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Abstract 

This study implemented LiDAR (Light Detection and Ranging) remote sensing 

technology and applied ITD (Individual Tree Detection) methods as an approach to 

estimate some essential tree variables, such as DBH (Diameter at Breast Height), height, 

volume, and biomass for Ford Forest Research Center in Upper Peninsula, Michigan. 

There were 34 deciduous (1 bigtooth aspen, 9 red oaks, 20 sugar maples, 2 white birches, 

and 2 yellow birches) and 17 coniferous (2 eastern hemlocks, 11 red pines, and 4 white 

pines) subject tree species. There were two different available LiDAR datasets from the 

same area that were collected in 2011 and 2017. Height measurements were done at 96% 

and 97% accuracy for hardwood and softwood tree species, respectively.  

Several other tree variables derived from LiDAR point cloud were used to estimate DBH 

by using regression analysis for both 2017 and 2011 datasets. Estimation equations were 

tested on the other dataset. The best-fitted formula was 2017’s, with 0.55 adjusted R² and 

less than 0.0001 p-values on 2017 LiDAR data while 0.42 adjusted R² and less than 

0.0001 p-values on 2011’s dataset. Some additional analysis that includes calculating 

PRMSE (Predicted Root Mean Square Error), BIAS (Mean Error), and MAD (Mean 

Absolute Difference) have been applied. The equation that was generated by using data 

from 2017 has -0.57 BIAS for Hardwood and 1.13 BIAS for softwood. That result 

indicates that the equation has -0.57 centimeters (cm) estimation error for hardwood and 

1.13 cm for softwood on DBH estimations. 
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1. Introduction 

 Monitoring aboveground carbon stock plays a significant role in determining its part in 

the global carbon cycle, predicting how the change in that cycle can be affected by the 

ratio of land use/land cover change, and estimating the effects of carbon sequestration 

that results from deforestation (Lefsky et al., 2002). In this case, there are many benefits 

from using remote sensing including reduced cost, increased accuracy, the ability to 

measure repeatedly, to cover large areas, etc. Therefore, remote sensing is a solution 

(Cohen et al., 1996; Running et al., 1999). One of the best existing remote sensing 

techniques is LiDAR. 

1.1. LiDAR Remote Sensing  

LiDAR is an acronym for Light Detection and Ranging, which is an active remote 

sensing technology that uses a laser to measure distance. LiDAR can be classified into 

two basic groups; aerial and terrestrial. The system works by sending thousands of laser 

pulses per second to the ground and receives the reflectance from the target object by the 

aerial LiDAR system which is carried by aircraft. With using the travel time of the laser 

pulse and speed of light, the distance between aircraft and the target is determined.  The 

formula for this calculation is;  𝑑 =
௖∗௧

ଶ∗௡
   

Where: 

d = distance in meters 

c = speed of light in vacuum (299 792 458 m/s)  
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t = time in seconds 

n = refractive index (the ratio of speed of light in vacuum and phase velocity (v) of light 

in the medium) 

The aircraft carries the LiDAR which includes a laser sender and receiver, a Global 

Navigation Satellite System (GNSS) to determine the exact position where the LiDAR 

data are collected, and an Inertial Measurement Unit (IMU) to correct some data 

collection error, which is caused by the weather condition during the flight, for example; 

Pitch, Roll, and Row. 

 

Figure 1. 3-Dimension description image for pitch, roll, and row. Image source:  

https://en.wikipedia.org/wiki/Inertial_measurement_unit#/media/File:Flight_dynamics_w

ith_text.png; Accessed <06/17/2018>.  

LiDAR also plays a significant role in forest inventory by measuring tree heights more 

accurately and quicker than other remote sensing methods (Ozkal, 2017). For example, 

LiDAR makes it possible to get multiple returns per pulse which gives a cloud and with 

post processing each return gives an (X, Y, Z) coordinate for each point. Then, by 
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selecting the ground returns, a digital elevation model (DEM) can be generated. 

Likewise, a digital surface model (DSM) can be generated by displaying the first LiDAR 

returns. After that, subtracting DEM from DSM derives a canopy height model (CHM).  

The LiDAR point clouds become more useful when they are used together with ground 

data to gain more information about individual trees and stands’ structure (Lillesand et 

al., 2014). Point clouds represent a 3D shape of the feature, and have a set of X, Y and Z 

coordinates and some other additional attributes, such as tree height and crown diameter. 

It is possible to use LiDAR for various forest applications, for example; forest inventory 

(Maack et al., 2016, Hu et al., 2016), forest fire management (Almeida et al., 2016, 

Hudak et al.,2016), forest management (Wulder et al., 2008, Sasaki et al., 2016), and 

forest biomass and carbon storage (Hopkinson et al, 2016, Singh et al., 2016). In addition, 

Dupuy et al., (2013) used high-resolution images and LiDAR to characterize the 

horizontal structure of a tropical forest canopy. Moreover, using LiDAR for individual 

tree detection (ITD) gives a significant opportunity to estimate some tree variables, such 

as diameter at breast height (DBH), by using a number of measured tree variables, for 

instance, height and crown diameter (Jeronimo et al., 2018).   

Predicting DBH from LiDAR is significant for of the following reasons: 

1. If height measurements can be done with LiDAR directly to predict DBH then a 

volume or biomass model can be created to estimate tree volume or biomass. 



11 
 

2. When LiDAR height combines with tree segmentation then a diameter 

distribution can be generated, perhaps quantifying forest structure would be 

possible.  

3. Updating forest inventory plot data without visiting the plots may be possible. 

For example, since 2017 ground data and 2017 LiDAR data are available, then 

with just another LiDAR data collection after a couple of years, calculating 

diameter in that year may be done easily.  

4. Following (3), finding average diameter growth, volume growth at the tree level 

and volume growth at the per ha level could be possible. 

5. If crown dimensional changes can be done with LiDAR, applying (4) might be 

very accurate. For example, if crown grows a lot, then DBH probably grew a lot.  

6. Since there will be no field collection, errors caused by employees might be 

reduced. Weather conditions will no longer be a problem for ground data 

collection.  

Hence, the specific objectives of this study are as follows: 

 Illustrate what variables derived from LiDAR dataset are the most powerful to 

estimate DBH by using ITD method. 

 Demonstrate how accurate these estimations are by comparing with ground-

measured metrics. 
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1.2. Height Measurement Techniques  

Tree height is one of the most significant variables for predicting tree biomass and 

volume; however, forests, which have tall, wide crowns and dense canopies, causing 

measurement difficulties (Larjavaara and Muller-Landau, 2013).  

To measure tree heights from the ground, a variety of techniques have been used (Clark 

& Clark 2001; Chave 2005). The oldest method among them may be climbing the tree. 

The requirement for this measurement is at least two people since the climber might not 

see the top of the tree from directly below. In that case, the second person should step 

back from tree until they have a clear view to decide the highest point of the tree. When 

the well-equipped climber reaches their position on the tree, they release the measuring 

tape to the ground and pulls up the height pole to the peak of tree. The second person tells 

them to stop when the pole reaches the highest point of tree and climber reads the value 

on the pole. Then the second person reads the value on the measurement tape; combines 

both pole and tape values and records it. The downsides of this method are technicians’ 

errors and time. For example, based on the experience in this study, measuring a tree can 

takes 45 minutes to 1 hour. That would be an issue for large area studies.  

Another easier way to make this measurement is the tangent method. The principles of 

this manner are measuring angles (α and β in Figure 2) from horizontal by using a 

clinometer and integrating these with either horizontal distance measurements or an angle 

to a known length pole’s measurements (Korning & Thomsen 1994).  
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Figure 2.  Portrayal of the tangent and sine methods of measuring the height of a vertical  

tree where BD = tan (α) * AD; CD = tan (β) * AD and as a result, the total height         

BC = BD + CD.  

Because measurement of distance between clinometer and tree requires a tape and 

recording two measurements for one tree, this method is time-consuming. Thereby, laser 

rangefinders have been used to perform the same measurements more efficiently.  

A laser hypsometer uses a rangefinder to measure tree heights. It sends laser pulses to the 

tree to determine the distance from the hypsometer, to the top and base of the tree to 

estimate its height by combining tangent and sine methods. The observer has to be far 

enough from the tree to apply this method without random errors. Based on Goodwind’s 

(2004) study, the angle from horizontal to the top should be smaller than 45°. That means 

the technician should be standing at a distance which nearly equals one tree height. The 

main justification under this recommendation is that the closer the technician is to the 
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tree, the greater the deviation when the tree is leaning (Larjavaara and Muller-Landau, 

2013). However, being at the correct position might not be enough to avoid the bias in 

some cases, such as if the forest density is high and tree canopies are concentric. 

Additionally, high growth under canopy can cause the issue of difficulty in targeting the 

bottom of the tree (Bragg, 2014) 

 
1.3. Statistical Methods for Inventory Modeling 

 To create models of inventory data, a wide range of statistical methods have been used 

(Brosofske et al., 2014). The main goal of these inventories is determining standing trees’ 

volume or value in a selected area as consummately as possible without wasting time and 

money (Avery and Burkhart, 2002).  One of the oldest inventory techniques for ground-

based data is called ‘design-based’. The idea behind this method is sampling the study 

area by plots or strips, doing the necessary measurements on subject trees within a 

sampled area at the stand level, and generating forest level statistics. To summarize, 

estimating attributes at the per-hectare level is possible using design-based inventory.  

Another method for forest inventory is known as model-based. This is a technique that 

uses the ground measured data to create a model and inferences from the model 

(Schreuder et al., 1993). This is a way to find the correlation between ground 

measurement data and measurements from remote sensing instruments. One of the most 

accurate model-based methods is linear regression. Using stepwise selections in software 

such as R Studio enables us to find the best fitting model which defines the dependent 

variable using other independent components. For instance, Andersen, McGaughey, and 
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Reutebuch (2005) generated a forest canopy model by using stepwise regression 

selection. The R² values they found were higher for canopy base height, crown bulk 

density, and canopy height. On the other hand, like all statistical methods, regression has 

a downside, such as decreased degrees of freedom when the number of independent 

variables in the regression is increased (Pandey and Bright, 2008). Hence, some problems 

may occur if regression applies to a small dataset. 

The other way to perform forest inventory is using LiDAR data. If the LiDAR dataset is 

combine with design-based sample plots, almost all required tree variables can be 

determined on a computer. Nevertheless, measuring DBH and determining tree species is 

not possible with LiDAR yet. In this case, needed ground measurements can be sampled, 

and a correlation between LiDAR and ground data can be found with linear regression 

models. When the reliability of the model is proved, predictions can be made. After that, 

by adding up all of the individual tree values, a forest inventory can be generalized.  

1.4. Goals and objectives 

Foresters have always aimed for accurate and quick tree height measurements. For that 

purpose, quantification demonstrated hypsometers (e.g., Schlich 1895, Mlodziansky 

1898, Graves 1906) were developed more than a hundred years ago. The main idea 

behind these tools was using angles and distance (Graves 1906) to estimate the total 

height of trees. Since the application of these tools was easy and practical, they became 

the most dominant tree height measurement methods until some accuracy problems were 

reported by foresters (Bragg, 2014). With the invention of LiDAR developed in 1960, a 
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more accurate method was found. Yet, it was not accurate enough for measuring trees 

until Global Positioning System (GPS) equipment and inertial measurement units (IMUs)  

became commercially available in the late 1980s (Gregersen, 2016).  

Due to these technological developments, the goal of this research is determine if LiDAR 

can detect tree height growth in a small time period. To be able to proceed, the questions 

below were answered respectfully: 

1. How accurate is LiDAR-derived height compared to ground measured height? 

2. If the result shows LiDAR is effective at measuring height, then it can be assumed 

that the measuring height from historic LiDAR can be reliable as well. Then the 

question is: can height growth be estimated using LiDAR? 

3. How accurately can DBH predictions be performed from LiDAR metrics? Ideally, 

some models can be fitted and validated against future or past measurements. 

After answering the questions above, ultimately, these models will enable us to predict 

individual-tree DBH using measured heights and, subsequently, predict volume and 

biomass. With repeated LiDAR acquisitions, biomass or volume growth and inventory 

can also be derived. 
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2. Methods 
 

2.1. Approach 

Estimating a component that is hard to measure from another easy to measure component 

is a common method in many disciplines. Likewise, in Forestry, since measuring tree 

heights is harder, more time consuming and expensive than measuring DBH, foresters 

have historically generated equations that predict heights from diameter. However, with 

the development of remote sensing technology, such as aerial photos and LiDAR, 

measuring tree heights is getting easier. Besides height, many other standard forest 

inventory metrics; for example, merchantable volume, density, and basal area, have 

become possible with ITD (Edson and Wing, 2011).  

This study has focused on answering the following questions for Michigan Technological 

University (MTU) Ford Center research forest. 

1. Is estimating DBH from other measured tree variables by using LiDAR ITD 

technique possible? 

2. What variables that are derived from LiDAR data are the best to make a DBH 

estimation? 

3. How accurate are these DBH predictions? 

By using the GPS points of collected ground data, measured trees were found in LiDAR 

data and measurements were executed on a computer. Afterward, to find the best fitting 
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model on predicting DBH from other variables, R² and p-values were considered for 

regression analysis.  

ArcGIS 10.5.1, Fusion 3.60, and RStudio Version 1.0.153 software packages were used 

in this study. 

2.2. Height Measurements 

Three different height measurement methods were used, these include ground (climbing) 

measurements, a laser hypsometer and LiDAR. 

2.3. Study Area  

The study area is a portion of the Ford Forest, which is a research forest that belongs to 

Michigan Technological University (MTU). This location was chosen since the LiDAR 

data was already collected and available for two different dates. The LiDAR data covers 

nearly 3,858 ha in northwest Michigan and is located between 46˚ 39’ 05” – 46˚ 37’ 34” 

the northern latitude and -88˚ 33' 10’’- -88 ˚ 28' 21" the east longitude in Geographic 

Coordinate System.  

Hilly glacial till plains and moraines made up ambient habitat on the Ford Forest 

(Gebuhr, 2013). Average annual rainfall is 87 cm, annual snowfall averages 381 cm, and 

yearly range of temperature covers between -9.8 °C and 17.4°C (Gebuhr, 2013). The 

range of elevation for the study area is 411 - 448 m. Dry to mesic silt loams which are 

nutrient rich that are found in a northern hardwood overstory, and nutrient-poor xeric 

sandy glacial outwash plains that dominated by jack pine canopy constitutes the soil 

types (Gebuhr, 2013). 
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Figure 3. Michigan Upper Peninsula LiDAR Data Collection Area 
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According to MTU’s School of Forest Resources and Environmental Science, the forest 

area is ~ 1,497 ha. Jack pine dominates the sandy glacial outwash area. Also, alluvial soil 

that around the Sturgeon River is suitable for upland northern hardwoods, and conifers 

like hemlock and black spruce. For more information, see 

http://www.mtu.edu/forest/fordcenter/forest/. 

