase in twitch force despite 

increasing the stimulation current. A further increase of 20% was added to ensure that the 

stimulation was supramaximal. Voluntary activation was assessed using the interpolated 

twitch technique, and calculated as voluntary activation = 100 × (1- Tinterpolated/Tcontrol), 

where Tinterpolated was the size of the interpolated twitch and Tcontrol was the amplitude of 

the control twitch produced by stimulation of the muscle in a relaxed but potentiated state 

[103]. Rate of torque development, time to peak torque, as well as the time to half-

relaxation were calculated using a customized routine (Spike 2; Cambridge Electronics 

Design, Cambridge, UK). Rate of torque development at the start of the MVIC was 

calculated as the peak tangential torque using a moving mean method of the torque-time 

curve over the first 400 ms from the onset of contraction [104]. Time to peak torque was 

defined as the slope of the force-time curve from baseline to peak Tcontrol torque. Half 

relaxation time is defined as the slope of the line from peak Tcontrol torque to half its value. 

These measurements were obtained at baseline, and at 1, 5, and 10 min after the exercise. 

The measurement of MVIC using this equipment in our laboratory was reliable across 

exercise sessions (ICC = 0.91; 95% CI 0.76-0.98). 

3.2.9 Statistical Analysis  

Separate two-way repeated measures analysis of variance (ANOVA) procedures were 

used to evaluate the effect of cycling condition and time (baseline, cuff inflate, recovery 

interval number) on changes in blood flow. If a significant main effect of cycling 
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condition was found, then subsequent post-hoc tests (Fisher’s least significant difference) 

were used to determine where the differences occurred. If a significant effect of time was 

found, blood flow values over the recovery intervals were pooled together and additional 

paired samples t-tests were performed to analyze simple main effects.  

Separate two-way repeated measures ANOVA procedures were used to evaluate 

the effect of cycling condition and time (baseline, cuff inflate, exercise interval number, 

recovery interval number) on changes in tissue saturation index, deoxyhemoglobin, VO2, 

heart rate, ventilation, RPE, and pain. If a significant main effect of cycling condition was 

found, then subsequent post-hoc tests (Fisher’s least significant difference) were used to 

determine where the differences occurred. Additionally, if a significant main effect of 

time or condition was found for tissue saturation index or deoxyhemoglobin, data for 

exercise intervals and also recovery intervals were pooled and additional paired samples 

t-tests were used to evaluate simple main effects.

A repeated measures ANOVA was used to evaluate the interaction of cycling 

condition and time (baseline to post-exercise) on whole blood lactate. If a significant 

interaction was identified then a series of 2 x 2 repeated measures ANOVAs comparing 

each cycling condition at baseline and post-exercise were used to determine where the 

interactions occurred.  

Finally, two-way repeated measures ANOVAs were used to evaluate the effect of 

cycling condition and time (baseline, post-1 min, post-5 min, post-10 min), on changes in 

MVIC, Tcontrol, voluntary activation, rate of torque development, time to peak torque, and 
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half relaxation time. If a significant main effect of cycling condition was found, then 

subsequent post-hoc tests (Fisher’s least significant difference) were used to determine 

where the differences occurred. If a significant main effect of time was found paired 

samples t-tests were used to evaluate simple effects of time. If a significant interaction of 

cycling condition and time was found, a series of 2 x 2 repeated measures ANOVAs 

comparing each cycling condition at baseline and 1 min post-exercise were used to 

determine where the interactions occurred. Partial eta squared (ηp²) was calculated as a 

measure of effect sizes with ηp² ≥ 0.01 indicating small, ≥ 0.059 medium, and ≥ 0.138 

large effects, respectively [105]. Statistical procedures were performed using SPSS 22 

(Armonk, NY, USA). Data are reported as mean ± SD and alpha was set to 0.05.  

3.3 Results 

3.3.1 Cycling Trials 

Cuff pressures for the BFR 60 and BFR 80 cycling conditions were 125 ± 12 and 

164 ± 15 mm Hg, respectively. Mean power outputs were 89 ± 18 W for the LL, BFR 60, 

BFR 80 cycling conditions, and 240 ± 36 W for the HL cycling condition. Two 

participants were unable to complete the last cycling interval in the BFR 80 condition due 

to lightheadedness and/or extreme pain at the site of the cuff. The cuff pressure was 

therefore released, and these side-effects were greatly reduced. These participants still 

completed the post-exercise assessment of neuromuscular function 1 min following the 

release of the occlusion cuff. For these two participants, tissue perfusion, metabolic, 
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cardiorespiratory, and perceptual data for the last cycling interval were excluded from the 

analysis. 

3.3.2 Blood Flow 

The repeated measures ANOVA revealed significant main effects of cycling 

condition (P < 0.01, ηp² = 0.887) and time (P < 0.01, ηp² = 0.933) and cycling condition 

x time interaction (P < 0.01, ηp² = 0.802) on blood flow. In general blood flow was 

reduced in the BFR cycling conditions compared to the non-BFR conditions (Figure 9A) 

and tended to decrease further in the BFR 80 condition (P = 0.07) compared to BFR 60. 

Within in each time period, blood flow did not differ between conditions at baseline, 

decreased with cuff inflation for BFR 60 and BFR 80 (both P < 0.05), and differed 

between all conditions during the recovery periods (HL > LL > BFR 60 > BFR 80; all P 

< 0.05, Figure 9B).  

3.3.3 Tissue Perfusion 

Results from the repeated measures ANOVA procedures for tissue saturation index 

and deoxyhemoglobin revealed significant main effects of cycling condition (P < 0.01, 

ηp² = 0.741; P < 0.01, ηp² = 0.783, respectively) and time (P < 0.01, ηp² = 0.599; P < 

0.01, ηp² = 0.687, respectively) as well as a cycling condition x time interaction (P < 

0.01, ηp² = 0.511; P < 0.01, ηp² = 0.683, respectively). Overall, tissue saturation index 

was higher in LL, and HL, than it was in the BFR conditions (all P < 0.05, Figure 10A). 

Tissue saturation index was reduce in the BFR 80 condition compared to the BFR 60 (P < 

0.01). Changes in tissue saturation index within each time period are illustrated in Figure 
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10C. Compared to exercise, tissue saturation index increased during recovery for HL and 

LL cycling conditions (both P < 0.05). There was no difference in tissue saturation index 

during exercise and recovery within the BFR 60 and BFR 80 conditions. In general, 

concentrations of deoxyhemoglobin were higher in the BFR conditions (all P < 0.05) and 

increased with pressure (P < 0.05). There was a trend for concentrations of 

deoxyhemoglobin to be lower in LL than HL (P = 0.06). Changes in concentrations of 

deoxyhemoglobin with in time period are illustrated in Figure 10D. Deoxyhemoglobin 

did not differ between exercise and recovery periods in the HL and LL conditions (both P 

> 0.05) but increased during the recovery period for the BFR 60 and BFR 80 conditions 

(both P < 0.01). 

3.3.4 Metabolic, Cardiovascular, and Perceptual Responses 

The repeated measures ANOVA procedures revealed main effects of cycling condition 

(all P < 0.01, all ηp² > 0.678) and time (all P < 0.01, all ηp² > 0.818) as well as a cycling 

condition x time interaction (all P < 0.01, all ηp² > 0.511) for all variables (VO2, heart 

rate, ventilation, RPE, pain, lactate). Due to the intermittent nature of the cycling 

protocol, VO2 displayed a general “sawtooth” pattern for all conditions and overall was 

highest for HL (all P > 0.05, Figure 11). Heart rate was elevated in the BFR conditions 

compared to LL (both P < 0.05) but heart rate in the BFR 80 condition did not differ from 

HL (P = 0.30). Ventilation was highest in the HL condition followed by BFR 80, BFR 

60, and LL respectively (all P < 0.05). Cycling with BFR caused an increase in RPE 

compared to LL (both P < 0.05), but RPE in the BFR 80 condition was not different from 

HL (P = 0.30). Pain was generally low during LL and HL but increased with BFR and 
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increased pressure (all P < 0.05). Most notably, pain during BFR80 increased steadily 

and approached maximum values at the end of the final interval. Compared to baseline, 

end exercise whole blood lactate increased in the HL, BFR 60, and BFR 80 conditions 

(all P < 0.05). The increase in blood lactate for HL and BFR80 was greater than that for 

BFR60 but did not differ between HL and BFR 80 conditions (P = 0.86). 

3.3.5 Neuromuscular Function 

The repeated measure ANOVA procedures indicated significant main effects of 

cycling condition for MVIC torque, Tcontrol, rate of torque development, and time to peak 

torque (all P < 0.01, all ηp² > 0.348; Figure 12). Significant main effects of time were 

found for MVIC, voluntary activation, Tcontrol, Time to peak torque, and half relaxation 

time (all P < 0.01, all ηp² > 0.525). Significant cycling condition x time interactions were 

found for MVIC, voluntary activation, Tcontrol, time to peak torque, and rate of torque 

development (P < 0.01, all ηp² > 0.258). In general, MVIC torque produced in the BFR 

conditions was lower than the non-BFR conditions and was further reduced with 

increased pressure. Reductions in MVIC torque from baseline to 1 min post-exercise for 

the BFR 60 condition were greater than those for LL and HL (both P < 0.05) but less than 

those for BFR 80 (P = 0.02). Compared to baseline, MVIC torque was reduced at 10 min 

post-exercise for all conditions and was lowest for the BFR80 condition (all P < 0.05).

Reductions in voluntary activation from baseline to 1 min post-exercise were greater in 

BFR 80 compared to all other conditions (all P < 0.05). Voluntary activation did not 

differ from baseline at 10 min post in any condition (all P > 0.05). For Tcontrol, BFR 80 

was lower than LL and BFR 60 (both P < 0.05), but not different than HL (P = 0.10). The 
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baseline to 1 min post-exercise reduction in Tcontrol was greater in BFR 80 than all other 

conditions (all P < 0.05). The Tcontrol for all of the conditions were reduced 10 min post-

exercise compared to baseline (all P < 0.05). BFR 80 was generally lower than all other 

conditions for rate of torque development, and time to peak torque (all P < 0.05). 

Similarly, the baseline to 1 min change in rate of torque development and time to peak 

torque for BFR 80 was greater than all other conditions (all P < 0.05). The rate of torque 

development for both BFR conditions was reduced 10 min post-exercise (both P < 0.05). 

Compared to baseline, time to peak torque was reduced for all conditions 10 min post-

exercise (all P < 0.05). Finally, half relaxation time was not different than baseline 10 

min post-exercise in the LL condition (P = 0.13) but was increased in all other conditions 

(all P < 0.05). 

3.4 Discussion 

In this investigation, we integrated measurements of blood flow, tissue perfusion, 

and neuromuscular function to better characterize the effects of BFR during aerobic 

exercise. Our main findings were that cycling with BFR: 1) caused a reduction in blood 

flow and tissue perfusion and augmented metabolite accumulation compared to LL 

cycling, 2) lowered cardiorespiratory responses compared to high-load cycling, and 3) 

compromised knee extensor torque through a combination of peripheral and central 

mechanisms. Collectively, these results indicate that low load cycling exercise with BFR 

at 60% limb occlusion provided considerable metabolic stress (i.e., decreased tissue 

perfusion) with moderate discomfort while resulting in lower cardiorespiratory strain and 

perceived effort than high-load cycling. 
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3.4.1 Blood Flow and Tissue Perfusion 

To the best of our knowledge, we are the first group to report changes in blood flow 

following aerobic exercise with BFR. Specifically, compared to the LL condition blood 

flow during recovery was reduced by ~33% and ~50% in the BFR 60 and BFR 80 

conditions, respectively. These results generally agree with previous literature analyzing 

reductions in blood flow following resistance exercise with BFR (~30-40%) [73, 106]. 

This reduction in blood flow to the muscle is supported by our tissue perfusion data. 

Specifically, tissue saturation index was reduced by ~5% and ~15% in the BFR 60, and 

BFR 80 conditions throughout the condition. These reductions support previous reports 

on muscle oxygenation during cycling with BFR. Corvino and colleagues [34] reported 

~6% reduction in tissue saturation index during intermittent cycling with BFR, but only 

~2% reduction during continuous cycling with BFR. Therefore, the authors suggest that 

intermittent cycling with BFR may be more advantageous than continuous cycling with 

BFR. Our results support this conclusion by demonstrating that during the BFR 

conditions, tissue saturation index remained the same and metabolite accumulation 

increased during the recovery periods. Conversely, during the LL and HL conditions, 

tissue saturation increased and metabolite accumulation decreased during recovery. 

Without blood flow restriction, muscles experience a post-exercise hyperemic response, 

due to metabolite induced vasodilation [107]. Following exercise with BFR, 

cardiovascular control center is no longer receiving stimulus from mechanically sensitive 

afferents, thus reducing sympathetic activation. This in combination with the reduced 

venous return from venous occlusion and the loss of the skeletal muscle pump, means a 

relative reduction in blood flow to the limb following exercise. If the purpose of the 
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occlusion cuff is to reduce muscle oxygenation and increase metabolite accumulation, 

then it is likely beneficial for cycling exercise with BFR to be performed intermittently 

with the cuff inflated during recovery, but additional research is needed to confirm this 

and how it would influence training adaptations. 

3.4.2 Metabolic, Cardiorespiratory, and Perceptual Responses 

Oxygen consumption did not change with the addition of BFR. Previous researchers 

[6, 108] reported an increase in VO2 during aerobic exercise with BFR likely due to the 

metabolic cost of increased heart rate and ventilation. Discrepancies in these findings 

may be due to the duration of the cycling intervals. Because the intervals were limited to 

2 min, steady-state VO2 was not achieved. Heart rate, ventilation, RPE, pain, and lactate 

all increased with BFR and further increased with higher cuff pressure, which is 

consistent with previous research [109, 110]. Notably, heart rate and RPE increased in the 

BFR 80 to a level that was not different from HL, additionally muscle pain during the last 

cycling interval was near maximum values.  

3.4.3 Neuromuscular Function 

Cycling exercise with BFR reduced MVIC torque by ~18% and ~40% in the BFR 

60, and BFR 80 conditions, respectively. These results generally agree with previous 

reports examining resistance exercise with BFR [31, 91-93], however, prior studies 

examining neuromuscular function following aerobic exercise with BFR have varied. 

Similar to resistance exercise reports [31, 91] we determined that these reductions were 

mainly due to peripheral mechanisms, especially in the BFR 60 condition. Exercise with 
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BFR may have caused peripheral fatigue by the reduction in blood flow to the working 

muscles reducing the energy supply to the muscles, and/or by the accumulation of 

metabolites inhibiting cross-bridge formation [93].  

In addition to peripheral fatigue, central fatigue was also present in the BFR 80 

condition. Specifically, voluntary activation was 23% lower in the BFR 80 condition 1 

min after exercise. This reduction in voluntary activation was notably larger than that of 

Hussmann et al. [93] and Karabulut et al. [92], who reported a 10% and 13% reduction in 

voluntary activation following resistance exercise with BFR, respectively. This reduction 

in voluntary activation in the BFR 80 condition could be due to several factors related to 

exercise with BFR. One explanation includes venous distension, and the accumulation of 

metabolites, both of which increase the firing rate of nociceptive group IV muscle 

afferents [111, 112]. As stated above the BFR 80 condition resulted in significant muscle 

pain, which increased throughout the protocol. Graven-Nielsen and colleagues [113] 

previously reported muscle pain, via infusion of hypertonic saline, reduced MVIC torque 

through a centrally mediated mechanism. The results from the current study indicate 

substantial fatigue with the intermittent cycling protocol and provide the first report of 

central and peripheral fatigue with aerobic BFR. 

3.4.4 Cuff Pressure 

Proper selection of cuff pressure is important for the safety and effectiveness of 

exercise with BFR. Ideally, the cuff pressure should be set so that some arterial blood 

flow is maintained while venous blood flow is occluded. This causes a reduction in tissue 

perfusion and a build-up of metabolites and fluid within the limb. Previous authors have 
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proposed these as possible mechanisms responsible for the training adaptations following 

exercise with BFR [3, 20]. Higher cuff pressures likely result in greater venous occlusion 

which augments cell swelling by causing blood to pool within the limb. Loenneke and 

colleagues [26] suggested that the ideal cuff pressure necessary for training adaptation is 

less than previously used in the literature. This could be due to very high cuff pressures 

completely occluding arterial blood flow and thus attenuating the cell swelling response. 

Increasing cuff pressure also likely increases metabolite accumulation within the limb, 

which activate the exercise pressor reflex. The activation of the exercise pressor reflex 

and increased metabolite concentrations may explain the increased heart rate, ventilation, 

pain, and peripheral fatigue seen in the present study. These results may decrease BFR 

exercise training volume by early termination of the exercise. It should be noted that 

while BFR 80 resulted in a greater increases in metabolite accumulation it also resulted in 

substantial pain by the end of the final cycling interval (two participants could not 

complete the protocol). Therefore, this pressure was too high for the active male 

participants in the current study. Collectively, these results indicate that BFR 60 promotes 

lower metabolic, cardiorespiratory, and perceptual responses than traditional high-load 

cycling without inducing excessive pain, and therefore may be an acceptable cuff 

pressure for cycling with BFR. 

3.4.5 Implications 

The major findings of the present study were: 1) BFR caused a reduction in blood 

flow and tissue perfusion and augmented metabolite accumulation, 2) VO2, heart rate, 

ventilation, and RPE in the BFR 60 were lower than HL cycling, and 3) exercise with 
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BFR impaired MVIC torque through peripheral and central mechanisms. These findings 

have implications for clinicians, practitioners, and researchers. Clinicians and 

practitioners should take great care in selecting cuff pressures as pressure effects acute 

and likely chronic responses to exercise. Cuff pressures of ~60% limb occlusion pressure 

should be adequate for training as they result in reduced blood flow, decreased muscle 

oxygenation, increased metabolite accumulation, and reduced neuromuscular function, 

yet lower metabolic, cardiorespiratory, and perceptual responses than HL cycling. It is 

important to note that limb occlusion pressures vary by individual, cuff type, cuff width, 

and body position used [40, 43, 50, 51, 114]. Therefore cuff pressures should be based on 

individual limb occlusion pressure if possible. Using an absolute pressure may result in 

inconsistent training adaptations or adverse side-effects. Finally, this study highlights cuff 

pressures that elicit specific stresses to the neuromuscular systems that may be 

advantageous for cycling exercise with BFR, which may aid researchers in the 

development of robust cycling exercise with BFR guidelines (exercise protocols, cuff 

pressures) for healthy, clinical, and athletic populations.  

3.4.6 Limitations  

There are some limitations to our study that must be addressed. First, blood flow 

measurements using ultrasonography during cycling could not be performed, therefore 

we measured blood flow immediately (within 10 seconds) after each cycling interval. 

Although not directly measured, we can speculate that blood flow during exercise was 

higher than during recovery in the BFR conditions based on the tissue perfusion data. 

Second, our measurements of neuromuscular function were performed 1 min after the 
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conclusion of exercise. This minute was used for the participant to transfer from the 

cycling ergometer to the isokinetic dynamometer. This time may have masked some of 

the changes to neuromuscular function following exercise. Moreover, changes in 

neuromuscular function are task-specific [95] and therefore caution must be taken when 

extrapolating these findings to other modes of aerobic exercise, exercise protocols, and/or 

other populations including women and older adults. 

3.4.7 Summary 

 In summary, cycling with BFR decreased blood flow and tissue perfusion and 

increased metabolite accumulation when compared to LL cycling without BFR. 

Moreover, cycling with BFR resulted in lower metabolic and cardiorespiratory responses 

than traditional HL cycling, and reduced neuromuscular function by central and 

peripheral mechanisms. We conclude that intermittent cycling with a cuff pressure of 

60% limb occlusion has the potential to strike a balance between increasing metabolite 

stress, which is needed for training adaptations, without causing excessive discomfort and 

cardiorespiratory strain. Therefore, cycling with this pressure may serve as an alternative 

exercise for individuals incapable of performing high-intensity exercise.  
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Table 3: Participant characteristics 

Height (cm) 179 ± 6 
Body mass (kg) 79 ± 8 
Age (yr) 26 ± 6 
Body fat (%) 18 ± 4 
Lower limb lean mass (kg) 21 ± 2 
VO2peak (mL/kg/min) 53 ± 6 
Heart rate peak (b/min) 191 ± 9 
LOP (mmHg) 208 ± 19 
Values are expressed as mean ± SD. LLLM: 
Lower limb lean mass. LOP: Limb occlusion 
pressure 
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Figure 8: Overview of experimental cycling protocol. Base, Cuff, E, R, and Post-, 
denotes baseline, cuff inflate, exercise, recovery, and post-exercise periods, respectively. 
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Figure 9: Alterations in superficial femoral artery blood flow across different conditions 
(A). Significant main effect of condition indicted in textbox above figure, ≈ (p > 0.05), < 
or > (p < 0.05). Data reported as mean and standard deviation bars were removed for 
clarity. Mean superficial femoral artery blood flow during baseline, cuff inflate, and 
recovery periods (B). Blood flow different from LL, HL, BFR 60%, and BFR 80% (P < 
0.05) are indicated by A, B, C, D, respectively. Data are reported as mean ± SD. 
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Figure 10: Changes in tissue saturation index (A) and concentrations of 
deoxyhemoglobin (B) throughout the cycling protocol. Significant main effect of 
condition indicted in textbox above individual figures, ≈ (p > 0.05), < or > (p < 0.05). 
Data reported as mean, standard deviation bars were removed for clarity. Mean values for 
tissue saturation index (C) and concentrations of deoxyemoglobin (D) during baseline, 
cuff inflate, pooled exercise, and pooled recovery periods. Tissue saturation index and 
concentrations of deoxyhemoglobin different from LL, HL, BFR 60%, and BFR 80% (P 
< 0.05) are indicated by A, B, C, D, respectively. Data are reported as mean ± SD. 



