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Abstract 
Clean safe drinking water is vital for society. With increasing water scarcity and the 

increased numbers of chemicals identified in waterways, it is important for us to fully 

understand how to destroy contaminants of concern and prevent potentially hazardous 

byproducts that may be produced from the degradation processes. Little is known about 

how nitrogen containing organics behave and degrade in current water treatment 

systems and therefore their role in water reuse. N-nitrosodimethylamine (NDMA), is 

carcinogenic and is being formed during conventional chlorination of drinking water. 

Ultraviolet (UV) photooxidation has been shown to degrade NDMA, but the degradation 

pathways and their kinetics are not well understood. The overall goal of this study is to 

determine the fate of nitrogen-containing organics in UV photolysis and UV-based 

advanced oxidation processes. In this study we use quantum mechanical calculations to 

determine the elementary pathways and their kinetics for the degradation of 

nitrosamines. From there, the ordinary differential equations of all species involved in the 

degradation process were generated and solved numerically. The predicted results were 

compared to the experimental observations reported in the literature.  
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1 Introduction 
Clean water is essential, and therefore water treatments and ensuring the removal of 

contaminants is vital for both human and environmental health. The presences of new 

emerging contaminants or trace contaminants, such as pharmaceuticals and personal 

care products are becoming more prevalent in our waters and will continue rise with the 

increase in direct and indirect potable reuse [1-4]. These emerging contaminants are not 

well understood and often are not removed using conventional water and wastewater 

treatment approaches. In addition, these contaminants are likely to become even more 

problematic in the near future as de facto and planned water reuse is increased [5]. 

Use of ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs) 

are attractive treatment methods because these method destroy the target organic 

contaminants. The hydroxyl radials react rapidly and non-selectively with most electron-

rich sites on organic compounds and destroy a wide variety of organic compounds. 

AOPs can lead to the complete mineralization of organic compounds in the subsequent 

radical-involved chain reactions, if adequately designed. The initial fate of hydroxyl 

radicals-induced reactions with diverse organic compounds have been studied, the 

mechanisms that produce intermediate-radicals and transformation byproducts are not 

well understood [6, 7]. A better understanding of the complete reaction pathway and the 

elementary reactions that occur within the UV and AOP systems is vital to preventing the 

formation of harmful byproducts and ensuring removal of the trace organic 

contaminants.      

Nitrosamines are a group of carcinogenic chemicals that are present in aquatic 

environments that result from byproducts of industrial processes and disinfection 

products. UV photolysis or UV-based AOPs are promising technologies to remove 

nitrosamines from water. However, complex reaction mechanisms involving radicals limit 

our understandings of the elementary reaction pathways embedded in the overall 

reactions identified experimentally. In Chapter 2, we perform quantum mechanical 

calculations to identify the photolysis-/hydroxyl radical-induced initial elementary 

reactions with various N-nitrosamine compounds including N-nitrosodimethylamine 

(NDMA), N-nitrosomethylethylamine, and N-nitrosomethylbutylamine.  
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The results presented in Chapter 2 provide mechanistic insight into the elementary 

reaction pathways, and were combined with the kinetic information to predict the time-

dependent concentration profiles of nitrosamines and their transformation products in 

Chapter 3. These profiles were created through the development of ordinary differential 

equations and then solved numerically to obtain the time-dependent concentration 

profiles of all species involved in the reaction. With the coupling of the benchtop 

laboratory experiments reported in the literature, the proposed elementary reactions-

based kinetic model is validated. 

The ordinary differential equations generated in UV-photolysis and UV-based advanced 

oxidation processes are stiff and time-intensive to solve them numerically. The use of 

agent-based models (ABMs) is a novel bottom up that can be used to model complex 

systems, such as AOPs, as shown in Chapter 4. The goal of this study is to determine 

the feasibility of ABM in predicting concentrations of byproducts and to gain an 

understanding of the intermediate radicals and stable byproducts involved in peroxyl 

radical bimolecular decay. 
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2 Mechanistic Insight into the Degradation of 
Nitrosamines via Aqueous-Phase UV Photolysis or a 
UV-Based Advanced Oxidation Process: Quantum 
Mechanical Calculations1 

2.1 Introduction [8] 

Nitrosamines, which contain N–NO functional groups, are a group of chemicals that 

pose mutagenicity, teratogenicity, and carcinogenicity [9]. Nitrosamines are the 

byproducts of various manufacturing, agricultural, and natural processes and have been 

found in natural aquatic environments and in the effluent of wastewater treatment 

processes [10]. As a type of nitrosamine, N-nitrosodimethyl amine [NDMA, (CH3)2N–NO] 

is a low-molecular-weight, neutral, organic contaminant that has also been found to be 

present in aquatic environments. The California Department of Health Services has set 

notification levels of 10 ng/L for NDMA and other nitrosamines in drinking water [11].  

Ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs) that 

produce highly reactive hydroxyl radicals (HO•) are attractive and promising water 

treatment technologies, which can inactivate pathogens and destroy a wide variety of 

organic chemical contaminants [12, 13]. UV photolysis and UV-AOPs have been 

employed in wastewater reclamation processes for indirect or direct potable reuse of 

treated wastewater to increase water security and address water scarcity issues in many 

arid regions [14]. Wastewater reclamation processes use multiple barriers to physically 

remove pathogens and chemical contaminants via microfiltration/ultrafiltration, followed 

by nanofiltration (NF)/reverse osmosis (RO). After the NF/RO process, UV photolysis or 

UV-AOPs inactivate pathogens and destroy chemicals present in the NF/RO permeate 

stream. Over 50% of NDMA has been found to be present in the NF/RO permeate, and 

the use of UV photolysis or UV-AOPs are necessary to remove NDMA and other 

nitrosamines [15].  

                                                
1 The material contained in this chapter has previously been published, Minakata and Coscarelli 
(2018) [8] 
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UV photolysis using a low-pressure UV lamp that emits photons at a wavelength of 254 

nm is very effective at destroying NDMA due to the high molar absorptivity (1650 

M−1cm−1 at 253.7 nm) and highly reactive HO• produced in AOPs rapidly react with many 

nitrosamines to effectively destroy the initial contaminants (the second order reaction 

rate constants of HO•; k = 108 -109 M−1s−1) [16, 17]. However, complex chemical 

reactions involving radicals produce a number of transformation byproducts, and hence, 

detailed reactivity and reaction pathways for NDMA and other nitrosamines have not 

been elucidated yet. For example, Mezyk’s group studied the kinetics of HO• with various 

structurally different nitrosamines, and found that NDMA, N-nitrosomethylethylamine 

(NMEA) and N-nitrosodiethylamine (NDEA) showed different reactivity and degradation 

efficiency from other nitrosamines that have longer alkyl chains adjacent to the N–NO 

functional group. They proposed that radical delocalization caused the differences in the 

degradation efficiency, but the detailed reaction pathway has not been identified yet [16]. 

Stefan and Bolton (2002) investigated reaction pathways for NDMA degradation based 

on laboratory-scale batch photolysis experiments and explained the initial photolysis 

mechanisms based on the reaction pathways previously identified by studies in the 

1960s and 1970s [18-22]. UV-induced NDMA degradation pathways were studied at 

both pH 3 and pH 7 to identify the transformation products, such as methylamine, 

dimethylamine, formaldehyde, formic acid, nitrite ion and nitrate ion [23, 24]. Their 

careful experiments and measurement of transformation products proposed several key 

reaction pathways that were induced by UV photolysis at a wavelength of 253.7 nm at 

different pH values [23, 24]. However, some of the pathways involved in the formation of 

transformation products are still unknown. UV-induced NDMA degradation was also 

studied and identified previously unknown reactive species in the NDMA degradation 

pathways [25, 26]. The HO•-induced NDMA degradation mechanisms were studied in an 

ozone-based AOP, and general reaction mechanisms were proposed [27, 28]. The 

major transformation mechanisms were proposed based on experimental studies of the 

products, but the elementary reaction pathways are not known due to difficulties in 

identifying the embedded reactions that were involved in the overall reaction.  

Quantum mechanical (QM) calculations using ab initio methods or density functional 

theory (DFT) are attractive approaches to identify elementary reaction pathways and the 

kinetics of complex fast radical reactions [29]. QM calculations have been used to 
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support experimentally identified reaction pathways by calculating the reaction energy 

using statistical thermodynamics. Aqueous-phase enthalpy and free energies of 

activation and reaction were calculated to determine the dominant degradation pathway 

of dimethyl phthalate [30]. Elementary reactions involved in the HO•-induced 

mineralization of flutriafol were identified [31]. DFT calculations were used to determine 

the NDMA formation mechanism from N,N-dimethylsulfamide via ozonation in water [32]. 

A high-level multi-point energy method was used to calculate the aqueous-phase free 

energies of activation for HO•-induced reactions of a wide variety of organic compounds, 

including aliphatic compounds, alkenes, and aromatic compounds [33-35]. These 

studies highlight the usefulness of QM-based calculations to provide insight into reaction 

mechanisms that cannot be obtained by experiments. In addition, the findings from QM-

based calculations also provide potential transformation products that can be identified 

in future experiments.  

In this study, we use QM-based calculations to identify the HO•-induced initial 

elementary reactions with NDMA and other nitrosamines as well as the UV-induced 

NDMA degradation pathways at 254 nm of wavelength. We investigate NDMA, NMEA, 

and N-nitrosomethylbutylamine (NMBA), which have different alkyl side chains that are 

adjacent to the nitroso functional group (–N–NO), to elucidate the effect of the alkyl side 

chain on the overall reactivity with HO•. We also investigate UV-induced NDMA 

degradation using time-dependent (TD)-DFT to understand the molecular orbitals 

responsible for electron excitation and the nitrogen-containing radical reactions during 

the photolysis of NDMA. 

2.2 Materials and Methods 

All of the QM calculations were performed with the Gaussian 09 revision D.02 program 

[36] using the Michigan Tech high-performance cluster “Superior” and homemade 

LINUX workstations. The M06-2X/cc-pVDZ [37] was used to optimize the electronic 

structures and calculate the frequencies in both the gas and aqueous phase for the HO•-

induced reaction pathways with NDMA, NMEA, and NMBA. The UV-induced reaction 

pathways with NDMA was calculated with the Gaussian-4 theory (G4) [38]. The 

aqueous-phase structures and frequencies were obtained using an implicit polarizable 

continuum model [universal solvation model (SMD)] [39]. Previously, we verified the 
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combination of M06-2X/cc-pVDZ or G4 with the SMD model by successfully applying it 

to other aqueous-phase radical-involved reactions [33, 40]. Theoretically calculated 

absorption spectra were obtained from a TD-DFT analysis [41, 42] of the optimized 

aqueous-phase structure of NDMA at the level of M06-2X/cc-pVDZ with the SMD 

solvation model. To investigate the contributions from molecular orbitals to the peak of 

the spectra, molecular orbitals were determined using a natural population analysis at 

the level of M06-2X/cc-pVQZ with the SMD solvation model. The detailed calculation 

procedures for the transition state search, the aqueous-phase free energies of activation 

and reaction, and the associated computational methods are found in previous reports 

[40]. 

2.3 Results 

2.3.1 HO•-Induced Degradation 

2.3.1.1 N-Nitrosodimethylamine (NDMA) Degradation Pathways Induced by HO• 

NDMA has three potential initial degradation mechanisms: (1) H atom abstraction from a 

C–H bond of the methyl group (pathway 1–1 in Figure 1), (2) HO• addition to amine 

nitrogen (pathway 1–2 in Figure 2), and (3) HO• addition to nitrosyl nitrogen (pathway 1–

3 in Figure 3). Our QM calculations obtained  values of 9.7 kcal/mol, 6.8 

kcal/mol, and 9.6 kcal/mol for the respective pathways. H abstraction from a C–H bond 

forms a C-centered radical that reacts with the triplet state of molecular oxygen 

dissolved in water. Our previous studies indicate that the addition of molecular oxygen to 

a C-centered radical is a barrierless reaction with a  of −20 ~ −30 kcal/mol, which 

enabled us to consistently predict the experimentally measured reaction rate constants 

[40]. The  value obtained for the •CH2NNOCH3 radical was 2.3 kcal/mol, which is 

significantly larger than those of typically observed reactions. This indicates that the N–

NO functional group significantly affects molecular addition to the C-centered radical. 

The second-order reaction rate constant for the addition of molecular oxygen to a C-

centered radical of NDMA was determined to be (5.3 ± 0.6) × 106 M−1s−1 [17], which is 

three orders of magnitude smaller than the typically observed rate constants (~5 × 109 

M−1s−1) [43]. A more detailed discussion on the unique reactivity of molecular oxygen to 
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C-centered radicals will be given in a later section. According to our calculations, the C-

centered radical also undergoes electron transfer to produce CH3NNO=CH2 (  of 

−2.0 kcal/mol), followed by the loss of NO• (  of −11.3 kcal/mol) to produce N-

methylidenemethylamine (CH2=NHCH3). This latter pathway involves several barrierless 

reactions, and is dominant over the pathway involving the addition of molecular oxygen. 

The formation of N-methylidenemethylamine was also postulated in a previous report 

[26]. 

 

Figure 2.1 Free energy profile for pathway 1–1 of the HO•-induced reaction pathways for N-
nitrosodimethylamine (NDMA) via H abstraction. TS denotes the transition state, and P denotes 
the product. The numbers (kcal/mol) are the free energy of activation for the TS and free energy 
of reaction for the P relative to the corresponding reactant. Blue represents a nitrogen atom, red 
represents an oxygen atom, white represents a hydrogen atom, and gray represents a carbon 
atom (The color notation is valid throughout the chapter).  

The second pathway is HO• addition to the amine nitrogen, followed by the loss of an OH 

group. Although initial HO• addition has a lower free energy of activation (  of 6.8 

kcal/mol) than the H abstraction identified in pathway 1–1, the subsequent reaction has 

a larger activation barrier (  of 3.1 kcal/mol) to produce a N-centered radical (i.e., 

CH3
•NCH3). The N-centered radical undergoes either molecular oxygen addition or an H 

shift. The H shift has a significantly smaller   of −1.9 kcal/mol than molecular 

oxygen addition to the N-centered radical (  of 9.8 kcal/mol). Thus, C-centered 

radical formation resulting from an H shift is the dominant pathway via TS8. The 

significantly large   for the addition of molecular oxygen to a N-centered radical 

TS1: 9.7 kcal/mol

P1: -28.2

CH3-NNO-•CH2

TS2: 2.3

TS3: -2.0

P3: -16.9

P2: 0.004

TS4: -11.3

P4: -20.8

CH3-N=CH2 + • NO

(CH3)2NNO
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via TS7 can be verified by the experimentally obtained reaction rate constant for 

hydrazyl (k = 3.9 × 108 M−1s−1) [43]. 

 

Figure 2.2 Free energy profile for pathway 1–2 of the HO•-induced reaction pathways for N-
nitrosodimethylamine (NDMA) via HO• addition to amine nitrogen. The numbers (kcal/mol) are the 
free energy of activation for the TS and free energy of reaction for the P relative to the 
corresponding reactant. 

 
Figure 2.3 Free energy profile for pathway 1–3 of the HO•-induced reaction pathways for N-
nitrosodimethylamine (NDMA) via HO• addition to the nitrosyl nitrogen. The numbers (kcal/mol) 
are the free energy of activation for the TS and free energy of reaction for the P relative to the 
corresponding reactant. 

Pathway 1–3 involves initial HO• addition to the nitrosyl nitrogen with a  of 9.6 

kcal/mol. Although this reaction has an almost identical   to that of pathway 1–1, 

the initial HO• addition reaction that produces an alkoxyl radical [i.e., CH3NNO•(OH)CH3] 

TS5: 6.8 kcal/mol

P5: -10.0

CH3-N(OH)CH3
+ •NO

TS6: 3.1

P6: -85.9

(CH3)2NNO

CH3- •NCH3

TS7: 9.8

P7: 6.3
•OON(CH3)2

TS8: -1.9

P8: -69.4
•CH2NHCH3

TS9: 9.6 kcal/mol

P9: 6.4
TS10: 3.1

P11: -16.2

(CH3)2NNO CH3-NNO•(OH)CH3 P10: -10.8

CH3NHCH3 + NO2

TS11: -8.0 (CH3)N•CH3 + NO(OH)
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is not thermodynamically favored ( react
aq,calc∆G  of 6.4 kcal/mol). This alkoxyl radical 

undergoes two pathways to produce (1) a N-centered radical with a   of 3.1 

kcal/mol and (2) methyl diamine (CH3NHCH3) with a  of −8.0 kcal/mol.  

The above investigation confirms that H abstraction from a C–H bond of the methyl 

functional group of NDMA is the dominant initial reaction pathway as induced by HO•, 

which is consistent with the experimental investigation using the electron paramagnetic 

resonance (ESR) technique [17]. The experimentally determined second-order rate 

constant was (4.3 ± 0.12) × 108 M−1s−1, and this relatively slow H abstraction from a C–H 

bond by HO• results from the electron-withdrawing effect of the neighboring N–NO 

functional group and the abnormally stable C-centered radical [17]. In the following sub-

sections, the reactivity of NDMA will be compared to two other nitrosamines that have 

longer alkyl side chains (i.e., -CH2CH3 and -(CH2)2CH3) to investigate the unique 

reactivity of NDMA. 

2.3.1.2 N-Nitrosomethylethylamine (NMEA) Degradation Pathways Induced by HO• 

NMEA has three potential H abstraction sites: (1) a C–H bond of the –CH2– functional 

group adjacent to the N–NO functional group by pathway 2–1, (2) a C–H bond of the 

terminal CH3 functional group in the ethyl chain by pathway 2–2, and (3) a C–H bond of 

the terminal CH3 functional group adjacent to the N–NO functional group by pathway 2–

3. Figures 4–6 show the free energy profiles per reaction coordinate for each pathway. 

Our calculations revealed similar  values for H atom abstraction: 11.1 kcal/mol in 

pathway 2–1 and 11.7 kcal/mol in pathway 2–3), except 62.7 kcal/mol in pathway 2–2. It 

is still not clear why the pathway 2–2 had such a high barrier. All three pathways are 

thermodynamically favorable ( react
aq,calcG∆  < 0). Each pathway produces a C-centered 

radical, i.e., CH3
•CHNNOCH3 in pathway 2–1, •CH2CH2NNOCH3 in pathway 2–2, and 

CH3CH2NNO•CH2 in pathway 2–3. The  values for the addition of molecular 

oxygen to CH3
•CHNNOCH3, •CH2CH2NNOCH3, and CH3CH2NNO•CH2 are 3.8 kcal/mol, 

−13.9 kcal/mol, and −2.2 kcal/mol, respectively. As observed in pathway 1, the  

values of these three C-centered radicals are still larger than the typical values (−20 to 
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−25 kcal/mol). This indicates that the functional group directly neighboring the N–NO 

functional group affects the slow reaction of molecular oxygen addition to 
•CH2CH2NNOCH3. Given that the other reaction pathways of the three C-centered 

radicals have either a larger  than that for molecular oxygen addition or include 

thermodynamically unfavorable reactions ( react
aq,calc∆G  > 0), the formation of peroxyl radicals 

resulting from the addition of molecular oxygen is the dominant reaction pathway in the 

subsequent NMEA degradation mechanism. 

 

Figure 2.4 Free energy profile for pathway 2–1 of the HO•-induced reaction pathways for NMEA 
via H abstraction from a C–H bond of the –CH2– functional group adjacent to the N–NO functional 
group. The numbers (kcal/mol) are the free energy of activation for the TS and free energy of 
reaction for the P relative to the corresponding reactant. 

 

TS12: 11.1 kcal/mol

CH3-•CH-NNO-CH3

CH3CH2-NNO-CH3
P12: -31.4

TS13: 3.8

TS14: 0.3 P13: 0.3

CH3CH= •NNO-CH3

P14: -16.0
•OOCH(CH3)(NNO-CH3)

TS15: 2.6

P15: -21.4

CH3CH=N-CH3
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Figure 2.5 Free energy profile for pathway 2–2 of the HO•-induced reaction pathways for NMEA 
via H abstraction from a C–H bond of the terminal CH3 functional group in the ethyl chain. The 
numbers (kcal/mol) are the free energy of activation for the TS and free energy of reaction for the 
P relative to the corresponding reactant. 