The major species in the study area can be separated into two classes, which are 

hardwood (deciduous) and softwood (coniferous). Hardwoods include: sugar maple (Acer 

saccharum), yellow birch (Betula alleganiensis), red maple (Acer rubrum), ironwood 

(Eastern hophornbeam, Ostrya virginiana), black cherry (Prunus serotina), bigtooth 

aspen (Populus grandidentata), trembling aspen (Populus tremuloides), white birch 

(Betula papyrifera), northern red oak (Quercus rubra), basswood (Tilia americana), 

american elm (Ulmus americana), black ash (Fraxinus nigra), white ash (Fraxinus 

americana). Softwoods are; eastern hemlock (Tsuga canadensis), balsam fir (Abies 

balsama), eastern white pine (Pinus strobus), red pine (Pinus resinosa), jack pine (Pinus 

banksiana), white spruce (Picea glauca), black spruce (Picea mariana), tamarack (E. 

larch, Larix laricina), northern white cedar (Thuja occidentalis) (Quantum Spatial, Inc., 

2017). The study area has been exposed to heavy selective cutting silvicultural practices 

at the beginning of the century (Meteer, 1966), but that application has been replaced 

with regulated selection harvesting, such as single- tree selection of late (Neuendorff, 

2007).  
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2.4. Field Data  
 

The field data were collected during fall 2017 and spring 2018, before leaf break. Study 

plots were distributed by a simple random sampling method in the field for 20 trees. With 

post-processing in the Pathfinder Office software, coordinates for determined plots 

uploaded to a Trimble GeoXH 6000 global positioning system receiver to establish the 

plot centers. The horizontal accuracy was 1.00 m or less.  

The tallest tree of each plot was selected. Necessary tree inventory metrics (i.e. species, 

diameter at breast height (1.3 m) (DBH> 10 cm), and height) were collected at each plot.  

For the rest of the subject trees, various places were visited, and trees that have different 

topographic characteristics like elevation and different species were chosen to sample 

arbitrarily. Because of high-level snow on the ground, doing the rest of the height and 

DBH measurements were not possible. Section 12 was selected as an alternative study 

site for its accessibility. Since the section is small and has different types of topography 

and tree species, arbitrary selection was applied rather than creating new plots.  Then, 

like the sampled plot trees, essential tree variables were collected.  

Two different methods for measuring height were used climbing and using a Haglof 

Vertex laser VL400 hypsometer.  

After data collection was completed, the collected GPS points, height, and DBH 

measurements were transferred into ArcMap 10.5.1 software to create a shapefile that 

indicates all tree attributes.  
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In summer 2018, the trees were re-visited and two increment cores were collected from 

each tree. Cores were taken within 20 cm of breast height and at approximately 120-

degree separation. These were inserted into straws to retain their moisture and avoid 

shrinkage before they got measured. Each was labeled with tree ID numbers and core 

numbers as C1 or C2.  

Collected cores were taken to the lab, placed on a wooden plate, which have canals on it 

to insert the cores, put under the microscope, which connected to a computer, and they 

were measured using the microscope. However, some of the cores were in bad shapes to 

see the separation between growth years. Therefore, their length were measured before 

and after they become dry to measure to test for shrinkage, and it found a small amount to 

consider. Then, they placed and glued on the wooden plate and sanded. After that, the 

differences between age rings were become noticeable and they were measured as 

mentioned above. The last 10 age circles were measured, yet only the last 6 measurement 

values were used to predict the growth amount since 2011.  

All the core measurements were done without bark. However, since all the ground 

measurements were done with bark, bark ratios for each tree types were found and added 

to the core measurements. Thus, the closest estimations to the real measurements were 

derived. The formula for DBH with bark estimation was 

DOB₂₀₁₁ = [
DOB₂₀₁₇

BR
− ∆𝐷𝐼𝐵₂₀₁₁] ∗ 𝐵𝑅 

𝐵𝑅 =
DOB₂₀₁₇

DIB₂₀₁₇
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DIB₂₀₁₇ =
DOB₂₀₁₇

BF
 

Where: 

DOB₂₀₁₁= 2011’s diameter outside of the bark 

DOB₂₀₁₇= 2017’s diameter outside of the bark that measured in the field 

BR= Bark ratio  

∆DIB₂₀₁₁= The average of two different increment cores’ last 6 age rings measurements 

value  

DIB₂₀₁₇= 2017’s diameter inside the bark which is DOB₂₀₁₇*BF 

BF= Bark factor is the ratio of DIB to DOB at given tree height, which differs by species.  

Bark factors for red pine was derived from Fowler and Damschroder (1988), oaks from 

Fowler et al. (1997), hemlocks from in Kozak and Yang (1981), and the remaining 

species from Fowler et al. (1999).  
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Figure 4. Ground height measurement in spring 2018. Trees are climbed then height to 
ground measured with tape and height to top measured by pole, from that point. 
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Figure 5. Tree Species' Distribution on Study Area 
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2.5. Remote Sensing Data 

Two different LiDAR data were collected across the study area. The first collection 

occurred in June 2011 by Aerometric, Inc (Sheboygan, WI USA) using a Riegl Q680I 

airborne laser scanner. The flight was performed at 457 m sensor altitude and sixty knots 

ground speed. The frequency of LiDAR pulses was 400 kHz, and the point density was 

eighteen pulses per square meter (psm), with recorded nine or fewer returns per pulse. 

The data were classified into two groups, non- vegetative and vegetative (Gebuhr, 2013). 

2.5.1. LiDAR Trajectory Processing 

The airborne positioning was based on MIBX, which is the four character ID code for the 

Continuously Operating Reference Station (CORS) in Baraga, MI. CORS provides 

Global Navigation Satellite System (GNSS) data consisting of carrier phase and code 

range measurements in support of three-dimensional positioning, meteorology, space 

weather, and geophysical applications throughout the United States, its territories, and a 

few foreign countries. 
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Figure 6. LiDAR data acquisition path on study area in 2011.  
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The other data survey was completed on July 15, 2017, by Quantum Spatial. A Piper PA-

31 aircraft was used to fly and the Optech Orion H300 sensor mounted in it. The altitude 

of the airplane was 750 m and the speed was 130 knots. The laser pulse rate was 300 kHz 

with more than 20 pulses per square meter (Quantum Spatial, Inc., 2017).   

 

Figure 7. LiDAR data acquisition path on study area in 2017, Image courtesy of Quantum 
Spatial, Inc. 
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After data delivery, FUSION Version 3.60 software package (McGaughey, 2016) was 

used to process the LiDAR data. By using bare earth (non-vegetative) returns, I created a 

2-meter horizontal spatial resolution digital elevation model (DEM). Following DEM 

creation, LiDAR data were clipped to 52 plots and each of them had 25 m diameter 

around the coordinate points of measured trees on the field. The purpose of that step was 

making the process faster (the smaller the data, the faster the process) and being able to 

recognize and measure the same tree in Fusion software. Height aboveground was 

estimated by subtracting the DEM elevation value from the return elevation value for 

each LiDAR return. The number of vegetation structure metrics (Table 1) described by 

LiDAR were calculated for each clipped plot. 

Table 1: Calculated LiDAR Metrics with their descriptions. 
 

Metric Name Metric Description 

Total return count Total number of returns (bare earth and above) 

Total return count above 3.00 Total number of returns above 0.15m 

Return # count above 3.00 Total number Return # above 0.15m 

Elev minimum Minimum Height 

Elev maximum Maximum Height 

Elev mean Mean Height 

Elev mode Mode Height 

Elev stddev Standard Deviation of Heights 

Elev variance Variance of Heights 

Elev CV Coefficiency of Variation of Heights 

Elev IQ Interquartile Distance of Height 

Elev skewness Skewness of Heights 

Elev kurtosis Kurtosis of Heights 
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Elev AAD 
Average absolute deviation from the mean of  

Height 

Elev L# L#-moment of Height 

Elev L CV L-moment Coefficient of Variation of Height 

Elev L skewness L-moment Skewness of Height 

Elev L kurtosis L-moment Kurtosis of Height 

Elev P# Heights #th Percentile 

Int minimum Minimum Intensity 

Int maximum Maximum Intensity 

Int means Mean Intensity 
 

Int mode 
 
Mode Intensity 

Int stddev Standard Deviation of Intensity 

Int variance Variance of Intensity 

Int CV Coefficient of Variation of Intensity 

Int IQ Interquartile Distance of Intensity 

Int skewness Skewness of Intensity 

Int kurtosis Kurtosis of Intensity 
 
Int AAD 

Average absolute deviation from the mean of  

Intensity 

Int L# L#-moment of Intensity 

Int L CV L-moment Coefficient of Variation of Intensity 

Int L skewness L-moment Skewness of Intensity 

Int L kurtosis L-moment Kurtosis of Intensity 

Int P# #th Percentile of Intensity 

% of first returns above height break Percentage of first returns above canopy height 

% of all returns above height break Percentage of all returns above canopy height 

(All returns above height break) / 

 (Total first returns) * 100 
Percentage of canopy cover 

First returns above height break Number of first returns above canopy height 
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All returns above height break Number of all returns above canopy height 

% of  first returns above mean Percentage of first returns above mean height 

% of first returns above mode Percentage of first returns above mode height 

% of  all returns above mean Percentage of all returns above mean height 

% of all returns above mode Percentage of all returns above mode height 

(All returns above mean) /  

(Total first returns) * 100 
Percentage of mean height cover 

(All returns above mode) /  

(Total first returns) * 100 
Percentage of mode height cover 

First returns above mean 
Number of first returns above mean height 

First returns above mode 
Number of first returns above mode height 

All returns above mean 
Number of all returns above mean height 

All returns above mode 
Number of all returns above mode height 

Total first returns 
Total number of first returns 

Total all returns 
Total number of all returns 

 

2.5.2. LiDAR Measurement Stages 
 

Based on the Fusion Exercise Tutorial 5: CALCULATE LIDAR METRICS 

(McGaughey, 2016), the following steps were followed to estimate the individual tree 

heights in Fusion software: 

1. A reference image and a DEM were created and the field measurement plots were 

clipped and used in the Fusion software. 

2. Underneath the Sample Options…,  

2.1. Sample shape: Fixed circle 

2.2. Sample size: 25 (diameter (m))  
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2.3. Options: Subtract ground elevation from each return is checked  

2.4. Options: Snap sample points to nearest point of interest (POI) point is checked 

2.5. Options: Show POI layers in sample image is checked  

2.6. Bare earth filter: Exclude points close to the surface is checked  

2.7. Bare earth filter: Tolerance set as 1 (the tolerance is the distance from the surface 

in the same units used for LIDAR data elevations) 

3. Then, by clicking OK at the bottom left, Sample Options… window closed. 

4. After that, check marks were inserted to make Plot mode and Display sample 

options on in the Fusion main window.  

5. Next, the LiDAR Data Viewer (LDV) window was popped up with the subset of data 

by clicking on first plot in the main Fusion viewer.  

6. To activate Measurement marker in LDV, F9 key has been hit on the keyboard and a 

cylinder was showed up.  

7. The cylinder moved around the plot by using the combination of ctrl+ right mouse 

click+ movements until the tree found. 

8. The diameter of the cylinder was changed to fit the tree with the help of shift+ ctrl+ 

right mouse+ movements combination.  

9. Using the ctrl+ left and right arrows on the keyboard modified the orientation of 

the ellipse.  

10. The cylinder was arranged as larger than the tree crown to be able to use F key since 

it fits the cylinder to the crown. 
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11. After these settings, the measurements have been started by entering Tree identifier 

on the Tree Measurements window. Trees were identified depending upon plot 

numbers in this case. 

12. Location of the trees was set by clicking the adjacent Set button. 

13. To make sure that the selected tree is the one that measured on field, the coordinates 

of trees in ArcMap software’s attribute table were checked (see Figure 6) for every 

single tree. Analogously, the photographs of measured trees, which were taken on the 

field, were checked for each plot and decided based on their appearance.   

14. Elevation at tree bases was found by typing “l” (lower case L) and by clicking on 

the Set button.  

15. To find the Total height, “h” was typed and Set button was clicked. 

16. Height to crown bases was found by scrolling down and clicking adjacent Set button.  

17. By clicking Set button adjacent to Crown diameter; Minimum, Maximum, and Crown 

rotation values were set. 

18. Comments (in this study, there was only one crucial situation) were added.  

19. Browse button was hit and a new CSV file was created. 

20. By clicking to Set tree parameters button, the measurements were saved on the CSV 

file that just created.  

21. To move to the next plot, the plot area was clicked on Fusion main viewer and it 

appeared on the LDV window.  

22. The steps, which are above were repeated for each plot.  
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Figure 8. Comparing coordinate systems between Fusion and ArcMap software to make 
sure about measuring the same tree with field measurements.  

 

2.6. Responses and responses estimations 
 

2.6.1. Creating Tree Crown Footprints 

Two canopy height surfaces/models (CHM) were generated by using LiDAR point 

clouds for both 2017 and 2011 separately in Fusion software. Afterward, those images 

were imported into ArcMap and the collected GNSS point shapefile for each individual 

tree was overlayed. Then, two different polygon shapefiles were created by drawing 

polygon features around tree canopies. The individual tree crown areas were calculated in  

the attribute table and exported as an Excel file to use in regression analysis. Because this 
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variable was not derived automatically from LiDAR measurements, it is not placed in 

Table 1.  

2.6.2. Estimating Volume & Increment 

A standing tree volume estimator used by the Forest Service named The National 

Volume Estimator Library (NVEL) was used to predict the volume of individual trees as 

an Excel function. The formula that was used within the NVEL was  

=calcMerchCubic(9,7,"901DVEE833",DBH,TotalHeight,MaximumCrownDiameter)  

where: 

calcMerchCubic: The name of function that calculates the merchantable cubic foot 

volume of the tree, 

9 (The first digit in the bracket): Forest region code, 

7 (The second digit in the bracket): Forest number, 

901DVEE (In the quotation mark): Volume equation number, which is Gevorkiantz Board 

Foot Equation (Gevorkiantz and Olsen, 1955), 

833 (The last three digits in the quotation mark): Tree species code.  

The problem with volume predictions using this tool is that the DBH values under 10 

(ten) inches were not included in the tool. Hence, the volume of the trees under ten inches 

in 2011 were considered as 0 (zero). When these trees diameter growth reached over ten 
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inches in 2017, the value that seems like 6 years volume growth is actually the total 

volume of the tree. These trees have been marked in Appendix C-3 tables. 