72 

Figure 11: Time course alterations in VO2 (A), heart rate (B), ventilation (C), RPE (D), 
pain (E), and whole blood lactate (F). Significant main effect of condition indicted in 
textbox above individual figures, ≈ (p > 0.05), < or > (p < 0.05). Data reported as mean, 
standard deviation bars removed for clarity. 
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Figure 12: Maximal voluntary isometric contraction torque (MVIC), voluntary 
activation, evoked twitch torque (Tcontrol), rate of torque development, time to peak 
torque, and half-relaxation time depicted in panel A, B, C, D, E, and F, respectively. 
Significant main effect of condition indicted in textbox above individual figures, ≈ 
(denotes p > 0.05), < or > (denotes p < 0.05). Note that, Tcontrol ≥ indicated BFR 80 is 
different than LL and BFR 60, but not different than HL. Condition x time interaction at 
(baseline to 1 min post-exercise) different than all other conditions (* P < 0.05). All 
conditions different from baseline post-10 (# P < 0.05). Data reported as mean, standard 
deviation bars removed for clarity.  
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4 Adaptations to Low-Intensity Cycling and Low-
Intensity Resistance Training with Blood Flow 
Restriction 

4.1 Introduction 

Blood flow restriction (BFR) training is a safe and effective method of increasing 

both aerobic capacity and muscular function [26, 85, 115] in healthy, clinical, and athletic 

populations (for extensive reviews see [26, 115-117]). In this exercise modality, a 

pressurized cuff or tourniquet is used to partially restrict blood flow into the limb in 

combination with resistance exercise, or aerobic exercise[23]. This pressurized cuff 

results in the reduction of oxygen delivery to the muscle and occludes venous return, 

which causes a build-up of metabolites thereby promoting muscle growth [88], 

microvascular filtration capacity [118], and angiogenesis [119]. Exercise training with 

BFR is of particular interest to researchers for its ability to increase muscular function 

and aerobic capacity at much lower intensities than those traditionally used in exercise 

training, making this modality especially beneficial for those populations who are unable 

to perform high intensity exercise (e.g., individuals with orthopedic injuries, and older 

adults).  

Because of exercise with BFR’s unique ability to stimulate muscular adaptations 

at low training loads, many exercises including walking and cycling that traditionally 

would not improve muscle function can be effectively used with BFR to increase muscle 

size and strength.  
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Although aerobic and resistance training with BFR have not been directly 

compared, two separate meta-analyses have suggested resistance training with BFR 

would increase muscular size and strength to a greater degree than walking with BFR 

[26, 115]. Loenneke and colleagues [26] reported effect sizes of Cohen’s d = 0.44, and 

0.31 for increased muscular strength in resistance and aerobic exercise with BFR 

respectively. Additionally, Slysz and colleagues [115] reported typical increases in 

strength of 0.3 kg, for resistance training and 0.4 Nm for aerobic training. Alternatively, 

only aerobic exercise with BFR has been reported to increase aerobic capacity (VO2max, 

time until exhaustion, onset of blood lactate) [10, 36-38, 86]. Therefore, while muscle 

hypertrophy might be greater in resistance training with BFR, aerobic exercise with BFR 

may serve as a 2-for-1 activity in which participants increase both muscle function and 

aerobic capacity. Additionally, recent evidence also suggests that aerobic exercise with 

BFR elicits lower cardiovascular responses (e.g., heart rate, cardiac output, mean arterial 

pressure) [35, 39] and reduced perceived effort than resistance exercise with BFR [35, 

39]With these factors in mind, several authors [35, 39] have suggested that aerobic 

exercise with BFR is more tolerable. 

To date, there has not been a comparison of chronic training adaptations 

following aerobic and resistance training within equivalent matched groups. This 

information would allow clinicians and practitioners to make more informed decisions on 

the type of exercise to perform with BFR. Therefore, the purpose of this study was to 

evaluate changes in muscular function and aerobic capacity following 6 weeks of either 

aerobic or resistance exercise with BFR. We hypothesized that both resistance training 
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and aerobic training with BFR would increase muscle size and strength, but resistance 

BFR training would result in greater muscular adaptions [26, 115]. We also hypothesized 

that aerobic training with BFR would result in greater increases in aerobic capacity 

compared to resistance training with BFR. 

4.2 Methods 

4.2.1 Participants 

Eighteen healthy adults between 18-44 years of age volunteered to participate in 

this study (demographic and anthropometric characteristics reported in Table 4). 

Participants were excluded from the study if they used nicotine products, had diabetes, or 

had any cardiopulmonary disorders. None of the participants self-reported that they 

performed regular physical activity for 30 min at moderate intensity on at least 3 days per 

week in the last 3 months, which is consistent with the American College of Sports 

Medicine’s definition of sedentary [120]. Female participants were excluded if they were 

using any hormonal contraceptives. Additionally, none of the participants had performed 

exercise with BFR on a regular basis. Following the initial screening, participants were 

informed of the purpose of the study, the risks involved, and gave informed written 

consent. This study was approved by the Institutional Review Board at Michigan 

Technological University. 

4.2.2 Study Overview 

Participants were assigned to one of two exercise groups: aerobic or resistance 

training. Groups were matched on demographics, body composition, muscular function, 
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and aerobic capacity characteristics. Both groups performed BFR exercise 3x/wk for 6 

weeks. Training outcome measures of muscle size (lower limb lean mass, muscle 

thickness), muscle strength (isometric strength, knee extension estimated 1 repetition 

max, leg press estimated 1 repetition max), and aerobic capacity (VO2peak, lactate 

threshold, peak aerobic power) were performed prior to training and within 10 days after 

completion of the training program (Figure 1). Note that, pre-training and post-training 

measures for female participants, were collected during the follicular phase of their 

menstrual cycle.  

4.2.3 Blood Flow Restriction 

During exercise, femoral blood flow was restricted using a 10 cm wide nylon 

pneumatic cuff (SC10D, Hokanson, Belleview, WA, USA) wrapped around each thigh at 

the most proximal location. The cuff was pressurized with a rapid cuff inflator 

(Hokanson, Belleview, WA, USA). The training cuff pressure was set at 60% of 

individual limb occlusion pressure and monitored throughout the training session. To 

determine the limb occlusion pressure, participants were placed in a seated position 

during which blood flow velocity was assessed. Specifically, blood flow velocity was 

measured with a Doppler ultrasound system (Logiq e BT12, GE Healthcare, Chicago, IL, 

USA) equipped with a linear array transducer operating at an imaging frequency of 12 

MHz and Doppler frequency of 5 MHz. The ultrasound probe was positioned just distal 

to the cuff over the superficial femoral artery. The angle of insonation of the ultrasound 

probe was always ≤ 60°. Limb occlusion pressure was identified by inflating the cuff to 

75 mmHg, and slowly increasing the pressure until blood flow velocity reached zero, 
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based on the absence of the Doppler spectrum. The minimum pressure was recorded as 

the limb occlusion pressure. Pilot data from our laboratory indicated that the 

measurement of LOP using this method was stable across days (ICC = 0.97); which is 

consistent with previous literature [50].  

4.2.4 Aerobic Training 

Each exercise session consisted of multiple 2 min intervals on a cycle ergometer 

(Velotron Elite, RacerMate Inc., Seattle, WA, USA). In weeks 1 and 2, participants 

completed 6 total cycling intervals. In weeks 3-6, participants completed 8 intervals. The 

work rate was 40% of the participant’s peak aerobic power measured during a graded 

exercise test. Pedaling rate was self-selected. Participants were given 1 min rest between 

intervals and the pressure in the cuffs was maintained during these rest periods. 

Following the 3rd and 4th interval for weeks 1 and 2, and 3-6 respectively, the cuff was 

deflated and the participants were given 2 min rest.  

4.2.5 Resistance Training 

Each exercise session consisted of dynamic bilateral leg press (GZFH8043, 

FreeMotion, Logan, UT, USA) and knee extension (C8080W, New York Barbells, 

Elmira, NY, USA) exercise. In weeks 1 and 2 participants completed 3 sets of each 

exercise, and in weeks 3-6 participants completed 4 sets of each exercise. Participants 

performed 30 repetitions in the first set and 15 repetitions in all subsequent sets. Intensity 

was 30% of the participant’s estimated 1RM. Repetitions were set to a metronome and 

were performed 1.33 s for the concentric phase and 1.33 s for the eccentric phase. 
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Participants were given 1 min rest between sets, and 2 min rest between exercises. The 

pressure in the cuffs was maintained between sets but deflated between exercises.  

4.2.6 Training Measures 

During each training session, ratings of perceived exertion, pain, and heart rate 

were recorded during the last 15 s of exercise and rest. Whole body rating of perceived 

exertion was assessed using a Borg 6-20 scale [100]. Pain was assessed on an 11 point 

numeric rating scale [101]. Heart rate was measured continuously using a Polar 

transmitter (Polar Electro OY, Kempele, Finland). Mean arterial pressure was recorded 

during each rest period using an automated sphygmomanometer (Omron HEM-907XL, 

Omron Health Care Inc., Lake Forest, IL, USA). Before each training session participants 

performed a body weight half squat to a knee angle of 45° to assess the level of perceived 

muscle soreness in their legs. Participants were asked to place a mark on a 10 cm visual 

analog scale [121]. This scale was anchored by written cues at 0 cm (no soreness) and 10 

cm (very severe soreness). Muscle soreness was quantified by measuring the distance to 

the mark.  

4.2.7 Training Outcome Measures 

4.2.7.1 Body Composition  

 Regional body composition was assessed using dual energy x-ray absorptiometry 

(Discovery Wi, Hologic Inc, Marlborough, MA, USA). Lower limb lean mass, lower 

limb fat mass, and body fat percentage were recorded. The coefficient of variation of this 
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system for the measurement of lean, and fat mass has been reported to be 0.6-1.4%, and 

1.8-2.1% respectively [122, 123]. 

4.2.7.2 Muscle Thickness 

 Muscle thickness of the right rectus femoris and vastus lateralis were measured 

using a b mode ultrasound (Logiq e BT12, GE Healthcare, Chicago, IL, USA) equipped 

with a linear array transducer operating at an imaging frequency of 12 MHz and Doppler 

frequency of 5 MHz. Participants were positioned supine with their legs resting 

comfortably with about 10 degrees of knee flexion. A rolled towel was placed under the 

knee for support. Images of the rectus femoris (RF) and vastus lateralis (VL) were taken 

at 50% of the distance from the anterior superior iliac spine to the proximal patella. 

Muscle thickness was measured as the distance between the superficial and deep 

aponeurosis at the widest distance. Measures of muscle thickness were taken on 2 days, 

separated by at least 24 hrs. Five images were taken per muscle per day, and the average 

of the 10 closest measurements was used for analysis. If the average of the 2 days 

differed by more than 2.5%, muscle thickness measurements were taken on an additional 

day. The same investigator performed all the ultrasound measurements. The intraclass 

correlation coefficient for assessing the reliability of the RF and VL muscle thickness 

measurements across days was 0.995 (95% confidence interval: 0.982-0.999); 0.998 

(95% confidence interval: 0.994-1.000) with a coefficient of variation of 1.4%, and 1.1% 

for the RF and VL respectively. 
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4.2.7.3 Muscular Strength 

Isometric knee extension strength was determined using a force transducer (MLP-

300, Transducer Techniques, Temecula, CA, USA). Knee extension forces were recorded 

using a data acquisition system (PowerLab 16, ADInstruments, Colorado Springs, CO, 

USA). Participants were seated with a hip angle of ~85°, and a knee angle of ~90°. To 

measure isometric strength, participants were asked to “push as hard and as fast as 

possible” for ~5 s. Standardized verbal encouragement was provided to the participant. 

Measures of isometric knee extension strength were taken on 3 separate days, separated 

by at least 24 hrs. Five maximal voluntary contractions were taken per day. The average 

force of the 2 highest measurements within 5% was calculated and isometric strength to 

body mass ratio was recorded. The intraclass correlation coefficient of knee extension 

force across days was 0.968 (95% confidence interval: 0.916-0.990) with a coefficient of 

variation of 6.7%.  

Estimated 1 RM was determined on a leg press (GZFH8043, FreeMotion, Logan, 

UT, USA) and knee extension machine (C8080W, New York Barbells, Elmira, NY, 

USA). The participant completed 10-15 repetitions of weight ~50% of the individual’s 1 

RM as a warm-up. Subjects were given a 2 min rest and asked to complete 10 repetitions 

of ~80% their estimated 1 RM. If the participant could successfully complete 10 

repetitions with proper form, 4.5 kg was added and the participant attempted another 10 

repetitions following a 2 min rest. This was repeated until the subject could no longer 

perform 10 repetitions with proper form. The weight and number of repetitions 

completed were recorded and 1RM was estimated using the Brzycki equation. 1RM = w 
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x (36 / (37-r)) [124], where w is the weight and r is the number of repetitions. Estimation 

of knee extension and leg press 1 RM using this method has been previously reported as 

reliable in untrained men and women [125]. Leg press and knee extension strength was 

normalized to body weight. 

4.2.7.4 Aerobic Capacity 

Participants performed a graded exercise test on an electromagnetically-braked 

cycle ergometer (Velotron Elite, RacerMate Inc., Seattle, WA, USA) until task failure to 

determine VO2peak, lactate threshold, and peak aerobic power. The protocol began at 40 

W and increased 35 or 25 W every 3 min for men and women respectively. The pedaling 

rate was self-selected. The test was terminated voluntarily by the subject or when 

pedaling rate could no longer be maintained above 70 rpm despite verbal encouragement. 

Peak aerobic power (Wpeak) was interpolated based on the time complete in the terminal 

stage [126]. During the test, breath by breath gas exchange data was collected using a 

metabolic measuring system (True Max 2400, Parvo Medics, Sandy, UT, USA). The 

metabolic measurement system was calibrated with a 3L syringe and medical gases of 

known concentrations (16.00% O2, 4.00% CO2, balanced N2). Gas exchange data were 

continuously recorded and averaged every 30 s. The highest 30 s VO2 value was recorded 

as VO2peak. Heart rate was measured using a Polar transmitter (Polar Electro OY, 

Kempele, Finland). A blood sample was collected from the fingertip (5 μl) during the 

final min of each stage from which blood lactate concentration was determined (Lactate 

Pro LT-1710; ARKRAY, Kyoto, Japan). Blood lactate concentrations were plotted 

against power. The Dmax lactate threshold was determined by calculating the power output 
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that corresponded to the greatest perpendicular distance from a third-order polynomial 

curve and a straight line formed by the first and last data points[127, 128]. 

4.2.8 Statistical Analysis 

Separate 2 (aerobic vs. resistance) x 2 (pre-training vs. post-training) mixed 

repeated measures analysis of variance procedures (ANOVA) were used to assess 

differences in muscular function (muscle mass, muscle thickness, muscle strength) and 

aerobic capacity (VO2peak, Wpeak, Lactate Threshold) values. Separate 2 (aerobic vs. 

resistance) x 6 (weeks of training) mixed repeated measures ANOVA procedures were 

performed on rating of perceived exertion, pain, heart rate, mean arterial pressure, and 

muscle soreness. If the ANOVA revealed a significant interaction, then subsequent 

independent t-tests were used to identify where the groups differed. Partial eta squared 

(ηp²) was calculated as a measure of effect size with ηp² ≥ 0.01 indicating small, ≥ 0.059 

medium, and ≥ 0.138 large effects, respectively [105]. Statistical procedures were 

performed using SPSS 22 (Armonk, NY, USA). Data are reported as mean ± SD and 

alpha was set to 0.05. 

4.3 Results 

4.3.1 Pre-Training 

There were no significant differences in anthropometric measures (age, height, 

body mass, thigh circumference), muscular function (muscle size, strength), aerobic 

capacity (VO2peak, lactate threshold, peak aerobic power) or body composition (body fat 
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percentage, lower limb lean thigh mass, lower limb fat percentage) between groups (all P 

> 0.05; Table 4).  

4.3.2 Blood Flow Restriction Training 

Participants completed 99% of the total training sessions as three training sessions 

were missed due to scheduling conflicts. One participant from the aerobic group did not 

complete the training due to scheduling conflicts, thus 8 subject were used in the aerobic 

group were used for analysis. Mean exercise heart rate throughout training in the aerobic 

group (114 ± 5 bpm) and resistance group (120 ± 5 bpm) were not different (P = 0.46, ηp² 

= 0.04; Figure 14). Throughout training, MAP measured during the rest periods was also 

not different between the aerobic and resistance groups (96 ± 3 mmHg vs. 103 ± 3 

mmHg, respectively; P = 0.19, ηp² = 0.12; Figure 2). Rating of perceived exertion and 

pain/discomfort throughout training were higher in the resistance group compared to the 

aerobic group (P = 0.02, ηp² = 0.32; P < 0.01, ηp² = 0.44 respectively; Figure 14). Muscle 

soreness that resulted from aerobic and resistance training was minimal (0.2 ± 0.1 cm vs. 

0.6 ± 0.1 cm, respectively), but there was a trend for slightly higher muscle soreness in 

the resistance group (P = 0.08, ηp² = 0.19). 

4.3.3 Muscular Function 

4.3.3.1 Body composition:  

In general, BFR training regardless of group caused an increase in lower limb lean 

mass, and a decrease in body fat percentage. Specifically, a main effect of training on 

lower limb lean mass (P < 0.01, ηp² = 0.55) was found, but no group x training 
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interaction (P = 0.81, ηp² = 0.81; Figure 15). Similarly, for body fat percentage there was 

a significant main effect of training (P < 0.01, ηp² = 0.40), but no group x time interaction 

(P = 0.42, ηp² = 0.04). Finally, lower limb fat mass did not change with training (P = 

0.22, ηp² = 0.10).  

4.3.3.2 Muscle Thickness: 

Both aerobic and resistance training increased muscle function to a similar extent. 

Training effects were found for RF and VL thickness (P < 0.01, ηp² = 0.44; P < 0.01, ηp² 

= 0.72 respectively), but no training x group interactions (P = 0.70, ηp² = 0.01; P = 0.18, 

ηp² = 0.12 respectively; Figure 15).  

4.3.3.3 Muscle strength: 

 Similarly to muscle thickness, strength to body mass ratio, leg press 1 RM, and 

knee extension 1 RM, increased with training (P < 0.01, ηp² = 0.44, P < 0.01, ηp² = 0.42, 

P < 0.01, ηp² = 0.82 respectively), this increase not differ between groups. (P = 0.93, ηp² 

< 0.01; P = 0.87, ηp² < 0.01; P = 0.12, ηp² = 0.16 respectively; Figure 16) 

4.3.4 Aerobic Capacity 

For VO2peak, the ANOVA revealed a training x group interaction (P = 0.02, ηp² = 

0.30), but no main effect of training (p = 0.12, ηp² = 0.15). There was a 5% improvement 

in VO2peak in the aerobic group (P = 0.02), but no change in the resistance group (P = 

0.54, Figure 17). For lactate threshold and peak aerobic power, no main effects of 

training (P = 0.11, ηp² = 0.16, P = 0.19, ηp² = 0.11 respectively) or training x group 

interactions (P = 0.95, ηp² < 0.01, P = 0.22, ηp² = 0.64 respectively) were found. 
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4.4 Discussion 

We reported, for the first time, similar increases in muscle size and strength 

between aerobic and resistance training with BFR. Not only did aerobic training with 

BFR improve muscle size and strength, but also increased VO2peak. Moreover, aerobic 

training was performed at a lower rating of perceived exertion and resulted in lower 

muscle pain during exercise. Collectively, these data suggest that aerobic exercise with 

BFR may be the better method for training in populations who are unable to perform 

high-intensity exercise. 

4.4.1 Exercise Training Measures 

 Previous research reported lower RPE during treadmill walking with BFR when 

compared to leg press exercise with BFR [35, 39]. Our data support and extend upon 

these findings by corroborating their RPE findings and also demonstrating reduced pain 

in the aerobic group. Specifically, RPE during exercise was rated as 8.6 or “very light” in 

the aerobic group, and 11.0 or “light” in the resistance group. Throughout training, pain 

was rated at 1.7 or “mild pain” in the aerobic group and 3.7 or “moderate pain” in the 

resistance group. Moreover, although minimal, there was a trend for reduced muscle 

soreness in the aerobic group. Exercise training resulted in similar heart rates and blood 

pressures between groups. These results are contrary to previous research [35, 39] which 

demonstrated reduced heart rate and blood pressures during acute treadmill walking 

compared to leg press exercise. These discrepancies are likely due to differences in 

exercise modality and intensity. According to a recent questionnaire on the use of 

exercise with BFR, 99 out of 115 practitioners reported using resistance training, while 
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only 22 reported using aerobic training [23]. Results from the current study demonstrate 

clear advantages for performing aerobic training, and therefore practitioners considering 

implementing exercise training with BFR should use aerobic exercise (walking or 

cycling) if possible. 