 
Figure 2.6 Free energy profile for pathway 2–3 of the HO•-induced reaction pathways for NMEA 
via H abstraction from a C–H bond of the terminal CH3 functional group adjacent to the N–NO 
functional group. The numbers (kcal/mol) are the free energy of activation for the TS and free 
energy of reaction for the P relative to the corresponding reactant. 

2.3.1.3 N-Nitrosomethylbutylamine (NMBA) Degradation Pathways Induced by HO• 

NMBA has four potential H abstraction sites from C–H bonds by HO•: (1) a C–H bond of 

the –CH2– functional group adjacent to the N–NO functional group by pathway 3–1, (2) a 

C–H bond of the –CH2 functional group adjacent to the –CH2– functional groups on both 

sides by pathway 3–2, (3) a C–H bond of the terminal CH3 functional group in a butyl 

chain by pathway 3–3, and (4) a C–H bond of the terminal CH3 functional group that is 

adjacent to the N–NO functional group by pathway 3–4. Figures 7–10 show the free 

TS16: 62.7 kcal/mol

•CH2CH2-NNO-CH3

CH3CH2-NNO-CH3
P16: -20.6

TS17: 40.0

TS18: -13.9

P17: -10.8

•OOCH2CH2NNOCH3

CH3- •CH-NNO-CH3

P18: -25.3

TS19: 11.7 kcal/mol

CH3CH2-NNO- •CH2

CH3CH2-NNO-CH3
P19: -30.0

TS20: 3.6

TS21: -2.2

P20: 0.02

•OOCH2NNOCH2CH3

CH3CH2- •NNO=CH2

P21: -16.0

TS22: 12.5

CH3CH2N=CH2 + •NO
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energy profiles per reaction coordinate for each pathway. The calculated   values 

are 10.2 kcal/mol for pathway 3–1, 8.3 kcal/mol for pathway 3–2, 10.9 kcal/mol for 

pathway 3–3, and 11.9 kcal/mol for pathway 3–4. The smaller  value for pathway 

3–2 compared with those for NDMA and NDEA shows consistent reactivity with the 

experimentally obtained rate constants: 109 M−1s−1 for N-nitrosobutylamine, 4.3 × 108 

M−1s−1 for NDMA and 4.95 × 108 M−1s−1 for NMEA [16]. The initial H abstraction reactions 

for all of the pathways are thermodynamically favorable.  

Interestingly, we observed distinctive differences in the reactivity of molecular oxygen 

addition to different C-centered radicals for NMBA. The initial H abstraction from different 

C–H bonds in NMBA produced CH3NNO•CHCH2CH3 by pathway 3–1, 

CH3NNOCH2
•CHCH3 by pathway 3–2, CH3NNO(CH2)2

•CH2 by pathway 3–3, and 
•CH2NNO(CH2)2CH3 by pathway 3–4. While molecular oxygen addition to 

CH3NNO•CHCH2CH3 and •CH2NNO(CH2)2CH3 have larger  values of 4.2 

kcal/mol and −12.4 kcal/mol, the  values for CH3NNOCH2
•CHCH3 (−25.6 

kcal/mol) and CH3NNO(CH2)2
•CH2 (−23.9 kcal/mol) are very similar to those that were 

observed for typical molecular oxygen addition to C-centered radicals. Thus, the alkyl 

side chain affects the stability of the C-centered radicals and their subsequent reactivity. 

The significantly slower reaction of molecular oxygen addition to the C-centered radicals 

produced from NDMA and NMEA may be due to the delocalization of the radical spin 

density from the formed C-centered radicals onto the N–NO bond(s). This radical 

delocalization occurs only when a terminal •CH2 is adjacent to N–NO or •CH2 neighbors 

the N–NO functional group. When the alkyl chain contains three CH2 functional groups, 

the •CH2 three positions away from the N–NO functional group does not seem to 

contribute to the radical delocalization. Thus, the molecular oxygen adds to the C-

centered radical without being affected by the delocalization. The different extent of 

radical delocalization can also explain the lower degradation efficiencies that were 

observed for NDMA and NEMA (approximately 80~85% degradation efficiency) as 

compared with nitrosodibutylamine (100% degradation efficiency) [16].  
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To investigate the effect of the location of the C-centered radical on the occurrence of 

radical delocalization, we calculated the values for radical transfer from a C-

centered radical to a neighboring C-/N-centered radical. For example, 

CH3NNO•CHCH2CH3 undergoes radical transfer from a carbon to the amine nitrogen to 

produce CH3
•NNO=CHCH2CH3. This reaction has a  of 0.41 kcal/mol, which 

indicates a low barrier for this radical delocalization (pathway 3–1). Similarly, 
•CH2NNO(CH2)2CH3 requires 3.7 kcal/mol to produce CH2=•NNO=CHCH2CH3 (pathway 

3–4). In contrast, CH3NNOCH2
•CHCH3 requires a  of 38.6 kcal/mol to produce 

CH3NNO•CHCH2CH3 (pathway 3–2). A similar significantly larger  value of 40.0 

kcal/mol was also observed for the radical transfer reaction from •CH2CH2NNOCH3 to 

CH3
•CHNNOCH3 via pathway 2–2. Thus, there is a significant barrier for radical transfer 

from the functional group neighboring the N–NO functional group to the nearest CH2 

group. Therefore, a C-centered radical in •CH2CH2NNOCH3 or CH3NNOCH2
•CHCH3 

would rather undergo molecular oxygen addition than radical transfer to produce 

CH3
•CHNNOCH3 or CH3NNO•CHCH2CH3, respectively. 

 
Figure 2.7 Free energy profile for pathway 3–1 of the HO•-induced reaction pathways for NMBA 
via H abstraction from a C–H bond of the –CH2– functional group adjacent to the N–NO functional 
group. The numbers (kcal/mol) are the free energy of activation for the TS and free energy of 
reaction for the P relative to the corresponding reactant. 

 

TS23: 10.2 kcal/mol

CH3-NNO- • CHCH2CH3

CH3-NNO-CH2CH2CH3
P23: -31.1

TS24: 4.2
TS25: 0.41

P24: -3.0

CH3-NNO-CH(OO•)-CH2CH3

CH3- • NNO=CH-CH2CH3

P25: -15.9

TS26: 6.2

P26: -16.1

CH3-N=CH=CH2CH3 + •NO
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Figure 2.8 Free energy profile for pathway 3–2 of the HO•-induced reaction pathways for NMBA 
via H abstraction from a C–H bond of the -CH2 functional group adjacent to the –CH2– functional 
groups on both sides. The numbers (kcal/mol) are the free energy of activation for the TS and 
free energy of reaction for the P relative to the corresponding reactant. 

 

 
Figure 2.9 Free energy profile for pathway 3–3 of the HO•-induced reaction pathways for NMBA 
via H abstraction from a C–H bond of the terminal CH3 functional group in a butyl chain. The 
numbers (kcal/mol) are the free energy of activation for the TS and free energy of reaction for the 
P relative to the corresponding reactant. 

 

TS31:  10.9kcal/mol

CH3-NNO-CH2CH2-• CH2

CH3-NNO-CH2CH2CH3
P31: -22.6

• OOCH2CH2CH2NNOCH3

TS32: 3.4

P32: -2.2
CH3-NNO-CH2- • CH-CH3

TS34: 38.6

TS33: -23.7
P33: -23.9

P34: -6.4
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TS35: 10.7
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CH3-N=CH-CH2CH3



15 

 
Figure 2.10 Free energy profile for pathway 3–4 of the HO•-induced reaction pathways for NMBA 
via H abstraction from a C–H bond of the terminal CH3 functional group adjacent to the N–NO 
functional group. The numbers (kcal/mol) are the free energy of activation for the TS and free 
energy of reaction for the P relative to the corresponding reactant. 

2.3.2 UV-Induced Degradation 

2.3.2.1 NDMA Degradation Pathways Induced by UV Photolysis 

NDMA absorbs photons at a wavelength of 228 nm with a molar absorptivity of 7380 

M−1cm−1 and quantum yield of 0.13 at pH 7 [15]. At a wavelength of 253.7 nm, where a 

typical low-pressure UV lamp emits photons, the molar absorptivity was reported to be 

1650 M−1s−1, and the quantum yield was 0.24 at pH 7 [15]. Another smaller peak is 

observed at approximately 350 nm. Our TD-DFT calculation obtained one major and one 

minor peak at 212 nm and 341 nm, respectively. The molecular orbitals that were 

responsible for the π→π* and n→π transitions at 212 nm and 341 nm are shown in 

Figure 11. At 212 nm, the N–N bond comprises the highest occupied molecular orbital 

(HOMO), whereas the C–N bond comprises the HOMO at 341 nm. This analysis 

indicates that the N–N bond is susceptible breakage under photolysis with a low-

pressure UV lamp. This finding is consistent with the experimental findings that were 

reported in the previous literature.  

The UV photolysis-induced NDMA degradation pathways were extensively studied [23, 

24]. According to their studies, NDMA undergoes three major degradation pathways 

induced by UV photolysis: (1) formation of an aminium radical [(CH3)2
•N(+)H] and nitric 

oxide (•NO) resulting from homolytic cleavage of the N–N bond (pathway 4–1 in Figure 

TS36: 11.9  kcal/mol

•CH2-NNO-CH2CH2CH3

CH3-NNO-CH2CH2CH3
P36: -30.6

•OOCH2NNOCH2CH2CH3

TS37: 3.7
P37: 3.3

CH2= •NNO-CH2CH2CH3

TS39: 0.7

TS38: -12.4
P38: -15.9

P39: -18.7

CH3-N=CH-CH2CH3 + •NO
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12), (2) formation of dimethylamine [(CH3)2NH2
+] and nitrous acid (HNO2) resulting from 

heterolytic photocleavage of the N–N bond facilitated by a water molecule (pathway 4–2 

in Figure 13), and (3) formation of N-methylidenemethylamine [(CH2=N(+)HCH3], •NO, 

and a superoxide anion radical (•O2
−) in the presence of dissolved oxygen (i.e., triplet 

state of 3O2) (pathway 4–3 in Figure 14). 

 
(a)             (b) 

Figure 2.11 HOMO and lowest unoccupied molecular orbital (LUMO) of the π→π* (a) and n→π 
(b) transitions at 212 nm and 341 nm, respectively. 
 

The products of (CH3)2
•N(+)H and •NO in pathway 4–1 react in a solvent cage to produce 

N-methylidenemethylamine [(CH2=N(+)HCH3] and nitroxyl (HNO). Our calculation 

obtained a of 1.6 kcal/mol for this reaction. Then, N-methylidenemethylamine 

undergoes rapid hydrolysis to produce methylamine (CH3NH2
+) and formaldehyde 

(HCHO). A total of 99% of the HCHO is hydrolyzed to form a germinal diol in the 

aqueous phase [44]; therefore, the hydrated form of HCHO [i.e., CH2(OH)2] exists in the 

aqueous phase. CH2(OH)2 reacts with HO• via H abstraction to produce •CH(OH)2 with a 

 of 10.0 kcal/mol. As was examined in the HO•-induced pathways, this C-

centered radical reacts with molecular oxygen to produce a peroxyl radical [i.e., 
•OOCH(OH)2] (  of −34.9 kcal/mol). The peroxyl radical undergoes 

uni/bimolecular decay to produce stable lower-molecular-weight products [45]. When 
•OOCH(OH)2 undergoes unimolecular decay (i.e., HO2

• elimination), formic acid 

(HCOOH) is produced (  of 31.6 kcal/mol), which has been experimentally 

observed [46]. 
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Figure 2.12 Free energy profile for pathway 4–1 of the HO•-induced reaction pathways for NDMA 
photolysis. 

One of the C–H bonds in the methyl group of the dimethylamine produced in pathway 4–

2 undergoes H abstraction by HO• to produce a C-centered radical with a  of 

13.9 kcal/mol. Molecular oxygen adds to the C-centered radical to produce a peroxyl 

radical with a  of -15.0 kcal/mol, and the peroxyl radical undergoes subsequent 

uni/bimolecular decay. 

 
Figure 2.13 Free energy profile for pathway 4–2 of the HO•-induced reaction pathways for NDMA 
photolysis. 

The products of •NO and •O2
- from pathway 4–3 react in a solvent cage to produce 

peroxynitrite (ONOO−) with a  of 1.72 kcal/mol. The rate constant for this reaction 

was determined to be (4.3 − 7.6) × 109 M−1s−1 [47, 48]. Then, ONOO- undergoes 

rearrangement with a  of 57.8 kcal/mol to produce a nitrate ion (NO3
−). This 

rearrangement was proposed as isomerization by Anbar and Taube (1954) [49]. ONOO− 

also reacts with HO2
•/O2

•− via single electron transfer to produce an •OONO radical. Our 
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calculation indicates that this reaction is barrierless, with a  of −16.2 kcal/mol, but 

the reaction is not thermodynamically favorable ( react
aq,calc∆G  of 3.4 kcal/mol). Finally, the 

•OONO radical undergoes cleavage with a react
aq,calc∆G  of −0.56 kcal/mol to produce •NO.  

When nitrate undergoes UV photolysis, a nitrite ion (NO2−) and NO2• are produced. 

Then, NO2
• reacts with HO•, O2

•−, or NO2
• with a react

aq,calc∆G  of 48.3 kcal/mol, 40.2 kcal/mol, 

or 100.6 kcal/mol to produce ONOOH, NO2
-/NO3

−, or N2O4, respectively. Although the 

disproportionation of NO2• has the largest free energy barrier, the reaction product, 

N2O4, undergoes hydrolysis to produce NO3
− and NO2

−. 

 
Figure 2.14 Free energy profile for pathway 4–3 of the HO•-induced reaction pathways for NDMA 
photolysis. 

 
Figure 2.15 Free energy profile for pathway 4–3 of the HO•-induced reaction pathways for NDMA 
photolysis. 
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19 

2.3.3 Environmental Implication and Future Study 

Nitrosamines, and NDMA in particular, are extremely potent carcinogenic contaminants 

in water. The concentration at which NDMA shows potent carcinogenicity is extremely 

low (0.7 ng/L) [9]. Experimentally investigating the ng/L fate of many chemical 

contaminants during water treatment processes is time consuming and expensive. Our 

computational study highlights the usefulness of QM calculations to reveal the 

elementary reaction pathways that are embedded in the overall reaction pathways that 

are typically identified by analytical techniques. This technique becomes more useful 

when the contaminant concentrations are below the analytical detection limit.  

Once the elementary reaction pathways are identified, the reaction rate constants should 

be determined or predicted to calculate the reaction rate of each molecule or species 

involved in each elementary reaction step. By combining the elementary reaction 

pathways and the reaction rate constants, one can predict the time-dependent 

concentration profiles of a target chemical contaminant and its transformation products. 

This elementary-reaction-based kinetic model could be used as an initial screening tool 

for many potentially toxic chemical contaminants to estimate the fate of degradation 

pathways. Our efforts towards the development of such elementary-reaction-based 

kinetic model are underway. 
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3 The Fate of N-Nitrosodimethylamine (NDMA) 
Degradation in Aqueous-phase UV Photolysis2 

3.1 Introduction 

The trace organic pollutant category nitrosamines poses high potential carcinogenicity 

and is of serious concern about adverse human health and ecotoxicological effects. 

Among N-nitrosamines, N-nitrosodimethylamine (NDMA) is on the EPA priority pollutant 

list and is formed as a byproduct of chloramination and chlorine disinfection as well as a 

byproduct of industrial processes. In drinking water, the EPA has determined a 

screening level of 0.11 ng/L for a 10-6 lifetime excess cancer risk [9]. NDMA is a small 

neutral compound that can pass through membrane filtration and reverse osmosis 

processes. 

Ultraviolet (UV)-based water treatment technology is the promising technology to 

degrade NDMA. UV photolysis for the attenuation of NDMA in groundwater and drinking 

water was performed at full scales. The absorbance of photons by the compound of 

interest, creates an excited species that begins the photochemical degradation 

pathways. These chain reactions lead to a variety of radical-intermediates and 

transformation byproducts and the mechanisms by which they form are not well 

understood. UV photolysis can be used to remove NDMA because of its high molar 

absorptivity (1650 L/mol cm at 253.7 nm) [16, 17]. UV treatment technologies are also 

known to effectively degrade other N-nitrosamine compounds because of their strong 

photolability. NDMA’s highest absorbance peak is between 225 and 250 nm with a 

smaller second peak occurring between 300 and 350 nm. These peaks are within the 

range emitted by medium pressure lamps and close to that emitted by low pressure 

lamps, both of which are commonly used in water treatment applications [15, 22]. The 

quantum yield depends on pH and wavelength with various primary quantum yields 

having been reported in the literature under air saturated conditions for NDMA [24, 50]. 

Lee reported a primary quantum yield of 0.3 at 254 nm of wavelength at both pH 3 and 7 

under O2 saturation and 0.206 in deaerated solution [23].   

                                                
2 The material contained in this chapter is in preparation for submission to a journal 
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Although the photochemical reactions of NDMA under UV irradiation have been studied 

at various conditions and the major degradation pathways and transformation products 

were reported, the complete reaction mechanisms and the kinetics have not been 

elucidated yet. Early studies on the degradation of nitrosamine species in the 1960s 

determined that symmetry of nitrosamine impacts the products formed and that under 

acidic conditions photolysis pathways were altered [51, 52]. Grover et al in 1987, 

proposed that through the degradation of nitrosamines using UV light, carbon centered 

radicals were formed [53].  In 2002, Stefan and Bolton published results of NDMA decay 

by a 1kWh medium pressure Hg lamp, with intensity of (3.03 ± 0.08) x 10-4 einsteins s-1, 

with a focus on byproduct formation and kinetics of the photolysis reactions at both pH 3 

and 7. Major byproducts were identified as dimethylamine (DMA) and nitrite with nitrate, 

formaldehyde, and formic acid [22]. Analysis of the pathways by which NDMA 

undergoes photolysis were expanded upon by Lee et al in 2005 [23] in which the pH and 

dissolved oxygen concentration was varied to determine the impact on byproduct 

formation. According to their studies, NDMA undergoes three major degradation 

pathways induced by UV photolysis: (1) formation of an aminium radical [(CH3)2
•N(+)H] 

and nitric acid (•NO) resulting from homolytic cleavage of the N-N bond; (2) formation of 

dimethylamine [(CH3)2NH2
+] and nitrous acid (HNO2) resulting from heterolytic 

photocleavage of the N-N bond facilitated by a water molecule; and (3) formation of N-

methylidenemethylamine [(CH2=N(+)HCH3], •NO, and a superoxide anion radical (•O2
-) in 

the presence of dissolved oxygen (i.e., triplet state of 3O2). Kwon et al, similar to Lee et 

al, looked at the initial pathways and byproducts of NDMA photolysis, however, focused 

on the formation on nitrate and nitrite ions. Previous studies suggested that the 

formation of nitrate was a result of the presence of peroxynitrite (ONOO-) but Kwon et al 

showed this is not possible due to the pKa value of peroxynitrite relative to the acidic 

conditions in the study. Rather a new mechanism for the creation of nitrate is proposed 

[25, 26]. The initial pathways through which NDMA degrades by UV photolysis are well 

understood and some of the subsequent reactions involving the products of the initial 

pathways have been identified. Work still needs to be done to understand all reactions 

that produce stable byproducts and determine the rate at which they are occurring.   

As nitrate and nitrite are the major byproducts of NDMA photolysis, it is important to 

consider the reactions they go through, specifically their photolysis pathways. The 
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prediction of reaction mechanisms involved in nitrate/ nitrite photolysis is still being 

investigated today. Flash photolysis experiments in 1980 resulted in a simplistic 

explanation for potential reaction mechanisms with experiments of nitrate and nitrite 

photolysis as they relate to AOPs being done in 1994 [54, 55].  In 1999, Mack and 

Bolton, broke down the plausible reaction pathways for both nitrate and nitrite photolysis 

and discussed how all the reactions could be interconnected, with many of the reactions 

considered unknown [56]. These reactions were then further supplemented with those in 

a review by Tugaoen et al in 2017 which focused on nitrate reactions [57]. Major 

obstacles result from the fact that numerous multi-step elementary reactions via various 

reaction pathways produce identical stable-byproducts in both the photolysis of NDMA 

and nitrate/ nitrite. This makes it difficult to identify the important elementary reactions 

and to determine their associated reaction rate constants experimentally. The coupling 

of experiments with theoretical investigations can provide mechanistic insights into 

elementary reaction mechanisms for nitrogenous species. The creation of a kinetic 

based model for NDMA photolysis based on reaction pathways and rate constants has 

not yet been done.  