2.6.3. The estimation of Biomass and Carbon Sequestration 

The National Biomass Estimator Library (NBEL), was used to estimate standing tree 

aboveground biomass. NBEL is open source and was created by the Forest Management 

Service Center (FMSC) at USDA Forest Service (Wang, 2014). It is a synthesis that 

contains published or unpublished biomass equations in the US developed by the Forest 

Management Service Center (FMSC) (Wang, 2014). If there is a default equation for the 

subject region, NBEL uses it automatically. In contrary, it uses stem cubic volume to 

calculate biomass and Component Ratio Method (CRM) (Heath 2009) to generate dry 

biomass prediction.  

The formula that was used for prediction was  

=bmAboveGroundTotal(9,7,1,833, DBH, Total height)  

where; 

bmAboveGroundTotal: Biomass of whole tree (aboveground), 

9 (The first digit in the bracket): Forest region code, 

7 (The second digit in the bracket): Forest number, 

1 (The third digit in the bracket): District code 

833 (The fourth digit in the bracket): Tree species code (Wang, 2014). 
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2.7. Statistical Process 

After finishing remote sensing data processing, 4,160 observed values were generated 

from LiDAR data. To find the correlation between LiDAR and ground data, linear 

regression methods were used. 

In the R Studio Version 1.0.153 software package; forward, backward, and stepwise 

selections were applied to derive the best fitting model to predict DBH from other 

variables using the step ()function in base R (RStudio Team, 2016). While forward 

selection picks one predictor variable and adds another one at a time until it reaches the 

best equation, backward selection goes through the opposite direction. On the other hand, 

stepwise selection does the adding and subtracting together until it reaches the best 

model. These steps were applied for both 2011 and 2017 LiDAR data and 21 models 

were created.  

In the end of model selection, based on their R² values; Height, Crown Height, and 

Minimum Crown Diameter were selected as best correlated DBH predictors for the 2017 

remote sensing data. However, for the 2011 data, Height, Crown Height, and Crown 

Radius were selected for best DBH predictions.  

After testing the generated models, each model was applied to the other dataset. In other 

words, the model of 2017 was applied to 2011 dataset, and 2011’s model was used for 

predicting DBH for 2017 dataset. The formulas for fit and validated statistics in the 

results section are below where ei is the prediction error. 
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3. Results 

A total of 52 measurement were made of the following tree species: 1 aspen, 2 Eastern 

hemlock, 9 red oak, 11 red pine, 20 sugar maple, 2 white birches, 5 white pine, and 2 

yellow birch. 

The LiDAR and ground (climbing) height measurements and the accuracy of LiDAR are 

shown in Appendix A. The results for derived equations are presented in Appendix B. 

Moreover, estimated volume and biomass for ground measured DBH and predicted 

volume and biomass by using estimated DBH from LiDAR variables for both 2011 and 

2017 data are placed in Appendix C. Also, volume and biomass growth for 6 years are 

shown in Appendix C. In addition, the following statistics are shown in the tables below. 

Predicted Root Mean Square Error (PRMSE), Mean Error (BIAS), Mean Absolute 

Differences (MAD), some regression diagnostics, and distribution graphics of prediction 

errors based on total tree height and DBH. 
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Table 2. Fit statistics for 2017 data 

 

Figure 9. Regression diagnostics for the 2017 DBH estimation model tested on 2017 data. 

Testing 2017's equation on 2017 data 

 RMSE BIAS MAD 
General 10.31 0.00 8.25 
Hardwoods 10.63 0.23 8.32 
Softwoods 9.99 -0.43 8.12 
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Figure 10. Distribution of DBH prediction error based on tree height for 2017 equation 
tested on 2017. 

 

 

Figure 11. Distribution of DBH prediction error based on predicted DBH for 2017 
equation tested on 2017. 
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Table 3. Validation statistics for 2011 data 

 

 

 

 

 

 

Figure 12. Distribution of DBH prediction error based on tree height for 2017 equation 
tested on 2011. 
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Testing 2017's equation on 2011 data 

 PRMSE BIAS MAD 
General 7.58 -0.25 6.32 
Hardwoods 8.07 -0.27 6.71 
Softwoods 6.78 -0.20 5.59 
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Figure 13. Distribution of DBH prediction error based on predicted DBH for 2017 
equation tested on 2011. 

 

 

 

Table 4. Fit statistics for 2011 data. 
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Testing 2011's equation on 2011 data 

 RMSE BIAS MAD 
General 11.15 0.00 9.14 
Hardwoods 11.15 -0.89 8.88 
Softwoods 11.46 1.67 9.62 
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Figure 14. Regression diagnostics for the 2011 DBH estimation model tested on 2011 
data. 
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Figure 15. Distribution of DBH prediction error based on tree height for 2011 equation 
tested on 2011. 

 

Figure 16. Distribution of DBH prediction error based on predicted DBH for 2011 
equation tested on 2011. 
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Table 5. Validation statistics for 2017 data 

Testing 2011's equation on 2017 data 

 PRMSE BIAS MAD 
General 7.85 0.25 5.94 
Hardwoods 7.34 -1.10 5.85 
Softwoods 8.97 2.80 6.10 

 

 

 

Figure 17. Distribution of DBH prediction error based on tree height for 2011 equation 
tested on 2017. 
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Figure 18. Distribution of DBH prediction error based on predicted DBH for 2011 
equation tested on 2017. 
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dataset were bigger. Because there are only 52 single trees, the broken canopy tree should 

be taken out of the equation. The result tables are below after this step state that higher 

accuracy DBH estimations are possible without the outlier tree based on adjusted R² 

values’ comparisons: 

Table 6. R² and p-value of equations created before taking out the broken tree 

Equation/tested dataset Adjusted R² p-value 

2017/2017 0.3753 1.70E-05 

2017/2011 0.3253  

2011/2011 0.3281 5.89E-05 

2011/2017 0.3589  

 

Table 7. R² and p-value of equations created after taking out the broken tree 

Equation/tested dataset Adjusted R² p-value 

2017/2017 0.5491 2.348e-08 

2017/2011 0.4231  

2011/2011 0.4346 1.374e-06 

2011/2017 0.5387  

 

Table 8. Fit statistics for 2017 data after outlier tree was taken out of the dataset. 

Testing 2017's equation on 2017 data 
 

RMSE BIAS MAD 

General 6.41 0.00 5.17 

Hardwoods 6.63 -0.57 5.36 

Softwoods 6.15 1.13 4.78 
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Table 9. Validation statistics for 2011 data after outlier tree was taken out of the dataset. 

Testing 2017's equation on 2011 data 
 

PRMSE BIAS MAD 

General 6.91 -0.14 5.54 

Hardwoods 7.58 -0.38 6.21 

Softwoods 5.55 0.34 4.22 

 

Table 10. Fit statistics for 2011 data after outlier tree was taken out of the dataset. 

Testing 2011's equation on 2011 data 
 

RMSE BIAS MAD 

General 6.79 0.00 5.48 

Hardwoods 7.38 -0.11 6.14 

Softwoods 5.61 0.21 4.16 

 

Table 11. Validation statistics for 2017 data after outlier tree was taken out of the dataset. 

Testing 2011's equation on 2017 data 
 

PRMSE BIAS MAD 

General 6.56 0.00 5.23 

Hardwoods 6.79 -0.17 5.28 

Softwoods 6.26 0.34 5.11 

By comparing adjusted R² and BIAS values of pre and post outlier deletion, the accuracy 

and reliability of the predictions were increased significantly.  

The coefficient estimates with significant predictors using stepwise method for 2017 fit 

model is presented below. It illustrates significant variables’ accuracy and significance 

level on the estimation model based on their values on the table. 
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Table 12. Coefficients for 2017 fit model 

                             Estimate Std. Error t value Pr(>|t|) 
(Intercept)                                       -23.6857 8.5462 -2.771 0.00803 
Ht                                                      1.4778 0.2655 5.567 1.28E-06 
lcr                                                        18.1222 8.0917 2.24 0.02999 
mincrowndia                                          1.515 1.0483 1.445 0.15517 
crown                                             0.1538 0.0644 2.388 0.0211 

Where; 

Estimate: Values that come from fitted 2017 model for significant variables, 

Std. Error: Standard error (A measure of the statistical accuracy of an estimate) 

t value: A ratio of the departure of the predicted value of a parameter from its 

hypothesized value to its standard error. 

Pr(>|t|): Level of significance that decide whether reject or fail to reject to the null 

hypothesis. 

Ht: Total tree height derived from LiDAR in meter, 

mincrowndia: Minimum tree crown diameter in meter, 

lcr: Live crown ratio in meter, 

crown: Tree crown footprints in meter square (m²). 

Also, for the same equation, adjusted R² was 0.55 and p-value was less than 0.01. 
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After testing 2017 model on 2011 dataset, the coefficient estimates with significant 

predictors are as shown below. 

Table 13 . Coefficients for 2011 validation model 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -25.0821 12.81007 -1.958 0.056311 
Ht 1.84086 0.38057 4.837 1.52E-05 
lcr 15.57174 15.52917 1.003 0.321231 
mincrowndia 0.36857 0.87624 0.421 0.675983 
crown 0.27122 0.07075 3.834 0.000382 

 

Adjusted R² was 0.48 and p-value was less than 0.01 as a result of this model test.  

Then, the fit model for 2011 data were created and the coefficient estimates with 

significant predictors are as below. 

 

Table 14. Coefficients for 2011 fit model 

                             Estimate Std. Error t value Pr(>|t|) 
(Intercept)                                       -24.2607 12.54898 -1.933 0.059238 
Ht                                                      1.83906 0.3772 4.876 1.28E-05 
lcr                                                        18.7325 13.47055 1.391 0.170889 
crown                                             0.27534 0.06945 3.965 0.000249 

 

Adjusted R² value was 0.49 and p-value was less than 0.01 for 2011’s fitted model. 

Afterward, 2011 fitted model was tested on 2017 dataset and the results below were 

obtained. 
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Table 15. Coefficients for 2017 validation model 

                               Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                                       -17.30888 7.4033 -2.338 0.0237 
Ht                                                      1.47368 0.26849 5.489 1.58E-06 
lcr                                                        22.31815 7.63992 2.921 0.00534 
crown                                             0.19161 0.05953 3.219 0.00234 

 

Also, adjusted R² was 0.54 and p-value was less than 0.01 for that test. 

Additionally, subject trees were separated species, hardwood and softwood, and linear 

regression analysis were run to see the accuracy of broad leaves and coniferous trees.  

Table 16. Coefficients for hardwood species in 2017 fit model 

                               Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                              -29.74802 10.80757 -2.753 0.009939 
Ht                                                      1.97783 0.46018 4.298 1.67E-04 
lcr                                                        27.26228 9.95573 2.738 0.010286 
crown                       0.17743 0.07474 2.374 0.024196 

 

Adjusted R² was 0.53 and p-value was less than 0.01 for this model. After that, this 

model was tested on 2011 hardwood tree species data and results were as below. 

Table 17. Coefficients for hardwood species in 2011 validation model 

                            Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                                       -39.8725 17.09095 -2.333 0.026546 
Ht                                                      2.64611 0.59576 4.442 1.12E-04 
lcr                         20.93712 16.5042 1.269 0.214342 
crown                                             0.2253 0.08463 2.662 0.012354 

 

Adjusted R² was 0.46 and p-value was less than 0.01 for the validation model.  
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Another fit model was created for 2011 hardwood tree data and it was validated on 2017 

data, and the results were as illustrated below. 

Table 18. Coefficients for hardwood species in 2011 fit model 

                              Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                                       -22.81907 10.65746 -2.141 0.040234 
Ht                                                      2.25894 0.51666 4.372 1.29E-04 
crown                        0.27 0.07769 3.475 0.001531 

 

Adjusted R² value was 0.45 where p-value was less than 0.01 for the fitting model. 

Table 19. Coefficients for hardwood species in 2017 validation model 

                               Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                                 -20.86604 11.33857 -1.84 0.07532 
Ht                                                      2.07471 0.50463 4.111 2.68E-04 
crown                                             0.28338 0.07033 4.029 0.000337 

 

Adjusted R² was 0.43 and p-value was less than 0.01 for the validation model.  

Same process were applied to the softwood species and results were as follows. 

Table 20. Coefficients for softwood species in 2017 fit model 

                               Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                                       147.38539 54.43672 2.707 0.019 
Ht                                                      -6.26736 2.6312 -2.382 3.46E-02 
CrownHt   14.25484 5.39333 2.643 2.15E-02 
lcr   -279.61097 107.6663 -2.597 2.34E-02 
crown                                             0.29253 0.07932 3.688 0.0031 

 

Adjusted R² was 0.75 and p-value was less than 0.01 for the fitting model. 
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Table 21. Coefficients for softwood species in 2011 validation model 

                               Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                                       -6.693 48.3697 -0.138 0.892242 
Ht                                                      0.9089 2.1791 0.417 6.84E-01 
CrownHt   0.6333 5.1413 0.123 9.04E-01 
lcr   2.533 107.4691 0.024 9.82E-01 
crown                                             0.4617 0.1006 4.588 0.000624 

 

Adjusted R² was 0.71 and p-value was less than 0.01 for the validation model. 

 

Table 22. Coefficients for softwood species in 2011 fit model 

                                Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                                      -12.7948 15.2159 -0.841 0.41832 
Ht                                                      1.183 0.3899 3.034 1.14E-02 
CrownRadius   2.5744 2.1515 1.197 2.57E-01 
MinCrownDia   -2.6251 1.493 -1.758 1.06E-01 
lcr   31.1706 20.4889 1.521 1.56E-01 
crown                                             0.4467 0.1076 4.15 0.00162 

 

Adjusted R² was 0.76 and p-value was less than 0.01 for the fitting model. 

 
Table 23. Coefficients for softwood species in 2017 validation model 

                                Estimate  Std. Error   t value     Pr(>|t|)  
(Intercept)                                       -35.29277 12.17466 -2.899 0.007203 
Ht                                                      1.94031 0.47113 4.118 3.06E-04 
CrownRadius   -0.13061 2.89381 -0.045 9.64E-01 
MinCrownDia   1.65801 2.00102 0.829 4.14E-01 
lcr   21.04496 12.34186 1.705 9.92E-02 
crown                                             0.14527 0.08223 1.767 0.088203 

 

Adjusted R² was 0.52 for the validation model where p-value was less than 0.01. 
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4. Discussion  

The main weakness of this research is identifying tree species using LiDAR in a mixed 

forest stand, as crown architecture is not a reliable predictor for tree species 

identification. Additional remote sensing techniques, such as hyperspectral imagery could 

be used simultaneous with a LiDAR dataset to identify tree species in mixed forest 

structure (Holmgren, et al., 2008; Naidoo, et al., 2012). Although species identification is 

not important for DBH estimations, it is vital to be able to predict stem volume and 

biomass. The existent biomass and volume prediction models require species as an input 

variable, as the tree growth rate differs between species. For example, even though two 

different species may have the same DBH, the height, crown width, and accordingly the 

volume and biomass values may differ. Therefore, identifying tree species is essential. 