4.4.2 Muscular Size and Strength 

Contrary to our hypothesis, aerobic and resistance training with BFR resulted in 

similar increases in muscle size and strength. Specifically, lower limb lean mass, RF 

thickness, and VL thickness increased by 3.9, 4.9, and 7.0%, respectively in both aerobic 

and resistance training groups. Additionally, isometric knee extension torque, as well as 

estimated knee extension and leg press 1 RM, improved by 8.2, 14.5, and 7.5% 

respectively in both groups. These improvements fall within the range of previously 

reported increases in muscle size and strength following aerobic and resistance training 

with BFR. For example, Abe and colleagues [129] demonstrated that walking with BFR 

increased quadriceps muscle volume by 4.1% and muscle strength by 10.4% in young, 

healthy men. In related work, Abe and coworkers [10] reported a 5.1%, and 7.7% 

increase in quadriceps muscle volume and knee extension strength following cycling 

training with BFR respectively. Similar increases in muscle size are reported following 

resistance training. Fujita and colleagues [7] documented a 3.0% increase in quadriceps 

muscle volume and a 6.7% increase in knee extension strength following resistance 

training with BFR. Yasuda and coworkers [130] similarly reported a 7.8% and 14.0% 

increase in quadriceps muscles size and squat 1 RM following squat training with BFR. 

Although the exact mechanism for hypertrophy following exercise with BFR is unknown, 
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some proposed mechanisms include accelerated fatigue leading to preferential type II 

fiber recruitment [18], augmented metabolite accumulation and local hypoxia [19], and 

cell swelling [131]. Moreover, there may be an endocrine response as exercise with BFR 

increases serum growth hormone to a greater extent than traditional high-load resistance 

training [21]. It is thought that this increase in growth hormone secretion occurs through 

the stimulation of chemoreceptors due to decreases in muscle perfusion [22]. Aerobic and 

resistance training with BFR similarly increase muscular function, this result has 

important implications for rehabilitation programs in which high-load resistance training 

is contraindicated. 

4.4.3 Aerobic Capacity  

There was a small but significant improvement in VO2peak for the aerobic group 

but VO2peak did not change in the resistance group. Specifically, VO2peak improved by 

4.5% following cycling training with BFR. It should be noted that the day-to-day 

variation of VO2peak has been perviously reported to range from 3-5% [132, 133]. The 

increase in VO2peak in the present study is similar in magnitude to other reports following 

cycling training with BFR. Specifically, de Oliveira and colleagues [38] demonstrated a 

6.1% increase in VO2peak following 4 weeks of cycling with BFR and Abe and coworkers 

[36] reported a 6.4% increase in VO2peak following 8 weeks of cycling with BFR. To the 

best of our knowledge, there are no reports documenting improved aerobic capacity 

following resistance training with BFR. There is a lack of research examining the cellular 

mechanism for improved aerobic capacity following aerobic exercise with BFR, 

however, previous reports on supine leg cycling in a pressurized chamber have 
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demonstrated increased muscle oxidative enzyme activity and capillary density [134, 

135]. As this method also reduces blood flow to the working muscle, it may provide 

some insight into changes in aerobic capacity following cycling with BFR. These results 

extend upon previous research by demonstrating that aerobic exercise with BFR serves as 

a 2-for-1 activity, in which participants increase both muscle function and aerobic 

capacity. These results are especially important to clinicians working with populations 

that are unable to perform traditional exercise training or populations that can benefit 

from increases in both muscle function and aerobic capacity (e.g. older adults). 

4.4.4 Limitations 

 One limitation of the present study was total work and time under occlusion were 

not matched between groups. The training protocols we chose were selected because they 

are commonly used in research and in practice [23], and were therefor chosen to maintain 

as much external validity as possible. Training adaptations to exercise with BFR are 

heavily influenced by intensity, duration, cuff pressure, and exercise volume. As such, 

care must be taken when extrapolating these findings to other exercise protocols. Finally, 

it is important to note that participants in the present study were young untrained and 

otherwise healthy. While no adverse side effects were reported in the presented study, 

caution should be taken when prescribing exercise with BFR to clinical populations, 

especially those with an exaggerated sympathetic response to exercise (e.g. those 

hypertension, heart failure, or peripheral artery disease) [82]. 
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4.4.5 Summary 

In summary, the purpose of this study was to compare changes in muscular 

function and aerobic capacity following 6 wks of aerobic and resistance training with 

BFR. We found similar increases in muscle size and strength in aerobic and resistance 

training, and an increase in VO2peak in the aerobic group only. Moreover, aerobic training 

with BFR resulted in lower perceived effort and muscle pain during exercise. These 

improvements were achieved at much lower exercise intensities than what is generally 

recommended for aerobic and resistance training. We conclude that while both aerobic 

and resistance training with BFR are equally effective at increasing muscle size and 

strength, aerobic exercise has additional benefits (increasing aerobic capacity, lower 

effort, and reduced pain) and therefore may be the better option for exercise training with 

BFR.  
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Figure 13: Overview of aerobic and resistance training protocol. 
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Table 4: Pre-training subject characteristics 
Aerobic Resistance P-value

Total participants 
(n) 

9 9 n/a 

         Female (n) 3 4 n/a 
         Male (n) 6 5 n/a 
Age (yr) 25 ± 5 27 ± 7 0.45 
Height (cm) 176 ± 10 174 ± 9 0.63 
Body mass (kg) 83 ± 19 81 ± 12 0.81 
Thigh 
circumference (cm) 

59 ± 9 60 ± 4 0.80 

Limb occlusion 
pressure (mmHg) 

189 ± 34 205 ± 20 0.25 

Body fat (%) 28 ± 11 30 ± 8 0.53 
Lower limb lean 
mass (kg) 

19 ± 4 18 ± 3 0.71 

KE 1 RM 142 ± 41 141 ± 37 0.95 
VO2peak (ml/kg/min) 35 ± 8 34 ± 8 0.81 
Values are expressed as means ± SD.  
KE 1 RM, knee extension 1 repetition max. 
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Figure 14: Mean weekly heart rate measured during exercise (A), mean arterial pressure 
measured during recovery (B), rating of perceived exertion (RPE) measured during 
exercise (C), Pain measured during exercise and recovery (D). Variable different than 
aerobic (P < 0.05) is indicated by *. Data are reported as mean ± SD.  
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Figure 15: Pre- to post-training changes in lower limb lean mass (A), rectus femoris (RF) 
muscle thickness (B), and vastus lateralis (VL) muscle thickness (C).  Significant main 
effect of training (P < 0.05) is indicated by #. Mean data represented as column, 
individual changes reported by black circles. 
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Figure 16: Pre- to post-training changes in isometric strength (A), Knee extension 1 
repetition max (KE 1 RM; B), and leg press 1 repetition max (LP 1 RM; C). Significant 
main effect of training (P < 0.05) is indicated by #. Mean data represented as column, 
individual changes reported by black circles.  
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Figure 17: Pre- to post-training changes in VO2peak (A), Wpeak (B), lactate threshold (C). 
Simple effect of training (P < 0.05) is indicated by $. Significant training X group 
interaction (P < 0.05) is indicated by *. Mean data represented as column, individual 
changes reported by black circles. 
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5 Conclusion 

Exercise with blood flow restriction (BFR) is emerging as an effective method to 

improve muscle size, strength, and exercise capacity healthy, clinical, and athletic 

populations (table 1). Exercise with BFR allows for the development of muscle size and 

strength at low training loads. This is especially important for clinical populations in 

which high training loads are contraindicated or impossible. Currently, there are no 

standardized guidelines for exercise with BFR. I used a variety of experimental 

techniques including ultrasound, near-infrared spectroscopy, expired air analysis, 

electrical stimulation, and dual-energy X-ray absorptiometry to investigate how cuff 

pressure and as well as the type of exercise alter acute and chronic responses to exercise 

with BFR.  

In the first study, I was the first to report changes in blood flow, and tissue perfusion 

during aerobic exercise with BFR. Our key findings were the relative reduction in blood 

flow was generally maintained at rest. Additionally, as pressure increased, brachial artery 

blood flow and tissue perfusion decreased during and after exercise with BFR. 

Ultimately, these results suggest cuff pressures between 60-80% LOP, decrease blood 

flow and tissue perfusion without completely occluding blood flow, nor do they cause 

any acute cardiovascular changes, and therefore may be an adequate  

In the second study, we examined the cardiovascular, metabolic, perceptual and 

neuromuscular effects of cycling with BFR. The major findings of this study were: 1) 

BFR caused a reduction in blood flow and tissue perfusion and augmented metabolite 
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accumulation, 2) VO2, heart rate, ventilation, and RPE in the BFR 60 were lower than HL 

cycling, and 3) exercise with BFR impaired MVIC torque through peripheral and central 

mechanisms. These results suggest a cuff pressure of ~60% limb occlusion pressure 

should be adequate for training as it results in reduce tissue perfusion, increased 

metabolite accumulation, and reduced neuromuscular function, without increasing 

cardiorespiratory, and perceptual responses to that of HL cycling. 

Finally in the third study, I was the first to directly compare training adaptions to 

aerobic and resistance exercise with BFR. The main findings were that aerobic and 

resistance exercise with BFR similarly increased muscle size and strength, but only 

aerobic training increased exercise capacity. Additionally, aerobic exercise with BFR 

required less perceived effort and resulted in lower muscle pain. Collectively, these 

findings demonstrate clear advantages for performing aerobic training, and therefore 

practitioners considering implementing exercise training with BFR should use aerobic 

exercise (walking or cycling) if possible. 

In conclusion, moderate cuff pressure of ~60% limb occlusion pressure increases 

metabolic stress, without completely occluding blood flow, or causing excessive muscle 

pain. Moreover, this pressure results in significant increases in muscle size and strength 

following cycling and resistance training. Additionally, aerobic exercise with BFR may 

be the better method for training in populations who are unable to perform high-intensity 

exercise. Taken together, these studies will enable researchers, clinicians, and coaches to 

more effectively prescribe exercise with BFR to improve muscle size, strength and 

exercise capacity. 
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B Submitted Manuscripts 
B.1 Home-Based Exercise with Blood Flow Restriction to 

Restore Limb Symmetry Following ACL Reconstruction 
B.1.1 Abstract 

Study Design: Controlled laboratory study, longitudinal. 

Background: Quadriceps atrophy and weakness can persist for years after anterior 

cruciate ligament reconstruction (ACLR). Such impairments can limit physical function, 

increase re-injury risk, and lead to early osteoarthritis.  

Objectives: To evaluate the effectiveness of a home-based blood flow restriction (BFR) 

exercise program to increase quadriceps size and strength several years after ACLR.  

Methods: Nine adults with ACLR (5±2yrs post-surgery, ≤90% quadriceps symmetry) 

and nine uninjured controls volunteered. ACLR participants exercised at home for 

~25min, 5x/wk for 4wks (bodyweight half-squats, single-leg knee extension, walking). 

Blood flow in only the ACLR leg was restricted using a thigh cuff inflated to 50% of 

limb occlusion pressure. Rectus femoris and vastus lateralis thickness and knee extensor 

strength were measured before and after training. Baseline and post-training symmetry 

(ACLR leg/uninvolved leg) indices were compared to uninjured controls. Muscle 

soreness with the exercise program was assessed using an analog scale (0-10cm). 

Results: Rectus femoris and vastus lateralis thickness and knee extensor strength in the 

ACLR leg increased by 11±5%, 10±6%, and 20±14%, respectively (all P<0.01). 

Compared to baseline, post-training knee extensor strength symmetry increased from 
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88±4 to 99±5% (P<0.01) and did not differ from uninjured controls (99±5%, P=0.95). 

Mean muscle soreness across the 20 exercise training sessions was very low (0.41±0.44 

to 0.91±1.31cm). 

Conclusion: Implementation of BFR exercise at home was feasible, safe, and effective. 

Results extend upon early post-operative application of BFR exercise for ACLR recovery 

and demonstrate that BFR can improve quadriceps function long after ACLR. 

B.1.2 Introduction 

After an anterior cruciate ligament injury and reconstruction (ACLR) many 

individuals do not completely regain their quadriceps size19,28,48 and strength7,14,19,47 and 

only 60% are able to return to pre-injury activity levels.3 Persistent muscle and strength 

loss in the injured leg gives rise to quadriceps asymmetry which is associated with altered 

joint loading and gait mechanics,6,34 limited physical function,39 and increased risk for re-

injury.18 Moreover, chronic quadriceps asymmetry has the potential to lead to early onset 

of osteoarthritis33,49 thus requiring costly continued medical intervention. Many 

authors20,21,26 have also reported the presence of quadriceps asymmetry several years after 

ACLR. However, there are few reports documenting the implementation of therapeutic 

interventions to overcome these persistent impairments, improve quadriceps size and 

strength, and restore quadriceps symmetry. Therefore, developing effective strategies to 

improve and restore quadriceps function long after ACLR is not only warranted but is of 

paramount importance so individuals living with an ACLR can maintain active lives and 

avoid long-term disability. 
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Performing resistance exercise at 65-70% of one repetition maximum (1RM), 2-

3x/wk, for 8 weeks is sufficient to increase quadriceps size and strength.9 This type of 

exercise, however, is not always possible because the high loads are contraindicated after 

ACLR as it could add excessive strain on the repaired ligament13 and/or irritate the knee 

joint. Alternatively, implementation of exercise with blood flow restriction (BFR) is 

emerging as an effective method to build muscle and improve strength in clinical 

populations with orthopedic limitations (e.g., ACLR, osteoarthritis, total knee 

arthroplasty).15 For this exercise, an inflatable cuff applies mechanical compression to the 

limb to partially occlude blood flow while much lower loads are used compared to 

traditional resistance exercise (e.g., 20 vs. 70% of 1RM). Evidence44 suggests that BFR 

can be applied days after ACLR surgery to minimize quadriceps atrophy. Other groups 

have demonstrated that BFR exercise increases quadriceps muscle size and strength to a 

greater extent than traditional rehabilitative care following ACLR32 and knee 

arthroscopy.46 To date, there are no reports of using BFR exercise years after ACLR.  

Following discharge from a supervised rehabilitation protocol, patients are 

encouraged to continue with a home-based program in order to achieve and maintain 

optimal function. Continued adherence to this program is crucial, as patients are often 

permitted to return to limited sport activities with 85-90% quadriceps and/or limb 

symmetry5,23,34,39 with the expectation that they will successfully regain full symmetry 

with time. However, limited access to specialized exercise equipment, time constraints, 

and costs associated with follow-up treatment can pose barriers. Implementation of BFR 

at home may circumvent these limitations as it can be performed with or without weights 
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(i.e., bodyweight only and/or resistance bands), facilitates strength gains faster than 

traditional training, and involves inexpensive equipment. Successful home-based 

programs also depend on the individual's motivation, amount of program education 

received, and previous experience exercising independently.11 Thus, implementation of 

BFR exercise at home years after an ACLR warrants further consideration as it could 

offer a simple and inexpensive option to aid with long term recovery.  

Our purpose for conducting this investigation was to evaluate the effectiveness of 

a 4 week home-based BFR exercise program to increase quadriceps size, strength, and 

symmetry several years after ACLR. We envisioned that a home program consisting of 

bodyweight and walking exercises with BFR would be feasible, safe, and inexpensive. 

We hypothesized that BFR exercise would stimulate greater improvements in rectus 

femoris and vastus lateralis muscle thickness and knee extensor strength in the ACLR leg 

compared to the uninvolved leg (i.e., non-BFR leg). We also hypothesized that 

quadriceps asymmetry would decrease thus resulting in symmetry levels that would be 

much closer to those for uninjured controls. 

B.1.3 Methods 

Participants 

Nine adults who had undergone an ACLR and nine uninjured controls 

volunteered to participate in this study (demographics reported in Table 1). Participants 

were between 18-44yrs of age and were recreationally active which was defined as 

exercising 3-5x/week for 30min at a moderate intensity.9 Individuals in the ACLR group 
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were eligible to participate if they: 1) had a unilateral ACLR >2yrs ago, 2) completed a 

post-operative rehabilitation program, 3) were cleared to return to physical activity by 

their orthopedic surgeon, and 4) exhibited greater than a 10% difference in their rectus 

femoris thickness, vastus lateralis thickness, or knee extensor strength between their 

ACLR and uninvolved leg (i.e., <90% symmetry). A physical therapist performed an 

evaluation to verify that these participants were able to perform the baseline testing and 

home-based BFR exercise program. Specifically, participants had to display negative 

signs and symptoms for knee ligamentous laxity, meniscal involvement, and patellar 

dysfunction. Participants also needed to demonstrate adequate muscular stability through 

the ACLR leg during a single-leg squat, bilateral vertical jump, and forward, backward, 

and lateral lunge matrix. Individuals in the uninjured control group were eligible if they 

had no history of lower-extremity joint surgeries. Experimental procedures used in this 

investigation were reviewed and approved by the institutional review boards at Michigan 

Technological University and Northern Michigan University. The procedures were 

explained and participants provided written informed consent before testing.  

Study Overview 

Baseline measures of rectus femoris thickness, vastus lateralis thickness, and 

single-leg knee extensor strength were assessed in the ACLR and uninjured control 

groups. Participants in the ACLR group performed BFR exercise at home for ~25min, 

5x/week for 4 weeks. Within one week following the completion of the exercise program 

rectus femoris thickness, vastus lateralis thickness, and single-leg knee extensor strength 

were assessed again in the ACLR group. Baseline and post-training symmetry indices for 
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ACLR participants (ACLR leg/uninvolved leg) were compared to the baseline values for 

uninjured controls (nondominant leg/dominant leg). 

Home-Based BFR Exercise Program 

Participants in the ACLR group visited the laboratory to complete a 

familiarization session where they were introduced to the BFR exercise program. 

Subsequently, each training session performed at home consisted of a series of three 

exercises (single-leg knee extension, bodyweight half-squats, walking) and took ~25min 

to complete (Figure 1). First, participants performed 3 sets of 30 double-leg bodyweight 

half squats. Participants were instructed to keep their feet shoulder width apart and lower 

their body to ~45° and slowly rise back up. Next, participants performed 3 sets of 30 

single-leg knee extensions using their ACLR leg only with resistance bands. The level of 

resistance was selected by the investigator such that the participant was able to complete 

all 3 sets. Participants were instructed to move up to the next resistance band when it was 

no longer challenging to complete all 3 sets. Finally, participants performed 3 sets of 

2min walking intervals at their self-selected walking speed. If they were not able to find a 

location for sustained walking they substituted this with 3 sets of 2min stepping in place 

intervals. Throughout the training session a 1min rest was provided between sets and 

2min of rest was given between exercises.  

During each exercise, only blood flow in the ACLR leg was restricted using an 

18cm wide aneroid sphygmomanometer (Briggs, Healthcare, Waukegan, IL, USA). The 

inflatable cuff was wrapped around the thigh at the most proximal location and pressure 
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was inflated to 50% of the pressure required to completely occlude blood flow in the 

femoral artery (i.e., limb occlusion pressure, described below). The cuff remained 

inflated during the 1min rest between sets but was deflated during the 2min of rest 

between exercises. Note that, during the rest period participants returned to a seated 

position to carefully check that the pressure remained at the correct level and re-adjusted 

it if needed. The total time blood flow was partially occluded was ~18min of the ~25min 

session. Finally, each week participants visited the laboratory to perform one supervised 

training session. This provided an opportunity to ensure proper movement form, adjust 

the resistance level if needed, and verify that cuff pressure was being set correctly and 

carefully monitored. If participants were unable to visit the laboratory, they were 

instructed to communicate with the investigator via phone or email.  

 

Muscle Soreness 

Before each training session ACLR participants performed a bodyweight half-

squat to a knee angle of 45° to assess the level of perceived muscle soreness in their legs. 

Participants were asked to place a mark on a 10cm visual analog scale.51 This scale was 

anchored by written cues at 0cm (no soreness) and 10cm (very severe soreness). Muscle 

soreness was quantified by measuring the distance to the mark.  

Limb Occlusion Pressure 
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The cuff was wrapped around the thigh of the ACLR leg at the most proximal 

location while participants were in a seated position. Doppler ultrasound (Logiq e BT12, 

GE Healthcare, Chicago, IL, USA) equipped with a linear array transducer operating at 

an imaging frequency of 12MHz was used to image the superficial femoral artery. The 

ultrasound probe was positioned distal to the cuff. The cuff was inflated to 75mmHg and 

pressure was increased until blood flow velocity reached zero. The minimum pressure 

required to completely occlude blood flow was recorded as limb occlusion pressure.16  

Quadriceps Size and Strength 

Thickness of the rectus femoris and vastus lateralis were measured separately in 

the ACLR and uninvolved legs (ACLR group) and nondominant and dominant legs 

(uninjured control group) using B-mode ultrasound (Logiq e BT12, GE Healthcare, 

Chicago, IL, USA). Participants were positioned supine with knees resting comfortably in 

extension with a knee angle of 10° and a rolled towel was placed under the knee for 

support. The scanning probe was used to image the muscle. Images of the rectus femoris 

and vastus lateralis were taken at 66% of the distance from the anterior superior iliac 

spine to the proximal patella and thickness was measured as the widest distance between 

the superficial and deep aponeurosis.29 Muscle thickness measurements were taken 

5x/day on two separate days and the average of the 10 measurements was used for 

analysis. If the average from each day differed by more than 2.5% then muscle thickness 

measurements were taken on an additional third day. The same investigator performed all 

the ultrasound measurements. Muscle thickness values in each leg were used to calculate 

a symmetry index (described below).  
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Isotonic single-leg knee extensor strength was evaluated on a knee extension 

strength machine (Cybex, Life Fitness, Rosemont, IL, USA). Participants completed 10 

repetitions of weight at ~50% of their anticipated 1RM as a warm-up. Participants were 

then given a 2min rest and asked to complete 10 repetitions at ~80% of their anticipated 

1RM. If the participant successfully completed 10 repetitions with proper form, 5-10lbs 

were added and the participant attempted another 10 repetitions following a 2min rest. 