Quantum mechanical (QM) calculations using ab initio methods or density functional 

theory (DFT) are attractive approaches to identify elementary reaction pathways and the 

kinetics of complex fast radical reactions. QM calculations have been used to support 

experimentally identified reaction pathways by calculating the reaction energy using 

statistical thermodynamics [8]. A high-level multi-point energy method was used to 

calculate the aqueous-phase free energies of activation for HO•-induced reactions of a 

wide variety of organic compounds, including aliphatic compounds, alkenes, and 

aromatic compounds. 

This study aims to elucidate photolysis reaction mechanisms of NDMA by developing an 

elementary reaction-based kinetic model. The elementary reaction pathways and the 

reaction rate constants were determined with theoretical calculations using ab initio and 

density functional theory (DFT) quantum mechanical calculations. By combining the 

identified reaction pathways and kinetics, an ordinary differential equation for all species 

will be developed and solved numerically to obtain the time-dependent concentration 

profiles of NDMA and the products. This is the first study to develop an elementary 
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reaction-based kinetic model for the photochemical reaction of NDMA and nitrogen-

containing species. 

3.2 Materials and Methods 

All experimental values for NDMA and subsequent byproducts were taken from Lee et 

al, UV Photolytic Mechanism of N-Nitrosodimethylamine in Water: Roles of Dissolved 

Oxygen and Solution pH [23]. The model used is a modified AdOx model that allows for 

non-steady state solutions and can solve charge balance equations. Due to the stiffness 

of the ordinary differential equations (ODEs) used for determining the time dependent 

concentration profile, Gear’s backward differential formula was used [58, 59]. This multi-

step method was used over others due to the ability to estimate error and correct the 

predicted points as it iterates. The Dgear method has been successfully applied for 

various kinetic models in AOPs [35, 60, 61]. 

By calculating the charge balance at each time step, the change in pH can be found and 

the model can determine dissociation of all species at the new pH. This modified AdOx 

model is run using Microsoft Visual Studios 2013 Professional and Intel Parallel Studio 

XE 2015 with IMSL FORTRAN Numerical Library [62]. The input files allows the user to 

change the number of species present in the reactor and at what concentrations they are 

present at initialization. Users also control the number of available reactions and the rate 

they occur at. For species that dissociate, the pKa is able to be specified. Other input 

parameters, listed in Table 3.1, were input in the model to replicate the laboratory 

conditions from the Lee et al study [23]. 
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Table 3.1 Input parameters for simulation from Lee experiment [23] 
 

 Model Inputs 
Reactor Type CMBR 
Tank Volume 0.15 L 
Time Step 1 sec 

Lamp 13W low pressure mercury 
vapor lamp at 253.7 nm 

Optical Pathlength 2 cm 
Alkalinity 0 mg/L as CaCO3 
UV Intensity 1.87 x 10-6  einsteins/L/s 
Initial pH 3.0 7.0 
Model Run Time 30 min 300 min 
Initial NDMA Concentration 0.0001 M 0.01 M 

All QM calculations were performed with the Gaussian 09 revision D.02 program using 

the Michigan Tech high-performance cluster “Superior” and homemade LINUX 

workstations. The UV-induced reaction pathways with NDMA were calculated with the 

Gaussian-4 theory (G4). The aqueous-phase structures and frequencies were obtained 

using an implicit polarizable continuum model [universal solvation model (SMD)]. 

Previously, we verified the combination of M06-2X/cc-pVDZ or G4 with the SMD model 

by successfully applying it to other aqueous-phase radical-involved reactions.  

3.3 Results and Discussion 

3.3.1 Elementary Reaction Pathways After Initial Photolysis of NDMA 

The initial photolysis of NDMA undergoes three major degradation mechanisms:(1) 

formation of an aminium radical [(CH3)2
•N(+)H] and nitric acid (•NO) resulting from 

homolytic cleavage of the N-N bond (pathway 1), (2) formation of dimethylamine 

[(CH3)2NH2
+] and nitrous acid (HNO2) resulting from heterolytic photocleavage of the N-N 

bond facilitated by a water molecule (pathway 2), and (3) formation of N-

methylidenemethylamine [(CH2=N(+)HCH3], •NO, and a superoxide anion radical (•O2
-) in 

the qwtew78 (i.e., triplet state of 3O2) (pathway 3) [23]. These pathways are illustrated by 

the pink (pathway 1), teal (pathway 2), and yellow arrow (pathway 3), in Figure 3.1. 
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Figure 3.1 NDMA photolysis pathways and subsequent reactions. Radicals are indicated with an 

asterisk and double bonds with an equal sign. Solid colored arrows with compounds listed on 
them indicate the product (end of arrow) requires both compound at start of arrow and one 

indicated on arrow in order to be produced. Dashed colored arrows indicate decay reactions in 
which no additional reactants are needed to form the product(s). Dashed grey lines are used to 

show how reaction products are used in future reactions as reactants.  

The products of (CH3)2
•N(+)H and •NO in pathway 1 react in a solvent cage to produce 

N-methylidenemethylamine [(CH2=N(+)HCH3] and nitroxyl (HNO). Our calculation 

obtained the aqueous-phase free energy of activation of 1.6 kcal/mol for this reaction. 

Then, N-methylidenemethylamine undergoes rapid hydrolysis to produce methylamine 

(CH3NH2+) and formaldehyde (HCHO). A total of 99% of the HCHO is hydrolyzed to 

form a germinal diol in the aqueous phase; therefore, the hydrated form of HCHO [i.e., 

CH2(OH)2] exists in the aqueous phase [44]. CH2(OH)2 reacts with HO• via H abstraction 

to produce •CH(OH)2 with a  act
aq,calc∆G  of 10.0 kcal/mol. As was examined in the HO•-

induced pathways, this C-centered radical reacts with molecular oxygen to produce a 

peroxyl radical [i.e., •OOCH(OH)2] (-34.9 kcal/mol of the aqueous-phase free energy of 

activation). The peroxyl radical undergoes uni/bimolecular decay to produce stable 

lower-molecular-weight products. When •OOCH(OH)2 undergoes unimolecular decay 

(i.e., HO2
• elimination), formic acid (HCOOH) is produced (aqueous phase free energy of 
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activation), which has been observed experimentally. The methylamine (CH3NH2
+) 

undergoes H-atom abstraction by either HO• or NO• to produce a carbon-centered 

radical (•CH2NH2
+) that further react with molecular oxygen to produce peroxyl radicals.  

One of the C-H bonds in the methyl group of the dimethylamine produced in pathway 2 

undergoes H-atom abstraction by HO• to produce a C-centered radical with 13.9 

kcal/mol of free energy of activation. Molecular oxygen adds to the C-centered radical to 

produce a peroxyl radical with -15.0 kcal/mol of aqueous-phase free energy of activation, 

and the peroxyl radical undergoes subsequent uni-/bi-molecular decay. Dimethylamine 

also undergoes H-atom abstraction by NO• to produce a C-centered with 4.63 kcal/mol 

of free energy of activation.     

The products of •NO and •O2
- from pathway 3 react in a solvent cage to produce 

peroxynitrite (ONOO-) with 2.0 kcal/mol of aqueous-phase free energy of activation. The 

rate constant for this reaction was determined to be (4.3-7.6) ×109 M-1s-1. Depending on 

the solution pH, •NO also reacts with HO2
• to produce peroxynitric acid (ONOOH) and 

the calculated free energy of activation was 1.72 kcal/mol. The experimentally 

determined k value was 3.2×109 M-1s-1. The pKa of ONOOH is 6.6. The ONOOH/ONOO- 

undergoes rearrangement with 57.8 kcal/mol of aqueous-phase free energy of activation 

to produce a nitrate ion (NO3
-) and the experimental k was determined as 1.11 s-1. This 

rearrangement was proposed as isomerization by Anbar and Taube [49]. ONOO- also 

reacts with HO2
•/O2

•- via single electron transfer to produce an •OONO radical. Our 

calculation indicates that this reaction is barrierless with -16.2 kcal/mol of aqueous-

phase free energy of activation, but the reaction is not thermodynamically favorable (3.4 

kcal/mol of aqueous-phase free energy of activation). The ONOO-/ONOOH is known to 

behave like HO• and abstract H-atom from a C-H bond of hydrolyzed form of 

formaldehyde (i.e., diol). Our calculated free energies of activation for these reactions 

were 42 kcal/mol for ONOO- and 44.2 kcal/mol for ONOOH. The nitric acid (•NO) is a 

reactive radical species and reacts with other active radicals such as HO•, NO2
•, and 

NO•.  Finally, the •OONO radical undergoes cleavage with -0.56 kcal/mol of aqueous-

phase free energy of activation to produce •NO.              

When nitrate undergoes UV photolysis, an excited state nitrate is created that can then 

form a nitrite ion (NO2
-) or NO2

• [57, 63, 64]. Then, NO2
• reacts with HO•, O2

•-, or NO2
• 
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with 48.3 kcal/mol, 40.2 kcal/mol, or 100.6 kcal/mol of aqueous-phase free energies of 

activation to produce ONOOH, NO2
-/NO3

-, or N2O4, respectively. Although the 

disproportionation of NO2
• has the largest free energy barrier, the reaction product, N2O4, 

undergoes hydrolysis to produce NO3
- and NO2

-. Nitrite photolysis results in the formation 

of NO2
- • that can then form NO• and O- •, with O- • often being protonated to form HO• [57, 

65]. Formation of NO• can also occur due to the degradation of ONOO• or as a major 

photolysis product of ONOO- [56]. Depending upon the pH of the solution, if HNO2 is 

present, it can undergo photolysis and has a higher quantum yield that nitrite [56, 57, 

66]. NO• is able to react with other radical species including NO2
• and O2

- • to form 

dinitrogen trioxide (N2O3) and peroxynitrite/peroxynitrous acid (ONOO-/ ONOOH) 

respectively [56]. However, the formation of peroxynitrite/peroxynitrous acid is 

considered a secondary reaction and is minor compared to other pathways [57, 67]. 

Formation of O2
- • occurs during photolysis of NDMA. Dinitrogen trioxide in the presence 

of water can produce two nitrite ions through hydrolysis [56, 57]. Species formed from 

the photolysis of NDMA, such as HNO2 and NO•, feed into reactions involved in nitrate/ 

nitrite photolysis. Figure 3.2 shows nitrate and nitrite reactions that can occur during the 

photolysis of NDMA.  

 
Figure 3.2 Nitrate and nitrite photolysis pathways and the transformation products. Radicals are 

indicated with an asterisk and double bonds with an equal sign. Solid colored arrows with 
compounds listed on them indicate the product (end of arrow) requires both original compound at 
start of arrow and one indicated on arrow in order to be produced. Dashed arrows indicate decay 

reactions in which no additional reactants are needed to form the product(s). 
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3.3.2 Quantum Yields and Reaction Rate Constants  

Table 3.2 summarizes the identified photolysis reactions with each quantum yield 

determined in this study and used as input into the simulation. The quantum yield for 

each photolysis reaction was determined by fitting with the experimentally determined 

overall values at both pH values. The sum of all pathway quantum yields results in the 

overall measured quantum yield value as detailed in Li et al [68]. For example, at both 

pH 3 and pH 7, the overall quantum yield was reported as 0.31, regardless of the 

solution pH in the region of pH 2-8, in the saturated O2 solution. It is noted that the 

quantum yield drops from 0.3 to almost 0 as the pH value increased from 4 to 10, 

indicating that the dissolved oxygen is responsible for the formation of subsequent 

excited species resulting from the NDMA photolysis.   

Table 3.2 Photolysis reactions as input in code with quantum yield values for each pH tested. 
Note that the code is only able to produce one to one ratios for photolysis reactions so some 

reactions with multiple products were split into several reactions. 
 

Reaction Φ at pH 3 Φ at pH 7 
H2O2 → HO• 1 1 
(CH3)2N-NO → (CH3)2

•N+H 0.051 0.15 
(CH3)2N-NO → •NO 0 0.046 
(CH3)2N-NO →•NO 0.001 0.001 
(CH3)2N-NO → O2

•- 0.14 0.15 
(CH3)2N-NO → CH3N+H=CH2 0.27 0.6 
(CH3)2N-NO → (CH3)2NH2

+ 0.18 0.4 
(CH3)2N-NO → HNO2 0.102 0.27 
NO2

-→ •NO 0 0.046 
NO2

-→ O•- 0 0.046 
HNO3 → NO2

- 0.31 0.19 

The reaction rate constants used in this study are shown in Table 3.3. The elementary 

reaction pathways were listed based on Figures 3.1 and 3.2. For those reactions without 

literature sources listed, reactions and rate constants were estimated through QM 

calculations.   
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Table 3.3 Input irreversible reactions for compounds considered in the code 
 

Reaction Rate 
Constant Units Source 

H2O2 + HO• → HO2
• + H2O 2.7 × 107 M-1 s-1 [26, 69] 

HO• + HO2
- → HO2

• + OH- 7.5 × 109 M-1 s-1 [70] 
H2O2 + HO2

• → HO• + H2O + O2 3 M-1 s-1 [71] 
H2O2 + O2

•- → HO• + OH- + O2 0.13 M-1 s-1 [72] 
HO• + CO3

2- → CO3
•- + OH- 3.9 × 108 M-1 s-1 [57, 69] 

HO• + HCO3
- → CO3

•- + H2O 8.5 × 106 M-1 s-1 [57, 69] 
HO• + HPO4

2- → HPO4
•- + OH- 1.5 × 105 M-1 s-1 [69] 

HO• + H2PO4- → HPO4
•- + H2O 2.0 × 104 M-1 s-1 [69] 

H2O2 + CO3
•- → HCO3

- + HO2
• 4.3 × 105 M-1 s-1 [73] 

HO2
- + CO3

•- → CO3
2- + HO2

• 3.0 × 107 M-1 s-1 [73] 
H2O2 + HPO4

•- → H2PO4
- + HO2

• 2.7 × 107 M-1 s-1 [74] 
HO• + HO• → H2O2 4.2 × 109 M-1 s-1 [57, 69] 
HO• +  HO2

• → H2O + O2 6.6 × 109 M-1 s-1 [69] 
HO2

• + HO2
• → H2O2 + O2 8.3 × 105 M-1 s-1 [75]  

HO2
• + O2

•- →  HO2
- + O2 9.76 × 107 M-1 s-1 [69]  

HO• + O2
•- → O2 + OH- 7.0 × 109 M-1 s-1 [69] 

HO• + CO3
•- → Products not considered 3.0 × 109 M-1 s-1 [76] 

CO3
•- + O2

•- →  CO3
2- + O2 6.0 × 108 M-1 s-1 [77] 

CO3
•- + CO3

•- → Products not considered 3.0 × 107 M-1 s-1 [76] 
(CH3)2

•N → •CH2-NH-CH3 1.0 × 106 s-1 estimated 
(CH3)2

•N+H + •NO → CH3N+H=CH2 + HNO 7.17 × 108 M-1 s-1 [23] 
•CH2-NH-CH3 + •NO → CH3-NH-CH=NOH 1.0 × 108 M-1 s-1 

 

CH3-NH-CH=NOH + NO2
- → CH3-NH-CH=O + 

N2O 
1.0 × 101 M-1 s-1 [23] 

CH3N+H=CH2 → CH3NH2 + •CH2OH 1.0 × 101 s-1 estimated 
•NO + O2•- →  ONOO- 1.9 × 109 M-1 s-1 [25, 26, 78]  
•CH2OH + O2 → •OOCH2OH 1.2 × 109 M-1 s-1 [79] 
2 •OOCH2OH → 2 •OCH2OH 8.9 × 108 M-1 s-1 [79] 
•OOCH2OH →  HO2

• + HCHO 48 s-1 [79] 
ONOO- →  NO3

- 1.11 s-1 [65] 
(CH3)2

•N + •NO →  CH3N+H=CH2 + NO- 1.0 × 1010 
 

[23] 
 

HO2
• + •NO → ONOOH 3.2 × 109 M-1 s-1 [25] 

2 NO2
• → N2O4 4.5 × 108 M-1 s-1 [56, 57, 80] 

N2O4  → NO2
- + NO3

- 1.0 × 103 s-1 [26, 56, 57, 
80] 

ONOOH → NO3
- + H+ 1.4 s-1 [57, 65] 

•NO + NO2
• →  N2O3 1.1 × 109 M-1 s-1 [56, 57, 80] 
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N2O3 → 2 NO2
- 5.3 × 102 s-1 [56, 57, 80] 

O2
•- + NO2

• → NO2
- + O2 1.0 × 108 M-1 s-1 [56, 80, 81] 

•NO + HO• → HNO2 1.0 × 1010 M-1 s-1 [56, 57, 69, 
80] 

NO2
• + HO• → ONOOH + NO3

- 1.3 × 109 M-1 s-1 [56, 80, 82] 
NO2

- + HO• → OH- + NO2
• 2.5 × 109 M-1 s-1 [57, 69] 

2 •NO → N2O2 1.0 × 109 M-1 s-1 [56, 57, 83] 
N2O2 + O2 → N2O4 1.0 × 109 M-1 s-1 [56, 57, 83] 
ONOOH + H2O → NO3

- 1.2 s-1 [47] 
ONOO- + HCHO → NO3

- + HCOOH 10 M-1 s-1 [23] 
ONOOH + HCHO → NO3

- + HCOOH 5 M-1 s-1 Estimated 
ONOO- + HO• → ONOO• + OH- 5.0 × 109 M-1 s-1 [56] 
ONOOH + HO• → ONOO• + H2O 1.0 × 109 M-1 s-1 Estimated 
ONOO• + NO2

• → 2 NO3
- 1.0 × 109 M-1 s-1 Estimated 

HO2
• + NO2

• → NO3
- + O2 5.0 × 104 M-1 s-1 Estimated 

HCOOH + HO• → •COOH + H2O 4.5 × 107 M-1 s-1 [79] 
HCOO- + HO• → •COOH- + H2O 2.4 × 109 M-1 s-1 [79] 
•COOH- + O2 → •OOCOO- 1.0 × 1010 M-1 s-1 [79] 
2 •OOCOO- → •OCOO-+ O2 8.7 × 109 M-1 s-1 [79] 
2 •OCOO- → CO2 + O2 7.8 × 109 M-1 s-1 [79] 
N2O4 → NO3

- 1.11 s-1 [84] 
2 HNO → N2O + H2O 8.0 × 106 M-1 s-1 [57] 
HNO + •NO → N2O + HNO2 5.0 × 109 M-1 s-1 [57] 
NO3

•- → NO2
• + HO- 2.3 × 105 s-1 [85] 

NO3
•-→ H+ + NO3

•2- 16 s-1 [85] 
NO3

2-• → NO2
• + HO- 5.5 × 104 s-1 [85] 

CH2(OH)2 + HO• → •CH(OH)2 + H2O 1.0 × 109 M-1 s-1 [79]  
2 •OOCH(OH)2 → 2 •OCH(OH)2 7.9× 107 M-1 s-1 [79] 
2 •OOCH(OH)2 → 2 HOC(OH)2 7.9 × 107 M-1 s-1 [79]  
2 •OOCH(OH)2 → CH(OH)3 + HOC(OH)2 1 M-1 s-1 [79]  
•OOCH(OH)2 → •HO2 + HCOOH 8.7 × 103 s-1 [79]  
•OOCH(OH)2 + HO2

• → CH(OH)3 + O2 2.0 × 106 M-1 s-1 [79]  
•OCH2OH → HCOOH + HO• 6.3 × 106 s-1 [79]  
•CH(OH)2 + O2 → •OOCH(OH)2 4.9 × 109 M-1 s-1 [79]  

3.3.3 Time-dependent Concentration Profiles of NDMA and Byproducts   

Once the reaction pathways and reaction rate constants were determined, ordinary 

differential equations were generated for all species and solved to obtain the 

concentration profiles of all species. Figures 3.3 through 3.6 compare the time-
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dependent concentration profiles of NDMA and the transformation products at pH 3 and 

pH 7, respectively. For the pH 3 runs, shown in Figures 3.3 and 3.4, the model was able 

to predict trends and magnitude of the experimentally measured byproducts, with the 

exception of formic acid. The pH was also observed to remain constant throughout the 

run. In contrast, at pH 7, the model predicted linear formation of dimethylamine (DMA) 

and methylamine (MA) and overall under predicted to the concentrations of all 

byproduct. Concentration profiles are shown in Figures 3.5 and 3.6. It is important to 

note that the pH dropped significantly in the model (from a starting pH of 7 to around 4) 

whereas the experimental results from Lee et al 2005 did not observe a notable change 

in pH as they had added a phosphate buffer [23]. We are now currently examining the 

cause of this discrepancy by investigating the influence of pH change during the 

simulation and determining the best way to incorporate a buffer while allowing for the pH 

to vary throughout the simulation. 