The results showed that the accuracy between LiDAR and ground height measurements is 

higher for coniferous trees than deciduous trees. It has not tested in this study; however, 

according to Kwak et al. (2007), the reason behind that is conic shapes of coniferous 

crown since observing the peak and the bottom of the tree is easier.  

The ground measurements were taken in fall 2017 and spring 2018 even though LiDAR 

data were collected in summer 2017. Because the subject trees were already mature, or 

over-mature, this situation is not substantial for one growing season. Therefore, the 

discrepancy between LiDAR data collection and ground measurements should be of 

reduced concern.  
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This study has some strengths for forest inventory calculations for wide study areas by 

using only LiDAR data collection. Without taking ground measurements, the ITD 

method can be applied to representative trees of each plots; tree parameters, which 

include DBH, volume, biomass etc., can be calculated and the results generalized to 

whole study area. This gives the opportunity of performing forest inventory with less 

work, time and money (Hummel et al., 2011). With additional LiDAR-derived variables 

such as Canopy Height Model (CHM), the model can be automated for larger forested 

areas (Fallowski et al., 2006). There are number of different previous studies to detect the 

height, crown diameter, and the location of individual trees using LiDAR-derived CHM 

(Fallowski et al., 2006). However, only two of them are discussed in this study. The first 

technique detects the local maxima (tree heights) inside the CHM using variable-sized 

windows (Popescu et al., 2003; Popescu and Wynne, 2004). The second method, on the 

other hand, exerts 2-dimensional wavelet analysis for measuring stand heights and 

diameter of tree crown directly from the CHM (Fallowski et al., 2006).  

For determining the tree location, high accuracy GNSS was used in this study. The results 

of GNSS data post-processing in Trimble GPS Pathfinder Office shows that the precision 

error was 1.00 meter or less. It was important for matching trees on the ground to those 

identified in the LiDAR point clouds. Lower accuracy GNSS could result in measuring 

the wrong tree in LiDAR dataset.  

While 18 pulses per m² was the minimum pulse density of 2011 LiDAR dataset, the 

minimum in the 2017 LiDAR data collection was a minimum of 20 pulses per m². 
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Therefore, some deficiency of detecting small trees under dominant trees in plots may 

have been eliminated by more dense laser pulses in 2017.  

The results of linear regression indicates that the broken canopy tree has negative effects 

on 2017 data even though it affects 2011 dataset positively. However, the effect on 2011 

is less than 0.01 in R² while the effect is crucially increase around 0.9 in R² value. Hence, 

counting out the broken tree is a better option to gain higher confidence to the 2017 

equation. Moreover, based on the results in Table 7, the best-fitted equation is 2017 since 

the R² was 0.55 and p-value was less than 0.0001 for 2017 LiDAR data, and R² was 0.42 

and p-value was less than 0.0001 for 2011 LiDAR dataset. R² for 2011 equation tested on 

2011 was 0.44 and p-value < 0.0001. Since there is a slight difference between two R² 

values for 2011 data (less than 0.01), 2017 equation can be accepted as better fitted than 

2011 equation.  

The broken tree was taken out since there were 8 different tree species and only 52 

subject trees. Because of the limited dataset, only one anomaly caused significant 

estimation errors as it mentioned above. However, for a bigger dataset, a broken canopy 

may not be an issue and is highly likely in the nature. Nevertheless, the model created in 

this study ignores the broken tree canopies and that may result in over biomass or volume 

estimations for wider study area and real world applications.  

In addition, species-based linear regression illustrates that DBH estimations for softwood 

species were more accurate than hardwoods. The model performs well for northern 

Michigan coniferous trees, yet the reliability of the softwood linear models are 
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questionable for the rest of the county. The reason for questioning the model reliability 

outside of the study area is that there were only 17 subject softwood trees and 

topographic features’ inequalities. Nonetheless, the model might rerun after increasing 

the tree number for the next studies. 

Even though DBH is not a variable that can be directly measured from LiDAR, previous 

studies have stated that there is a strong correlation with stem height (Green, 1981; 

Arabatzis and Burkhart, 1992) and crown width (Sprinz and Burkhart, 1987; Smith et al., 

1992; Gill, Biging and Murphy, 2000). In addition, Popescu (2007) indicates in his study 

that height and crown width are significant tree variables on DBH predictions. As a 

matter of fact, after all the analysis, this study demonstrates that the best indicators of 

DBH are total tree height, tree live crown ratio, minimum tree crown diameter, and tree 

crown footprint for Ford Center and Forest in Upper Peninsula, Michigan.  

5. Conclusion 

The purpose of this study was generating inventory models for Ford Forest Center using 

available two different LiDAR datasets and ground measured data. Hence, a big amount 

of tree variables were measured with 2011 and 2017 LiDAR point clouds separately and 

each of them combined with ground data. Linear regression was used for statistical 

method based on ground data. Then, created equations were tested on the other dataset, 

meaning 2017’s equation was tested on 2011 dataset and 2011’s equation was testing on 

2017 data.  
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This study shows that LiDAR is a reliable remote sensing instrument to measure and 

predict individual tree variables such as height and crown dimensions in the dominant 

canopy, thus improves the estimation of volume and biomass with less work and less 

time. DBH estimations, on the other hand, might be explained more than this study by 

inserting some other LiDAR measured tree variables such as canopy point density for the 

future studies.  
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Appendix A 
 

Table 24. Height measurement comparisons between ground and LiDAR for 2017 dataset  

Tree 
ID 

SSP 
DBH 
(cm) 

Climbing 
Measurements 

(m) 

  LiDAR height 
Measurements(m) 

Lidar 
Accuracy 

4 HW  40.89 19.99 20.69 96.65% 
5 HW  23.62 20.14 18.17 90.25% 
7 HW  29.21 19.10 19.17 99.67% 

10 HW  11.43 15.26 16.99 89.81% 
11 HW  25.91 21.28 20.88 98.15% 
13 HW  14.48 19.66 19.67 99.94% 
14 HW  21.08 21.64 23.97 90.30% 
15 HW  23.37 20.73 20.87 99.33% 
16 HW  15.49 19.75 20.87 94.66% 
17 HW  16.26 19.51 20.89 93.39% 
18 HW  59.18 30.66 31.36 97.79% 
27 HW  36.32 22.62 22.17 98.03% 
28 HW  41.15 22.04 22.46 98.10% 
30 HW  37.85 19.75 19.31 97.75% 
31 HW  29.97 18.14 16.51 91.03% 
47 HW  30.73 21.34 19.42 91.04% 
49 HW  36.07 21.37 20.87 97.66% 
51 HW  44.45 22.40 22.06 98.46% 
53 HW  35.56 21.70 20.64 95.10% 
55 HW  33.53 18.59 19.20 96.83% 
73 HW  35.31 19.63 18.69 95.24% 
74 HW  30.48 21.03 19.51 92.76% 
75 HW  31.75 20.82 19.60 94.13% 
76 HW  33.78 19.87 20.42 97.31% 
77 HW  33.27 18.65 20.29 91.94% 
82 HW  33.27 19.14 18.21 95.15% 
83 HW  39.12 21.49 21.46 99.88% 
92 HW  33.53 18.90 18.51 97.95% 
96 HW  34.29 20.09 21.77 92.26% 

100 HW  45.47 16.73 15.36 91.79% 
104 HW  27.94 19.66 20.66 95.17% 
105 HW  36.83 18.90 18.45 97.64% 
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107 

 
HW  

 
45.97 

 
24.93 

 
24.10 

 
96.65% 

109 HW  48.26 22.28 22.27 99.93% 
1 SW 33.02 19.82 20.25 97.90% 
2 SW 29.21 25.57 25.78 99.21% 
3 SW 41.15 24.96 24.18 96.86% 
6 SW 36.83 25.85 26.45 97.70% 
8 SW 29.21 27.74 27.47 99.04% 
9 SW 24.38 19.72 20.29 97.18% 

12 SW 29.21 20.39 19.51 95.67% 
19 SW 39.12 29.14 29.62 98.38% 
20 SW 26.67 19.20 18.18 94.68% 
21 SW 39.37 32.80 31.35 95.58% 
22 SW 49.02 28.71 28.48 99.20% 
24 SW 48.26 26.06 27.27 95.57% 
25 SW 38.35 24.57 23.82 96.97% 
26 SW 36.83 25.33 24.24 95.71% 
29 SW 26.67 16.34 17.92 91.16% 
32 SW 31.24 19.66 19.14 97.35% 

106 SW 58.93 21.95 22.31 98.39% 
      

 
Table 25. Height measurement comparisons between laser hypsometer and LiDAR for 
2017 dataset 

Tree 
ID 

SSP 
DBH 
(cm) 

Climbing 
Measurements 

(m) 

Laser 
Hypsometer 

Measurements(m) 

Hypsometer 
Accuracy 

4 HW  40.89 19.99 22.10 90.47% 
5 HW  23.62 20.14 18.04 89.56% 
7 HW  29.21 19.1 18.06 94.55% 

10 HW  11.43 15.26 17.03 89.61% 
11 HW  25.91 21.28 20.31 95.45% 
13 HW  14.48 19.66 19.63 99.86% 
14 HW  21.08 21.64 22.33 96.93% 
15 HW  23.37 20.73 23.47 88.32% 
16 HW  15.49 19.75 21.73 90.88% 
17 HW  16.26 19.51 21.12 92.38% 
18 HW  59.18 30.66 25.59 83.45% 
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27 HW  36.32 22.62 24.86 90.98% 
28 HW  41.15 22.04 21.94 99.52% 
30 HW  37.85 19.75 20.59 95.94% 
31 HW  29.97 18.14 18.20 99.68% 
47 HW  30.73 21.34 19.11 89.54% 
49 HW  36.07 21.37 20.50 95.93% 
51 HW  44.45 22.4 20.59 91.91% 
53 HW  35.56 21.7 22.15 97.97% 
55 HW  33.53 18.59 23.25 79.97% 
73 HW  35.31 19.63 18.70 95.24% 
74 HW  30.48 21.03 21.11 99.61% 
75 HW  31.75 20.82 21.07 98.83% 
76 HW  33.78 19.87 22.11 89.86% 
77 HW  33.27 18.65 18.61 99.79% 
82 HW  33.27 19.14 20.89 91.61% 
83 HW  39.12 21.49 23.47 91.56% 
92 HW  33.53 18.9 19.79 95.51% 
96 HW  34.29 20.09 19.14 95.25% 

100 HW  45.47 16.73 17.59 95.10% 
104 HW  27.94 19.66 18.74 95.32% 
105 HW  36.83 18.9 20.25 93.34% 
107 HW  45.97 24.93 23.83 95.60% 
109 HW  48.26 22.28 24.00 92.82% 

1 SW 33.02 19.82 22.86 86.72% 
2 SW 29.21 25.57 23.92 93.54% 
3 SW 41.15 24.96 26.78 93.22% 
6 SW 36.83 25.85 25.10 97.10% 
8 SW 29.21 27.74 26.52 95.59% 
9 SW 24.38 19.72 20.47 96.35% 

12 SW 29.21 20.39 25.49 79.98% 
19 SW 39.12 29.14 25.59 87.81% 
20 SW 26.67 19.2 18.72 97.47% 
21 SW 39.37 32.8 27.24 83.03% 
22 SW 49.02 28.71 24.04 83.73% 
24 SW 48.26 26.06 24.23 92.98% 
25 SW 38.35 24.57 24.36 99.12% 
26 SW 36.83 25.33 25.81 98.16% 
29 SW 26.67 16.34 17.19 95.08% 
32 SW 31.24 19.66 18.78 95.50% 

106 SW 58.93 21.95 23.67 92.73% 
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Appendix B 
 

Table 26. Testing 2017 equation on 2017 data 

Tree 
ID 

Wood 

Predicted 
DBH of 
2011 by 

using 
2017 (ŷi) 

DBH 
2011(yi)  

Ht ei (yi-ŷi) ei² │ei│ 

4 HW 31.01 40.89 20.69 9.89 97.73 9.89 
5 HW 20.93 23.62 18.17 2.69 7.24 2.69 
7 HW 26.68 29.21 19.17 2.53 6.40 2.53 

10 HW 12.34 11.43 16.99 -0.91 0.84 0.91 
11 HW 29.33 25.91 20.88 -3.42 11.71 3.42 
13 HW 25.93 14.48 19.67 -11.46 131.25 11.46 
14 HW 28.99 21.08 23.97 -7.91 62.57 7.91 
15 HW 29.32 23.37 20.87 -5.95 35.45 5.95 
16 HW 27.75 15.49 20.87 -12.25 150.18 12.25 
17 HW 27.24 16.26 20.89 -10.99 120.72 10.99 
18 HW 45.91 59.18 31.36 13.27 176.20 13.27 
27 HW 31.81 36.32 22.17 4.51 20.35 4.51 
28 HW 30.39 41.15 22.46 10.76 115.71 10.76 
30 HW 32.44 37.85 19.31 5.41 29.23 5.41 
31 HW 26.60 29.97 16.51 3.38 11.40 3.38 
47 HW 38.76 30.73 19.42 -8.03 64.48 8.03 
49 HW 42.00 36.07 20.87 -5.93 35.17 5.93 
51 HW 45.92 44.45 22.06 -1.47 2.16 1.47 
53 HW 32.57 35.56 20.64 2.99 8.96 2.99 
55 HW 34.46 33.53 19.20 -0.94 0.88 0.94 
73 HW 34.25 35.31 18.69 1.06 1.12 1.06 
74 HW 36.76 30.48 19.51 -6.28 39.44 6.28 
75 HW 34.28 31.75 19.60 -2.53 6.41 2.53 
76 HW 38.61 33.78 20.42 -4.82 23.26 4.82 
77 HW 34.92 33.27 20.29 -1.65 2.71 1.65 
82 HW 38.15 33.27 18.21 -4.87 23.75 4.87 
83 HW 31.88 39.12 21.46 7.23 52.34 7.23 
92 HW 29.84 33.53 18.51 3.69 13.64 3.69 
96 HW 34.97 34.29 21.77 -0.68 0.47 0.68 

100 HW 35.85 45.47 15.36 9.62 92.51 9.62 
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104 HW 37.30 27.94 20.66 -9.36 87.64 9.36 
105 HW 36.39 36.83 18.45 0.44 0.20 0.44 
107 HW 41.88 45.97 24.10 4.10 16.79 4.10 
109 HW 49.63 48.26 22.27 -1.37 1.88 1.37 

1 SW 26.86 33.02 20.25 6.16 37.99 6.16 
2 SW 35.27 29.21 25.78 -6.06 36.77 6.06 
3 SW 36.56 41.15 24.18 4.58 21.01 4.58 
6 SW 36.37 36.83 26.45 0.46 0.22 0.46 
8 SW 39.98 29.21 27.47 -10.77 116.02 10.77 
9 SW 20.86 24.38 20.29 3.52 12.41 3.52 