This was repeated until the participant could no longer perform 10 repetitions with proper 

form. The investigator closely monitored the movement to ensure that full range of 

motion was achieved and that compensatory efforts were minimized. The weight in 

pounds and number of repetitions completed were recorded and 1RM was estimated 

using the Brzycki4 equation: 1RM = w*[36 / (37-r)], where w is the weight in pounds 

and r is the number of repetitions. Strength values were used to calculate symmetry 

index. 

Symmetry Index 

For the ACLR group, symmetry index was calculated as: SI = [(ACLR 

leg/uninvolved leg)*100]. Accordingly, a number greater than 100% indicated that the 

ACLR leg had a greater value than the uninvolved leg. For the control group, the 

symmetry index was calculated as: SI = [(nondominant leg/(dominant leg)*100]. Thus, a 

number greater than 100% indicated that the nondominant leg had a greater value than 

the dominant leg. 

Statistical Analysis 
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 Independent t-tests were used to compare differences in demographic 

characteristics between the ACLR and uninjured control groups. Additionally, 

independent t-tests were used to assess differences in baseline rectus femoris thickness, 

vastus lateralis thickness, and knee extensor strength symmetry indices between the 

ACLR and uninjured control groups. For the ACLR group, student’s paired t-tests were 

used to assess differences in baseline rectus femoris thickness, vastus lateralis thickness, 

and knee extensor strength in the ACLR and uninvolved legs. A one-way repeated 

measures analysis of variance (ANOVA) was performed on muscle soreness values. 

Separate 2 (ACLR vs. uninvolved leg) x 2 (baseline vs. post-training) repeated measures 

ANOVA procedures were used to assess changes in rectus femoris thickness, vastus 

lateralis thickness, and knee extensor strength. Subsequent follow-up paired t-tests were 

used to test for simple main effects. Paired t-tests were also used to assess differences in 

baseline and post-training symmetry indices for the ACLR group. Finally, independent t-

tests were used to evaluate differences in symmetry indices between ACLR (post-

training) and uninjured control groups (baseline). Alpha was set to 0.05 and data were 

presented as mean±SD. 

B.1.4 Results 

Baseline 

There were no differences in age, height, body mass, BMI, or body fat between 

the ACLR and uninjured control groups (all P>0.05; Table 1). Participants in the ACLR 

group had surgery 5±2yrs ago with an autograft of either the semitendinosus muscle 

tendon (n=3) or patellar tendon (n=6). For these participants, rectus femoris thickness, 
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vastus lateralis muscle thickness, and knee extensor strength were reduced in the ACLR 

leg compared to the uninvolved leg (all P<0.01; Figure 2, 3). As expected mean 

symmetry values for rectus femoris thickness (87±5), vastus lateralis thickness (90±6), 

and knee extensor strength (88±4) were all ≤90% and thus were within the range 

considered as moderate asymmetry.34 These symmetry indices for the ACLR group were 

less than those for the uninjured control group (all P<0.01; Figure 2, 3). 

Exercise Training 

Mean limb occlusion pressure was 182±28mmHg. Accordingly, mean BFR 

training pressure was set at 91±14mmHg. ACLR participants completed 98% of the total 

exercise sessions and there were no adverse events with the exercise program. Mean 

muscle soreness (0-10cm analog scale) with the exercise training was very low and did 

not differ across the training sessions (0.41±0.44 to 0.91±1.31cm; P>0.05; Figure 4).  

Post-Training 

The repeated measures ANOVA revealed a significant leg x time interaction for 

rectus femoris muscle thickness (P<0.01) indicating that the ACLR leg exhibited a 

greater change in thickness compared to the uninvolved leg (Figure 2). Further, after 

training rectus femoris thickness increased by 11±5% (P<0.01) in the ACLR leg but did 

not change in the uninvolved leg (P=0.76). A small but significant difference was also 

present in rectus femoris thickness between the ACLR and uninvolved legs after training 

(P=0.03). Post-training rectus femoris thickness symmetry in the ACLR group increased 

compared to baseline (P<0.01) and was not different from that for the uninjured control 
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group (P=0.28; Figure 2). The ACLR leg also exhibited a greater change in vastus 

lateralis thickness compared to the uninvolved leg (P<0.01; Figure 2). Specifically, after 

training vastus lateralis thickness increased by 10±6% in the ACLR leg (P<0.01) but did 

not change in the uninvolved leg (P=0.47). There was, however, a small but significant 

difference in vastus lateralis thickness between the ACLR and uninvolved legs after 

training (P=0.02). Post-training symmetry for vastus lateralis thickness in the ACLR 

group increased compared to baseline (both P<0.01) but was still lower than that for the 

uninjured control group (P=0.03; Figure 2). 

There was a significant leg x time interaction for knee extensor strength (P<0.01) 

indicating that the ACLR leg exhibited a greater change in strength compared to the 

uninvolved leg (Figure 2). After training, knee extensor strength increased by 20±14% in 

ACLR leg (P<0.01) and did not change in the uninvolved leg (P=0.09). Following 

training, knee extensor strength in the ACLR and uninvolved legs did not differ (P=0.71). 

Accordingly, post-training knee extensor strength symmetry in the ACLR group 

increased compared to baseline (P<0.01) and did not differ from that for the uninjured 

control group (P=0.95; Figure 3). 

B.1.5 Discussion 

Main Findings 

In this investigation, participants had an ACLR on average 5yrs ago and despite 

completing a post-operative rehabilitation program and being physically active still had 

persistent quadriceps impairments and moderate levels of asymmetry. Accordingly, we 
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implemented a 4 week home-based BFR program consisting of bodyweight and walking 

exercises to increase quadriceps size and strength. As expected, exercise with BFR 

increased rectus femoris and vastus lateralis thickness as well as knee extensor strength to 

a greater extent in the ACLR leg compared to the uninvolved leg. Consequently, 

asymmetry in muscle thickness and knee extensor strength measures was reduced such 

that symmetry levels (96-99%) were much closer to those of uninjured controls (99-

101%). Collectively, these findings support our hypotheses, shed new light on the 

application of home-based BFR exercise, and offer a promising approach for restoration 

of quadriceps function long after ACLR. 

 Home-Based Exercise with BFR 

A unique aspect of this study was the development of a home-based BFR exercise 

protocol. To minimize the need for expensive exercise equipment we implemented 

simple exercises that only required the use of a thigh blood pressure cuff and a resistance 

band (~$20 USD). Further, when implementing BFR exercise, selection of cuff pressure 

is especially critical as this affects not only the training stimulus for improvement but 

also the safety of the participant. Indeed, cuff pressure is influenced by several factors 

including cuff size, limb anthropometrics, sex, and race and thus is highly variable across 

individuals.17 With this in mind, we used moderate training pressures (~90mmHg) that 

were normalized to 50% of each participant’s limb occlusion pressure. Using this 

approach, participants were able to perform BFR exercise without causing injury and 

tolerated the training as muscle soreness was very low (<1.0cm, 0 - no soreness to 10 - 
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very severe soreness). Thus, implementation of BFR exercise at home provided a 

program that was feasible, safe, and inexpensive. 

Quadriceps Size and Strength 

Restoration of quadriceps size and strength is imperative for recovery of knee 

joint function following ACLR and long-term joint health.35 Achievement of 90% 

symmetry5,23,34,39 is often used as one of the clinical milestones for returning to physical 

activity and sport. Our inclusion criteria included active individuals who had <90% 

symmetry and the moderate level of asymmetry present in these individuals before 

training was not surprising as several authors20,21,26 have reported persistent asymmetry 

for many years following ACLR. After 4 weeks of BFR exercise, rectus femoris and 

vastus lateralis thickness in the ACLR leg increased by 11% and 10%, respectively. 

Increased quadriceps thickness is significant because knee extensor strength is more 

associated with quadriceps volume and cross sectional area rather than voluntary 

activation as individuals with knee surgery pass the ~1yr mark.20,30,36 The BFR home 

program also increased knee extensor strength by 20% (~6.5kg). Together, these BFR 

exercise-induced improvements in quadriceps muscle thickness and knee extensor 1RM 

strength are consistent with those for healthy adults performing BFR resistance2 and 

aerobic1 exercise where quadriceps volume and whole-leg 1RM strength increased by 

~6% and ~12%, respectively. The results of the current study also provide additional 

evidence that BFR exercise-induced muscle and strength gains can be achieved quickly 

and through both resistance and aerobic exercise.27,41 
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With increased muscle thickness and strength in the ACLR leg there was a 

notable improvement in symmetry for rectus femoris (87 to 96%) and vastus lateralis (90 

to 97%) thickness and knee extensor strength (88 to 99%). Indeed, post-training 

symmetry values were much closer to those of uninjured controls. Most importantly, 

these participants living with ACLR were able to overcome presumably years of 

quadriceps weakness with just one month of targeted exercise training and achieve 

remarkable levels of knee extensor strength symmetry. These symmetry outcomes extend 

upon previous reports documenting the application of BFR exercise early after ACLR. 

For example, Ohta and colleagues32 reported that BFR exercise implemented 3-16 weeks 

post-operatively increased muscle cross-sectional area (91 to 101%) and knee extensor 

strength (65 to 77%) symmetry. Taken together, the results from the current study along 

with previous reports22,32,44 clearly demonstrate that BFR exercise can offer a potent 

stimulus for improving quadriceps function after ACLR. Moreover, implementation of 

exercise involving relatively low loads to improve quadriceps function in individuals that 

have a history of ACLR is especially noteworthy because traditional high-load resistance 

exercise can be injurious and intolerable. 

The physiological mechanisms responsible for increased muscle size and strength 

with BFR exercise are not well established. Previous authors have proposed a variety of 

mechanisms including accelerated fatigue leading to preferential type II fiber 

recruitment,52 augmented metabolite accumulation and local hypoxia,40 and cell 

swelling.24 There may also be an endocrine response as exercise with BFR increases 

serum growth hormone to a greater extent than traditional high load resistance exercise.37 
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This increase in growth hormone secretion possibly occurs through the stimulation of 

chemoreceptors due to decreases in muscle perfusion.45 Determination of the exact 

mechanisms goes beyond the scope of the present data and thus our results reinforce the 

notion that BFR exercise offers an effective intervention for improving muscular function 

in healthy and clinical populations. 

Implications and Considerations 

Our findings have several important implications for clinicians. First, when 

patients with ACLR are eventually discharged from supervised rehabilitation, clinicians 

may consider incorporating BFR exercises into home-based maintenance programs. 

Specifically, this may allow these individuals to further increase their quadriceps size and 

strength, symmetry, and/or physical function because low-load BFR resistance exercise is 

more effective than traditional low-load resistance exercise.25 An alternative possibility is 

that low-load BFR resistance exercise may enable individuals to progress sooner towards 

high-load resistance exercise,15 which elicits even greater strength gains. Increased 

dynamic stability through the knee as a result of increased quadriceps strength might 

decrease the risk of secondary, long-term osteoarthritic changes.49 Second, individuals 

with ACLR that have persistent quadriceps impairments and require follow-up medical 

intervention may find BFR exercise practical as it can be performed at home, facilitates 

strength gains quickly, and involves inexpensive equipment. Finally, given that BFR 

exercise can be administered effectively early after knee arthoscopy46 and total knee 



151 

 

arthoplasty10 procedures, it would very interesting to determine if implementation of BFR 

exercise long after these procedures can also help these individuals overcome persistent 

quadriceps impairments. 

It is important to acknowledge that BFR exercise is characterized by slight 

discomfort and dull pain at the site of the cuff which could affect an individual’s 

motivation and program compliance. In addition, restriction of blood flow during 

exercise does elevate heart rate and blood pressure and, although unlikely, could give rise 

to severe side effects (e.g., adverse cardiovascular responses, blood clotting, 

muscle/nerve damage).43 To date, many investigators have implemented BFR exercise 

safely across a broad range of healthy,27,41 athletic,42 and clinical15 populations. Adverse 

effects due to BFR are rare.31 There are no standardized guidelines for selection of cuff 

pressure. Current best practices indicate that cuff pressure be based on individual limb 

occlusion pressure or thigh circumference.41 With these considerations in mind, careful 

selection of cuff pressure, continued monitoring of training, and participant education is 

critical to ensuring that BFR exercise be implemented safely. 

Limitations 

In this investigation, participants represented a small sample from the general 

ACLR population. This ACLR cohort was young and physically active and thus the 

results may not be entirely transferrable to older and/or less active individuals dealing 

with persistent quadriceps impairments. This study also focused on restoring quadriceps 

size, strength, and symmetry. While isolated quadriceps size and strength do contribute to 



152 

 

improved physical function there are a number of additional factors that warrant 

consideration such as quadriceps muscle activation,12 muscle co-contraction,8,50 and hip 

and trunk strength.38 Further, because changes in physical function were not directly 

assessed in the current study it is unknown if the increased muscle thickness, knee 

extensor strength, and symmetry actually translated to better physical function and 

performance. Future work that includes a larger sample along with a combination of 

structural, functional, and subjective measures is needed to understand the benefits and 

limitations of using BFR exercise long after ACLR. 

Summary 

This is the first study to report the use of home-based BFR exercise to increase 

quadriceps size and strength several years after ACLR. Specifically,4 weeks of BFR 

exercise resulted in significant increases in rectus femoris and vastus lateralis thickness 

and dynamic knee extensor strength while inducing very little muscle soreness. 

Moreover, BFR exercise was sufficient in restoring knee extensor strength symmetry to 

that of uninjured controls. We conclude that home-based BFR exercise offers a safe and 

effective intervention to improve quadriceps function long after ACLR. These results 

support, unite, and extend upon previous BFR exercise studies and have implications for 

clinicans who treat individauls that have persistent quadriceps impariments.   

KEY POINTS 

FINDINGS: Implementation of BFR exercise several years after ACLR increased 

quadriceps muscle thickness and knee extensor strength and reduced asymmetry. In 
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addition, the home-based program consisting of bodyweight and walking exercises with 

BFR was feasible, safe, and inexpensive.  

 

IMPLICATIONS: BFR exercise offers a promising approach for restoration of 

quadriceps function and symmetry long after ACLR. 

 

CAUTION: To implement BFR exercise safely and effectively, careful selection of cuff 

pressure, continued monitoring of training, and participant education is needed. 
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TABLE 1. Participant demographics 

 

Values are reported as Mean ± SD. Note that, body fat data are reported on n=7 
for the ACLR group and n=8 uninjured control group. 

 

 

 

 

Variable ACLR (n=9) Uninjured Control 
(n=9) 

P 
value 

Age (yrs)                26 ± 8               26 ± 6 0.81 

Height (m)            1.74 ± 0.14            1.73 ± 0.08 0.88 

Body mass (kg)               73 ± 16               71 ± 12 0.70 

BMI (kg∙m-2)               24 ± 2               24 ± 3 0.67 

Body fat (%)               29 ± 7               27 ± 5 0.61 

Sex    

     Male                    3                    3  

     Female                    6                    6  

Time from ACLR 
(yrs)                 5 ± 2                  -----  

Graft type    

     Hamstring 
tendon                    3                   -----  

     Patellar tendon                    6                   -----  



163 

Figure 1. Overview a home-based BFR exercise training session. Each training session 
consisted of a series of three exercises (single-leg knee extension, body weight half 
squats, walking) and took ~25min to complete. During each exercise, blood flow to the 
working muscles in the ACLR leg was restricted using a thigh cuff set to 50% of limb 
occlusion pressure (LOP). Participants performed 5 training sessions/week for 4 weeks. 
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Figure 2: Alterations in rectus femoris (RF) and vastus lateralis (VL) muscle thickness in 
the ACLR and uninvolved leg for the ACLR group (top panels). Muscle thickness 
symmetry in the ACLR and uninjured control groups (bottom panels). For the ACLR 
group a number &lt;100% indicated uninvolved leg dominance. Solid lines represent 
individual changes from baseline to post-training for the ACLR group and open triangles 
represent individual values for the uninjured control group. Data are reported as mean ± 
SD. * 0.05 vs uninvolved leg. # 0.05 vs. baseline. 
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FIGURE 3. Changes in knee extensor 1RM strength in the ACLR and uninvolved leg for 
the ACLR group (top panel). Knee extensor 1RM strength symmetry in the ACLR and 
uninjured control groups (bottom panel). For the ACLR group a number 100% indicated 
uninvolved leg dominance. Solid lines represent individual changes from baseline to 
post-training for the ACLR group and open triangles represent individual values for the 
uninjured control group. Data are reported as mean ± SD. * 0.05 vs uninvolved leg. # 
0.05 vs. baseline. 
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FIGURE 4. Perceived muscle soreness associated with the home-based BFR exercise 
program (0 - no soreness, 10 - severe soreness). Data are reported as mean ± SD. 
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B.2 Home-Based Exercise with Blood Flow Restriction to 
Improve Quadriceps and Physical Function after Total 
Knee Arthroplasty: A Case Report 

B.2.1 Abstract 

Background and Purpose: After total knee arthroplasty (TKA) persistent quadriceps 

muscle atrophy and weakness impairs physical function. Blood flow restriction (BFR) 

exercise is emerging as an effective method to improve muscle size and strength in 

clinical populations with orthopedic limitations. There are no randomized controlled 

studies documenting BFR exercise after TKA. This case report describes the use of 

home-based BFR exercise to increase quadriceps size, strength, and physical function 

after TKA.  

Case Description: A 59yr old male (6 months post-TKA) performed body weight and 

walking exercises with BFR 5x/wk for 8wks. Blood flow in the TKA leg was restricted 

using a thigh cuff inflated to 50% of limb occlusion pressure. Lean leg mass, vastus 

lateralis thickness, knee extensor strength, and physical function were measured at 

baseline (6 months post-TKA), post-training (8 months post-TKA), and long-term 

follow-up (14 months post-TKA).  

Outcomes: After training, lean leg mass, vastus lateralis thickness, and knee extensor 

strength in the TKA leg increased by 4%, 14%, and 55%, respectively. Compared to 

baseline, post-training knee extensor strength symmetry (TKA/uninvolved leg) increased 

from 64% to 98%. The patient’s performance improved for the 30s chair stand, 40m fast 

walk, and 6min walk tests. Increased quadriceps and physical function were maintained 

at the long-term follow-up.  
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Discussion: With enhanced quadriceps and physical function the patient resumed 

independent physical activity. Muscle and strength gains surpassed those typically 

reported after TKA. Outcomes suggest that home-based BFR exercise was feasible, safe, 

and effective. BFR exercise after TKA is promising and warrants further research. 

B.2.2 Introduction 

Each year more than 650,000 total knee arthroplasty (TKA) surgeries are 

performed to treat end-stage knee osteoarthritis.1 Annual costs associated with TKA are 

estimated to be $11 billion2 and will increase dramatically as the number of surgeries is 

projected to reach 3.5 million by 2030.1 After the TKA procedure, knee joint pain is 

reduced in most individuals.3 However, surgery also has a profound impact on quadriceps 

muscle size and strength. For example, quadriceps strength is substantially reduced after 

surgery, steadily improves between 3-6 months, and eventually reaches a level that is 

~80% of the uninvolved leg (for a review see reference4). Persistent quadriceps weakness 

after TKA is associated with altered gait mechanics5 and reduced physical function6. 

Moreover, muscle weakness in older adults is a risk factor for falls.7 Accordingly, 

developing effective rehabilitation strategies to restore quadriceps muscle size and 

strength is imperative so that individuals with TKA can maintain adequate functional 

mobility and avoid further long-term disability. 

Several barriers make it difficult for individuals with TKA to regain their 

quadriceps size and strength. First, heavy exercise loads (65-70% of 1-repetition 

maximum) required to trigger muscle and strength adaptations are not always possible 

because they may increase pain and/or joint irritation. Second, time requirements for 



169 

 

complete restoration of quadriceps size and strength can be excessive. Third, access to 

specialized equipment for enhancing quadriceps muscle strengthening can be limited 

after discharge to home-based therapy. Implementation of blood flow restriction (BFR) 

exercise is emerging as a safe and effective method to increase muscle size and strength 

in clinical populations with orthopedic limitations.8 This exercise mode involves lifting 

low-loads (20-30% of 1-repetition maximum) while a pressurized cuff reduces blood 

flow.9 Specifically, cuff pressure is set low enough to partially maintain arterial blood 

flow to working muscles but high enough to prevent most of the venous blood flow from 

returning to the heart. Exercise with BFR is advantageous8,9 because increases in muscle 

size and strength are elicited using low-loads, strength gains can be achieved faster than 

traditional exercise, and it is used with resistance and aerobic exercise. The possibility of 

using BFR after TKA is intriguing10 but there are no randomized controlled studies 

documenting BFR exercise after TKA. Our purpose was to describe the use of an 8-week 

home-based BFR exercise program with a patient who had leveled off in his recovery at 6 

months post-TKA. We envisioned that BFR exercise would be safely tolerated, increase 

quadriceps size and strength, and enhance physical function.  