 
Figure 3.3 Concentration profile of major byproducts of NDMA decay at pH 3 for model in 

comparison to experimental results from Lee et al. 2005 [23] 
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Figure 3.4 Concentration profile of minor byproducts of NDMA decay at pH 3 for model in 

comparison to experimental results from Lee et al. 2005 [23] 

 
Figure 3.5 Concentration profile of major byproducts of NDMA decay at pH 7 for model in 

comparison to experimental results from Lee et al. 2005 [23] 
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Figure 3.6 Concentration profile of minor byproducts of NDMA decay at pH 7 for model in 

comparison to experimental results from Lee et al. 2005 [23] 

3.3.4 Sensitivity Analysis 

A sensitivity analysis was performed to investigate the impact of quantum yields and rate 

constants on the predicted concentration profiles of species. By doing so, one can get to 

know the dominant important reactions and species that are responsible for the 

important byproducts. These impacts were examined by observing the decay of NDMA 

and the production of the primary byproducts, DMA and MA. NDMA decay and DMA 

formation only occur through photolysis reactions and therefore only changes in 

quantum yield values were investigated. The production of MA occurs through the 

reaction with a product of NDMA photolysis. For the sensitivity analysis for MA, both 

quantum yield values and the involved rate constant were altered. The quantum yield 

values were altered by the difference of a factor of two and reaction rate constants were 

altered by the difference of a factor of ten for MA analysis. The specific photolysis 

reactions are shown in Table 3.4 and the reaction rate constant (k = 10 s-1) for 

CH3N+H=CH2 → CH3NH2 + •CH2OH were the values varied to obtain the figures below. It 

is important to note that reaction 7 has a quantum yield of zero at pH 3 and therefore 

was not varied and is not shown in the figures.  
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Table 3.4 Reactions and corresponding quantum yield values varied for sensitivity analysis. Note 
that their reaction numbers correspond to the quantum yields changed as seen in the key for 

Figures 3.7 through 3.18  
 

Number Reaction Φ at pH 3 Φ at pH 7 
1 (CH3)2N-NO → (CH3)2

•N+H 0.051 0.15 
2 (CH3)2N-NO →•NO 0.001 0.001 
3 (CH3)2N-NO →O2

•- 0.14 0.15 
4 (CH3)2N-NO → CH3N+H=CH2 0.27 0.6 
5 (CH3)2N-NO → (CH3)2NH2

+ 0.18 0.4 
6 (CH3)2N-NO → HNO2 0.102 0.27 
7 (CH3)2N-NO → •NO 0 0.046 

 

Figures 3.7 and 3.8 indicate the decay of NDMA as predicated by the model at pH 3. 

The variation of individual quantum yields suggests that reaction 6 [i.e., (CH3)2N-NO → 

HNO2] is primarily controlling the concentration of NDMA in the system as changes in all 

other rate constants produce results identical to the original model output. Similarly at pH 

7, shown in Figures 3.9 and 3.10, reaction 6 is the only one that significantly alters the 

concentration profile. All other reactions resulted in identical results to the original 

quantum yield input.  
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Figure 3.7 NDMA concentration profile at pH 3 for variation of quantum yield two times the 
originally reported value 

 

Figure 3.8 NDMA concentration profile at pH 3 for variation of quantum yield half of the originally 
reported value 
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Figure 3.9 NDMA concentration profile at pH 7 for variation of quantum yield two times the 
originally reported value 

 

Figure 3.10  NDMA concentration profile at pH 7 for variation of quantum yield half of the 
originally reported value 
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available for DMA formation, shown in Figure 3.11 for pH 3. At pH 7, reaction 6 did not 

produce more DMA than originally modeled results since a linear increase in DMA was 

already predicted and no more DMA could be formed from the available NDMA. DMA 

formation is also impacted by reaction 5 ((CH3)2N-NO → (CH3)2NH2
+) as expected since 

this is the reaction responsible for its formation. This was shown for pH in Figures 3.11 

and 3.12 and in Figures 3.13 and 3.14 for pH 7. All other reactions resulted in identical 

results to the original quantum yield input.  

 

Figure 3.11 DMA concentration profile at pH 3 for variation of quantum yield two times the 
originally reported value 
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Figure 3.12 DMA concentration profile at pH 3 for variation of quantum yield half the originally 

reported value 

 

Figure 3.13 DMA concentration profile at pH 7 for variation of quantum yield two times the 
originally reported value 
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Figure 3.14 DMA concentration profile at pH 7 for variation of quantum yield half the originally 
reported value 
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Figure 3.15 MA concentration profile at pH 3 for variation of quantum yield two times the originally 
reported value and rate constant by ten times the originally reported value 

 

Figure 3.16 MA concentration profile at pH 3 for variation of quantum yield half the originally 
reported value and rate constant by one tenth the originally reported value 
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Figure 3.17 MA concentration profile at pH 7 for variation of quantum yield two times the originally 
reported value and rate constant by ten times the originally reported value 

 

Figure 3.18 MA concentration profile at pH 7 for variation of quantum yield half the originally 
reported value and rate constant by one tenth the originally reported value 
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3.4 Environmental Implications 

Nitrogen-containing organic contaminants pose more toxicity than carbon-containing 

compounds. This raises serious concern about the fate of degradation products in 

engineered water treatment and natural aquatic systems. The findings in this study 

highlight the importance of elementary reaction-based kinetic models that provided 

mechanistic insight into the reaction mechanisms and kinetics of nitrogen-containing 

organic contaminants. This is key if this model is to be applied in other scenarios. With 

knowing the reactions that occur, steps can be taken to predict the stable byproducts 

based on input compounds and concentrations. When applied in a water treatments 

setting, the impact of dissolved organic matter (DOM) and other common water 

constituents needs to be considered as well. Further work needs to be done on this topic 

as it will likely alter the pathways and products observed when treating for nitrosamine 

compounds.  
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4 Development of an Agent-based Model to Predict the 
Fate of Organic Compound Degradation in Aqueous 
Phase Advanced Oxidation Processes3 

4.1 Introduction 

A number of concerns have been raised about the potential adverse health and 

ecological effects of new and emerging contaminants recently identified in natural 

waterways that are likely present due to inability of conventional water and wastewater 

treatment processes [1, 86, 87]. This has led to a call to eliminate such contaminants at 

treatment facilities, to the greatest extent possible, to prevent their entrance into natural 

water systems where they can ultimately harm human or ecological health in often highly 

complex ways.  

Advanced Oxidation Processes (AOPs) offer a promising and attractive technological 

solution to this problem because they can destroy a wide variety of known and emerging 

organic contaminants present in the aqueous phase as hydroxyl radicals (HO•) produced 

at ambient temperature and atmospheric pressure react rapidly with the electron rich 

sites of organic contaminants causing degradation via a series of chain-reactions [12, 

13]. If adequately designed, AOPs can transform target organic contaminant(s) into 

various intermediate radicals and byproducts that can eventually be mineralized into 

inert substances, such as water, carbon dioxide and mineral acids. 

AOPs offer an innovative way to degrade hazardous trace organic contaminants but 

their complex radical-involved reaction mechanisms make it difficult to understand and 

predict the formation of intermediate radicals and byproducts, which is problematic for 

determining when certain byproducts are expected to be more toxic than their parent 

contaminants.  This process is complicated by the fact that complex peroxyl radical-

involved reactions form identical products via multi-channel/-step reactions, making it 

difficult or challenging to experimentally identify each elementary reaction pathway and 

measure accompanying reaction rate constants. Given the hundreds of thousands of 

chemicals in commercial use and production today, a model that can predict the 

                                                
3 The material contained in this chapter is in preparation for submission to a journal 
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formation of intermediate radicals and byproducts without the need for nearly endless 

experimentation is critical to the success of the AOP treatment approach. Such a model 

could greatly aid the preliminary design of AOPs prior to full-scale development and 

guide industry’s assessment of environmentally recalcitrant toxic chemicals in their 

manufacturing processes.  

A number of conventional steady-state and non-steady-state models have already been 

developed in the literature that explore various aspects of AOP treatment. For example, 

Glaze et al. (1995) derived a kinetic model for the UV/H2O2 process with steady-state 

approximation to predict final concentrations of 1,2-dibromo-3-chloropropane (DBCP) 

[88]. This work set the formation rate of HO• equal to zero to determine the pseudo-

steady-state concentration of HO•, invoking the pseudo-state-assumption that the 

formation and consumption rates of HO• are equal based on the idea that reaction rates 

involving HO• are very fast while HO• concentration are very small relative to other 

compounds. Pseudo-steady-state concentrations were solved at each time step (t=1) up 

to 1440 seconds of reaction time and then compared with experimental observations for 

the target compound DBCP. It was found that the degradation of DBCP follows pseudo-

first-order kinetics irrespective of the experimental conditions used (i.e., pH and the 

concentrations of H2O2, DOM, and alkalinity). Sharpless and Linden (2003) also used 

the steady-state approximation to estimate both the time-based and fluence-based rate 

constants for NDMA degradation resulting from both the photolysis and HO•-induced 

reactions, respectively, with low and medium pressure UV lamps [50]. Their calculated 

rate constants were also found to be consistent with experimental observations. Wols 

and Hofman-Caris (2012) derived a similar model by including the photolysis of target 

compounds and then they calculated the estimated removal efficiencies from both 

photolysis and the HO•-induced reactions for more than 100 emerging contaminants with 

low pressure UV lamps (400 mJ cm-2) for a typical Nieuwegein water: 250 mg/L HCO3
-, 

1.7 mgC/L DOC, and pH 8) [89]. They also performed a cluster analysis and classified 

those compounds based on kHO•, quantum yields and molar absorptivity. Finally, Guo et 

al. (2013) developed UV/H2O2 process models with steady-state approximation for 

various flow types of reactors such as completely mixed batch reactors (CMBR), 

completely mixed flow reactors (CMFR), plug flow reactors (PFR), tank-in-series 

reactors (TIS, i.e., sequential CMFRs), and real reactors with a disperse flow model 
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(DFM) [61, 90]. These MathCAD models were able to calculate the steady-state 

concentration of HO•, the removal efficiency of a target compound, and the energy 

efficiency per removal of order, given any specified target compound and other water 

quality parameters.  

The most detailed level of modeling to date in the existing literature are models that use 

complete kinetic descriptions of a system without steady state approximations [91]. In 

other words, all reactions in the system are considered and rate equations are written for 

all species. In such models, reactions occur at the sub-microsecond timescale while 

typical UV/H2O2 processes take place on the order of minutes. The integration of the 

resulting set of stiff differential equations from these models may require up to 108 - 1012 

steps depending on the number of ordinary differential equations (ODEs) assigned 

(Payton, 1990). One example of such a model is that of Yao et al. (1992) who used the 

ACUCHEM software to develop a UV/H2O2 kinetic model [92, 93]. The drawback of using 

ACHUCHEM is that the software does not consider the acid-base equilibrium and 

variable photolysis rates nor does it consider complex flow reactor kinetics. This is 

problematic because it has been shown that the pH of a solution can drop as organic 

compounds are oxidized into mineral acids, carbon dioxide or acidic intermediates 

during the UV/H2O2 process and, therefore, it is critical to simulate such pH changes 

[62]. In response, Crittenden et al. (1999) developed a dynamic kinetic model of the 

UV/H2O2 process in a CMBR with non-steady-state approximation that includes known 

elementary chemical and photochemical reactions and literature-reported photochemical 

parameters with chemical reaction rate constants. By default, the target organic 

compound(s) of this model reacts with HO•, carbonate radicals (i.e., •CO3
-), phosphorus 

radicals (i.e., •HPO4
-), •O2

- and •HO2 radicals while including scavenging reactions of HO• 

with alkalinity, phosphorus buffers, and carbonate radicals. The scavenging reaction by 

NOM was not included in Crittenden et al. (1999) but the final product software (see 

below) does include this reaction.  The model also tracks the net charge balance of 

anions and cations to account for changes in solution pH over time. Finally, the model 

solves a set of very stiff ODEs for all identified species using a backward differentiation 

formula method by adapting a package designed by Hindmarsh (1974),making it 

possible to solve the model in several minutes using a microcomputer [58, 94]. The 

resulting kinetic model was then validated with experimental studies by Lay (1989) and 
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the results of Glaze et al.’s (1995) pseudo-steady-state model [88, 95]. This 

comprehensive kinetic model is now available as AdOxTM software (Li et al., 1998) that 

enables users to select reactor types (e.g., CMBR, CMFR, TIS) based on flow conditions 

as well as the types of UV lamps used (low pressure or medium pressure lamp) [88, 96]. 

The software also implements the analysis function of tracer study that makes it possible 

to estimate the removal efficiency of target compounds using the DFM model in a real 

reactor. For example, Li et al. (2008) used AdOxTM to evaluate the efficiency of a full-

scale UV/H2O2 process for the removal of methyl tert-butyl ether (MtBE) and tertiary 

butyl alcohol (tBA) from a drinking water source [60]. Evaluations included two 

commercial UV light sources such as low pressure high intensity lamps (LPUV) and 

medium pressure high intensity lamps (MPUV), pretreatment options including ion 

exchange softening with seawater regeneration, pellet softening, weak acid ion 

exchange, and high pH lime softening followed by reverse osmosis. A dealkalization 

option was also evaluated prior to the UV/H2O2 process. Based on the requirement of 

the treatment objective, the electrical energy per order values, and H2O2 residual 

concentration after the process, Li et al. (2008) optimized the dose of H2O2 at the 

required number of reactors per treatment train for both LPUV and MPUV lamps [60]. 

Finally, Crittenden et al. (2012) compared the pseudo-first-order rate constants of DBCP 

predicted from the Sim-pSS model, pseudo-steady-state model, and AdOx kinetic model 

with those determined by Glaze et al. (1995) under various experimental conditions and 

found that the AdOx kinetic model better simulated all experimental conditions than the 

other two models [88, 97]. The authors concluded that AdOx was better able to predict 

micropollutant kinetics than pseudo-steady state models because of its ability to model 

containment destruction under conditions in which initial experimental parameters such 

as pH and H2O2 concentration (thus, HO• concentration) change as treatment 

progresses. 

Wols et al. (2014) also developed a kinetic model for UV and UV/H2O2 process in a 

collimated beam system employing a monochromatic low pressure UV lamp and later 

developed a similar kinetic model for polychromatic medium-pressure UV lamps [98]. 

These kinetic models included photolysis of nitrate and subsequent reactions of 

nitrogen-radicals (e.g., • NO and • NO2) to predict the water quality impacts of the UV and 

UV/H2O2 process on treated wastewater. Wols et al. (2014, 2015) assigned rate 
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constants for both forward and backward reactions to account for equilibrium reactions 

and avoided the use of steady-state approximation to account for the impact of changes 

in solution pH [98, 99]. Their model was validated with their own experiments for the 

degradation of 36 pharmaceuticals in the presence of bicarbonate, nitrate, and NOM 

while it was found that the model inconsistently predicted the degradation for 5 

compounds when compared to experimental observations due to pH effects during 

photolysis and the radical scavenging of NOM. These two kinetic models were later 

combined with a computational fluid dynamics (CFD) model to predict the degradation of 

a group of 35 pharmaceuticals in a pilot-scale UV/H2O2 reactor [98].  

In general, the main limitation of the AOP models in the existing literature reviewed so 

far is that they rely on ODEs that are very stiff to solve numerically because of dramatic 

differences in reaction rates (i.e., the product of the reaction rate constant and the 

concentration) that often vary by more than 10 orders of magnitude in an AOP (i.e., 10 

M-1s-1 v.s. 1010 M-1s-1). Such models also frequently produce unstable numerical 

solutions as a consequence of the lumped elementary reactions that often occur in an 

AOP. It is for these reasons that our research explored the possibility of using Agent-

based modeling (ABM) to simulate the complex reactions and resulting byproducts and 

byproduct chains produced in an AOP to predict the fate of organic compounds in this 

promising approach to water and wastewater treatment. ABM is a computer simulation 

technique that models the actions of software “agents,” representing any conceivable 

entity such as a person or a chemical species, interacting with other agents and the 

environment in which they are embedded at the level of the individual agent to produce 

or reproduce complex emergent patterns at the system level. The use of individual-level 

modeling to produce system-level dynamics means that no generalized systems of 

equations are required to generate observed model results, making it possible to 

simulate a wide range of mathematically intractable systems [100]. The modular and 

extensible framework of an ABM, which relies heavily on the broadly applicable software 

design principles of Object-Oriented Programming, also allows for the abstraction of as 

much detail as necessary in order to reproduce complex emergent patterns in a manner 

that is similar to the experimental approach in that ceteris paribus conditions can be 

explored incrementally through the controlled manipulation of simulated modeling 

parameters assumed to be responsible for system-level patterns [101]. These features 
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make it possible for an ABM to overcome the restrictions of the ODE-based models 

outlined above, which are unable to adequately model competing radical induced 

multiple-elementary reactions that simultaneously produce different byproducts and, 

therefore, offer a promising solution to the advancement of AOP modeling over existing 

techniques. ABMs have already been employed in a wide range of fields, from the Social 

Sciences and Economics to Ecology and Biology, to explore numerous complex 

emergent phenomena that stem from the interactions of individual actors [102]. Agent-

based modeling has also recently been applied to a variety of biological systems to gain 

mechanistic insights at the cellular level (e.g., insect communities and epithelial tissue) 

but our research is the first to use this modeling technique in the field of chemistry to 

explore the fate of organic compounds in AOP [103-105].  

In our study, we develop an ABM to aid our understanding of the intermediate radicals 

and stable byproducts involved in peroxyl radical bimolecular decay. Our model made it 

possible to visualize changes in chemical concentrations over time resulting from the 

complex reactions of chemical species interacting over time and space in a simulated 

AOP reactor, as parent chemical species react to produce byproducts and successive 

chains of byproduct reactions throughout a simulation run. This work enables 

researchers and AOP engineers to identify tipping points that could drive changes in 

concentration profiles over time as well as to predict the fate of organic species upon 

exhaustion of potential reactants. Finally, our model provides researchers a level of 

experimental control that is comparable to laboratory conditions in that researchers can 

manipulate individual or multiple experimental conditions to determine how such 

changes alter system dynamics (changes in concentration profiles over time) or the 

resulting fate of organic compounds. In this sense, researchers can run any number of 

relatively “cost-free” simulated experiments to pilot the plausibility of alternative 

hypotheses or to identify opportunities for future laboratory experiments that may prove 

useful for improving AOP wastewater treatments.   
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4.2 Materials and Methods  

4.2.1 Model Overview 

ChemSim is an ABM software application designed to predict the fate of organic 

compounds in Advanced Oxidation Processes (AOPs) for wastewater treatment, which 

is also capable of exploring other more generalized chemical reaction pathways. The 

agents of ChemSim represent thousands of individual molecules that each move 

through a simulated AOP reactor space containing an aqueous solution and react with 

other molecule agents representing different chemical species to produce terminal 

byproducts or byproduct chains over time based upon user-provided chemical reaction 

pathways. At the end of each simulated experiment, ChemSim produces a concentration 

profile time-series plot of all active and remaining chemical species for every simulated 

round as a way visualize changes in byproduct concentrations over time so as to predict 

the chemical fate of persistent organic compounds in AOP wastewater treatment. 

ChemSim was developed using the Java programming language and the MASON 

simulation library [106]. The remainder of this section uses the ABM standard ODD 

(Overview, Design concepts, Details) protocol to provide a formal model description of 

ChemSim [107, 108]. 