12 SW 23.28 29.21 19.51 5.93 35.14 5.93 
19 SW 42.70 39.12 29.62 -3.58 12.85 3.58 
20 SW 28.50 26.67 18.18 -1.83 3.33 1.83 
21 SW 46.31 39.37 31.35 -6.94 48.16 6.94 
22 SW 48.62 49.02 28.48 0.41 0.17 0.41 
24 SW 44.58 48.26 27.27 3.68 13.56 3.68 
25 SW 31.91 38.35 23.82 6.44 41.52 6.44 
26 SW 31.91 36.83 24.24 4.92 24.19 4.92 
29 SW 28.02 26.67 17.92 -1.35 1.84 1.35 
32 SW 31.72 31.24 19.14 -0.48 0.23 0.48 

106 SW 44.77 58.93 22.31 14.16 200.57 14.16 
 

Table 27. Testing 2017 equation on 2011 data 

Tree 
ID 

Wood 

Predicted 
DBH of 
2011 by 

using 
2017 (ŷi) 

DBH 
2011(yi)  

Ht ei (yi-ŷi) ei² │ei│ 

4 HW 30.80 38.29 19.23 7.49 56.12 7.49 
5 HW 26.60 21.38 21.07 -5.22 27.25 5.22 
7 HW 22.63 26.71 18.99 4.08 16.66 4.08 

10 HW 15.36 6.45 14.36 -8.90 79.29 8.90 
11 HW 23.74 22.58 17.98 -1.16 1.34 1.16 
13 HW 20.53 8.78 17.96 -11.76 138.23 11.76 
14 HW 23.90 16.52 19.00 -7.38 54.42 7.38 
15 HW 25.55 17.96 21.50 -7.59 57.58 7.59 
16 HW 21.45 12.04 19.01 -9.41 88.52 9.41 
17 HW 19.67 14.11 19.22 -5.56 30.91 5.56 
18 HW 42.16 51.21 29.94 9.05 81.92 9.05 
27 HW 33.22 33.59 22.23 0.37 0.14 0.37 
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28 HW 23.45 37.47 21.13 14.02 196.54 14.02 
30 HW 30.11 35.86 18.92 5.75 33.10 5.75 
31 HW 26.02 27.51 17.44 1.49 2.22 1.49 
47 HW 30.82 26.36 19.55 -4.46 19.88 4.46 
49 HW 31.38 30.63 20.50 -0.75 0.56 0.75 
51 HW 34.70 39.70 21.08 5.00 25.02 5.00 
53 HW 30.90 31.31 20.71 0.40 0.16 0.40 
55 HW 28.22 29.30 17.48 1.09 1.19 1.09 
73 HW 26.85 31.21 19.18 4.36 18.98 4.36 
74 HW 36.71 26.26 20.23 -10.45 109.22 10.45 
75 HW 36.86 27.80 20.03 -9.06 82.03 9.06 
76 HW 25.93 31.50 18.73 5.57 31.07 5.57 
77 HW 30.64 31.45 17.87 0.81 0.66 0.81 
82 HW 40.73 27.32 18.35 -13.41 179.74 13.41 
83 HW 24.51 35.60 20.82 11.09 122.98 11.09 
92 HW 24.33 30.76 17.93 6.43 41.30 6.43 
96 HW 24.86 29.83 19.51 4.96 24.65 4.96 

100 HW 31.84 39.92 15.87 8.07 65.14 8.07 
104 HW 35.82 24.67 19.23 -11.15 124.41 11.15 
105 HW 34.19 34.43 18.35 0.24 0.06 0.24 
107 HW 38.56 42.28 23.83 3.72 13.84 3.72 
109 HW 37.47 46.06 20.50 8.60 73.90 8.60 

1 SW 27.34 31.06 22.57 3.72 13.82 3.72 
2 SW 38.03 26.34 24.46 -11.69 136.60 11.69 
3 SW 33.30 37.97 24.14 4.66 21.76 4.66 
6 SW 32.61 33.14 23.58 0.53 0.28 0.53 
8 SW 33.97 26.76 26.40 -7.21 52.04 7.21 
9 SW 21.22 18.08 17.96 -3.14 9.84 3.14 

12 SW 25.41 25.60 19.00 0.19 0.03 0.19 
19 SW 39.14 36.02 27.65 -3.12 9.73 3.12 
20 SW 21.47 21.14 17.99 -0.33 0.11 0.33 
21 SW 42.99 37.04 30.20 -5.95 35.43 5.95 
22 SW 43.02 40.96 28.50 -2.06 4.24 2.06 
24 SW 40.78 43.14 24.49 2.37 5.61 2.37 
25 SW 30.09 36.21 22.54 6.12 37.47 6.12 
26 SW 33.74 34.08 24.48 0.34 0.11 0.34 
29 SW 20.24 24.41 15.93 4.17 17.40 4.17 
32 SW 22.95 25.65 17.04 2.70 7.29 2.70 

106 SW 42.02 54.38 19.55 12.35 152.64 12.35 
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Table 28 Testing 2011 equation on 2011 data 

 

Tree 
ID 

Wood 

Predicted 
DBH of 
2011 by 

using 2011 
(ŷi)  

DBH 
2011(yi)  

Ht ei (yi-ŷi) ei² │ei│ 

4 HW 31.16 38.29 19.23 7.13 50.86 7.13 
5 HW 26.16 21.38 21.07 -4.78 22.90 4.78 
7 HW 21.68 26.71 18.99 5.03 25.31 5.03 

10 HW 18.91 6.45 14.36 -12.46 155.22 12.46 
11 HW 25.58 22.58 17.98 -3.00 9.00 3.00 
13 HW 20.27 8.78 17.96 -11.49 132.11 11.49 
14 HW 25.17 16.52 19.00 -8.65 74.75 8.65 
15 HW 23.30 17.96 21.50 -5.34 28.55 5.34 
16 HW 22.48 12.04 19.01 -10.44 109.03 10.44 
17 HW 19.96 14.11 19.22 -5.85 34.20 5.85 
18 HW 41.33 51.21 29.94 9.88 97.56 9.88 
27 HW 33.03 33.59 22.23 0.56 0.31 0.56 
28 HW 23.19 37.47 21.13 14.28 203.89 14.28 
30 HW 30.26 35.86 18.92 5.61 31.42 5.61 
31 HW 25.71 27.51 17.44 1.80 3.24 1.80 
47 HW 31.90 26.36 19.55 -5.54 30.69 5.54 
49 HW 31.95 30.63 20.50 -1.32 1.74 1.32 
51 HW 35.83 39.70 21.08 3.87 14.99 3.87 
53 HW 31.38 31.31 20.71 -0.08 0.01 0.08 
55 HW 28.03 29.30 17.48 1.27 1.62 1.27 
73 HW 28.21 31.21 19.18 3.00 9.02 3.00 
74 HW 36.71 26.26 20.23 -10.45 109.20 10.45 
75 HW 36.34 27.80 20.03 -8.53 72.80 8.53 
76 HW 28.48 31.50 18.73 3.02 9.12 3.02 
77 HW 29.37 31.45 17.87 2.08 4.31 2.08 
82 HW 38.84 27.32 18.35 -11.51 132.57 11.51 
83 HW 22.38 35.60 20.82 13.21 174.54 13.21 
92 HW 24.58 30.76 17.93 6.17 38.12 6.17 
96 HW 27.38 29.83 19.51 2.45 6.02 2.45 

100 HW 33.51 39.92 15.87 6.41 41.07 6.41 
104 HW 37.25 24.67 19.23 -12.59 158.40 12.59 
105 HW 34.40 34.43 18.35 0.04 0.00 0.04 
107 HW 39.33 42.28 23.83 2.95 8.70 2.95 
109 HW 35.80 46.06 20.50 10.27 105.40 10.27 
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1 

 
SW 

 
26.05 

 
31.06 

 
22.57 

 
5.01 

 
25.10 

 
5.01 

2 SW 36.65 26.34 24.46 -10.30 106.12 10.30 
3 SW 33.17 37.97 24.14 4.79 22.97 4.79 
6 SW 32.76 33.14 23.58 0.38 0.14 0.38 
8 SW 32.91 26.76 26.40 -6.16 37.90 6.16 
9 SW 20.83 18.08 17.96 -2.75 7.56 2.75 

12 SW 27.79 25.60 19.00 -2.20 4.82 2.20 
19 SW 38.45 36.02 27.65 -2.43 5.92 2.43 
20 SW 22.90 21.14 17.99 -1.75 3.08 1.75 
21 SW 43.51 37.04 30.20 -6.47 41.90 6.47 
22 SW 41.88 40.96 28.50 -0.91 0.83 0.91 
24 SW 40.16 43.14 24.49 2.99 8.91 2.99 
25 SW 29.66 36.21 22.54 6.55 42.90 6.55 
26 SW 31.99 34.08 24.48 2.09 4.37 2.09 
29 SW 21.06 24.41 15.93 3.35 11.21 3.35 
32 SW 25.08 25.65 17.04 0.58 0.33 0.58 

106 SW 41.40 54.38 19.55 12.98 168.60 12.98 
 

 

Table 29. Testing 2011 equation on 2017 data 

 
Tree 
ID 

Wood 

Predicted 
DBH of 
2017 by 

using 2011 
(ŷi) 

DBH 
2017(yi)  

Ht ei (yi-ŷi) ei² │ei│ 

4 HW 31.16 40.89 20.69 9.73 94.75 9.73 
5 HW 21.98 23.62 18.17 1.64 2.68 1.64 
7 HW 28.34 29.21 19.17 0.87 0.76 0.87 

10 HW 11.75 11.43 16.99 -0.32 0.11 0.32 
11 HW 29.28 25.91 20.88 -3.37 11.39 3.37 
13 HW 26.93 14.48 19.67 -12.45 155.08 12.45 
14 HW 31.99 21.08 23.97 -10.91 119.05 10.91 
15 HW 27.92 23.37 20.87 -4.55 20.68 4.55 
16 HW 27.74 15.49 20.87 -12.24 149.85 12.24 
17 HW 26.56 16.26 20.89 -10.31 106.21 10.31 
18 HW 44.12 59.18 31.36 15.06 226.85 15.06 
27 HW 32.66 36.32 22.17 3.66 13.40 3.66 
28 HW 30.15 41.15 22.46 11.00 120.95 11.00 
30 HW 33.41 37.85 19.31 4.43 19.66 4.43 
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31 HW 26.75 29.97 16.51 3.22 10.35 3.22 
47 HW 38.12 30.73 19.42 -7.38 54.52 7.38 

 
49 

 
HW 

 
41.61 

 
36.07 

 
20.87 

 
-5.54 

 
30.66 

 
5.54 

51 HW 45.26 44.45 22.06 -0.81 0.65 0.81 
53 HW 34.07 35.56 20.64 1.49 2.22 1.49 
55 HW 33.35 33.53 19.20 0.18 0.03 0.18 
73 HW 32.81 35.31 18.69 2.50 6.25 2.50 
74 HW 35.63 30.48 19.51 -5.15 26.53 5.15 
75 HW 32.53 31.75 19.60 -0.78 0.60 0.78 
76 HW 37.54 33.78 20.42 -3.75 14.10 3.75 
77 HW 32.52 33.27 20.29 0.76 0.57 0.76 
82 HW 37.91 33.27 18.21 -4.64 21.49 4.64 
83 HW 28.96 39.12 21.46 10.15 103.12 10.15 
92 HW 28.31 33.53 18.51 5.22 27.25 5.22 
96 HW 32.09 34.29 21.77 2.20 4.84 2.20 

100 HW 36.06 45.47 15.36 9.41 88.51 9.41 
104 HW 36.00 27.94 20.66 -8.06 65.03 8.06 
105 HW 35.64 36.83 18.45 1.19 1.41 1.19 
107 HW 41.76 45.97 24.10 4.21 17.72 4.21 
109 HW 50.69 48.26 22.27 -2.43 5.92 2.43 

1 SW 26.90 33.02 20.25 6.12 37.43 6.12 
2 SW 35.01 29.21 25.78 -5.80 33.61 5.80 
3 SW 35.65 41.15 24.18 5.49 30.19 5.49 
6 SW 37.51 36.83 26.45 -0.68 0.46 0.68 
8 SW 41.50 29.21 27.47 -12.29 150.99 12.29 
9 SW 20.79 24.38 20.29 3.59 12.90 3.59 

12 SW 25.18 29.21 19.51 4.03 16.23 4.03 
19 SW 43.54 39.12 29.62 -4.42 19.54 4.42 
20 SW 32.25 26.67 18.18 -5.58 31.18 5.58 
21 SW 46.08 39.37 31.35 -6.71 44.98 6.71 
22 SW 47.95 49.02 28.48 1.07 1.15 1.07 
24 SW 45.47 48.26 27.27 2.79 7.77 2.79 
25 SW 32.73 38.35 23.82 5.62 31.63 5.62 
26 SW 32.53 36.83 24.24 4.30 18.50 4.30 
29 SW 29.59 26.67 17.92 -2.92 8.51 2.92 
32 SW 33.40 31.24 19.14 -2.16 4.65 2.16 

106 SW 45.62 58.93 22.31 13.31 177.23 13.31 
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Appendix C 
 

1. Estimated Volume and Biomass by Using Ground Measured Data 
 

Table 30. Estimated 2017 Volume  

Tree ID Species Wood 
DBH 
(cm) 

Height 
(m) 

Merchantable 
Volume (m³) 

4 Red Oak HW 40.89 20.69 0.87 
5 Red Oak HW 23.62 18.17 0.00 
7 Red Oak HW 29.21 19.17 0.26 

10 Sugar Maple HW 11.43 16.99 0.00 
11 Sugar Maple HW 25.91 20.88 0.00 
13 Sugar Maple HW 14.48 19.67 0.00 
14 White Birch HW 21.08 23.97 0.00 
15 Red Oak HW 23.37 20.87 0.00 

      
16 Aspen HW 15.49 20.87 0.00 
17 Sugar Maple HW 16.26 20.89 0.00 
18 White Birch HW 59.18 31.36 3.02 
27 Red Oak HW 36.32 22.17 0.57 
28 Red Oak HW 41.15 22.46 0.88 
30 Red Oak HW 37.85 19.31 0.61 
31 Red Oak HW 29.97 16.51 0.16 
47 Sugar Maple HW 30.73 19.42 0.30 
49 Sugar Maple HW 36.07 20.87 0.57 
51 Sugar Maple HW 44.45 22.06 1.02 
53 Sugar Maple HW 35.56 20.64 0.55 
55 Sugar Maple HW 33.53 19.20 0.36 
73 Sugar Maple HW 35.31 18.69 0.54 
74 Sugar Maple HW 30.48 19.51 0.29 
75 Sugar Maple HW 31.75 19.60 0.32 
76 Sugar Maple HW 33.78 20.42 0.50 
77 Sugar Maple HW 33.27 20.29 0.48 
82 Sugar Maple HW 33.27 18.21 0.35 
83 Red Oak HW 39.12 21.46 0.80 
92 Yellow Birch HW 33.53 18.51 0.35 
96 Sugar Maple HW 34.29 21.77 0.51 