 

B.2.3 Case Description  

Patient 

A 59yr old male (body mass: 85kg, height: 1.81m, BMI: 22; body fat: 31%) with a 

history of knee osteoarthritis presented pain and edema in his left knee. The patient 

developed an antalgic gait, experienced difficulty with reciprocal stair 
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climbing/descending, and was unable to participate in his regular physical activity 

program consisting of walking and cycling 5-6x/wk. A unilateral TKA procedure was 

performed to alleviate the osteoarthritic pain. The patient completed 2 months of 

outpatient therapy that focused on range of motion, balance, and quadriceps 

strengthening. At the time of our evaluation the patient was 6 months post-surgery with 

full functional knee range of motion and adequate strength for independent ambulation. 

He had mild knee joint pain (1.8cm using 0-10cm visual analog scale), slight edema, and 

detectable weakness in the left quadriceps. The patient exhibited an intermittent antalgic 

gait and difficulty with reciprocal stair climbing/descending. The patient stated that he 

had “plateaued” in his recovery and needed to achieve higher function in order to resume 

his physical activity routine.  

Examination: Baseline, Post-Training, and Long-Term Follow-Up 

Muscle size, strength, and physical function were evaluated at baseline (6 months 

post-TKA), post-training (8 months post-TKA), and long-term follow-up (14 months 

post-TKA). Lean leg mass was assessed using dual energy x-ray absorptiometry 

(Discovery Wi, Hologic Inc, Marlborough, MA, USA). Thickness of the vastus lateralis 

was assessed using B-mode ultrasound (Logiq e BT12, GE Healthcare, Chicago, IL, 

USA). Muscle thickness was defined as the distance between the superficial and deep 

aponeurosis,11 assessed 5x/day on 2 separate days (COV=1.7%), and averaged over the 

two days. Knee extensor strength was measured during a break test12 using a hand-held 

dynamometer (Microfet, Hoggan Health Industries, Inc., Murray, UT, USA). The patient 

performed brief maximal contractions (3-5s) 4x/day on 3 separate days. The average of 
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the three closest contractions within each day were used for analysis (COV=4.7%) and 

knee extensor strength symmetry was calculated as: [(TKA leg–uninvolved 

leg)/(uninvolved leg)].13 Physical function was assessed using the 30s chair stand, stair 

climb (9 stairs, stair height 18.8cm), 40m fast walk, and 6min walk tests. Tests were 

performed 1x/day on two separate days and the average values were used for analysis. 

These physical function tests are reported to have good reliability.14 

Intervention 

An overview of the home-based BFR exercise program is illustrated in Figure 1. 

The patient performed BFR exercise 5x/wk for 8-weeks. Each session consisted of three 

exercises (single-leg knee extension, body weight half-squats, walking) and took ~25min 

to complete. First, the patient performed 3 sets of 30 single-leg knee extensions using his 

TKA leg with a Thera-Band (~3-5lbs of resistance). Next, the patient performed 3 sets of 

30 double-leg body weight half-squats. Finally, the patient performed 3 sets of 2min 

walking intervals at a self-selected speed. Throughout the session a 1min rest period was 

provided between sets and 2min of rest was given between exercises. During each 

exercise, TKA leg blood flow was restricted using an 18cm wide aneroid 

sphygmomanometer (Briggs, Healthcare, Waukegan, IL, USA). The cuff was wrapped 

around the proximal part of the thigh and inflated to 108mm Hg which represented 50% 

of the pressure required to completely occlude blood flow in the femoral artery (216mm 

Hg). The cuff remained inflated during the 1min rest between sets but was deflated 

during the 2min recovery between exercises. Accordingly, blood flow was partially 

occluded for a total of ~18min. Each week the patient visited the laboratory to perform 



172 

 

one supervised session to verify proper movement form and cuff pressure. Before and 

after each session, the patient recorded any level of quadriceps muscle soreness and knee 

joint pain (0-10 visual analog scale).  

 

B.2.4 Outcomes 

Program Adherence 

The patient completed 4-weeks of the program, took a 1-week break at Christmas, 

and finished the final 4-weeks. He completed all 40 total prescribed BFR exercise 

sessions. Muscle soreness associated with BFR exercise was low (0.0-1.4cm). Joint pain 

persisted throughout the study (1.2-2.5cm) but did not limit exercise and was generally 

lower after exercise (0.2-1.5cm). 

Alterations in Quadriceps and Physical Function 

After training, lean leg mass and vastus lateralis thickness in the TKA leg 

increased by 4% and 14% respectively (Figure 2). Knee extensor strength increased by 

55% (Figure 2) and the patient reported less pain with the maximal contractions. 

Compared to baseline, post-training strength symmetry increased from 64 to 98% of the 

uninvolved leg. Changes in physical function are reported in Table 1. Most notably, the 

patient completed 12 more repetitions during the chair stand test, increased 40m gait 

speed by 0.9m/s, and improved 6min walk test by 77m. These change scores exceeded 

the minimal clinically important improvement values.14 After the program, the patient 

reported improved gait, enhanced stair climbing/descending ability, and achieved his goal 



173 

 

of resuming his walking and cycling program. Quadriceps and physical function were 

generally well maintained at the long-term follow-up visit (6 months post-intervention, 

14 months post-TKA) (Figure 2, Table 1).  

 

B.2.5 Discussion 

Feasibility and Main Findings 

Our patient was able to safely perform BFR exercise at home and tolerated the 

training well. To minimize the need for expensive equipment we used body weight and 

walking exercises that only required the use of a thigh cuff and resistance band (~$30). 

We also accounted for BFR safety by using a moderate cuff pressure normalized to the 

patient’s limb occlusion pressure. The key outcomes were that 8-weeks of BFR exercise: 

1) stimulated increases in lean leg mass and vastus lateralis thickness, 2) improved knee 

extensor strength, and 3) enhanced physical function. Thus, implementation of home-

based BFR exercise was feasible, safe, and effective. 

Quadriceps and Physical Function 

Restoration of quadriceps size and strength is imperative for recovery of physical 

function following TKA.4 In this patient, lean leg mass and vastus lateralis thickness in 

the TKA leg increased considerably which is noteworthy because at 6-12 months knee 

extensor strength is more associated with quadriceps size rather than quadriceps 

activation.15 Knee extensor strength in the TKA leg also increased dramatically with BFR 

exercise and reached 98% of the uninvolved leg. Meier and colleagues4 have reported 
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that knee extensor strength generally increases up to 6 months post-operatively, tapers off 

to ~80% of the uninvolved leg, and sometimes does not fully recover. Thus, the level of 

knee extensor strength symmetry achieved by the patient was excellent as it surpassed 

TKA values in the literature4 and was within the range for middle-aged16 and older 

adults17 (≥90%) without osteoarthritis. As expected muscle and strength gains translated 

to enhanced physical function as indicated by meaningful improvements in chair stand, 

40m fast walk, and 6min walk performance. Improvements in these functional tests were 

consistent with the patient’s self-reported increased walking, stair climbing, and cycling 

activity. Importantly, at the long-term follow-up visit the patient’s quadriceps size and 

strength were still generally well maintained and physical function was still high. 

Possibility of BFR Exercise 

Application of BFR exercise provides a stimulus for increasing muscle size and 

strength in healthy9 and clinical8 populations. To date, there is a single case series18 

documenting BFR exercise use after TKA (3 patients). Gaunder’s team18 reported that 

BFR resistance exercise implemented at ~2.5 months post-operatively increased knee 

extensor strength by 57-360% and restored symmetry in all 3 patients. Our case report 

extends upon this by highlighting the possibility of home-based BFR use and a suite of 

BFR-induced changes in muscle size, strength, and physical function. Collectively, these 

two case reports suggest that BFR exercise has potential for accelerating recovery of 

quadriceps and physical function after TKA. The use of BFR with this population was 

also proposed in a review10 on TKA rehabilitation. While BFR exercise prescription is 

not established for TKA it seems that it could be used in the clinic or at home and 
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through resistance, aerobic, or some combination of exercise modes. A next step is to 

investigate these possibilities through randomized controlled studies. 

Limitations 

It is important to point out that the patient was middle-aged and had a rather high 

level of physical function as indicated by his physical activity program and performance 

during the baseline functional tests. Thus, results may not be the same for older and/or 

less active adults with TKA. The patient also had significant osteoarthritis in his 

contralateral right knee and thus muscle thickness and strength comparisons need be 

interpreted with caution. Further, while quadriceps size and strength do contribute to 

improved physical function there are additional factors that warrant consideration (e.g., 

pain, quadriceps activation, hip strength). We also acknowledge that BFR exercise 

induces slight discomfort and dull pain at the site of the cuff which could affect patient 

motivation and compliance. Partial restriction of blood flow during exercise does have 

potential risks inducing muscle soreness, adverse cardiovascular responses, blood 

clotting, and muscle/nerve damage. For this reason, its application presents a challenge.19 

A systematic review and meta-analysis8 highlighted the effectiveness of using BFR 

exercise in a range of clinical populations and adverse effects were rare.20 With careful 

consideration of past medical history, appropriate cuff pressure selection, close 

monitoring of training, and patient education, positive BFR exercise outcomes can be 

achieved safely. 

Conclusion 
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An 8-week home-based program consisting of body weight and walking exercises 

with BFR increased lean leg mass, vastus lateralis thickness, knee extensor strength, and 

functional mobility in a patient who was 6 months post-TKA. To our knowledge, this is 

the first and only report to describe the use of BFR at home for a TKA patient that was 

discharged from physical therapy and demonstrate a combination of structural and 

functional improvements. These results suggest that research is needed to determine the 

efficacy of using BFR exercise after TKA.  
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Table 1: Alterations in Physical Function 

a Change score from baseline to post-training 
b MCII – minimal clinically important improvement 
* change score > MCII

Functional 
Test

Baseline 

6 mo post-
TKA 

Post-
Training 

8 mo post-
TKA 

Follow-Up 

14 mo 
post-TKA 

Changea MCIIb 

30 s chair 
stand (reps) 15 27 31 12* 2-3

Stair climb 
test (s) 7.2 5.9 5.2 -1.3 -5.5

40 m fast 
walk (m/s) 2.1 3.0 3.0 0.9* 0.2-0.3 

6 min walk 
(m) 681 775 800 79* 60 
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FIGURE CAPTIONS 

 

Figure 1: Overview of the home-based BFR program consisting of body weight and 

walking exercises. The patient performed this ~25 min exercise routine 5x/wk for 8 wks.  

Figure 2: Alterations in lean leg mass (A), vastus lateralis (VL) muscle thickness (B), 

and knee extensor strength (C).  
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C Grants Submitted 
C.1 Blue Cross Blue Shield of Michigan Foundation 

PROPOSAL 

Anterior cruciate ligament (ACL) injury is the most common traumatic knee injury with 

approximately 200,000 new injuries each year.1,2 However, only about 50% of patients 

are able to return to their pre-injury activity level.3 This may be because many patients do 

not completely regain their quadriceps function (i.e., muscle size and strength), resulting 

in limb asymmetry. Over time limb asymmetry negatively alters the loading patterns on 

the knee which ultimately increases risk for re-injury and early onset of osteoarthritis.4,5 

Osteoarthritis of the knee is more common in individuals who previously had ACL 

tears.6,7 It was estimated that annual costs attributed to osteoarthritis, in those with ACL 

reconstruction, is $2.78 billion.8  

High load resistance exercise (70% of one repetition maximum, “heavy weight”) is 

effective for improving quadriceps muscle size and strength.9,10 However, many ACL 

patients are advised not to perform high load resistance exercise because doing so could 

compromise the repaired joint by increasing stress and strain on the ACL. Recent 

evidence suggests that moderate restriction of blood flow during low load resistance 

exercise is a potent stimulus for increasing quadriceps muscle size and strength in healthy 

and clinical populations.9,13 Blood flow restricted (BFR) exercise involves using low load 

resistance exercise (20% of one repetition maximum, “light weight”) while using an 

occlusion cuff to reduce venous return.9 Muscles are experiencing the benefits of high 

load resistance training without putting excessive stress on the repaired joint. Although 
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BFR has been used in ACL rehabilitation in the past,10 it is unclear if BFR could be 

implemented several years after ACL injury in a home-based exercise program to reverse 

chronic deficits in quadriceps size and strength and restore limb symmetry. The purpose 

of this project is to test the hypothesis that four weeks of BFR exercise will increase 

quadriceps size and strength and reduce quadriceps asymmetry. This research is 

significant because it will extend upon previous ACL studies, overcome major 

rehabilitation barriers, fill gaps with long term recovery, and support BCBSM Foundation 

initiatives to improve the health of Michigan residents. 

I will use a two-group, pre/post, longitudinal study design with 20 participants. Eligible 

and consented individuals will complete: 1) baseline measurements, 2) a four week BRF 

exercise intervention, and 3) post-training measurements. Baseline measures of 

quadriceps muscle size, quadriceps strength, and functional task performance will be 

assessed. Participants will be randomly assigned to either a blood flow restricted exercise 

(BFR; n=10) or control (CON; n=10) group. BFR group will train for 5x/week (30 

min/session) for 4 weeks with the blood pressure cuff inflated to 80% of the occlusion 

pressure. The program will consist of home-based exercises that have been shown to 

increase quadriceps size and strength.10,15 CON group will not perform exercise training. 

Baseline measures will be assessed one week after completion of the program. Outcome 

measures of quadriceps size and strength and one legged functional hop height, will be 

used to test the effectiveness of the BFR program. Secondary outcome measures of 

completed sessions, pain, and satisfaction will be used to test the practicality of BFR in a 

home setting. 
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My research will establish BFR as an effective exercise mode to restore limb symmetry 

after an ACL injury and reduce associated risks, such as osteoarthritis and re-injury. This 

home-based exercise program will help to facilitate better access to care and reduce costs 

associated with prolonged physical therapy. This research will have applications in 

rehabilitation when high load resistance training is contraindicated. The research results 

will be disseminated through my doctoral dissertation, a presentation at the national 

meeting for the American College of Sports Medicine, and a publication in the Journal of 

Orthopedic & Sports Physical Therapy. 
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C.2 Michigan Space Grant Consortium 

Background: President Obama has set a clear goal to send humans to Mars by 2030. With 

current propulsion systems, it would take six months to reach Mars. However, with this 

long duration trip to Mars, astronauts’ musculoskeletal and cardiovascular systems would 

be severely compromised; it is estimated that astronauts would lose almost half of their 

muscle mass.1 These impairments of physiological function would not only affect 

performance of mission tasks, but make a return to Earth’s environment impossible as 

astronauts could no longer withstand Earth’s gravity.1 Therefore, before long term space 

travel is deemed safe for astronauts, effective exercise countermeasures must be 



190 

 

developed, tested, and employed. To counteract the losses in physiological function 

astronauts are scheduled for 2.5 hours of daily physical training. Specifically, astronauts 

perform 1.5 hours of resistance training (e.g., lifting weights), and 1 hour of aerobic 

training (e.g., cardiovascular exercise).2 Although the exercise devices on the 

International Space Station can attenuate these impairments, physiological degradation 

still occurs.2 As NASA prepares for long-duration space exploration, it is imperative that 

new exercises preformed during spaceflight be light-weight, robust, and target 

musculoskeletal and cardiovascular systems.  

Project Description: A novel method to maintain the levels of musculoskeletal and 

cardiovascular conditioning during long term spaceflight could be blood flow restricted 

exercise training (BFR).2 As illustrated in the figure to the right, BFR involves lifting 

light weights (~20% of one repetition maximum) while simultaneously using a blood 

pressure cuff to reduce blood flow out of the leg. In other words, blood flow is traveling 

to the working muscles but not all of it is returning to the heart.3 Evidence indicates that 

BFR training is effective in increasing muscle size and strength and diminishing disuse 

muscle loss. BFR causes a build-up of metabolites within the muscle and stimulates the 

production of growth hormone and other growth factors that increase muscle protein 

synthesis.2 Blood flow restriction during walking and cycling has not only been shown to 

increase muscle size and strength, but also improve the cardiovascular system (i.e., 

increase exercise capacity).4-10 Increased exercise capacity may be due peripheral factors 

such as increases in capillary density, and muscle enzyme oxidative capacity5 or central 

factors such as an increased submaximal stroke volume.6 These results indicate that it 
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may be possible for BFR to be a 2 for 1 activity; in which astronauts using BFR during 

aerobic training maintain musculoskeletal function (muscle size and strength) and 

cardiovascular endurance (exercise capacity).  

While the potential advantages of using BFR have been highlighted, NASA has stated 

that, “exercise prescription for BFR remains incomplete, and more scientific data at the 

whole body and cell level are needed to further elucidate the best exercise paradigm.”11 

To create effective exercise prescription for BFR it is critical to understand how muscle 

contractile function (i.e., level of muscular fatigue, location of that fatigue, and time 

course of recovery) changes after an acute exercise session with BFR. Identifying acute 

changes in muscle contractile function will aid in determining 1) duration and frequency 

of aerobic exercise with BFR and 2) how much recovery is needed following a workout.  

Acute changes in muscle function have been assessed following resistance exercise with 

BFR, but not following aerobic exercise with BFR.  

Aim: To determine acute changes in muscle contractile function following aerobic 

exercise with BFR and compare to those following aerobic exercise without BFR. I 

hypothesize that aerobic exercise with BFR will require more muscle activity and result 

in larger reductions in post exercise maximal voluntary torque compared to aerobic 

exercise without BFR, which acts as a potent stimulus for increased musculoskeletal and 

cardiovascular conditioning. This project will improve our understanding of acute 

responses to aerobic exercise with BFR and aid with developing robust exercise 

countermeasures which align with NASA’s long term goals.  
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Methods: 16 recreationally active males and females will participate in this study. Muscle 

contractile function will be assessed before and after cycling exercise, to understand 

acute central and peripheral adaptations to cycling with BFR. Eligible and consented 

participants will undergo a familiarization session, followed by two exercise sessions in 

which the participants will cycle at 30% of their peak work rate for 15min with and 

without BFR. Measures of peak isometric torque, muscle activation, and central and 

peripheral mechanisms of fatigue will be recorded before and after exercise. These 

measures will be recorded 30secs, 2min, 3min, 4min, and 5min post-exercise. Central 

fatigue will be quantified as the pre- to post-exercise reduction in voluntary activation 

whereas peripheral fatigue will be quantified as pre- to post-exercise reduction in evoked 

torque. A within subjects repeated measures ANOVA will determine statistical 

significance (P<0.05).  

NASA’s Strategic Interest: Objective 1.1 of NASA’s Strategic Plan is to expand the 

human presence into the solar system and to Mars. This exploration requires the ability to 

transport crew further, and for longer duration than previously attempted. With current 

technology it would take six months for a crew to reach Mars and then astronauts would 

have to leave within 30 days, or stay for over 500 days. Long duration habitation in 

microgravity environments would cause many physiological adaptions, including muscle 

loss and adverse cardiovascular adaptation.1 Development of aerobic exercise with BFR 

for spaceflight would be inexpensive, easy to implement, and compatible with current 

NASA exercise equipment.2,4,12 At this time musculoskeletal and cardiovascular 

adaptations to exercise vary depending upon the exercise mode (aerobic training vs. 
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resistance training) and the timing relative to successive exercise trials. These concepts 

need to be understood better to develop a BFR exercise countermeasure.11   

Project Role and Outcomes: As the project leader, I will recruit subjects, conduct all 

exercise trials and experimental measures, and analyze data. Experimental results will be 

disseminated through my doctoral dissertation, a presentation at the regional meeting for 

the Michigan Physiological Society and national meeting for the American College of 

Sports Medicine, and a publication in the Journal of Applied Physiology. I will hold 

weekly meetings with Dr. Elmer and Dr. Yoon (Co-PI’s) to discuss progress and ensure 

that these outcomes are reached. I will also consult with Dr. Cook, a BFR expert, 

throughout the duration of the project. 

Future Career Interests: I have a Bachelor of Science in Biomedical Engineering, a 

Master of Science in Exercise Science, and I am currently pursuing a PhD in Biology. 

With my unique background I will become a university professor specializing in 

rehabilitation science and find better ways to restore musculoskeletal function, maintain 

health, and improve performance in healthy and clinical populations. Currently, I am 

leading a National Science Foundation funded project to develop new exercise equipment 

and a countermeasure to improve the mobility of wheelchair users. Further, for my 

dissertation I am using BFR as a novel exercise program to overcome barriers associated 

with traditional exercise training and improve health and performance. This study aligns 

with the vision of the MSGC to foster awareness and support space-related research in 

Michigan. Finally, support from MSGC will serve as a crucial step to establish aerobic 

training with BFR and improve exercise prescription for astronauts.  
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Significance: Public Health - Currently 80% of US adults do not meet the necessary 

guidelines for both aerobic and resistance training (3). Resistance training has a profound 

effect on the development and maintenance of muscular strength, this improves 
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functional abilities, prevents osteoporosis, sarcopenia, and low-back injuries. In addition 

resistance training may help to prevent metabolic diseases such as diabetes, 

cardiovascular disease, and cancer by improving insulin sensitively, resting metabolic 

rate, blood pressure, and body fat (4). Accordingly, resistance training is universally 

recommended by the American College of Sports Medicine, the Center for Disease 

Control, and the National Strength and Conditioning Association, for development of 

strength, work performance, disease prevention, and healthy aging. As a result guidelines 

and exercise prescription for resistance training have been developed. Failure to meet 

these guideline has a large economic impact, it has been estimated that the direct cost of 

sarcopenia alone in the U.S. is approximately $18.5 billion dollars annually (1). In 

general 65-70% one repetition maximum (RM) exercise performed 2-3 times per week 

for a minimum of 6-8 weeks is necessary to increase muscle size and strength (10,13,14). 