4.2.2 Entities, State Variables, and Scales 

Molecule agents are the primary simulated entities of ChemSim. Molecule agents can 

represent any possible individual chemical species or compound. Each molecule agent 

has four main attributes that determine how it behaves within the simulated AOP reactor 

during a model run: 1) its species type (i.e., the chemical formula assigned to this 

species), 2) its current reactor location, 3) its reaction radius, and 4) a list of the species 

types of all possible reactants (i.e., the other simulated molecule agents of a species 

type to which this species can chemically react). The only additional entity modeled in 

ChemSim is a disproportionation reaction agent whose role is to temporarily represent 

the existence of chemicals undergoing a disproportionation reaction over time, which 

requires multiple simulation rounds to complete as opposed to the single-round reaction 

time of all other simulated byproducts. 
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The environment in which our molecule agents interact in ChemSim is a simulated AOP 

reactor consisting of a well-mixed aqueous solution with dissolved compounds (e.g., 

Oxygen, Nitrogen, etc.). We use a sparse lattice to model this environment 

computationally, which tracks the location of all molecule agents in discrete three-

dimensional space over time. The sparse lattice design is organized around three 

hashmap data structures: 1) a space-integer lattice, 2) an agent map, and 3) a tag map. 

These three hashmaps use the fastutil implementation to take advantage of the fact that 

it is possible to determine hashmap sizes at runtime in order to optimize computational 

performance. The location a molecule agent occupies in our sparse-integer map is 

hashed according to the scheme by Teschner et al. (2003) [109]: 

ℎ𝑎𝑎𝑎𝑎ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  =  ((𝑥𝑥 ∗  𝑝𝑝1) 𝑥𝑥𝑥𝑥𝑥𝑥 (𝑦𝑦 ∗  𝑝𝑝2) 𝑥𝑥𝑥𝑥𝑥𝑥 (𝑧𝑧 ∗  𝑝𝑝3)) 𝑚𝑚𝑥𝑥𝑚𝑚 𝑛𝑛  

where 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℤ, 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and n is the size of the allocated array for the 

values. This hashing allows us to collapse three-dimensional space into a single map 

(i.e., list) of values and enables agent retrieval and probing for agent existence at a 

given location in constant time. The tag hashmap is used when the size of the search 

space exceeds the number of agents in the system at which point it is more 

computationally efficient to linearly bound the search space (i.e., O(n)) by the number of 

agents with the same tag type (a simple hash of the molecule’s chemical species 

formula) and to use the Euclidian distance from the target agent to determine a match 

when said distance is less than the requested radius. Finally, our sparse grid is designed 

and indexed to allow for efficient insertion, search, and retrieval of agents from the data 

structure, which is critical for computational performance given that ChemSim must 

constantly update agent locations in space to model dispersion, add new byproduct 

agents, and remove parent reactant agents. 

4.2.3 Data Requirements 

ChemSim requires a number of user-provided data inputs to initialize the model for each 

simulated experiment. For example, users must provide a comma-separated values 

(CSV) file that lists the names of the chemical species to be included and their chemical 

formulas. Users must also provide a second CSV file that identifies the known set of 

chemical reaction pathways so that the model can determine which species should 
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interact with which other species in the simulated reactor and how (based on reaction 

types and reaction rates). Users must then specify the initial concentration of species so 

that the model can calculate the number of agents to create per mol of a given 

compound upon model initialization. Users must also specify the probability (on a scale 

of 0 to 1) of a photolysis reaction with Hydrogen Peroxide, which is used to catalyze all 

further chemical reactions in our simulated AOP reactor (more on this below). Finally, 

users are asked to set the stopping condition for the given simulated run (e.g., 

exhaustion of a target chemical species or a user-specified time step) or the model will 

run until the user manually stops the simulation. 

4.2.4 Model Initialization 

To begin model initialization, ChemSim first reads in the user-provided CSV files outlined 

above. One molecule agent is then created for each chemical compound based upon 

the initial concentration of compounds and species types defined in these user-provided 

CSV files. Each molecule agent is also added to the sparse reactor grid and 

accompanying hashmaps at a random location based upon a draw from a uniform 

distribution as a way to replicate the laboratory conditions of a well-mixed chemical 

solution at t0. A bulk loader is used to determine the quantity of agents to create for each 

chemical compound scaled to the molar parameters provided for that compound and 

using the following statistical normalization technique: 

𝑛𝑛𝑥𝑥𝑥𝑥𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑧𝑧𝑛𝑛𝑥𝑥 = 1/(𝑣𝑣1 + 𝑣𝑣2+. . . +𝑣𝑣𝑛𝑛)  

𝑚𝑚𝑥𝑥𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑎𝑎𝑖𝑖 = 𝑣𝑣𝑖𝑖 ∗ 𝑛𝑛𝑥𝑥𝑥𝑥𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑧𝑧𝑛𝑛𝑥𝑥 ∗ 𝑡𝑡𝑎𝑎𝑥𝑥𝑡𝑡𝑛𝑛𝑡𝑡 

𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛𝑎𝑎𝑥𝑥 = 𝑛𝑛𝑥𝑥𝑥𝑥𝑚𝑚𝑎𝑎𝑛𝑛𝑛𝑛𝑧𝑧𝑛𝑛𝑥𝑥 ∗ 𝑡𝑡𝑎𝑎𝑥𝑥𝑡𝑡𝑛𝑛𝑡𝑡 

where v is the number of moles for a given compound, target is the maximum number of 

total molecules, and molecules is the quantity of the given molecule. 

4.2.5 Process Overview and Scheduling 

A typical simulated experiment involves the following basic order of operations: 
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1. ChemSim first reads in the required user-provided CSV files and initializes the 

model to include molecule agents randomly located throughout the sparse grid of 

the simulated reactor for each chemical compound present at the start of the 

simulated experiment in the quantities required based upon the initial 

concentrations of each species. 

2. During each simulated round, the scheduler randomly activates every individual 

molecule agent one-at-a-time to react with any available reactant in its reaction 

radius (see sub-model below) or moves about the sparse reactor grid using a 

random walk algorithm when a reactant is unavailable. 

3. At the end of each simulated round, all existing pKa reactions are executed (see 

sub-model below), molecule counts are balanced, and the photolysis reaction 

rate is updated to ensure the linear decay of any existing Hyrdogen Peroxide 

agents in the next round of the simulation. 

4. The simulation will then repeat these steps until the user manually stops the 

simulation or the simulation reaches the user-specified stopping conditions. At 

this point, ChemSim tallies the final molecule count, which is converted to a 

molar value to determine the final concentration profile of all chemical species 

remaining at the end of the simulation. 

A simulation round in ChemSim can represent an arbitrary length of time depending 

upon reaction requirements. During each round, all agents present in the model are 

scheduled for activation. They are then sequentially activated and operate in accordance 

with their step method. For basic chemical species, the agent first checks to see if it 

should move before checking to see if a reaction should occur. Movement takes place 

using a simple random walk where a normally distributed random number is drawn for 

each direction (i.e., x, y, and z) and the agent moves plus or minus one unit for a value 

within plus or minus one standard deviation respectively. Movement outside of the 

container is prevented. When reactions are checked, the model checks for bimolecular 

reactions, unimolecular reactions, and photolysis reactions. Reactions occur based upon 

the first chemical species within the correct interaction radius and either immediately 

generate new chemical species or a disproportionating species agent, based upon the 

appropriate equation. When disproportionating species are activated, they generate new 

chemical species that are appropriate for the time step. Once all species have been 
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generated, the agent removes itself from the model. Newly created agents are capable 

of interacting with other species the same time step they are created, but they will not be 

activated until the next simulation round. In the event a reaction contains a product that 

is not used in a subsequent reaction (i.e., “end product”) it is added to the total molecule 

count, but a corresponding agent is not created. At the end of the timestep, an updated 

photolysis decay rate and pKa reactions may be performed (see Sub-models). 

4.2.6 Sub-models 

4.2.6.1 Movement of the Molecule Agent 

In the event that a molecule agent is activated and there are no reactant agents present 

in its interaction radius, the molecule agent will perform a simple random walk from its 

current location on the sparse reactor grid. To perform this random walk, a normally 

distributed random number is drawn for each possible movement direction (i.e., x, y, and 

z) and the agent will then move plus or minus one unit that is plus or minus one standard 

deviation of its current location for each possible movement direction respectively. The 

distance traveled each simulated round is scaled to 590 nm/s as per Pogson (2006), 

which ensures that the reactor remains a well-mixed solution for the duration of the 

simulated experiment [105]. Finally, movement beyond the sparse reactor grid is not 

allowed so the random walk of the agent is bounded by the extreme limits of the sparse 

grid dimensions, forcing the agent to remain within the reactor space itself. 

4.2.6.2 Photolysis  

Photolysis is required to catalyze all chemical reactions in our simulated reactor. 

Photolysis triggers the decay of existing hydrogen peroxide molecule agents into 

hydroxyl radical agents which then further catalyze reactions beginning with Acetone 

decay and then progressing through all possible byproducts chains in the user-provided 

known chemical pathways CSV file. To model photolysis reactions, we simply trigger the 

decay of a random Hydrogen Peroxide molecule agent each round of the simulation 

using a linear decay slope m described by the following equation: 

𝑚𝑚 = 𝑚𝑚 ∗ 𝑡𝑡 + 𝑏𝑏 
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where t is the current time-step or simulation round, b is the starting quantity of 

Hydrogen Peroxide molecules, and c is the new expected count based on a best fit 

linear decay as determined experimentally. The difference between c and the current 

quantity is the decayCount and can be used to calculate the individual odds that a 

Hydrogen Peroxide molecule agent will decay in a given round: 

𝑝𝑝𝑥𝑥 = 𝑚𝑚𝑛𝑛𝑚𝑚𝑎𝑎𝑦𝑦𝑑𝑑𝑥𝑥𝑚𝑚𝑛𝑛𝑡𝑡 / 𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦 

where pr is the individual probability, assuming all molecules have an equal likelihood of 

decaying. 

4.2.6.3 Interaction Radius 

Once photolysis triggers the decay of Hydrogen Peroxide agents into hydroxyl radical 

agents, all further chemical reactions use a reaction radius-based decay tied to the 

presence of possible chemical reactants. To determine if a reaction should occur when a 

given molecule agent is activated, ChemSim uses the interaction radius calculation 

described by Pogson et al (2006) to determine if a reactant is within the possible 

reaction range of a given activated molecule agent as follows [105]: 

𝑥𝑥 = (3𝑘𝑘𝑘𝑘𝑡𝑡 / 4 × 103𝑁𝑁𝑎𝑎)1/3 

where k is the reaction rate, Δt is the duration of a model time step, and Na is Avogadro's 

constant. However, within the context of the model the kchem
 value is used as the basis, 

𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒 = (𝑘𝑘×𝑘𝑘𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑) / (𝑘𝑘 + 𝑘𝑘𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑) 

𝑥𝑥 = (3𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑘𝑘𝑡𝑡 / 4×103𝑁𝑁𝑎𝑎)1/3 

Thus, if a reactant is found within r, new byproducts molecule agents are created (based 

on the user-provided chemical pathways list) and added to the sparse reactor grid at the 

location in which the reaction took place and the parent molecule agents are also 

removed. 
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4.2.6.4 Dissociation and Non-dissociation of Species  

Another important aspect of the model is acid dissociation which takes place in the 

model through a process referred to in the code as “pKa balancing.” This takes place at 

the end of each time step for reactions that have a dissociation reaction defined. 

Assuming reactions are defined as follows: 

𝐻𝐻𝐻𝐻 ⇔ 𝐻𝐻− + 𝐻𝐻+ 

The quantity of agents in the model is calculated as follows: 

𝑥𝑥𝑎𝑎𝑡𝑡𝑛𝑛𝑥𝑥 = 10−𝑝𝑝𝑝𝑝𝑎𝑎/10−𝑝𝑝𝑝𝑝 

𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦𝐴𝐴− = 𝑚𝑚𝑥𝑥𝑚𝑚𝑛𝑛𝑡𝑡𝐴𝐴− ∗ 𝑥𝑥𝑎𝑎𝑡𝑡𝑛𝑛𝑥𝑥 

𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦𝐴𝐴− = 𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦𝐴𝐴− > 𝑚𝑚𝑥𝑥𝑚𝑚𝑛𝑛𝑡𝑡𝐴𝐴−  𝑡𝑡ℎ𝑛𝑛𝑛𝑛 𝑚𝑚𝑥𝑥𝑚𝑚𝑛𝑛𝑡𝑡𝐴𝐴−  𝑛𝑛𝑛𝑛𝑎𝑎𝑛𝑛 𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦𝐴𝐴− 

𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦𝑝𝑝+ = 𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦𝐴𝐴− 

𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦𝑝𝑝𝐴𝐴 =  𝑚𝑚𝑥𝑥𝑚𝑚𝑛𝑛𝑡𝑡𝑝𝑝𝐴𝐴 −  𝑞𝑞𝑚𝑚𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡𝑦𝑦𝐴𝐴− 

Assuming that pKa is the acid dissociation quantity that is relevant to the reaction and 

pH is the appropriate value for the solution. The quantities then represent the number of 

molecules that need to be removed, or added, to the model. In the event that molecules 

need to be removed, the first known instance is removed until the total quantity has been 

removed. In the event that molecules need to be added, they are introduced at a random 

location within the model. In either case, the inherent stochasticity allows us to assume a 

well-mixed solution. 

4.2.7 Design Concepts 

Agent decision-making in ChemSim, unlike most ABM simulations, is highly constrained 

and deterministic. This is because agents represent inanimate chemical compounds or 

molecules that simply respond to their environment without decision-making. The 
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advantage of this design pattern is that ChemSim agents are computationally 

lightweight, allowing large numbers of agents to be simulated relative to typical ABMs.   

4.2.8 Emergence 

The goal of most ABMs is the generation of emergent phenomenon. The dynamic 

concentration profiles of our chemical species that vary over time throughout the course 

of our simulations are one example of an emergent product in ChemSim. The final 

concentration profiles or the remaining chemical species is another important emergent 

outcome. It is this outcome that we can use to predict the fate of organic compounds in 

AOP wastewater treatment. 

4.2.9 Interaction 

The main drive of emergence and system complexity in ChemSim comes from agent 

interactions as opposed to agent decision-making. Thousands of individual-level 

interactions take place between heterogeneous agents representing various chemical 

species both across time and across space in every round of our simulated experiments. 

These interactions can be either bimolecular, taking place with the first appropriate 

species within the appropriate interaction radius of the agent, or disproportionate, taking 

place over multiple rounds producing multiple stages of byproducts.  

4.2.10 Stochasticity 

The initial location of all molecule agents on our sparse reactor grid are randomly 

assigned at model initialization to replicate a well-mixed solution. Molecule movement 

during each simulation round is also modeled using a random walk to replicate natural 

dispersion in an aqueous solution. Finally, photolysis reactions with Hydrogen Peroxide 

agents occur at a random rate to replicate linear decay at each round of the simulation. 

Such reactions are necessary to produce hydroxyl radical agents which further catalyze 

all other chemical reactions in the simulation. This means that the location of each 

photolysis reaction is determined based on a random draw to match the linear decay 

probability for that round and the location of that reaction is based on the location of the 

randomly selected available Hydrogen Peroxide agent chosen in that round for that 
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particular reaction. In sum, stochasticity drives many of the complex dynamics 

underpinning the results of ChemSim at the level of the individual agent.  

4.2.11 Observations 

During model execution, ChemSim tracks the current number of existing molecule 

agents, including the time of their creation and their eventual destruction upon reaction 

with a reactant. This data is then plotted using a time-series chart to visualize changes in 

the concentration profiles of target chemical species over time from the beginning to the 

end of every simulated experiment. The concentration profile values at the end of the 

simulation can be used to estimate or predict the final fate of the organic compounds in a 

given AOP treatment. 

4.2.12 Model Simplifications  

During model runs, pH, pressure, and temperature were assumed to be constant 

throughout the duration of the model and uniform within the reactor. Temperature was 

measured during the benchtop experiments and changed minimally, therefore 

supporting this assumption. The reactor was open to the atmosphere, so pressure was 

assumed to remain constant throughout the experiment/ model run. Another simplifying 

assumption was the consideration of only non-dissociated species. This was done in an 

effort to reduce computational complexity for the simplistic pathways used for early runs. 

However, the model can be altered to accept input pKa values of species and alter the 

ratios of non-dissociated and dissociated species after each time step, based on the pH 

of the reactor. This would also allow for the differentiation of reactions and the 

corresponding differences in reaction rate constants dependent on if species is 

dissociated.  

4.2.13 Input Parameters 

In order for the model to run, input parameters for the system of interest need to be 

included. During the creation process of ChemSim, care was taken to ensure its 

applicability in all AOP settings. Within the model, a maximum molecule count is set to 

prevent overloading the capacity of the computer being used; in our runs the starting 

molecule count was set to be one million. Within the code for the model, the user can 
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alter the time step for calculations and the initial pH, which are one second and 7 

respectively for the model described here.  

 

4.3 Experimental Materials and Methods 

4.3.1 Reactor Setup 

A benchtop photoreactor was used to obtain the experimental results. The photoreactor 

was composed of four reactor vessels each a Wheaton Roller Bottle with a volume of 1.8 

L to allow for multiple experiments to be conducted at once. Reactor vessels were 

placed within the photo reactor such that they surrounded the low pressure UV lamp 

(Atlantic UV) with wavelength of 254 nm. UV intensity that the reactor was exposed to 

per wavelength was determined based on the spectral distribution provided for the lamp 

by Ace Glass Inc. To prevent overheating of the lamp, it was placed in a quartz 

immersion well (cooling jacket) to allow for water circulation around the lamp. Similarly, 

the reactor vessels were surrounded by water that continuously circulated in order to 

maintain a constant temperature. The photoreactor itself is contained within a glass box 

covered in aluminum foil in order to prevent the escape of UV light. Each reactor vessel 

was placed on a magnetic stir plate and a stir bar was used in order to maintain 

completely mixed conditions within each reactor. A dye study was conducted to verify 

completely mixed conditions within each reactor vessel. For the experimental runs, the 

desired organic compound and hydrogen peroxide were added to the reactor vessels 

and sampled as designated time steps. After removal from the photoreactor, samples 

were placed in amber vials and stored at a temperature of 4°C until they were ready to 

be analyzed. Byproduct analysis for a variety of compounds was conducted using gas 

chromatography, high performance liquid chromatography and ion chromatography with 

a detailed description of these methods included in the following section. 

4.3.2 Chemical Description 

All chemicals used in the experiments are of the highest grade.  Acetone, hydrogen 

peroxide, oxalic acid, formic acid, acetic acid, glyoxylic acid, pyruvaldehyde (40% wt in 

soln) and pyruvic acid were obtained from sigma Aldrich of ACS grade.  Formaldehyde 

was obtained from Fisher scientific. All experimental solutions were prepared using 
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MilliQ water (resistance > 18.2 MΩ.cm) obtained from a Millipore purification system.  

From these chemicals, stock solutions were made for the desired concentrations and 

then diluted to obtain standard solutions within the anticipated concentration range to be 

used for calibration curves. For the photochemical experiments, we added 10 mM 

hydrogen peroxide to 1mM of acetone prepared with DI water. Para-chloro benzoic acid 

(pCBA) solution, 0.25 μM, was also added as a probe compound for hydroxyl radicals.  

4.3.3 Experimental Setup 

UV photolysis experiment were conducted in the photorecator described above with only 

one of the four reactor vessels in use. Using ferrioxalate actinometry, the light intensity in 

this reactor was obtained to be 5.16 x 10-7 Einstein/L-s.  Temperature control measures 

within the photoreactor kept the temperature within 1°C of the initial temperature over 

the course of the experiment. Therefore the kinetics observed are that at room 

temperature. 