100 Yellow Birch HW 45.47 15.36 0.85 
104 Sugar Maple HW 27.94 20.66 0.14 
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105 

 
Sugar Maple 

 
HW 

 
36.83 

 
18.45 

 
0.59 

107 Sugar Maple HW 45.97 24.10 1.30 
109 Sugar Maple HW 48.26 22.27 1.43 

1 Red Pine SW 33.02 20.25 0.57 
2 Red Pine SW 29.21 25.78 0.53 
3 White Pine SW 41.15 24.18 0.96 
6 Eastern Hemlock SW 36.83 26.45 0.92 
8 Red Pine SW 29.21 27.47 0.53 
9 White Pine SW 24.38 20.29 0.18 

12 Red Pine SW 29.21 19.51 0.44 
19 Red Pine SW 39.12 29.62 1.16 
20 White Pine SW 26.67 18.18 0.22 
21 Red Pine SW 39.37 31.35 1.29 
22 White Pine SW 49.02 28.48 1.75 
23 White Pine SW 39.12 16.14 0.58 
24 Red Pine SW 48.26 27.27 1.76 
25 Red Pine SW 38.35 23.82 1.00 
26 Red Pine SW 36.83 24.24 0.96 
29 Red Pine SW 26.67 17.92 0.29 
32 Red Pine SW 31.24 19.14 0.51 

106 Eastern Hemlock SW 58.93 22.31 2.35 
 

 

Table 31. Estimated 2011 Volume  

Tree ID Species Wood 
DBH 
(cm) 

Height 
(m) 

Merchantable 
Volume (m³) 

4 Red Oak HW 38.29 19.23 0.54 
5 Red Oak HW 21.38 21.07 0.60 
7 Red Oak HW 26.71 18.99 0.54 

10 Sugar Maple HW 6.45 14.36 0.41 
11 Sugar Maple HW 22.58 17.98 0.51 
13 Sugar Maple HW 8.78 17.96 0.51 
14 White Birch HW 16.52 19.00 0.54 
15 Red Oak HW 17.96 21.50 0.61 
16 Aspen HW 12.04 19.01 0.54 
17 Sugar Maple HW 14.11 19.22 0.54 
18 White Birch HW 51.21 29.94 0.85 
27 Red Oak HW 33.59 22.23 0.63 



81 
 

28 Red Oak HW 37.47 21.13 0.60 
30 Red Oak HW 35.86 18.92 0.54 

 
31 

 
Red Oak 

 
HW 

 
27.51 

 
17.44 

 
0.49 

47 Sugar Maple HW 26.36 19.55 0.55 
49 Sugar Maple HW 30.63 20.50 0.58 
51 Sugar Maple HW 39.70 21.08 0.60 
53 Sugar Maple HW 31.31 20.71 0.59 
55 Sugar Maple HW 29.30 17.48 0.49 
73 Sugar Maple HW 31.21 19.18 0.54 
74 Sugar Maple HW 26.26 20.23 0.57 
75 Sugar Maple HW 27.80 20.03 0.57 
76 Sugar Maple HW 31.50 18.73 0.53 
77 Sugar Maple HW 31.45 17.87 0.51 
82 Sugar Maple HW 27.32 18.35 0.52 
83 Red Oak HW 35.60 20.82 0.59 
92 Yellow Birch HW 30.76 17.93 0.51 
96 Sugar Maple HW 29.83 19.51 0.55 

100 Yellow Birch HW 39.92 15.87 0.45 
104 Sugar Maple HW 24.67 19.23 0.54 
105 Sugar Maple HW 34.43 18.35 0.52 
107 Sugar Maple HW 42.28 23.83 0.67 
109 Sugar Maple HW 46.06 20.50 0.58 

1 Red Pine SW 31.06 22.57 0.60 
2 Red Pine SW 26.34 24.46 0.36 
3 White Pine SW 37.97 24.14 0.94 
6 Eastern Hemlock SW 21.38 23.58 0.00 
8 Red Pine SW 26.71 26.40 0.44 
9 White Pine SW 26.76 17.96 0.22 

12 Red Pine SW 25.60 19.00 0.27 
19 Red Pine SW 36.02 27.65 0.92 
20 White Pine SW 21.14 17.99 0.00 
21 Red Pine SW 37.04 30.20 1.08 
22 White Pine SW 40.96 28.50 1.09 
23 White Pine SW 34.90 22.15 0.67 
24 Red Pine SW 43.14 24.49 1.26 
25 Red Pine SW 36.21 22.54 0.81 
26 Red Pine SW 34.08 24.48 0.72 
29 Red Pine SW 24.41 15.93 0.17 
32 Red Pine SW 25.65 17.04 0.27 

106 Eastern Hemlock SW 54.38 19.55 1.74 
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Table 32. Estimated 2017 Biomass  

Tree ID Species Wood 
Height  

(m) 
DBH 
(cm) 

Biomass (kg) 

4 Red Oak HW 20.69 40.89 988.35 
5 Red Oak HW 18.17 23.62 299.68 
7 Red Oak HW 19.17 29.21 480.52 

10 Sugar Maple HW 16.99 11.43 42.29 
11 Sugar Maple HW 20.88 25.91 383.78 
13 Sugar Maple HW 19.67 14.48 99.19 
14 White Birch HW 23.97 21.08 256.90 
15 Red Oak HW 20.87 23.37 330.93 
16 Aspen HW 20.87 15.49 78.47 
17 Sugar Maple HW 20.89 16.26 143.58 
18 White Birch HW 31.36 59.18 2427.89 
27 Red Oak HW 22.17 36.32 835.02 
28 Red Oak HW 22.46 41.15 1076.73 
30 Red Oak HW 19.31 37.85 799.74 
31 Red Oak HW 16.51 29.97 441.31 
47 Sugar Maple HW 19.42 30.73 497.90 
49 Sugar Maple HW 20.87 36.07 726.24 
51 Sugar Maple HW 22.06 44.45 1142.99 
53 Sugar Maple HW 20.64 35.56 701.20 
55 Sugar Maple HW 19.20 33.53 583.48 
73 Sugar Maple HW 18.69 35.31 627.37 
74 Sugar Maple HW 19.51 30.48 493.64 
75 Sugar Maple HW 19.60 31.75 536.92 
76 Sugar Maple HW 20.42 33.78 628.81 
77 Sugar Maple HW 20.29 33.27 605.93 
82 Sugar Maple HW 18.21 33.27 545.34 
83 Red Oak HW 21.46 39.12 937.30 
92 Yellow Birch HW 18.51 33.53 511.70 
96 Sugar Maple HW 21.77 34.29 685.41 

100 Yellow Birch HW 15.36 45.47 811.05 
104 Sugar Maple HW 20.66 27.94 440.94 
105 Sugar Maple HW 18.45 36.83 671.66 
107 Sugar Maple HW 24.10 45.97 1325.22 
109 Sugar Maple HW 22.27 48.26 1351.12 

1 Red Pine SW 20.25 33.02 440.06 
2 Red Pine SW 25.78 29.21 429.61 
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3 

 
White Pine 

 
SW 

 
24.18 

 
41.15 

 
646.31 

6 Eastern Hemlock SW 26.45 36.83 653.49 
8 Red Pine SW 27.47 29.21 454.78 
9 White Pine SW 20.29 24.38 197.32 

12 Red Pine SW 19.51 29.21 333.95 
19 Red Pine SW 29.62 39.12 863.15 
20 White Pine SW 18.18 26.67 217.76 
21 Red Pine SW 31.35 39.37 919.12 
22 White Pine SW 28.48 49.02 1044.04 
23 White Pine SW 16.14 39.12 425.24 
24 Red Pine SW 27.27 48.26 1210.29 
25 Red Pine SW 23.82 38.35 683.51 
26 Red Pine SW 24.24 36.83 640.00 
29 Red Pine SW 17.92 26.67 258.19 
32 Red Pine SW 19.14 31.24 374.48 

106 Eastern Hemlock SW 22.31 58.93 1463.99 

 

Table 33. Estimated 2011 Biomass  

Tree ID Species Wood 
DBH 
(cm) 

Height 
(m) 

Biomass(kg) 

4 Red Oak HW 38.29 19.23 816.53 
5 Red Oak HW 21.38 21.07 274.92 
7 Red Oak HW 26.71 18.99 398.49 

10 Sugar Maple HW 6.45 14.36 10.52 
11 Sugar Maple HW 22.58 17.98 254.23 
13 Sugar Maple HW 8.78 17.96 22.22 
14 White Birch HW 16.52 19.00 124.69 
15 Red Oak HW 17.96 21.50 192.18 
16 Aspen HW 12.04 19.01 28.79 
17 Sugar Maple HW 14.11 19.22 91.22 
18 White Birch HW 51.21 29.94 1764.76 
27 Red Oak HW 33.59 22.23 718.60 
28 Red Oak HW 37.47 21.13 849.68 
30 Red Oak HW 35.86 18.92 706.96 
31 Red Oak HW 27.51 17.44 391.03 
47 Sugar Maple HW 26.36 19.55 372.49 
49 Sugar Maple HW 30.63 20.50 522.71 
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51 Sugar Maple HW 39.70 21.08 883.20 
53 Sugar Maple HW 31.31 20.71 550.30 
55 Sugar Maple HW 29.30 17.48 410.26 
73 Sugar Maple HW 31.21 19.18 508.96 
74 Sugar Maple HW 26.26 20.23 382.82 
75 Sugar Maple HW 27.80 20.03 423.86 
76 Sugar Maple HW 31.50 18.73 505.79 
77 Sugar Maple HW 31.45 17.87 481.49 
82 Sugar Maple HW 27.32 18.35 375.13 
83 Red Oak HW 35.60 20.82 759.51 
92 Yellow Birch HW 30.76 17.93 423.03 
96 Sugar Maple HW 29.83 19.51 473.16 

100 Yellow Birch HW 39.92 15.87 645.89 
104 Sugar Maple HW 24.67 19.23 321.09 
105 Sugar Maple HW 34.43 18.35 588.53 
107 Sugar Maple HW 42.28 23.83 1116.46 
109 Sugar Maple HW 46.06 20.50 1143.33 

1 Red Pine SW 31.06 22.57 429.79 
2 Red Pine SW 26.34 24.46 332.70 
3 White Pine SW 37.97 24.14 550.06 
6 Eastern Hemlock SW 21.38 23.58 183.65 
8 Red Pine SW 26.71 26.40 366.15 
9 White Pine SW 26.76 17.96 216.17 

12 Red Pine SW 25.60 19.00 250.42 
19 Red Pine SW 36.02 27.65 690.46 
20 White Pine SW 21.14 17.99 133.48 
21 Red Pine SW 37.04 30.20 789.01 
22 White Pine SW 40.96 28.50 732.52 
23 White Pine SW 34.90 22.15 435.09 
24 Red Pine SW 43.14 24.49 882.71 
25 Red Pine SW 36.21 22.54 580.77 
26 Red Pine SW 34.08 24.48 554.19 
29 Red Pine SW 24.41 15.93 193.52 
32 Red Pine SW 25.65 17.04 228.39 

106 Eastern Hemlock SW 54.38 19.55 1107.67 
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2. Estimated Volume and Biomass by Using Predicted DBH Derived 
from LiDAR Variables 

 

2.1.Testing 2017 Equation 
 

Table 34. Estimated 2017 Volume; 2017 Equation Tested on 2017 Dataset  

Tree ID Species Wood 
DBH 
(cm) 

Height  
(m) 

Merchantable 
Volume  (m³) 

4 Red Oak HW 31.01 20.69 0.29 
5 Red Oak HW 20.93 18.17 0.00 
7 Red Oak HW 26.68 19.17 0.00 

10 Sugar Maple HW 12.34 16.99 0.00 
11 Sugar Maple HW 29.33 20.88 0.00 
13 Sugar Maple HW 25.93 19.67 0.00 
14 White Birch HW 28.99 23.97 0.00 
15 Red Oak HW 29.32 20.87 0.00 
16 Aspen HW 27.75 20.87 0.00 
17 Sugar Maple HW 27.24 20.89 0.00 
18 White Birch HW 45.91 31.36 1.25 
27 Red Oak HW 31.81 22.17 0.47 
28 Red Oak HW 30.39 22.46 0.00 
30 Red Oak HW 32.44 19.31 0.28 
31 Red Oak HW 26.60 16.51 0.00 
47 Sugar Maple HW 38.76 19.42 0.30 
49 Sugar Maple HW 42.00 20.87 0.31 
51 Sugar Maple HW 45.92 22.06 0.53 
53 Sugar Maple HW 32.57 20.64 0.30 
55 Sugar Maple HW 34.46 19.20 0.15 
73 Sugar Maple HW 34.25 18.69 0.00 
74 Sugar Maple HW 36.76 19.51 0.59 
75 Sugar Maple HW 34.28 19.60 0.59 
76 Sugar Maple HW 38.61 20.42 0.00 
77 Sugar Maple HW 34.92 20.29 0.30 
82 Sugar Maple HW 38.15 18.21 0.69 
83 Red Oak HW 31.88 21.46 0.00 
92 Yellow Birch HW 29.84 18.51 0.00 
96 Sugar Maple HW 34.97 21.77 0.00 
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100 

 
Yellow Birch 

 
HW 

 
35.85 

 
15.36 

 
0.31 

104 Sugar Maple HW 37.30 20.66 0.56 
105 Sugar Maple HW 36.39 18.45 0.37 
107 Sugar Maple HW 41.88 24.10 0.77 
109 Sugar Maple HW 49.63 22.27 0.61 

1 Red Pine SW 26.86 20.25 0.39 
2 Red Pine SW 35.27 25.78 1.02 
3 White Pine SW 36.56 24.18 0.61 
6 Eastern Hemlock SW 36.37 26.45 0.63 
8 Red Pine SW 39.98 27.47 0.82 
9 White Pine SW 20.86 20.29 0.00 

12 Red Pine SW 23.28 19.51 0.27 
19 Red Pine SW 42.70 29.62 1.16 
20 White Pine SW 28.50 18.18 0.00 
21 Red Pine SW 46.31 31.35 1.53 
22 White Pine SW 48.62 28.48 1.21 
23 White Pine SW 44.58 16.14 0.63 
24 Red Pine SW 31.91 27.27 0.56 
25 Red Pine SW 31.91 23.82 0.70 
26 Red Pine SW 28.02 24.24 0.00 
29 Red Pine SW 31.72 17.92 0.15 
32 Red Pine SW 44.77 19.14 1.04 