This type of training is not always possible in certain clinical populations, where the high 

training loads are contraindicated or impossible (8). Thus, alternative methods for 

developing muscular strength are needed. 

¬Blood flow restriction exercise - Resistance exercise with blood flow restriction is 

emerging as an effective alternative option to build strength in healthy, clinical, and 

athletic populations. This exercise modality involves the use of mechanical compression 

of the limb, usually with an inflatable cuff or tourniquet, used in combination with much 

lower loads than traditional resistance training (e.g., 20% vs. 70% 1 RM ) (14). The two 

main advantages that blood flow restriction exercise has over traditional resistance 
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training are: 1) increases in muscle size and strength are elicited at low training loads and 

2) these adaptations occur faster with blood flow restriction. The development of muscle 

size and strength under low loads is significant because in many clinical cases high loads 

cannot be used. One population includes people post-surgery, where high loads may 

compromise the repaired tissue (13). In addition, those with neurological disorders such 

as Cerebral Palsy, where the patient is not able to fully activate the target muscle (8). 

Wounded soldiers and injured athletes may also see great benefits by returning to activity 

much quicker than by traditional resistance training (11). Finally older adults can also 

benefit by getting a similar training stimulus of more difficult exercises, without the need 

for higher levels of fitness (17). 

 

Barriers and Gaps - While blood flow restriction training has many advantages there are 

several barriers preventing widespread implementation. First, there are no 

recommendations for the optimal occlusion cuff size and pressure. Second, there is a lack 

of clinical trials documenting the relative safety of blood flow restriction training (8,14). 

Although injuries during blood flow restriction training are rare (12), it does place many 

stressors on the cardiovascular system (15). Improper application of this training could 

cause detrimental side effects including adverse cardiovascular responses, changes in 

blood clotting or vascular function, and muscle and/or nerve damage (8). To minimize 

these risks it is essential to individualize the occlusion cuff pressure however, there are 

no standardized recommendations to do this (6,14). Thus, the lack of specific exercise 

prescription guidelines is a critical barrier to the widespread use of blood flow restriction 
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training. Ideally the pressure in the occlusion cuff should be high enough to prevent 

venous return, but low enough as to maintain arterial flow into the muscle (7) (see Figure 

1). Currently, the optimal occlusion cuff pressure is unknown. If the pressure is set to 

low, the training stimulus may not be strong enough to enhance muscle function. If the 

pressure is too high, safety issues may arise. To my knowledge there are only two reports 

of using Doppler ultrasound to measure blood flow before and immediately after 

resistance exercise with blood flow restriction (14). These authors reported no difference 

in blood flow measured before and after exercise with blood flow restriction (16), and 

that increased occlusion cuff pressure decreased blood flow (5). However, these 

researchers did not measure blood flow during exercise. It is well known that blood 

pressure, cardiac output and blood flow to the working muscle all increase significantly 

with exercise (9). Thus, a significant gap exists in our understanding of how limb blood 

flow changes during dynamic exercise with blood flow restriction. Before comprehensive 

blood flow restriction training guidelines are made it is essential that the mechanism of 

blood flow during dynamic exercise with blood flow restriction is determined. 

Accordingly, the expected contribution of this research is to determine the effects of 

occlusion cuff pressure and size on limb blood flow during dynamic exercise (involving 

locomotor muscles) with blood flow restriction.  

Overall Significance - The proposed research is significant because it focuses on an 

important public health problem and aims to overcome barriers to the widespread use of 

blood flow restriction training (the lack of specific guidelines clinical trials). The 

proposed research is clinically significant given the potential widespread use of blood 
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flow restriction training and the potential serious issues that may arise if blood flow 

restriction training is improperly conducted. Furthermore, the proposed research will fill 

a significant gap in our understanding of the mechanisms of blood flow during dynamic 

exercise with blood flow restriction training. The broader impact of this research is to 

advance exercise prescription of blood flow restriction training by identifying changes in 

blood flow during exercise with blood flow restriction. This will better identify the 

optimal occlusion cuff pressure and size. If the specific aims are achieved, the proposed 

research could enable a wider range of individuals to use blood flow restriction training, 

by increasing the relative safety of this exercise modality. The scientific knowledge 

gathered from this research will have practical applications for clinicians, researchers, 

and applied sport scientists within the field of exercise science and sports medicine, 

which is in line with the Mission of the American College of Sports Medicine. 

Pilot data - As a first step I measured blood flow during rhythmic handgrip exercise with 

blood flow restriction using the technique proposed in this investigation on a small 

sample of participants (N=5). I measured blood flow in the brachial artery 5 cm below the 

occlusion cuff set at 50% of the occlusion pressure measured prior to experiment. Results 

indicated that forearm blood flow increased by 46±9% from rest during exercise with 

blood flow restriction. These results suggest there is a difference in blood flow during 

exercise with blood flow restriction. Moreover, this is the first to confirm blood flow is 

maintained during blood flow restriction exercise, but the flow is less than exercise 

without blood flow restriction. This supports the theoretical mechanism of blood flow 

restricted exercise. Moving forward, it is essential that this approach be replicated during 
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dynamic exercise involving locomotor muscles (knee extensors) under different 

occlusion cuff pressures and widths.  

Innovation: I believe that the proposed research is very innovative because it focuses on 

improving our understanding of blood flow restriction training to advance the exercise 

prescription of this training. Specifically, I will be measuring femoral blood flow during 

dynamic knee extension exercise with blood flow restriction, which no other blood flow 

restriction study has done. The proposed study will overcome traditional barriers to this 

research by non-invasively measuring blood flow using a Doppler Ultrasound. Moreover, 

while previous research employs a standard pressure among all participants, we believe 

this is insufficient and potentially dangerous. The information gleaned from this study 

addresses fundamental gaps in blood flow restriction training and is necessary to establish 

a comprehensive blood flow restriction prescription including optimal occlusion cuff 

sizes and pressures. To date, I have piloted this approach during dynamic exercise 

involving a small muscle mass, and will extend this to dynamic exercise involving 

locomotor muscles, which will be clinically relevant. The proposed research is necessary 

to develop more robust exercise prescription guidelines for blood flow restriction 

training.  

Approach: Research Team - Together my research group is well positioned to perform 

the proposed study. I have a background in both biomedical engineering (BS) and 

exercise physiology (MS). This has prepared me to move forward with my doctoral 

dissertation on using blood flow restriction exercise to restore musculoskeletal function, 

maintain health, and improve performance in healthy and clinical populations. My 



201 

 

dissertation advisor, Dr. Steven Elmer, Assistant Professor in the Department of 

Kinesiology and Integrated Physiology at Michigan Tech University, and I have been 

working together for two years and currently are funded to complete a project using 

blood flow restriction exercise in individuals with chronic quadriceps asymmetry due to 

ACL reconstruction. Dr. John McDaniel, Assistant Professor in the School of Health 

Sciences at Kent State University, has worked with Dr. Elmer on many collaborative 

projects (see letter of support), and has provided me with hands-on training for the 

measurement of femoral blood flow during dynamic exercise. Dr. McDaniel has 

produced several publication using this measurement. With this team, I have the 

mentorship needed to carry out this project.  

Participants - For this project I will recruit 15 young healthy active individuals (sample 

size estimation described below) from the surrounding community to participate in this 

study. Participants will be excluded if they: have any physical limitations, are a smoker, 

have diabetes, have any cardiopulmonary disorders including but not limited to 

hypertension. Participants will provide written, informed consent approved by the 

Michigan Technological University Institutional Review Board prior to study enrollment. 

All participants will attend an orientation session before the start of the study for an 

overview of the experimental protocol and familiarization with the equipment and 

procedures. 

Methods - During the familiarization visit, eligible and consented participants will 

become familiar with the measurement of blood flow using Doppler Ultrasound. Femoral 

blood flow will be measured based on the techniques described by Burns and colleagues 
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(2) using B-mode ultrasound (GE Logiq e BT12, GE Health Care, Chicago, IL, USA). A 

12 MHz scanning head will be placed over the femoral artery midway between the 

anterior superior iliac spine and the symphysis pubis. The occlusion cuff will be placed 

just below the scanning head. Artery radius (r) and mean blood velocity (MBV) with be 

recorded continuously. Blood flow (BF) will be calculated as BF = MBV X πr2. 

Occlusion pressure at rest will be analyzed with the participant laying supine on an 

examination table. The occlusion cuff will be placed in the same position as above. The 

investigator will inflate the occlusion cuff starting at 100 mmHG and increasing the 

pressure by 10 mmHg until no blood flow can be detected in the anterior tibial artery 

using the Doppler Ultrasound. The investigator will then slowly deflate the occlusion cuff 

until blood flow resumes. One repetition maximum will also be assessed on a knee 

extension ergometer developed for this study, which will also be used during the exercise 

session. Participants will be seated with their back angled at 10°. The participant will be 

asked to extend their knee against a load. If the participant can successfully lift the load 

10 times, they will be given a 5 minute rest and the load will increase. This process will 

continue until the subject can no longer lift the load ten times. One repetition maximum 

will then be estimated using the Brzycki Equation 1 RM = weight X 0.9729 X 

Repetitions. Following the familiarization visit participants will complete two exercise 

sessions. Participants will be asked to perform five sets of 30 knee extensions at 20% of 

their one repetition. The pressure in the occlusion cuff will be randomly set to 0%, 50%, 

75%, 100%, and 125% of the occlusion pressure at rest. Blood flow at rest will be 

measured for 1 minute prior to exercise. Participants will then be asked to perform these 

exercises at a set cadence, while femoral blood flow is assessed. Participants will be 
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given 10 minutes rest between sets. Participants will be assigned to which occlusion cuff 

width (5cm, 18cm) they perform in a counterbalanced order 

Statistical Analyses – Given a power of 0.8, an effect size of 0.8, and an alpha of 0.05, a 

sample of 15 participants will provide an adequate sample. To test aim 1: A two- way 

analysis of variance (ANOVAs) will be used to test the effect of pressure and exercise on 

femoral blood flow. To test aim 2: a one way ANOVA with repeated measures will be 

used to assess the effect of cuff width. The level of significance will be set at p < 0.05.  

Potential Problems -The use of Doppler Ultrasound to measure blood flow is a new 

measurement for my laboratory. Collectively, Dr. Elmer and I have received training 

from the manufacture, attended an ultrasound workshop, and received hands on training 

from Dr. John McDaniel (trained under cardiovascular exercise physiologist Dr. Russell 

Richardson, Professor in the Department of Internal Medicine, University of Utah and 

Salt Lake VA Medical Center) who has a long publication history with this type of 

measurement (see letter of support). In short, Dr. Elmer’s laboratory has gone to great 

lengths to ensure that we have the background, mentorship, and resources needed to 

overcome this challenge. There is also potential for injury when performing blood flow 

restriction exercise. In a national Japanese survey of facilities using blood flow restricted 

exercise in which over 13,000 individuals engaged in training various modes of blood 

flow restricted exercise (walking, cycling, weight training), the most common side effects 

were bruising at the site of the tourniquet, or occlusion cuff (incidence = 13.1%) and 
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temporary numbness (1.3%). More serious side effects were rare and included: venous 

thrombosis (0.055%), cerebral infarction (0.008%), rhabdomyolysis (0.008%) and 

pulmonary embolism (0.008%) (12). Although these events are extremely rare, it should 

be noted that determining the relative safety of blood flow restriction requires a detailed 

study of several potential outcomes, and we acknowledge that unforeseen risks do exist. 

Dr. Elmer’s laboratory has talked with Dr. Summer Cook, Associate Professor in the 

Department of Kinesiology at the University of New Hampshire, regarding the protocols 

and safety precautions for utilizing blood flow restricted exercise. Dr. Cook has received 

funding from the National Institutes of Health to use blood flow restricted exercise with 

frail elderly individuals and also serves on her University’s IRB review board. Based on 

these discussions with Dr. Cook, Dr. Elmer’s laboratory is well prepared to implement 

blood flow restriction safely.  

Timeline: The research results will be disseminated through my doctoral dissertation, a 

presentation at the national meeting for the American College of Sports Medicine, and at 

least one publication (target journal Medicine & Science in Sports & Exercise). I aim to 

have 75% of the data collected at 6 months and manuscript prepared at 12 months. To 

ensure that the research progresses on schedule, I will have bimonthly meetings with Dr. 

Elmer and Dr. McDaniel. This one year project will be a key part of my dissertation, 

provide pilot data for a larger NIH application, and help create much needed guidelines 

for blood flow restriction training. 
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	Abstract

	Exercise with blood flow restriction (BFR) allows healthy, clinical, and athletic populations to improve their strength and exercise capacity. The main advantages exercise with BFR has over traditional training are: 1) increases in muscle size, streng...

	1 Evidenced based guidelines for exercise with BFR
	Currently, 80% of US adults do not meet the necessary guidelines for aerobic and resistance training [1] . Both aerobic and resistance training have a profound impact on physical and mental health including a delay in all-cause mortality and a reduced...
	Traditional aerobic and resistance training is not always possible for clinical populations where the high training intensities are contraindicated or impossible [3]. These populations include people post-surgery, where high loads may compromise the r...
	The main advantages exercise with BFR has over traditional training are: 1) an increase in muscle size and strength elicited at low training loads, 2) these adaptations occur faster with blood flow restriction, 3) increases in muscle size and strength...
	1.1 Frequency
	Exercise training with BFR has been performed anywhere from two sessions per week, to two sessions per day [23]. An analysis on the use of exercise with BFR reported that ~40% of practitioners perform BFR exercise 1-2 days per week, whereas ~10% perfo...

	1.2 Intensity
	The primary benefit of performing exercise with BFR is that exercise training is effective at much lower training intensities than traditional exercise. Currently, the majority of practitioners are performing exercise training with BFR at between 20-4...

	1.3 Time
	Currently, 45% of practitioners are performing resistance training with BFR in a repetition scheme in which 30 repetitions is performed in the first set, followed by three to four subsequent sets of 15 repetitions, and 32% of practitioners are perform...
	During aerobic exercise with blood flow restriction, it is common for practitioners to perform either multiple 1 to 3 minute walking or cycling intervals with 15 – 60 second rest periods between intervals (~40%), or continuous aerobic exercise (no re...

	1.4 Type
	Exercise with BFR has been effectively combined with different modes of resistance and aerobic exercise to increase muscle size and strength. These modes include single and multi- joint upper and lower body exercise, free weight exercises, and machine...

	1.5 Type of Cuff
	Blood flow restriction has been applied using handheld inflatable pumps, automatic inflatable pumps, knee wraps, Kaatsu training devices, and elastic tourniquets [23]. Studies assessing different cuff types have been limited to assessing the differenc...
	The width of the pressure cuff is also an important factor to consider. A wide range of cuff widths (3 – >15 cm) are currently being used to restrict blood flow during exercise [23]. Wider cuff have been shown to increase pain, increase ratings of per...

	1.6 Cuff Pressure
	A wide range of cuff pressures are used in research and in practice (< 50 mmHg to > 250 mmHg) [23]. Ideally, the optimal cuff pressure should be set high enough to prevent the return of venous blood flow, but low enough to maintain some level of arter...
	Researchers have used various methods to individualize cuff pressure. A Doppler ultrasound has been used to directly measure limb arterial occlusion pressure at rest and use a percent of that measurement for exercise with BFR [45]. It is common for re...
	Several investigators have applied individual cuff pressure based on brachial systolic blood pressure. The method is controversial as studies have reported the relationship between systolic blood pressure and limb occlusion pressure to be moderate (r ...
	Other researchers have used measurements of limb circumference to individualize cuff pressure. Loenneke and colleagues [43] have reported 64%, and 31% of variance in arterial occlusion pressure for wide (13.5 cm) and narrow (5 cm) cuffs, respectively,...
	If the cuff pressure cannot be accurately measured (e.g., when knee wraps and elastic tourniquets are used to restrict blood flow), Wilson and colleagues [52] suggest the wrapping the legs at level of 7 out of 10, where “0” represents no pressure, and...
	Finally, is important to consider if the cuff pressure should be maintained or release during inter-set rest periods. Suga and colleagues [30], reported similar increases in metabolite accumulation to high load resistance training only when the pressu...

	1.7 Summary
	The purpose of this review is to summarize current practices for exercise with BFR, as well as outline safe and effect doses of exercise with BFR. Practitioners of exercise with BFR are currently using a wide range of frequencies (2x/day to 2x/week), ...
	In practice it may be beneficial to limit exercise sessions to 2-3 days per week [26]. A major benefit of exercise with BFR is that increases in muscle size and strength are stimulated at lower training loads. While increases in intensity have been s...
	Measures should be taken to individualize cuff pressure. Although imperfect, using limb circumference could be used to do this [60]. Loenneke and colleagues [43] outlined guidelines for doing this with a 5 cm cuff. Practitioners should use a lower pr...

	1.8 Gaps and Future Directions
	Clearly more information is needed to determine the optimal dose of exercise with BFR., Researchers need to clearly identify their subject populations (e.g. blood pressures, limb circumference, training status, limb subcutaneous fat thickness, etc.) a...
	1.8.1 Study 1
	Theoretically, cuff pressure should maximize metabolic stress without completely occluding arterial blood flow blood flow during exercise [17]. While researchers have measured blood flow before and after training, there are no previous reports documen...

	1.8.2 Study 2
	BFR during walking and cycling not only increases muscle size and strength but also improves exercise capacity (1, 3-5, 14, 16, 55). The purpose of the second experiment was to evaluate blood flow and tissue perfusion during intermittent trials of cyc...

	1.8.3 Study 3
	Both aerobic and resistance training increase muscle function. Researchers have suggested that resistance training with BFR would lead to greater increases in muscle size and strength than aerobic training with BFR. However only aerobic training has b...
	Figure 1: A summary of the FITT principle for resistance and aerobic training
	Figure 2: Conceptual model of the physiological responses and adaptations to exercise with blood flow restriction.



	Table 1: Brief overview of studies utilizing BFR
	2 Limb Blood Flow and Tissue Perfusion during Exercise with Blood Flow Restriction
	2.1 Introduction
	Resistance exercise is widely recommended to restore function following injury, maintain health across the lifespan, and improve athletic performance. In general, performing resistance exercise at 65-70% of one repetition maximum (RM) 2-3 times per we...
	To date, there are no standardized recommendations for the proper application of cuff pressure during exercise with BFR. Theoretically, cuff pressure should be set high enough to prevent the return of venous blood flow, but low enough to maintain some...
	Understanding the extent to which cuff pressure alters blood flow and tissue perfusion during exercise with BFR would have important implications for exercise prescription and training. Most notably, high cuff pressures that completely occlude arteria...

	2.2 Methods
	2.2.1 Participants
	Ten active men between 18-44 yrs volunteered to participate in this study (demographic and anthropometric characteristics reported in Table 1). All participants self-reported that they performed physical activity at a moderate intensity at least 150 m...

	2.2.2 Study Design and Overview
	In this investigation, we used a single-group repeated measures design. Participants performed rhythmic handgrip exercise across a range of cuff pressure conditions (0%, 60%, 80%, 100%, and 120% of LOP). Our primary outcome variable was brachial arter...
	Participants reported to the laboratory in a resting condition, not having consumed alcohol or participated in vigorous exercise in the previous 24 h. Participants were asked to lay supine on an examination table for 10 min prior to testing and remain...

	2.2.3 Rhythmic Handgrip Exercise
	Prior to exercise participants performed 3 maximal voluntary contractions (MVC) using a handgrip dynamometer (ADInstruments, Colorado Springs, CO, USA). Handgrip forces were recorded using a data acquisition system (Powerlab 16, ADInstruments, Colorad...

	2.2.4 Blood Flow Calculation
	Blood velocity (Vmean) and vessel diameter (Vd) were measured with a Logic 7 ultrasound system (General Electric Medical Systems, Milwaukee, WI) equipped with a linear array transducer operating at an imaging frequency of 12 MHz and Doppler frequency ...

	2.2.5 Limb Occlusion Pressure
	A 10 cm wide nylon pneumatic cuff (Hokanson, Belleview, WA, USA) was wrapped around the right arm at the most proximal location and pressurized with a rapid cuff inflator (Hokanson, Belleview, WA, USA). The ultrasound probe was positioned distal to th...

	2.2.6 Tissue Perfusion
	A near-infrared spectroscopy (NIRS) system was used to measure tissue oxygen saturation (Oxymon MKIII; Artinis Medical Systems, Einsteinweg, Netherlands). The NIRS sensor was placed on the right forearm approximately 1/3 of the distance from the media...

	2.2.7 Central Variables
	Beat by beat mean arterial pressure and cardiac output were measured with a Nexfin HD Monitor (Edwards LifeSciences, Irvine CA, USA). Heart rate was determined with the use of a 3-lead ECG running through a BioAmp acquisition box (ADInstruments, Color...

	2.2.8 Forearm Muscle Activity
	Forearm muscle activity was assessed using surface electromyography (EMG). Electrodes were placed on the right forearm approximately 1/3 of the distance from the medial epicondyle of the humerus to the styloid process of the radius as recommended by D...

	2.2.9 Statistical Analysis
	To test the hypothesis that BFR-induced reductions in arterial blood flow during exercise would be less than those reductions during rest, we used a two-way repeated measures analysis of variance (ANOVA) procedure to evaluate the effects of time (pre-...


	2.3 Results
	2.3.1 Limb Occlusion and Cuff Pressure
	Mean limb occlusion pressure was 130 ± 12 mm Hg. Cuff pressures for the 60%, 80%, 100%, and 120% LOP conditions corresponded to 81 ± 11, 108 ± 15, 135 ± 19, and 162 ± 23 mm Hg, respectively.