Acetone, formaldehyde and pyruvic aldehyde were determined by derivatization with 

2,4-dinitrophenyl hydrazine followed by analyses using a UHPLC 2000 series Dionex 

equipped with a reverse phase C-18 column (4.5 mm × 250 mm). The mobile phase 

used was acetonitrile and water in a gradient flow condition at 0.8 mL/min.   Retention 

times for formaldehyde, acetone and pyruvate were 10.1 min, 21.1 min and 14 min, 

respectively using this method. Concentrations of pCBA were also determined using this 

system and reverse phase HPLC with a C-18 column.  A different eluent with 45% of 

acetonitrile and 55% of 10 mM H3PO4 was used to find a retention time of 7.8 min at a 

254 nm wavelength for pCBA. To determine the concentration of hydrogen peroxide, 

2,9-dimethyl-1,10-phenanthroline (DMP) method was used for a diluted sample so 

concentrations were within the valid μM range for this test. Ion chromatography with 

Dionex ICS 2100 series equipped with an ion-exchange column was used to determine 

concentration of organic anions, acetate, formate, pyruvate and oxalate. The total 

organic carbon (TOC) was determined using a TOC analyzer, GE sievers.   
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4.4 Results 

As a proof-of-concept demonstration of our ABM approach, we ran a series of 

computational experiments using ChemSim to simulate the UV/H2O2 process and then 

we compared our resulting simulated concentration profiles of a parent contaminant, 

acetone, hydrogen peroxide, and other byproducts to those that were experimentally 

measured using the experimental design conditions outlined in the previous section. 

Figure 4.4 shows the concentration profiles of the wide range of simulated byproducts, 

particularly radical species, that we were able to generate computationally in ChemSim 

as UV interacted with H2O2 in our model to produce hydroxyl radical byproducts that 

then reacted with acetone and catalyzed further byproduct chain reactions (Table 4.3) in 

our simulated reactor. This result shows how it is possible to visualize the fate of 

chemical species over time in a simulated AOP reactor to identify potential reaction 

dynamics that might be of interest to AOP designers, Figure 4.5. For example, certain 

intermediate species in our simulated experiment, such as acetonyl peroxyl radical 

(•OOCH2COCH3), were found to have concentrations of zero throughout the entire 

simulation run, indicating that this species was either not being formed or was so highly 

reactive with other species that its reactions were essentially instantaneous with respect 

to the time-step increment used for the current simulation. Further analysis holding other 

produced compounds constant can help us to determine which of these situations is the 

case and, therefore, allow for a better understanding of the role that particular molecule 

plays in the advanced oxidation process.   
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Figure 4.1 Time-dependent concentration profiles of acetone, hydrogen peroxide, and other 

byproducts formed in UV/H2O2 process 

 

 
Figure 4.2 Snapshots of our agent based model that represent the agents of species at different 

time points. Blue represents hydrogen peroxide, teal represents acetone, red represents hydroxyl 
radicals, and dark gray represents byproducts 
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Table 4.1 Simplified reaction pathways and the reaction rate constants used in the test run 
 

Reaction Reaction Rate 
(Ratios) Source 

H2O2 + hv → HO• 2.1 × 10-2 M s [96] 
CH3COCH3 + HO•  → •CH2COCH3 1.0 × 108 M-1s-1 [69] 
•CH2COCH3 + O2 → •OOCH2COCH3 5.0 × 109 M-1s-1 [79] 
•OOCH2COCH3 + •OOCH2COCH3 → 
2 •OCH3COCH3 + O2 

1.0 × 109  
M-1s-1 

(15%) [79] 
•OOCH2COCH3 + •OOCH2COCH3 → 
H2O2 + 2 CH3COCHO (25%) [79] 
•OOCH2COCH3 + •OOCH2COCH3 → 
CH3COCHO + CH3COCH3OH + O2 (60%) [79] 
•OCH2COCH3 → •COCH3 + HCHO 1.4 × 106 s-1 [79] 
CH3COCHO + HO• → CH3COCOOH 5.0 × 108 M-1s-1 [110] 
CH3COCOOH + HO• → CH3COOH 1.0 × 107 M-1s-1 [79] 
CH3COCH2OH + HO• → HCHO 1.0 × 108 M-1s-1 [79] 
HCHO + HO• → HCOOH 1.0 × 108 M-1s-1 [79] 
CH3COOH + HO• → HOCCOOH + 
HCOOH 1.6 × 107 M-1s-1 [111] 

HOCCOOH + HO• → HOOCCOOH 1.9 × 108 M-1s-1 [112] 
HOOCCOOH + HO• → CO2 1.4 × 106 M-1s-1 [113] 
HCOOH + HO• → CO2 4.5 × 107 M-1s-1 [111] 

 

Taking a closer look at the individual molecule concentration profiles produced in our 

simulated reactor, we can further see the value behind the ABM approach to modeling 

AOP treatment. We begin with an exposition of the underlying dynamics driving our 

simulated results to gain a better sense of how our reactions were catalyzed to generate 

our byproduct concentration profiles of interest. As in a real AOP reactor, the decay of 

our hydrogen peroxide agents is the driving force behind the reactions produced in our 

simulated reactor because it is this photolytic decay that leads to the formation of 

hydroxyl radical agents that then react with acetone agents to further catalyze the entire 

chain of byproduct agent reactions generated in each simulation run. As discussed 

above, we modelled photolysis using a linear decay rate fit to our experimental data to 

avoid the unnecessary complications of having to model the movement and reactions of 

individual photons. Therefore, we essentially fixed the rate of decay of our hydrogen 
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peroxide agents to ensure that a consistent proportion of such agents would be 

randomly selected for replacement with a hydroxyl radical agent as a way to replicate 

the photolysis process in each round of the simulation. Figure 4.6 shows the resulting 

linear decay of our hydrogen peroxide agents using this scheme to replicate photolysis 

reactions during the course of our experimental runs. Here we can see that hydrogen 

peroxide is behaving as expected to catalyze further byproduct reactions in our 

simulation in that the decay of hydrogen peroxide agents over time is both linear and is a 

reasonable fit to the experimental data. The one exception to note is that our simulated 

hydrogen peroxide is exhausted slightly earlier in our computational experiment as 

compared to our laboratory experiment but this is likely attributable to measurement 

error due to the sensitivity of sampling low concertation profile values toward the end of 

our laboratory experiment.     

 

Figure 4.3 Time-dependent concentration profile of hydrogen peroxide 

Having verified the expected linear decay of hydrogen peroxide agents in our simulated 

reactor experiments against our laboratory observations, we then moved on to explore 

the next reaction phase of our simulated AOP reactor. In this phase, our simulated 
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acetone agents are designed to react with any newly created hydroxyl radical agent that 

occupies the same reactor grid space either because it just emerged from our photolysis 

reactions occurring at random locations within the simulated reactor grid or because it 

came into contact with the acetone agent through the random-walk dispersion process 

driving all agent movement within our simulated reactor. Figure 4.7 shows that we were 

able to replicate the second-order acetone decay from our laboratory experiments in our 

simulated AOP reactor. We can see that the initial concentration of acetone agents 

matches the initial concentration of acetone in our laboratory experiments while 

decaying in an exponential manner to its final exhaustion point just slightly beyond the 

observed experimental findings. We should note that the simulated decay of acetone 

was also slightly more rapid than our experimental observations between time steps 100 

and 300. This was likely due to some measurement error in our laboratory samples as 

well as the somewhat oversimplified modeling of hydroxyl radical elimination in our 

model. More specifically on the latter point, we did not include all possible elementary 

reaction pathways responsible for the production of byproducts that competitively react 

with hydroxyl radical agents and, therefore, our model overproduced hydroxyl radical 

agents over time that would have been eliminated in an actual AOP reactor through 

downstream reactions with further byproducts that were not modeled in our simplified 

simulated reactor.    
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Figure 4.4 Time-dependent concentration profile of acetone 

In addition to replicating the second-order decay of acetone in our simulated AOP 

reactor, we also generated and tracked the formation and concentration profile changes 

of three additional simulated byproducts over time: acetic acid, formic acid, and oxalic 

acid. Figures 4.8, 4.9, and 4.10 compare the simulated production of these three 

byproducts to their accompanying observed laboratory results to demonstrate how well 

our simulated concentration profile changes matched our observed laboratory results. 

Overall, these three figures show that we were able to successfully replicate the shape 

of our observed concentration profile changes over time for two of our simulated 

byproducts (acetic acid and oxalic acid) but were not necessarily able to match expected 

concentration levels for these byproducts at key time points of interest, such as the 

specific timing in which the byproduct reached its concentration peak before continuing 

its eventual decay over time. 
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Figure 4.5 Time-dependent concentration profile of acetic acid 

For example, we can see in Figure 4.8 that the shape of the simulated concentration 

profile for acetic acid follows the same somewhat Gaussian shape of our observed 

laboratory results for acetic acid but the peak concertation observed in the lab of nearly 

0.6 mM at roughly 225 minutes was about 0.4 mM higher than the peak concentration 

achieved in our simulated reactor roughly 45 minutes later. In other words, the 

production of our simulated acetic acid was much less robust than the production of 

acetic acid in actual laboratory conditions, indicating that the elementary reaction 

pathways included in our proof-of-concept demonstration were possibly lacking critical 

downstream byproducts responsible for the production of acetic acid early in the AOP 

setting we attempted to simulate. Nevertheless, we were still able to reproduce the 

general trend of acetic acid concentration changes over time as observed in our 

laboratory experiments. 
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Figure 4.6 Time-dependent concentration profile of oxalic acid 

A similar outcome to that of Figure 4.8 occurs in Figure 4.9 in which the simulated 

concentration profile of oxalic acid even more closely follows the trend in our observed 

laboratory results for oxalic acid, peaking at about 500 minutes for both results. 

However, the simulated concentration level of oxalic acid still fell about 0.1 mM short of 

the peak concentration level observed in the laboratory of roughly 0.25 mM at this same 

point in time. This tells us that the elementary reaction pathways used to generate this 

result were reasonably better at addressing all possible production sources for oxalic 

acid than was true for acetic acid, enabling our model to simulate the general trend in 

oxalic acid concentration profile changes over time relatively well. 
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Figure 4.7 Time-dependent concentration profile of formic acid 

Finally, we can see in Figure 4.10 that the simulated concentration profile for formic acid 

took a lot longer to reach the much higher concertation level peak of roughly 0.27 mM 

when compared to the concentration profile peak observed in our laboratory results of 

roughly 0.10 mM that occurred almost 300 minutes sooner in the laboratory. Here we 

can see that our model greatly overproduced formic acid which should have been 

eliminated much earlier due to the presence of other reactants that were not in our 

simplified elementary reaction pathways. This last result demonstrates most dramatically 

how sensitive our model results can be to the inclusion or exclusion of downstream 

reactants. In other words, given the bottom-up way in which ABMs generate their 

simulated system-level dynamics, it is critical that the model includes all possible 

reaction pathways responsible for the production of downstream reactants that can 

contribute to the production of simulated byproducts that fail to reach their observed 

concentration level peaks or for the production of competing reactions that can eliminate 

the overproduction of simulated byproducts beyond expected peak concentration levels 

observed in the laboratory. Nonetheless, our results show that it is possible to replicate 
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complex emergent trends in an ABM using a somewhat oversimplified reaction pathway 

that can always be refined to include further downstream reactant details. 

4.5 Applicability and Future Work 

Overall, these results show promise for developing a better understanding of the 

complex elementary reaction pathways and the fate of organic compounds. Now that 

ChemSim operational, and the program side of the project is complete, the next big step 

is to work on the chemistry side of the model and determine what reactions are missing 

and need to be included and if there are reactions that are negligible when looking at the 

full list. For instance, we know that hydroxyl radicals are not being removed from the 

system at the same rate in our trail runs as in real world reactors and know that addition 

of radical scavenging reactions for hydroxyl radicals need to be included. In the future, 

ideally ChemSim will be able to differentiate between dissociated and non-dissociated 

compounds and allow for consideration of pKa based off of system pH. Additionally, we 

would like to validate the model further by measuring byproduct concentrations of more 

species to see how well the model is able to predict those, since currently we are only 

have experimentally determined concentration profiles for five species. 
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5 Conclusions and Future Work 

5.1 Chapter 2 

• Use of QM calculations to determine elementary reactions from overall 

experimentally obtained reactions can be very beneficial, particularly when 

concentrations are below detection limits for nitrosamines. 

 

• The resulting elementary reactions can be paired with reaction rate constants to 

predict time dependent concentration profiles of target compounds.  

5.2 Chapter 3  

• Elementary-reaction-based kinetic model can be used a way to screen for 

contaminants of concern and estimate the degradation byproducts of 

nitrosamines.  

• Continued work is needed to improve model at pH 7 to ensure its applicability in 

other scenarios.  

5.3 Chapter 4  

• Agent-based modeling is a promising approach for determining concentration 

profiles in AOPs, particularly of compounds that are unable to be experimentally 

measured. 

  

• Next steps are to run full reaction list and determine any missing elementary 

reactions along with improving the model to account for variation in pH.  
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A Supporting Information for Chapter 4 
A.1 Hydrogen Peroxide Decay Slope Calculations 
Table A.6.1 Experimentally obtained concentrations of hydrogen peroxide over time in benchtop 

photolysis experiment 
Time (min) H2O2 Conc. (mM) 
0 10.87 
30 9.58 
180 5.56 
263 4.07 
323 3.20 
420 1.85 
515 0.99 
570 0.46 
675 0.18 

  
Table A.6.2 Slope and y intercept for linear fit of hydrogen peroxide decay based on variation in 

included experimental points 
Range Slope  y - intercept 
0 - 323 min -2.38 × 10-2 10.44 
0 - 420 min -2.16 × 10-2 10.23 
0 - 570 min -1.79 × 10-2 9.73 
0 - 675 min -1.59 × 10-2 9.36 

 

A.2 Console Output 
ChemSim, version 0.5.181 
 
WARNING: Molecule count limited by configuration 
Max Memory:         4294967296b 
Molecule Size:      384b 
Staring Molecule Limit: 1E6 (384000000b) 
 
Time Step (sec): 1.0 
Hydroxyl Retention: 0.25 
Reactor Dimensions (nm): 4208, 4208, 4208 
 
Reactions: experiment/pathway5.csv [2018-08-04 - 00:54:25] 
H2O2 + UV -> HO• + HO•, r = 0 (photolysis) 
CH3COCH3 + HO• -> •CH2COCH3, r = 339 (bimolecular) 
•CH2COCH3 + O2 -> •OO-CH2COCH3, r = 1108 (bimolecular) 
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•OO-CH2COCH3 + •OO-CH2COCH3 -> •O-CH2COCH3 + •O-CH2COCH3 + O2, r = 713 
(bimolecular, 0.15) 
•OO-CH2COCH3 + •OO-CH2COCH3 -> H2O2 + CH3COCHO + CH3COCHO, r = 713 
(bimolecular, 0.25) 
•OO-CH2COCH3 + •OO-CH2COCH3 -> CH3COCHO + CH3COCH2OH + O2, r = 713 
(bimolecular, 0.6) 
•O-CH2COCH3 -> •COCH3 + HCHO, r = 82 (unimolecular) 
CH3COCHO + HO• -> CH3COCOOH, r = 574 (bimolecular) 
CH3COCOOH + HO• -> CH3COOH, r = 158 (bimolecular) 
CH3COCH2OH + HO• -> HCHO, r = 339 (bimolecular) 
HCHO + HO• -> HCOOH, r = 339 (bimolecular) 
CH3COOH + HO• -> HOCCOOH + HCOOH, r = 185 (bimolecular) 
HOCCOOH + HO• -> HOOCCOOH, r = 419 (bimolecular) 
HOOCCOOH + HO• -> CO2, r = 82 (bimolecular) 
HCOOH + HO• -> CO2, r = 260 (bimolecular) 
HO•' -> , r = 0 (unimolecular, 0.0) 
 
Molecule to mol scalar: 4.48E7 
 
Generating 896000 molecules of H2O2 
Generating 103040 molecules of CH3COCH3 
Adding molecules to the schedule... 
H2O2 photolysis decay rate: -31.99 molecules/timestep 
Estimated running time of 38401 time steps, padded to 42001 
 
2018-08-04T00:54:52.957: Starting simulation... 
2018-08-04T00:54:52.957: 0 of 42001 
2018-08-04T00:55:18.765: 60 of 42001 
2018-08-04T00:55:48.621: 120 of 42001 
2018-08-04T00:56:15.114: 180 of 42001 
2018-08-04T00:56:42.905: 240 of 42001 
2018-08-04T00:57:08.207: 300 of 42001 
2018-08-04T00:57:33.849: 360 of 42001 
2018-08-04T00:58:00.734: 420 of 42001 
2018-08-04T00:58:24.769: 480 of 42001 
2018-08-04T00:58:48.059: 540 of 42001 
2018-08-04T00:59:11.341: 600 of 42001 
... 
... 
... 
2018-08-04T02:38:46.061: 41760 of 42001 
2018-08-04T02:38:46.966: 41820 of 42001 
2018-08-04T02:38:47.866: 41880 of 42001 
2018-08-04T02:38:48.758: 41940 of 42001 
2018-08-04T02:38:49.657: 42000 of 42001 
 
Molecule counts written to: data/results-1.csv 
Molar counts written to: data/molar-1.csv 
 
2018-08-04T02:38:49.722 
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B Copyright documentation 
For all images in Chapter 2, Mechanistic Insight into the Degradation of Nitrosamines via 
Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum 
Mechanical Calculations, published in Molecules, the copyright is retained by the authors 
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Here is the reference link, https://www.mdpi.com/authors/rights, with the relevant section 
copied below.  

Copyright and Licensing 

For all articles published in MDPI journals, copyright is retained by the authors. Articles are 
licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone may 
download and read the paper for free. In addition, the article may be reused and quoted provided 
that the original published version is cited. These conditions allow for maximum use and 
exposure of the work, while ensuring that the authors receive proper credit. 

 

All images other images in the document were created by the author(s).  