106 Eastern Hemlock SW 33.09 22.31 0.55 
 

 

Table 35. Estimated 2011 Volume; 2017 Equation Tested on 2011 Dataset  

Tree ID Species Wood 
DBH 
(cm) 

Height  
(m) 

Merchantable 
Volume  (m³) 

4 Red Oak HW 30.80 19.23 0.29 
5 Red Oak HW 26.60 21.07 0.00 
7 Red Oak HW 22.63 18.99 0.00 

10 Sugar Maple HW 15.36 14.36 0.00 
11 Sugar Maple HW 23.74 17.98 0.00 
13 Sugar Maple HW 20.53 17.96 0.00 
14 White Birch HW 23.90 19.00 0.00 
15 Red Oak HW 25.55 21.50 0.00 
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16 Aspen HW 21.45 19.01 0.00 
 

17 
 

Sugar Maple 
 

HW 
 

19.67 
 

19.22 
 

0.00 
18 White Birch HW 42.16 29.94 1.25 
27 Red Oak HW 33.22 22.23 0.47 
28 Red Oak HW 23.45 21.13 0.00 
30 Red Oak HW 30.11 18.92 0.28 
31 Red Oak HW 26.02 17.44 0.00 
47 Sugar Maple HW 30.82 19.55 0.30 
49 Sugar Maple HW 31.38 20.50 0.31 
51 Sugar Maple HW 34.70 21.08 0.53 
53 Sugar Maple HW 30.90 20.71 0.30 
55 Sugar Maple HW 28.22 17.48 0.15 
73 Sugar Maple HW 26.85 19.18 0.00 
74 Sugar Maple HW 36.71 20.23 0.59 
75 Sugar Maple HW 36.86 20.03 0.59 
76 Sugar Maple HW 25.93 18.73 0.00 
77 Sugar Maple HW 30.64 17.87 0.30 
82 Sugar Maple HW 40.73 18.35 0.69 
83 Red Oak HW 24.51 20.82 0.00 
92 Yellow Birch HW 24.33 17.93 0.00 
96 Sugar Maple HW 24.86 19.51 0.00 

100 Yellow Birch HW 31.84 15.87 0.31 
104 Sugar Maple HW 35.82 19.23 0.56 
105 Sugar Maple HW 34.19 18.35 0.37 
107 Sugar Maple HW 38.56 23.83 0.77 
109 Sugar Maple HW 37.47 20.50 0.61 

1 Red Pine SW 27.34 22.57 0.39 
2 Red Pine SW 38.03 24.46 1.02 
3 White Pine SW 33.30 24.14 0.61 
6 Eastern Hemlock SW 32.61 23.58 0.63 
8 Red Pine SW 33.97 26.40 0.82 
9 White Pine SW 21.22 17.96 0.00 

12 Red Pine SW 25.41 19.00 0.27 
19 Red Pine SW 39.14 27.65 1.16 
20 White Pine SW 21.47 17.99 0.00 
21 Red Pine SW 42.99 30.20 1.53 
22 White Pine SW 43.02 28.50 1.21 
23 White Pine SW 40.78 22.15 0.94 
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24 Red Pine SW 30.09 24.49 0.56 
25 Red Pine SW 33.74 22.54 0.70 
26 Red Pine SW 20.24 24.48 0.00 
29 Red Pine SW 22.95 15.93 0.15 
32 Red Pine SW 42.02 17.04 0.88 

106 Eastern Hemlock SW 33.09 19.55 0.55 
 

Table 36. Estimated 2017 Biomass; 2017 Equation Tested on 2017 Dataset  

Tree ID Species Wood 
Height  

(m) 
DBH 
(cm) 

Biomass (kg) 

4 Red Oak HW 20.69 27.70 460.58 
5 Red Oak HW 18.17 35.76 678.74 
7 Red Oak HW 19.17 33.58 629.79 

10 Sugar Maple HW 16.99 28.35 375.25 
11 Sugar Maple HW 20.88 28.96 475.44 
13 Sugar Maple HW 19.67 36.27 694.57 
14 White Birch HW 23.97 23.30 315.41 
15 Red Oak HW 20.87 33.75 684.18 
16 Aspen HW 20.87 22.26 183.85 
17 Sugar Maple HW 20.89 17.99 180.68 
18 White Birch HW 31.36 28.11 574.98 
27 Red Oak HW 22.17 30.48 591.27 
28 Red Oak HW 22.46 24.13 375.77 
30 Red Oak HW 19.31 29.17 480.64 
31 Red Oak HW 16.51 25.45 319.98 
47 Sugar Maple HW 19.42 25.62 351.68 
49 Sugar Maple HW 20.87 22.02 276.46 
51 Sugar Maple HW 22.06 42.19 1034.42 
53 Sugar Maple HW 20.64 39.34 850.98 
55 Sugar Maple HW 19.20 23.17 283.84 
73 Sugar Maple HW 18.69 45.48 1021.29 
74 Sugar Maple HW 19.51 41.39 888.26 
75 Sugar Maple HW 19.60 29.00 450.58 
76 Sugar Maple HW 20.42 38.95 825.93 
77 Sugar Maple HW 20.29 30.90 526.89 
82 Sugar Maple HW 18.21 31.03 477.57 
83 Red Oak HW 21.46 32.19 641.56 
92 Yellow Birch HW 18.51 26.73 328.36 
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96 Sugar Maple HW 21.77 20.45 249.28 
100 Yellow Birch HW 15.36 28.25 322.86 
104 Sugar Maple HW 20.66 23.68 318.56 
105 Sugar Maple HW 18.45 24.94 315.33 
107 Sugar Maple HW 24.10 33.18 708.00 

 
109 

 
Sugar Maple 

 
HW 

 
22.27 

 
33.19 

 
659.50 

1 Red Pine SW 20.25 37.19 555.19 
2 Red Pine SW 25.78 35.67 635.98 
3 White Pine SW 24.18 28.39 307.69 
6 Eastern Hemlock SW 26.45 27.93 365.60 
8 Red Pine SW 27.47 34.74 638.46 
9 White Pine SW 20.29 32.44 351.20 

12 Red Pine SW 19.51 30.50 363.26 
19 Red Pine SW 29.62 25.56 372.28 
20 White Pine SW 18.18 26.39 213.27 
21 Red Pine SW 31.35 25.17 379.44 
22 White Pine SW 28.48 25.01 269.86 
23 White Pine SW 16.14 31.00 267.87 
24 Red Pine SW 27.27 27.68 405.74 
25 Red Pine SW 23.82 35.00 570.08 
26 Red Pine SW 24.24 30.44 440.31 
29 Red Pine SW 17.92 33.16 396.64 
32 Red Pine SW 19.14 40.51 624.11 

106 Eastern Hemlock SW 22.31 29.97 367.47 

 

Table 37. Estimated 2011 Biomass; 2017 Equation Tested on 2011 Dataset  

Tree ID Species Wood 
Height  

(m) 
DBH 
(cm) 

Biomass (kg) 

4 Red Oak HW 19.23 30.80 532.07 
5 Red Oak HW 21.07 26.60 431.35 
7 Red Oak HW 18.99 22.63 285.56 

10 Sugar Maple HW 14.36 15.36 83.04 
11 Sugar Maple HW 17.98 23.74 279.88 
13 Sugar Maple HW 17.96 20.53 209.30 
14 White Birch HW 19.00 23.90 272.09 
15 Red Oak HW 21.50 25.55 404.47 
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16 Aspen HW 19.01 21.45 157.89 
17 Sugar Maple HW 19.22 19.67 203.41 
18 White Birch HW 29.94 42.16 1211.20 

 
27 

 
Red Oak 

 
HW 

 
22.23 

 
33.22 

 
701.41 

28 Red Oak HW 21.13 23.45 336.26 
30 Red Oak HW 18.92 30.11 502.09 
31 Red Oak HW 17.44 26.02 351.35 
47 Sugar Maple HW 19.55 30.82 505.04 
49 Sugar Maple HW 20.50 31.38 547.65 
51 Sugar Maple HW 21.08 34.70 681.88 
53 Sugar Maple HW 20.71 30.90 536.69 
55 Sugar Maple HW 17.48 28.22 380.52 
73 Sugar Maple HW 19.18 26.85 378.79 
74 Sugar Maple HW 20.23 36.71 729.32 
75 Sugar Maple HW 20.03 36.86 728.94 
76 Sugar Maple HW 18.73 25.93 345.85 
77 Sugar Maple HW 17.87 30.64 456.43 
82 Sugar Maple HW 18.35 40.73 812.05 
83 Red Oak HW 20.82 24.51 363.62 
92 Yellow Birch HW 17.93 24.33 266.39 
96 Sugar Maple HW 19.51 24.86 330.78 

100 Yellow Birch HW 15.87 31.84 418.47 
104 Sugar Maple HW 19.23 35.82 664.53 
105 Sugar Maple HW 18.35 34.19 579.45 
107 Sugar Maple HW 23.83 38.56 936.28 
109 Sugar Maple HW 20.50 37.47 767.96 

1 Red Pine SW 22.57 27.34 333.60 
2 Red Pine SW 24.46 38.03 687.08 
3 White Pine SW 24.14 33.30 423.91 
6 Eastern Hemlock SW 23.58 32.61 458.50 
8 Red Pine SW 26.40 33.97 589.23 
9 White Pine SW 17.96 21.22 133.45 

12 Red Pine SW 19.00 25.41 247.16 
19 Red Pine SW 27.65 39.14 811.87 
20 White Pine SW 17.99 21.47 138.02 
21 Red Pine SW 30.20 42.99 1057.42 
22 White Pine SW 28.50 43.02 806.43 
23 White Pine SW 22.15 40.78 592.17 
24 Red Pine SW 24.49 30.09 433.90 
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25 Red Pine SW 22.54 33.74 504.52 
26 Red Pine SW 24.48 20.24 192.87 
29 Red Pine SW 15.93 22.95 170.50 
32 Red Pine SW 17.04 42.02 603.38 

106 Eastern Hemlock SW 19.55 29.97 326.83 
 

 

2.2.Testing 2011 Equation 
 

Table 38. Estimated 2011 Volume; 2011 Equation Tested on 2011 Dataset 

Tree ID Species Wood 
DBH 
(cm) 

Height  
(m) 

Merchantable 
Volume  (m³) 

4 Red Oak HW 31.16 19.23 0.30 
5 Red Oak HW 26.16 21.07 0.00 
7 Red Oak HW 21.68 18.99 0.00 

10 Sugar Maple HW 18.91 14.36 0.00 
11 Sugar Maple HW 25.58 17.98 0.00 
13 Sugar Maple HW 20.27 17.96 0.00 
14 White Birch HW 25.17 19.00 0.00 
15 Red Oak HW 23.30 21.50 0.00 
16 Aspen HW 22.48 19.01 0.00 
17 Sugar Maple HW 19.96 19.22 0.00 
18 White Birch HW 41.33 29.94 1.21 
27 Red Oak HW 33.03 22.23 0.47 
28 Red Oak HW 23.19 21.13 0.00 
30 Red Oak HW 30.26 18.92 0.28 
31 Red Oak HW 25.71 17.44 0.00 
47 Sugar Maple HW 31.90 19.55 0.32 
49 Sugar Maple HW 31.95 20.50 0.32 
51 Sugar Maple HW 35.83 21.08 0.56 
53 Sugar Maple HW 31.38 20.71 0.31 
55 Sugar Maple HW 28.03 17.48 0.14 
73 Sugar Maple HW 28.21 19.18 0.15 
74 Sugar Maple HW 36.71 20.23 0.59 
75 Sugar Maple HW 36.34 20.03 0.58 
76 Sugar Maple HW 28.48 18.73 0.15 
77 Sugar Maple HW 29.37 17.87 0.16 
82 Sugar Maple HW 38.84 18.35 0.62 
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83 Red Oak HW 22.38 20.82 0.00 
92 Yellow Birch HW 24.58 17.93 0.00 
96 Sugar Maple HW 27.38 19.51 0.00 

100 Yellow Birch HW 33.51 15.87 0.35 
104 Sugar Maple HW 37.25 19.23 0.61 
105 Sugar Maple HW 34.40 18.35 0.38 
107 Sugar Maple HW 39.33 23.83 0.80 
109 Sugar Maple HW 35.80 20.50 0.56 

1 Red Pine SW 26.05 22.57 0.35 
2 Red Pine SW 36.65 24.46 0.95 
3 White Pine SW 33.17 24.14 0.60 
6 Eastern Hemlock SW 32.76 23.58 0.64 
8 Red Pine SW 32.91 26.40 0.77 
9 White Pine SW 20.83 17.96 0.00 

12 Red Pine SW 27.79 19.00 0.32 
19 Red Pine SW 38.45 27.65 1.12 
20 White Pine SW 22.90 17.99 0.09 
21 Red Pine SW 43.51 30.20 1.57 
22 White Pine SW 41.88 28.50 1.14 
23 White Pine SW 40.16 22.15 0.91 
24 Red Pine SW 29.66 24.49 0.54 
25 Red Pine SW 31.99 22.54 0.63 
26 Red Pine SW 21.06 24.48 0.00 
29 Red Pine SW 25.08 15.93 0.18 
32 Red Pine SW 41.40 17.04 0.85 

106 Eastern Hemlock SW 33.09 19.55 0.55 
 

 

Table 39. Estimated 2017 Volume; 2011 Equation Tested on 2017 Dataset  

Tree ID Species Wood 
DBH 
(cm) 

Height  
(m) 

Merchantable 
Volume  (m³) 

4 Red Oak HW 31.16 20.69 0.30 
5 Red Oak HW 21.98 18.17 0.00 
7 Red Oak HW 28.34 19.17 0.14 

10 Sugar Maple HW 11.75 16.99 0.00 
11 Sugar Maple HW 29.28 20.88 0.27 
13 Sugar Maple HW 26.93 19.67 0.00 
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14 White Birch HW 31.99 23.97 0.45 
15 Red Oak HW 27.92 20.87 0.00 
16 Aspen HW 27.74 20.87 0.22 
17 Sugar Maple HW 26.56 20.89 0.00 
18 White Birch HW 44.12 31.36 1.53 
27 Red Oak HW 32.66 22.17 0.46 
28 Red Oak HW 30.15 22.46 0.28 
30 Red Oak HW 33.41 19.31 0.35 
31 Red Oak HW 26.75 16.51 0.00 
47 Sugar Maple HW 38.12 19.42 0.60 
49 Sugar Maple HW 41.61 20.87 0.89 
51 Sugar Maple HW 45.26 22.06 1.06 
53 Sugar Maple HW 34.07 20.64 0.51 
55 Sugar Maple HW 33.35 19.20 0.35 
73 Sugar Maple HW 32.81 18.69 0.34 
74 Sugar Maple HW 35.63 19.51 0.56 
75 Sugar Maple HW 32.53 19.60 0.33 
76 Sugar Maple HW 37.54 20.42 0.61 
77 Sugar Maple HW 32.52 20.29 0.33 
82 Sugar Maple HW 37.91 18.21 0.63 
83 Red Oak HW 28.96 21.46 0.26 
92 Yellow Birch HW 28.31 18.51 0.14 
96 Sugar Maple HW 32.09 21.77 0.45 