	2.3.2 Blood Flow
	Absolute blood flow kinetics are illustrated in Figure 3A for descriptive purposes. The repeated measures ANOVA procedures revealed significant main effects of pressure (P < 0.01, ηp² = 0.839) and time (P < 0.01, ηp² = 0.823), as well as a pressure x ...
	Relative blood flow kinetics are illustrated in Figure 4A for descriptive purposes. The repeated measures ANOVA procedures revealed significant main effects of pressure (P < 0.01, ηp² = 0.927) and time (P < 0.01, ηp² = 0.564), as well as a pressure x ...

	2.3.3 Tissue Perfusion
	Changes in tissue saturation index are illustrated in Figure 5A for descriptive purposes. The repeated measures ANOVA procedures revealed significant main effects of pressure (P < 0.01, ηp² = 0.682) and time (P < 0.01, ηp² = 0.782), as well as a press...
	Changes in deoxyhemoglobin are illustrated in Figure 6A for descriptive purposes. The repeated measures ANOVA revealed significant main effects of pressure (P < 0.01, ηp² = 0.812) and time (P < 0.01, ηp² = 0.916), as well as a pressure x time interact...

	2.3.4 Central Variables
	For cardiac output and heart rate there were no significant main effects for time (P = 0.54, ηp² = 0.081, P = 0.22, ηp² = 0.145, respectively) or pressure (P = 0.8, ηp² = 0.279, P = 0.22, ηp² = 0.156, respectively) or pressure x time interactions (P =...

	2.3.5 Forearm Muscle Activity
	Forearm EMG activity for the first 10 to last 10 contractions did not differ for any pressure condition (all P > 0.05).


	2.4 Discussion
	The purpose of this study was to evaluate changes in arterial blood flow and tissue perfusion before, during, and after rhythmic handgrip exercise with BFR across a range of occlusion pressures. The key findings were that: 1) at pressures below LOP th...
	2.4.1 Assessment of Blood Flow during Exercise
	To the best of our knowledge, we are the first group to report alterations in blood flow before, during, and after exercise with BFR. Previous research has focused on examinations of blood flow at rest [44, 49, 54, 63] and immediately after exercise [...

	2.4.2 Alterations in Blood Flow
	Prior to exercise, there were no significant differences in blood flow between the 60% and 80% and the 100% and 120% LOP conditions. These data are in agreement with that of Mouser and colleagues [44, 49] who demonstrated that under relative occlusion...
	During exercise, blood flow increased in the 0%, 60%, and 80% LOP conditions from rest. Thus, at pressures below LOP the cardiovascular system increased blood flow to the working muscles even despite the mechanical compression. However, blood flow was...
	In the 0% LOP control condition blood flow remained elevated following exercise, however, this hyperemic response was blunted by the cuff across all cuff pressures. Post-exercise absolute blood flow decreased in the 60% and 80% LOP conditions from the...

	2.4.3 Tissue Perfusion
	Results indicated that increased pressure reduced tissue saturation index. This relationship is similar to blood flow, which seems logical as blood flow and tissue perfusion are highly correlated [80, 81]. There were, however, no differences in deoxyh...
	In all pressure conditions above 0% LOP, tissue saturation index continued to decrease post-exercise. These results are consistent with previous reports on tissue saturation index following knee extension exercise with BFR [71, 73]. Suga and colleague...

	2.4.4 Mean Arterial Pressure
	There were no differences in mean arterial pressure across different cuff pressures. This may be due to the small muscle mass used or the type of exercise used. It is possible that there would be a change in mean arterial pressure across pressures dur...

	2.4.5 Implications
	Exercise with BFR is gaining popularity among practitioners in clinical and applied sport training settings [23]. However, more care is needed to ensure that current practice matches the research to ensure the safety of this exercise modality [23]. Wi...

	2.4.6 Limitations
	We implemented BFR during rhythmic handgrip exercise, an exercise modality that is often used to measure blood flow to exercising muscles. This allowed us to measure blood flow during exercise with BFR for the first time. Handgrip exercise is, however...
	We acknowledge that multiple sets are commonly used during exercise with BFR (e.g., 30 reps x 3 sets) [23]. There was no change in forearm EMG activity for the first 10 to last 10 contractions suggesting that one set of handgrip exercise did not cause...

	2.4.7 Summary
	During exercise with BFR, blood flow to the working muscles increased even despite the external pressure. Relative reductions in blood flow prior to exercise were generally maintained during exercise with BFR. Occlusion pressures ranging from 60-80% L...

	2.4.8 Acknowledgements
	Table 2: Participant demographic and anthropometric characteristics (n = 10)
	Figure 3: Time course of alterations in absolute brachial artery blood flow across different cuff pressures (A). Brachial artery blood flow measured during pre-exercise, exercise, and post-exercise with the cuff inflated (B). Blood flow different from...
	Figure 4: Time course of alterations in relative brachial artery blood flow across different cuff pressures (A). Brachial artery blood flow measured during pre-exercise, exercise, and post-exercise with the cuff inflated (B). Blood flow different from...
	Figure 5: Time course of alterations in tissue saturation index (A) across different cuff pressures. Tissue saturation index measured during pre-exercise, exercise, and post-exercise with the cuff inflated. (B) Tissue saturation index different from 0...
	Figure 6: Time course of alterations in concentration of deoxyhemoglobin (A) across different cuff pressures. Concentration of deoxyhemoglobin measured during pre-exercise, exercise, and post-exercise with the cuff inflated (B). Concentration of deoxy...
	Figure 7: Alterations in mean arterial pressure (MAP) by time. Mean arterial pressure different than pre-exercise and exercise (p<0.05) are indicated by * and #, respectively. Data are reported as mean ± SD.



	3 Acute Cardiovascular, Metabolic, and Neuromuscular Effects of Cycling with Blood Flow Restriction
	3.1 Introduction
	Exercise with blood flow restriction (BFR) is emerging as a safe and effective method for increasing muscle size and strength [26, 85]. This exercise uses a pressurized cuff or tourniquet to partially restrict blood flow to and from the working muscle...
	There are no standardized recommendations for the proper application of exercise with BFR. Theoretically, cuff pressure should be high enough to prevent the return of venous blood flow but low enough to maintain some arterial blood flow [88]. Further...
	Reductions in blood flow during BFR exercise also contribute to the development of neuromuscular fatigue (i.e., reduction in maximal voluntary torque) [89]. Typically, greater neuromuscular fatigue is associated with increased growth hormone concentr...
	The purpose of this study was to compare changes in blood flow, tissue perfusion, and neuromuscular function to acute cycling exercise with and without BFR. Specifically, comparisons were made between: 1) low-load cycling (40% VO2max), 2) low-load cy...

	3.2 Methods
	3.2.1 Participants
	Ten active men between 18-44 yrs volunteered to participate in this study (Table 1). All participants self-reported that they performed aerobic exercise at moderate to high-intensity for at least 150 min/week, which is consistent with ACSM guidelines ...

	3.2.2 Study Overview
	In this investigation, we used a single group repeated measures design. Participants reported to the laboratory on 5 separate days separated by at least 48 hrs. Subjects were told not to perform at vigorous physical activity, or use any drugs, alcohol...

	3.2.3 Oxygen consumption and Peak Aerobic Power
	To establish a linear relationship between steady-state VO2 and power output, participants completed a submaximal cycling protocol on an electromagnetically braked cycle ergometer (Velotron Elite; RacerMate Inc., Seattle, WA, USA). Specifically, parti...

	3.2.4 Cycling Exercise
	Prior to the intermittent cycling protocol, participants rested on the cycle ergometer for 5 min for collection of baseline responses. Following this baseline period, the cuff was inflated to 60 or 80% limb occlusion (BFR conditions only) while partic...

	3.2.5 Blood Flow
	Blood flow velocity (Vmean) and vessel diameter (Vd) were measured with a Logiq e ultrasound system (General Electric Medical Systems, Milwaukee, WI, USA) equipped with a linear array transducer operating at an imaging frequency of 12 MHz and Doppler ...
	Limb occlusion pressure was determined while the participant was seated on the cycle ergometer. Their right foot was positioned on a stool next to the ergometer. Their hip was abducted slightly and their knee angle was ~90 . The pressure cuff was wrap...

	3.2.6 Tissue Perfusion
	A continuous-wave near-infrared spectroscopy device (PortaLite; Artinis Medical Systems BV, Elst, The Netherlands) was utilized to detect changes in the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin. Wavelengths (760 and 850 nm) ...

	3.2.7 Metabolic, Cardiorespiratory, and Perceptual Responses
	Oxygen consumption, ventilation, and heart rate were recorded using the metabolic measurement system described above. These data were averaged over the last 30 s of the exercise and recovery time periods. Perceptual responses (rating of perceived exer...

	3.2.8 Neuromuscular Function
	Participants were positioned on an isokinetic dynamometer (Biodex 4, Biodex Medical Systems, NY, USA), at a hip angle of 85 , and a knee angle of 90 . A seat belt and ankle strap were used to minimize hip and ankle movement. To measure knee extension ...

	3.2.9 Statistical Analysis
	Separate two-way repeated measures analysis of variance (ANOVA) procedures were used to evaluate the effect of cycling condition and time (baseline, cuff inflate, recovery interval number) on changes in blood flow. If a significant main effect of cycl...
	Separate two-way repeated measures ANOVA procedures were used to evaluate the effect of cycling condition and time (baseline, cuff inflate, exercise interval number, recovery interval number) on changes in tissue saturation index, deoxyhemoglobin, VO2...
	A repeated measures ANOVA was used to evaluate the interaction of cycling condition and time (baseline to post-exercise) on whole blood lactate. If a significant interaction was identified then a series of 2 x 2 repeated measures ANOVAs comparing each...
	Finally, two-way repeated measures ANOVAs were used to evaluate the effect of cycling condition and time (baseline, post-1 min, post-5 min, post-10 min), on changes in MVIC, Tcontrol, voluntary activation, rate of torque development, time to peak torq...


	3.3 Results
	3.3.1 Cycling Trials
	Cuff pressures for the BFR 60 and BFR 80 cycling conditions were 125 ± 12 and 164 ± 15 mm Hg, respectively. Mean power outputs were 89 ± 18 W for the LL, BFR 60, BFR 80 cycling conditions, and 240 ± 36 W for the HL cycling condition. Two participants ...

	3.3.2 Blood Flow
	The repeated measures ANOVA revealed significant main effects of cycling condition (P < 0.01, ηp² = 0.887) and time (P < 0.01, ηp² = 0.933) and cycling condition x time interaction (P < 0.01, ηp² = 0.802) on blood flow. In general blood flow was reduc...

	3.3.3 Tissue Perfusion
	Results from the repeated measures ANOVA procedures for tissue saturation index and deoxyhemoglobin revealed significant main effects of cycling condition (P < 0.01, ηp² = 0.741; P < 0.01, ηp² = 0.783, respectively) and time (P < 0.01, ηp² = 0.599; P ...

	3.3.4 Metabolic, Cardiovascular, and Perceptual Responses
	The repeated measures ANOVA procedures revealed main effects of cycling condition (all P < 0.01, all ηp² > 0.678) and time (all P < 0.01, all ηp² > 0.818) as well as a cycling condition x time interaction (all P < 0.01, all ηp² > 0.511) for all variab...

	3.3.5 Neuromuscular Function
	The repeated measure ANOVA procedures indicated significant main effects of cycling condition for MVIC torque, Tcontrol, rate of torque development, and time to peak torque (all P < 0.01, all ηp² > 0.348; Figure 12). Significant main effects of time w...


	3.4 Discussion
	In this investigation, we integrated measurements of blood flow, tissue perfusion, and neuromuscular function to better characterize the effects of BFR during aerobic exercise. Our main findings were that cycling with BFR: 1) caused a reduction in blo...
	3.4.1 Blood Flow and Tissue Perfusion
	To the best of our knowledge, we are the first group to report changes in blood flow following aerobic exercise with BFR. Specifically, compared to the LL condition blood flow during recovery was reduced by ~33% and ~50% in the BFR 60 and BFR 80 condi...

	3.4.2 Metabolic, Cardiorespiratory, and Perceptual Responses
	Oxygen consumption did not change with the addition of BFR. Previous researchers [6, 108] reported an increase in VO2 during aerobic exercise with BFR likely due to the metabolic cost of increased heart rate and ventilation. Discrepancies in these f...

	3.4.3 Neuromuscular Function
	Cycling exercise with BFR reduced MVIC torque by ~18% and ~40% in the BFR 60, and BFR 80 conditions, respectively. These results generally agree with previous reports examining resistance exercise with BFR [31, 91-93], however, prior studies examining...
	In addition to peripheral fatigue, central fatigue was also present in the BFR 80 condition. Specifically, voluntary activation was 23% lower in the BFR 80 condition 1 min after exercise. This reduction in voluntary activation was notably larger than ...

	3.4.4 Cuff Pressure
	Proper selection of cuff pressure is important for the safety and effectiveness of exercise with BFR. Ideally, the cuff pressure should be set so that some arterial blood flow is maintained while venous blood flow is occluded. This causes a reduction ...

	3.4.5 Implications
	The major findings of the present study were: 1) BFR caused a reduction in blood flow and tissue perfusion and augmented metabolite accumulation, 2) VO2, heart rate, ventilation, and RPE in the BFR 60 were lower than HL cycling, and 3) exercise with B...

	3.4.6 Limitations
	There are some limitations to our study that must be addressed. First, blood flow measurements using ultrasonography during cycling could not be performed, therefore we measured blood flow immediately (within 10 seconds) after each cycling interval. A...

	3.4.7 Summary
	In summary, cycling with BFR decreased blood flow and tissue perfusion and increased metabolite accumulation when compared to LL cycling without BFR. Moreover, cycling with BFR resulted in lower metabolic and cardiorespiratory responses than traditio...
	Figure 8: Overview of experimental cycling protocol. Base, Cuff, E, R, and Post-, denotes baseline, cuff inflate, exercise, recovery, and post-exercise periods, respectively.
	Figure 9: Alterations in superficial femoral artery blood flow across different conditions (A). Significant main effect of condition indicted in textbox above figure, ≈ (p > 0.05), < or > (p < 0.05). Data reported as mean and standard deviation bars w...
	Figure 10: Changes in tissue saturation index (A) and concentrations of deoxyhemoglobin (B) throughout the cycling protocol. Significant main effect of condition indicted in textbox above individual figures, ≈ (p > 0.05), < or > (p < 0.05). Data repor...
	Figure 11: Time course alterations in VO2 (A), heart rate (B), ventilation (C), RPE (D), pain (E), and whole blood lactate (F). Significant main effect of condition indicted in textbox above individual figures, ≈ (p > 0.05), < or > (p < 0.05). Data re...
	Figure 12: Maximal voluntary isometric contraction torque (MVIC), voluntary activation, evoked twitch torque (Tcontrol), rate of torque development, time to peak torque, and half-relaxation time depicted in panel A, B, C, D, E, and F, respectively. S...



	4 Adaptations to Low-Intensity Cycling and Low-Intensity Resistance Training with Blood Flow Restriction
	4.1 Introduction
	Blood flow restriction (BFR) training is a safe and effective method of increasing both aerobic capacity and muscular function [26, 85, 115] in healthy, clinical, and athletic populations (for extensive reviews see [26, 115-117]). In this exercise mod...
	Because of exercise with BFR’s unique ability to stimulate muscular adaptations at low training loads, many exercises including walking and cycling that traditionally would not improve muscle function can be effectively used with BFR to increase muscl...
	Although aerobic and resistance training with BFR have not been directly compared, two separate meta-analyses have suggested resistance training with BFR would increase muscular size and strength to a greater degree than walking with BFR [26, 115]. Lo...
	To date, there has not been a comparison of chronic training adaptations following aerobic and resistance training within equivalent matched groups. This information would allow clinicians and practitioners to make more informed decisions on the type ...

	4.2 Methods
	4.2.1 Participants
	Eighteen healthy adults between 18-44 years of age volunteered to participate in this study (demographic and anthropometric characteristics reported in Table 4). Participants were excluded from the study if they used nicotine products, had diabetes, ...

	4.2.2 Study Overview
	Participants were assigned to one of two exercise groups: aerobic or resistance training. Groups were matched on demographics, body composition, muscular function, and aerobic capacity characteristics. Both groups performed BFR exercise 3x/wk for 6 w...

	4.2.3 Blood Flow Restriction
	During exercise, femoral blood flow was restricted using a 10 cm wide nylon pneumatic cuff (SC10D, Hokanson, Belleview, WA, USA) wrapped around each thigh at the most proximal location. The cuff was pressurized with a rapid cuff inflator (Hokanson, Be...

	4.2.4 Aerobic Training
	Each exercise session consisted of multiple 2 min intervals on a cycle ergometer (Velotron Elite, RacerMate Inc., Seattle, WA, USA). In weeks 1 and 2, participants completed 6 total cycling intervals. In weeks 3-6, participants completed 8 intervals. ...

	4.2.5 Resistance Training
	Each exercise session consisted of dynamic bilateral leg press (GZFH8043, FreeMotion, Logan, UT, USA) and knee extension (C8080W, New York Barbells, Elmira, NY, USA) exercise. In weeks 1 and 2 participants completed 3 sets of each exercise, and in wee...

	4.2.6 Training Measures
	During each training session, ratings of perceived exertion, pain, and heart rate were recorded during the last 15 s of exercise and rest. Whole body rating of perceived exertion was assessed using a Borg 6-20 scale [100]. Pain was assessed on an 11 p...

	4.2.7 Training Outcome Measures
	4.2.7.1 Body Composition
	Regional body composition was assessed using dual energy x-ray absorptiometry (Discovery Wi, Hologic Inc, Marlborough, MA, USA). Lower limb lean mass, lower limb fat mass, and body fat percentage were recorded. The coefficient of variation of this sy...
	4.2.7.2 Muscle Thickness
	Muscle thickness of the right rectus femoris and vastus lateralis were measured using a b mode ultrasound (Logiq e BT12, GE Healthcare, Chicago, IL, USA) equipped with a linear array transducer operating at an imaging frequency of 12 MHz and Doppler ...
	4.2.7.3 Muscular Strength
	Isometric knee extension strength was determined using a force transducer (MLP-300, Transducer Techniques, Temecula, CA, USA). Knee extension forces were recorded using a data acquisition system (PowerLab 16, ADInstruments, Colorado Springs, CO, USA)....
	Estimated 1 RM was determined on a leg press (GZFH8043, FreeMotion, Logan, UT, USA) and knee extension machine (C8080W, New York Barbells, Elmira, NY, USA). The participant completed 10-15 repetitions of weight ~50% of the individual’s 1 RM as a warm-...
	4.2.7.4 Aerobic Capacity
	Participants performed a graded exercise test on an electromagnetically-braked cycle ergometer (Velotron Elite, RacerMate Inc., Seattle, WA, USA) until task failure to determine VO2peak, lactate threshold, and peak aerobic power. The protocol began ...

	4.2.8 Statistical Analysis
	Separate 2 (aerobic vs. resistance) x 2 (pre-training vs. post-training) mixed repeated measures analysis of variance procedures (ANOVA) were used to assess differences in muscular function (muscle mass, muscle thickness, muscle strength) and aerobic...


	4.3 Results
	4.3.1 Pre-Training
	There were no significant differences in anthropometric measures (age, height, body mass, thigh circumference), muscular function (muscle size, strength), aerobic capacity (VO2peak, lactate threshold, peak aerobic power) or body composition (body fat ...

	4.3.2 Blood Flow Restriction Training
	Participants completed 99% of the total training sessions as three training sessions were missed due to scheduling conflicts. One participant from the aerobic group did not complete the training due to scheduling conflicts, thus 8 subject were used in...

	4.3.3 Muscular Function
	4.3.3.1 Body composition:
	In general, BFR training regardless of group caused an increase in lower limb lean mass, and a decrease in body fat percentage. Specifically, a main effect of training on lower limb lean mass (P < 0.01, ηp² = 0.55) was found, but no group x training i...
	4.3.3.2 Muscle Thickness:
	Both aerobic and resistance training increased muscle function to a similar extent. Training effects were found for RF and VL thickness (P < 0.01, ηp² = 0.44; P < 0.01, ηp² = 0.72 respectively), but no training x group interactions (P = 0.70, ηp² = 0....
	4.3.3.3 Muscle strength:
	Similarly to muscle thickness, strength to body mass ratio, leg press 1 RM, and knee extension 1 RM, increased with training (P < 0.01, ηp² = 0.44, P < 0.01, ηp² = 0.42, P < 0.01, ηp² = 0.82 respectively), this increase not differ between groups. (P ...

	4.3.4 Aerobic Capacity
	For VO2peak, the ANOVA revealed a training x group interaction (P = 0.02, ηp² = 0.30), but no main effect of training (p = 0.12, ηp² = 0.15). There was a 5% improvement in VO2peak in the aerobic group (P = 0.02), but no change in the resistance group...


	4.4 Discussion
	We reported, for the first time, similar increases in muscle size and strength between aerobic and resistance training with BFR. Not only did aerobic training with BFR improve muscle size and strength, but also increased VO2peak. Moreover, aerobic tra...
	4.4.1 Exercise Training Measures
	Previous research reported lower RPE during treadmill walking with BFR when compared to leg press exercise with BFR [35, 39]. Our data support and extend upon these findings by corroborating their RPE findings and also demonstrating reduced pain in t...