 

 

 

https://www.mdpi.com/authors/rights

	PREDICTING THE ORGANIC COMPOUND DEGRADATION IN AQUEOUS-PHASE ULTRAVIOLET (UV) AND UV-BASED ADVANCED OXIDATION PROCESSES
	Recommended Citation

	PREDICTING THE ORGANIC COMPOUND DEGRADATION IN AQUEOUS-PHASE ULTRAVIOLET (UV) AND UV-BASED ADVANCED OXIDATION PROCESSES
	By
	Erica A. Coscarelli
	A THESIS
	Submitted in partial fulfillment of the requirements for the degree of
	MASTER OF SCIENCE
	In Environmental Engineering
	MICHIGAN TECHNOLOGICAL UNIVERSITY
	2018
	© 2018 Erica A. Coscarelli
	This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Environmental Engineering.
	Department of Civil and Environmental Engineering
	Thesis Advisor: Dr. Daisuke Minakata
	Committee Member: Dr. David Hand
	Committee Member: Dr. Alex Mayer
	Department Chair: Dr. Audra Morse
	List of Figures v
	List of Tables viii
	Author contribution statement ix
	Acknowledgements x
	List of symbols and abbreviations xi
	Abstract xiii
	1 Introduction 1
	2 Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations 3
	2.3.1 HO•-Induced Degradation 6
	2.3.1.1 N-Nitrosodimethylamine (NDMA) Degradation Pathways Induced by HO• 6
	2.3.1.2 N-Nitrosomethylethylamine (NMEA) Degradation Pathways Induced by HO• 9
	2.3.1.3 N-Nitrosomethylbutylamine (NMBA) Degradation Pathways Induced by HO• 11
	2.3.2 UV-Induced Degradation 15
	2.3.2.1 NDMA Degradation Pathways Induced by UV Photolysis 15
	2.3.3 Environmental Implication and Future Study 19

	3 The Fate of N-Nitrosodimethylamine (NDMA) Degradation in Aqueous-phase UV Photolysis 20
	3.3.1 Elementary Reaction Pathways After Initial Photolysis of NDMA 24
	3.3.2 Quantum Yields and Reaction Rate Constants 28
	3.3.3 Time-dependent Concentration Profiles of NDMA and Byproducts 30
	3.3.4 Sensitivity Analysis 33

	4 Development of an Agent-based Model to Predict the Fate of Organic Compound Degradation in Aqueous Phase Advanced Oxidation Processes 43
	4.2.1 Model Overview 49
	4.2.2 Entities, State Variables, and Scales 49
	4.2.3 Data Requirements 50
	4.2.4 Model Initialization 51
	4.2.5 Process Overview and Scheduling 51
	4.2.6 Sub-models 53
	4.2.6.1 Movement of the Molecule Agent 53
	4.2.6.2 Photolysis 53
	4.2.6.3 Interaction Radius 54
	4.2.6.4 Dissociation and Non-dissociation of Species 55
	4.2.7 Design Concepts 55
	4.2.8 Emergence 56
	4.2.9 Interaction 56
	4.2.10 Stochasticity 56
	4.2.11 Observations 57
	4.2.12 Model Simplifications 57
	4.2.13 Input Parameters 57
	4.3.1 Reactor Setup 58
	4.3.2 Chemical Description 58
	4.3.3 Experimental Setup 59

	5 Conclusions and Future Work 70
	6 Bibliography 71
	A Supporting Information for Chapter 4 81
	B Copyright documentation 83
	List of Figures
	Figure 2.1 Free energy profile for pathway 1–1 of the HO•-induced reaction pathways for N-nitrosodimethylamine (NDMA) via H abstraction 7
	Figure 2.2 Free energy profile for pathway 1–2 of the HO•-induced reaction pathways for N-nitrosodimethylamine (NDMA) via HO• addition to amine nitrogen 8
	Figure 2.3 Free energy profile for pathway 1–3 of the HO•-induced reaction pathways for N-nitrosodimethylamine (NDMA) via HO• addition to the nitrosyl nitrogen 8
	Figure 2.4 Free energy profile for pathway 2–1 of the HO•-induced reaction pathways for NMEA via H abstraction from a C–H bond of the –CH2– functional group adjacent to the N–NO functional group 10
	Figure 2.5 Free energy profile for pathway 2–2 of the HO•-induced reaction pathways for NMEA via H abstraction from a C–H bond of the terminal CH3 functional group in the ethyl chain 11
	Figure 2.6 Free energy profile for pathway 2–3 of the HO•-induced reaction pathways for NMEA via H abstraction from a C–H bond of the terminal CH3 functional group adjacent to the N–NO functional group 11
	Figure 2.7 Free energy profile for pathway 3–1 of the HO•-induced reaction pathways for NMBA via H abstraction from a C–H bond of the –CH2– functional group adjacent to the N–NO functional group 13
	Figure 2.8 Free energy profile for pathway 3–2 of the HO•-induced reaction pathways for NMBA via H abstraction from a C–H bond of the -CH2 functional group adjacent to the –CH2– functional groups on both sides 14
	Figure 2.9 Free energy profile for pathway 3–3 of the HO•-induced reaction pathways for NMBA via H abstraction from a C–H bond of the terminal CH3 functional group in a butyl chain 14
	Figure 2.10 Free energy profile for pathway 3–4 of the HO•-induced reaction pathways for NMBA via H abstraction from a C–H bond of the terminal CH3 functional group adjacent to the N–NO functional group 15
	Figure 2.11 HOMO and lowest unoccupied molecular orbital (LUMO) of the π→π• (a) and n→π (b) transitions at 212 nm and 341 nm, respectively. 16
	Figure 2.12 Free energy profile for pathway 4–1 of the HO•-induced reaction pathways for NDMA photolysis. 17
	Figure 2.13 Free energy profile for pathway 4–2 of the HO•-induced reaction pathways for NDMA photolysis. 17
	Figure 2.14 Free energy profile for pathway 4–3 of the HO•-induced reaction pathways for NDMA photolysis. 18
	Figure 2.15 Free energy profile for pathway 4–3 of the HO•-induced reaction pathways for NDMA photolysis. 18
	Figure 3.1 NDMA photolysis pathways and subsequent reactions 25
	Figure 3.2 Nitrate and nitrite photolysis pathways and the transformation products 27
	Figure 3.3 Concentration profile of major byproducts of NDMA decay at pH 3 for model in comparison to experimental results from Lee et al. 2005 [23] 31
	Figure 3.4 Concentration profile of minor byproducts of NDMA decay at pH 3 for model in comparison to experimental results from Lee et al. 2005 [23] 32
	Figure 3.5 Concentration profile of major byproducts of NDMA decay at pH 7 for model in comparison to experimental results from Lee et al. 2005 [23] 32
	Figure 3.6 Concentration profile of minor byproducts of NDMA decay at pH 7 for model in comparison to experimental results from Lee et al. 2005 [23] 33
	Figure 3.7 NDMA concentration profile at pH 3 for variation of quantum yield two times the originally reported value 35
	Figure 3.8 NDMA concentration profile at pH 3 for variation of quantum yield half of the originally reported value 35
	Figure 3.9 NDMA concentration profile at pH 7 for variation of quantum yield two times the originally reported value 36
	Figure 3.10  NDMA concentration profile at pH 7 for variation of quantum yield half of the originally reported value 36
	Figure 3.11 DMA concentration profile at pH 3 for variation of quantum yield two times the originally reported value 37
	Figure 3.12 DMA concentration profile at pH 3 for variation of quantum yield half the originally reported value 38
	Figure 3.13 DMA concentration profile at pH 7 for variation of quantum yield two times the originally reported value 38
	Figure 3.14 DMA concentration profile at pH 7 for variation of quantum yield half the originally reported value 39
	Figure 3.15 MA concentration profile at pH 3 for variation of quantum yield two times the originally reported value and rate constant by ten times the originally reported value 40
	Figure 3.16 MA concentration profile at pH 3 for variation of quantum yield half the originally reported value and rate constant by one tenth the originally reported value 40
	Figure 3.17 MA concentration profile at pH 7 for variation of quantum yield two times the originally reported value and rate constant by ten times the originally reported value 41
	Figure 3.18 MA concentration profile at pH 7 for variation of quantum yield half the originally reported value and rate constant by one tenth the originally reported value 41
	Figure 4.4 Time-dependent concentration profiles of acetone, hydrogen peroxide, and other byproducts formed in UV/H2O2 process 61
	Figure 4.5 Snapshots of our agent based model that represent the agents of species at different time points 61
	Figure 4.6 Time-dependent concentration profile of hydrogen peroxide 63
	Figure 4.7 Time-dependent concentration profile of acetone 65
	Figure 4.8 Time-dependent concentration profile of acetic acid 66
	Figure 4.9 Time-dependent concentration profile of oxalic acid 67
	Figure 4.10 Time-dependent concentration profile of formic acid 68
	List of Tables

	Table 3.1 Input parameters for simulation from Lee experiment [23] 24
	Table 3.2 Photolysis reactions as input in code with quantum yield values for each pH tested 28
	Table 3.3 Input irreversible reactions for compounds considered in the code 29
	Table 3.4 Reactions and corresponding quantum yield values varied for sensitivity analysis 34
	Table 4.3 Simplified reaction pathways and the reaction rate constants used in the test run 62
	Table A.6.1 Experimentally obtained concentrations of hydrogen peroxide over time in benchtop photolysis experiment 81
	Table A.6.2 Slope and y intercept for linear fit of hydrogen peroxide decay based on variation in included experimental points 81
	Author contribution statement

	This thesis is written in the intention for publication. Portions of the thesis have already been published or presented:
	D. Minakata and E. Coscarelli, "Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations," Molecules, vol. 23, no. 3, p. 539, 2018.
	The remaining chapters are in the process of being prepared for submission.
	For Chapter 2, Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations; Dr. Daisuke Minakata and Erica Coscarelli contributed to the analysis of...
	For Chapter 3, Reaction Mechanisms for the Degradation of Trace Organic Contaminants through Advanced Oxidation Processes: Study of NDMA in UV Photolysis System; Dr. Daisuke Minakata, Divya Kamath and Erica Coscarelli contributed to the analysis of th...
	For Chapter 4, Development of An Agent-based Model to Predict the Fate of Organic Compound Degradation in Aqueous Phase Advanced Oxidation Processes; Robert Zupko, Divya Kamath, Erica Coscarelli, Dr. Mark Rouleau and Dr. Daisuke Minakata contributed t...
	Acknowledgements

	I would like to start by thanking my advisor, Dr. Daisuke Minakata of the Civil and Environmental Engineering Department at Michigan Technological University. He has been very supportive and helpful throughout my masters. Dr. Minakata also believed in...
	I also would like to acknowledge the support of my committee members, Dr. David Hand and Dr. Alex Mayer. I appreciate you being so flexible with me. Thank you for your comments and suggestions as they helped to better me as an engineer. Throughout my ...
	None of this would have been possible without the financial support I received throughout my time in graduate school. This work was supported by the National Science Foundation CBET 1435926, the American Water Works Association Carollo Engineers Bryan...
	Finally I would like to thank my family and friends for supporting me as I worked tirelessly to achieve my goal of getting my masters. A special thanks to my parents, who believed in me even when they had only a vague idea of the work I was doing, and...
	Erica Coscarelli
	List of symbols and abbreviations
	Abstract

	Clean safe drinking water is vital for society. With increasing water scarcity and the increased numbers of chemicals identified in waterways, it is important for us to fully understand how to destroy contaminants of concern and prevent potentially ha...

	1 Introduction
	Clean water is essential, and therefore water treatments and ensuring the removal of contaminants is vital for both human and environmental health. The presences of new emerging contaminants or trace contaminants, such as pharmaceuticals and personal ...
	Use of ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs) are attractive treatment methods because these method destroy the target organic contaminants. The hydroxyl radials react rapidly and non-selectively with most electro...
	Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments that result from byproducts of industrial processes and disinfection products. UV photolysis or UV-based AOPs are promising technologies to remove nitrosamines...
	The results presented in Chapter 2 provide mechanistic insight into the elementary reaction pathways, and were combined with the kinetic information to predict the time-dependent concentration profiles of nitrosamines and their transformation products...
	The ordinary differential equations generated in UV-photolysis and UV-based advanced oxidation processes are stiff and time-intensive to solve them numerically. The use of agent-based models (ABMs) is a novel bottom up that can be used to model comple...

	2 Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations0F
	2.1 Introduction [8]
	Nitrosamines, which contain N–NO functional groups, are a group of chemicals that pose mutagenicity, teratogenicity, and carcinogenicity [9]. Nitrosamines are the byproducts of various manufacturing, agricultural, and natural processes and have been f...
	Ultraviolet (UV) photolysis and UV-based advanced oxidation processes (AOPs) that produce highly reactive hydroxyl radicals (HO•) are attractive and promising water treatment technologies, which can inactivate pathogens and destroy a wide variety of o...
	UV photolysis using a low-pressure UV lamp that emits photons at a wavelength of 254 nm is very effective at destroying NDMA due to the high molar absorptivity (1650 M−1cm−1 at 253.7 nm) and highly reactive HO• produced in AOPs rapidly react with many...
	Quantum mechanical (QM) calculations using ab initio methods or density functional theory (DFT) are attractive approaches to identify elementary reaction pathways and the kinetics of complex fast radical reactions [29]. QM calculations have been used ...
	In this study, we use QM-based calculations to identify the HO•-induced initial elementary reactions with NDMA and other nitrosamines as well as the UV-induced NDMA degradation pathways at 254 nm of wavelength. We investigate NDMA, NMEA, and N-nitroso...

	2.2 Materials and Methods
	All of the QM calculations were performed with the Gaussian 09 revision D.02 program [36] using the Michigan Tech high-performance cluster “Superior” and homemade LINUX workstations. The M06-2X/cc-pVDZ [37] was used to optimize the electronic structur...

	2.3 Results
	2.3.1 HO•-Induced Degradation
	2.3.1.1 N-Nitrosodimethylamine (NDMA) Degradation Pathways Induced by HO•
	NDMA has three potential initial degradation mechanisms: (1) H atom abstraction from a C–H bond of the methyl group (pathway 1–1 in Figure 1), (2) HO• addition to amine nitrogen (pathway 1–2 in Figure 2), and (3) HO• addition to nitrosyl nitrogen (pat...
	Figure 2.1 Free energy profile for pathway 1–1 of the HO•-induced reaction pathways for N-nitrosodimethylamine (NDMA) via H abstraction. TS denotes the transition state, and P denotes the product. The numbers (kcal/mol) are the free energy of activati...
	The second pathway is HO• addition to the amine nitrogen, followed by the loss of an OH group. Although initial HO• addition has a lower free energy of activation ( of 6.8 kcal/mol) than the H abstraction identified in pathway 1–1, the subsequent reac...
	Figure 2.2 Free energy profile for pathway 1–2 of the HO•-induced reaction pathways for N-nitrosodimethylamine (NDMA) via HO• addition to amine nitrogen. The numbers (kcal/mol) are the free energy of activation for the TS and free energy of reaction f...
	Figure 2.3 Free energy profile for pathway 1–3 of the HO•-induced reaction pathways for N-nitrosodimethylamine (NDMA) via HO• addition to the nitrosyl nitrogen. The numbers (kcal/mol) are the free energy of activation for the TS and free energy of rea...
	Pathway 1–3 involves initial HO• addition to the nitrosyl nitrogen with a  of 9.6 kcal/mol. Although this reaction has an almost identical   to that of pathway 1–1, the initial HO• addition reaction that produces an alkoxyl radical [i.e., CH3NNO•(OH)C...
	The above investigation confirms that H abstraction from a C–H bond of the methyl functional group of NDMA is the dominant initial reaction pathway as induced by HO•, which is consistent with the experimental investigation using the electron paramagne...
	2.3.1.2 N-Nitrosomethylethylamine (NMEA) Degradation Pathways Induced by HO•
	NMEA has three potential H abstraction sites: (1) a C–H bond of the –CH2– functional group adjacent to the N–NO functional group by pathway 2–1, (2) a C–H bond of the terminal CH3 functional group in the ethyl chain by pathway 2–2, and (3) a C–H bond ...
	Figure 2.4 Free energy profile for pathway 2–1 of the HO•-induced reaction pathways for NMEA via H abstraction from a C–H bond of the –CH2– functional group adjacent to the N–NO functional group. The numbers (kcal/mol) are the free energy of activatio...
	Figure 2.5 Free energy profile for pathway 2–2 of the HO•-induced reaction pathways for NMEA via H abstraction from a C–H bond of the terminal CH3 functional group in the ethyl chain. The numbers (kcal/mol) are the free energy of activation for the TS...
	Figure 2.6 Free energy profile for pathway 2–3 of the HO•-induced reaction pathways for NMEA via H abstraction from a C–H bond of the terminal CH3 functional group adjacent to the N–NO functional group. The numbers (kcal/mol) are the free energy of ac...
	2.3.1.3 N-Nitrosomethylbutylamine (NMBA) Degradation Pathways Induced by HO•
	NMBA has four potential H abstraction sites from C–H bonds by HO•: (1) a C–H bond of the –CH2– functional group adjacent to the N–NO functional group by pathway 3–1, (2) a C–H bond of the –CH2 functional group adjacent to the –CH2– functional groups o...
	Interestingly, we observed distinctive differences in the reactivity of molecular oxygen addition to different C-centered radicals for NMBA. The initial H abstraction from different C–H bonds in NMBA produced CH3NNO•CHCH2CH3 by pathway 3–1, CH3NNOCH2•...
	To investigate the effect of the location of the C-centered radical on the occurrence of radical delocalization, we calculated the values for radical transfer from a C-centered radical to a neighboring C-/N-centered radical. For example, CH3NNO•CHCH2C...
	Figure 2.7 Free energy profile for pathway 3–1 of the HO•-induced reaction pathways for NMBA via H abstraction from a C–H bond of the –CH2– functional group adjacent to the N–NO functional group. The numbers (kcal/mol) are the free energy of activatio...
	Figure 2.8 Free energy profile for pathway 3–2 of the HO•-induced reaction pathways for NMBA via H abstraction from a C–H bond of the -CH2 functional group adjacent to the –CH2– functional groups on both sides. The numbers (kcal/mol) are the free ener...
	Figure 2.9 Free energy profile for pathway 3–3 of the HO•-induced reaction pathways for NMBA via H abstraction from a C–H bond of the terminal CH3 functional group in a butyl chain. The numbers (kcal/mol) are the free energy of activation for the TS a...
	Figure 2.10 Free energy profile for pathway 3–4 of the HO•-induced reaction pathways for NMBA via H abstraction from a C–H bond of the terminal CH3 functional group adjacent to the N–NO functional group. The numbers (kcal/mol) are the free energy of a...

	2.3.2 UV-Induced Degradation
	2.3.2.1 NDMA Degradation Pathways Induced by UV Photolysis
	NDMA absorbs photons at a wavelength of 228 nm with a molar absorptivity of 7380 M−1cm−1 and quantum yield of 0.13 at pH 7 [15]. At a wavelength of 253.7 nm, where a typical low-pressure UV lamp emits photons, the molar absorptivity was reported to be...
	The UV photolysis-induced NDMA degradation pathways were extensively studied [23, 24]. According to their studies, NDMA undergoes three major degradation pathways induced by UV photolysis: (1) formation of an aminium radical [(CH3)2•N(+)H] and nitric ...
	(a)             (b)
	Figure 2.11 HOMO and lowest unoccupied molecular orbital (LUMO) of the π→π* (a) and n→π (b) transitions at 212 nm and 341 nm, respectively.
	The products of (CH3)2•N(+)H and •NO in pathway 4–1 react in a solvent cage to produce N-methylidenemethylamine [(CH2=N(+)HCH3] and nitroxyl (HNO). Our calculation obtained a of 1.6 kcal/mol for this reaction. Then, N-methylidenemethylamine undergoes ...
	Figure 2.12 Free energy profile for pathway 4–1 of the HO•-induced reaction pathways for NDMA photolysis.
	One of the C–H bonds in the methyl group of the dimethylamine produced in pathway 4–2 undergoes H abstraction by HO• to produce a C-centered radical with a  of 13.9 kcal/mol. Molecular oxygen adds to the C-centered radical to produce a peroxyl radical...
	Figure 2.13 Free energy profile for pathway 4–2 of the HO•-induced reaction pathways for NDMA photolysis.
	The products of •NO and •O2- from pathway 4–3 react in a solvent cage to produce peroxynitrite (ONOO−) with a  of 1.72 kcal/mol. The rate constant for this reaction was determined to be (4.3 − 7.6) × 109 M−1s−1 [47, 48]. Then, ONOO- undergoes rearrang...
	When nitrate undergoes UV photolysis, a nitrite ion (NO2−) and NO2• are produced. Then, NO2• reacts with HO•, O2•−, or NO2• with a  of 48.3 kcal/mol, 40.2 kcal/mol, or 100.6 kcal/mol to produce ONOOH, NO2-/NO3−, or N2O4, respectively. Although the dis...
	Figure 2.14 Free energy profile for pathway 4–3 of the HO•-induced reaction pathways for NDMA photolysis.
	Figure 2.15 Free energy profile for pathway 4–3 of the HO•-induced reaction pathways for NDMA photolysis.

	2.3.3 Environmental Implication and Future Study
	Nitrosamines, and NDMA in particular, are extremely potent carcinogenic contaminants in water. The concentration at which NDMA shows potent carcinogenicity is extremely low (0.7 ng/L) [9]. Experimentally investigating the ng/L fate of many chemical co...
	Once the elementary reaction pathways are identified, the reaction rate constants should be determined or predicted to calculate the reaction rate of each molecule or species involved in each elementary reaction step. By combining the elementary react...



	3 The Fate of N-Nitrosodimethylamine (NDMA) Degradation in Aqueous-phase UV Photolysis1F
	3.1 Introduction
	The trace organic pollutant category nitrosamines poses high potential carcinogenicity and is of serious concern about adverse human health and ecotoxicological effects. Among N-nitrosamines, N-nitrosodimethylamine (NDMA) is on the EPA priority pollut...
	Ultraviolet (UV)-based water treatment technology is the promising technology to degrade NDMA. UV photolysis for the attenuation of NDMA in groundwater and drinking water was performed at full scales. The absorbance of photons by the compound of inter...
	Although the photochemical reactions of NDMA under UV irradiation have been studied at various conditions and the major degradation pathways and transformation products were reported, the complete reaction mechanisms and the kinetics have not been elu...
	As nitrate and nitrite are the major byproducts of NDMA photolysis, it is important to consider the reactions they go through, specifically their photolysis pathways. The prediction of reaction mechanisms involved in nitrate/ nitrite photolysis is sti...
	Quantum mechanical (QM) calculations using ab initio methods or density functional theory (DFT) are attractive approaches to identify elementary reaction pathways and the kinetics of complex fast radical reactions. QM calculations have been used to su...
	This study aims to elucidate photolysis reaction mechanisms of NDMA by developing an elementary reaction-based kinetic model. The elementary reaction pathways and the reaction rate constants were determined with theoretical calculations using ab initi...