100 Yellow Birch HW 36.06 15.36 0.41 
104 Sugar Maple HW 36.00 20.66 0.57 
105 Sugar Maple HW 35.64 18.45 0.56 
107 Sugar Maple HW 41.76 24.10 0.90 
109 Sugar Maple HW 50.69 22.27 1.58 

1 Red Pine SW 26.90 20.25 0.30 
2 Red Pine SW 35.01 25.78 0.87 
3 White Pine SW 35.65 24.18 0.83 
6 Eastern Hemlock SW 37.51 26.45 0.96 
8 Red Pine SW 41.50 27.47 1.31 
9 White Pine SW 20.79 20.29 0.00 

12 Red Pine SW 25.18 19.51 0.26 
19 Red Pine SW 43.54 29.62 1.57 
20 White Pine SW 32.25 18.18 0.45 
21 Red Pine SW 46.08 31.35 1.76 
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22 White Pine SW 47.95 28.48 1.67 
23 White Pine SW 45.47 16.14 0.99 
24 Red Pine SW 32.73 27.27 0.76 
25 Red Pine SW 32.53 23.82 0.65 
26 Red Pine SW 29.59 24.24 0.54 
29 Red Pine SW 33.40 17.92 0.58 
32 Red Pine SW 45.62 19.14 1.23 

106 Eastern Hemlock SW 33.09 22.31 0.55 
 

 

Table 40. Estimated 2011 Biomass; 2011 Equation Tested on 2011 Dataset  

Tree ID Species Wood 
Height  

(m) 
DBH 
(cm) 

Biomass (kg) 

4 Red Oak HW 19.23 31.16 544.33 
5 Red Oak HW 21.07 26.16 419.03 
7 Red Oak HW 18.99 21.68 259.95 

10 Sugar Maple HW 14.36 18.91 140.52 
11 Sugar Maple HW 17.98 25.58 323.94 
13 Sugar Maple HW 17.96 20.27 201.96 
14 White Birch HW 19.00 25.17 301.95 
15 Red Oak HW 21.50 23.30 336.69 
16 Aspen HW 19.01 22.48 173.27 
17 Sugar Maple HW 19.22 19.96 210.71 
18 White Birch HW 29.94 41.33 1165.56 
27 Red Oak HW 22.23 33.03 694.14 
28 Red Oak HW 21.13 23.19 328.67 
30 Red Oak HW 18.92 30.26 507.01 
31 Red Oak HW 17.44 25.71 341.21 
47 Sugar Maple HW 19.55 31.90 538.97 
49 Sugar Maple HW 20.50 31.95 565.67 
51 Sugar Maple HW 21.08 35.83 724.49 
53 Sugar Maple HW 20.71 31.38 552.53 
55 Sugar Maple HW 17.48 28.03 375.96 
73 Sugar Maple HW 19.18 28.21 417.85 
74 Sugar Maple HW 20.23 36.71 729.33 
75 Sugar Maple HW 20.03 36.34 708.76 
76 Sugar Maple HW 18.73 28.48 414.67 
77 Sugar Maple HW 17.87 29.37 422.46 
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82 Sugar Maple HW 18.35 38.84 740.75 
83 Red Oak HW 20.82 22.38 300.24 
92 Yellow Birch HW 17.93 24.58 273.10 
96 Sugar Maple HW 19.51 27.38 400.00 

100 Yellow Birch HW 15.87 33.51 461.26 
104 Sugar Maple HW 19.23 37.25 716.01 
105 Sugar Maple HW 18.35 34.40 586.21 
107 Sugar Maple HW 23.83 39.33 971.92 
109 Sugar Maple HW 20.50 35.80 705.38 

1 Red Pine SW 22.57 26.05 302.52 
2 Red Pine SW 24.46 36.65 640.15 
 

3 
 

White Pine 
 

SW 
 

24.14 
 

33.17 
 

420.95 
6 Eastern Hemlock SW 23.58 32.76 463.45 
8 Red Pine SW 26.40 32.91 555.17 
9 White Pine SW 17.96 20.83 128.93 

12 Red Pine SW 19.00 27.79 296.24 
19 Red Pine SW 27.65 38.45 784.37 
20 White Pine SW 17.99 22.90 157.63 
21 Red Pine SW 30.20 43.51 1081.61 
22 White Pine SW 28.50 41.88 765.05 
23 White Pine SW 22.15 40.16 574.41 
24 Red Pine SW 24.49 29.66 422.52 
25 Red Pine SW 22.54 31.99 454.15 
26 Red Pine SW 24.48 21.06 211.12 
29 Red Pine SW 15.93 25.08 205.02 
32 Red Pine SW 17.04 41.40 585.60 

106 Eastern Hemlock SW 19.55 29.97 326.83 
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Table 41. Estimated 2017 Biomass; 2011 Equation Tested on 2017 Dataset  

Tree ID Species Wood 
Height  

(m) 
DBH 
(cm) 

Biomass (kg) 

4 Red Oak HW 20.69 31.16 581.31 
5 Red Oak HW 18.17 21.98 259.15 
7 Red Oak HW 19.17 28.34 450.76 

10 Sugar Maple HW 16.99 11.75 45.27 
11 Sugar Maple HW 20.88 29.28 486.93 
13 Sugar Maple HW 19.67 26.93 391.13 
14 White Birch HW 23.97 31.99 588.26 
15 Red Oak HW 20.87 27.92 470.73 
16 Aspen HW 20.87 27.74 285.58 
17 Sugar Maple HW 20.89 26.56 402.15 
18 White Birch HW 31.36 44.12 1375.22 
27 Red Oak HW 22.17 32.66 676.92 
28 Red Oak HW 22.46 30.15 586.97 
30 Red Oak HW 19.31 33.41 627.63 
31 Red Oak HW 16.51 26.75 352.30 
47 Sugar Maple HW 19.42 38.12 754.38 
49 Sugar Maple HW 20.87 41.61 956.03 

 
51 

 
Sugar Maple 

 
HW 

 
22.06 

 
45.26 

 
1185.11 

53 Sugar Maple HW 20.64 34.07 644.96 
55 Sugar Maple HW 19.20 33.35 576.65 
73 Sugar Maple HW 18.69 32.81 544.03 
74 Sugar Maple HW 19.51 35.63 665.01 
75 Sugar Maple HW 19.60 32.53 561.74 
76 Sugar Maple HW 20.42 37.54 770.16 
77 Sugar Maple HW 20.29 32.52 581.22 
82 Sugar Maple HW 18.21 37.91 702.51 
83 Red Oak HW 21.46 28.96 521.30 
92 Yellow Birch HW 18.51 28.31 367.51 
96 Sugar Maple HW 21.77 32.09 604.29 

100 Yellow Birch HW 15.36 36.06 520.22 
104 Sugar Maple HW 20.66 36.00 716.82 
105 Sugar Maple HW 18.45 35.64 631.36 
107 Sugar Maple HW 24.10 41.76 1101.53 
109 Sugar Maple HW 22.27 50.69 1485.36 
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1 Red Pine SW 20.25 26.90 293.46 
2 Red Pine SW 25.78 35.01 613.29 
3 White Pine SW 24.18 35.65 486.32 
6 Eastern Hemlock SW 26.45 37.51 678.05 
8 Red Pine SW 27.47 41.50 905.53 
9 White Pine SW 20.29 20.79 139.95 

12 Red Pine SW 19.51 25.18 249.00 
19 Red Pine SW 29.62 43.54 1065.13 
20 White Pine SW 18.18 32.25 319.23 
21 Red Pine SW 31.35 46.08 1251.74 
22 White Pine SW 28.48 47.95 999.82 
23 White Pine SW 16.14 45.47 573.08 
24 Red Pine SW 27.27 32.73 563.67 
25 Red Pine SW 23.82 32.53 493.79 
26 Red Pine SW 24.24 29.59 415.87 
29 Red Pine SW 17.92 33.40 403.15 
32 Red Pine SW 19.14 45.62 787.15 

106 Eastern Hemlock SW 22.31 29.97 367.47 

 

2.3. 6-year time period growth amount  
 

Table 42. Volume Growth of Single Trees between 2011 and 2017 

Tree ID Species 
Merchantable 
Volume  (m³) 

2017 

Merchantable 
Volume (m³) 

2011 

Increment 
(m³) 

4 Red Oak 0.87 0.61 0.26 
5 Red Oak 0.00 0.00 0.00 
7 Red Oak 0.26 0.00 0.26 

10 Sugar Maple 0.00 0.00 0.00 
11 Sugar Maple 0.00 0.00 0.00 
13 Sugar Maple 0.00 0.00 0.00 
14 White Birch 0.00 0.00 0.00 
15 Red Oak 0.00 0.00 0.00 
16 Aspen 0.00 0.00 0.00 
17 Sugar Maple 0.00 0.00 0.00 
18 White Birch 3.02 2.06 0.96 
27 Red Oak 0.57 0.48 0.08 
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28 Red Oak 0.88 0.60 0.28 
30 Red Oak 0.61 0.55 0.06 
31 Red Oak 0.16 0.00 0.16 
47 Sugar Maple 0.30 0.00 0.30 
49 Sugar Maple 0.57 0.30 0.27 
51 Sugar Maple 1.02 0.82 0.21 
53 Sugar Maple 0.55 0.31 0.24 
55 Sugar Maple 0.36 0.16 0.20 
73 Sugar Maple 0.54 0.31 0.24 
74 Sugar Maple 0.29 0.00 0.29 
75 Sugar Maple 0.32 0.00 0.32 
76 Sugar Maple 0.50 0.31 0.18 
77 Sugar Maple 0.48 0.31 0.17 
82 Sugar Maple 0.35 0.00 0.35 
83 Red Oak 0.80 0.54 0.25 
92 Yellow Birch 0.35 0.29 0.06 
96 Sugar Maple 0.51 0.28 0.23 

100 Yellow Birch 0.85 0.65 0.20 
104 Sugar Maple 0.14 0.00 0.14 
105 Sugar Maple 0.59 0.38 0.22 

 
107 

 
Sugar Maple 

 
1.30 

 
0.92 

 
0.37 

109 Sugar Maple 1.43 1.10 0.33 
1 Red Pine 0.57 0.60 -0.03 
2 Red Pine 0.53 0.36 0.17 
3 White Pine 0.96 0.94 0.02 
6 Eastern Hemlock 0.92 0.00 0.92 
8 Red Pine 0.53 0.44 0.09 
9 White Pine 0.18 0.22 -0.04 

12 Red Pine 0.44 0.27 0.17 
19 Red Pine 1.16 0.92 0.24 
20 White Pine 0.22 0.00 0.22 
21 Red Pine 1.29 1.08 0.20 
22 White Pine 1.75 1.09 0.65 
23 White Pine 0.58 0.67 -0.08 
24 Red Pine 1.76 1.26 0.50 
25 Red Pine 1.00 0.81 0.19 
26 Red Pine 0.96 0.72 0.24 
29 Red Pine 0.29 0.17 0.12 
32 Red Pine 0.51 0.27 0.24 

106 Eastern Hemlock 2.35 1.74 0.61 
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Table 43. Dry Biomass Growth of Single Trees between 2011 and 2017 

Tree ID Species 
Biomass 
(kg) 2017 

Biomass 
(kg) 2011 

Increment 
(kg) 

4 Red Oak 988.35 816.53 171.82 
5 Red Oak 299.68 274.92 24.76 
7 Red Oak 480.52 398.49 82.03 

10 Sugar Maple 42.29 10.52 31.77 
11 Sugar Maple 383.78 254.23 129.54 
13 Sugar Maple 99.19 22.22 76.97 
14 White Birch 256.90 124.69 132.21 
15 Red Oak 330.93 192.18 138.75 
16 Aspen 78.47 28.79 49.68 
17 Sugar Maple 143.58 91.22 52.36 
18 White Birch 2427.89 1764.76 663.13 
27 Red Oak 835.02 718.60 116.42 
28 Red Oak 1076.73 849.68 227.04 
30 Red Oak 799.74 706.96 92.77 
31 Red Oak 441.31 391.03 50.28 
47 Sugar Maple 497.90 372.49 125.42 
49 Sugar Maple 726.24 522.71 203.53 
51 Sugar Maple 1142.99 883.20 259.79 
53 Sugar Maple 701.20 550.30 150.91 
55 Sugar Maple 583.48 410.26 173.22 
73 Sugar Maple 627.37 508.96 118.41 
74 Sugar Maple 493.64 382.82 110.82 
75 Sugar Maple 536.92 423.86 113.06 
76 Sugar Maple 628.81 505.79 123.02 
77 Sugar Maple 605.93 481.49 124.45 
82 Sugar Maple 545.34 375.13 170.21 
83 Red Oak 937.30 759.51 177.79 
92 Yellow Birch 511.70 423.03 88.67 
96 Sugar Maple 685.41 473.16 212.25 

100 Yellow Birch 811.05 645.89 165.16 
104 Sugar Maple 440.94 321.09 119.85 
105 Sugar Maple 671.66 588.53 83.13 
107 Sugar Maple 1325.22 1116.46 208.77 
109 Sugar Maple 1351.12 1143.33 207.79 

1 Red Pine 440.06 429.79 10.27 
2 Red Pine 429.61 332.70 96.91 
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3 White Pine 646.31 550.06 96.25 
6 Eastern Hemlock 653.49 183.65 469.83 
8 Red Pine 454.78 366.15 88.63 
9 White Pine 197.32 216.17 -18.86 

12 Red Pine 333.95 250.42 83.53 
19 Red Pine 863.15 690.46 172.69 
20 White Pine 217.76 133.48 84.28 
21 Red Pine 919.12 789.01 130.10 
22 White Pine 1044.04 732.52 311.52 
23 White Pine 425.24 435.09 -9.85 
24 Red Pine 1210.29 882.71 327.58 
25 Red Pine 683.51 580.77 102.74 
26 Red Pine 640.00 554.19 85.81 
29 Red Pine 258.19 193.52 64.67 
32 Red Pine 374.48 228.39 146.09 

106 Eastern Hemlock 1463.99 1107.67 356.32 
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Appendix D  
 

The only copyright needed material is in Figure 19. LiDAR data acquisition path on study 
area in 2017, Image courtesy of Quantum Spatial, Inc. and the screen capture of the email 
that illustrates I have permission to use it. 
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