	4.4.2 Muscular Size and Strength
	Contrary to our hypothesis, aerobic and resistance training with BFR resulted in similar increases in muscle size and strength. Specifically, lower limb lean mass, RF thickness, and VL thickness increased by 3.9, 4.9, and 7.0%, respectively in both a...

	4.4.3 Aerobic Capacity
	There was a small but significant improvement in VO2peak for the aerobic group
	but VO2peak did not change in the resistance group. Specifically, VO2peak improved by 4.5% following cycling training with BFR. It should be noted that the day-to-day variation of VO2peak has been perviously reported to range from 3-5% [132, 133]. The...

	4.4.4 Limitations
	One limitation of the present study was total work and time under occlusion were not matched between groups. The training protocols we chose were selected because they are commonly used in research and in practice [23], and were therefor chosen to ma...

	4.4.5 Summary
	In summary, the purpose of this study was to compare changes in muscular function and aerobic capacity following 6 wks of aerobic and resistance training with BFR. We found similar increases in muscle size and strength in aerobic and resistance train...
	Figure 13: Overview of aerobic and resistance training protocol.
	Figure 14: Mean weekly heart rate measured during exercise (A), mean arterial pressure measured during recovery (B), rating of perceived exertion (RPE) measured during exercise (C), Pain measured during exercise and recovery (D). Variable different th...
	Figure 15: Pre- to post-training changes in lower limb lean mass (A), rectus femoris (RF) muscle thickness (B), and vastus lateralis (VL) muscle thickness (C).  Significant main effect of training (P < 0.05) is indicated by #. Mean data represented as...
	Figure 16: Pre- to post-training changes in isometric strength (A), Knee extension 1 repetition max (KE 1 RM; B), and leg press 1 repetition max (LP 1 RM; C). Significant main effect of training (P < 0.05) is indicated by #. Mean data represented as c...
	Figure 17: Pre- to post-training changes in VO2peak (A), Wpeak (B), lactate threshold (C). Simple effect of training (P < 0.05) is indicated by $. Significant training X group interaction (P < 0.05) is indicated by *. Mean data represented as column, ...



	5 Conclusion
	Exercise with blood flow restriction (BFR) is emerging as an effective method to improve muscle size, strength, and exercise capacity healthy, clinical, and athletic populations (table 1). Exercise with BFR allows for the development of muscle size an...
	In the first study, I was the first to report changes in blood flow, and tissue perfusion during aerobic exercise with BFR. Our key findings were the relative reduction in blood flow was generally maintained at rest. Additionally, as pressure increase...
	In the second study, we examined the cardiovascular, metabolic, perceptual and neuromuscular effects of cycling with BFR. The major findings of this study were: 1) BFR caused a reduction in blood flow and tissue perfusion and augmented metabolite accu...
	Finally in the third study, I was the first to directly compare training adaptions to aerobic and resistance exercise with BFR. The main findings were that aerobic and resistance exercise with BFR similarly increased muscle size and strength, but only...
	In conclusion, moderate cuff pressure of ~60% limb occlusion pressure increases metabolic stress, without completely occluding blood flow, or causing excessive muscle pain. Moreover, this pressure results in significant increases in muscle size and st...
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	B.1 Home-Based Exercise with Blood Flow Restriction to Restore Limb Symmetry Following ACL Reconstruction
	B.1.1 Abstract



	Study Design: Controlled laboratory study, longitudinal.
	Background: Quadriceps atrophy and weakness can persist for years after anterior cruciate ligament reconstruction (ACLR). Such impairments can limit physical function, increase re-injury risk, and lead to early osteoarthritis.
	Objectives: To evaluate the effectiveness of a home-based blood flow restriction (BFR) exercise program to increase quadriceps size and strength several years after ACLR.
	Methods: Nine adults with ACLR (5±2yrs post-surgery, ≤90% quadriceps symmetry) and nine uninjured controls volunteered. ACLR participants exercised at home for ~25min, 5x/wk for 4wks (bodyweight half-squats, single-leg knee extension, walking). Blood ...
	Results: Rectus femoris and vastus lateralis thickness and knee extensor strength in the ACLR leg increased by 11±5%, 10±6%, and 20±14%, respectively (all P<0.01). Compared to baseline, post-training knee extensor strength symmetry increased from 88±4...
	Conclusion: Implementation of BFR exercise at home was feasible, safe, and effective. Results extend upon early post-operative application of BFR exercise for ACLR recovery and demonstrate that BFR can improve quadriceps function long after ACLR.
	B.1.2 Introduction

	After an anterior cruciate ligament injury and reconstruction (ACLR) many individuals do not completely regain their quadriceps size19,28,48 and strength7,14,19,47 and only 60% are able to return to pre-injury activity levels.3 Persistent muscle and s...
	Performing resistance exercise at 65-70% of one repetition maximum (1RM), 2-3x/wk, for 8 weeks is sufficient to increase quadriceps size and strength.9 This type of exercise, however, is not always possible because the high loads are contraindicated a...
	Following discharge from a supervised rehabilitation protocol, patients are encouraged to continue with a home-based program in order to achieve and maintain optimal function. Continued adherence to this program is crucial, as patients are often permi...
	Our purpose for conducting this investigation was to evaluate the effectiveness of a 4 week home-based BFR exercise program to increase quadriceps size, strength, and symmetry several years after ACLR. We envisioned that a home program consisting of b...
	B.1.3 Methods

	Participants
	Nine adults who had undergone an ACLR and nine uninjured controls volunteered to participate in this study (demographics reported in Table 1). Participants were between 18-44yrs of age and were recreationally active which was defined as exercising 3-5...
	Study Overview
	Baseline measures of rectus femoris thickness, vastus lateralis thickness, and single-leg knee extensor strength were assessed in the ACLR and uninjured control groups. Participants in the ACLR group performed BFR exercise at home for ~25min, 5x/week ...
	Home-Based BFR Exercise Program
	Participants in the ACLR group visited the laboratory to complete a familiarization session where they were introduced to the BFR exercise program. Subsequently, each training session performed at home consisted of a series of three exercises (single-...
	During each exercise, only blood flow in the ACLR leg was restricted using an 18cm wide aneroid sphygmomanometer (Briggs, Healthcare, Waukegan, IL, USA). The inflatable cuff was wrapped around the thigh at the most proximal location and pressure was i...
	Muscle Soreness
	Before each training session ACLR participants performed a bodyweight half-squat to a knee angle of 45  to assess the level of perceived muscle soreness in their legs. Participants were asked to place a mark on a 10cm visual analog scale.51 This scale...
	Limb Occlusion Pressure
	The cuff was wrapped around the thigh of the ACLR leg at the most proximal location while participants were in a seated position. Doppler ultrasound (Logiq e BT12, GE Healthcare, Chicago, IL, USA) equipped with a linear array transducer operating at a...
	Quadriceps Size and Strength
	Thickness of the rectus femoris and vastus lateralis were measured separately in the ACLR and uninvolved legs (ACLR group) and nondominant and dominant legs (uninjured control group) using B-mode ultrasound (Logiq e BT12, GE Healthcare, Chicago, IL, U...
	Isotonic single-leg knee extensor strength was evaluated on a knee extension strength machine (Cybex, Life Fitness, Rosemont, IL, USA). Participants completed 10 repetitions of weight at ~50% of their anticipated 1RM as a warm-up. Participants were th...
	Symmetry Index
	For the ACLR group, symmetry index was calculated as: SI = [(ACLR leg/uninvolved leg)*100]. Accordingly, a number greater than 100% indicated that the ACLR leg had a greater value than the uninvolved leg. For the control group, the symmetry index was ...
	Statistical Analysis
	Independent t-tests were used to compare differences in demographic characteristics between the ACLR and uninjured control groups. Additionally, independent t-tests were used to assess differences in baseline rectus femoris thickness, vastus laterali...
	B.1.4 Results

	Baseline
	There were no differences in age, height, body mass, BMI, or body fat between the ACLR and uninjured control groups (all P>0.05; Table 1). Participants in the ACLR group had surgery 5±2yrs ago with an autograft of either the semitendinosus muscle tend...
	Exercise Training
	Mean limb occlusion pressure was 182±28mmHg. Accordingly, mean BFR training pressure was set at 91±14mmHg. ACLR participants completed 98% of the total exercise sessions and there were no adverse events with the exercise program. Mean muscle soreness ...
	Post-Training
	The repeated measures ANOVA revealed a signiﬁcant leg x time interaction for rectus femoris muscle thickness (P<0.01) indicating that the ACLR leg exhibited a greater change in thickness compared to the uninvolved leg (Figure 2). Further, after traini...
	There was a signiﬁcant leg x time interaction for knee extensor strength (P<0.01) indicating that the ACLR leg exhibited a greater change in strength compared to the uninvolved leg (Figure 2). After training, knee extensor strength increased by 20±14%...
	B.1.5 Discussion

	Main Findings
	In this investigation, participants had an ACLR on average 5yrs ago and despite completing a post-operative rehabilitation program and being physically active still had persistent quadriceps impairments and moderate levels of asymmetry. Accordingly, w...
	Home-Based Exercise with BFR
	A unique aspect of this study was the development of a home-based BFR exercise protocol. To minimize the need for expensive exercise equipment we implemented simple exercises that only required the use of a thigh blood pressure cuff and a resistance b...
	Quadriceps Size and Strength
	Restoration of quadriceps size and strength is imperative for recovery of knee joint function following ACLR and long-term joint health.35 Achievement of 90% symmetry5,23,34,39 is often used as one of the clinical milestones for returning to physical ...
	With increased muscle thickness and strength in the ACLR leg there was a notable improvement in symmetry for rectus femoris (87 to 96%) and vastus lateralis (90 to 97%) thickness and knee extensor strength (88 to 99%). Indeed, post-training symmetry v...
	The physiological mechanisms responsible for increased muscle size and strength with BFR exercise are not well established. Previous authors have proposed a variety of mechanisms including accelerated fatigue leading to preferential type II fiber recr...
	Implications and Considerations
	Our findings have several important implications for clinicians. First, when patients with ACLR are eventually discharged from supervised rehabilitation, clinicians may consider incorporating BFR exercises into home-based maintenance programs. Specifi...
	It is important to acknowledge that BFR exercise is characterized by slight discomfort and dull pain at the site of the cuff which could affect an individual’s motivation and program compliance. In addition, restriction of blood flow during exercise d...
	Limitations
	In this investigation, participants represented a small sample from the general ACLR population. This ACLR cohort was young and physically active and thus the results may not be entirely transferrable to older and/or less active individuals dealing wi...
	Summary
	This is the first study to report the use of home-based BFR exercise to increase quadriceps size and strength several years after ACLR. Specifically,4 weeks of BFR exercise resulted in significant increases in rectus femoris and vastus lateralis thick...
	KEY POINTS
	FINDINGS: Implementation of BFR exercise several years after ACLR increased quadriceps muscle thickness and knee extensor strength and reduced asymmetry. In addition, the home-based program consisting of bodyweight and walking exercises with BFR was f...
	IMPLICATIONS: BFR exercise offers a promising approach for restoration of quadriceps function and symmetry long after ACLR.
	CAUTION: To implement BFR exercise safely and effectively, careful selection of cuff pressure, continued monitoring of training, and participant education is needed.
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	TABLE 1. Participant demographics
	Values are reported as Mean ± SD. Note that, body fat data are reported on n=7 for the ACLR group and n=8 uninjured control group.
	Figure 1. Overview a home-based BFR exercise training session. Each training session consisted of a series of three exercises (single-leg knee extension, body weight half squats, walking) and took ~25min to complete. During each exercise, blood flow t...
	Figure 2: Alterations in rectus femoris (RF) and vastus lateralis (VL) muscle thickness in the ACLR and uninvolved leg for the ACLR group (top panels). Muscle thickness symmetry in the ACLR and uninjured control groups (bottom panels). For the ACLR gr...

	FIGURE 3. Changes in knee extensor 1RM strength in the ACLR and uninvolved leg for the ACLR group (top panel). Knee extensor 1RM strength symmetry in the ACLR and uninjured control groups (bottom panel). For the ACLR group a number 100% indicated unin...
	FIGURE 4. Perceived muscle soreness associated with the home-based BFR exercise
	program (0 - no soreness, 10 - severe soreness). Data are reported as mean ± SD.
	B.2 Home-Based Exercise with Blood Flow Restriction to Improve Quadriceps and Physical Function after Total Knee Arthroplasty: A Case Report
	B.2.1 Abstract


	Background and Purpose: After total knee arthroplasty (TKA) persistent quadriceps muscle atrophy and weakness impairs physical function. Blood flow restriction (BFR) exercise is emerging as an effective method to improve muscle size and strength in cl...
	Case Description: A 59yr old male (6 months post-TKA) performed body weight and walking exercises with BFR 5x/wk for 8wks. Blood flow in the TKA leg was restricted using a thigh cuff inflated to 50% of limb occlusion pressure. Lean leg mass, vastus la...
	Outcomes: After training, lean leg mass, vastus lateralis thickness, and knee extensor strength in the TKA leg increased by 4%, 14%, and 55%, respectively. Compared to baseline, post-training knee extensor strength symmetry (TKA/uninvolved leg) increa...
	Discussion: With enhanced quadriceps and physical function the patient resumed independent physical activity. Muscle and strength gains surpassed those typically reported after TKA. Outcomes suggest that home-based BFR exercise was feasible, safe, and...
	B.2.2 Introduction

	Each year more than 650,000 total knee arthroplasty (TKA) surgeries are performed to treat end-stage knee osteoarthritis.1 Annual costs associated with TKA are estimated to be $11 billion2 and will increase dramatically as the number of surgeries is p...
	Several barriers make it difficult for individuals with TKA to regain their quadriceps size and strength. First, heavy exercise loads (65-70% of 1-repetition maximum) required to trigger muscle and strength adaptations are not always possible because ...
	B.2.3 Case Description

	Patient
	A 59yr old male (body mass: 85kg, height: 1.81m, BMI: 22; body fat: 31%) with a history of knee osteoarthritis presented pain and edema in his left knee. The patient developed an antalgic gait, experienced difficulty with reciprocal stair climbing/des...
	Examination: Baseline, Post-Training, and Long-Term Follow-Up
	Muscle size, strength, and physical function were evaluated at baseline (6 months post-TKA), post-training (8 months post-TKA), and long-term follow-up (14 months post-TKA). Lean leg mass was assessed using dual energy x-ray absorptiometry (Discovery ...
	Intervention
	An overview of the home-based BFR exercise program is illustrated in Figure 1. The patient performed BFR exercise 5x/wk for 8-weeks. Each session consisted of three exercises (single-leg knee extension, body weight half-squats, walking) and took ~25mi...
	B.2.4 Outcomes

	Program Adherence
	The patient completed 4-weeks of the program, took a 1-week break at Christmas, and finished the final 4-weeks. He completed all 40 total prescribed BFR exercise sessions. Muscle soreness associated with BFR exercise was low (0.0-1.4cm). Joint pain pe...
	Alterations in Quadriceps and Physical Function
	After training, lean leg mass and vastus lateralis thickness in the TKA leg increased by 4% and 14% respectively (Figure 2). Knee extensor strength increased by 55% (Figure 2) and the patient reported less pain with the maximal contractions. Compared ...
	B.2.5 Discussion

	Feasibility and Main Findings
	Our patient was able to safely perform BFR exercise at home and tolerated the training well. To minimize the need for expensive equipment we used body weight and walking exercises that only required the use of a thigh cuff and resistance band (~$30). ...
	Quadriceps and Physical Function
	Restoration of quadriceps size and strength is imperative for recovery of physical function following TKA.4 In this patient, lean leg mass and vastus lateralis thickness in the TKA leg increased considerably which is noteworthy because at 6-12 months ...
	Possibility of BFR Exercise
	Application of BFR exercise provides a stimulus for increasing muscle size and strength in healthy9 and clinical8 populations. To date, there is a single case series18 documenting BFR exercise use after TKA (3 patients). Gaunder’s team18 reported that...
	Limitations
	It is important to point out that the patient was middle-aged and had a rather high level of physical function as indicated by his physical activity program and performance during the baseline functional tests. Thus, results may not be the same for ol...
	Conclusion
	An 8-week home-based program consisting of body weight and walking exercises with BFR increased lean leg mass, vastus lateralis thickness, knee extensor strength, and functional mobility in a patient who was 6 months post-TKA. To our knowledge, this i...
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	Table 1: Alterations in Physical Function
	a Change score from baseline to post-training
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	FIGURE CAPTIONS
	Figure 1: Overview of the home-based BFR program consisting of body weight and walking exercises. The patient performed this ~25 min exercise routine 5x/wk for 8 wks.
	Figure 2: Alterations in lean leg mass (A), vastus lateralis (VL) muscle thickness (B), and knee extensor strength (C).
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	PROPOSAL
	Anterior cruciate ligament (ACL) injury is the most common traumatic knee injury with approximately 200,000 new injuries each year.1,2 However, only about 50% of patients are able to return to their pre-injury activity level.3 This may be because many...
	High load resistance exercise (70% of one repetition maximum, “heavy weight”) is effective for improving quadriceps muscle size and strength.9,10 However, many ACL patients are advised not to perform high load resistance exercise because doing so coul...
	I will use a two-group, pre/post, longitudinal study design with 20 participants. Eligible and consented individuals will complete: 1) baseline measurements, 2) a four week BRF exercise intervention, and 3) post-training measurements. Baseline measure...
	My research will establish BFR as an effective exercise mode to restore limb symmetry after an ACL injury and reduce associated risks, such as osteoarthritis and re-injury. This home-based exercise program will help to facilitate better access to care...
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	Background: President Obama has set a clear goal to send humans to Mars by 2030. With current propulsion systems, it would take six months to reach Mars. However, with this long duration trip to Mars, astronauts’ musculoskeletal and cardiovascular sys...
	Project Description: A novel method to maintain the levels of musculoskeletal and cardiovascular conditioning during long term spaceflight could be blood flow restricted exercise training (BFR).2 As illustrated in the figure to the right, BFR involves...
	While the potential advantages of using BFR have been highlighted, NASA has stated that, “exercise prescription for BFR remains incomplete, and more scientific data at the whole body and cell level are needed to further elucidate the best exercise par...
	Aim: To determine acute changes in muscle contractile function following aerobic exercise with BFR and compare to those following aerobic exercise without BFR. I hypothesize that aerobic exercise with BFR will require more muscle activity and result i...
	Methods: 16 recreationally active males and females will participate in this study. Muscle contractile function will be assessed before and after cycling exercise, to understand acute central and peripheral adaptations to cycling with BFR. Eligible an...
	NASA’s Strategic Interest: Objective 1.1 of NASA’s Strategic Plan is to expand the human presence into the solar system and to Mars. This exploration requires the ability to transport crew further, and for longer duration than previously attempted. Wi...
	Project Role and Outcomes: As the project leader, I will recruit subjects, conduct all exercise trials and experimental measures, and analyze data. Experimental results will be disseminated through my doctoral dissertation, a presentation at the regio...
	Future Career Interests: I have a Bachelor of Science in Biomedical Engineering, a Master of Science in Exercise Science, and I am currently pursuing a PhD in Biology. With my unique background I will become a university professor specializing in reha...
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	Significance: Public Health - Currently 80% of US adults do not meet the necessary guidelines for both aerobic and resistance training (3). Resistance training has a profound effect on the development and maintenance of muscular strength, this improve...
	Blood flow restriction exercise - Resistance exercise with blood flow restriction is emerging as an effective alternative option to build strength in healthy, clinical, and athletic populations. This exercise modality involves the use of mechanical c...
	Barriers and Gaps - While blood flow restriction training has many advantages there are several barriers preventing widespread implementation. First, there are no recommendations for the optimal occlusion cuff size and pressure. Second, there is a lac...
	Overall Significance - The proposed research is significant because it focuses on an important public health problem and aims to overcome barriers to the widespread use of blood flow restriction training (the lack of specific guidelines clinical trial...
	Pilot data - As a first step I measured blood flow during rhythmic handgrip exercise with blood flow restriction using the technique proposed in this investigation on a small sample of participants (N=5). I measured blood flow in the brachial artery 5...
	Innovation: I believe that the proposed research is very innovative because it focuses on improving our understanding of blood flow restriction training to advance the exercise prescription of this training. Specifically, I will be measuring femoral b...
	Approach: Research Team - Together my research group is well positioned to perform the proposed study. I have a background in both biomedical engineering (BS) and exercise physiology (MS). This has prepared me to move forward with my doctoral disserta...
	Participants - For this project I will recruit 15 young healthy active individuals (sample size estimation described below) from the surrounding community to participate in this study. Participants will be excluded if they: have any physical limitatio...
	Methods - During the familiarization visit, eligible and consented participants will become familiar with the measurement of blood flow using Doppler Ultrasound. Femoral blood flow will be measured based on the techniques described by Burns and collea...
	Statistical Analyses – Given a power of 0.8, an effect size of 0.8, and an alpha of 0.05, a sample of 15 participants will provide an adequate sample. To test aim 1: A two- way analysis of variance (ANOVAs) will be used to test the effect of pressure ...
	Potential Problems -The use of Doppler Ultrasound to measure blood flow is a new measurement for my laboratory. Collectively, Dr. Elmer and I have received training from the manufacture, attended an ultrasound workshop, and received hands on training ...
	Timeline: The research results will be disseminated through my doctoral dissertation, a presentation at the national meeting for the American College of Sports Medicine, and at least one publication (target journal Medicine & Science in Sports & Exerc...
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