	3.2 Materials and Methods
	All experimental values for NDMA and subsequent byproducts were taken from Lee et al, UV Photolytic Mechanism of N-Nitrosodimethylamine in Water: Roles of Dissolved Oxygen and Solution pH [23]. The model used is a modified AdOx model that allows for n...
	By calculating the charge balance at each time step, the change in pH can be found and the model can determine dissociation of all species at the new pH. This modified AdOx model is run using Microsoft Visual Studios 2013 Professional and Intel Parall...
	Table 3.1 Input parameters for simulation from Lee experiment [23]
	All QM calculations were performed with the Gaussian 09 revision D.02 program using the Michigan Tech high-performance cluster “Superior” and homemade LINUX workstations. The UV-induced reaction pathways with NDMA were calculated with the Gaussian-4 t...

	3.3 Results and Discussion
	3.3.1 Elementary Reaction Pathways After Initial Photolysis of NDMA
	The initial photolysis of NDMA undergoes three major degradation mechanisms:(1) formation of an aminium radical [(CH3)2•N(+)H] and nitric acid (•NO) resulting from homolytic cleavage of the N-N bond (pathway 1), (2) formation of dimethylamine [(CH3)2N...
	Figure 3.1 NDMA photolysis pathways and subsequent reactions. Radicals are indicated with an asterisk and double bonds with an equal sign. Solid colored arrows with compounds listed on them indicate the product (end of arrow) requires both compound at...
	The products of (CH3)2•N(+)H and •NO in pathway 1 react in a solvent cage to produce N-methylidenemethylamine [(CH2=N(+)HCH3] and nitroxyl (HNO). Our calculation obtained the aqueous-phase free energy of activation of 1.6 kcal/mol for this reaction. T...
	One of the C-H bonds in the methyl group of the dimethylamine produced in pathway 2 undergoes H-atom abstraction by HO• to produce a C-centered radical with 13.9 kcal/mol of free energy of activation. Molecular oxygen adds to the C-centered radical to...
	The products of •NO and •O2- from pathway 3 react in a solvent cage to produce peroxynitrite (ONOO-) with 2.0 kcal/mol of aqueous-phase free energy of activation. The rate constant for this reaction was determined to be (4.3-7.6) ×109 M-1s-1. Dependin...
	When nitrate undergoes UV photolysis, an excited state nitrate is created that can then form a nitrite ion (NO2-) or NO2• [57, 63, 64]. Then, NO2• reacts with HO•, O2•-, or NO2• with 48.3 kcal/mol, 40.2 kcal/mol, or 100.6 kcal/mol of aqueous-phase fre...
	Figure 3.2 Nitrate and nitrite photolysis pathways and the transformation products. Radicals are indicated with an asterisk and double bonds with an equal sign. Solid colored arrows with compounds listed on them indicate the product (end of arrow) req...

	3.3.2 Quantum Yields and Reaction Rate Constants
	Table 3.2 summarizes the identified photolysis reactions with each quantum yield determined in this study and used as input into the simulation. The quantum yield for each photolysis reaction was determined by fitting with the experimentally determine...
	Table 3.2 Photolysis reactions as input in code with quantum yield values for each pH tested. Note that the code is only able to produce one to one ratios for photolysis reactions so some reactions with multiple products were split into several reacti...
	The reaction rate constants used in this study are shown in Table 3.3. The elementary reaction pathways were listed based on Figures 3.1 and 3.2. For those reactions without literature sources listed, reactions and rate constants were estimated throug...
	Table 3.3 Input irreversible reactions for compounds considered in the code

	3.3.3 Time-dependent Concentration Profiles of NDMA and Byproducts
	Once the reaction pathways and reaction rate constants were determined, ordinary differential equations were generated for all species and solved to obtain the concentration profiles of all species. Figures 3.3 through 3.6 compare the time-dependent c...
	Figure 3.3 Concentration profile of major byproducts of NDMA decay at pH 3 for model in comparison to experimental results from Lee et al. 2005 [23]
	Figure 3.4 Concentration profile of minor byproducts of NDMA decay at pH 3 for model in comparison to experimental results from Lee et al. 2005 [23]
	Figure 3.5 Concentration profile of major byproducts of NDMA decay at pH 7 for model in comparison to experimental results from Lee et al. 2005 [23]
	Figure 3.6 Concentration profile of minor byproducts of NDMA decay at pH 7 for model in comparison to experimental results from Lee et al. 2005 [23]

	3.3.4 Sensitivity Analysis
	A sensitivity analysis was performed to investigate the impact of quantum yields and rate constants on the predicted concentration profiles of species. By doing so, one can get to know the dominant important reactions and species that are responsible ...
	Table 3.4 Reactions and corresponding quantum yield values varied for sensitivity analysis. Note that their reaction numbers correspond to the quantum yields changed as seen in the key for Figures 3.7 through 3.18
	Figures 3.7 and 3.8 indicate the decay of NDMA as predicated by the model at pH 3. The variation of individual quantum yields suggests that reaction 6 [i.e., (CH3)2N-NO → HNO2] is primarily controlling the concentration of NDMA in the system as change...
	Figure 3.7 NDMA concentration profile at pH 3 for variation of quantum yield two times the originally reported value
	Figure 3.8 NDMA concentration profile at pH 3 for variation of quantum yield half of the originally reported value
	Figure 3.9 NDMA concentration profile at pH 7 for variation of quantum yield two times the originally reported value
	Figure 3.10  NDMA concentration profile at pH 7 for variation of quantum yield half of the originally reported value
	The formation of DMA is impacted by reaction 6 as well since the concentration of NDMA in the system impact DMA formation, the quicker NDMA is exhausted, less is available for DMA formation, shown in Figure 3.11 for pH 3. At pH 7, reaction 6 did not p...
	Figure 3.11 DMA concentration profile at pH 3 for variation of quantum yield two times the originally reported value
	Figure 3.12 DMA concentration profile at pH 3 for variation of quantum yield half the originally reported value
	Figure 3.13 DMA concentration profile at pH 7 for variation of quantum yield two times the originally reported value
	Figure 3.14 DMA concentration profile at pH 7 for variation of quantum yield half the originally reported value
	Quantum yield was not the only factor impacting MA formation, an irreversible reaction is responsible for the direct formation and therefore the reaction rate constant was also varied. Similar to DMA, MA formation is dependent on reaction 6 which impa...
	Figure 3.15 MA concentration profile at pH 3 for variation of quantum yield two times the originally reported value and rate constant by ten times the originally reported value
	Figure 3.16 MA concentration profile at pH 3 for variation of quantum yield half the originally reported value and rate constant by one tenth the originally reported value
	Figure 3.17 MA concentration profile at pH 7 for variation of quantum yield two times the originally reported value and rate constant by ten times the originally reported value
	Figure 3.18 MA concentration profile at pH 7 for variation of quantum yield half the originally reported value and rate constant by one tenth the originally reported value


	3.4 Environmental Implications
	Nitrogen-containing organic contaminants pose more toxicity than carbon-containing compounds. This raises serious concern about the fate of degradation products in engineered water treatment and natural aquatic systems. The findings in this study high...


	4 Development of an Agent-based Model to Predict the Fate of Organic Compound Degradation in Aqueous Phase Advanced Oxidation Processes2F
	4.1 Introduction
	A number of concerns have been raised about the potential adverse health and ecological effects of new and emerging contaminants recently identified in natural waterways that are likely present due to inability of conventional water and wastewater tre...
	Advanced Oxidation Processes (AOPs) offer a promising and attractive technological solution to this problem because they can destroy a wide variety of known and emerging organic contaminants present in the aqueous phase as hydroxyl radicals (HO() prod...
	AOPs offer an innovative way to degrade hazardous trace organic contaminants but their complex radical-involved reaction mechanisms make it difficult to understand and predict the formation of intermediate radicals and byproducts, which is problematic...
	A number of conventional steady-state and non-steady-state models have already been developed in the literature that explore various aspects of AOP treatment. For example, Glaze et al. (1995) derived a kinetic model for the UV/H2O2 process with steady...
	The most detailed level of modeling to date in the existing literature are models that use complete kinetic descriptions of a system without steady state approximations [91]. In other words, all reactions in the system are considered and rate equation...
	Wols et al. (2014) also developed a kinetic model for UV and UV/H2O2 process in a collimated beam system employing a monochromatic low pressure UV lamp and later developed a similar kinetic model for polychromatic medium-pressure UV lamps [98]. These ...
	In general, the main limitation of the AOP models in the existing literature reviewed so far is that they rely on ODEs that are very stiff to solve numerically because of dramatic differences in reaction rates (i.e., the product of the reaction rate c...
	In our study, we develop an ABM to aid our understanding of the intermediate radicals and stable byproducts involved in peroxyl radical bimolecular decay. Our model made it possible to visualize changes in chemical concentrations over time resulting f...

	4.2 Materials and Methods
	4.2.1 Model Overview
	ChemSim is an ABM software application designed to predict the fate of organic compounds in Advanced Oxidation Processes (AOPs) for wastewater treatment, which is also capable of exploring other more generalized chemical reaction pathways. The agents ...

	4.2.2 Entities, State Variables, and Scales
	Molecule agents are the primary simulated entities of ChemSim. Molecule agents can represent any possible individual chemical species or compound. Each molecule agent has four main attributes that determine how it behaves within the simulated AOP reac...
	The environment in which our molecule agents interact in ChemSim is a simulated AOP reactor consisting of a well-mixed aqueous solution with dissolved compounds (e.g., Oxygen, Nitrogen, etc.). We use a sparse lattice to model this environment computat...
	ℎ𝑎𝑠ℎ(𝑥,𝑦,𝑧) = ((𝑥 ∗ 𝑝1) 𝑥𝑜𝑟 (𝑦 ∗ 𝑝2) 𝑥𝑜𝑟 (𝑧 ∗ 𝑝3)) 𝑚𝑜𝑑 𝑛
	where 𝑥,𝑦,𝑧∈ℤ, 𝑝1,𝑝2,𝑝3∈𝑃𝑅𝐼𝑀𝐸, and n is the size of the allocated array for the values. This hashing allows us to collapse three-dimensional space into a single map (i.e., list) of values and enables agent retrieval and probing for agent ex...

	4.2.3 Data Requirements
	ChemSim requires a number of user-provided data inputs to initialize the model for each simulated experiment. For example, users must provide a comma-separated values (CSV) file that lists the names of the chemical species to be included and their che...

	4.2.4 Model Initialization
	To begin model initialization, ChemSim first reads in the user-provided CSV files outlined above. One molecule agent is then created for each chemical compound based upon the initial concentration of compounds and species types defined in these user-p...
	𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟=1/(,𝑣-1.+,𝑣-2.+...+,,𝑣-𝑛.)-.
	,𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠-𝑖.=,𝑣-𝑖.∗𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟∗𝑡𝑎𝑟𝑔𝑒𝑡
	𝑠𝑐𝑎𝑙𝑎𝑟=𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟∗𝑡𝑎𝑟𝑔𝑒𝑡
	where v is the number of moles for a given compound, target is the maximum number of total molecules, and molecules is the quantity of the given molecule.

	4.2.5 Process Overview and Scheduling
	A typical simulated experiment involves the following basic order of operations:
	A simulation round in ChemSim can represent an arbitrary length of time depending upon reaction requirements. During each round, all agents present in the model are scheduled for activation. They are then sequentially activated and operate in accordan...

	4.2.6 Sub-models
	4.2.6.1 Movement of the Molecule Agent
	In the event that a molecule agent is activated and there are no reactant agents present in its interaction radius, the molecule agent will perform a simple random walk from its current location on the sparse reactor grid. To perform this random walk,...
	4.2.6.2 Photolysis
	Photolysis is required to catalyze all chemical reactions in our simulated reactor. Photolysis triggers the decay of existing hydrogen peroxide molecule agents into hydroxyl radical agents which then further catalyze reactions beginning with Acetone d...
	𝑐=𝑚∗𝑡+𝑏
	where t is the current time-step or simulation round, b is the starting quantity of Hydrogen Peroxide molecules, and c is the new expected count based on a best fit linear decay as determined experimentally. The difference between c and the current qu...
	𝑝𝑟=𝑑𝑒𝑐𝑎𝑦𝐶𝑜𝑢𝑛𝑡 / 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦
	where pr is the individual probability, assuming all molecules have an equal likelihood of decaying.
	4.2.6.3 Interaction Radius
	Once photolysis triggers the decay of Hydrogen Peroxide agents into hydroxyl radical agents, all further chemical reactions use a reaction radius-based decay tied to the presence of possible chemical reactants. To determine if a reaction should occur ...
	𝑟=(3𝑘𝛥𝑡 / 4((, 1,0-3.𝑁-𝑎.,)-1/3.
	where k is the reaction rate, Δt is the duration of a model time step, and Na is Avogadro's constant. However, within the context of the model the kchem value is used as the basis,
	,𝑘-𝑐ℎ𝑒𝑚.=(𝑘(,𝑘-𝑑𝑖𝑓𝑓.) / (𝑘+,𝑘-𝑑𝑖𝑓𝑓.)
	𝑟=(3,𝑘-𝑐ℎ𝑒𝑚.𝛥𝑡 / 4(,1,0-3.𝑁-𝑎.,)-1/3.
	Thus, if a reactant is found within r, new byproducts molecule agents are created (based on the user-provided chemical pathways list) and added to the sparse reactor grid at the location in which the reaction took place and the parent molecule agents ...
	4.2.6.4 Dissociation and Non-dissociation of Species
	Another important aspect of the model is acid dissociation which takes place in the model through a process referred to in the code as “pKa balancing.” This takes place at the end of each time step for reactions that have a dissociation reaction defin...
	𝐻𝐴⇔,𝐴-−.+,𝐻-+.
	The quantity of agents in the model is calculated as follows:
	𝑟𝑎𝑡𝑖𝑜=,10-−𝑝𝐾𝑎./,10-−𝑝𝐻.
	,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦-,𝐴-−..=,𝑐𝑜𝑢𝑛𝑡-,𝐴-−..∗𝑟𝑎𝑡𝑖𝑜
	,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦-,𝐴-−..=,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦-,𝐴-−..>,𝑐𝑜𝑢𝑛𝑡-,𝐴-−.. 𝑡ℎ𝑒𝑛 ,𝑐𝑜𝑢𝑛𝑡-,𝐴-−.. 𝑒𝑙𝑠𝑒 ,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦-,𝐴-−..
	,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦-,𝐻-+..=,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦-,𝐴-−..
	,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦-𝐻𝐴.= ,𝑐𝑜𝑢𝑛𝑡-𝐻𝐴.− ,𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦-,𝐴-−..
	Assuming that pKa is the acid dissociation quantity that is relevant to the reaction and pH is the appropriate value for the solution. The quantities then represent the number of molecules that need to be removed, or added, to the model. In the event ...

	4.2.7 Design Concepts
	Agent decision-making in ChemSim, unlike most ABM simulations, is highly constrained and deterministic. This is because agents represent inanimate chemical compounds or molecules that simply respond to their environment without decision-making. The ad...

	4.2.8 Emergence
	The goal of most ABMs is the generation of emergent phenomenon. The dynamic concentration profiles of our chemical species that vary over time throughout the course of our simulations are one example of an emergent product in ChemSim. The final concen...

	4.2.9 Interaction
	The main drive of emergence and system complexity in ChemSim comes from agent interactions as opposed to agent decision-making. Thousands of individual-level interactions take place between heterogeneous agents representing various chemical species bo...

	4.2.10 Stochasticity
	The initial location of all molecule agents on our sparse reactor grid are randomly assigned at model initialization to replicate a well-mixed solution. Molecule movement during each simulation round is also modeled using a random walk to replicate na...

	4.2.11 Observations
	During model execution, ChemSim tracks the current number of existing molecule agents, including the time of their creation and their eventual destruction upon reaction with a reactant. This data is then plotted using a time-series chart to visualize ...

	4.2.12 Model Simplifications
	During model runs, pH, pressure, and temperature were assumed to be constant throughout the duration of the model and uniform within the reactor. Temperature was measured during the benchtop experiments and changed minimally, therefore supporting this...

	4.2.13 Input Parameters

	4.3 Experimental Materials and Methods
	4.3.1 Reactor Setup
	A benchtop photoreactor was used to obtain the experimental results. The photoreactor was composed of four reactor vessels each a Wheaton Roller Bottle with a volume of 1.8 L to allow for multiple experiments to be conducted at once. Reactor vessels w...

	4.3.2 Chemical Description
	All chemicals used in the experiments are of the highest grade.  Acetone, hydrogen peroxide, oxalic acid, formic acid, acetic acid, glyoxylic acid, pyruvaldehyde (40% wt in soln) and pyruvic acid were obtained from sigma Aldrich of ACS grade.  Formald...

	4.3.3 Experimental Setup
	UV photolysis experiment were conducted in the photorecator described above with only one of the four reactor vessels in use. Using ferrioxalate actinometry, the light intensity in this reactor was obtained to be 5.16 x 10-7 Einstein/L-s.  Temperature...
	Acetone, formaldehyde and pyruvic aldehyde were determined by derivatization with 2,4-dinitrophenyl hydrazine followed by analyses using a UHPLC 2000 series Dionex equipped with a reverse phase C-18 column (4.5 mm × 250 mm). The mobile phase used was ...


	4.4 Results
	As a proof-of-concept demonstration of our ABM approach, we ran a series of computational experiments using ChemSim to simulate the UV/H2O2 process and then we compared our resulting simulated concentration profiles of a parent contaminant, acetone, h...
	Figure 4.1 Time-dependent concentration profiles of acetone, hydrogen peroxide, and other byproducts formed in UV/H2O2 process
	Figure 4.2 Snapshots of our agent based model that represent the agents of species at different time points. Blue represents hydrogen peroxide, teal represents acetone, red represents hydroxyl radicals, and dark gray represents byproducts
	Table 4.1 Simplified reaction pathways and the reaction rate constants used in the test run
	Taking a closer look at the individual molecule concentration profiles produced in our simulated reactor, we can further see the value behind the ABM approach to modeling AOP treatment. We begin with an exposition of the underlying dynamics driving ou...
	Figure 4.3 Time-dependent concentration profile of hydrogen peroxide
	Having verified the expected linear decay of hydrogen peroxide agents in our simulated reactor experiments against our laboratory observations, we then moved on to explore the next reaction phase of our simulated AOP reactor. In this phase, our simula...
	Figure 4.4 Time-dependent concentration profile of acetone
	In addition to replicating the second-order decay of acetone in our simulated AOP reactor, we also generated and tracked the formation and concentration profile changes of three additional simulated byproducts over time: acetic acid, formic acid, and ...
	Figure 4.5 Time-dependent concentration profile of acetic acid
	For example, we can see in Figure 4.8 that the shape of the simulated concentration profile for acetic acid follows the same somewhat Gaussian shape of our observed laboratory results for acetic acid but the peak concertation observed in the lab of ne...
	Figure 4.6 Time-dependent concentration profile of oxalic acid
	A similar outcome to that of Figure 4.8 occurs in Figure 4.9 in which the simulated concentration profile of oxalic acid even more closely follows the trend in our observed laboratory results for oxalic acid, peaking at about 500 minutes for both resu...
	Figure 4.7 Time-dependent concentration profile of formic acid
	Finally, we can see in Figure 4.10 that the simulated concentration profile for formic acid took a lot longer to reach the much higher concertation level peak of roughly 0.27 mM when compared to the concentration profile peak observed in our laborator...

	4.5 Applicability and Future Work
	Overall, these results show promise for developing a better understanding of the complex elementary reaction pathways and the fate of organic compounds. Now that ChemSim operational, and the program side of the project is complete, the next big step i...


	5 Conclusions and Future Work
	5.1 Chapter 2
	 Use of QM calculations to determine elementary reactions from overall experimentally obtained reactions can be very beneficial, particularly when concentrations are below detection limits for nitrosamines.
	 The resulting elementary reactions can be paired with reaction rate constants to predict time dependent concentration profiles of target compounds.

	5.2 Chapter 3
	 Elementary-reaction-based kinetic model can be used a way to screen for contaminants of concern and estimate the degradation byproducts of nitrosamines.
	 Continued work is needed to improve model at pH 7 to ensure its applicability in other scenarios.

	5.3 Chapter 4
	 Agent-based modeling is a promising approach for determining concentration profiles in AOPs, particularly of compounds that are unable to be experimentally measured.
	 Next steps are to run full reaction list and determine any missing elementary reactions along with improving the model to account for variation in pH.
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